WO2016088658A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2016088658A1
WO2016088658A1 PCT/JP2015/083320 JP2015083320W WO2016088658A1 WO 2016088658 A1 WO2016088658 A1 WO 2016088658A1 JP 2015083320 W JP2015083320 W JP 2015083320W WO 2016088658 A1 WO2016088658 A1 WO 2016088658A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
electrode
display device
crystal display
crystal molecules
Prior art date
Application number
PCT/JP2015/083320
Other languages
English (en)
French (fr)
Inventor
聡 松村
村田 充弘
洋典 岩田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/532,734 priority Critical patent/US20170343869A1/en
Publication of WO2016088658A1 publication Critical patent/WO2016088658A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133738Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homogeneous alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13706Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having positive dielectric anisotropy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/124Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode interdigital
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/128Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode field shaping
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor

Definitions

  • the present invention relates to a liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device that performs display by applying an electric field using a plurality of electrodes.
  • a liquid crystal display device is configured by sandwiching a liquid crystal display element between a pair of glass substrates or the like, and makes use of the features such as thinness, light weight, and low power consumption to provide car navigation, electronic books, photo frames, industrial equipment, televisions, personal computers. Smartphones, tablet devices, etc. are indispensable for daily life and business. In these applications, liquid crystal display devices of various modes related to electrode arrangement and substrate design for changing the optical characteristics of the liquid crystal layer have been studied.
  • a display method of a liquid crystal display device As a display method of a liquid crystal display device in recent years, vertical such as a multi-domain vertical alignment (MVA) mode in which liquid crystal molecules having negative dielectric anisotropy are vertically aligned with respect to a substrate surface.
  • MVA multi-domain vertical alignment
  • IPS In-plane switching
  • VA alignment
  • FFS fringe field switching
  • the FFS mode is a liquid crystal mode that is frequently used for smartphones and tablet terminals in recent years.
  • the FFS mode liquid crystal display device for example, formed on the first transparent substrate, the first and second transparent insulating substrates that are arranged to face each other with a predetermined distance through a liquid crystal layer containing a plurality of liquid crystal molecules, A plurality of gate bus lines and data bus lines arranged in a matrix form so as to limit unit pixels, thin film transistors provided at intersections of the gate bus lines and data bus lines, and arranged in each unit pixel And a counter electrode made of a transparent conductor and a unit electrode that is insulated from the counter electrode so as to form a fringe field together with the counter electrode, and is symmetrical about the long side of the pixel.
  • FFS having a plurality of upper and lower slits arranged at a predetermined inclination and a pixel electrode made of a transparent conductor
  • the liquid crystal display device over de is disclosed (for example, see Patent Document 1.).
  • the FFS mode liquid crystal display device described in Patent Document 1 is disclosed to have a wide viewing angle characteristic and to improve the low aperture ratio and transmittance of the IPS mode liquid crystal display device (for example, Patent Document 1). 6 shown in Fig. 1.
  • Fig. 6 described in Patent Document 1 shows a planar pixel structure of an FFS mode liquid crystal display device.
  • the FFS mode liquid crystal display device described in Patent Document 1 can force the liquid crystal to respond by applying an electric field at the rising edge, but at the falling edge, the electric field application is stopped and the liquid crystal viscoelasticity is allowed to respond. Therefore, the response is slower than in the vertical alignment mode, and there is room for improving the response characteristics.
  • FIG. 38 is a schematic cross-sectional view of a liquid crystal display device having a conventional FFS mode electrode structure.
  • FIG. 38 shows a structure of a liquid crystal display device.
  • An upper layer electrode (iv) and an upper layer electrode (iv) are arranged on a lower substrate 1110 on which an upper layer electrode (iv) that is an electrode provided with a slit is arranged.
  • the lower layer electrode (v) which is a planar electrode is disposed through the insulating layer 1113.
  • the upper layer electrode (iv) is applied to a constant voltage at the start-up (for example, the potential difference between the upper layer electrode (iv) and the lower layer electrode (v) is equal to or greater than a threshold value and can respond with a fringe electric field).
  • the threshold value means an electric field and / or a voltage value that generates an electric field that causes an optical change in the liquid crystal layer and changes a display state in the liquid crystal display device.
  • the response is made by setting the potential difference between the electrode (iv) and the lower layer electrode (v) to be less than the threshold and stopping (weakening) the fringe electric field.
  • a fringe electric field is generated at the FFS electrode of the lower substrate, and the liquid crystal molecules near the lower electrode are rotated in the same direction in the horizontal plane to perform switching at the time of rising. Further, switching at the time of falling is performed by returning the liquid crystal molecules to the original alignment state by viscoelasticity by cutting the fringe electric field.
  • the electric field for rotating the liquid crystal molecules is weak, and it takes time to rotate the liquid crystal molecules in the region. At this time, since the liquid crystal molecules rotate in the same direction, distortion due to elastic deformation of the liquid crystal in the horizontal plane is small.
  • the response time is slow for both the switching at the rise and the switching at the fall.
  • the present invention has been made in view of the above-described situation, and an object of the present invention is to provide a liquid crystal display device capable of realizing a wide viewing angle and a high-speed response.
  • the present inventors have studied various liquid crystal display devices that perform display by applying an electric field with a plurality of electrodes, and have focused on the electrode structure of the lower substrate.
  • the conventional FFS mode liquid crystal display device has a lower substrate composed of two layers and electrodes that can apply two kinds of voltages, but the lower substrate consists of two layers and electrodes that can apply three kinds of voltages.
  • the present invention has been achieved.
  • the initial alignment of the liquid crystal molecules is horizontal with respect to the main surfaces of the upper and lower substrates.
  • the inventors change the voltage of the first electrode (for example, the upper layer electrode), applies a constant alternating voltage to the second electrode (for example, the lower layer electrode), and the third electrode (for example, the lower layer electrode)
  • a driving method (first driving method) for driving the liquid crystal always at 0 V was found.
  • the inventors have conceived that the liquid crystal is driven by switching the second electrode and the third electrode to the same potential (second driving method), and switching between the first driving method and the second driving method. I found.
  • the liquid crystal display device of the present invention is different from the invention described in Patent Document 1 in that the lower substrate has an electrode that can apply three kinds of voltages in at least two layers.
  • one embodiment of the present invention is a liquid crystal display device including an upper substrate and a liquid crystal layer sandwiched between the upper and lower substrates, the lower substrate including an electrode, and the electrode includes the first electrode and the first electrode.
  • the liquid crystal layer is composed of a second electrode in a layer different from one electrode and a third electrode in the same layer as the second electrode, and the liquid crystal layer is horizontal to the main surface of the upper and lower substrates when no voltage is applied.
  • the liquid crystal display device includes a liquid crystal molecule that is aligned with the main surface, wherein a part of the liquid crystal molecule is rotated in a horizontal plane with respect to the main surface, and the other part of the liquid crystal molecule is It may be a liquid crystal display device that is configured to execute a driving operation in which an electric field that rotates in the direction opposite to a part of the liquid crystal molecules in a horizontal plane is generated by the electrodes.
  • the electric field is generated by the electrode as long as the electric field is generated by at least one electrode selected from the first electrode, the second electrode, and the third electrode.
  • An electric field is always generated between the second electrode and the third electrode when turned on, the voltage of the first electrode is increased during white display to rotate the liquid crystal molecules, and the voltage of the first electrode is decreased during black display. It is preferable to rotate the liquid crystal molecules in the opposite direction.
  • two layers of electrodes having a lower layer as a comb-like electrode and an upper layer as a slit electrode (or a comb-like electrode) may be disposed via an insulating film.
  • a lateral electric field is always applied between the lower electrodes (opposite the liquid crystal layer side) of the two layers of electrodes, and the upper layer side slit electrode (or the comb electrodes) is applied. It is preferable to drive by applying a voltage.
  • the lower substrate in the liquid crystal mode in which the initial alignment is horizontal, the lower substrate has a two-layer electrode configuration, the lower electrode is a pair of comb-like electrodes, and the upper electrode is a slit electrode.
  • the part of the liquid crystal molecules means a part of the liquid crystal molecules included in the liquid crystal layer.
  • the first electrode, the second electrode, and the third electrode are usually electrically separated, and these voltages can be individually controlled.
  • the first electrode, the second electrode, and the third electrode can be set to different potentials at a threshold voltage or higher.
  • the second electrode and the third electrode of the lower substrate constitute a pair of comb-like electrodes, and the second electrode and the third electrode are arranged on the second electrode via an insulating layer or the like. It is preferable that a slit electrode or a comb-like electrode is disposed as one electrode.
  • the first electrode is disposed closer to the liquid crystal layer than the second electrode and the third electrode.
  • the second electrode and the third electrode are each preferably comb-like. Further, when the main surface of the upper and lower substrates is viewed in plan, the extending direction of the second electrode and the extending direction of the third electrode preferably intersect with the alignment direction of the liquid crystal molecules when no voltage is applied. . And it is preferable that the comb-tooth space
  • the first electrode is preferably provided with a slit or has a comb shape.
  • the angle formed between the extending direction of the first electrode and the alignment direction of the liquid crystal molecules when no voltage is applied is -7 ° or more and 7 ° or less. Is preferred.
  • the angle between the stretching direction of the first electrode and the orientation direction of the liquid crystal molecules when no voltage is applied is such that the orientation direction of the liquid crystal molecules is a clockwise angle with respect to the stretching direction of the upper electrode (i). When making it, it makes a positive angle, and when making a counterclockwise angle with respect to the extending
  • an angle formed between the extending direction of the first electrode, the extending direction of the second electrode, and the extending direction of the third electrode is 83 to 90 °. It is preferable. That is, the angle formed between the extending direction of the first electrode and the extending direction of the second electrode, and the angle formed between the extending direction of the first electrode and the extending direction of the third electrode are 83 to 90 °, respectively. Preferably there is. In addition, it is preferable that the extending
  • stretching direction) of a slit electrode says the longitudinal direction of the linear electrode which comprises a slit electrode.
  • the extending direction of the comb-shaped electrode refers to the longitudinal direction of the linear electrode that is a branch portion of the trunk portion that constitutes the comb-shaped electrode and the branch portions that extend from the trunk portion.
  • a fringe electric field is generated at the FFS electrode of the lower substrate at the time of start-up, and the liquid crystal molecules are rotated in one direction by the fringe electric field. Consists of electrodes (first electrode, second electrode, and third electrode described above) that can apply three types of voltages in two layers.
  • an electric field is generated between the first electrode and the second electrode at the time of rising
  • the liquid crystal molecules in a certain region and the liquid crystal molecules in other regions are rotated in opposite directions within a horizontal plane.
  • an electric field is generated between the second electrode and the third electrode at the time of falling, and the liquid crystal molecules in a certain region and the liquid crystal molecules in other regions are respectively rotated in a direction opposite to that at the time of rising in a horizontal plane.
  • the liquid crystal display device of the present invention When the main surface of the upper and lower substrates is viewed in plan, the liquid crystal display device of the present invention includes a first region in which a part of the liquid crystal molecules are aligned in a certain orientation in the picture element, and another liquid crystal molecule.
  • the electrode is configured to execute a driving operation to generate an electric field for rotating the liquid crystal molecules so that two or more second regions whose portions are oriented in a different direction from a part of the liquid crystal molecules are alternately arranged. It is preferable that Two or more first regions and two or more second regions are alternately arranged, even if two or more first regions and two or more second regions are alternately arranged in stripes. It may be well arranged alternately in a staggered pattern.
  • At least one of the first electrode, the second electrode, and the third electrode is provided with a slit, and the liquid crystal display device has the slit when the main surface of the upper and lower substrates is viewed in plan view.
  • a part of the liquid crystal molecules is rotated in the horizontal plane with respect to the main surface, and the other part of the liquid crystal molecules is rotated in the horizontal plane with respect to the main surface. It is preferable that a driving operation for generating an electric field to be rotated in a direction opposite to a part is generated by the electrode.
  • the liquid crystal molecules are overlapped with one slit, a part of the liquid crystal molecule is rotated in a horizontal plane in each of the regions corresponding to one slit, and the other part of the liquid crystal molecule is a part of the liquid crystal molecule in the horizontal plane. It is preferable to rotate in the reverse direction.
  • the first electrode is provided with a slit
  • the second electrode and the third electrode constitute a pair of comb-like electrodes
  • the liquid crystal display device has a flat main surface of the upper and lower substrates.
  • a part of the liquid crystal molecule When viewed, a part of the liquid crystal molecule is rotated in a horizontal plane with respect to the main surface in a region overlapping with the slit provided in the first electrode, and the other part of the liquid crystal molecule Is rotated in a direction opposite to a part of the liquid crystal molecules in a horizontal plane with respect to the main surface, and in the region overlapping the interdental region of the second electrode and the third electrode, An electric field that rotates a part of the liquid crystal molecules in a horizontal plane with respect to the main surface and rotates another part of the liquid crystal molecules in a direction opposite to the part of the liquid crystal molecules in the horizontal plane with respect to the main surface. It is preferable that the driving operation generated by the electrode is executed.
  • the electrode for driving the liquid crystal may or may not be disposed on the upper substrate, but is preferably not disposed. That is, it is preferable that an electrode for driving a liquid crystal is disposed only on the lower substrate.
  • the shape of the first electrode is not particularly limited.
  • the first electrode is provided with a slit.
  • the said 1st electrode is comb-tooth shape.
  • an electrode having a comb-like shape is not called an electrode provided with a slit, but is called a comb-like electrode.
  • the electrode generates a first driving method for performing the driving operation and an electric field for rotating the liquid crystal molecules in one direction within a horizontal plane with respect to the main surface of the upper and lower substrates. It is preferable that the second driving method for executing the driving operation is switched and executed. Rotating in one direction means that it is substantially rotated in one direction.
  • the generation of the electric field by the electrode is not limited as long as the electric field is generated by at least one electrode selected from the first electrode, the second electrode, and the third electrode. A voltage is applied to the first electrode, an electric field is generated to rotate the liquid crystal molecules, the voltage applied to the first electrode is reduced during black display, the electric field is weakened (cut), and the liquid crystal molecules are rotated in the opposite direction. It is preferable to make it.
  • the configuration of the liquid crystal display device of the present invention is not particularly limited by other components, and other configurations that are usually used in liquid crystal display devices can be applied as appropriate.
  • liquid crystal display device of the present invention it is possible to realize a wide viewing angle and a high-speed response.
  • FIG. 2 is a schematic plan view illustrating an electrode structure of a pixel and an initial alignment of liquid crystal molecules in the liquid crystal display device of Embodiment 1. It is a cross-sectional schematic diagram which shows the cross section of the part corresponding to the line segment shown with the dashed-dotted line in FIG.
  • FIG. 3 is a schematic plan view showing applied voltages to each electrode and alignment of liquid crystal molecules during white display in the first drive method of Embodiment 1. It is a simulation result which shows the director distribution and transmittance
  • FIG. 3 is a schematic plan view showing applied voltages to each electrode and alignment of liquid crystal molecules during black display in the first drive method of Embodiment 1.
  • FIG. 3 is a schematic plan view showing applied voltages to each electrode and alignment of liquid crystal molecules during black display in the first drive method of Embodiment 1.
  • FIG. 6 is a voltage relationship diagram showing applied voltages to each electrode during white display in the first drive method of the first embodiment.
  • FIG. 6 is a schematic plan view showing applied voltages to each electrode and alignment of liquid crystal molecules during white display in the second drive method of Embodiment 1. It is a simulation result which shows the director distribution and the transmittance
  • FIG. 6 is a schematic plan view showing applied voltages to each electrode and alignment of liquid crystal molecules during black display in the second drive method of Embodiment 1.
  • 3 is a schematic plan view illustrating an example of a pixel layout when the liquid crystal display device of Embodiment 1 is TFT-driven.
  • FIG. 1 is TFT-driven.
  • FIG. 4 is a graph showing voltage-transmittance (VT) characteristics of the upper layer electrode (i) in each of the first driving method and the second driving method of Embodiment 1. It is a graph which shows the normalization transmittance
  • FIG. 10 is a schematic plan view showing applied voltages to each electrode and alignment of liquid crystal molecules during white display in the first drive method of Embodiment 2. It is a simulation result which shows the director distribution and transmittance
  • FIG. 10 is a schematic plan view showing applied voltages to each electrode and alignment of liquid crystal molecules during black display in the first drive method of Embodiment 2.
  • FIG. 10 is a voltage relationship diagram showing applied voltages to each electrode during white display in the first drive method of each of the first and second embodiments.
  • FIG. 10 is a schematic plan view illustrating an example of a pixel layout when the liquid crystal display device of Embodiment 2 is TFT-driven.
  • 6 is a graph showing voltage-transmittance (VT) characteristics of an upper layer electrode (i) in each of the first drive methods in the first and second embodiments. It is a plane schematic diagram which shows the electrode structure of the pixel of the liquid crystal display device of Embodiment 3, and the initial orientation of a liquid crystal molecule.
  • FIG. 6 is a schematic plan view illustrating an electrode structure of a pixel and an initial alignment of liquid crystal molecules in a liquid crystal display device according to a fourth embodiment. It is a cross-sectional schematic diagram which shows the cross section of the part corresponding to the line segment shown with the dashed-dotted line in FIG.
  • FIG. 6 is a schematic plan view illustrating an electrode structure of a pixel and an initial alignment of liquid crystal molecules in a liquid crystal display device according to a fifth embodiment. It is a cross-sectional schematic diagram which shows the cross section of the part corresponding to the line segment shown with the dashed-dotted line in FIG. FIG.
  • FIG. 10 is a schematic plan view illustrating an electrode structure of a pixel and an initial alignment of liquid crystal molecules in a liquid crystal display device according to a sixth embodiment. It is a cross-sectional schematic diagram which shows the cross section of the part corresponding to the line segment shown with the dashed-dotted line in FIG. 10 is a schematic plan view illustrating an electrode structure of a pixel and an initial alignment of liquid crystal molecules in a liquid crystal display device according to Embodiment 7. FIG. It is a cross-sectional schematic diagram which shows the cross section of the part corresponding to the line segment shown with the dashed-dotted line in FIG. FIG. 10 is a schematic plan view illustrating an electrode structure of a pixel and an initial alignment of liquid crystal molecules in a liquid crystal display device according to an eighth embodiment.
  • FIG. 10 It is a cross-sectional schematic diagram which shows the cross section of the part corresponding to the line segment shown with the dashed-dotted line in FIG. 10 is a schematic plan view illustrating an electrode structure of a pixel and an initial alignment of liquid crystal molecules in a liquid crystal display device according to Embodiment 9.
  • FIG. It is a cross-sectional schematic diagram which shows the cross section of the part corresponding to the line segment shown with the dashed-dotted line in FIG.
  • It is a plane schematic diagram which shows the electrode structure of the pixel of the liquid crystal display device of Embodiment 10, and the initial orientation of a liquid crystal molecule.
  • FIG. 10 It is a cross-sectional schematic diagram which shows the cross section of the part corresponding to the line segment shown with the dashed-dotted line in FIG.
  • FIG. 22 is a schematic plan view illustrating an electrode structure of a pixel and an initial alignment of liquid crystal molecules in the liquid crystal display device of Embodiment 11. It is a cross-sectional schematic diagram which shows the cross section of the part corresponding to the line segment shown with the dashed-dotted line in FIG. 6 is a schematic cross-sectional view showing an electrode structure of a liquid crystal display device of Comparative Example 1 and initial alignment of liquid crystal molecules.
  • FIG. It is a plane schematic diagram which shows the applied voltage to each electrode at the time of the white display of the liquid crystal display device of the comparative example 1, and the orientation of a liquid crystal molecule. It is a plane schematic diagram which shows the applied voltage to each electrode at the time of the black display of the liquid crystal display device of the comparative example 1, and the orientation of a liquid crystal molecule.
  • a pixel may be a picture element (sub-pixel) unless otherwise specified.
  • a picture element (sub pixel) refers to a region showing any single color, such as R (red), G (green), B (blue), or yellow (Y).
  • a pair of substrates sandwiching the liquid crystal layer is also referred to as an upper substrate and a lower substrate.
  • a substrate on the display surface side is also referred to as an upper substrate
  • a substrate on the opposite side to the display surface is also referred to as a lower substrate.
  • the electrode on the display surface side is also referred to as an upper layer electrode
  • the electrode on the opposite side to the display surface side is also referred to as a lower layer electrode.
  • the member and part which exhibit the same function are attached
  • (i) shows a slit electrode on the upper layer (liquid crystal layer side) of the lower substrate, and (ii) shows a comb on the lower layer (opposite side of the liquid crystal layer) of the lower substrate.
  • (Iii) shows another comb-like electrode on the lower layer of the lower substrate,
  • (iv) shows the upper layer electrode in the electrode layer having the FFS structure, and (v) shows the FFS structure.
  • the double-headed arrow shown with the broken line in the figure shows a line of electric force. Layers not related to the electric field control of the liquid crystal such as a color filter and a black matrix are omitted.
  • the electrode of the lower substrate means at least one of the upper layer electrode (i), the lower layer electrode (ii), and the lower layer electrode (iii), (iiia) or (iiib).
  • a slit electrode refers to an electrode provided with a slit, and usually includes a plurality of linear electrode portions.
  • region in which the linear electrode is not formed is mentioned, for example.
  • rising means a period during which the display state changes from a dark state (black display) to a light state (white display).
  • the term “falling” means a period during which the display state changes from a bright state (white display) to a dark state (black display).
  • the initial alignment of the liquid crystal refers to the alignment of liquid crystal molecules when no voltage is applied (when black is displayed).
  • the upper layer electrode (i), the lower layer electrode (ii), and the lower layer electrode (iii) can usually have different potentials at a threshold voltage or higher.
  • the threshold voltage means a voltage value that gives a transmittance of 5% when the transmittance in the bright state is set to 100%.
  • the potential different from the threshold voltage can be any voltage as long as it can realize a driving operation with a potential different from the threshold voltage. This makes it possible to suitably control the electric field applied to the liquid crystal layer. Become.
  • the upper layer electrode (i) is a pixel electrode and the lower layer electrode (ii) and the lower layer electrode (iii) are common electrodes, the upper layer electrode (i) may have a different potential.
  • a TFT thin film transistor element
  • an AC voltage AC voltage
  • AC driving AC driving
  • the lower layer electrode (ii) and the lower layer electrode that are alternately connected to each other by applying an alternating voltage to the liquid crystal by another TFT, or are commonly connected for each line, or commonly connected in all pixels.
  • the AC voltage is applied to the liquid crystal by applying the AC voltage with the TFT corresponding to the line or all pixels, or the DC voltage without using the TFT for the lower electrode (ii) and the lower electrode (iii).
  • DC The liquid crystal by applying pressure) may or DC drive (DC drive).
  • FIG. 1 is a schematic plan view illustrating an electrode structure of a pixel and an initial alignment of liquid crystal molecules in the liquid crystal display device according to the first embodiment.
  • the upper layer electrode (i) includes a plurality of linear electrode portions when the substrate main surface is viewed in plan.
  • the plurality of linear electrode portions are substantially parallel to each other, and slits substantially parallel to each other are provided between the linear electrode portions and the linear electrode portions.
  • the upper electrode (i) is provided with a slit.
  • the upper electrode (i) may be a comb-like electrode instead of the slit electrode. It is also one of the preferred embodiments of the present invention that the upper electrode (i) has a comb shape.
  • the lower layer electrode (ii) and the lower layer electrode (iii) are each composed of a trunk portion and branch portions extending from the trunk portion when the substrate main surface is viewed in plan.
  • the branch portions are a plurality of linear electrode portions that are substantially parallel to each other.
  • the lower layer electrode (ii) and the lower layer electrode (iii) are comb-like.
  • the upper electrode (i), the lower electrode (ii), and the lower electrode (iii) each have a linear portion.
  • the structures of the upper layer electrode (i), the lower layer electrode (ii), and the lower electrode (iii) shown in FIG. 1 are examples, and the shape is not limited to this, and electrodes having various structures can be used.
  • each of the lower layer electrode (ii) and the lower layer electrode (iii) was 83 ° with respect to the extending direction of the upper layer electrode (i).
  • the two comb-like electrodes of the lower substrate have the extension direction of the linear electrode portion of the upper layer electrode (i) when the extension direction of the linear electrode portion which is the branch portion is a plan view of the main surface of the substrate. And are arranged so as to intersect at an angle of 83 °.
  • the angle is preferably 30 ° or more and less than 90 °, more preferably 45 ° or more, still more preferably 60 ° or more, and particularly preferably 75 ° or more.
  • the electrode width L of the linear portion is 3.0 ⁇ m, and the electrode interval S1 between the adjacent linear portions is 6.0 ⁇ m.
  • the electrode width L is preferably 2 ⁇ m or more and 7 ⁇ m or less, for example.
  • interval S1 is 2 micrometers or more and 14 micrometers or less, for example.
  • the ratio (L / S1) between the electrode width L and the electrode interval S1 is preferably 0.1 to 1.5.
  • a more preferable lower limit value of the ratio L / S1 is 0.2, and a more preferable upper limit value is 0.8.
  • the electrode width L of the linear part is 3.0 ⁇ m, and between the adjacent linear part and the linear part
  • the electrode spacing S2 is 3.0 ⁇ m.
  • the electrode width L is preferably 2 ⁇ m or more and 7 ⁇ m or less.
  • the electrode spacing S2 is preferably 2 ⁇ m or more, and preferably 7 ⁇ m or less.
  • the ratio (L / S2) between the electrode width L and the electrode spacing S2 is preferably 0.1 to 10.
  • the lower limit value of the ratio L / S2 is more preferably 0.15, still more preferably 0.2, and particularly preferably 0.25.
  • the upper limit value of the ratio L / S2 is more preferably 5, still more preferably 2, and particularly preferably 1.5.
  • the electrode width L and the electrode spacings S1 and S2 in the upper layer electrode (i), the lower layer electrode (ii), and the lower layer electrode (iii) are generally substantially the same in the pixel. Are different within the above range, it is more preferable that all are within the above range.
  • the branch linear electrode portion of the lower electrode (ii) of the lower substrate is disposed between the branch linear electrode portion of the lower electrode (iii) and the linear electrode portion. Yes.
  • the electrodes (upper layer electrode (i), lower layer electrode (ii), and lower layer electrode (iii)) of each layer are arranged in a positional relationship as shown in FIG.
  • the upper layer electrode (i) of the lower substrate is provided with a slit
  • the lower layer electrode (ii) and the lower layer electrode (iii) of the lower substrate are each in a comb-like shape.
  • the upper layer electrode (i), the lower layer electrode (ii), and the lower layer electrode (iii) are each comb-like.
  • two linearly polarizing plates having the polarization axis shown in FIG. 1 are used.
  • one linear polarizing plate is disposed on the outer side of the upper and lower substrates (on the opposite side to the liquid crystal layer side).
  • the linear polarizing plate is arranged in a crossed Nicols arrangement in which the polarization axis of the linear polarizing plate on the upper and lower substrates is perpendicular or parallel to the major axis of liquid crystal molecules (initial orientation orientation of liquid crystal molecules) when no voltage is applied.
  • a Marie Black mode liquid crystal display device was obtained.
  • the upper and lower substrates each have a linearly polarizing plate.
  • the upper layer electrode (i) is electrically connected to the drain electrode extending from the thin film transistor element TFT through the contact hole CH. At a timing selected by the gate bus line GL, a voltage supplied from the source driver through the source bus line SL is applied to the upper layer electrode (i) that drives the liquid crystal through the thin film transistor element TFT.
  • FIG. 2 is a schematic cross-sectional view showing a cross section of a portion corresponding to a line segment indicated by a one-dot chain line in FIG.
  • the liquid crystal display device of Embodiment 1 is configured by laminating a lower substrate 10, a liquid crystal layer 30, and an upper substrate 20 in this order from the back surface side to the observation surface side of the liquid crystal display device. ing.
  • the liquid crystal display device of Embodiment 1 horizontally aligns the liquid crystal molecules LC when the potential difference between the electrodes of the upper and lower substrates is less than the threshold voltage (in FIG. 2, the liquid crystal molecules LC are Oriented from the front to the front.)
  • the lower layer electrode (ii) (not shown in FIG. 2) and the lower layer electrode (iii) of the lower substrate 10 are comb-like electrodes, respectively, as described above, and the lower layer electrode (ii) and the lower layer electrode (iii).
  • the upper electrode (i), which is a slit electrode, is disposed on the insulating layer 13.
  • the upper substrate 20 is not provided with a liquid crystal driving electrode, and only the lower substrate 10 is provided with a liquid crystal driving electrode.
  • the insulating layer 13 has a dielectric constant of 6.9 and an average thickness of 0.3 ⁇ m.
  • the insulating layers 13 are each composed of a nitride film SiN, but instead, an oxide film SiO 2 , an acrylic resin, or a combination of these materials can be used.
  • a horizontal alignment film (not shown) is provided on the liquid crystal layer side of the upper and lower substrates, respectively, and the major axis of the liquid crystal molecules when no voltage is applied has an orientation perpendicular to the extending direction of the lower layer electrode (ii) and the lower layer electrode (iii).
  • the horizontal alignment was performed.
  • the liquid crystal layer and the upper electrode (i) are adjacent to each other through a horizontal alignment film.
  • the alignment film may be an alignment film that has not been subjected to an alignment process such as a rubbing process.
  • an alignment film that does not require alignment treatment such as an alignment film formed from an organic material, an alignment film formed from an inorganic material, or a photo-alignment film, the cost can be reduced by simplifying the process, and reliability and Yield can be improved.
  • rubbing treatment when rubbing treatment is performed, there is a risk of liquid crystal contamination due to impurities from rubbing cloth etc., point defects due to foreign materials, display unevenness due to non-uniform rubbing within the liquid crystal panel, These disadvantages can be eliminated.
  • the liquid crystal includes liquid crystal molecules that are aligned in a horizontal direction with respect to the main surface of the substrate when no voltage is applied.
  • the orientation in the horizontal direction with respect to the main surface of the substrate means that the liquid crystal molecules are aligned substantially in the horizontal direction with respect to the main surface of the substrate in the technical field of the present invention and can exhibit optical effects. I just need it.
  • the liquid crystal is substantially composed of liquid crystal molecules aligned in a horizontal direction with respect to the main surface of the substrate when no voltage is applied.
  • the “when no voltage is applied” may be anything as long as it can be said that substantially no voltage is applied in the technical field of the present invention.
  • Such a horizontal alignment type liquid crystal is an advantageous system for obtaining a wide viewing angle characteristic and the like.
  • the liquid crystal layer includes liquid crystal molecules having positive dielectric anisotropy.
  • the liquid crystal molecules having positive dielectric anisotropy are aligned in a certain direction when an electric field is applied, and the alignment control is easy, and a faster response can be achieved.
  • the dielectric anisotropy ⁇ of the liquid crystal is preferably 3 or more, more preferably 4 or more, and still more preferably 5 or more. Further, the dielectric anisotropy ⁇ of the liquid crystal is preferably 30 or less, more preferably 20 or less, and still more preferably 10 or less. In the present specification, the dielectric anisotropy ⁇ of liquid crystal means that measured by an LCR meter.
  • the average thickness (cell gap) d LC of the liquid crystal layer 30 is 3.2 ⁇ m.
  • the average thickness d LC of the liquid crystal layer means a value calculated by averaging the thickness of the entire liquid crystal layer in the liquid crystal display device.
  • d LC ⁇ ⁇ n is preferably 100 nm or more, more preferably 150 nm or more, and further preferably 200 nm or more.
  • d LC ⁇ ⁇ n is preferably 550 nm or less, more preferably 500 nm or less, and further preferably 450 nm or less.
  • driving capable of high-speed response can be realized.
  • two types of driving that is, driving capable of high-speed response and driving realizing higher transmittance than that driving can be realized with the same configuration.
  • driving capable of realizing high-speed response is referred to as a first driving method
  • driving realizing higher transmittance is referred to as a second driving method.
  • gradation display is performed by changing the voltage of the upper electrode (i).
  • a voltage is applied to the lower layer electrode (ii)
  • the lower layer electrode (iii) is set to 0 V
  • a transverse electric field is always generated
  • a voltage corresponding to the gradation is applied to the upper layer electrode (i).
  • the second driving method the lower electrode (ii) and the lower electrode (iii) are both set to 0 V, and the upper electrode (i) and the lower electrode are applied by applying a voltage corresponding to the gradation to the upper electrode (i).
  • a fringe electric field is generated between (ii) and the lower layer electrode (iii) to drive the liquid crystal.
  • FIG. 3 is a schematic plan view illustrating the voltage applied to each electrode and the orientation of liquid crystal molecules during white display in the first drive method of the first embodiment.
  • FIG. 4 is a simulation result showing the director distribution and transmittance distribution corresponding to FIG.
  • FIG. 5 is a schematic plan view showing the voltage applied to each electrode and the orientation of liquid crystal molecules during black display in the first drive method of the first embodiment.
  • FIG. 6 is a voltage relationship diagram illustrating applied voltages to the respective electrodes when white display is performed in the first driving method according to the first embodiment. 3 to 5 each show a plane of a portion corresponding to a portion surrounded by a broken line in FIG.
  • the lower electrode (iii) is always set to 0V, and the lower layer electrode (ii) is applied with the amplitude center being set to 0V with the polarity reversed, so that a transverse electric field is always generated.
  • the voltage value applied to the lower layer electrode (ii) is always constant.
  • an electric field is generated that alternately rotates the liquid crystal molecules in different directions in the horizontal plane, and the electric field causes the liquid crystal molecules to bend in the plane and Orient in a way that makes a splay orientation.
  • 6 V / -6 V is applied to the upper layer electrode (i) and 5 V / -5 V is applied to the lower layer electrode (ii) during white gradation display.
  • the liquid crystal molecules are rotated in different directions in the region 1 and the region 2 shown in FIG. 4, and the region 1 and the region 2 exist alternately. I understand.
  • the liquid crystal molecules rotate alternately in different directions in the horizontal plane. That is, in the region 1 (first region) shown in FIG. 4, the liquid crystal molecules rotate clockwise in the horizontal plane, and in the region 2 (second region), the liquid crystal molecules rotate counterclockwise in the horizontal plane. Rotate to.
  • the linear electrodes that are the branches of the lower electrode (ii) between the linear electrodes of the upper electrode (i) (in the region overlapping with the slit of the upper electrode (i))
  • the liquid crystal molecules rotate in two different directions instead of rotating in one direction in the horizontal plane. Since a voltage is constantly applied to the lower layer electrode (ii), a strong electric field is applied to the entire region in the horizontal plane during the rising response. Therefore, the rising response is speeded up.
  • the potential of each electrode of the lower substrate is set so that the liquid crystal molecules rotate alternately in different directions in the horizontal plane.
  • the potential of the upper electrode (i) is 6V / -6V
  • the potential of the lower electrode (ii) is 5V / -5V
  • the upper electrode (i) -lower electrode (ii) is between
  • the potential difference is 1V.
  • the potential difference between the upper electrode (i) and the lower electrode (ii) may be, for example, 8 V or less, more preferably 5 V or less, and even more preferably 4 V or less.
  • a preferable potential difference between the upper layer electrode (i) and the lower layer electrode (iii) is preferably 2 to 12V, more preferably 3 to 11V, and still more preferably 3 to 10V.
  • the operation of the liquid crystal molecules at the time of falling will be described.
  • the liquid crystal molecules react with the lateral electric field generated by the lower layer electrode (ii) and the lower layer electrode (iii), and are forcibly rotated by the electric field to the initial orientation direction.
  • the restoring force of the liquid crystal molecules that have been bend-aligned and splay-aligned in the horizontal plane at the time of white display works simultaneously to further accelerate the response.
  • 2.5 V / ⁇ 2.5 V is applied to the upper layer electrode (i) and 5 V / ⁇ 5 V is applied to the lower layer electrode (ii) during black gradation display. .
  • the first driving method since the voltage (5 V / -5 V in FIG. 5) is always applied to the lower electrode (ii) even at the falling response, the voltage of the upper electrode (i) is cut (weakened). At this time, the liquid crystal molecules are forcibly rotated in a direction to return to the initial alignment by the electric field generated between the lower layer electrode (ii) and the lower layer electrode (iii). Further, in the case of the first driving method, bend alignment and splay alignment occur in the horizontal plane, and a large restoring force also acts due to the elastic strain induced thereby. Therefore, the falling response is also speeded up. In the first driving method, there are at least two consecutive regions where the liquid crystal molecules rotate alternately in different directions in the plane. Thus, it is preferable that two or more regions where the liquid crystal molecules rotate in different directions exist continuously in a plane.
  • the potential of the upper electrode (i) is set to 2.5V / ⁇ 2.5V.
  • other electrodes lower layer electrode (ii), lower layer electrode in the first embodiment except that the voltage of the pixel electrode (upper layer electrode (i) in the first embodiment) is weakened or cut off from the voltage at the maximum transmittance.
  • the potential of (iii)) can be the same as that during white display of the first drive method, and the preferred range thereof is the same as that during white display of the first drive method.
  • the lower layer electrode (ii) of the lower substrate is 5V / -5V and the lower layer electrode (iii) is 0V in both white display and black display.
  • the lower layer electrode (ii) and the lower layer electrode (iii) of the lower substrate have a constant voltage value during both white display and black display.
  • the upper layer electrode (i) is a pixel electrode, and the voltage applied to the upper layer electrode (i) is changed to make the lower layer electrode (ii) constant.
  • the lower electrode (iii) is set to 0V, and such a voltage application method is one of the preferred embodiments in the liquid crystal display device of the present invention.
  • the upper and lower arrangement relationship of each electrode may be appropriately changed.
  • FIG. 7 is a schematic plan view illustrating the voltage applied to each electrode and the alignment of liquid crystal molecules during white display in the second drive method of the first embodiment.
  • FIG. 8 is a simulation result showing the director distribution and transmittance distribution corresponding to FIG.
  • FIG. 9 is a schematic plan view illustrating the voltage applied to each electrode and the alignment of liquid crystal molecules during black display in the second drive method of the first embodiment. 7 to 9 each show a plane of a portion corresponding to a portion surrounded by a broken line in FIG.
  • the lower layer electrode (ii) and the lower layer electrode (iii) are both set to 0 V, and the upper layer electrode (i) and the lower layer electrode (ii) are subjected to voltage inversion on the upper layer electrode (i). And a fringe electric field is generated between the lower electrode (iii) and the liquid crystal molecules rotate in the same direction in response to the electric field.
  • 5 V / ⁇ 5 V is applied to the upper layer electrode (i) during white gradation display.
  • the transmittance distribution diagram (FIG. 8) obtained by simulation, the liquid crystal molecules rotate in the same direction, so that a high transmittance is obtained as a whole as compared with the first driving method.
  • the potential of the upper layer electrode (i) varies depending on the display, but the upper limit is preferably 10V, more preferably 8V, and 7V. More preferably it is.
  • the potential of the lower layer electrode (ii) and the lower layer electrode (iii) may be less than the threshold voltage.
  • the operation of the liquid crystal molecules at the time of falling will be described.
  • the liquid crystal molecules are rotated so as to return toward the alignment treatment direction (anchoring) by the restoring force of the liquid crystal molecules.
  • 0 V is applied to the upper layer electrode (i) during black display.
  • the voltages applied to the other electrodes are the same as in the second drive method for white display, and 0 V is applied. Note that the potentials of the upper layer electrode (i), the lower layer electrode (ii), and the lower layer electrode (iii) may be lower than the threshold voltage during black display in the second driving method.
  • FIG. 10 is a schematic plan view illustrating an example of a pixel layout when the liquid crystal display device of Embodiment 1 is TFT-driven. Note that FIG. 10 is an example, and the electrode structure, wiring, and the like are not limited to this shape. Since the applied voltage of the lower layer electrode (ii) differs between the first drive method and the second drive method, for example, it is necessary to perform scan drive for each line (eg, gate bus line). On the other hand, for the lower layer electrode (iii), it is only necessary to apply the same constant voltage value in both the first driving method and the second driving method. Therefore, as shown in FIG. Can do. In other words, the lower layer electrode (iii) can be a common electrode in all pixels.
  • FIG. 11 is a graph showing voltage-transmittance (VT) characteristics of the upper layer electrode (i) of the first driving method and the second driving method of the first embodiment.
  • VT voltage-transmittance
  • the lower substrate is a two-layer electrode.
  • the electrode included in the lower substrate is composed of an electrode provided with an upper slit and a pair of lower comb-like electrodes, respectively, according to a preferred embodiment of the liquid crystal display device of the present invention.
  • the liquid crystal display device that generates the electric field according to the first driving method can exhibit the effects of the present invention.
  • a pair of comb-like electrodes is used instead of the slit electrodes. It may be used.
  • a liquid crystal molecule is rotated in a horizontal plane by generating a transverse electric field between the pair of comb-like electrodes.
  • the relationship between the alignment direction of the liquid crystal molecules and the electrode arrangement may be considered by replacing the extending direction of the slit electrode included in the FFS electrode with the extending direction of the pair of comb-like electrodes.
  • a thin film transistor element including an oxide semiconductor is preferably used as the thin film transistor element in the liquid crystal display device of Embodiment 1 from the viewpoint of the transmittance improvement effect.
  • An oxide semiconductor shows higher carrier mobility than amorphous silicon. As a result, the area of the transistor occupying one pixel can be reduced, so that the aperture ratio increases and the light transmittance per pixel can be increased. Therefore, by using a thin film transistor element including an oxide semiconductor, the transmittance improving effect which is the effect of the present invention can be more remarkably obtained. That is, the lower substrate includes a thin film transistor element, and the thin film transistor element preferably includes an oxide semiconductor.
  • the upper and lower substrates provided in the liquid crystal display device of Embodiment 1 are usually a pair of substrates for sandwiching liquid crystal.
  • an insulating substrate such as glass or resin is used as a base, and wiring, electrodes, and color filters are provided on the insulating substrate. Etc. are formed as necessary.
  • the liquid crystal display device of Embodiment 1 can be appropriately provided with a member (for example, a light source or the like) included in a normal liquid crystal display device.
  • the liquid crystal display device of Embodiment 1 is preferably one that drives liquid crystal by an active matrix driving method. The same applies to the embodiments described later.
  • Embodiment 1 can be applied to any of a transmissive, reflective, and transflective liquid crystal display device. The same applies to the embodiments described later.
  • FIG. 12 is a graph showing the normalized transmittance with respect to time at the rise of the first embodiment and the comparative example 1.
  • FIG. 13 is a graph showing the normalized transmittance with respect to time at the time of falling of the first embodiment and the first comparative example. Comparative Example 1 relates to a conventional FFS mode liquid crystal display device, and the configuration thereof will be described later. 12 and 13 show the response simulation results of the first embodiment and the first comparative example. It can be seen that the first embodiment is faster than the first comparative example in both the rising response and the falling response. Response time / transmittance was calculated as an index to confirm the degree of compatibility between high-speed response and high transmittance.
  • FIG. 14 is a schematic plan view illustrating the voltage applied to each electrode and the alignment of liquid crystal molecules during white display in the first drive method of the second embodiment.
  • FIG. 15 is a simulation result showing the director distribution and transmittance distribution corresponding to FIG.
  • FIG. 16 is a schematic plan view illustrating the voltage applied to each electrode and the alignment of liquid crystal molecules during black display in the first drive method of the second embodiment.
  • FIG. 17 is a voltage relationship diagram illustrating applied voltages to the respective electrodes during white display in the first drive method of each of the first and second embodiments. 14 to 16 each show a plane of a portion corresponding to a portion surrounded by a broken line in FIG.
  • the difference between the second embodiment and the first embodiment is that the voltage values applied to the lower layer electrode (ii) and the lower layer electrode (iii) in the first driving method are 5 V / -5 V and 0 V, respectively, in the first embodiment.
  • the second embodiment is 2.5V / ⁇ 2.5V and ⁇ 2.5V / 2.5V.
  • the voltage values applied to the upper layer electrode (i) during black display and white display were set to 0 V and 6 V / -6 V, respectively.
  • FIG. 17 shows a relationship between applied voltages in the first drive method of the first and second embodiments.
  • the white display in the first driving method of the first embodiment is such that the voltage value of the upper layer electrode (i) is 6V / ⁇ 6V, while the voltage value of the lower layer electrode (iii) is 0V. Becomes 6V.
  • the voltage is applied to the lower electrode (iii) by reversing the polarity to ⁇ 2.5 V / 2.5 V. Therefore, in order to obtain the same transmittance as the white display of the first embodiment, that is, the upper electrode (i) ) And the lower layer electrode (iii), for example, the voltage value applied to the upper layer electrode (i) may be 3.5V / ⁇ 3.5V.
  • the voltage difference between the upper layer electrode (i) and the lower layer electrode (ii) is also 1 V, which is equal between the first embodiment and the second embodiment, and the relative voltage relationship between the upper layer electrode (i) and the lower layer electrode (iii). Are equal.
  • the voltage difference between the upper layer electrode (i) and the lower layer electrode (iii) is shown surrounded by a frame.
  • the preferred potential difference between the upper layer electrode (i) and the lower layer electrode (ii) and the preferred potential difference between the upper layer electrode (i) and the lower layer electrode (iii) are the same as those described above in the first embodiment. Other preferable configurations are the same as those described in the first embodiment.
  • the first drive method in the second embodiment at the time of white display in the first embodiment.
  • a higher transmittance can be obtained than when white is displayed (see Table 1).
  • the potential difference between the upper layer electrode (i) and the lower layer electrode (iii) is particularly preferably 7.5 V or more. This can also be seen from the simulation transmittance distribution diagrams (FIGS. 8 and 15) in the first and second embodiments.
  • Table 1 shows the transmissivity at the time of white display in the first drive method and the second drive method of the first and second embodiments.
  • the transmissivity of the first drive method is shown. It can be seen that the transmittance of the second driving method is higher than that of FIG. In the second driving method of the second embodiment, a voltage is applied to each electrode as in the second driving method of the first embodiment.
  • FIG. 18 is a schematic plan view illustrating an example of a pixel layout when the liquid crystal display device of Embodiment 2 is TFT-driven. Note that FIG. 18 is an example, and the electrode structure, wiring, and the like are not limited to this shape.
  • the voltage applied to both the lower electrode (ii) and the lower electrode (iii) is different between the first driving method and the second driving method. Scan driving is preferably performed for each line.
  • FIG. 19 is a graph showing the voltage-transmittance (VT) characteristics of the upper layer electrode (i) in the first drive method of each of the first and second embodiments. From the graph (actual measurement) showing the VT characteristics shown in FIG. 19, it can be seen that the second embodiment can achieve higher transmittance than the first embodiment when compared by the first drive method.
  • the VT characteristic was measured in a dark room / room temperature environment using a color luminance meter BM-5A manufactured by Topcon Corporation. The measurement was performed by changing the upper electrode (i) by 0.5V from 0V to 6V.
  • the first driving method it is possible to form an electric field that alternately rotates liquid crystal molecules in different directions in a horizontal plane, and it is possible to increase the speed at both rising and falling, and a wide viewing angle. And high-speed response. Further, a higher transmittance than that of the first embodiment can be realized. Further, in the second driving method, as in the FFS mode, an electric field that rotates the liquid crystal molecules in the same direction in the entire region can be formed, and both a wide viewing angle and high transmittance can be achieved.
  • Table 2 shows the response times and transmittances of Embodiments 1 and 2 and Comparative Example 1. Response measurement was performed at a panel temperature of ⁇ 30 ° C.
  • Tr + Td the value of Tr + Td when the response time when the transmittance changes from 10% to 90% is Tr and the response time when the transmittance changes from 90% to 10% is Td is described.
  • the response times in the first and second embodiments are values in the first driving method.
  • the transmittance in the first and second embodiments is a value in the second driving method.
  • the second embodiment has a smaller response time / transmittance than Comparative Example 1, which will be described later. Therefore, as a drive that can achieve both high-speed response and high transmittance, it is the same as the first embodiment. It can be said that it is superior to Comparative Example 1.
  • an electric field for alternately rotating liquid crystal molecules in different directions in the horizontal plane can be formed, and the speed can be increased at the time of rising and falling, and a wide viewing angle and a high speed can be achieved. Both responses can be achieved.
  • an electric field that rotates liquid crystal molecules in the same direction can be formed in the entire region, and both a wide viewing angle and high transmittance can be achieved.
  • FIG. 20 is a schematic plan view illustrating an electrode structure of a pixel and an initial alignment of liquid crystal molecules in the liquid crystal display device according to the third embodiment.
  • FIG. 21 is a schematic cross-sectional view showing a cross section of a portion corresponding to a line segment indicated by a one-dot chain line in FIG.
  • the third embodiment is different from the first embodiment in that, in the lower layer electrode (ii) and the lower layer electrode (iii), the electrode interval S2 between the adjacent linear portions is set to 6 ⁇ m. is there.
  • a preferred configuration other than the shape of the lower layer electrode of the lower substrate and a preferred voltage application method are the same as the preferred configuration and the preferred voltage application method of the first embodiment.
  • FIG. 22 is a schematic plan view illustrating an electrode structure of a pixel and an initial alignment of liquid crystal molecules in the liquid crystal display device according to the fourth embodiment.
  • FIG. 23 is a schematic cross-sectional view showing a cross section of a portion corresponding to a line segment indicated by a one-dot chain line in FIG.
  • the fourth embodiment differs from the first embodiment in that the stretching direction of each of the lower layer electrode (ii) and the lower layer electrode (iii) is set to 85 ° with respect to the stretching direction of the upper layer electrode (i).
  • the initial alignment of the liquid crystal is perpendicular to the extending directions of the lower electrode (ii) and the lower electrode (iii).
  • FIG. 24 is a schematic plan view illustrating an electrode structure of a pixel and an initial alignment of liquid crystal molecules in the liquid crystal display device according to the fifth embodiment.
  • FIG. 25 is a schematic cross-sectional view showing a cross section of a portion corresponding to a line segment indicated by a one-dot chain line in FIG.
  • the fifth embodiment is different from the first embodiment in that the lower electrode (ii), (iii) has an extending direction of 87 ° with respect to the upper electrode (i).
  • the initial alignment of the liquid crystal is perpendicular to the extending directions of the lower electrode (ii) and the lower electrode (iii).
  • FIG. 26 is a schematic plan view showing an electrode structure of a pixel and an initial alignment of liquid crystal molecules in the liquid crystal display device of Embodiment 6.
  • 27 is a schematic cross-sectional view showing a cross section of a portion corresponding to the line segment indicated by the alternate long and short dash line in FIG.
  • Embodiment 6 differs from Embodiment 1 in that the extending direction of each of the lower layer electrode (ii) and the lower layer electrode (iii) is 88 ° with respect to the extending direction of the upper layer electrode (i).
  • the initial alignment of the liquid crystal is perpendicular to the extending directions of the lower electrode (ii) and the lower electrode (iii).
  • FIG. 28 is a schematic plan view illustrating an electrode structure of a pixel and an initial alignment of liquid crystal molecules in the liquid crystal display device according to the seventh embodiment.
  • 29 is a schematic cross-sectional view showing a cross section of a portion corresponding to the line segment indicated by the alternate long and short dash line in FIG.
  • the difference between the seventh embodiment and the first embodiment is that the initial alignment of the liquid crystal molecules is set to 7 ° clockwise with respect to the extending direction of the upper electrode (i) in the first embodiment, whereas in the seventh embodiment, This is that the angle is 7 ° counterclockwise with respect to the extending direction of the upper electrode (i).
  • each of the lower electrode (ii) and the lower electrode (iii) is the same as in Embodiment 1, and is 83 ° with respect to the extending direction of the upper electrode (i) when the substrate main surface is viewed in plan view. As a result, it forms an angle of 76 ° with the initial alignment of the liquid crystal.
  • FIG. 30 is a schematic plan view illustrating an electrode structure of a pixel and an initial alignment of liquid crystal molecules in the liquid crystal display device according to the eighth embodiment.
  • 31 is a schematic cross-sectional view showing a cross section of a portion corresponding to the line segment indicated by the alternate long and short dash line in FIG.
  • the difference between the eighth embodiment and the fourth embodiment is that the initial alignment of the liquid crystal molecules is 5 ° clockwise with respect to the extending direction of the upper electrode (i) in the fourth embodiment, whereas in the eighth embodiment, This is that the angle is 5 ° counterclockwise with respect to the extending direction of the upper electrode (i).
  • each of the lower layer electrode (ii) and the lower layer electrode (iii) is the same as in Embodiment 4, and is 85 ° with respect to the stretching direction of the upper layer electrode (i) when the substrate main surface is viewed in plan view. As a result, it forms an angle of 80 ° with the initial alignment of the liquid crystal.
  • FIG. 32 is a schematic plan view illustrating an electrode structure of a pixel and an initial alignment of liquid crystal molecules in the liquid crystal display device according to the ninth embodiment.
  • 33 is a schematic cross-sectional view showing a cross section of a portion corresponding to the line segment indicated by the alternate long and short dash line in FIG.
  • the difference between the ninth embodiment and the fifth embodiment is that the initial alignment of the liquid crystal molecules is 3 ° clockwise with respect to the extending direction of the upper electrode (i) in the fifth embodiment, whereas in the ninth embodiment, This is that the angle is 3 ° counterclockwise with respect to the extending direction of the upper electrode (i).
  • each of the lower layer electrode (ii) and the lower layer electrode (iii) is the same as that of the fifth embodiment, and is 87 ° with respect to the stretching direction of the upper layer electrode (i) when the substrate main surface is viewed in plan view. As a result, it forms an angle of 84 ° with the initial alignment of the liquid crystal.
  • FIG. 34 is a schematic plan view illustrating an electrode structure of a pixel and an initial alignment of liquid crystal molecules in the liquid crystal display device according to the tenth embodiment.
  • FIG. 35 is a schematic cross-sectional view showing a cross section of a portion corresponding to the line segment indicated by the alternate long and short dash line in FIG.
  • the difference between the tenth embodiment and the sixth embodiment is that the initial alignment of the liquid crystal molecules is 2 ° clockwise with respect to the extending direction of the upper electrode (i) in the sixth embodiment, whereas in the tenth embodiment, the tenth embodiment is different. This is that the angle is 2 ° counterclockwise with respect to the extending direction of the upper electrode (i).
  • each of the lower layer electrode (ii) and the lower layer electrode (iii) is the same as in Embodiment 6, and is 88 ° with respect to the extending direction of the upper layer electrode (i) when the substrate main surface is viewed in plan view. As a result, it forms an angle of 86 ° with the initial alignment of the liquid crystal.
  • FIG. 36 is a schematic plan view illustrating an electrode structure of a pixel and an initial alignment of liquid crystal molecules in the liquid crystal display device according to the eleventh embodiment.
  • FIG. 37 is a schematic cross-sectional view showing a cross section of a portion corresponding to the line segment indicated by the alternate long and short dash line in FIG.
  • Embodiment 11 differs from Embodiment 1 in that the extending directions of the lower layer electrode (ii) and the lower layer electrode (iii) are 90 ° with respect to the extending direction of the upper layer electrode (i).
  • the initial alignment of the liquid crystal is set to 7 ° clockwise with respect to the extending directions of the lower electrode (ii) and the lower electrode (iii).
  • FIG. 38 is a schematic cross-sectional view showing the electrode structure of the liquid crystal display device of Comparative Example 1 and the initial alignment of liquid crystal molecules.
  • FIG. 38 is also a schematic cross-sectional view showing an example of an electrode structure of a conventional FFS mode liquid crystal display device.
  • the lower layer electrode (v) of the lower substrate 1110 is a planar electrode
  • the upper layer electrode (iv) that is a slit electrode is disposed through the insulating layer 1113.
  • the upper electrode (iv) may be a pair of comb electrodes instead of the slit electrode.
  • the upper substrate 1120 is not provided with liquid crystal control electrodes.
  • a horizontal alignment film (not shown) is provided on the liquid crystal layer side of the upper and lower substrates, respectively, so that the liquid crystal molecules when no voltage is applied have an azimuth angle of 7 ° with respect to the slit extending direction of the upper electrode (iv). Horizontally oriented.
  • a polarizing plate (not shown) was provided on the opposite side of the upper and lower substrates to the liquid crystal layer side.
  • a linearly polarizing plate was used as the polarizing plate, and the polarizing axis of the polarizing plate was perpendicular or parallel to the major axis of the liquid crystal molecules on the upper and lower substrates, and a normally black mode liquid crystal display device was obtained.
  • the liquid crystal material and its thickness were the same as those in the first embodiment.
  • the electrode width L of the linear portion is 3.0 ⁇ m, and the electrode interval S1 between the adjacent linear portions is 6.0 ⁇ m.
  • the dielectric constant ⁇ of the insulating layer 1113 is 6.9.
  • the liquid crystal display device of Comparative Example 1 is the same as the corresponding members of the liquid crystal display device of Embodiment 1 described above, for example, the alignment film material, the alignment film processing method, and the insulating film material.
  • Comparative Example 1 performs switching at the time of rising by generating a fringe electric field between the upper layer electrode (iv) and the lower layer electrode (v) of the lower substrate and rotating the liquid crystal molecules near the lower electrode in the same direction in the horizontal plane. ing. Further, switching at the time of falling is performed by returning the liquid crystal molecules to the original alignment state by viscoelasticity by cutting the fringe electric field. However, in the liquid crystal layer, there is a region where the electric field for rotating the liquid crystal molecules is weak, and it takes time to rotate the liquid crystal molecules in the region. At this time, since the liquid crystal molecules rotate in the same direction, distortion due to elastic deformation of the liquid crystal in the horizontal plane is small.
  • the response time is slow for both the switching at the rise and the switching at the fall.
  • FIG. 39 is a schematic plan view showing the voltage applied to each electrode and the orientation of liquid crystal molecules during white display of the liquid crystal display device of Comparative Example 1.
  • FIG. 40 is a schematic plan view showing the voltage applied to each electrode and the orientation of liquid crystal molecules when the liquid crystal display device of Comparative Example 1 displays black. 39 and 40 show the principle of voltage application in Comparative Example 1. In the initial alignment, the liquid crystal molecules are determined in a direction that forms an angle of 7 ° with the extending direction of the upper electrode (iv) that is the pixel electrode.
  • liquid crystal molecules at the time of rising will be described in detail.
  • a voltage is applied to the upper electrode (iv)
  • a fringe electric field is generated in the upper electrode (iv) and the lower electrode (v).
  • the liquid crystal rotates away from the orientation azimuth axis and optically modulates from black display to white display.
  • 5 V is applied to the pixel electrode while reversing the polarity during white gradation display.
  • Tr + Td the value of Tr + Td when the response time when the transmittance changes from 10% to 90% is Tr and the response time when the transmittance changes from 90% to 10% is Td is described.
  • Response time / transmittance was calculated as an index for confirming the degree of compatibility between high-speed response and high transmittance. The smaller this value is, the higher the speed response and the higher transmittance can be achieved.
  • Table 4 since the response times / transmittance values of the embodiments 3 to 11 are smaller than those of the comparative example 1, the driving that can achieve both high-speed response and high transmittance is achieved as compared with the comparative example 1. It can be said that it is excellent.
  • the comb tooth interval S2 between the lower layer electrode (ii) and the lower layer electrode (iii) in the present invention is particularly preferably 3 ⁇ m or more and 6 ⁇ m or less.
  • the initial orientation orientation of the liquid crystal molecules in the present invention is preferably ⁇ 7 ° or more and 7 ° or less with respect to the extending direction of the upper electrode (i). .
  • the angle formed between the extending direction of the upper layer electrode (i) and the extending direction of the lower layer electrode (ii), and the angle formed between the extending direction of the upper layer electrode (i) and the extending direction of the lower layer electrode (iii) are 83, respectively. It is preferably ⁇ 90 °.
  • stretching direction of lower layer electrode (ii) and the extending direction of lower layer electrode (iii) are substantially parallel.
  • Embodiments 3 to 11 are values in the first drive method.
  • the transmittance in the third to eleventh embodiments is a value in the second driving method.
  • a strong electric field is applied to the liquid crystal molecules in the entire horizontal plane by applying a horizontal electric field between the pair of lower comb-like electrodes at the time of rising.
  • the response speed is increased, and at the time of falling, in addition to the strong restoring force to restore the in-plane bend and splay alignment as shown in FIG. 3, the liquid crystal molecules are applied to the electric field created by the lower comb-like electrode.
  • the second driving method by setting both the comb-like electrodes on the lower side of the two-layer electrode to the same potential, a fringe electric field can be generated between the upper electrode and the high-speed driving as described above.
  • This is a drive that realizes a higher transmittance than a drive that realizes a response.
  • One of the features of the above-described embodiment is that these two types of driving can be switched according to the purpose and situation, and as a result, a wide viewing angle, high-speed response, and high transmittance can be realized.
  • the liquid crystal display device of the present invention only needs to be capable of executing at least the first driving method.
  • the liquid crystal display device of the present embodiment described above can perform display by appropriately switching between the first drive method and the second drive method.
  • display can be performed by appropriately combining white display and black display according to a desired display.
  • the liquid crystal display device of the present invention preferably includes a control device that executes the above-described first driving method, and includes a control device that performs switching between the first driving method and the second driving method described above. It is more preferable that As a result, a wide viewing angle can be realized, a high-speed response can be realized, and a high transmittance can be realized. Therefore, it is possible to realize a liquid crystal display device that satisfies all of the characteristics of high-speed response, wide viewing angle, and high transmittance with a single electrode configuration.
  • the liquid crystal display device of the present invention preferably includes a control device that automatically switches between the first drive method and the second drive method described above according to a predetermined condition.
  • the control device includes, for example, a temperature sensor and automatically switches between the first drive method and the second drive method according to the temperature.
  • the control device employs a second drive method that can achieve high transmittance in an environment where the response speed is not a problem (for example, a temperature range where the lower limit is any one of ⁇ 20 ° C. to 20 ° C.).
  • a control device that executes and controls to execute the first drive method that can realize a high-speed response in a low temperature environment (for example, a temperature range in which the upper limit is any one of ⁇ 20 ° C. to 20 ° C.) in which the response speed becomes slow. It is preferable. Thereby, a desired effect can be obtained more appropriately.
  • the liquid crystal display device of the present invention may include a control device that switches between the first drive method and the second drive method described above in accordance with a user instruction.
  • the present invention may also be a method for driving a liquid crystal display device using the above-described liquid crystal display device.
  • the liquid crystal display device of the present invention when it is sufficient to perform AC driving of the liquid crystal that applies an AC voltage only to the electrode of the lower substrate, a circuit and driver for AC driving are applied only to the electrode of the lower substrate as in the past. As long as the wiring is arranged. Therefore, for example, an AC drive circuit, driver, and wiring are arranged on the upper substrate together with the lower substrate in order to apply AC voltage to the electrode included in the upper substrate together with the electrode included in the lower substrate to perform AC driving of the liquid crystal. Compared with the liquid crystal display device, the degree of freedom of driving of the liquid crystal display device of the present invention is remarkably high.
  • liquid crystal display device of the present invention examples include in-vehicle devices such as car navigation, electronic books, photo frames, industrial equipment, televisions, personal computers, smartphones, and tablet terminals.
  • the present invention is preferably applied to a device that can be used in both a high temperature environment and a low temperature environment, such as an in-vehicle device such as a car navigation system.
  • the electrode structure and the like according to the liquid crystal display device of the present invention can be confirmed on the lower substrate by microscopic observation such as SEM (Scanning Electron Microscope).

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

本発明は、広視野角を実現するとともに、高速応答を実現することができる液晶表示装置を提供する。本発明の液晶表示装置は、上下基板、及び、上下基板に挟持された液晶層をもつ液晶表示装置であって、上記下基板は、電極を備え、上記電極は、第1電極、該第1電極とは異なる層にある第2電極、及び、該第2電極と同一の層にある第3電極から構成され、上記液晶層は、電圧無印加時に該上下基板の主面に対して水平に配向する液晶分子を含み、上記液晶表示装置は、該液晶分子の一部を該主面に対して水平面内で回転させ、かつ、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる電界を該電極によって発生させる駆動操作を実行するように構成されたものである。

Description

液晶表示装置
本発明は、液晶表示装置に関する。より詳しくは、複数の電極により電界を印加して表示をおこなう液晶表示装置に関する。
液晶表示装置は、一対のガラス基板等に液晶表示素子を挟持して構成され、薄型で軽量かつ低消費電力といった特長を活かして、カーナビゲーション、電子ブック、フォトフレーム、産業機器、テレビ、パーソナルコンピュータ、スマートフォン、タブレット端末等、日常生活やビジネスに欠かすことのできないものとなっている。これらの用途において、液晶層の光学特性を変化させるための電極配置や基板の設計に係る各種モードの液晶表示装置が検討されている。
近年の液晶表示装置の表示方式としては、負の誘電率異方性を有する液晶分子を基板面に対して垂直配向させた、マルチドメイン垂直配向(MVA:Multi-domain Vertical Alignment)モード等の垂直配向(VA)モードや、正又は負の誘電率異方性を有する液晶分子を基板面に対して水平配向させて液晶層に対し横電界を印加する面内スイッチング(IPS:In-Plane Switching)モード、縞状電界スイッチング(FFS:Fringe Field Switching)モード等が挙げられる。
中でも、FFSモードは、近年スマートフォン、タブレット端末に多く使用されている液晶モードである。FFSモードの液晶表示装置として、例えば、複数個の液晶分子を含む液晶層を介して所定の距離をもって対向配置される第1及び第2透明絶縁基板と、前記第1透明基板上に形成され、かつ単位画素を限定するようにマトリクス形態で配置される複数個のゲートバスライン及びデータバスラインと、前記ゲートバスラインとデータバスラインとの交叉部に設けられる薄膜トランジスタと、前記各単位画素に配置され、かつ透明導電体からなるカウンタ電極と、前記カウンタ電極と一緒にフリンジフィールドを形成するように、各単位画素に前記カウンタ電極と絶縁して配置され、画素の長辺を中心に対称をなすように所定の傾きで配列された複数個の上部スリット及び下部スリットを有し、かつ透明導電体からなる画素電極とを含むFFSモードの液晶表示装置が開示されている(例えば、特許文献1参照。)。
特開2002-182230号公報
特許文献1に記載のFFSモードの液晶表示装置は、広視野角特性を有し、かつIPSモードの液晶表示装置の低い開口率及び透過率を改善する旨が開示されている(例えば、特許文献1に記載の図6参照。特許文献1に記載の図6は、FFSモードの液晶表示装置の平面画素構造を示す。)。しかし、特許文献1に記載のFFSモードの液晶表示装置は、立上がりでは電界印加で液晶を強制的に応答させることができるが、立下がりでは電界印加を止めて液晶の粘弾性にまかせて応答させるため、垂直配向モードに比べて応答が遅く、応答特性を改善する余地があった。
特許文献1に記載のFFSモードの液晶表示装置の一例を、図38を用いて説明する。図38は、従来のFFSモードの電極構造を有する液晶表示装置の断面模式図である。図38は、液晶表示装置の構造を示しており、スリットが設けられた電極である上層電極(iv)が配置された下基板1110に、上層電極(iv)、及び、該上層電極(iv)と絶縁層1113を介して面状電極である下層電極(v)が配置されている。該液晶表示装置は、立上がりでは上層電極(iv)が一定の電圧に印加され(例えば、上層電極(iv)と下層電極(v)との電位差が閾値以上であり、フリンジ電界で応答できるものであればよい。上記閾値とは、液晶層が光学的な変化を起こし、液晶表示装置において表示状態が変化することになる電場及び/又は電界を生じる電圧値を意味する。)、立下がりでは上層電極(iv)と下層電極(v)との間の電位差を閾値未満とし、フリンジ電界を止める(弱める)ことで応答する。
従来のFFSモードは、上述したように下基板のFFS電極でフリンジ電界を発生させ、下電極付近の液晶分子を水平面内で同じ方向に回転させることで立上がり時のスイッチングを行っている。また、立下がり時のスイッチングは、フリンジ電界を切ることで、液晶分子を粘弾性により元の配向状態に戻すことにより行っている。
しかし、液晶層中、液晶分子を回転させるための電界が弱い領域があり、当該領域における液晶分子の回転に時間を要する。また、この際、液晶分子は同じ方向に回転するため、水平面内における液晶の弾性変形によるひずみは小さい。そのため、電界を切って立下がり時のスイッチングを行う際に、元の配向状態に戻るために働く弾性ひずみ起因の復元力が小さく、応答が遅い。したがって、立上がり時のスイッチング、立下がり時のスイッチングともに応答時間が遅い。
本発明は、上記現状に鑑みてなされたものであり、広視野角を実現するとともに、高速応答を実現することができる液晶表示装置を提供することを目的とするものである。
本発明者らは、複数の電極により電界を印加して表示をおこなう液晶表示装置を種々検討し、下基板の電極構造に着目した。そして、従来のFFSモードの液晶表示装置は下基板が2層で2種類の電圧を印加できる電極から構成されるが、下基板が2層で3種類の電圧を印加できる電極から構成されるものとすることに想到し、本発明に到達したものである。ここで、液晶分子の初期配向は上下基板の主面に対して水平な配向とする。
また本発明者らは、第1電極(例えば、上層電極)の電圧を変化させ、第2電極(例えば、下層電極)に一定の交流電圧を印加し、第3電極(例えば、下層電極)は常に0Vとして液晶を駆動する駆動方式(第1駆動方式)を見出した。また、本発明者らは、第2電極と第3電極とを同電位に切り替えて液晶を駆動することに想到し(第2駆動方式)、第1駆動方式と第2駆動方式とを切り替えることを見出した。
すなわち、本発明の液晶表示装置は、下基板が少なくとも2層で3種類の電圧を印加できる電極をもつ構成である点で特許文献1に記載の発明と異なる。
すなわち、本発明の一態様は、上下基板、及び、上下基板に挟持された液晶層をもつ液晶表示装置であって、上記下基板は、電極を備え、上記電極は、第1電極、該第1電極とは異なる層にある第2電極、及び、該第2電極と同一の層にある第3電極から構成され、上記液晶層は、電圧無印加時に該上下基板の主面に対して水平に配向する液晶分子を含み、上記液晶表示装置は、該液晶分子の一部を該主面に対して水平面内で回転させ、かつ、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる電界を該電極によって発生させる駆動操作を実行するように構成されたものである液晶表示装置であってもよい。
上記電界を上記電極によって発生させるとは、第1電極、第2電極、及び、第3電極から選ばれる少なくとも1つの電極によって上記電界を発生させるものであればよく、例えば、液晶表示装置の電源オン時に、第2電極と第3電極との間で常に電界を発生させるとともに、白表示時に第1電極の電圧を大きくして液晶分子を回転させ、黒表示時に第1電極の電圧を小さくして液晶分子を逆方向に回転させることが好ましい。
例えば、横電界で駆動する本発明の液晶表示装置において、下層を櫛歯状電極、上層をスリット電極(又は櫛歯状電極)とする2層の電極を、絶縁膜を介して配置することが好ましい。当該液晶表示装置において、2層の電極の下層側(液晶層側と反対側)の櫛歯状電極間に常に横電界を印加しておき、上層側のスリット電極(又は櫛歯状電極)に電圧を印加して駆動することが好ましい。
本発明における好ましい一形態は、初期配向が水平型の液晶モードにおいて、下基板が2層電極構成になっており、下層電極は一対の櫛歯状電極であり、上層電極はスリット電極である。
上記液晶分子の一部とは、液晶層中に含まれる液晶分子のうちの一部の液晶分子を意味する。上記液晶分子の他の一部も同様であり、液晶層中に含まれる液晶分子のうちの上記液晶分子の一部以外の他の一部の液晶分子を意味する。
本発明の液晶表示装置においては、通常、第1電極、第2電極及び第3電極のそれぞれが電気的に分離されており、これらの電圧を個別に制御することができる。言い換えれば、通常、第1電極、第2電極、及び、第3電極は、それぞれ、閾値電圧以上で異なる電位とすることができるものである。本発明の液晶表示装置は、例えば、下基板の第2電極及び第3電極が一対の櫛歯状電極を構成し、該第2電極及び該第3電極の上に絶縁層等を介して第1電極としてスリット電極又は櫛歯状電極が配置されている構成とすることが好ましい。
すなわち、上記第1電極は、上記第2電極及び上記第3電極よりも液晶層側に配置されていることが好ましい。また、上記第2電極及び上記第3電極は、それぞれ、櫛歯状であることが好ましい。更に、上記上下基板の主面を平面視したときに、上記第2電極の延伸方向及び上記第3電極の延伸方向と、電圧無印加時における液晶分子の配向方向とが、交差することが好ましい。そして、上記第2電極及び上記第3電極の櫛歯間隔が3μm以上、6μm以下であることが好ましい。また、上記第1電極は、スリットが設けられているか、又は、櫛歯状であることが好ましい。更に、上記上下基板の主面を平面視したときに、上記第1電極の延伸方向と電圧無印加時における液晶分子の配向方向とのなす角度が、-7°以上、7°以下であることが好ましい。なお、上記第1電極の延伸方向と電圧無印加時における液晶分子の配向方向とのなす角度については、液晶分子の配向方向が、上層電極(i)の延伸方向に対して右回りの角度をなすときは正の角度をなし、上層電極(i)の延伸方向に対して左回りの角度をなすときは負の角度をなすものとする。
また上記上下基板の主面を平面視したときに、上記第1電極の延伸方向と、上記第2電極の延伸方向及び上記第3電極の延伸方向とのなす角度が、83~90°であることが好ましい。すなわち、上記第1電極の延伸方向と上記第2電極の延伸方向とのなす角度、上記第1電極の延伸方向と上記第3電極の延伸方向とのなす角度は、それぞれ、83~90°であることが好ましい。なお、第2電極の延伸方向と第3電極の延伸方向は、略平行であることが好ましい。
なお、スリット電極の延伸方向(スリット延伸方向)は、スリット電極を構成する線状電極の長手方向を言う。櫛歯状電極の延伸方向は、櫛歯状電極を構成する幹部及び幹部から延びる枝部のうち、枝部である線状電極の長手方向を言う。従来のFFSモードの液晶表示装置では、立上がり時に下基板のFFS電極でフリンジ電界を発生させ、該フリンジ電界で液晶分子を1方向に回転させるだけだが、本発明の液晶表示装置では、下基板が2層で3種類の電圧を印加できる電極(上述した第1電極、第2電極、及び、第3電極)から構成され、例えば、立上がり時に第1電極と第2電極との間で電界を発生させ、ある領域の液晶分子とその他の領域の液晶分子とを水平面内で互いに逆方向に回転させる。また、立下がり時に第2電極と第3電極との間で電界を発生させ、ある領域の液晶分子とその他の領域の液晶分子とをそれぞれ水平面内で立上がり時とは逆方向に回転させる。
本発明の液晶表示装置は、上記上下基板の主面を平面視したときに、絵素内で、上記液晶分子の一部がある方位に配向する第1領域と、該液晶分子の他の一部が該液晶分子の一部とは異なる方位に配向する第2領域とがそれぞれ2つ以上交互に並ぶように液晶分子を回転させる電界を上記電極によって発生させる駆動操作を実行するように構成されたものであることが好ましい。
第1領域と、第2領域とがそれぞれ2つ以上交互に並ぶとは、2つ以上の第1領域と、2つ以上の第2領域とが、交互に縞状に並ぶものであってもよく、交互に千鳥格子状に並ぶものであってもよい。
上記第1電極、上記第2電極、及び、上記第3電極の少なくとも1つは、スリットが設けられており、上記液晶表示装置は、上記上下基板の主面を平面視したときに、該スリットと重畳する領域内で、上記液晶分子の一部を該主面に対して水平面内で回転させ、かつ、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる電界を上記電極によって発生させる駆動操作を実行するように構成されたものであることが好ましい。
なお、本明細書中、「スリットと重畳する領域内で、上記液晶分子の一部を該主面に対して水平面内で回転させ、かつ、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる」とは、上下基板の主面を平面視したときに、1つのスリットと重畳し、1つのスリットに対応する領域の少なくとも1つにおいて液晶分子の一部を水平面内で回転させ、かつ、該液晶分子の他の一部を水平面内で該液晶分子の一部とは逆方向に回転させるものであればよいが、1つのスリットと重畳し、1つのスリットに対応する領域のそれぞれにおいて液晶分子の一部を水平面内で回転させ、かつ、該液晶分子の他の一部を水平面内で該液晶分子の一部とは逆方向に回転させるものであることが好ましい。
中でも、上記第1電極は、スリットが設けられており、上記第2電極及び上記第3電極は、一対の櫛歯状電極を構成し、上記液晶表示装置は、上記上下基板の主面を平面視したときに、該第1電極に設けられたスリットと重畳する領域内で、上記液晶分子の一部を該主面に対して水平面内で回転させ、かつ、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させるとともに、該第2電極及び該第3電極の櫛歯間領域と重畳する領域内で、該液晶分子の一部を該主面に対して水平面内で回転させ、かつ、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる電界を上記電極によって発生させる駆動操作を実行するように構成されたものであることが好ましい。
本発明の液晶表示装置においては、上基板に液晶駆動用の電極は配置されていてもよく、配置されていなくてもよいが、配置されていないものとすることが好ましい。すなわち、下基板のみに液晶駆動用の電極が配置されていることが好ましい。
更に、上記第1電極の形状は特に限定されないが、例えば、上記第1電極は、スリットが設けられていることが本発明の好ましい形態の1つである。また、上記第1電極は、櫛歯状であることもまた本発明の好ましい形態の1つである。本明細書中、その形状が櫛歯状である電極は、スリットが設けられている電極とは言わず、櫛歯状電極と言う。
そして、本発明の液晶表示装置は、上記駆動操作を実行する第1駆動方式と、上記液晶分子を上記上下基板の主面に対して水平面内で1方向に回転させる電界を上記電極によって発生させる駆動操作を実行する第2駆動方式とを切り換えて実行するように構成されたものであることが好ましい。1方向に回転させるとは、実質的に1方向に回転させるものであればよい。また、上記電界を上記電極によって発生させるとは、第1電極、第2電極、及び、第3電極から選ばれる少なくとも1つの電極によって上記電界を発生させるものであればよく、例えば、白表示時に第1電極に電圧を印加し、電界を発生させて液晶分子を回転させ、黒表示時に第1電極に印加する電圧を小さくし、該電界を弱めて(切って)液晶分子を逆方向に回転させることが好ましい。
本発明の液晶表示装置の構成としては、その他の構成要素により特に限定されるものではなく、液晶表示装置に通常用いられるその他の構成を適宜適用することができる。
本発明の液晶表示装置によれば、広視野角を実現するとともに、高速応答を実現することができる。
実施形態1の液晶表示装置の画素の電極構造及び液晶分子の初期配向を示す平面模式図である。 図1中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。 実施形態1の第1駆動方式の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。 図3に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。 実施形態1の第1駆動方式の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。 実施形態1の第1駆動方式の白表示時における各電極への印加電圧を示す電圧関係図である。 実施形態1の第2駆動方式の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。 図7に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。 実施形態1の第2駆動方式の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。 実施形態1の液晶表示装置をTFT駆動する場合の画素レイアウトの一例を示す平面模式図である。 実施形態1の第1駆動方式及び第2駆動方式それぞれの上層電極(i)の電圧-透過率(V-T)特性を示すグラフである。 実施形態1及び比較例1の立上がり時における時間に対する規格化透過率を示すグラフである。 実施形態1及び比較例1の立下がり時における時間に対する規格化透過率を示すグラフである。 実施形態2の第1駆動方式の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。 図14に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。 実施形態2の第1駆動方式の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。 実施形態1及び実施形態2それぞれの第1駆動方式の白表示時における各電極への印加電圧を示す電圧関係図である。 実施形態2の液晶表示装置をTFT駆動する場合の画素レイアウトの一例を示す平面模式図である。 実施形態1及び実施形態2それぞれの第1駆動方式における上層電極(i)の電圧-透過率(V-T)特性を示すグラフである。 実施形態3の液晶表示装置の画素の電極構造及び液晶分子の初期配向を示す平面模式図である。 図20中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。 実施形態4の液晶表示装置の画素の電極構造及び液晶分子の初期配向を示す平面模式図である。 図22中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。 実施形態5の液晶表示装置の画素の電極構造及び液晶分子の初期配向を示す平面模式図である。 図24中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。 実施形態6の液晶表示装置の画素の電極構造及び液晶分子の初期配向を示す平面模式図である。 図26中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。 実施形態7の液晶表示装置の画素の電極構造及び液晶分子の初期配向を示す平面模式図である。 図28中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。 実施形態8の液晶表示装置の画素の電極構造及び液晶分子の初期配向を示す平面模式図である。 図30中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。 実施形態9の液晶表示装置の画素の電極構造及び液晶分子の初期配向を示す平面模式図である。 図32中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。 実施形態10の液晶表示装置の画素の電極構造及び液晶分子の初期配向を示す平面模式図である。 図34中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。 実施形態11の液晶表示装置の画素の電極構造及び液晶分子の初期配向を示す平面模式図である。 図36中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。 比較例1の液晶表示装置の電極構造及び液晶分子の初期配向を示す断面模式図である。 比較例1の液晶表示装置の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。 比較例1の液晶表示装置の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。
以下に実施例を掲げ、本発明を図面を参照して更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。本明細書中、画素とは、特に明示しない限り、絵素(サブ画素)であってもよい。絵素(サブ画素)とは、例えばR(赤)、G(緑)、B(青)、又は、黄(Y)等の、いずれかの単色を示す領域をいう。また、液晶層を挟持する一対の基板を上下基板ともいい、これらのうち、表示面側の基板を上基板ともいい、表示面と反対側の基板を下基板ともいう。更に、基板に配置される電極のうち、表示面側の電極を上層電極ともいい、表示面側と反対側の電極を下層電極ともいう。
なお、各実施形態において、同様の機能を発揮する部材及び部分は同じ符号を付している。また、図中、特に断らない限り、(i)は、下基板の上層(液晶層側)にあるスリット電極を示し、(ii)は、下基板の下層(液晶層側と反対側)の櫛歯状電極を示し、(iii)は、下基板の下層のもう1つの櫛歯状電極を示し、(iv)は、FFS構造を持つ電極層における上層電極を示し、(v)は、FFS構造を持つ電極層における下層電極を示す。また、図中、破線で示した両矢印は、電気力線を示す。カラーフィルタ、ブラックマトリクスなど、液晶の電界制御に関わらない層は省略している。
本明細書中、下基板の電極とは、上層電極(i)、下層電極(ii)、及び、下層電極(iii)、(iiia)又は(iiib)の少なくとも1つを意味する。
本明細書中、スリット電極とは、スリットが設けられている電極を言い、通常は複数の線状電極部分を含む。スリットとしては、例えば、線状電極が形成されていない領域が挙げられる。
本明細書中、立上がりとは、暗状態(黒表示)から明状態(白表示)に表示状態が変化する間を意味する。また、立下がりとは、明状態(白表示)から暗状態(黒表示)に表示状態が変化する間を意味する。また、液晶の初期配向とは、電圧無印加時(黒表示時)での液晶分子の配向を言う。
上記上層電極(i)、下層電極(ii)、及び、下層電極(iii)は、通常、閾値電圧以上で異なる電位とすることができるものである。本明細書中、閾値電圧とは、明状態の透過率を100%に設定したとき、5%の透過率を与える電圧値を意味する。閾値電圧以上で異なる電位とすることができるとは、閾値電圧以上で異なる電位とする駆動操作を実現できるものであればよく、これにより液晶層に印加する電界を好適に制御することが可能となる。異なる電位とすることができる構成としては、例えば、上層電極(i)が画素電極であり、下層電極(ii)及び下層電極(iii)が共通電極である場合は、該上層電極(i)にTFT(薄膜トランジスタ素子)を接続して、電圧の値を変化させて交流電圧(AC電圧)を印加して液晶を交流駆動(AC駆動)すると共に、該下層電極(ii)及び該下層電極(iii)に別のTFTで交流電圧を印加して液晶を交流駆動したり、ラインごとに共通接続されているか、又は、すべての画素内で共通接続されている該下層電極(ii)及び該下層電極(iii)に、該ライン又はすべての画素に対応するTFTで交流電圧を印加して液晶を交流駆動したり、該下層電極(ii)及び該下層電極(iii)にTFTを用いないで直流電圧(DC電圧)を印加して液晶を直流駆動(DC駆動)したりしてもよい。
(実施形態1)
図1は、実施形態1の液晶表示装置の画素の電極構造及び液晶分子の初期配向を示す平面模式図である。
上層電極(i)は、基板主面を平面視したときに、複数の線状電極部分を含む。該複数の線状電極部分はそれぞれ略平行であり、該線状電極部分と該線状電極部分との間には、それぞれ、互いに略平行なスリットが設けられている。このように、上層電極(i)は、スリットが設けられていることが本発明の好ましい形態の1つである。なお、上層電極(i)はスリット電極の代わりに櫛歯状電極でもよい。上層電極(i)が櫛歯状であることもまた本発明の好ましい形態の1つである。
下層電極(ii)、下層電極(iii)は、それぞれ、基板主面を平面視したときに、幹部及び幹部から延びる枝部から構成される。枝部は、それぞれ略平行な複数の線状電極部分である。このように、下層電極(ii)、下層電極(iii)は、櫛歯状であることが本発明の好ましい形態の1つである。
上記のように、上層電極(i)、下層電極(ii)、及び、下電電極(iii)が、それぞれ、線状部分を有することが好ましい。
なお、図1に示した上層電極(i)、下層電極(ii)、及び、下電電極(iii)の構造は一例であり、この形状には限られず、種々の構造の電極を使用できる。
上記下層電極(ii)、上記下層電極(iii)それぞれの延伸方向は、上層電極(i)の延伸方向に対して83°をなす方向とした。言い換えれば、下基板が有する2つの櫛歯状電極は、その枝部である線状電極部分の延伸方向が基板主面を平面視したときに上層電極(i)の線状電極部分の延伸方向と83°の角度で交わるように配置されている。該角度は、30°以上、90°未満であることが好ましく、45°以上であることがより好ましく、60°以上であることが更に好ましく、75°以上であることが特に好ましい。このような電極構造により、立上がり及び立下がりにおける応答時間をより短くすることができる。
上記上層電極(i)において、線状部分の電極幅Lは3.0μm、隣り合う線状部分と線状部分との間の電極間隔S1は6.0μmである。上記電極幅Lは、例えば2μm以上、7μm以下が好ましい。また、上記電極間隔S1は、例えば2μm以上、14μm以下であることが好ましい。電極幅Lと電極間隔S1との比(L/S1)は、0.1~1.5が好ましい。該比L/S1のより好ましい下限値は、0.2であり、より好ましい上限値は、0.8である。
上記下層電極(ii)及び下層電極(iii)から構成される一対の櫛歯電極の枝部において、線状部分の電極幅Lは3.0μm、隣り合う線状部分と線状部分との間の電極間隔S2は3.0μmである。上記電極幅Lは、2μm以上、7μm以下が好ましい。また、上記電極間隔S2は、2μm以上であることが好ましく、7μm以下であることが好ましい。電極幅Lと電極間隔S2との比(L/S2)は、0.1~10が好ましい。該比L/S2の下限値は、より好ましくは0.15であり、更に好ましくは0.2であり、特に好ましくは0.25である。また、該比L/S2の上限値は、より好ましくは5であり、更に好ましくは2であり、特に好ましくは1.5である。
なお、上層電極(i)、下層電極(ii)、及び、下層電極(iii)それぞれにおける電極幅L、及び、電極間隔S1、S2は、それぞれ、通常は画素内で略同一であるが、画素内で異なる場合は、いずれかが上記範囲内であれば好ましく、すべてが上記範囲内であればより好ましい。
また図1における、下基板の下層電極(ii)が有する枝部の線状電極部分は、下層電極(iii)が有する枝部の線状電極部分と線状電極部分との間に配置されている。
各層の電極(上層電極(i)、下層電極(ii)、及び、下層電極(iii))は、図1に示すような位置関係で配置されている。このように、下基板の上層電極(i)は、スリットが設けられており、下基板の下層電極(ii)、下層電極(iii)はそれぞれ櫛歯状であることが本発明の好ましい形態の1つである。また、上層電極(i)、下層電極(ii)、及び、下層電極(iii)がそれぞれ櫛歯状であることもまた本発明の好ましい形態の1つである。
実施形態1では図1に示す偏光軸をもつ2枚の直線偏光板を使用する。実施形態1では、直線偏光板が、上下基板の外側(液晶層側と反対側)に1枚ずつ配置されている。直線偏光板の配置としては、上下基板で直線偏光板の偏光軸が、電圧無印加時における液晶分子の長軸(液晶分子の初期配向方位)に対して垂直又は平行のクロスニコル配置とし、ノーマリーブラックモードの液晶表示装置とした。このように、上下基板がそれぞれ直線偏光板を有することが好ましい。
上層電極(i)は、コンタクトホールCHを介して薄膜トランジスタ素子TFTから延びているドレイン電極と電気的に接続される。ゲートバスラインGLで選択されたタイミングで、ソースドライバからソースバスラインSLを介して供給された電圧を、薄膜トランジスタ素子TFTを通じて液晶を駆動する上層電極(i)に印加する。
図2は、図1中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。
実施形態1の液晶表示装置は、図2に示されるように、下基板10、液晶層30及び上基板20が、液晶表示装置の背面側から観察面側に向かってこの順に積層されて構成されている。
実施形態1の液晶表示装置は、図2に示されるように、上下基板が有する各電極間の電位差が閾値電圧未満では液晶分子LCを水平配向させる(図2では、液晶分子LCは断面の奥から手前に向かって配向している。)。
下基板10の下層電極(ii)(図2では示されていない。)、下層電極(iii)は、それぞれ、上述したように櫛歯状電極であり、下層電極(ii)、下層電極(iii)の上に、絶縁層13を介してスリット電極である上層電極(i)が配置されている。上基板20には液晶駆動用の電極は設けられておらず、下基板10のみに液晶駆動用の電極が設けられている。
絶縁層13の誘電率は6.9、平均厚みは0.3μmである。絶縁層13は、それぞれ、窒化膜SiNで構成されるものであるが、その代わりに、酸化膜SiOや、アクリル系樹脂等、又は、それらの材料の組み合わせも使用可能である。
上下基板の液晶層側にはそれぞれ水平配向膜(図示せず)を設け、電圧無印加時における液晶分子の長軸が下層電極(ii)、下層電極(iii)の延伸方向と垂直な方位となるように水平配向させた。なお、液晶層と上層電極(i)は水平配向膜を介して隣接する。水平配向膜としては、膜面に対して液晶分子を水平に沿わせるものである限り、有機材料から形成された配向膜(例えば、誘電率ε=3~4の配向膜)、無機材料から形成された配向膜(例えば、誘電率ε=5~7の配向膜)、光活性材料から形成された光配向膜、ラビング等によって配向処理がなされた配向膜等が挙げられる。なお、上記配向膜は、ラビング処理等による配向処理がなされていない配向膜であってもよい。有機材料から形成された配向膜、無機材料から形成された配向膜、光配向膜等の、配向処理が必要ない配向膜を用いることによって、プロセスの簡略化によりコストを削減するとともに、信頼性及び歩留まりを向上することができる。また、ラビング処理をおこなった場合、ラビング布などからの不純物混入による液晶汚染、異物による点欠陥不良、液晶パネル内でラビングが不均一であるために表示ムラが発生するなどのおそれがあるが、これら不利点も無いものとすることができる。
上記液晶は、電圧無印加時に基板主面に対して水平方向に配向する液晶分子を含む。なお、基板主面に対して水平方向に配向するとは、本発明の技術分野において液晶分子が基板主面に対して実質的に水平方向に配向すると言え、光学的な作用効果を発揮できるものであればよい。上記液晶は、電圧無印加時に基板主面に対して水平方向に配向する液晶分子から実質的に構成されるものであることが好適である。上記「電圧無印加時に」は、本発明の技術分野において実質的に電圧が印加されていないといえるものであればよい。このような水平配向型の液晶は、広視野角の特性等を得るのに有利な方式である。
実施形態1の液晶表示装置における液晶層30中の液晶材料の誘電率異方性は正である(誘電率異方性Δε=5.9、粘度(回転粘性度)γ1=89cps、屈折率異方性Δn=0.109、パネルのRe=350nm)。このように、液晶層は、正の誘電率異方性を有する液晶分子を含むことが本発明の好ましい形態の1つである。正の誘電率異方性を有する液晶分子は、電界を印加した場合に一定方向に配向されるものであり、配向制御が容易であり、より高速応答化することができる。液晶の誘電率異方性Δεは、3以上であることが好ましく、4以上であることがより好ましく、5以上であることが更に好ましい。また、該液晶の誘電率異方性Δεは、30以下であることが好ましく、20以下であることがより好ましく、10以下であることが更に好ましい。本明細書中、液晶の誘電率異方性Δεは、LCRメーターにより測定されるものを意味する。
実施形態1では、液晶層30の平均厚み(セルギャップ)dLCは3.2μmである。
本明細書中、液晶層の平均厚みdLCは、液晶表示装置における液晶層全体の厚みを平均して算出されるものを意味する。
LC×Δnは100nm以上であることが好ましく、150nm以上であることがより好ましく、200nm以上であることが更に好ましい。また、dLC×Δnは550nm以下であることが好ましく、500nm以下であることがより好ましく、450nm以下であることが更に好ましい。
以下では、本実施形態の液晶表示装置を用いた液晶の駆動方法について説明する。
本実施形態では、高速応答可能な駆動を実現することができる。また、電圧の印加方法を切り替えることで、高速応答可能な駆動と、その駆動よりも高い透過率を実現する駆動の2種類の駆動を同じ構成で実現することができる。 
本明細書中、高速応答を実現できる駆動を第1駆動方式、それより高い透過率を実現する駆動は第2駆動方式と、それぞれ呼ぶことにする。
第1駆動方式、第2駆動方式ともに上層電極(i)の電圧を変化させて階調表示を行う。
第1駆動方式は、下層電極(ii)に電圧を印加し、下層電極(iii)は0Vとして、横電界を常に発生させておき、上層電極(i)に階調に応じた電圧を印加することで駆動する。
第2駆動方式は、下層電極(ii)、下層電極(iii)はともに0Vとしておき、上層電極(i)に階調に応じた電圧を印加することで、上層電極(i)と、下層電極(ii)及び下層電極(iii)との間にフリンジ電界を発生させて液晶を駆動する。
図3は、実施形態1の第1駆動方式の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図4は、図3に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。図5は、実施形態1の第1駆動方式の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図6は、実施形態1の第1駆動方式の白表示時における各電極への印加電圧を示す電圧関係図である。図3~図5は、それぞれ、図1中の破線で囲んだ部分に対応する部分の平面を示す。
先ず、立上がり時(白表示時)の液晶分子の動作について詳しく説明する。
下層電極(iii)は常に0Vとし、下層電極(ii)は振幅センターを0Vとして電圧を極性反転させて印加することで、横電界を常に発生させておく。なお、下層電極(ii)に印加する電圧値は常に一定である。その上で上層電極(i)に電圧を極性反転させて印加することで、水平面内で液晶分子を異なる方位に互い違いに回転させる電界が発生し、その電界によって液晶分子が面内でベンド配向及びスプレイ配向をするような形で配向する。本実施形態の第1駆動方式では白階調表示時に上層電極(i)に6V/-6Vを印加しており、下層電極(ii)に5V/-5Vを印加している。
シミュレーションによる透過率分布図を見て分かるように、図4に示した領域1と領域2とで液晶分子は異なる方位に回転しており、領域1と領域2とは互い違いに存在していることがわかる。
第1駆動方式では、液晶分子が水平面内で異なる方位に互い違いに回転する。すなわち、図4に示した領域1(第1領域)では、液晶分子は水平面内で時計回りの向きに回転し、領域2(第2領域)では、液晶分子は水平面内で反時計回りの向きに回転する。言い換えれば、上下基板を平面視したときに、上層電極(i)の線状電極間(上層電極(i)のスリットと重畳する領域内)、下層電極(ii)の枝部である線状電極間、下層電極(iii)の枝部である線状電極間で、それぞれ液晶分子が水平面内で1方向に回転するのではなく、異なる2方向に回転する。
下層電極(ii)に常に電圧が印加されていることにより、立上がり応答時には、水平面内の全領域に強い電界が印加される。そのため、立上がり応答が高速化される。
第1駆動方式の白表示時では、下基板が有する各電極の電位は、液晶分子が水平面内で異なる方位に互い違いに回転するように設定する。具体的には、上述したように、上層電極(i)の電位を6V/-6V、下層電極(ii)の電位を5V/-5Vとし、上層電極(i)-下層電極(ii)間の電位差を1Vとする。上層電極(i)-下層電極(ii)間の電位差は、例えば8V以下とすればよく、5V以下がより好ましく、4V以下が更に好ましい。
上層電極(i)-下層電極(iii)間の好ましい電位差は、2~12Vであることが好ましく、3~11Vであることがより好ましく、3~10Vであることが更に好ましい。
次いで、立下がり時(黒表示時)の液晶分子の動作について説明する。
上層電極(i)に印加していた電圧を弱めることによって、下層電極(ii)及び下層電極(iii)による横電界に液晶分子が反応し、初期配向方位へ電界により強制的に回転する。また、白表示時に水平面内でベンド配向及びスプレイ配向していた液晶分子の復元力も同時に働き、応答をさらに加速させる。本実施形態の第1駆動方式では黒階調表示時に上層電極(i)に2.5V/-2.5Vを印加しており、下層電極(ii)には5V/-5Vを印加している。 
第1駆動方式では、立下がり応答時にも下層電極(ii)には常に電圧(図5では5V/-5V)が印加されているため、上層電極(i)の電圧を切った(弱めた)際に、下層電極(ii)-下層電極(iii)間で発生する電界によって液晶分子が初期配向に戻る方向へ強制的に回転する。さらに、第1駆動方式の場合には、水平面内でベンド配向及びスプレイ配向が発生し、それによって誘起される弾性ひずみにより大きな復元力も働く。よって、立下がり応答も高速化する。なお、上記第1駆動方式においては、液晶分子が平面内で異なる方位に回転する領域が交互に少なくとも2領域連続して存在する。このように、液晶分子が異なる方位に回転する領域が平面内で2領域以上連続で存在することが好ましい。
図5では、上層電極(i)の電位を2.5V/-2.5Vとした。このように画素電極(実施形態1では上層電極(i))の電圧を最大透過率時の電圧から弱めたり切ったりする以外は、その他の電極(実施形態1では下層電極(ii)、下層電極(iii))の電位等は第1駆動方式の白表示時と同じものとすることができ、その好ましい範囲等も第1駆動方式の白表示時におけるものと同様である。例えば、実施形態1においては、白表示時及び黒表示時のいずれも下基板の下層電極(ii)が5V/-5Vであり、下層電極(iii)が0Vである。このように、本発明の液晶表示装置は、下基板の下層電極(ii)及び下層電極(iii)が、白表示時及び黒表示時のいずれも一定電圧値であることが好ましい。
上述した第1駆動方式における各電極への電圧印加方法としては、上層電極(i)が画素電極であり、この上層電極(i)に印加される電圧を変化させ、下層電極(ii)が一定の大きさの電圧に印加し、下層電極(iii)は0Vとしており、このような電圧印加方法は本発明の液晶表示装置における好ましい形態の1つである。しかしながら、本発明の作用効果が発揮される限り、各電極の上下の配置関係は適宜変更されていてもよい。
図7は、実施形態1の第2駆動方式の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図8は、図7に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。図9は、実施形態1の第2駆動方式の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。
図7~図9は、それぞれ、図1中の破線で囲んだ部分に対応する部分の平面を示す。
先ず、立上がり時(白表示時)の液晶分子の動作について詳しく説明する。 
下層電極(ii)、下層電極(iii)をともに0Vにしておき、その上で上層電極(i)に極性反転させて電圧を印加することで、上層電極(i)と、下層電極(ii)及び下層電極(iii)との間でフリンジ電界が発生し、その電界に反応して液晶分子が同方位に回転する。本実施形態の第2駆動方式では白階調表示時に上層電極(i)に5V/-5Vを印加している。
シミュレーションによる透過率分布図(図8)を見て分かるように、液晶分子が同方位に回転することで、第1駆動方式と比べて全体として高透過率が得られている。
第2駆動方式の白表示時では、上層電極(i)の電位は、表示に応じて変化するものであるが、その上限が10Vであることが好ましく、8Vであることがより好ましく、7Vであることが更に好ましい。
下層電極(ii)及び下層電極(iii)の電位は、閾値電圧未満とすればよい。
次いで、立下がり時(黒表示時)の液晶分子の動作について説明する。
上層電極(i)に印加していた電圧をオフすることによって、液晶分子の復元力によって配向処理方位(アンカリング)に向かって戻るように回転する。本実施形態の第2駆動方式では黒表示時に上層電極(i)に0Vを印加している。その他の各電極(下層電極(ii)、下層電極(iii))への印加電圧は、第2駆動方式の白表示時と同様であり、0Vを印加している。なお、第2駆動方式の黒表示時では、上層電極(i)、下層電極(ii)及び下層電極(iii)の電位は、閾値電圧未満とすればよい。
図10は、実施形態1の液晶表示装置をTFT駆動する場合の画素レイアウトの一例を示す平面模式図である。なお、図10は一例であり、電極構造、配線等はこの形状に限られるものではない。
下層電極(ii)は、印加する電圧が第1駆動方式と第2駆動方式で異なるため、たとえばライン(例えば、ゲートバスライン)ごとにスキャン駆動する必要がある。
一方、下層電極(iii)は、第1駆動方式、第2駆動方式とも同じ一定電圧値を印加しておけばよいため、図10に示したように全てのラインの電極を共通電極化することができる。言い換えれば、下層電極(iii)は、すべての画素で共通電極化することができる。
図11は、実施形態1の第1駆動方式及び第2駆動方式それぞれの上層電極(i)の電圧-透過率(V-T)特性を示すグラフである。
LCD Master3Dを用いて実施形態1の第1駆動方式及び第2駆動方式の電圧-透過率(V-T)特性を計算することで、第1駆動方式から第2駆動方式に切り替えることによる高透過率化に対する効果の有無を検証した。第2駆動方式(最大透過率32.9%)は第1駆動方式(最大透過率11.5%)と比較して最大透過率が2.86倍高く、第1駆動方式から第2駆動方式への切り替えで透過率が改善できていることがわかった。
実施形態1では下基板を2層電極とした。このように、下基板が有する電極は、それぞれ、上層のスリットが設けられている電極、及び、下層の一対の櫛歯状電極から構成されることが本発明の液晶表示装置における好ましい形態の1つである。しかしながら、第1駆動方式に係る電界を発生させる液晶表示装置であれば本発明の効果を発揮できるため、例えば、下基板の上層電極(i)においてスリット電極の代わりに一対の櫛歯状電極を用いてもよい。一対の櫛歯状電極を用いる場合、一対の櫛歯状電極間で横電界を発生させることにより液晶分子を水平面内で回転させる。液晶分子の配向方向と電極配置との関係は、FFS電極に含まれるスリット電極の延伸方向を一対の櫛歯状電極の延伸方向に置き換えて考えればよい。
なお、実施形態1の液晶表示装置における薄膜トランジスタ素子には、透過率改善効果の観点から酸化物半導体を含む薄膜トランジスタ素子を用いることが好ましい。酸化物半導体は、アモルファスシリコンよりも高いキャリア移動度を示す。これにより、1画素に占めるトランジスタの面積を小さくすることができるため開口率が増加し、1画素あたりの光の透過率を高めることが可能となる。したがって、酸化物半導体を含む薄膜トランジスタ素子を用いることで、本発明の効果である透過率改善効果をより顕著に得ることができる。すなわち、下基板は、薄膜トランジスタ素子を備え、該薄膜トランジスタ素子は、酸化物半導体を含むことが好ましい。
実施形態1の液晶表示装置が備える上下基板は、通常は液晶を挟持するための一対の基板であり、例えば、ガラス、樹脂等の絶縁基板を母体とし、絶縁基板上に配線、電極、カラーフィルタ等を必要に応じて作り込むことで形成される。
なお、実施形態1の液晶表示装置は、通常の液晶表示装置が備える部材(例えば、光源等)を適宜備えることができる。また、実施形態1の液晶表示装置は、アクティブマトリクス駆動方式によって液晶を駆動するものであることが好ましい。後述する実施形態においても同様である。
実施形態1の液晶表示装置は、透過型、反射型、半透過型のいずれの液晶表示装置にも適用することができる。後述する実施形態においても同様である。
<実施形態1と比較例1との応答特性の比較>
図12は、実施形態1及び比較例1の立上がり時における時間に対する規格化透過率を示すグラフである。図13は、実施形態1及び比較例1の立下がり時における時間に対する規格化透過率を示すグラフである。なお、比較例1は、従来のFFSモードの液晶表示装置に係るものであり、その構成については後述する。
図12及び図13に実施形態1と比較例1の応答シミュレーションの結果を示す。立上がり応答、立下がり応答ともに比較例1に対して実施形態1の方が速いことが分かる。
高速応答と高透過率の両立の程度を確認する指標として応答時間/透過率を計算した。この値が小さいほど高速応答と高透過率を両立できていることになる。 
実施形態1は、比較例1よりも応答時間/透過率が小さな値になっているため、高速応答と高透過率を両立できる駆動として、比較例1よりも優れていると言える。 
(実施形態2)
図14は、実施形態2の第1駆動方式の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図15は、図14に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。図16は、実施形態2の第1駆動方式の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図17は、実施形態1及び実施形態2それぞれの第1駆動方式の白表示時における各電極への印加電圧を示す電圧関係図である。図14~図16は、それぞれ、図1中の破線で囲んだ部分に対応する部分の平面を示す。
実施形態2が実施形態1と異なる点は、第1駆動方式のとき下層電極(ii)、下層電極(iii)に印加する電圧値を、実施形態1ではそれぞれ5V/-5V、0Vとしていたのに対して、実施形態2では2.5V/-2.5V、-2.5V/2.5Vとした点である。またこのとき、黒表示時、白表示時に上層電極(i)に印加する電圧値はそれぞれ0V、6V/-6Vとした。 
図17に、実施形態1と実施形態2の第1駆動方式の印加電圧関係図を示す。実施形態1の第1駆動方式での白表示は上層電極(i)の電圧値が6V/-6Vに対して、下層電極(iii)の電圧値が0Vであるため、両電極間の電圧差は6Vとなる。実施形態2では、下層電極(iii)に-2.5V/2.5Vと極性反転して電圧を印加するため、実施形態1の白表示を同じ透過率を得るために、すなわち上層電極(i)と下層電極(iii)との電圧差を例えば6Vにするために、上層電極(i)に印加する電圧値は3.5V/-3.5Vでよい。またこのとき、上層電極(i)と下層電極(ii)の電圧差も1Vで実施形態1と実施形態2とで等しくなり、上層電極(i)と下層電極(iii)の相対的な電圧関係は等しくなