WO2014065202A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2014065202A1
WO2014065202A1 PCT/JP2013/078265 JP2013078265W WO2014065202A1 WO 2014065202 A1 WO2014065202 A1 WO 2014065202A1 JP 2013078265 W JP2013078265 W JP 2013078265W WO 2014065202 A1 WO2014065202 A1 WO 2014065202A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
electrode
crystal display
display device
region
Prior art date
Application number
PCT/JP2013/078265
Other languages
English (en)
French (fr)
Inventor
洋典 岩田
村田 充弘
耕平 田中
章仁 陣田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/437,659 priority Critical patent/US20150301412A1/en
Publication of WO2014065202A1 publication Critical patent/WO2014065202A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134381Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates

Definitions

  • the present invention relates to a liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device having a three-layer electrode structure in which liquid crystal molecules are aligned by an electric field at both rising and falling edges.
  • a liquid crystal display device is configured by sandwiching a liquid crystal display element between a pair of glass substrates, etc., and is indispensable for daily life and business, such as mobile applications, various monitors, and televisions, taking advantage of its thin, lightweight, and low power consumption. It is impossible. In recent years, it has been widely used for electronic books, photo frames, IA (Industrial Appliances), PCs (Personal Computers), tablet PCs, smartphones, and the like. In these applications, various modes of liquid crystal display devices related to electrode arrangement and substrate design for changing the optical characteristics of the liquid crystal layer have been studied. Examples include the following.
  • a liquid crystal display device including a p-type nematic liquid crystal sandwiched between two transparent substrates, at least one of which is perpendicular to the two substrate surfaces when no voltage is applied. At least one of the two substrates has a comb-like electrode, and the electrode width L and the electrode interval S of the comb-like electrode are (S + 1.7) / (S + L) ⁇ 0.7
  • a liquid crystal display device satisfying the relationship is disclosed (for example, see Patent Document 1).
  • a liquid crystal display panel including a pair of substrates and a liquid crystal layer sealed between the pair of substrates, the pair of substrates having a pixel electrode on at least one substrate, the same substrate as the substrate Having a common electrode on the other substrate, and having a counter electrode on the other substrate, wherein the counter electrode has a pixel electrode and one common electrode adjacent to the pixel electrode when the main surface of the substrate is viewed in plan view. And a region between the pixel electrode and the other common electrode adjacent to the pixel electrode, and a liquid crystal display panel that is 2 ⁇ m or more away from the edge of the pixel electrode is disclosed (for example, , See Patent Document 2).
  • the optical characteristics of the liquid crystal layer are changed by changing the electrode arrangement, for example, improving the viewing angle characteristics. It is hoped that however, it has a three-layer electrode structure in which the orientation of liquid crystal molecules is controlled by an electric field at both rising and falling edges, and a vertical electric field (electric field in a direction perpendicular to the main surface of the substrate) on-horizontal electric field (substrate main surface
  • the response speed of the rise of the liquid crystal molecules is sufficiently prevented from being reduced in the pixel while performing on switching (hereinafter also referred to as an on-on switching mode).
  • multi-VT there is room for improvement in order to make the viewing angle characteristics sufficient.
  • FIG. 27 is a schematic cross-sectional view showing a liquid crystal display panel included in a conventional liquid crystal display device in an on-on switching mode.
  • the liquid crystal display panel 2525 includes a lower substrate 2523 (for example, an active matrix substrate including a thin film transistor element [hereinafter also referred to as TFT substrate]) and an upper substrate 2524 (for example, a color filter substrate) facing the lower substrate 2523. [Hereinafter also referred to as a CF substrate])) and a liquid crystal layer 2521 sandwiched between the lower substrate 2523 and the upper substrate 2524.
  • TFT substrate thin film transistor element
  • an upper substrate 2524 for example, a color filter substrate facing the lower substrate 2523.
  • CF substrate CF substrate
  • the liquid crystal molecules 2522 included in the liquid crystal layer 2521 are aligned in a direction perpendicular to the main surface of the substrate when no voltage is applied.
  • the lower substrate 2523 includes a glass substrate 2518a, a planar lower electrode 2516 formed on the glass substrate 2518a on the liquid crystal layer 2521 side, and the lower electrode 2516 on the lower electrode 2516.
  • the upper substrate 2524 includes a glass substrate 2518b, a counter electrode 2520 formed on the glass substrate 2518b on the liquid crystal layer 2521 side, and the liquid crystal layer of the counter electrode 2520 on the counter electrode 2520. And an insulating layer 2519b formed on the 2521 side. Further, a color filter layer (not shown) and a black matrix (not shown) may be formed between the glass substrate 2518b and the counter electrode 2520.
  • FIG. 28 is a graph showing VT characteristics in a conventional liquid crystal display device in an on-on switching mode.
  • the lower layer electrode 2516 is formed in a plane and substantially the entire surface (solid), and
  • the interval S (comb electrode interval) between the comb electrode 2515a and the comb electrode 2515b is constant, the VT characteristics between all the comb electrodes in the pixel are as shown in FIG. Since the shapes are equal, multi-VT cannot be realized in the pixel, and there is a problem that a viewing angle characteristic cannot be obtained sufficiently.
  • Patent Document 1 discloses a liquid crystal display device capable of simultaneously realizing excellent wide viewing angle characteristics and high-speed responsiveness and capable of performing display by a display method that does not require an initial bend transition operation. Yes. That is, in a TBA (Transverse Bend Alignment) mode liquid crystal display device, by providing two regions having different comb-teeth electrode spacing S in one pixel, the liquid crystal display device is made multi-VT and improves viewing angle characteristics. Is disclosed. However, in the invention described in Patent Document 1, when the interdigital electrode interval S is increased, the strength of the transverse electric field between the interdigital electrodes is weakened. There was room for ingenuity to solve the problem.
  • TBA Transverse Bend Alignment
  • Patent Document 2 discloses a liquid crystal display panel and a liquid crystal display device which can sufficiently improve the transmittance by specifying the positional relationship between the counter electrode and the pixel electrode.
  • the invention described in Patent Document 2 does not realize multi-VT in a pixel, and there is room for improvement to solve the above-described problem.
  • the present invention has been made in view of the above-described situation, and in an on-on switching mode liquid crystal display device, a multi-VT conversion is achieved in a pixel while sufficiently preventing a decrease in response speed of rising of liquid crystal molecules. It is an object of the present invention to provide a liquid crystal display device capable of realizing the above and sufficiently improving the viewing angle characteristics.
  • the present inventors have realized multi-VT in the pixel while sufficiently preventing the response speed of the rise of the liquid crystal molecules from rising, and providing sufficient viewing angle characteristics.
  • the lower electrode has been focused on having an opening.
  • the VT characteristics of the region where the lower layer electrode exists (non-opening portion) and the region where the lower layer electrode does not exist (opening portion) are different. It has been found that it is possible to make multi-VT within a pixel, and the viewing angle characteristics are improved.
  • the inventors have arrived at the present invention by conceiving that the above-mentioned problems can be solved brilliantly while sufficiently preventing a decrease in the response speed of rising of liquid crystal molecules.
  • a liquid crystal display device including at least a first substrate, a second substrate facing the first substrate, and a liquid crystal layer sandwiched between the first substrate and the second substrate.
  • the first substrate has a first electrode, a second electrode, and a third electrode
  • the second substrate has a fourth electrode
  • the first electrode and the second electrode are ,
  • the third electrode is an electrode having an opening
  • the fourth electrode is planar.
  • the region and the third electrode with respect to the region between the linear portion of the first electrode and the linear portion of the second electrode that are adjacent to each other It may be a liquid crystal display device in which the ratio of and overlaps in a pixel.
  • the electrode interval between the first electrode and the second electrode may be substantially the same in the pixel.
  • the electrode interval between the first electrode and the second electrode is substantially the same in the pixel” is not limited as long as it can be said that the electrode interval is the same in the technical field of the present invention. It includes a form in which the electrode spacing is the same.
  • the “region between the linear portion of the adjacent first electrode and the linear portion of the second electrode” is, for example, in the liquid crystal display panel 25 provided in the liquid crystal display device as shown in FIG.
  • the area AR1 between the central portion in the width direction of the linear portion of the left comb-tooth electrode 15a and the central portion in the width direction of the linear portion of the comb-tooth electrode 15b, and the linear portion of the right comb-tooth electrode 15a This is an area AR2 between the central portion in the width direction of the electrode and the central portion in the width direction of the linear portion of the comb electrode 15b.
  • the ratio in which the region and the third electrode overlap is different in the pixel means that, for example, when the main surface of the substrate is viewed in plan, the region AR1 and the lower layer electrode 16 are overlapped, The overlapping ratio is different within the pixel, such that the area AR2 and the lower layer electrode 16 do not overlap.
  • the comb electrode 15a, the comb electrode 15b, and the lower layer electrode 16 correspond to the first electrode, the second electrode, and the third electrode, respectively, according to one embodiment of the present invention.
  • the liquid crystal display device according to the present invention is not particularly limited by other components as long as such components are included as essential, and other configurations usually used in liquid crystal display devices can be applied as appropriate. it can.
  • a liquid crystal display device in an on-on switching mode multi-VT conversion is realized in a pixel while sufficiently preventing a decrease in response speed of rising of liquid crystal molecules, and a viewing angle is achieved.
  • a liquid crystal display device capable of sufficiently improving the characteristics can be provided.
  • FIG. 3 is a schematic plan view of a pixel portion of a liquid crystal display panel included in the liquid crystal display device according to Embodiment 1.
  • FIG. FIG. 2 is a schematic cross-sectional view showing a cross section of a portion corresponding to a line segment a-a ′ in FIG. 1.
  • 6 is a graph showing VT characteristics in each region of the liquid crystal display devices according to Example 1 and Example 2.
  • 5 is a graph showing VT characteristics of liquid crystal display devices according to Example 1 and Example 2.
  • 6 is a director distribution and a transmittance distribution in the liquid crystal display device according to the first embodiment.
  • FIG. 6 is a characteristic diagram of gamma shift at an azimuth angle of 0 ° -180 ° and a polar angle of 60 ° of the liquid crystal display device according to Example 1 and Comparative Example 1-1.
  • FIG. 5 is a characteristic diagram of gamma shift at an azimuth angle of 45 ° -225 ° and a polar angle of 60 ° of the liquid crystal display device according to Example 1 and Comparative Example 1-1.
  • 6 is a graph showing response characteristics of rising edges of liquid crystal molecules in liquid crystal display devices according to Example 1, Example 2, Comparative Example 1-1, Comparative Example 1-2, and Comparative Example 1-3.
  • 6 is a schematic cross-sectional view of a liquid crystal display panel included in a liquid crystal display device according to Embodiment 2.
  • FIG. 2 is a schematic cross-sectional view of a liquid crystal display panel included in a liquid crystal display device according to Embodiment 2.
  • FIG. 6 is a director distribution and a transmittance distribution in the liquid crystal display device according to the second embodiment.
  • FIG. 6 is a characteristic diagram of gamma shift at an azimuth angle of 0 ° -180 ° and a polar angle of 60 ° of the liquid crystal display device according to Example 2 and Comparative Example 1-1.
  • FIG. 11 is a characteristic diagram of gamma shift at an azimuth angle of 45 ° -225 ° and a polar angle of 60 ° of the liquid crystal display device according to Example 2 and Comparative Example 1-1.
  • 10 is a graph showing VT characteristics in each region of a liquid crystal display device according to Example 3 and Example 4.
  • 10 is a graph showing VT characteristics of liquid crystal display devices according to Example 3 and Example 4.
  • FIG. 11 is a characteristic diagram of gamma shift at azimuth angles of 0 ° -180 ° and polar angles of 60 ° of the liquid crystal display devices according to Example 3, Example 4, and Comparative Example 2;
  • FIG. 11 is a characteristic diagram of gamma shift at azimuth angles of 45 ° -225 ° and polar angles of 60 ° of the liquid crystal display devices according to Example 3, Example 4, and Comparative Example 2;
  • 6 is a director distribution and a transmittance distribution in the liquid crystal display device according to the fourth embodiment.
  • FIG. 10 is a schematic plan view of a pixel portion of a liquid crystal display panel included in a liquid crystal display device according to Embodiment 5.
  • FIG. 10 is a schematic plan view of a pixel portion of a liquid crystal display panel included in a liquid crystal display device according to Embodiment 6.
  • FIG. 10 is a schematic plan view between a pair of adjacent comb electrodes in a pixel portion of a liquid crystal display panel included in a liquid crystal display device according to Embodiment 7. It is a plane schematic diagram between a pair of adjacent comb-tooth electrodes in a pixel part in case the width
  • FIG. 24 is a schematic cross-sectional view showing a cross section of a portion corresponding to line segment A-A ′ in FIG. 23.
  • 6 is a director distribution and a transmittance distribution in the liquid crystal display device according to Comparative Example 1-1.
  • 6 is a director distribution and a transmittance distribution in a liquid crystal display device according to Comparative Example 2.
  • FIG. 6 is a schematic cross-sectional view showing a liquid crystal display panel included in a conventional liquid crystal display device in an on-on switching mode.
  • 5 is a graph showing VT characteristics in a conventional liquid crystal display device in an on-on switching mode.
  • liquid crystal display device Another preferred embodiment of the liquid crystal display device according to the present invention will be described below. Various aspects of the liquid crystal display device according to the present invention can be combined as appropriate.
  • the liquid crystal molecules contained in the liquid crystal layer may be aligned in a direction perpendicular to the main surface of the substrate when no voltage is applied.
  • Such a vertical alignment type liquid crystal display device is an advantageous system for obtaining characteristics such as a wide viewing angle and high contrast. Therefore, when the liquid crystal display device of the present invention is a vertical alignment type liquid crystal display device, the field of view can be realized by realizing multi-VT in the pixel while sufficiently preventing the response speed of the rise of the liquid crystal molecules from being lowered. The angle characteristics can be sufficiently improved, and a wide viewing angle and high contrast can be realized. Note that “when no voltage is applied” may be anything as long as it can be said that substantially no voltage is applied in the technical field of the present invention.
  • orienting in a direction perpendicular to the main surface of the substrate may be anything that can be said to be oriented in a direction perpendicular to the main surface of the substrate in the technical field of the present invention. Including a form oriented.
  • “rising of liquid crystal molecules” refers to a state in which the display state changes from a dark state (black display) to a bright state (white display) in the display state of the liquid crystal display device.
  • the liquid crystal display device includes a first region and a second region in a pixel, and the first region is a linear portion of the adjacent first electrode. And the linear portion of the second electrode, the entire region overlaps with the third electrode, and the second region is adjacent to the linear portion of the adjacent first electrode. A region between the linear portions of the second electrode, the region and the third electrode do not overlap, and the area ratio of the first region to the second region is 1: 1. There may be something.
  • the “linear part of the electrode” means, for example, a linear part corresponding to the teeth of a comb electrode and a part having a linear edge having a function of generating an electric field similar to that of the linear part.
  • the area ratio between the first region and the second region is not particularly limited as long as the effect of one embodiment of the present invention can be exhibited, and may not be 1: 1.
  • the liquid crystal display device includes a first region and a third region in a pixel, and the first region is a linear portion of the adjacent first electrode. And the linear portion of the second electrode, the entire region overlaps with the third electrode, and the third region is adjacent to the linear portion of the adjacent first electrode. A region between the linear portions of the second electrode, a part of the region overlaps with the third electrode, and an area ratio between the first region and the third region is 1: It may be one.
  • each region has a different VT characteristic, and multi-VT can be achieved in the pixel. Therefore, viewing angle characteristics can be improved.
  • the area ratio between the first region and the third region is not particularly limited as long as the effect of one embodiment of the present invention can be exhibited, and may not be 1: 1.
  • At least one of the first substrate and the second substrate may include a thin film transistor element, and the thin film transistor element may include an oxide semiconductor.
  • the oxide semiconductor is characterized by higher mobility and smaller characteristic variation than a-Si (amorphous silicon). Therefore, a TFT including the oxide semiconductor can operate at a higher speed than a TFT including a-Si, has a high driving frequency, and can reduce the ratio of one pixel, so that the next generation has higher definition. It is suitable for driving a display device.
  • the oxide semiconductor film is formed by a simpler process than the polycrystalline silicon film, it has an advantage that it can be applied to a device that requires a large area. Therefore, when the liquid crystal display device of the present invention includes a TFT including an oxide semiconductor, a multi-VT conversion is realized in a pixel while sufficiently preventing a decrease in response speed of rising of liquid crystal molecules, and viewing angle characteristics are achieved. Can be sufficiently improved, and a higher aperture ratio can be realized than a liquid crystal display device including a TFT containing a-Si, so that it can be driven at high speed.
  • ITZO In—Ga—Zn—O
  • ITZO In-Tin-Zn-O
  • ITZO In-Tin-Zn-O
  • IAZO In—Al—Zn—O
  • the first electrode and the second electrode which are a pair of comb electrodes, may be formed in the same layer.
  • the first electrode and the second electrode, which are a pair of comb electrodes may be formed in different layers as long as the effects of one embodiment of the present invention can be exhibited.
  • “the first electrode and the second electrode that are a pair of comb electrodes are formed in the same layer” means that each comb electrode has its liquid crystal layer side and / or its It is in contact with a common member (for example, an insulating layer and / or a liquid crystal layer) on the side opposite to the liquid crystal layer side.
  • the first substrate further includes an insulating layer, and the insulating layer is opposite to the liquid crystal layer side of the first electrode and the second electrode. May be.
  • a transverse electric field (an electric field in a direction horizontal to the substrate main surface) is suitably generated between a pair of comb electrodes including a plurality of linear portions (between the first electrode and the second electrode).
  • the “electric field in the direction horizontal to the main surface of the substrate” may be any field that can be said to be an electric field in the direction horizontal to the main surface of the substrate in the technical field of the present invention. This includes forms in which an electric field is generated.
  • a vertical electric field (electric field in a direction perpendicular to the main surface of the substrate) can be suitably generated.
  • the “electric field in the direction perpendicular to the main surface of the substrate” is not limited as long as it can be said to be an electric field in the direction perpendicular to the main surface of the substrate in the technical field of the present invention. This includes forms in which an electric field is generated. Further, when the fourth electrode is patterned using a photomask, even if the photomask is misaligned, it is difficult to cause a problem.
  • the horizontal electric field and the vertical electric field as described above can be suitably generated.
  • the liquid crystal molecules contained in the liquid crystal layer may have positive dielectric anisotropy.
  • Liquid crystal molecules with positive dielectric anisotropy are aligned with the long axis of the liquid crystal molecules along the lines of electric force when a voltage is applied, and the alignment control is easy, resulting in faster response. can do.
  • the liquid crystal molecules contained in the liquid crystal layer may have a negative dielectric anisotropy.
  • the transmittance can be further improved.
  • the liquid crystal molecules contained in the liquid crystal layer are substantially composed of liquid crystal molecules having positive dielectric anisotropy, and from the viewpoint of transmittance. It can be said that the liquid crystal molecules contained in the liquid crystal layer are preferably substantially composed of liquid crystal molecules having negative dielectric anisotropy.
  • the liquid crystal display device may further include a polarizing plate, and the polarizing plate may be a linear polarizing plate. Thereby, viewing angle characteristics can be further improved.
  • the liquid crystal display device may further include a polarizing plate, and the polarizing plate may be a circularly polarizing plate.
  • the transmittance can be improved.
  • the liquid crystal display device includes a second region and a third region in a pixel, and the second region is a linear portion of the adjacent first electrode. And the linear portion of the second electrode, and the region and the third electrode do not overlap, and the third region is adjacent to the linear portion of the adjacent first electrode and the linear portion of the first electrode.
  • a region between the linear portions of the second electrode, a portion of the region overlaps with the third electrode, and an area ratio of the second region to the third region is 1: 1. It may be what is.
  • each region has a different VT characteristic, and multi-VT can be achieved in the pixel. Therefore, viewing angle characteristics can be improved.
  • the area ratio between the second region and the third region is not particularly limited as long as the effect of one embodiment of the present invention can be exhibited, and may not be 1: 1.
  • the width of the opening of the third electrode in the region between the linear portion of the first electrode and the linear portion of the second electrode adjacent to each other is It may change along the longitudinal direction of the first electrode and the second electrode.
  • the electrode structure is different in the region where the width of the opening of the third electrode is different, so that each region has different VT characteristics, and multi-VT can be achieved in the pixel. Therefore, viewing angle characteristics can be improved.
  • the basic configuration of the liquid crystal display device is generally a member such as a liquid crystal display panel and a light source.
  • the basic configuration of the liquid crystal display panel includes a pair of substrates (for example, a TFT substrate and a CF substrate) on which a transparent electrode and an alignment film are formed, a liquid crystal layer sandwiched between both substrates, and a gap between the two substrates. It is a spacer to be held, and both substrates are bonded together using a sealing material or the like.
  • the liquid crystal display device can appropriately include other members (for example, an external circuit) provided in a normal liquid crystal display device.
  • Embodiment 1 When the area ratio between the first region and the second region is 1: 1 and a linear polarizing plate is used] A liquid crystal display device according to Embodiment 1 will be described with reference to FIGS.
  • FIG. 1 is a schematic plan view of a pixel portion of a liquid crystal display panel included in the liquid crystal display device according to the first embodiment.
  • the voltage supplied from the source bus line 12a is driven through the TFT 13a and the contact hole 14a at the timing selected by the gate bus line 11a.
  • a voltage applied to the comb-tooth electrode 15a, which is one side of the pair of comb-tooth electrodes, and a voltage supplied from the source bus line 12b is passed through the TFT 13b and the contact hole 14b, and the comb-tooth electrode which is the other side of the pair of comb-tooth electrodes Apply to 15b.
  • the lower electrode 16 is formed with a plurality of slits 17 parallel to each other.
  • the comb-teeth electrode 15a, the comb-teeth electrode 15b, and the slit 17 of the lower layer electrode 16 are inclined, and the shape of the pixel portion 10 is rectangular.
  • the shape is not limited to the above as long as the effect of one embodiment of the present invention can be exhibited.
  • the slit 17 corresponds to an opening included in the third electrode in one embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a cross section of a portion corresponding to the line segment a-a ′ in FIG.
  • the basic configuration of the liquid crystal display panel 25 included in the liquid crystal display device according to the first embodiment is a lower substrate 23, an upper substrate 24, and a liquid crystal layer 21 sandwiched between both substrates.
  • the liquid crystal molecules 22 included in the liquid crystal layer 21 have positive dielectric anisotropy ( ⁇ > 0).
  • the thickness of the liquid crystal layer 21 is not particularly limited, but is preferably 2 ⁇ m or more and 6 ⁇ m or less.
  • An alignment film (not shown) is formed on each of the lower substrate 23 and the upper substrate 24 on the liquid crystal layer 21 side, and the alignment film is perpendicular to the main surface of the substrate when no voltage is applied. Any organic alignment film or inorganic alignment film may be used as long as it is a vertical alignment film that aligns liquid crystal molecules in the direction.
  • the lower substrate 23 and the upper substrate 24 respectively correspond to the first substrate and the second substrate
  • the lower substrate 23 is a glass substrate 18a and a part on the glass substrate 18a, and the lower electrode 16 formed on the glass substrate 18a on the liquid crystal layer 21 side.
  • An insulating layer 19a formed on the lower electrode 16 and a part of the glass substrate 18a on the liquid crystal layer 21 side of the lower electrode 16 and the glass substrate 18a, and the insulating layer 19a It has a pair of said comb-tooth electrode 15a and said comb-tooth electrode 15b formed in the liquid crystal layer 21 side of the layer 19a.
  • the lower layer electrode 16, the comb-tooth electrode 15a, and the comb-tooth electrode 15b are transparent electrodes such as ITO (Indium (Tin Oxide) or IZO (Indium Zinc Oxide). It is.
  • the comb electrode 15a and the comb electrode 15b are formed in the same layer. Here, as shown in FIG.
  • the region where the lower layer electrode 16 overlaps is a region 1, and is a region between a pair of adjacent linear portions of the right comb-tooth electrode 15a and a linear portion of the comb-tooth electrode 15b, Assuming that the region and the lower layer electrode 16 do not overlap with each other as a region 2, in the first embodiment, the region 1 and the region 2 are arranged so as to be alternately arranged. And the area ratio is 1: 1.
  • the comb electrode 15a and the comb electrode 15b respectively correspond to the first electrode and the second electrode in one embodiment of the present invention.
  • the lower layer electrode 16 corresponds to the third electrode in one embodiment of the present invention.
  • the region 1 and the region 2 correspond to the first region and the second region in one embodiment of the present invention, respectively.
  • the insulating layer 19a may be either an organic insulating film or an inorganic insulating film.
  • the dielectric constant of the insulating layer 19a is not particularly limited, but is preferably 2 or more and 10 or less.
  • the thickness of the insulating layer 19a is not particularly limited, but is preferably 0.1 ⁇ m or more and 4 ⁇ m or less.
  • the electrode width L1 of the comb electrode 15b as shown in FIG. 2 is not particularly limited, but is preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the electrode width (not shown) of the comb electrode 15a is the same as the electrode width L1 of the comb electrode 15b.
  • the electrode interval S1 between the comb-tooth electrode 15a and the comb-tooth electrode 15b is substantially the same in the pixel, and may be substantially the same between the pixels.
  • the electrode spacing S1 between the comb electrode 15a and the comb electrode 15b is not particularly limited as long as it is substantially the same in the pixel, but is preferably 1 ⁇ m or more and 10 ⁇ m or less.
  • the upper substrate 24 includes a glass substrate 18b, a planar counter electrode 20 formed on the glass substrate 18b on the liquid crystal layer 21 side, and the glass substrate 18b.
  • An insulating layer 19b formed on the counter electrode 20 on the liquid crystal layer 21 side of the counter electrode 20 is provided.
  • the insulating layer 19b may not be disposed.
  • the counter electrode 20 is, for example, a transparent electrode such as IZO. Note that the counter electrode 20 corresponds to the fourth electrode in one embodiment of the present invention.
  • the insulating layer 19b may be either an organic insulating film or an inorganic insulating film.
  • the dielectric constant of the insulating layer 19b is not particularly limited, but is preferably 2 or more and 10 or less.
  • the thickness of the insulating layer 19b is not particularly limited, but is preferably 0.1 ⁇ m or more and 4 ⁇ m or less.
  • the liquid crystal display panel 25 included in the liquid crystal display device according to Embodiment 1 further includes a pair of linear polarizing plates (not shown) on the opposite side of the glass substrate 18a and the glass substrate 18b from the liquid crystal layer 21 side. Have.
  • the liquid crystal display device by generating a constant potential difference between the lower layer electrode 16 and the counter electrode 20, a state in which a vertical electric field is always generated in the liquid crystal layer 21 is maintained. Then, by applying a voltage whose polarity is inverted between the comb electrode 15a and the comb electrode 15b, a potential difference is generated, and the potential difference between the comb electrode 15a and the comb electrode 15b is changed. By changing the intensity, the strength of the horizontal electric field is controlled and gradation display is performed.
  • (i), (ii), (iii), and (iv) are the potential of the comb electrode 15a, the potential of the comb electrode 15b, the potential of the lower layer electrode 16, respectively. And the electric potential of the said counter electrode 20 is shown.
  • the liquid crystal display device according to Embodiment 1 can appropriately include a member (for example, an external circuit) included in a normal liquid crystal display device.
  • a member for example, an external circuit
  • Example 1 In Example 1, the liquid crystal molecules 22 have a positive dielectric anisotropy, the dielectric anisotropy ⁇ is 18, and the refractive index anisotropy ⁇ n is 0.12. .
  • the liquid crystal layer 21 has a thickness of 3.2 ⁇ m.
  • the insulating layer 19a has a dielectric constant of 7 and a thickness of 0.3 ⁇ m.
  • the insulating layer 19b has a dielectric constant of 4 and a thickness of 1.5 ⁇ m.
  • the electrode width L1 of the comb electrode 15a and the comb electrode 15b is 2.5 ⁇ m.
  • the electrode interval S1 between the comb electrode 15a and the comb electrode 15b is 3 ⁇ m, and the interval between the comb electrodes in the pixel is substantially the same.
  • the difference in the electrode spacing between the comb-tooth electrode 15a and the comb-tooth electrode 15b in the pixel is 0.5 ⁇ m or less. More preferably, it is 0.25 ⁇ m or less.
  • the potential (i) of the comb electrode 15a is ⁇ V [V]
  • the potential (ii) of the comb electrode 15b is + V [V]
  • the lower electrode The potential (iii) of 16 was 0 [V]
  • the potential (iv) of the counter electrode 20 was 10 [V] (the above [V] represents a unit).
  • the lower substrate 23 is a TFT substrate
  • the upper substrate 24 is a CF substrate.
  • the VT characteristics in the region 1 and the region 2 of the liquid crystal display device according to Example 1 were measured. Further, the VT characteristics, the gamma shift related to the viewing angle characteristics, and the response characteristics of the rising of the liquid crystal molecules were measured for the liquid crystal display device according to Example 1. The results will be described below.
  • FIG. 3 is a graph showing VT characteristics in each region of the liquid crystal display devices according to the first and second embodiments.
  • the horizontal axis represents the voltage between the comb electrodes, and the vertical axis represents the transmittance.
  • the inter-comb electrode voltage is a potential difference between the comb electrode 15a and the comb electrode 15b, and corresponds to 2V [V].
  • “Region 3” will be described in Example 2 described later.
  • the VT characteristic in the region 1 is shifted to a higher voltage side than the VT characteristic in the region 2, and the VT characteristic in the region 1 and the VT characteristic in the region 2 are shifted. It can be seen that this is different from the -T characteristic. Therefore, it can be seen that the liquid crystal display device in Example 1 has two different VT characteristics as described above and realizes multi-VT in the pixel portion 10.
  • FIG. 4 is a graph showing VT characteristics of the liquid crystal display devices according to the first and second embodiments.
  • the horizontal axis represents the voltage between the comb electrodes, and the vertical axis represents the transmittance.
  • the interdigital electrode voltage corresponds to 2 V [V] as in FIG. In FIG. 4, “Example 2” will be described in Example 2 described later.
  • the VT characteristic of the liquid crystal display device according to the first embodiment is a combination of the VT characteristic in the region 1 and the VT characteristic in the region 2.
  • FIG. 5 shows a director distribution and a transmittance distribution in the liquid crystal display device according to the first embodiment.
  • the range from 0.000 ⁇ m to about 1.300 ⁇ m is the region where the left comb electrode 15a exists, and the range from about 1.300 ⁇ m to about 4.300 ⁇ m is the comb electrode 15a.
  • a region in which the comb electrode 15b is not present a range of about 4.300 ⁇ m to about 6.900 ⁇ m is a region in which the comb electrode 15b is present, and a range of about 6.900 ⁇ m to about 9.900 ⁇ m is the region
  • the comb electrode 15b and the region where the comb electrode 15a does not exist, and the range of about 9.900 ⁇ m to 11.200 ⁇ m is the region where the right comb electrode 15 a exists, and 0.000 ⁇ m to about 5.600 ⁇ m.
  • the region 1 is in the range of 0.000 ⁇ m to about 5.600 ⁇ m
  • the region 2 is in the range of about 5.600 ⁇ m to 11.200 ⁇ m.
  • FIG. 6 is a characteristic diagram of the gamma shift at the azimuth angle of 0 ° -180 ° and the polar angle of 60 ° of the liquid crystal display device according to Example 1 and Comparative Example 1-1.
  • FIG. 7 is a characteristic diagram of the gamma shift of the liquid crystal display device according to Example 1 and Comparative Example 1-1 at an azimuth angle of 45 ° -225 ° and a polar angle of 60 °.
  • the horizontal axis indicates the gradation, and the vertical axis indicates the normalized luminance ratio. Note that the normalized luminance ratio indicates the ratio of the luminance of each gradation to the luminance of the maximum gradation (256 gradations).
  • the normalized luminance ratio indicates the ratio of the luminance of each gradation to the luminance of the maximum gradation (256 gradations).
  • the gamma shift is a problem called whitening and is a state in which a curve in a certain direction is shifted in a direction where the luminance is higher than the curve in the front direction. This causes a problem that an image that is normally observed when viewed from the front direction is changed to an abnormal image that is uncomfortable at an oblique viewing angle.
  • the curve of the liquid crystal display device according to Example 1 is shifted in a direction where the luminance is lower than the curve of the liquid crystal display device according to Comparative Example 1-1 as described later.
  • the curve of the liquid crystal display device according to Example 1 has less floating (gamma shift) from the front direction than the curve of the liquid crystal display device according to Comparative Example 1-1 as described later. Therefore, it can be seen that the viewing angle characteristics of the liquid crystal display device according to Example 1 are better than the viewing angle characteristics of the liquid crystal display device according to Comparative Example 1-1 as described later.
  • FIG. 8 is a graph showing the response characteristics of the rising of liquid crystal molecules in the liquid crystal display devices according to Example 1, Example 2, Comparative Example 1-1, Comparative Example 1-2, and Comparative Example 1-3.
  • the horizontal axis represents time, and the vertical axis represents normalized transmittance.
  • the normalized transmittance indicates the ratio of the transmittance at each time to the reached transmittance.
  • Each curve shows that when the inter-comb electrode voltage is 10 [V] (in the case of Example 1, the inter-comb electrode voltage between the comb electrode 15a and the comb electrode 15b is 10 [V]. V]).
  • Example 2 “Comparative Example 1-1”, “Comparative Example 1-2”, and “Comparative Example 1-3” will be described in detail later, but “Example 2”.
  • the comb electrode interval in “Comparative Example 1-1” is 3 ⁇ m as in Example 1, and the comb electrode interval in “Comparative Example 1-2” is 5 ⁇ m, and “Comparative Example 1-3”.
  • the interval between the comb electrodes is 7 ⁇ m.
  • the curve of the liquid crystal display device according to Example 1 shows the same response characteristics as the curves of the liquid crystal display devices according to Example 2 and Comparative Example 1-1 as described later. That is, the response speed of the rise of liquid crystal molecules in the liquid crystal display device according to Example 1 and the response speed of the rise of liquid crystal molecules in the liquid crystal display devices according to Example 2 and Comparative Example 1-1 as described later are approximately You can see that they are equal. This is because the interdigital electrode interval in the liquid crystal display device according to Example 1 is equal to the interdigital electrode interval in the liquid crystal display devices according to Example 2 and Comparative Example 1-1 as described later.
  • the electric field strength generated between the comb electrodes of the liquid crystal display device according to the present invention is substantially equal to the electric field strength generated between the comb electrodes of the liquid crystal display devices according to Example 2 and Comparative Example 1-1 as described later. Because.
  • the response speed of the rise of the liquid crystal molecules in the liquid crystal display device according to Example 1 is higher than the response speed of the rise of the liquid crystal molecules in the liquid crystal display devices according to Comparative Examples 1-2 and 1-3 as described later. I can see it's fast. This is because the interdigital electrode interval in the liquid crystal display device according to Example 1 is narrower than the interdigital electrode interval in the liquid crystal display devices according to Comparative Examples 1-2 and 1-3, which will be described later.
  • the electric field strength generated between the comb electrodes of the liquid crystal display device according to Example 1 is greater than the electric field strength generated between the comb electrodes of the liquid crystal display devices according to Comparative Example 1-2 and Comparative Example 1-3 as described later. This is because it becomes stronger.
  • the liquid crystal display device realizes multi-VT in the pixel while sufficiently preventing the response speed of the rise of the liquid crystal molecules from rising, and has sufficient viewing angle characteristics. It can be seen that it can be improved.
  • Embodiment 2 When the area ratio between the first region and the third region is 1: 1 and a linearly polarizing plate is used] A liquid crystal display device according to Embodiment 2 will be described with reference to FIG.
  • FIG. 9 is a schematic cross-sectional view of a liquid crystal display panel included in the liquid crystal display device according to the second embodiment.
  • the basic configuration of the liquid crystal display panel 825 included in the liquid crystal display device according to Embodiment 2 is a lower substrate 823, an upper substrate 824, and a liquid crystal layer 821 sandwiched between the substrates.
  • Liquid crystal molecules 822 included in the liquid crystal layer 821 have positive dielectric anisotropy ( ⁇ > 0). Note that the lower substrate 823 and the upper substrate 824 respectively correspond to the first substrate and the second substrate in one embodiment of the present invention.
  • the lower substrate 823 is a glass substrate 818a and a part on the glass substrate 818a, and the lower layer electrode 816 formed on the glass substrate 818a on the liquid crystal layer 821 side.
  • an insulating layer 819a formed on the lower electrode 816 and a part of the glass substrate 818a on the liquid crystal layer 821 side of the lower electrode 816 and the glass substrate 818a, and the insulating layer 819a A pair of the comb electrodes 815a and the comb electrodes 815b formed on the liquid crystal layer 821 side of the layer 819a is provided.
  • the comb electrode 815a and the comb electrode 815b are formed in the same layer.
  • the region where the lower layer electrode 816 overlaps is a region 1, and is a region between a pair of adjacent linear portions of the comb electrode 815a on the right side and a linear portion of the comb electrode 815b,
  • the present embodiment 2 is arranged such that the region 1 and the region 3 are alternately continuous. This is a case where the area ratio with the region 3 is 1: 1.
  • the area ratio with the region 3 is 1: 1.
  • the comb electrode 815a and the comb electrode 815b respectively correspond to the first electrode and the second electrode in one embodiment of the present invention.
  • the lower layer electrode 816 corresponds to the third electrode in one embodiment of the present invention.
  • the region 1 and the region 3 correspond to the first region and the third region in one embodiment of the present invention, respectively.
  • the third region includes the region and the third electrode in a direction perpendicular to the longitudinal direction of each linear portion of the pair of comb electrodes (the first electrode and the second electrode). It is preferable that there is a portion that overlaps and a portion that does not overlap.
  • the upper substrate 824 includes a glass substrate 818b, a planar counter electrode 820 formed on the glass substrate 818b on the liquid crystal layer 821 side, and the glass substrate 818b.
  • An insulating layer 819b formed on the counter electrode 820 on the liquid crystal layer 821 side of the counter electrode 820 is provided. Note that the insulating layer 819b is not necessarily provided.
  • the counter electrode 820 corresponds to the fourth electrode in one embodiment of the present invention.
  • the liquid crystal display panel 825 included in the liquid crystal display device according to Embodiment 2 further includes a pair of linear polarizing plates (not shown) on the opposite side of the glass substrate 818a and the glass substrate 818b from the liquid crystal layer 821 side. Have.
  • (i), (ii), (iii), and (iv) are the potential of the comb electrode 815a, the potential of the comb electrode 815b, the potential of the lower layer electrode 816, respectively. And the electric potential of the said counter electrode 820 is shown.
  • Example 2 In Example 2, the liquid crystal molecules 822 have positive dielectric anisotropy, the dielectric anisotropy ⁇ is 18, and the refractive index anisotropy ⁇ n is 0.12. .
  • the liquid crystal layer 821 has a thickness of 3.2 ⁇ m.
  • the insulating layer 819a has a dielectric constant of 7 and a thickness of 0.3 ⁇ m.
  • the insulating layer 819b has a dielectric constant of 4 and a thickness of 1.5 ⁇ m.
  • the electrode width L2 of the comb-tooth electrode 815b is 2.5 ⁇ m
  • the electrode interval S2 between the comb-tooth electrode 815a and the comb-tooth electrode 815b is 3 ⁇ m.
  • the electrode width (not shown) of the comb electrode 815a is the same as the electrode width L2 of the comb electrode 815b.
  • Example 2 as shown in FIG. 9, the potential (i) of the comb-tooth electrode 815a is ⁇ V [V], the potential (ii) of the comb-tooth electrode 815b is + V [V], and the lower electrode
  • the potential (iii) of 816 was 0 [V]
  • the potential (iv) of the counter electrode 820 was 10 [V] (the above [V] represents a unit).
  • the lower substrate 823 is a TFT substrate
  • the upper substrate 824 is a CF substrate.
  • the VT characteristics in the region 1 and the region 3 of the liquid crystal display device according to Example 2 were measured.
  • the VT characteristic of the liquid crystal display device according to Example 2 the gamma shift related to the viewing angle characteristic, and the response characteristic of the rise of the liquid crystal molecules were measured. The results will be described below.
  • the VT characteristics in the region 1 and the region 3 of the liquid crystal display device according to the second embodiment will be described with reference to FIG.
  • the VT characteristic in the region 1 is shifted to a higher voltage side than the VT characteristic in the region 3, and the VT characteristic in the region 1 and the VT characteristic in the region 3 are shifted. It can be seen that this is different from the -T characteristic. Therefore, it can be seen that the liquid crystal display device in Example 2 has two different VT characteristics as described above and realizes multi-VT in a pixel. It can also be seen that by forming the region 3, a VT characteristic between the VT characteristic in the region 1 and the VT characteristic in the region 2 can be obtained.
  • the VT characteristic of the liquid crystal display device according to Embodiment 2 will be described with reference to FIG. 4 described above.
  • the VT characteristic of the liquid crystal display device according to the second embodiment is a combination of the VT characteristic in the region 1 and the VT characteristic in the region 3.
  • FIG. 10 illustrates a director distribution and a transmittance distribution in the liquid crystal display device according to the second embodiment.
  • the range from 0.000 ⁇ m to about 1.300 ⁇ m is the region where the left comb electrode 815a exists, and the range from about 1.300 ⁇ m to about 4.300 ⁇ m is the comb electrode 815a.
  • a region where the comb-shaped electrode 815b is not present a range of about 4.300 ⁇ m to about 6.900 ⁇ m is a region where the comb-shaped electrode 815b is present, and a range of about 6.900 ⁇ m to about 9.900 ⁇ m is the region The comb electrode 815b and the region where the comb electrode 815a does not exist, and the range of about 9.900 ⁇ m to 11.200 ⁇ m is the region where the right comb electrode 815 a exists, and 0.000 ⁇ m to about 7.400 ⁇ m.
  • the region 1 is in the range of 0.000 ⁇ m to about 5.600 ⁇ m
  • the region 3 is in the range of about 5.600 ⁇ m to 11.200.
  • m is in the range of. 10
  • (I) 0.000 ⁇ m is the interface between the glass substrate 818a and the insulating layer 819a
  • (II) 0.000 ⁇ m is the distance between the insulating layer 819a and the liquid crystal layer 821.
  • (III) 0.000 ⁇ m is the interface between the liquid crystal layer 821 and the insulating layer 819b
  • (IV) 1.500 ⁇ m is the interface between the insulating layer 819b and the counter electrode 820.
  • the transmittance of the liquid crystal display device according to Example 2 as shown in FIG. 4 was measured in a region corresponding to the range of 0.000 ⁇ m to 11.200 ⁇ m on the horizontal axis in FIG.
  • FIG. 11 is a characteristic diagram of the gamma shift at the azimuth angle of 0 ° -180 ° and the polar angle of 60 ° of the liquid crystal display device according to Example 2 and Comparative Example 1-1.
  • FIG. 12 is a characteristic diagram of the gamma shift at the azimuth angles of 45 ° to 225 ° and the polar angle of 60 ° of the liquid crystal display device according to Example 2 and Comparative Example 1-1.
  • the horizontal axis indicates the gradation, and the vertical axis indicates the normalized luminance ratio.
  • Comparative Example 1-1 will be described later in Comparative Example 1-1.
  • the other two curves are curves when confirmed in the direction of a polar angle of 60 ° from the front direction.
  • the definition of the azimuth angle is the same as that shown in FIG.
  • luminance shown by FIG. 11 is an average value of the brightness
  • the luminance shown in FIG. 12 is an average value of the luminance when confirmed in the direction of polar angle 60 ° in the directions of azimuth angles 45 ° and 225 °.
  • the curve of the liquid crystal display device according to Example 2 is shifted in a direction where the luminance is lower than the curve of the liquid crystal display device according to Comparative Example 1-1 as described later.
  • the curve of the liquid crystal display device according to Example 2 has less floating (gamma shift) from the front direction than the curve of the liquid crystal display device according to Comparative Example 1-1 as described later. Therefore, it can be seen that the viewing angle characteristics of the liquid crystal display device according to Example 2 are better than the viewing angle characteristics of the liquid crystal display device according to Comparative Example 1-1 as described later.
  • a part of a region between the linear portion of the comb electrode 815a and the linear portion of the comb electrode 815b, and the lower layer electrode Since the VT characteristic can be easily controlled by forming a region overlapping with 816, for example, a VT characteristic that particularly improves the viewing angle characteristic on the low gradation side may be combined. This is possible, and a desired viewing angle characteristic can be obtained.
  • the response characteristics of the rising of the liquid crystal molecules of the liquid crystal display device according to Example 2 will be described with reference to FIG. As shown in FIG. 8, it can be seen that the curve of the liquid crystal display device according to Example 2 shows the same response characteristics as the curve of the liquid crystal display device according to Example 1 and Comparative Example 1-1 as described later. That is, the response speed of the rise of the liquid crystal molecules in the liquid crystal display device according to Example 2 and the response speed of the rise of the liquid crystal molecules in the liquid crystal display device according to Example 1 and Comparative Example 1-1 as described later are approximately You can see that they are equal.
  • the interdigital electrode interval in the liquid crystal display device according to the second embodiment is equal to the interdigital electrode interval in the liquid crystal display device according to the first embodiment and the comparative example 1-1 described later.
  • the electric field strength generated between the comb-teeth electrodes of the liquid crystal display device according to the present invention is substantially equal to the electric field strength generated between the comb-teeth electrodes of the liquid crystal display device according to Example 1 and Comparative Example 1-1 as described later. Because. Further, the response speed of the rise of the liquid crystal molecules in the liquid crystal display device according to Example 2 is higher than the response speed of the rise of the liquid crystal molecules in the liquid crystal display devices according to Comparative Examples 1-2 and 1-3 as described later. I can see it's fast.
  • the liquid crystal display device realizes multi-VT in the pixel while sufficiently preventing the response speed of the rising of the liquid crystal molecules from being sufficiently reduced, and has sufficient viewing angle characteristics. It can be seen that it can be improved.
  • Embodiment 3 When the area ratio between the first region and the second region is 1: 1 and a circularly polarizing plate is used]
  • the configuration of the liquid crystal display device according to Embodiment 3 is the same as that of the liquid crystal display device according to Embodiment 1, but a pair of circularly polarizing plates (not shown) on the opposite side of the glass substrate 18a and the glass substrate 18b from the liquid crystal layer 21 side. Z).
  • Other configurations of the liquid crystal display device according to the third embodiment are the same as those of the liquid crystal display device according to the first embodiment.
  • Example 3 In Example 3, the physical property value of the liquid crystal material, the thickness of the liquid crystal layer, the dielectric constant and thickness of the insulating layer, the width of the comb electrodes, the interval between the comb electrodes, the applied voltage (potential) to each electrode, etc. These are the same as in Example 1.
  • VT characteristics in the region 1 and the region 2 of the liquid crystal display device according to the third embodiment VT characteristics of the liquid crystal display device according to the third embodiment
  • VT characteristics of the liquid crystal display device according to the third embodiment VT characteristics of the liquid crystal display device according to the third embodiment
  • gamma shift related to viewing angle characteristics gamma shift related to viewing angle characteristics
  • liquid crystal The response characteristics of the molecular rise will be described.
  • FIG. 13 is a graph showing VT characteristics in each region of the liquid crystal display devices according to the third and fourth embodiments.
  • the horizontal axis represents the voltage between the comb electrodes, and the vertical axis represents the transmittance.
  • “Region 3” will be described in Example 4 to be described later.
  • the VT characteristic in the region 1 is shifted to a higher voltage side than the VT characteristic in the region 2, and the VT characteristic in the region 1 and the VT characteristic in the region 2 are shifted. It can be seen that this is different from the -T characteristic. Therefore, it can be seen that the liquid crystal display device in Example 3 has two different VT characteristics as described above and realizes multi-VT in the pixel portion 10.
  • FIG. 14 is a graph showing VT characteristics of the liquid crystal display devices according to the third and fourth embodiments.
  • the horizontal axis represents the voltage between the comb electrodes, and the vertical axis represents the transmittance.
  • Example 4 will be described in Example 4 to be described later.
  • the VT characteristic of the liquid crystal display device according to Example 3 is a combination of the VT characteristic in the region 1 and the VT characteristic in the region 2.
  • FIG. 15 illustrates a director distribution and a transmittance distribution in the liquid crystal display device according to the third embodiment.
  • the correspondence between the numerical values indicated by the horizontal axis and the left vertical axis in FIG. 15 and the position of each part shown in FIG. 2 is the same as in the first embodiment.
  • the transmittance of the liquid crystal display device according to Example 3 as shown in FIG. 14 is measured in a region corresponding to a range of 0.000 ⁇ m to 11.200 ⁇ m on the horizontal axis in FIG.
  • FIG. 16 is a characteristic diagram of gamma shift at the azimuth angles of 0 ° to 180 ° and the polar angle of 60 ° of the liquid crystal display devices according to Example 3, Example 4, and Comparative Example 2.
  • FIG. 17 is a characteristic diagram of gamma shift at the azimuth angles of 45 ° to 225 ° and the polar angle of 60 ° of the liquid crystal display devices according to Example 3, Example 4, and Comparative Example 2.
  • the horizontal axis indicates the gradation, and the vertical axis indicates the normalized luminance ratio.
  • Example 4 and “Comparative example 2” will be described later.
  • the other three curves (the curve of Example 3, the curve of Example 4, and the curve of Comparative Example 2) are curves when confirmed in a direction at a polar angle of 60 ° from the front direction. Further, the definition of the azimuth angle is as shown in FIG.
  • luminance shown by FIG. 16 is an average value of the brightness
  • the luminance shown in FIG. 17 is an average value of the luminance when confirmed in the direction of polar angle 60 ° in the directions of azimuth angles 45 ° and 225 °.
  • the curve of the liquid crystal display device according to Example 3 is shifted in the direction of lower luminance than the curve of the liquid crystal display device according to Comparative Example 2 as described later. . That is, it can be seen that the curve of the liquid crystal display device according to Example 3 has less floating (gamma shift) from the front direction than the curve of the liquid crystal display device according to Comparative Example 2 as described later. Therefore, it can be seen that the viewing angle characteristics of the liquid crystal display device according to Example 3 are better than the viewing angle characteristics of the liquid crystal display device according to Comparative Example 2 as described later.
  • the comb electrode spacing in the liquid crystal display device according to the third embodiment and the comb electrode spacing in the liquid crystal display device according to the first embodiment It is clear that the response characteristics of the liquid crystal molecules of the liquid crystal display device according to the first embodiment are the same as long as they are equal.
  • the liquid crystal display device realizes multi-VT within the pixel while sufficiently preventing the response speed of the rise of the liquid crystal molecules from rising, and has sufficient viewing angle characteristics. It can be seen that it can be improved.
  • Embodiment 4 When the area ratio between the first region and the third region is 1: 1 and a circularly polarizing plate is used]
  • the configuration of the liquid crystal display device according to Embodiment 4 is the same as that of the liquid crystal display device according to Embodiment 2, but a pair of circularly polarizing plates (not shown) on the opposite side of the glass substrate 818a and the glass substrate 818b from the liquid crystal layer 821 side. Z).
  • Other configurations of the liquid crystal display device according to the fourth embodiment are the same as those of the liquid crystal display device according to the second embodiment.
  • Example 4 In Example 4, the physical properties of the liquid crystal material, the thickness of the liquid crystal layer, the dielectric constant and thickness of the insulating layer, the width of the comb electrodes, the interval between the comb electrodes, the applied voltage (potential) to each electrode, etc. These are the same as in Example 2.
  • the VT characteristics in the region 1 and the region 3 of the liquid crystal display device according to the fourth embodiment the VT characteristics of the liquid crystal display device according to the fourth embodiment, the gamma shift related to the viewing angle characteristics, and the liquid crystal The response characteristics of the molecular rise will be described.
  • the VT characteristics in the region 1 and the region 3 of the liquid crystal display device according to Example 4 will be described with reference to FIG. As shown in FIG. 13, the VT characteristic in the region 1 is shifted to a higher voltage side than the VT characteristic in the region 3, and the VT characteristic in the region 1 and the VT characteristic in the region 3 are shifted. It can be seen that this is different from the -T characteristic. Therefore, it can be seen that the liquid crystal display device in Example 4 has two different VT characteristics as described above and realizes multi-VT in a pixel. It can also be seen that by forming the region 3, a VT characteristic between the VT characteristic in the region 1 and the VT characteristic in the region 2 can be obtained.
  • the VT characteristic of the liquid crystal display device according to Embodiment 4 will be described with reference to FIG. As shown in FIG. 14, the VT characteristic of the liquid crystal display device according to Example 4 is a combination of the VT characteristic in the region 1 and the VT characteristic in the region 3.
  • FIG. 18 illustrates a director distribution and a transmittance distribution in the liquid crystal display device according to the fourth embodiment.
  • the correspondence between the numerical values indicated by the horizontal axis and the left vertical axis in FIG. 18 and the position of each part shown in FIG. 9 is the same as in the second embodiment.
  • the transmittance of the liquid crystal display device according to Example 4 as shown in FIG. 14 is measured in a region corresponding to the range of 0.000 ⁇ m to 11.200 ⁇ m on the horizontal axis in FIG.
  • a gamma shift related to the viewing angle characteristic of the liquid crystal display device according to the fourth embodiment will be described with reference to FIGS. 16 and 17 described above.
  • FIGS. 16 and 17 it can be seen that the curve of the liquid crystal display device according to Example 4 is shifted in a direction where the luminance is lower than the curve of the liquid crystal display device according to Comparative Example 2 as described later. . That is, it can be seen that the curve of the liquid crystal display device according to Example 4 has less floating (gamma shift) from the front direction than the curve of the liquid crystal display device according to Comparative Example 2 as described later.
  • the viewing angle characteristics of the liquid crystal display device according to Example 4 are better than the viewing angle characteristics of the liquid crystal display device according to Comparative Example 2 as described later. Further, like the region 3 in the liquid crystal display device according to Example 4, a part of the region between the linear portion of the comb electrode 815a and the linear portion of the comb electrode 815b, and the lower layer electrode Since the VT characteristic can be easily controlled by forming a region overlapping with 816, for example, a VT characteristic that particularly improves the viewing angle characteristic on the low gradation side may be combined. This is possible, and a desired viewing angle characteristic can be obtained.
  • the comb electrode spacing in the liquid crystal display device according to the fourth embodiment and the comb electrode spacing in the liquid crystal display device according to the second embodiment are the same as the rising response characteristics.
  • the liquid crystal display device realizes multi-VT in the pixel while sufficiently preventing the response speed of the rising of the liquid crystal molecules from being sufficiently reduced, and has sufficient viewing angle characteristics. It can be seen that it can be improved.
  • Embodiment 5 In the case where the area ratio between the first region and the second region is 1: 1 and is different from the embodiment 1] A liquid crystal display device according to Embodiment 5 will be described with reference to FIG.
  • FIG. 19 is a schematic plan view of a pixel portion of a liquid crystal display panel included in the liquid crystal display device according to the fifth embodiment.
  • the voltage supplied from the source bus line 1812a is driven through the TFT 1813a and the contact hole 1814a at the timing selected by the gate bus line 1811a.
  • a voltage applied to the comb-shaped electrode 1815a which is one side of the pair of comb-shaped electrodes, and a voltage supplied from the source bus line 1812b is passed through the TFT 1813b and the contact hole 1814b, and the comb-shaped electrode which is the other side of the pair of comb-shaped electrodes.
  • the lower layer electrode 1816 is formed with a plurality of slits 1817 parallel to each other. Note that the slit 1817 corresponds to the opening of the third electrode in one embodiment of the present invention.
  • a region 1 ′ is a region where the entire lower electrode 1816 and the lower electrode 1816 overlap, and is a region between a pair of adjacent linear portions of the comb electrode 1815a and the linear portion of the comb electrode 1815b.
  • the region 1 ′ and the region 2 ′ divide the pixel portion 1810 into two. In this case, the area ratio between the region 1 ′ and the region 2 ′ is 1: 1.
  • the comb electrode 1815a and the comb electrode 1815b respectively correspond to the first electrode and the second electrode in one embodiment of the present invention.
  • the lower layer electrode 1816 corresponds to the third electrode in one embodiment of the present invention.
  • the region 1 'and the region 2' correspond to the first region and the second region in one embodiment of the present invention, respectively.
  • the liquid crystal display device according to Embodiment 5 further includes a pair of linearly polarizing plates (not shown) or a pair of circularly polarizing plates (not shown).
  • the liquid crystal display device according to the fifth embodiment as described above, as long as the area ratio between the first region and the second region is 1: 1, it is the same as the liquid crystal display device according to the first embodiment. It is clear that the effect is obtained.
  • Embodiment 6 When the area ratio between the first region and the second region is 1: 3] A liquid crystal display device according to Embodiment 6 will be described with reference to FIG.
  • FIG. 20 is a schematic plan view of a pixel portion of a liquid crystal display panel included in the liquid crystal display device according to the sixth embodiment.
  • the voltage supplied from the source bus line 1912a is driven through the TFT 1913a and the contact hole 1914a at the timing selected by the gate bus line 1911a.
  • a voltage applied to the comb-tooth electrode 1915a which is one side of the pair of comb-tooth electrodes, and a voltage supplied from the source bus line 1912b through the TFT 1913b and the contact hole 1914b is a comb-tooth electrode which is the other side of the pair of comb-tooth electrodes.
  • the lower electrode 1916 has a plurality of slits 1917 that are parallel to each other. Note that the slit 1917 corresponds to the opening of the third electrode in one embodiment of the present invention.
  • the region 2 ′′ is a region where the region and the lower electrode 1916 do not overlap
  • the sixth embodiment has an area ratio of the region 1 ′′ and the region 2 ′′ of 1: 3. This is the case.
  • the comb electrode 1915a and the comb electrode 1915b respectively correspond to the first electrode and the second electrode in one embodiment of the present invention.
  • the lower layer electrode 1916 corresponds to the third electrode in one embodiment of the present invention.
  • the region 1 "and the region 2" correspond to the first region and the second region in one embodiment of the present invention, respectively.
  • the liquid crystal display device according to the sixth embodiment further includes a pair of linearly polarizing plates (not shown) or a pair of circularly polarizing plates (not shown).
  • liquid crystal display device as described above, as long as the first region and the second region having different electrode structures exist in the pixel, the same as the liquid crystal display device according to the first example. It is clear that a good effect can be obtained.
  • Embodiment 7 The width of the opening of the third electrode in the region between the linear portion of the first electrode and the linear portion of the second electrode adjacent to each other is such that the first electrode and the second electrode When changing along the longitudinal direction]
  • a liquid crystal display device according to Embodiment 7 will be described with reference to FIG.
  • FIG. 21 is a schematic plan view between a pair of adjacent comb electrodes in a pixel portion of a liquid crystal display panel included in the liquid crystal display device according to the seventh embodiment.
  • a pair of adjacent linear portions of the comb-shaped electrode 2015a and the linear portions of the comb-shaped electrode 2015b, and a part of the region and the lower layer electrode 2016 are Assuming that the overlapping region is a region 3 ′′, in the seventh embodiment, in the region 3 ′′, the width of the slit 2017 of the lower layer electrode 2016 is in the longitudinal direction of the comb electrode 2015a and the comb electrode 2015b. It is a case of changing along.
  • the seventh embodiment as shown in FIG.
  • the widths of the slits 2017 of the lower layer electrode 2016 are in a line segment bb ′, a line segment cc ′, and a line segment dd ′. These are different cases.
  • the comb electrode 2015a and the comb electrode 2015b respectively correspond to the first electrode and the second electrode in one embodiment of the present invention.
  • the lower layer electrode 2016 corresponds to the third electrode in one embodiment of the present invention.
  • the region 3 ′′ corresponds to the third region in one embodiment of the present invention.
  • the slit 2017 corresponds to an opening included in the third electrode in one embodiment of the present invention.
  • the liquid crystal display device according to the seventh embodiment further includes a pair of linearly polarizing plates (not shown) or a pair of circularly polarizing plates (not shown).
  • FIG. 22 is a schematic plan view between a pair of adjacent comb electrodes in the pixel portion when the slit width of the lower layer electrode is constant.
  • a region between a pair of adjacent linear portions of the comb-tooth electrode 2015 a ′ and a linear portion of the comb-tooth electrode 2015 b ′, a part of the region, and the lower layer electrode 2016. 22 is the region 3, the form shown in FIG.
  • the width of the slit 2017 ′ of the lower layer electrode 2016 ′ is the comb electrode 2015 a ′ and the comb electrode 2015 b in the region 3. This is the case when it is constant along the longitudinal direction of '.
  • the width of the slit 2017 ′ of the lower layer electrode 2016 ′ is the same in the line segment bb ′, line segment cc ′, and line segment dd ′. Is the case.
  • the comb electrode 2015a 'and the comb electrode 2015b' correspond to the first electrode and the second electrode in one embodiment of the present invention, respectively.
  • the region 3 corresponds to the third region in one embodiment of the present invention.
  • the slit 2017 'cor corresponds to an opening included in the third electrode in one embodiment of the present invention.
  • Comparative Embodiment 1 When the lower electrode does not have an opening and a linear polarizing plate is used] A liquid crystal display device according to Comparative Embodiment 1 will be described with reference to FIGS.
  • FIG. 23 is a schematic plan view of a pixel portion of a liquid crystal display panel included in the liquid crystal display device according to Comparative Embodiment 1.
  • the voltage supplied from the source bus line 2112a is driven through the TFT 2113a and the contact hole 2114a at the timing selected by the gate bus line 2111a.
  • a voltage applied to the comb electrode 2115a which is one side of the pair of comb electrodes and a voltage supplied from the source bus line 2112b is passed through the TFT 2113b and the contact hole 2114b, and the comb electrode which is the other side of the pair of comb electrodes Applied to 2115b.
  • the lower layer electrode 2116 does not have an opening and has a planar shape.
  • FIG. 24 is a schematic cross-sectional view showing a cross section of a portion corresponding to line segment A-A ′ in FIG. 23.
  • a basic configuration of a liquid crystal display panel 2125 included in the liquid crystal display device according to the first comparative example is a lower substrate 2123, an upper substrate 2124, and a liquid crystal layer 2121 sandwiched between both substrates.
  • the liquid crystal molecules 2122 included in the liquid crystal layer 2121 have positive dielectric anisotropy ( ⁇ > 0).
  • the lower substrate 2123 includes a glass substrate 2118a, the lower electrode 2116 formed on the glass substrate 2118a on the liquid crystal layer 2121 side, and the lower layer An insulating layer 2119a formed on the electrode 2116 on the liquid crystal layer 2121 side of the lower layer electrode 2116, and a pair of the comb electrodes 2115a formed on the insulating layer 2119a on the liquid crystal layer 2121 side of the insulating layer 2119a. And the comb electrode 2115b.
  • the comb electrode 2115a and the comb electrode 2115b are formed in the same layer.
  • this comparative form 1 is a case where the region 1 is arranged so as to be continuous.
  • the upper substrate 2124 includes a glass substrate 2118b, a planar counter electrode 2120 formed on the glass substrate 2118b on the liquid crystal layer 2121 side, and the glass substrate 2118b. And an insulating layer 2119b formed on the counter electrode 2120 on the liquid crystal layer 2121 side. Note that the insulating layer 2119b is not necessarily provided.
  • the liquid crystal display panel 2125 provided in the liquid crystal display device according to the comparative form 1 further includes a pair of linear polarizing plates (not shown) on the opposite side of the glass substrate 2118a and the glass substrate 2118b from the liquid crystal layer 2121 side. Have.
  • the liquid crystal display device In the liquid crystal display device according to the comparative mode 1, by generating a constant potential difference between the lower layer electrode 2116 and the counter electrode 2120, a state in which a vertical electric field is always generated in the liquid crystal layer 2121 is maintained. Then, by applying a voltage whose polarity is inverted between the comb electrode 2115a and the comb electrode 2115b, a potential difference is generated, and the potential difference between the comb electrode 2115a and the comb electrode 2115b is changed. By changing the intensity, the strength of the horizontal electric field is controlled and gradation display is performed.
  • (i), (ii), (iii), and (iv) are the potential of the comb electrode 2115a, the potential of the comb electrode 2115b, the potential of the lower layer electrode 2116, respectively.
  • the potential of the counter electrode 2120 is shown.
  • Comparative Example 1-1 When the interval between the comb electrodes is 3 ⁇ m, the liquid crystal molecules 2122 have a positive dielectric anisotropy, the dielectric anisotropy ⁇ thereof is 18, and the refractive index anisotropy ⁇ n thereof is 0.12. It is.
  • the liquid crystal layer 2121 has a thickness of 3.2 ⁇ m.
  • the insulating layer 2119a has a dielectric constant of 7 and a thickness of 0.3 ⁇ m.
  • the insulating layer 2119b has a dielectric constant of 4 and a thickness of 1.5 ⁇ m.
  • the electrode width L1 ′ of the comb electrode 2115b is 2.5 ⁇ m, and the electrode interval S1 ′ between the comb electrode 2115a and the comb electrode 2115b is 3 ⁇ m.
  • the electrode width (not shown) of the comb electrode 2115a is the same as the electrode width L1 ′ of the comb electrode 2115b.
  • the potential (i) of the comb electrode 2115a is ⁇ V [V]
  • the potential (ii) of the comb electrode 2115b is + V [V].
  • the potential (iii) of the lower layer electrode 2116 was 0 [V]
  • the potential (iv) of the counter electrode 2120 was 10 [V] (the above [V] represents a unit).
  • the lower substrate 2123 is a TFT substrate
  • the upper substrate 2124 is a CF substrate.
  • the VT characteristic of the liquid crystal display device according to Comparative Example 1-1 is equal to the VT characteristic in the region 1 between all the comb electrodes in the pixel. It can be seen that multi-VT cannot be realized in the unit 2110.
  • FIG. 25 shows a director distribution and a transmittance distribution in the liquid crystal display device according to Comparative Example 1-1.
  • the range from 0.000 ⁇ m to about 1.300 ⁇ m is the region where the left comb electrode 2115a exists, and the range from about 1.300 ⁇ m to about 4.300 ⁇ m is the comb electrode 2115a.
  • a region where the comb-tooth electrode 2115b is not present a range of about 4.300 ⁇ m to about 6.900 ⁇ m is a region where the comb-tooth electrode 2115b is present, and a range of about 6.900 ⁇ m to about 9.900 ⁇ m is the region
  • the comb-tooth electrode 2115b and the region where the comb-tooth electrode 2115a is not present, and the range of about 9.900 ⁇ m to 11.200 ⁇ m is the region where the right comb-tooth electrode 2115a is present, and is 0.000 ⁇ m to 11.200 ⁇ m.
  • the range is a region where the lower layer electrode 2116 exists, and the region 1 is in the range of 0.000 ⁇ m to 11.200 ⁇ m.
  • FIGS. 6, 7, 11, and 12 A gamma shift related to the viewing angle characteristic of the liquid crystal display device according to Comparative Example 1-1 will be described with reference to FIGS. 6, 7, 11, and 12.
  • FIGS. 6 and 7 it can be seen that the curve of the liquid crystal display device according to Comparative Example 1-1 is shifted in a higher luminance direction than the curve of the liquid crystal display device according to Example 1. That is, it can be seen that the curve of the liquid crystal display device according to Comparative Example 1-1 has a larger floating (gamma shift) from the front direction than the curve of the liquid crystal display device according to Example 1. Therefore, it can be seen that the viewing angle characteristic of the liquid crystal display device according to Comparative Example 1-1 is inferior to the viewing angle characteristic of the liquid crystal display device according to Example 1. Further, as shown in FIGS.
  • the response characteristics of the rise of the liquid crystal molecules of the liquid crystal display device according to Comparative Example 1-1 will be described with reference to FIG. As shown in FIG. 8, it can be seen that the curve of the liquid crystal display device according to Comparative Example 1-1 shows the same response characteristics as the curves of the liquid crystal display devices according to Example 1 and Example 2. That is, it can be seen that the response speed of the rise of the liquid crystal molecules in the liquid crystal display device according to Comparative Example 1-1 is substantially equal to the response speed of the rise of the liquid crystal molecules in the liquid crystal display devices according to Example 1 and Example 2. . This is because the distance between the comb electrodes in the liquid crystal display device according to Comparative Example 1-1 is equal to the distance between the comb electrodes in the liquid crystal display devices according to Example 1 and Example 2. This is because the electric field strength generated between the comb electrodes of the liquid crystal display device and the electric field strength generated between the comb electrodes of the liquid crystal display devices according to the first and second embodiments are substantially equal.
  • the liquid crystal display device sufficiently prevents the decrease in the response speed of the rise of the liquid crystal molecules, but cannot realize multi-VT in the pixel. .
  • Comparative Example 1-2 When the comb electrode interval is 5 ⁇ m, the electrode spacing S1 ′ between the comb electrode 2115a and the comb electrode 2115b is 5 ⁇ m. In Comparative Example 1-2, the physical properties of the liquid crystal material, the thickness of the liquid crystal layer, the dielectric constant and thickness of the insulating layer, the width of the comb electrode, the applied voltage (potential) to each electrode, etc. were compared. Similar to Example 1-1.
  • VT of the liquid crystal display device according to Comparative Example 1-2 is used.
  • the characteristics are different from the VT characteristics of the liquid crystal display device according to Comparative Example 1-1.
  • the gamma shift related to the viewing angle characteristics can be improved.
  • the response characteristics of the rise of the liquid crystal molecules of the liquid crystal display device according to Comparative Example 1-2 will be described with reference to FIG. As shown in FIG. 8, the response speed of the rise of the liquid crystal molecules in the liquid crystal display device according to Comparative Example 1-2 is the same as that of the liquid crystal display devices according to Example 1, Example 2, and Comparative Example 1-1. It can be seen that it is slower than the response speed of the rise. This is because the interdigital electrode interval in the liquid crystal display device according to Comparative Example 1-2 is wider than the interdigital electrode interval in the liquid crystal display device according to Example 1, Example 2, and Comparative Example 1-1.
  • the electric field strength generated between the comb electrodes of the liquid crystal display device according to Comparative Example 1-2 is generated between the comb electrodes of the liquid crystal display device according to Example 1, Example 2, and Comparative Example 1-1. This is because it becomes weaker than the electric field strength.
  • the liquid crystal display device can realize multi-VT in a pixel, but sufficiently prevents a decrease in response speed of rising of liquid crystal molecules. I can't understand.
  • Comparative Example 1-3 When the interval between comb electrodes is 7 ⁇ m, the electrode spacing S1 ′ between the comb electrode 2115a and the comb electrode 2115b is 7 ⁇ m.
  • Comparative Example 1-3 the physical property values of the liquid crystal material, the thickness of the liquid crystal layer, the dielectric constant and thickness of the insulating layer, the width of the comb electrode, the applied voltage (potential) to each electrode, etc. were compared. Similar to Example 1-1.
  • VT of the liquid crystal display device according to Comparative Example 1-3 is used.
  • the characteristics are different from the VT characteristics of the liquid crystal display device according to Comparative Example 1-1.
  • the gamma shift related to the viewing angle characteristics can be improved.
  • the response speed of the rise of the liquid crystal molecules in the liquid crystal display device according to Comparative Example 1-3 is the same as that of the liquid crystal display devices according to Example 1, Example 2, and Comparative Example 1-1. It can be seen that it is slower than the response speed of the rise. This is because the interdigital electrode interval in the liquid crystal display device according to Comparative Example 1-3 is wider than the interdigital electrode interval in the liquid crystal display device according to Example 1, Example 2, and Comparative Example 1-1.
  • the electric field strength generated between the comb electrodes of the liquid crystal display device according to Comparative Example 1-3 is generated between the comb electrodes of Example 1, Example 2, and the liquid crystal display device according to Comparative Example 1-1. This is because it becomes weaker than the electric field strength.
  • the liquid crystal display device can realize multi-VT in a pixel, but sufficiently prevents a decrease in response speed of rising of liquid crystal molecules. I can't understand.
  • Comparative Example 2 In this comparative example 2, the physical properties of the liquid crystal material, the thickness of the liquid crystal layer, the dielectric constant and thickness of the insulating layer, the width of the comb electrodes, the interval between the comb electrodes, the applied voltage (potential) to each electrode, etc. Is the same as Comparative Example 1-1.
  • the VT characteristics of the liquid crystal display device according to Comparative Example 2 are the same as in Comparative Example 1 It is clear that the VT characteristics of the liquid crystal display device according to No. 1 are the same, and it is not possible to realize multi-VT in a pixel.
  • FIG. 26 shows a director distribution and a transmittance distribution in the liquid crystal display device according to Comparative Example 2.
  • the correspondence between the numerical values indicated by the horizontal axis and the left vertical axis in FIG. 26 and the position of each part shown in FIG. 24 is the same as in Comparative Example 1-1.
  • a gamma shift related to the viewing angle characteristic of the liquid crystal display device according to Comparative Example 2 will be described with reference to FIGS.
  • FIGS. 16 and 17 it can be seen that the curve of the liquid crystal display device according to Comparative Example 2 is shifted in the direction of higher luminance than the curves of the liquid crystal display devices according to Example 3 and Example 4. . That is, it can be seen that the curve of the liquid crystal display device according to Comparative Example 2 has a larger floating (gamma shift) from the front direction than the curves of the liquid crystal display devices according to Example 3 and Example 4. Therefore, it can be seen that the viewing angle characteristics of the liquid crystal display device according to Comparative Example 2 are inferior to the viewing angle characteristics of the liquid crystal display devices according to Example 3 and Example 4.
  • the comb electrode interval in the liquid crystal display device according to the comparative example 2 and the comb electrode in the liquid crystal display device according to the comparative example 1-1 It is clear that the response characteristics of the liquid crystal molecules rising in the liquid crystal display device according to Comparative Example 1-1 are the same as long as the intervals are equal.
  • the liquid crystal display device can sufficiently prevent a decrease in response speed of rising of liquid crystal molecules, but cannot realize multi-VT in a pixel.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Ceramic Engineering (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明は、オン-オンスイッチングモードの液晶表示装置において、液晶分子の立ち上がりの応答速度の低下を充分に防止しつつ、画素内でマルチV-T化を実現し、視野角特性を充分に向上することができる液晶表示装置を提供する。本発明の液晶表示装置は、第1基板と、該第1基板に対向する第2基板と、該第1基板及び該第2基板に挟持された液晶層とを少なくとも備える液晶表示装置であって、該第1基板は、第1電極、第2電極、及び、開口部を有する第3電極を有し、該第2基板は、面状の第4電極を有し、該第1電極及び該第2電極は、該第3電極の該液晶層側にある、複数の線状部分を含む一対の櫛歯電極であり、基板主面を平面視したときに、隣り合う該第1電極の線状部分と該第2電極の線状部分との間の領域に対して、該領域と該第3電極とが重畳する割合が画素内で異なるものである。

Description

液晶表示装置
本発明は、液晶表示装置に関する。より詳しくは、立ち上がり及び立ち下がりの両方において液晶分子を電界によって配向制御させる3層電極構造を有する液晶表示装置に関するものである。
液晶表示装置は、一対のガラス基板等に液晶表示素子を挟持して構成され、薄型で軽量かつ低消費電力といった特長を活かして、モバイル用途や各種のモニター、テレビ等、日常生活やビジネスに欠かすことのできないものとなっている。近年においては、電子ブック、フォトフレーム、IA(Industrial Appliance:産業機器)、PC(Personal Computer:パーソナルコンピュータ)、タブレットPC、スマートフォン用途等に幅広く採用されている。これらの用途において、液晶層の光学特性を変化させるための電極配置や基板の設計に係る各種モードの液晶表示装置が検討されており、例えば、以下が挙げられる。
少なくとも一方が透明な2枚の基板間に挟持されたp型ネマチック液晶を含む液晶表示装置であって、該p型ネマチック液晶は、電圧無印加時に、該2枚の基板面に対して垂直に配向し、該2枚の基板の少なくとも一方は、櫛歯状電極を有し、該櫛歯状電極の電極幅L及び電極間隔Sは、(S+1.7)/(S+L)≧0.7の関係を満たす液晶表示装置が開示されている(例えば、特許文献1参照。)。
一対の基板と、該一対の基板間に封止された液晶層とを含む液晶表示パネルであって、該一対の基板は、少なくとも一方の基板に絵素電極を有し、該基板と同じ基板に共通電極を有し、他方の基板に対向電極を有し、該対向電極は、基板主面を平面視したときに、該絵素電極と、該絵素電極と隣り合う一方の共通電極との間の領域、及び、該絵素電極と隣り合う他方の共通電極との間の領域と重畳するとともに、該絵素電極のエッジから2μm以上離れている液晶表示パネルが開示されている(例えば、特許文献2参照。)。
国際公開第2009/157271号 国際公開第2012/066988号
上述した通り、液晶表示装置において、電極配置等によって、液晶層の光学特性(例えば、電圧-透過率特性〔以下、V-T特性とも言う。〕)を変化させ、例えば、視野角特性を向上させることが望まれている。しかしながら、立ち上がり及び立ち下がりの両方において液晶分子を電界によって配向制御させる3層電極構造を有し、かつ、縦電界(基板主面に対して垂直な方向の電界)オン-横電界(基板主面に対して水平な方向の電界)オンのスイッチングを行う(以下、オン-オンスイッチングモードとも言う。)液晶表示装置において、液晶分子の立ち上がりの応答速度の低下を充分に防止しつつ、画素内に異なるV-T特性を有する(以下、マルチV-T化とも言う。)ものとして、視野角特性を充分なものとするための工夫の余地があった。
例えば、図27に示すような、オン-オンスイッチングモードの液晶表示装置が備える液晶表示パネル2525において説明する。図27は、オン-オンスイッチングモードの従来の液晶表示装置が備える液晶表示パネルを示す断面模式図である。
上記液晶表示パネル2525は、下側基板2523(例えば、薄膜トランジスタ素子を備えるアクティブマトリックス基板〔以下、TFT基板とも言う。〕)と、該下側基板2523に対向する上側基板2524(例えば、カラーフィルタ基板〔以下、CF基板とも言う。〕)と、該下側基板2523及び該上側基板2524に挟持された液晶層2521とを備えている。
上記液晶層2521に含まれる液晶分子2522は、電圧無印加時に基板主面に対して垂直な方向に配向する。
上記下側基板2523は、ガラス基板2518aと、該ガラス基板2518a上で該ガラス基板2518aの上記液晶層2521側に形成された面状の下層電極2516と、該下層電極2516上で該下層電極2516の該液晶層2521側に形成された絶縁層2519aと、該絶縁層2519a上で該絶縁層2519aの該液晶層2521側に形成された一対の、櫛歯電極2515a及び櫛歯電極2515bとを有している。
上記上側基板2524は、ガラス基板2518bと、該ガラス基板2518b上で該ガラス基板2518bの上記液晶層2521側に形成された対向電極2520と、該対向電極2520上で該対向電極2520の該液晶層2521側に形成された絶縁層2519bとを有している。また、該ガラス基板2518bと該対向電極2520との間に、カラーフィルタ層(図示せず)及びブラックマトリクス(図示せず)が形成されていてもよい。
図28は、オン-オンスイッチングモードの従来の液晶表示装置におけるV-T特性を示すグラフである。ここで、オン-オンスイッチングモードの液晶表示装置が備える図27に示すような上記液晶表示パネル2525において、上記下層電極2516が面状かつ実質的に全面に形成され(ベタ状)、かつ、上記櫛歯電極2515aと上記櫛歯電極2515bとの間の間隔S(櫛歯電極間隔)が一定である場合、画素内の全ての櫛歯電極間におけるV-T特性は、図28に示すような形状で等しくなるため、画素内でマルチV-T化を実現することができず、視野角特性が充分に得られないという問題が存在していた。
上記特許文献1は、優れた広視野角特性と高速応答性とを同時に実現することができるとともに、初期ベンド転移操作が不要な表示方式により表示を行うことが可能な液晶表示装置を開示している。つまり、TBA(Transverse Bend Alignment)モードの液晶表示装置において、1つの画素内に櫛歯電極間隔Sが異なる2つの領域を設けることにより、マルチV-T化し、視野角特性を改善する液晶表示装置を開示している。しかしながら、該特許文献1に記載の発明は、櫛歯電極間隔Sが大きくなる場合、櫛歯電極間の横電界の強さが弱まるため、液晶分子の立ち上がりの応答速度が遅くなってしまい、上記課題を解決するための工夫の余地があった。
また、上記特許文献2は、対向電極と絵素電極との位置関係を特定することにより、透過率を充分に向上することができる液晶表示パネル及び液晶表示装置を開示している。しかしながら、該特許文献2に記載の発明は、画素内でマルチV-T化を実現するものではなく、上記課題を解決するための工夫の余地があった。
本発明は、上記現状に鑑みてなされたものであり、オン-オンスイッチングモードの液晶表示装置において、液晶分子の立ち上がりの応答速度の低下を充分に防止しつつ、画素内でマルチV-T化を実現し、視野角特性を充分に向上することができる液晶表示装置を提供することを目的とするものである。
本発明者らは、オン-オンスイッチングモードの液晶表示装置において、液晶分子の立ち上がりの応答速度の低下を充分に防止しつつ、画素内でマルチV-T化を実現し、視野角特性を充分に向上することができる液晶表示装置について種々検討したところ、下層電極が開口部を有するようにすることに着目した。そして、該下層電極が開口部を有するような構造において、該下層電極の存在する領域(非開口部)、及び、該下層電極の存在しない領域(開口部)のV-T特性が異なるため、画素内でマルチV-T化することが可能であり、視野角特性が向上することを見出した。これにより、液晶分子の立ち上がりの応答速度の低下を充分に防止しつつ、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明の一態様によれば、第1基板と、該第1基板に対向する第2基板と、該第1基板及び該第2基板に挟持された液晶層とを少なくとも備える液晶表示装置であって、該第1基板は、第1電極、第2電極、及び、第3電極を有し、該第2基板は、第4電極を有し、該第1電極及び該第2電極は、該第3電極の該液晶層側にある、複数の線状部分を含む一対の櫛歯電極であり、該第3電極は、開口部を有する電極であり、該第4電極は、面状の電極であり、基板主面を平面視したときに、隣り合う該第1電極の線状部分と該第2電極の線状部分との間の領域に対して、該領域と該第3電極とが重畳する割合が画素内で異なる液晶表示装置であってもよい。
また、本発明に係る液晶表示装置の一態様によれば、上記第1電極と上記第2電極との間の電極間隔は、画素内で略同一であってもよい。なお、「上記第1電極と上記第2電極との間の電極間隔は、画素内で略同一」とは、本発明の技術分野において電極間隔が同一と言えるものであればよく、実質的に電極間隔が同一である形態を含む。
また、「隣り合う該第1電極の線状部分と該第2電極の線状部分との間の領域」とは、例えば、図2に示すような液晶表示装置が備える液晶表示パネル25において、左側の櫛歯電極15aの線状部分の幅方向における中央部と櫛歯電極15bの線状部分の幅方向における中央部との間の領域AR1、及び、右側の櫛歯電極15aの線状部分の幅方向における中央部と櫛歯電極15bの線状部分の幅方向における中央部との間の領域AR2のことである。また、「該領域と該第3電極とが重畳する割合が画素内で異なる」とは、例えば、基板主面を平面視したときに、該領域AR1と下層電極16は重畳しており、該領域AR2と該下層電極16は重畳していないといったように、重畳する割合が画素内で異なることである。なお、櫛歯電極15a、櫛歯電極15b、及び、下層電極16は、それぞれ、本発明の一態様における上記第1電極、上記第2電極、及び、上記第3電極に相当する。
本発明に係る液晶表示装置としては、このような構成要素を必須として含む限り、その他の構成要素により特に限定されるものではなく、液晶表示装置に通常用いられるその他の構成を適宜適用することができる。
本発明の一態様によれば、オン-オンスイッチングモードの液晶表示装置において、液晶分子の立ち上がりの応答速度の低下を充分に防止しつつ、画素内でマルチV-T化を実現し、視野角特性を充分に向上することができる液晶表示装置を提供することができる。
実施形態1に係る液晶表示装置が備える液晶表示パネルの画素部の平面模式図である。 図1中の線分a-a’に対応する部分の断面を示す断面模式図である。 実施例1及び実施例2に係る液晶表示装置の各領域におけるV-T特性を示すグラフである。 実施例1及び実施例2に係る液晶表示装置のV-T特性を示すグラフである。 実施例1に係る液晶表示装置におけるダイレクタ分布及び透過率分布である。 実施例1及び比較例1-1に係る液晶表示装置の方位角0°-180°、極角60°におけるガンマシフトの特性図である。 実施例1及び比較例1-1に係る液晶表示装置の方位角45°-225°、極角60°におけるガンマシフトの特性図である。 実施例1、実施例2、比較例1-1、比較例1-2、及び、比較例1-3に係る液晶表示装置における液晶分子の立ち上がりの応答特性を示すグラフである。 実施形態2に係る液晶表示装置が備える液晶表示パネルの断面模式図である。 実施例2に係る液晶表示装置におけるダイレクタ分布及び透過率分布である。 実施例2及び比較例1-1に係る液晶表示装置の方位角0°-180°、極角60°におけるガンマシフトの特性図である。 実施例2及び比較例1-1に係る液晶表示装置の方位角45°-225°、極角60°におけるガンマシフトの特性図である。 実施例3及び実施例4に係る液晶表示装置の各領域におけるV-T特性を示すグラフである。 実施例3及び実施例4に係る液晶表示装置のV-T特性を示すグラフである。 実施例3に係る液晶表示装置におけるダイレクタ分布及び透過率分布である。 実施例3、実施例4、及び、比較例2に係る液晶表示装置の方位角0°-180°、極角60°におけるガンマシフトの特性図である。 実施例3、実施例4、及び、比較例2に係る液晶表示装置の方位角45°-225°、極角60°におけるガンマシフトの特性図である。 実施例4に係る液晶表示装置におけるダイレクタ分布及び透過率分布である。 実施形態5に係る液晶表示装置が備える液晶表示パネルの画素部の平面模式図である。 実施形態6に係る液晶表示装置が備える液晶表示パネルの画素部の平面模式図である。 実施形態7に係る液晶表示装置が備える液晶表示パネルの画素部における隣り合う一対の櫛歯電極間の平面模式図である。 下層電極のスリットの幅が一定である場合の画素部における隣り合う一対の櫛歯電極間の平面模式図である。 比較形態1に係る液晶表示装置が備える液晶表示パネルの画素部の平面模式図である。 図23中の線分A-A’に対応する部分の断面を示す断面模式図である。 比較例1-1に係る液晶表示装置におけるダイレクタ分布及び透過率分布である。 比較例2に係る液晶表示装置におけるダイレクタ分布及び透過率分布である。 オン-オンスイッチングモードの従来の液晶表示装置が備える液晶表示パネルを示す断面模式図である。 オン-オンスイッチングモードの従来の液晶表示装置におけるV-T特性を示すグラフである。
本発明に係る液晶表示装置における他の好ましい態様について、以下に説明する。なお、本発明に係る液晶表示装置の各種態様は、適宜組み合わせることができる。
本発明に係る液晶表示装置の一態様によれば、上記液晶層に含まれる液晶分子は、電圧無印加時に基板主面に対して垂直な方向に配向するものであってもよい。
このような垂直配向型の液晶表示装置は、広視野角、及び、高コントラスト等の特性を得るのに有利な方式である。よって、本発明の液晶表示装置が垂直配向型の液晶表示装置である場合、液晶分子の立ち上がりの応答速度の低下を充分に防止しつつ、画素内でマルチV-T化を実現することで視野角特性を充分に向上するとともに、広視野角、及び、高コントラストを実現することができる。なお、「電圧無印加時」とは、本発明の技術分野において実質的に電圧が印加されていないと言えるものであればよい。また、「基板主面に対して垂直な方向に配向する」とは、本発明の技術分野において基板主面に対して垂直な方向に配向すると言えるものであればよく、実質的に垂直な方向に配向する形態を含む。また、「液晶分子の立ち上がり」とは、液晶表示装置の表示状態で、暗状態(黒表示)から明状態(白表示)に表示状態が変化する間のことを言う。
本発明に係る液晶表示装置の一態様によれば、該液晶表示装置は、画素内に第1領域と第2領域とを含み、該第1領域は、隣り合う上記第1電極の線状部分と上記第2電極の線状部分との間の領域であって、該領域の全部と、上記第3電極とが重畳し、該第2領域は、隣り合う該第1電極の線状部分と該第2電極の線状部分との間の領域であって、該領域と、該第3電極とが重畳せず、該第1領域と該第2領域との面積比は、1:1であるものであってもよい。
これにより、上記第1領域及び上記第2領域における電極構造が異なるため、それぞれの領域で異なるV-T特性を有し、画素内でマルチV-T化することが可能となる。よって、液晶表示装置の視野角特性を向上することができる。なお、「電極の線状部分」とは、例えば、櫛歯電極の歯に該当する線状部分、及び、該線状部分と同様の電界を発生する機能を備える線状の縁を有する部分を言う。
なお、上記第1領域と上記第2領域との面積比は、本発明の一態様における効果を発揮できるものである限り、特に限定されず、1:1でなくてもよい。
本発明に係る液晶表示装置の一態様によれば、該液晶表示装置は、画素内に第1領域と第3領域とを含み、該第1領域は、隣り合う上記第1電極の線状部分と上記第2電極の線状部分との間の領域であって、該領域の全部と、上記第3電極とが重畳し、該第3領域は、隣り合う該第1電極の線状部分と該第2電極の線状部分との間の領域であって、該領域の一部と、該第3電極とが重畳し、該第1領域と該第3領域との面積比は、1:1であるものであってもよい。
これにより、上記第1領域及び上記第3領域における電極構造が異なるため、それぞれの領域で異なるV-T特性を有し、画素内でマルチV-T化することが可能となる。よって、視野角特性を向上することができる。
なお、上記第1領域と上記第3領域との面積比は、本発明の一態様における効果を発揮できるものである限り、特に限定されず、1:1でなくてもよい。
本発明に係る液晶表示装置の一態様によれば、上記第1基板及び上記第2基板の少なくとも一方は、薄膜トランジスタ素子を備え、該薄膜トランジスタ素子は、酸化物半導体を含むものであってもよい。
上記酸化物半導体は、a-Si(アモルファスシリコン)よりも移動度が高く、特性ばらつきも小さいという特徴を有している。このため、該酸化物半導体を含むTFTは、a-Siを含むTFTよりも高速で動作でき、駆動周波数が高く、1画素に占める割合を小さくすることができるため、より高精細である次世代表示装置の駆動に好適である。また、酸化物半導体膜は、多結晶シリコン膜よりも簡便なプロセスで形成されるため、大面積が必要とされる装置にも適用できるという利点を有している。よって、本発明の液晶表示装置が酸化物半導体を含むTFTを備える場合、液晶分子の立ち上がりの応答速度の低下を充分に防止しつつ、画素内でマルチV-T化を実現し、視野角特性を充分に向上するとともに、a-Siを含むTFTを備える液晶表示装置よりも高開口率を実現でき、高速で駆動することができる。
また、上記酸化物半導体の構成としては、例えば、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、及び、酸素(O)から構成されるIGZO(In-Ga-Zn-O)、インジウム(In)、スズ(Tin)、亜鉛(Zn)、及び、酸素(O)から構成されるITZO(In-Tin-Zn-O)、又は、インジウム(In)、アルミニウム(Al)、亜鉛(Zn)、及び、酸素(O)から構成されるIAZO(In-Al-Zn-O)等であってもよい。
本発明に係る液晶表示装置の一態様によれば、一対の櫛歯電極である上記第1電極及び上記第2電極は、同一の層に形成されていてもよい。なお、一対の櫛歯電極である該第1電極及び該第2電極は、本発明の一態様における効果を発揮できるものである限り、異なる層に形成されていてもよい。ここで、「一対の櫛歯電極である上記第1電極及び上記第2電極が同一の層に形成されている」とは、それぞれの櫛歯電極が、その液晶層側、及び/又は、その液晶層側とは反対側において、共通する部材(例えば、絶縁層、及び/又は、液晶層等)と接していることを言う。
本発明に係る液晶表示装置の一態様によれば、上記第1基板は、更に絶縁層を有し、該絶縁層は、上記第1電極及び上記第2電極の上記液晶層側とは反対側にあってもよい。
ここで、複数の線状部分を含む一対の櫛歯電極間(上記第1電極と上記第2電極との間)で横電界(基板主面に対して水平な方向の電界)を好適に発生させることができる。なお、「基板主面に対して水平な方向の電界」とは、本発明の技術分野において基板主面に対して水平な方向の電界と言えるものであればよく、実質的に水平な方向に電界が発生する形態を含む。
次に、開口部を有する上記第3電極及び面状の上記第4電極によれば、該第3電極を有する上記第1基板と、該第4電極を有する上記第2基板との間で、縦電界(基板主面に対して垂直な方向の電界)を好適に発生させることができる。なお、「基板主面に対して垂直な方向の電界」とは、本発明の技術分野において基板主面に対して垂直な方向の電界と言えるものであればよく、実質的に垂直な方向に電界が発生する形態を含む。また、フォトマスクを用いて該第4電極をパターニングする場合、該フォトマスクのアライメントずれが発生したとしても、不具合が発生しにくい。
よって、上記のような、横電界、及び、縦電界を好適に発生させることができる。
本発明に係る液晶表示装置の一態様によれば、上記液晶層に含まれる液晶分子は、正の誘電率異方性を有するものであってもよい。
正の誘電率異方性を有する液晶分子は、電圧を印加した場合に液晶分子の長軸が電気力線に沿って配向されるものであり、配向制御が容易であるため、より高速応答化することができる。
また、本発明に係る液晶表示装置の一態様によれば、上記液晶層に含まれる液晶分子は、負の誘電率異方性を有するものであってもよい。これにより、透過率をより向上することができる。
上記より、高速応答化の観点からは、上記液晶層に含まれる液晶分子が正の誘電率異方性を有する液晶分子から実質的に構成されることが好適であり、透過率の観点からは、上記液晶層に含まれる液晶分子が負の誘電率異方性を有する液晶分子から実質的に構成されることが好適であると言える。
本発明に係る液晶表示装置の一態様によれば、該液晶表示装置は、更に偏光板を有し、該偏光板は、直線偏光板であってもよい。これにより、視野角特性を更に向上することができる。
なお、上記直線偏光板の種類及び構造の限定は特になく、本発明の技術分野において通常用いられるものを用いることができる。
また、本発明に係る液晶表示装置のもう1つの一態様によれば、該液晶表示装置は、更に偏光板を有し、該偏光板は、円偏光板であってもよい。これにより、透過率を向上することができる。
なお、上記円偏光板の種類及び構造の限定は特になく、本発明の技術分野において通常用いられるものを用いることができる。
本発明に係る液晶表示装置の一態様によれば、該液晶表示装置は、画素内に第2領域と第3領域とを含み、該第2領域は、隣り合う上記第1電極の線状部分と上記第2電極の線状部分との間の領域であって、該領域と、上記第3電極とが重畳せず、該第3領域は、隣り合う該第1電極の線状部分と該第2電極の線状部分との間の領域であって、該領域の一部と、該第3電極とが重畳し、該第2領域と該第3領域との面積比は、1:1であるものであってもよい。
これにより、上記第2領域及び上記第3領域における電極構造が異なるため、それぞれの領域で異なるV-T特性を有し、画素内でマルチV-T化することが可能となる。よって、視野角特性を向上することができる。
なお、上記第2領域と上記第3領域との面積比は、本発明の一態様における効果を発揮できるものである限り、特に限定されず、1:1でなくてもよい。
本発明に係る液晶表示装置の一態様によれば、隣り合う上記第1電極の線状部分と上記第2電極の線状部分との間の領域における上記第3電極の開口部の幅が、該第1電極及び該第2電極の長手方向に沿って変化するものであってもよい。
これにより、上記第3電極の開口部の幅が異なる領域で電極構造が異なるため、それぞれの領域で異なるV-T特性を有し、画素内でマルチV-T化することが可能となる。よって、視野角特性を向上することができる。
上述した各態様は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
以下に実施形態を掲げ、本発明について図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
上記液晶表示装置の基本構成は、一般的に、液晶表示パネル、及び、光源等の部材である。該液晶表示パネルの基本構成は、透明電極及び配向膜等が形成された一対の基板(例えば、TFT基板及びCF基板)、両基板に挟持された液晶層、及び、両基板の間のギャップを保持するスペーサーであり、両基板はシール材等を用いて貼り合わされている。また、該液晶表示装置は、その他に、通常の液晶表示装置が備える部材(例えば、外部回路等)を適宜備えることができる。
[実施形態1:上記第1領域と上記第2領域との面積比が1:1であり、直線偏光板を用いた場合]
実施形態1に係る液晶表示装置について、図1及び図2を用いて説明する。
図1は、実施形態1に係る液晶表示装置が備える液晶表示パネルの画素部の平面模式図である。実施形態1に係る液晶表示装置において、画素部10内では、ゲートバスライン11aで選択されたタイミングで、ソースバスライン12aから供給された電圧を、TFT13a及びコンタクトホール14aを通じて、液晶層を駆動する一対の櫛歯電極の片側である櫛歯電極15aに印加し、また、ソースバスライン12bから供給された電圧を、TFT13b及びコンタクトホール14bを通じて、一対の櫛歯電極のもう片側である櫛歯電極15bに印加する。また、下層電極16には、互いに平行な複数のスリット17が形成されている。なお、図1では、該櫛歯電極15a、該櫛歯電極15b、及び、該下層電極16の該スリット17が傾斜した形状のものとなっており、また、画素部10の形状が長方形になっているが、本発明の一態様の効果を発揮できる限り、このような形状に限られるものではない。また、該スリット17は、本発明の一態様における上記第3電極が有する開口部に相当する。
図2は、図1中の線分a-a’に対応する部分の断面を示す断面模式図である。実施形態1に係る液晶表示装置が備える液晶表示パネル25の基本構成は、下側基板23、上側基板24、及び、両基板に挟持された液晶層21である。該液晶層21に含まれる液晶分子22は、正の誘電率異方性(Δε>0)を有している。なお、該液晶層21の厚さは特に限定されていないが、2μm以上、6μm以下であることが好ましい。また、該下側基板23及び該上側基板24の該液晶層21側には、それぞれ配向膜(図示せず)が形成され、該配向膜は、電圧無印加時に基板主面に対して垂直な方向に液晶分子を配向させるような垂直配向膜である限り、有機配向膜又は無機配向膜のいずれであってもよい。なお、該下側基板23及び該上側基板24は、それぞれ、本発明の一態様における上記第1基板及び上記第2基板に相当する。
実施形態1に係る液晶表示装置において、上記下側基板23は、ガラス基板18aと、該ガラス基板18a上の一部で、該ガラス基板18aの上記液晶層21側に形成された上記下層電極16と、該下層電極16上及び該ガラス基板18a上の一部で、該下層電極16及び該ガラス基板18aの該液晶層21側に形成された絶縁層19aと、該絶縁層19a上で該絶縁層19aの該液晶層21側に形成された一対の上記櫛歯電極15a及び上記櫛歯電極15bとを有している。ここで、該下層電極16、櫛歯電極15a、及び、櫛歯電極15bは、例えば、ITO(Indium Tin Oxide:インジウムスズ酸化物)又はIZO(Indium Zinc Oxide:インジウム亜鉛酸化物)等の透明電極である。また、該櫛歯電極15a及び該櫛歯電極15bは、同一の層に形成されている。ここで、図2に示すように、隣り合う一対の、左側の該櫛歯電極15aの線状部分と該櫛歯電極15bの線状部分との間の領域であって、該領域の全部と、該下層電極16とが重畳するものを領域1とし、隣り合う一対の、右側の該櫛歯電極15aの線状部分と該櫛歯電極15bの線状部分との間の領域であって、該領域と、該下層電極16とが重畳しないものを領域2とすると、本実施形態1は、該領域1及び該領域2が、交互に連続するように配置され、該領域1と該領域2との面積比が1:1となる場合である。なお、該櫛歯電極15a及び該櫛歯電極15bは、それぞれ、本発明の一態様における上記第1電極及び上記第2電極に相当する。また、該下層電極16は、本発明の一態様における上記第3電極に相当する。また、該領域1及び該領域2は、それぞれ、本発明の一態様における上記第1領域及び上記第2領域に相当する。
ここで、上記絶縁層19aは、有機絶縁膜又は無機絶縁膜のいずれであってもよい。なお、該絶縁層19aの誘電率は特に限定されていないが、2以上、10以下であることが好ましい。また、該絶縁層19aの厚さも特に限定されていないが、0.1μm以上、4μm以下であることが好ましい。
ここで、図2に示すような、上記櫛歯電極15bの電極幅L1は特に限定されていないが、1μm以上、5μm以下であることが好ましい。上記櫛歯電極15aの電極幅(図示せず)についても、該櫛歯電極15bの電極幅L1と同様である。また、該櫛歯電極15aと該櫛歯電極15bとの間の電極間隔S1は、画素内で略同一であり、更に、画素間で略同一であってもよい。なお、該櫛歯電極15aと該櫛歯電極15bとの間の電極間隔S1は、画素内で略同一である限り、特に限定されていないが、1μm以上、10μm以下であることが好ましい。
実施形態1に係る液晶表示装置において、上記上側基板24は、ガラス基板18bと、該ガラス基板18b上で該ガラス基板18bの上記液晶層21側に形成された面状の対向電極20と、該対向電極20上で該対向電極20の該液晶層21側に形成された絶縁層19bとを有している。なお、該絶縁層19bは配置されていなくてもよい。ここで、該対向電極20は、例えば、IZO等の透明電極である。なお、該対向電極20は、本発明の一態様における上記第4電極に相当する。
ここで、上記絶縁層19bは、有機絶縁膜又は無機絶縁膜のいずれであってもよい。なお、該絶縁層19bの誘電率は特に限定されていないが、2以上、10以下であることが好ましい。また、該絶縁層19bの厚さも特に限定されていないが、0.1μm以上、4μm以下であることが好ましい。
実施形態1に係る液晶表示装置が備える上記液晶表示パネル25は、更に、上記ガラス基板18a及び上記ガラス基板18bの上記液晶層21側とは反対側に一対の直線偏光板(図示せず)を有している。
実施形態1に係る液晶表示装置において、上記下層電極16と上記対向電極20との間に一定の電位差を発生させることで、上記液晶層21に縦電界が常に発生した状態を保持する。そして、上記櫛歯電極15aと上記櫛歯電極15bとの間に極性反転させた電圧を印加することで、電位差を発生させ、該櫛歯電極15aと該櫛歯電極15bとの間の電位差を変化させることで、横電界の強さを制御し、階調表示を行う。
なお、図2中、(i)、(ii)、(iii)、及び、(iv)は、それぞれ、上記櫛歯電極15aの電位、上記櫛歯電極15bの電位、上記下層電極16の電位、及び、上記対向電極20の電位を示す。
実施形態1に係る液晶表示装置は、上記の他に、通常の液晶表示装置が備える部材(例えば、外部回路等)を適宜備えることができる。後述する他の実施形態においても同様である。
以下に、実施形態1に係る液晶表示装置を実際に作製した実施例を示す。
(実施例1)
本実施例1において、上記液晶分子22は、正の誘電率異方性を有しており、その誘電率異方性Δεは18であり、その屈折率異方性Δnは0.12である。また、上記液晶層21の厚さは3.2μmである。また、上記絶縁層19aの誘電率は7であり、その厚さは0.3μmである。また、上記絶縁層19bの誘電率は4であり、その厚さは1.5μmである。また、上記櫛歯電極15a及び上記櫛歯電極15bの電極幅L1は2.5μmである。また、該櫛歯電極15aと該櫛歯電極15bとの間の電極間隔S1は3μmであり、画素内におけるそれぞれの櫛歯電極間隔は略同一である。櫛歯電極間隔が略同一であるとは、例えば、画素内における該櫛歯電極15aと該櫛歯電極15bとの間のそれぞれの電極間隔の差が、0.5μm以下であることが好ましい。また、より好ましくは、0.25μm以下である。
本実施例1において、図2に示すように、上記櫛歯電極15aの電位(i)は-V〔V〕、上記櫛歯電極15bの電位(ii)は+V〔V〕とし、上記下層電極16の電位(iii)は0〔V〕、上記対向電極20の電位(iv)は10〔V〕とした(上記〔V〕は単位を示す。)。また、上記下側基板23をTFT基板、上記上側基板24をCF基板とした。
上記の条件を用いて、実施例1に係る液晶表示装置の上記領域1及び上記領域2におけるV-T特性を測定した。また、実施例1に係る液晶表示装置のV-T特性、視野角特性に関わるガンマシフト、及び、液晶分子の立ち上がりの応答特性を測定した。以下に、その結果について説明する。
図3は、実施例1及び実施例2に係る液晶表示装置の各領域におけるV-T特性を示すグラフである。横軸は櫛歯電極間電圧を、縦軸は透過率を示す。ここで、櫛歯電極間電圧とは、上記櫛歯電極15a及び上記櫛歯電極15bとの間の電位差であり、2V〔V〕に相当する。なお、図3中、「領域3」については、後述する実施例2にて説明する。
図3に示すように、上記領域1におけるV-T特性は、上記領域2におけるV-T特性よりも高電圧側にシフトしており、該領域1におけるV-T特性と該領域2におけるV-T特性とは異なっていることが分かる。よって、実施例1における液晶表示装置は、上記のような異なる2つのV-T特性を有し、上記画素部10内でマルチV-T化を実現していることが分かる。
図4は、実施例1及び実施例2に係る液晶表示装置のV-T特性を示すグラフである。横軸は櫛歯電極間電圧を、縦軸は透過率を示す。ここで、櫛歯電極間電圧は、図3と同様、2V〔V〕に相当する。なお、図4中、「実施例2」については、後述する実施例2にて説明する。
図4に示すように、実施例1に係る液晶表示装置のV-T特性は、上記領域1におけるV-T特性と上記領域2におけるV-T特性とが合成されたものになる。
図5は、実施例1に係る液晶表示装置におけるダイレクタ分布及び透過率分布である。図5は、上記櫛歯電極15aと上記櫛歯電極15bとの間の櫛歯電極間電圧を6〔V〕とした状態(図5に示すようなV=3.000〔V〕に相当)における、ダイレクタ422、電界分布(等電位線)426、及び、透過率分布427を示している。
ここで、図5中の横軸及び左側の縦軸が示す数値と図2に示す各部の位置との対応について、以下に説明する。図5中の横軸について、0.000μm~約1.300μmの範囲は左側の上記櫛歯電極15aが存在する領域であり、約1.300μm~約4.300μmの範囲は該櫛歯電極15a及び上記櫛歯電極15bが存在しない領域であり、約4.300μm~約6.900μmの範囲は該櫛歯電極15bが存在する領域であり、約6.900μm~約9.900μmの範囲は該櫛歯電極15b及び該櫛歯電極15aが存在しない領域であり、約9.900μm~11.200μmの範囲は右側の該櫛歯電極15aが存在する領域であり、0.000μm~約5.600μmの範囲は上記下層電極16が存在する領域であり、上記領域1は0.000μm~約5.600μmの範囲であり、上記領域2は約5.600μm~11.200μmの範囲である。図5中の左側の縦軸について、(I)0.000μmは上記ガラス基板18aと上記絶縁層19aとの界面であり、(II)0.000μmは該絶縁層19aと上記液晶層21との界面であり、(III)0.000μmは該液晶層21と上記絶縁層19bとの界面であり、(IV)1.500μmは該絶縁層19bと上記対向電極20との界面である。なお、図4に示したような実施例1に係る液晶表示装置の透過率は、図5中の横軸の0.000μm~11.200μmの範囲に該当する領域で測定されたものである。
図5に示すように、上記領域1における透過率分布と上記領域2における透過率分布とが異なっていることが分かる。よって、上記画素部10内でマルチV-T化を実現していることが分かる。
図6は、実施例1及び比較例1-1に係る液晶表示装置の方位角0°-180°、極角60°におけるガンマシフトの特性図である。図7は、実施例1及び比較例1-1に係る液晶表示装置の方位角45°-225°、極角60°におけるガンマシフトの特性図である。横軸は階調を、縦軸は規格化輝度比を示す。なお、規格化輝度比とは、最高階調(256階調)の輝度に対する各階調の輝度の比を示す。図6及び図7中、「正面γ=2.2」とは、液晶表示装置の正面方向から観察した場合であり、γ=2.2となるように調整されている。なお、「比較例1-1」については、後述する比較例1-1にて説明する。また、他の2本のカーブ(実施例1のカーブ及び比較例1-1のカーブ)は、正面方向から極角60°の方向で確認した場合のカーブである。また、方位角の定義は、図1中に示した通りである。図6に示された輝度は、方位角0°及び180°の方向における極角60°の方向で確認した場合の輝度の平均値である。図7に示された輝度は、方位角45°及び225°の方向における極角60°の方向で確認した場合の輝度の平均値である。なお、ガンマシフトとは、白浮きとも呼ばれる問題であり、ある方向のカーブが、正面方向のカーブよりも輝度が高い方向にシフトしている状態である。これにより、正面方向からの観察では正常に観察される映像が、斜め視角では違和感のある異常な映像に変化するという問題が引き起こされる。
図6及び図7に示すように、実施例1に係る液晶表示装置のカーブは、後述するような比較例1-1に係る液晶表示装置のカーブよりも輝度が低い方向にシフトしていることが分かる。つまり、実施例1に係る液晶表示装置のカーブは、後述するような比較例1-1に係る液晶表示装置のカーブよりも正面方向からの浮き(ガンマシフト)が少ないことが分かる。よって、実施例1に係る液晶表示装置の視野角特性は、後述するような比較例1-1に係る液晶表示装置の視野角特性よりも良好であることが分かる。
図8は、実施例1、実施例2、比較例1-1、比較例1-2、及び、比較例1-3に係る液晶表示装置における液晶分子の立ち上がりの応答特性を示すグラフである。横軸は時間を、縦軸は規格化透過率を示す。なお、規格化透過率とは、到達透過率に対する各時間の透過率の比を示す。また、それぞれのカーブは、櫛歯電極間電圧を10〔V〕とした場合(実施例1の場合、上記櫛歯電極15aと上記櫛歯電極15bとの間の櫛歯電極間電圧を10〔V〕とした場合)のカーブである。なお、「実施例2」、「比較例1-1」、「比較例1-2」、及び、「比較例1-3」については、後述にて詳細に説明するが、「実施例2」及び「比較例1-1」における櫛歯電極間隔は、本実施例1と同様に3μmであり、「比較例1-2」における櫛歯電極間隔は5μmであり、「比較例1-3」における櫛歯電極間隔は7μmである。
図8に示すように、実施例1に係る液晶表示装置のカーブは、後述するような実施例2及び比較例1-1に係る液晶表示装置のカーブと同様な応答特性を示すことが分かる。つまり、実施例1に係る液晶表示装置における液晶分子の立ち上がりの応答速度と、後述するような実施例2及び比較例1-1に係る液晶表示装置における液晶分子の立ち上がりの応答速度とは、ほぼ等しいことが分かる。これは、実施例1に係る液晶表示装置における櫛歯電極間隔と、後述するような実施例2及び比較例1-1に係る液晶表示装置における櫛歯電極間隔とが等しいことで、実施例1に係る液晶表示装置の櫛歯電極間で発生する電界強度と、後述するような実施例2及び比較例1-1に係る液晶表示装置の櫛歯電極間で発生する電界強度とがほぼ等しくなるためである。また、実施例1に係る液晶表示装置における液晶分子の立ち上がりの応答速度は、後述するような比較例1-2及び比較例1-3に係る液晶表示装置における液晶分子の立ち上がりの応答速度よりも速いことが分かる。これは、実施例1に係る液晶表示装置における櫛歯電極間隔が、後述するような比較例1-2及び比較例1-3に係る液晶表示装置における櫛歯電極間隔よりも狭いことで、実施例1に係る液晶表示装置の櫛歯電極間で発生する電界強度が、後述するような比較例1-2及び比較例1-3に係る液晶表示装置の櫛歯電極間で発生する電界強度よりも強くなるためである。
よって、上記より、実施例1に係る液晶表示装置は、液晶分子の立ち上がりの応答速度の低下を充分に防止しつつ、画素内でマルチV-T化を実現するとともに、視野角特性を充分に向上することができることが分かる。
[実施形態2:上記第1領域と上記第3領域との面積比が1:1であり、直線偏光板を用いた場合]
実施形態2に係る液晶表示装置について、図9を用いて説明する。
図9は、実施形態2に係る液晶表示装置が備える液晶表示パネルの断面模式図である。実施形態2に係る液晶表示装置が備える液晶表示パネル825の基本構成は、下側基板823、上側基板824、及び、両基板に挟持された液晶層821である。該液晶層821に含まれる液晶分子822は、正の誘電率異方性(Δε>0)を有している。なお、該下側基板823及び該上側基板824は、それぞれ、本発明の一態様における上記第1基板及び上記第2基板に相当する。
実施形態2に係る液晶表示装置において、上記下側基板823は、ガラス基板818aと、該ガラス基板818a上の一部で、該ガラス基板818aの上記液晶層821側に形成された上記下層電極816と、該下層電極816上及び該ガラス基板818a上の一部で、該下層電極816及び該ガラス基板818aの該液晶層821側に形成された絶縁層819aと、該絶縁層819a上で該絶縁層819aの該液晶層821側に形成された一対の上記櫛歯電極815a及び上記櫛歯電極815bとを有している。また、該櫛歯電極815a及び該櫛歯電極815bは、同一の層に形成されている。ここで、図9に示すように、隣り合う一対の、左側の該櫛歯電極815aの線状部分と該櫛歯電極815bの線状部分との間の領域であって、該領域の全部と、該下層電極816とが重畳するものを領域1とし、隣り合う一対の、右側の該櫛歯電極815aの線状部分と該櫛歯電極815bの線状部分との間の領域であって、該領域の一部と、該下層電極816とが重畳するものを領域3とすると、本実施形態2は、該領域1及び該領域3が、交互に連続するように配置され、該領域1と該領域3との面積比が1:1となる場合である。ここで、図9に示すように、該櫛歯電極815aと該櫛歯電極815bとの間の電極間隔をS2とすると、本実施形態2における該領域3の断面における幅は、S2/6である。なお、該櫛歯電極815a及び該櫛歯電極815bは、それぞれ、本発明の一態様における上記第1電極及び上記第2電極に相当する。また、該下層電極816は、本発明の一態様における上記第3電極に相当する。また、該領域1及び該領域3は、それぞれ、本発明の一態様における上記第1領域及び上記第3領域に相当する。なお、該第3領域は、一対の櫛歯電極(該第1電極及び該第2電極)のそれぞれの線状部分の長手方向に対して垂直な方向において、該領域と該第3電極とが重畳する部分と重畳しない部分とがあることが好ましい。
実施形態2に係る液晶表示装置において、上記上側基板824は、ガラス基板818bと、該ガラス基板818b上で該ガラス基板818bの上記液晶層821側に形成された面状の対向電極820と、該対向電極820上で該対向電極820の該液晶層821側に形成された絶縁層819bとを有している。なお、該絶縁層819bは配置されていなくてもよい。なお、該対向電極820は、本発明の一態様における上記第4電極に相当する。
実施形態2に係る液晶表示装置が備える上記液晶表示パネル825は、更に、上記ガラス基板818a及び上記ガラス基板818bの上記液晶層821側とは反対側に一対の直線偏光板(図示せず)を有している。
実施形態2に係る液晶表示装置において、上記下層電極816と上記対向電極820との間に一定の電位差を発生させることで、上記液晶層821に縦電界が常に発生した状態を保持する。そして、上記櫛歯電極815aと上記櫛歯電極815bとの間に極性反転させた電圧を印加することで、電位差を発生させ、該櫛歯電極815aと該櫛歯電極815bとの間の電位差を変化させることで、横電界の強さを制御し、階調表示を行う。
なお、図9中、(i)、(ii)、(iii)、及び、(iv)は、それぞれ、上記櫛歯電極815aの電位、上記櫛歯電極815bの電位、上記下層電極816の電位、及び、上記対向電極820の電位を示す。
実施形態2に係る液晶表示装置のその他の構成は、実施形態1に係る液晶表示装置と同様である。
以下に、実施形態2に係る液晶表示装置を実際に作製した実施例を示す。
(実施例2)
本実施例2において、上記液晶分子822は、正の誘電率異方性を有しており、その誘電率異方性Δεは18であり、その屈折率異方性Δnは0.12である。また、上記液晶層821の厚さは3.2μmである。また、上記絶縁層819aの誘電率は7であり、その厚さは0.3μmである。また、上記絶縁層819bの誘電率は4であり、その厚さは1.5μmである。また、上記櫛歯電極815bの電極幅L2は2.5μmであり、上記櫛歯電極815aと該櫛歯電極815bとの間の電極間隔S2は3μmである。なお、該櫛歯電極815aの電極幅(図示せず)についても、該櫛歯電極815bの電極幅L2と同様である。
本実施例2において、図9に示すように、上記櫛歯電極815aの電位(i)は-V〔V〕、上記櫛歯電極815bの電位(ii)は+V〔V〕とし、上記下層電極816の電位(iii)は0〔V〕、上記対向電極820の電位(iv)は10〔V〕とした(上記〔V〕は単位を示す。)。また、上記下側基板823をTFT基板、上記上側基板824をCF基板とした。
上記の条件を用いて、実施例2に係る液晶表示装置の上記領域1及び上記領域3におけるV-T特性を測定した。また、実施例2に係る液晶表示装置のV-T特性、視野角特性に関わるガンマシフト、及び、液晶分子の立ち上がりの応答特性を測定した。以下に、その結果について説明する。
実施例2に係る液晶表示装置の上記領域1及び上記領域3におけるV-T特性について、上述した図3を用いて説明する。図3に示すように、上記領域1におけるV-T特性は、上記領域3におけるV-T特性よりも高電圧側にシフトしており、該領域1におけるV-T特性と該領域3におけるV-T特性とは異なっていることが分かる。よって、実施例2における液晶表示装置は、上記のような異なる2つのV-T特性を有し、画素内でマルチV-T化を実現していることが分かる。また、該領域3を形成することで、該領域1におけるV-T特性と上記領域2におけるV-T特性との間のV-T特性を得ることができることも分かる。
実施例2に係る液晶表示装置のV-T特性について、上述した図4を用いて説明する。図4に示すように、実施例2に係る液晶表示装置のV-T特性は、上記領域1におけるV-T特性と上記領域3におけるV-T特性とが合成されたものになる。
図10は、実施例2に係る液晶表示装置におけるダイレクタ分布及び透過率分布である。図10は、上記櫛歯電極815aと上記櫛歯電極815bとの間の櫛歯電極間電圧を6〔V〕とした状態(図10に示すようなV=3.000〔V〕に相当)における、ダイレクタ922、電界分布(等電位線)926、及び、透過率分布927を示している。
ここで、図10中の横軸及び左側の縦軸が示す数値と図9に示す各部の位置との対応について、以下に説明する。図10中の横軸について、0.000μm~約1.300μmの範囲は左側の上記櫛歯電極815aが存在する領域であり、約1.300μm~約4.300μmの範囲は該櫛歯電極815a及び上記櫛歯電極815bが存在しない領域であり、約4.300μm~約6.900μmの範囲は該櫛歯電極815bが存在する領域であり、約6.900μm~約9.900μmの範囲は該櫛歯電極815b及び該櫛歯電極815aが存在しない領域であり、約9.900μm~11.200μmの範囲は右側の該櫛歯電極815aが存在する領域であり、0.000μm~約7.400μmの範囲は上記下層電極816が存在する領域であり、上記領域1は0.000μm~約5.600μmの範囲であり、上記領域3は約5.600μm~11.200μmの範囲である。図10中の左側の縦軸について、(I)0.000μmは上記ガラス基板818aと上記絶縁層819aとの界面であり、(II)0.000μmは該絶縁層819aと上記液晶層821との界面であり、(III)0.000μmは該液晶層821と上記絶縁層819bとの界面であり、(IV)1.500μmは該絶縁層819bと上記対向電極820との界面である。なお、図4に示したような実施例2に係る液晶表示装置の透過率は、図10中の横軸の0.000μm~11.200μmの範囲に該当する領域で測定されたものである。
図10に示すように、上記領域1における透過率分布と上記領域3における透過率分布とが異なっていることが分かる。よって、画素内でマルチV-T化を実現していることが分かる。
図11は、実施例2及び比較例1-1に係る液晶表示装置の方位角0°-180°、極角60°におけるガンマシフトの特性図である。図12は、実施例2及び比較例1-1に係る液晶表示装置の方位角45°-225°、極角60°におけるガンマシフトの特性図である。横軸は階調を、縦軸は規格化輝度比を示す。図11及び図12中、「正面γ=2.2」とは、液晶表示装置の正面方向から観察した場合であり、γ=2.2となるように調整されている。なお、「比較例1-1」については、後述する比較例1-1にて説明する。また、他の2本のカーブ(実施例2のカーブ及び比較例1-1のカーブ)は、正面方向から極角60°の方向で確認した場合のカーブである。また、方位角の定義は、図1中に示したものと同様である。図11に示された輝度は、方位角0°及び180°の方向における極角60°の方向で確認した場合の輝度の平均値である。図12に示された輝度は、方位角45°及び225°の方向における極角60°の方向で確認した場合の輝度の平均値である。
図11及び図12に示すように、実施例2に係る液晶表示装置のカーブは、後述するような比較例1-1に係る液晶表示装置のカーブよりも輝度が低い方向にシフトしていることが分かる。つまり、実施例2に係る液晶表示装置のカーブは、後述するような比較例1-1に係る液晶表示装置のカーブよりも正面方向からの浮き(ガンマシフト)が少ないことが分かる。よって、実施例2に係る液晶表示装置の視野角特性は、後述するような比較例1-1に係る液晶表示装置の視野角特性よりも良好であることが分かる。また、実施例2に係る液晶表示装置における上記領域3のように、上記櫛歯電極815aの線状部分と上記櫛歯電極815bの線状部分との間の領域の一部と、上記下層電極816とが重畳する領域を形成することで、V-T特性を容易に制御することができるため、例えば、低階調側の視野角特性を特に改善するようなV-T特性を組み合わせることも可能であり、狙いとする視野角特性を得ることができる。
実施例2に係る液晶表示装置の液晶分子の立ち上がりの応答特性について、図8を用いて説明する。図8に示すように、実施例2に係る液晶表示装置のカーブは、実施例1及び後述するような比較例1-1に係る液晶表示装置のカーブと同様な応答特性を示すことが分かる。つまり、実施例2に係る液晶表示装置における液晶分子の立ち上がりの応答速度と、実施例1及び後述するような比較例1-1に係る液晶表示装置における液晶分子の立ち上がりの応答速度とは、ほぼ等しいことが分かる。これは、実施例2に係る液晶表示装置における櫛歯電極間隔と、実施例1及び後述するような比較例1-1に係る液晶表示装置における櫛歯電極間隔とが等しいことで、実施例2に係る液晶表示装置の櫛歯電極間で発生する電界強度と、実施例1及び後述するような比較例1-1に係る液晶表示装置の櫛歯電極間で発生する電界強度とがほぼ等しくなるためである。また、実施例2に係る液晶表示装置における液晶分子の立ち上がりの応答速度は、後述するような比較例1-2及び比較例1-3に係る液晶表示装置における液晶分子の立ち上がりの応答速度よりも速いことが分かる。これは、実施例2に係る液晶表示装置における櫛歯電極間隔が、後述するような比較例1-2及び比較例1-3に係る液晶表示装置における櫛歯電極間隔よりも狭いことで、実施例2に係る液晶表示装置の櫛歯電極間で発生する電界強度が、後述するような比較例1-2及び比較例1-3に係る液晶表示装置の櫛歯電極間で発生する電界強度よりも強くなるためである。
よって、上記より、実施例2に係る液晶表示装置は、液晶分子の立ち上がりの応答速度の低下を充分に防止しつつ、画素内でマルチV-T化を実現するとともに、視野角特性を充分に向上することができることが分かる。
[実施形態3:上記第1領域と上記第2領域との面積比が1:1であり、円偏光板を用いた場合]
実施形態3に係る液晶表示装置の構成は、実施形態1に係る液晶表示装置において、上記ガラス基板18a及び上記ガラス基板18bの上記液晶層21側とは反対側に一対の円偏光板(図示せず)を有している場合である。実施形態3に係る液晶表示装置のその他の構成は、実施形態1に係る液晶表示装置と同様である。
以下に、実施形態3に係る液晶表示装置を実際に作製した実施例を示す。
(実施例3)
本実施例3において、液晶材料の物性値、液晶層の厚さ、絶縁層の誘電率及び厚さ、櫛歯電極の幅、櫛歯電極間隔、及び、各電極への印加電圧(電位)等は、実施例1と同様である。
以下に、実施例3に係る液晶表示装置の上記領域1及び上記領域2におけるV-T特性、実施例3に係る液晶表示装置のV-T特性、視野角特性に関わるガンマシフト、及び、液晶分子の立ち上がりの応答特性について説明する。
図13は、実施例3及び実施例4に係る液晶表示装置の各領域におけるV-T特性を示すグラフである。横軸は櫛歯電極間電圧を、縦軸は透過率を示す。なお、図13中、「領域3」については、後述する実施例4にて説明する。
図13に示すように、上記領域1におけるV-T特性は、上記領域2におけるV-T特性よりも高電圧側にシフトしており、該領域1におけるV-T特性と該領域2におけるV-T特性とは異なっていることが分かる。よって、実施例3における液晶表示装置は、上記のような異なる2つのV-T特性を有し、上記画素部10内でマルチV-T化を実現していることが分かる。
図14は、実施例3及び実施例4に係る液晶表示装置のV-T特性を示すグラフである。横軸は櫛歯電極間電圧を、縦軸は透過率を示す。なお、図14中、「実施例4」については、後述する実施例4にて説明する。
図14に示すように、実施例3に係る液晶表示装置のV-T特性は、上記領域1におけるV-T特性と上記領域2におけるV-T特性とが合成されたものになる。
図15は、実施例3に係る液晶表示装置におけるダイレクタ分布及び透過率分布である。図15は、上記櫛歯電極15aと上記櫛歯電極15bとの間の櫛歯電極間電圧を6〔V〕とした状態(図15に示すようなV=3.000〔V〕に相当)における、ダイレクタ1422、電界分布(等電位線)1426、及び、透過率分布1427を示している。なお、図15中の横軸及び左側の縦軸が示す数値と図2に示す各部の位置との対応については、実施例1と同様である。また、図14に示したような実施例3に係る液晶表示装置の透過率は、図15中の横軸の0.000μm~11.200μmの範囲に該当する領域で測定されたものである。
図15に示すように、上記領域1における透過率分布と上記領域2における透過率分布とが異なっていることが分かる。よって、上記画素部10内でマルチV-T化を実現していることが分かる。
図16は、実施例3、実施例4、及び、比較例2に係る液晶表示装置の方位角0°-180°、極角60°におけるガンマシフトの特性図である。図17は、実施例3、実施例4、及び、比較例2に係る液晶表示装置の方位角45°-225°、極角60°におけるガンマシフトの特性図である。横軸は階調を、縦軸は規格化輝度比を示す。図16及び図17中、「正面γ=2.2」とは、液晶表示装置の正面方向から観察した場合であり、γ=2.2となるように調整されている。なお、「実施例4」及び「比較例2」については、後述にて説明する。また、他の3本のカーブ(実施例3のカーブ、実施例4のカーブ、及び、比較例2のカーブ)は、正面方向から極角60°の方向で確認した場合のカーブである。また、方位角の定義は、図1中に示した通りである。図16に示された輝度は、方位角0°及び180°の方向における極角60°の方向で確認した場合の輝度の平均値である。図17に示された輝度は、方位角45°及び225°の方向における極角60°の方向で確認した場合の輝度の平均値である。
図16及び図17に示すように、実施例3に係る液晶表示装置のカーブは、後述するような比較例2に係る液晶表示装置のカーブよりも輝度が低い方向にシフトしていることが分かる。つまり、実施例3に係る液晶表示装置のカーブは、後述するような比較例2に係る液晶表示装置のカーブよりも正面方向からの浮き(ガンマシフト)が少ないことが分かる。よって、実施例3に係る液晶表示装置の視野角特性は、後述するような比較例2に係る液晶表示装置の視野角特性よりも良好であることが分かる。
また、実施例3に係る液晶表示装置の液晶分子の立ち上がりの応答特性については、実施例3に係る液晶表示装置における櫛歯電極間隔と、実施例1に係る液晶表示装置における櫛歯電極間隔とが等しい限り、実施例1に係る液晶表示装置の液晶分子の立ち上がりの応答特性と同様であることは明らかである。
よって、上記より、実施例3に係る液晶表示装置は、液晶分子の立ち上がりの応答速度の低下を充分に防止しつつ、画素内でマルチV-T化を実現するとともに、視野角特性を充分に向上することができることが分かる。
[実施形態4:上記第1領域と上記第3領域との面積比が1:1であり、円偏光板を用いた場合]
実施形態4に係る液晶表示装置の構成は、実施形態2に係る液晶表示装置において、上記ガラス基板818a及び上記ガラス基板818bの上記液晶層821側とは反対側に一対の円偏光板(図示せず)を有している場合である。実施形態4に係る液晶表示装置のその他の構成は、実施形態2に係る液晶表示装置と同様である。
以下に、実施形態4に係る液晶表示装置を実際に作製した実施例を示す。
(実施例4)
本実施例4において、液晶材料の物性値、液晶層の厚さ、絶縁層の誘電率及び厚さ、櫛歯電極の幅、櫛歯電極間隔、及び、各電極への印加電圧(電位)等は、実施例2と同様である。
以下に、実施例4に係る液晶表示装置の上記領域1及び上記領域3におけるV-T特性、実施例4に係る液晶表示装置のV-T特性、視野角特性に関わるガンマシフト、及び、液晶分子の立ち上がりの応答特性について説明する。
実施例4に係る液晶表示装置の上記領域1及び上記領域3におけるV-T特性について、上述した図13を用いて説明する。図13に示すように、上記領域1におけるV-T特性は、上記領域3におけるV-T特性よりも高電圧側にシフトしており、該領域1におけるV-T特性と該領域3におけるV-T特性とは異なっていることが分かる。よって、実施例4における液晶表示装置は、上記のような異なる2つのV-T特性を有し、画素内でマルチV-T化を実現していることが分かる。また、該領域3を形成することで、該領域1におけるV-T特性と上記領域2におけるV-T特性との間のV-T特性を得ることができることも分かる。
実施例4に係る液晶表示装置のV-T特性について、上述した図14を用いて説明する。図14に示すように、実施例4に係る液晶表示装置のV-T特性は、上記領域1におけるV-T特性と上記領域3におけるV-T特性とが合成されたものになる。
図18は、実施例4に係る液晶表示装置におけるダイレクタ分布及び透過率分布である。図18は、上記櫛歯電極815aと上記櫛歯電極815bとの間の櫛歯電極間電圧を6〔V〕とした状態(図18に示すようなV=3.000〔V〕に相当)における、ダイレクタ1722、電界分布(等電位線)1726、及び、透過率分布1727を示している。なお、図18中の横軸及び左側の縦軸が示す数値と図9に示す各部の位置との対応については、実施例2と同様である。また、図14に示したような実施例4に係る液晶表示装置の透過率は、図18中の横軸の0.000μm~11.200μmの範囲に該当する領域で測定されたものである。
図18に示すように、上記領域1における透過率分布と上記領域3における透過率分布とが異なっていることが分かる。よって、画素内でマルチV-T化を実現していることが分かる。
実施例4に係る液晶表示装置の視野角特性に関わるガンマシフトについて、上述した図16及び図17を用いて説明する。図16及び図17に示すように、実施例4に係る液晶表示装置のカーブは、後述するような比較例2に係る液晶表示装置のカーブよりも輝度が低い方向にシフトしていることが分かる。つまり、実施例4に係る液晶表示装置のカーブは、後述するような比較例2に係る液晶表示装置のカーブよりも正面方向からの浮き(ガンマシフト)が少ないことが分かる。よって、実施例4に係る液晶表示装置の視野角特性は、後述するような比較例2に係る液晶表示装置の視野角特性よりも良好であることが分かる。また、実施例4に係る液晶表示装置における上記領域3のように、上記櫛歯電極815aの線状部分と上記櫛歯電極815bの線状部分との間の領域の一部と、上記下層電極816とが重畳する領域を形成することで、V-T特性を容易に制御することができるため、例えば、低階調側の視野角特性を特に改善するようなV-T特性を組み合わせることも可能であり、狙いとする視野角特性を得ることができる。
また、実施例4に係る液晶表示装置の液晶分子の立ち上がりの応答特性については、実施例4に係る液晶表示装置における櫛歯電極間隔と、実施例2に係る液晶表示装置における櫛歯電極間隔とが等しい限り、実施例2に係る液晶表示装置の液晶分子の立ち上がりの応答特性と同様であることは明らかである。
よって、上記より、実施例4に係る液晶表示装置は、液晶分子の立ち上がりの応答速度の低下を充分に防止しつつ、画素内でマルチV-T化を実現するとともに、視野角特性を充分に向上することができることが分かる。
[実施形態5:上記第1領域と上記第2領域との面積比が1:1であり、実施形態1とは異なる構成の場合]
実施形態5に係る液晶表示装置について、図19を用いて説明する。
図19は、実施形態5に係る液晶表示装置が備える液晶表示パネルの画素部の平面模式図である。実施形態5に係る液晶表示装置において、画素部1810内では、ゲートバスライン1811aで選択されたタイミングで、ソースバスライン1812aから供給された電圧を、TFT1813a及びコンタクトホール1814aを通じて、液晶層を駆動する一対の櫛歯電極の片側である櫛歯電極1815aに印加し、また、ソースバスライン1812bから供給された電圧を、TFT1813b及びコンタクトホール1814bを通じて、一対の櫛歯電極のもう片側である櫛歯電極1815bに印加する。また、下層電極1816には、互いに平行な複数のスリット1817が形成されている。なお、該スリット1817は、本発明の一態様における上記第3電極が有する開口部に相当する。
ここで、図19にその一部を例示するように、隣り合う一対の、上記櫛歯電極1815aの線状部分と上記櫛歯電極1815bの線状部分との間の領域であって、該領域の全部と、上記下層電極1816とが重畳するものを領域1’とし、隣り合う一対の、該櫛歯電極1815aの線状部分と該櫛歯電極1815bの線状部分との間の領域であって、該領域と、該下層電極1816とが重畳しないものを領域2’とすると、本実施形態5は、該領域1’及び該領域2’が、上記画素部1810内を2分するように配置され、該領域1’と該領域2’との面積比が1:1となる場合である。なお、該櫛歯電極1815a及び該櫛歯電極1815bは、それぞれ、本発明の一態様における上記第1電極及び上記第2電極に相当する。また、該下層電極1816は、本発明の一態様における上記第3電極に相当する。また、該領域1’及び該領域2’は、それぞれ、本発明の一態様における上記第1領域及び上記第2領域に相当する。また、実施形態5に係る液晶表示装置は、更に、一対の直線偏光板(図示せず)又は一対の円偏光板(図示せず)を有している。
ここで、実施形態5に係る液晶表示装置において、上述したように、上記第1領域と上記第2領域との面積比が1:1である限り、実施例1に係る液晶表示装置と同様な効果が得られるのは明らかである。
[実施形態6:上記第1領域と上記第2領域との面積比が1:3である場合]
実施形態6に係る液晶表示装置について、図20を用いて説明する。
図20は、実施形態6に係る液晶表示装置が備える液晶表示パネルの画素部の平面模式図である。実施形態6に係る液晶表示装置において、画素部1910内では、ゲートバスライン1911aで選択されたタイミングで、ソースバスライン1912aから供給された電圧を、TFT1913a及びコンタクトホール1914aを通じて、液晶層を駆動する一対の櫛歯電極の片側である櫛歯電極1915aに印加し、また、ソースバスライン1912bから供給された電圧を、TFT1913b及びコンタクトホール1914bを通じて、一対の櫛歯電極のもう片側である櫛歯電極1915bに印加する。また、下層電極1916には、互いに平行な複数のスリット1917が形成されている。なお、該スリット1917は、本発明の一態様における上記第3電極が有する開口部に相当する。
ここで、図20にその一部を例示するように、隣り合う一対の、上記櫛歯電極1915aの線状部分と上記櫛歯電極1915bの線状部分との間の領域であって、該領域の全部と、上記下層電極1916とが重畳するものを領域1’’とし、隣り合う一対の、上記櫛歯電極1915aの線状部分と上記櫛歯電極1915bの線状部分との間の領域であって、該領域と、上記下層電極1916とが重畳しないものを領域2’’とすると、本実施形態6は、該領域1’’と該領域2’’との面積比が1:3となる場合である。なお、該櫛歯電極1915a及び該櫛歯電極1915bは、それぞれ、本発明の一態様における上記第1電極及び上記第2電極に相当する。また、該下層電極1916は、本発明の一態様における上記第3電極に相当する。また、該領域1’’及び該領域2’’は、それぞれ、本発明の一態様における上記第1領域及び上記第2領域に相当する。また、実施形態6に係る液晶表示装置は、更に、一対の直線偏光板(図示せず)又は一対の円偏光板(図示せず)を有している。
ここで、実施形態6に係る液晶表示装置において、上述したように、画素内に電極構造の異なる上記第1領域と上記第2領域とが存在する限り、実施例1に係る液晶表示装置と同様な効果が得られるのは明らかである。
[実施形態7:隣り合う上記第1電極の線状部分と上記第2電極の線状部分との間の領域における上記第3電極の開口部の幅が、該第1電極及び該第2電極の長手方向に沿って変化する場合]
実施形態7に係る液晶表示装置について、図21を用いて説明する。
図21は、実施形態7に係る液晶表示装置が備える液晶表示パネルの画素部における隣り合う一対の櫛歯電極間の平面模式図である。図21に示すように、隣り合う一対の、櫛歯電極2015aの線状部分と櫛歯電極2015bの線状部分との間の領域であって、該領域の一部と、下層電極2016とが重畳するものを領域3’’とすると、本実施形態7は、該領域3’’において、該下層電極2016のスリット2017の幅が、該櫛歯電極2015a及び該櫛歯電極2015bの長手方向に沿って変化する場合である。例えば、本実施形態7は、図21に示すように、該下層電極2016の該スリット2017の幅が、線分b-b’、線分c-c’、及び、線分d-d’において、それぞれ異なる場合である。なお、該櫛歯電極2015a及び該櫛歯電極2015bは、それぞれ、本発明の一態様における上記第1電極及び上記第2電極に相当する。また、該下層電極2016は、本発明の一態様における上記第3電極に相当する。また、該領域3’’は、本発明の一態様における上記第3領域に相当する。また、該スリット2017は、本発明の一態様における該第3電極が有する開口部に相当する。また、実施形態7に係る液晶表示装置は、更に、一対の直線偏光板(図示せず)又は一対の円偏光板(図示せず)を有している。
ここで、実施形態7に係る液晶表示装置において、上述したような実施形態2に係る液晶表示装置、例えば、図22に示すような構成の場合と同様な効果が得られる。図22は、下層電極のスリットの幅が一定である場合の画素部における隣り合う一対の櫛歯電極間の平面模式図である。図22に示すように、隣り合う一対の、櫛歯電極2015a’の線状部分と櫛歯電極2015b’の線状部分との間の領域であって、該領域の一部と、下層電極2016’とが重畳するものを領域3とすると、図22に示される形態は、該領域3において、該下層電極2016’のスリット2017’の幅が、該櫛歯電極2015a’及び該櫛歯電極2015b’の長手方向に沿って一定である場合である。例えば、図22に示される形態は、該下層電極2016’の該スリット2017’の幅が、線分b-b’、線分c-c’、及び、線分d-d’において、それぞれ同じ場合である。なお、該櫛歯電極2015a’及び該櫛歯電極2015b’は、それぞれ、本発明の一態様における上記第1電極及び上記第2電極に相当する。また、該下層電極2016’は、本発明の一態様における上記第3電極に相当する。また、該領域3は、本発明の一態様における上記第3領域に相当する。また、該スリット2017’は、本発明の一態様における該第3電極が有する開口部に相当する。
[比較形態1:下層電極が開口部を有しておらず、直線偏光板を用いた場合]
比較形態1に係る液晶表示装置について、図23及び図24を用いて説明する。
図23は、比較形態1に係る液晶表示装置が備える液晶表示パネルの画素部の平面模式図である。比較形態1に係る液晶表示装置において、画素部2110内では、ゲートバスライン2111aで選択されたタイミングで、ソースバスライン2112aから供給された電圧を、TFT2113a及びコンタクトホール2114aを通じて、液晶層を駆動する一対の櫛歯電極の片側である櫛歯電極2115aに印加し、また、ソースバスライン2112bから供給された電圧を、TFT2113b及びコンタクトホール2114bを通じて、一対の櫛歯電極のもう片側である櫛歯電極2115bに印加する。また、下層電極2116は開口部を有しておらず、面状である。
図24は、図23中の線分A-A’に対応する部分の断面を示す断面模式図である。比較形態1に係る液晶表示装置が備える液晶表示パネル2125の基本構成は、下側基板2123、上側基板2124、及び、両基板に挟持された液晶層2121である。該液晶層2121に含まれる液晶分子2122は、正の誘電率異方性(Δε>0)を有している。
比較形態1に係る液晶表示装置において、上記下側基板2123は、ガラス基板2118aと、該ガラス基板2118a上で該ガラス基板2118aの上記液晶層2121側に形成された上記下層電極2116と、該下層電極2116上で該下層電極2116の該液晶層2121側に形成された絶縁層2119aと、該絶縁層2119a上で該絶縁層2119aの該液晶層2121側に形成された一対の上記櫛歯電極2115a及び上記櫛歯電極2115bとを有している。また、該櫛歯電極2115a及び該櫛歯電極2115bは、同一の層に形成されている。ここで、図24に示すように、隣り合う一対の、該櫛歯電極2115aの線状部分と該櫛歯電極2115bの線状部分との間の領域であって、該領域の全部と、該下層電極2116とが重畳するものを領域1とすると、本比較形態1は、該領域1が連続するように配置される場合である。
比較形態1に係る液晶表示装置において、上記上側基板2124は、ガラス基板2118bと、該ガラス基板2118b上で該ガラス基板2118bの上記液晶層2121側に形成された面状の対向電極2120と、該対向電極2120上で該対向電極2120の該液晶層2121側に形成された絶縁層2119bとを有している。なお、該絶縁層2119bは配置されていなくてもよい。
比較形態1に係る液晶表示装置が備える上記液晶表示パネル2125は、更に、上記ガラス基板2118a及び上記ガラス基板2118bの上記液晶層2121側とは反対側に一対の直線偏光板(図示せず)を有している。
比較形態1に係る液晶表示装置において、上記下層電極2116と上記対向電極2120との間に一定の電位差を発生させることで、上記液晶層2121に縦電界が常に発生した状態を保持する。そして、上記櫛歯電極2115aと上記櫛歯電極2115bとの間に極性反転させた電圧を印加することで、電位差を発生させ、該櫛歯電極2115aと該櫛歯電極2115bとの間の電位差を変化させることで、横電界の強さを制御し、階調表示を行う。
なお、図24中、(i)、(ii)、(iii)、及び、(iv)は、それぞれ、上記櫛歯電極2115aの電位、上記櫛歯電極2115bの電位、上記下層電極2116の電位、及び、上記対向電極2120の電位を示す。
以下に、比較形態1に係る液晶表示装置を実際に作製した比較例を示す。
(比較例1-1:櫛歯電極間隔が3μmである場合)
本比較例1-1において、上記液晶分子2122は、正の誘電率異方性を有しており、その誘電率異方性Δεは18であり、その屈折率異方性Δnは0.12である。また、上記液晶層2121の厚さは3.2μmである。また、上記絶縁層2119aの誘電率は7であり、その厚さは0.3μmである。また、上記絶縁層2119bの誘電率は4であり、その厚さは1.5μmである。また、上記櫛歯電極2115bの電極幅L1’は2.5μmであり、上記櫛歯電極2115aと該櫛歯電極2115bとの間の電極間隔S1’は3μmである。なお、該櫛歯電極2115aの電極幅(図示せず)についても、該櫛歯電極2115bの電極幅L1’と同様である。
本比較例1-1において、図24に示すように、上記櫛歯電極2115aの電位(i)は-V〔V〕、上記櫛歯電極2115bの電位(ii)は+V〔V〕とし、上記下層電極2116の電位(iii)は0〔V〕、上記対向電極2120の電位(iv)は10〔V〕とした(上記〔V〕は単位を示す。)。また、上記下側基板2123をTFT基板、上記上側基板2124をCF基板とした。
上記の条件を用いて、比較例1-1に係る液晶表示装置のV-T特性、視野角特性に関わるガンマシフト、及び、液晶分子の立ち上がりの応答特性を測定した。以下に、その結果について説明する。
比較例1-1に係る液晶表示装置のV-T特性について、図3を用いて説明する。図3に示すように、比較例1-1に係る液晶表示装置のV-T特性は、画素内の全ての櫛歯電極間において、上記領域1におけるV-T特性と等しくなるため、上記画素部2110内でマルチV-T化を実現することができないことが分かる。
図25は、比較例1-1に係る液晶表示装置におけるダイレクタ分布及び透過率分布である。図25は、上記櫛歯電極2115aと上記櫛歯電極2115bとの間の櫛歯電極間電圧を6〔V〕とした状態(図25に示すようなV=3.000〔V〕に相当)における、ダイレクタ2322、電界分布(等電位線)2326、及び、透過率分布2327を示している。
ここで、図25中の横軸及び左側の縦軸が示す数値と図24に示す各部の位置との対応について、以下に説明する。図25中の横軸について、0.000μm~約1.300μmの範囲は左側の上記櫛歯電極2115aが存在する領域であり、約1.300μm~約4.300μmの範囲は該櫛歯電極2115a及び上記櫛歯電極2115bが存在しない領域であり、約4.300μm~約6.900μmの範囲は該櫛歯電極2115bが存在する領域であり、約6.900μm~約9.900μmの範囲は該櫛歯電極2115b及び該櫛歯電極2115aが存在しない領域であり、約9.900μm~11.200μmの範囲は右側の該櫛歯電極2115aが存在する領域であり、0.000μm~11.200μmの範囲は上記下層電極2116が存在する領域であり、上記領域1は0.000μm~11.200μmの範囲である。図25中の左側の縦軸について、(I)0.000μmは上記ガラス基板2118aと上記絶縁層2119aとの界面であり、(II)0.000μmは該絶縁層2119aと上記液晶層2121との界面であり、(III)0.000μmは該液晶層2121と上記絶縁層2119bとの界面であり、(IV)1.500μmは該絶縁層2119bと上記対向電極2120との界面である。
図25に示すように、左側の上記領域1における透過率分布と右側の上記領域1における透過率分布とが同様な形状であることが分かる。よって、上記画素部2110内でマルチV-T化を実現することができないことが分かる。
比較例1-1に係る液晶表示装置の視野角特性に関わるガンマシフトについて、図6、図7、図11、及び、図12を用いて説明する。図6及び図7に示すように、比較例1-1に係る液晶表示装置のカーブは、実施例1に係る液晶表示装置のカーブよりも輝度が高い方向にシフトしていることが分かる。つまり、比較例1-1に係る液晶表示装置のカーブは、実施例1に係る液晶表示装置のカーブよりも正面方向からの浮き(ガンマシフト)が大きいことが分かる。よって、比較例1-1に係る液晶表示装置の視野角特性は、実施例1に係る液晶表示装置の視野角特性よりも劣ることが分かる。また、図11及び図12に示すように、比較例1-1に係る液晶表示装置のカーブは、実施例2に係る液晶表示装置のカーブよりも輝度が高い方向にシフトしていることが分かる。つまり、比較例1-1に係る液晶表示装置のカーブは、実施例2に係る液晶表示装置のカーブよりも正面方向からの浮き(ガンマシフト)が大きいことが分かる。よって、比較例1-1に係る液晶表示装置の視野角特性は、実施例2に係る液晶表示装置の視野角特性よりも劣ることが分かる。
比較例1-1に係る液晶表示装置の液晶分子の立ち上がりの応答特性について、図8を用いて説明する。図8に示すように、比較例1-1に係る液晶表示装置のカーブは、実施例1及び実施例2に係る液晶表示装置のカーブと同様な応答特性を示すことが分かる。つまり、比較例1-1に係る液晶表示装置における液晶分子の立ち上がりの応答速度と、実施例1及び実施例2に係る液晶表示装置における液晶分子の立ち上がりの応答速度とは、ほぼ等しいことが分かる。これは、比較例1-1に係る液晶表示装置における櫛歯電極間隔と、実施例1及び実施例2に係る液晶表示装置における櫛歯電極間隔とが等しいことで、比較例1-1に係る液晶表示装置の櫛歯電極間で発生する電界強度と、実施例1及び実施例2に係る液晶表示装置の櫛歯電極間で発生する電界強度とがほぼ等しくなるためである。
よって、上記より、比較例1-1に係る液晶表示装置は、液晶分子の立ち上がりの応答速度の低下を充分に防止するものの、画素内でマルチV-T化を実現することができないことが分かる。
(比較例1-2:櫛歯電極間隔が5μmである場合)
本比較例1-2において、上記櫛歯電極2115aと上記櫛歯電極2115bとの間の電極間隔S1’は5μmである。本比較例1-2において、液晶材料の物性値、液晶層の厚さ、絶縁層の誘電率及び厚さ、櫛歯電極の幅、及び、各電極への印加電圧(電位)等は、比較例1-1と同様である。
以下に、比較例1-2に係る液晶表示装置のV-T特性、視野角特性に関わるガンマシフト、及び、液晶分子の立ち上がりの応答特性について説明する。
比較例1-2に係る液晶表示装置の櫛歯電極間隔は、比較例1-1に係る液晶表示装置の櫛歯電極間隔と異なるため、比較例1-2に係る液晶表示装置のV-T特性は、比較例1-1に係る液晶表示装置のV-T特性と異なる。ここで、比較例1-2に係る液晶表示装置において、例えば、櫛歯電極間隔が異なる領域を1つの画素内に設けることで、画素内でマルチV-T化を実現することは可能であり、視野角特性に関わるガンマシフトを向上することができる。
比較例1-2に係る液晶表示装置の液晶分子の立ち上がりの応答特性について、図8を用いて説明する。図8に示すように、比較例1-2に係る液晶表示装置における液晶分子の立ち上がりの応答速度は、実施例1、実施例2、及び、比較例1-1に係る液晶表示装置における液晶分子の立ち上がりの応答速度よりも遅いことが分かる。これは、比較例1-2に係る液晶表示装置における櫛歯電極間隔が、実施例1、実施例2、及び、比較例1-1に係る液晶表示装置における櫛歯電極間隔よりも広いことで、比較例1-2に係る液晶表示装置の櫛歯電極間で発生する電界強度が、実施例1、実施例2、及び、比較例1-1に係る液晶表示装置の櫛歯電極間で発生する電界強度よりも弱くなるためである。
よって、上記より、比較例1-2に係る液晶表示装置は、画素内でマルチV-T化を実現することは可能であるが、液晶分子の立ち上がりの応答速度の低下を充分に防止することはできないことが分かる。
(比較例1-3:櫛歯電極間隔が7μmである場合)
本比較例1-3において、上記櫛歯電極2115aと上記櫛歯電極2115bとの間の電極間隔S1’は7μmである。本比較例1-3において、液晶材料の物性値、液晶層の厚さ、絶縁層の誘電率及び厚さ、櫛歯電極の幅、及び、各電極への印加電圧(電位)等は、比較例1-1と同様である。
以下に、比較例1-3に係る液晶表示装置のV-T特性、視野角特性に関わるガンマシフト、及び、液晶分子の立ち上がりの応答特性について説明する。
比較例1-3に係る液晶表示装置の櫛歯電極間隔は、比較例1-1に係る液晶表示装置の櫛歯電極間隔と異なるため、比較例1-3に係る液晶表示装置のV-T特性は、比較例1-1に係る液晶表示装置のV-T特性と異なる。ここで、比較例1-3に係る液晶表示装置において、例えば、櫛歯電極間隔が異なる領域を1つの画素内に設けることで、画素内でマルチV-T化を実現することは可能であり、視野角特性に関わるガンマシフトを向上することができる。
比較例1-3に係る液晶表示装置の液晶分子の立ち上がりの応答特性について、図8を用いて説明する。図8に示すように、比較例1-3に係る液晶表示装置における液晶分子の立ち上がりの応答速度は、実施例1、実施例2、及び、比較例1-1に係る液晶表示装置における液晶分子の立ち上がりの応答速度よりも遅いことが分かる。これは、比較例1-3に係る液晶表示装置における櫛歯電極間隔が、実施例1、実施例2、及び、比較例1-1に係る液晶表示装置における櫛歯電極間隔よりも広いことで、比較例1-3に係る液晶表示装置の櫛歯電極間で発生する電界強度が、実施例1、実施例2、及び、比較例1-1に係る液晶表示装置の櫛歯電極間で発生する電界強度よりも弱くなるためである。
よって、上記より、比較例1-3に係る液晶表示装置は、画素内でマルチV-T化を実現することは可能であるが、液晶分子の立ち上がりの応答速度の低下を充分に防止することはできないことが分かる。
[比較形態2:下層電極が開口部を有しておらず、円偏光板を用いた場合]
比較形態2に係る液晶表示装置の構成は、比較形態1に係る液晶表示装置において、上記ガラス基板2118a及び上記ガラス基板2118bの上記液晶層2121側とは反対側に一対の円偏光板(図示せず)を有している場合である。比較形態2に係る液晶表示装置のその他の構成は、比較形態1に係る液晶表示装置と同様である。
以下に、比較形態2に係る液晶表示装置を実際に作製した比較例を示す。
(比較例2)
本比較例2において、液晶材料の物性値、液晶層の厚さ、絶縁層の誘電率及び厚さ、櫛歯電極の幅、櫛歯電極間隔、及び、各電極への印加電圧(電位)等は、比較例1-1と同様である。
以下に、比較例2に係る液晶表示装置のV-T特性、視野角特性に関わるガンマシフト、及び、液晶分子の立ち上がりの応答特性について説明する。
比較例2に係る液晶表示装置の構成は、比較例1-1に係る液晶表示装置の構成と同様であるため、比較例2に係る液晶表示装置のV-T特性については、比較例1-1に係る液晶表示装置のV-T特性と同様であり、画素内でマルチV-T化を実現することができないことは明らかである。
図26は、比較例2に係る液晶表示装置におけるダイレクタ分布及び透過率分布である。図26は、上記櫛歯電極2115aと上記櫛歯電極2115bとの間の櫛歯電極間電圧を6〔V〕とした状態(図26に示すようなV=3.000〔V〕に相当)における、ダイレクタ2422、電界分布(等電位線)2426、及び、透過率分布2427を示している。なお、図26中の横軸及び左側の縦軸が示す数値と図24に示す各部の位置との対応については、比較例1-1と同様である。
図26に示すように、左側の上記領域1における透過率分布と右側の上記領域1における透過率分布とが同様な形状であることが分かる。よって、上記画素部2110内でマルチV-T化を実現することができないことが分かる。
比較例2に係る液晶表示装置の視野角特性に関わるガンマシフトについて、図16及び図17を用いて説明する。図16及び図17に示すように、比較例2に係る液晶表示装置のカーブは、実施例3及び実施例4に係る液晶表示装置のカーブよりも輝度が高い方向にシフトしていることが分かる。つまり、比較例2に係る液晶表示装置のカーブは、実施例3及び実施例4に係る液晶表示装置のカーブよりも正面方向からの浮き(ガンマシフト)が大きいことが分かる。よって、比較例2に係る液晶表示装置の視野角特性は、実施例3及び実施例4に係る液晶表示装置の視野角特性よりも劣ることが分かる。
また、比較例2に係る液晶表示装置の液晶分子の立ち上がりの応答特性については、比較例2に係る液晶表示装置における櫛歯電極間隔と、比較例1-1に係る液晶表示装置における櫛歯電極間隔とが等しい限り、比較例1-1に係る液晶表示装置の液晶分子の立ち上がりの応答特性と同様であることは明らかである。
よって、上記より、比較例2に係る液晶表示装置は、液晶分子の立ち上がりの応答速度の低下を充分に防止するものの、画素内でマルチV-T化を実現することができないことが分かる。
上述した実施形態における各形態は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
10、1810、1910、2110:画素部
11a、11b、1811a、1811b、1911a、1911b、2111a、2111b:ゲートバスライン
12a、12b、1812a、1812b、1912a、1912b、2112a、2112b:ソースバスライン
13a、13b、1813a、1813b、1913a、1913b、2113a、2113b:TFT
14a、14b、1814a、1814b、1914a、1914b、2114a、2114b:コンタクトホール
15a、15b、815a、815b、1815a、1815b、1915a、1915b、2015a、2015b、2015a’、2015b’、2115a、2115b、2515a、2515b:櫛歯電極
16、816、1816、1916、2016、2016’、2116、2516:下層電極
17、1817、1917、2017、2017’:スリット
18a、18b、818a、818b、2118a、2118b、2518a、2518b:ガラス基板
19a、19b、819a、819b、2119a、2119b、2519a、2519b:絶縁層
20、820、2120、2520:対向電極
21、821、2121、2521:液晶層
22、822、2122、2522:液晶分子
23、823、2123、2523:下側基板
24、824、2124、2524:上側基板
25、825、2125、2525:液晶表示パネル
422、922、1422、1722、2322、2422:ダイレクタ
426、926、1426、1726、2326、2426:電界分布(等電位線)
427、927、1427、1727、2327、2427:透過率分布
TFT:薄膜トランジスタ
CF:カラーフィルタ
 

Claims (5)

  1. 第1基板と、
    該第1基板に対向する第2基板と、
    該第1基板及び該第2基板に挟持された液晶層とを少なくとも備える液晶表示装置であって、
    該第1基板は、第1電極、第2電極、及び、第3電極を有し、
    該第2基板は、第4電極を有し、
    該第1電極及び該第2電極は、該第3電極の該液晶層側にある、複数の線状部分を含む一対の櫛歯電極であり、
    該第3電極は、開口部を有する電極であり、
    該第4電極は、面状の電極であり、
    基板主面を平面視したときに、隣り合う該第1電極の線状部分と該第2電極の線状部分との間の領域に対して、該領域と該第3電極とが重畳する割合が画素内で異なることを特徴とする液晶表示装置。
  2. 前記液晶層に含まれる液晶分子は、電圧無印加時に基板主面に対して垂直な方向に配向することを特徴とする請求項1に記載の液晶表示装置。
  3. 前記液晶表示装置は、画素内に第1領域と第2領域とを含み、
    該第1領域は、隣り合う前記第1電極の線状部分と前記第2電極の線状部分との間の領域であって、該領域の全部と、前記第3電極とが重畳し、
    該第2領域は、隣り合う該第1電極の線状部分と該第2電極の線状部分との間の領域であって、該領域と、該第3電極とが重畳せず、
    該第1領域と該第2領域との面積比は、1:1であることを特徴とする請求項1又は2に記載の液晶表示装置。
  4. 前記液晶表示装置は、画素内に第1領域と第3領域とを含み、
    該第1領域は、隣り合う前記第1電極の線状部分と前記第2電極の線状部分との間の領域であって、該領域の全部と、前記第3電極とが重畳し、
    該第3領域は、隣り合う該第1電極の線状部分と該第2電極の線状部分との間の領域であって、該領域の一部と、該第3電極とが重畳し、
    該第1領域と該第3領域との面積比は、1:1であることを特徴とする請求項1又は2に記載の液晶表示装置。
  5. 前記第1基板及び前記第2基板の少なくとも一方は、薄膜トランジスタ素子を備え、
    該薄膜トランジスタ素子は、酸化物半導体を含むことを特徴とする請求項1~4のいずれかに記載の液晶表示装置。
     
PCT/JP2013/078265 2012-10-23 2013-10-18 液晶表示装置 WO2014065202A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/437,659 US20150301412A1 (en) 2012-10-23 2013-10-18 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-234063 2012-10-23
JP2012234063 2012-10-23

Publications (1)

Publication Number Publication Date
WO2014065202A1 true WO2014065202A1 (ja) 2014-05-01

Family

ID=50544582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078265 WO2014065202A1 (ja) 2012-10-23 2013-10-18 液晶表示装置

Country Status (2)

Country Link
US (1) US20150301412A1 (ja)
WO (1) WO2014065202A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3091393A1 (en) * 2015-05-08 2016-11-09 Samsung Display Co., Ltd. Display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160092582A (ko) * 2015-01-27 2016-08-05 삼성디스플레이 주식회사 액정표시장치 및 이의 구동 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002023178A (ja) * 2000-07-04 2002-01-23 Matsushita Electric Ind Co Ltd 液晶表示装置
WO2010137213A1 (ja) * 2009-05-29 2010-12-02 シャープ株式会社 液晶表示素子、及び、液晶表示装置
WO2012053415A1 (ja) * 2010-10-18 2012-04-26 シャープ株式会社 液晶表示装置
WO2012128084A1 (ja) * 2011-03-18 2012-09-27 シャープ株式会社 薄膜トランジスタアレイ基板及び液晶表示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102331638B (zh) * 2005-12-05 2015-11-25 株式会社半导体能源研究所 液晶显示器
KR101939782B1 (ko) * 2011-09-07 2019-01-18 삼성디스플레이 주식회사 액정 표시 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002023178A (ja) * 2000-07-04 2002-01-23 Matsushita Electric Ind Co Ltd 液晶表示装置
WO2010137213A1 (ja) * 2009-05-29 2010-12-02 シャープ株式会社 液晶表示素子、及び、液晶表示装置
WO2012053415A1 (ja) * 2010-10-18 2012-04-26 シャープ株式会社 液晶表示装置
WO2012128084A1 (ja) * 2011-03-18 2012-09-27 シャープ株式会社 薄膜トランジスタアレイ基板及び液晶表示装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3091393A1 (en) * 2015-05-08 2016-11-09 Samsung Display Co., Ltd. Display device
CN106125422A (zh) * 2015-05-08 2016-11-16 三星显示有限公司 显示设备
KR20160132245A (ko) * 2015-05-08 2016-11-17 삼성디스플레이 주식회사 표시장치
US9910332B2 (en) 2015-05-08 2018-03-06 Samsung Display Co., Ltd. Display device
CN106125422B (zh) * 2015-05-08 2021-06-01 三星显示有限公司 显示设备
KR102422555B1 (ko) * 2015-05-08 2022-07-21 삼성디스플레이 주식회사 표시장치

Also Published As

Publication number Publication date
US20150301412A1 (en) 2015-10-22

Similar Documents

Publication Publication Date Title
CN110824740B (zh) 显示面板、显示面板的视角控制方法及显示装置
JP5035931B2 (ja) 液晶表示装置
US8482501B2 (en) Liquid crystal display device with controllable viewing angle and driving method thereof
JP4543006B2 (ja) 液晶表示素子及びその製造方法
US9678393B2 (en) Liquid crystal display panel, display apparatus and method for driving the display apparatus
KR102177397B1 (ko) 시야각 전환이 가능한 액정 디스플레이 장치 및 시야각 전환 방법
US20150146125A1 (en) Liquid crystal display panel, liquid crystal display apparatus, and thin film transistor array substrate
WO2013001980A1 (ja) 液晶表示パネル及び液晶表示装置
CN106154639B (zh) 一种液晶显示面板及液晶显示装置
US9195100B2 (en) Array substrate, liquid crystal panel and display device with pixel electrode and common electrode whose projections are overlapped
WO2015083401A1 (ja) 液晶表示装置
WO2016088658A1 (ja) 液晶表示装置
US20160011469A1 (en) Liquid crystal display
CN107621734B (zh) 画素结构
TW201423206A (zh) 液晶顯示面板
US9966027B2 (en) Array substrate combining plane electric field and fringe electric field, driving method thereof and display device
US9897831B2 (en) Blue phase liquid crystal panels
JP6494341B2 (ja) 表示装置
WO2014065202A1 (ja) 液晶表示装置
CN106125441B (zh) 一种窄视角模式的低驱动电压蓝相液晶显示器
WO2016031638A1 (ja) 液晶表示装置
US20140022501A1 (en) Liquid crystal display panel and display apparatus using the same
WO2016143686A1 (ja) 液晶表示装置
TWI485491B (zh) 液晶顯示面板
WO2015016126A1 (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849400

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14437659

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP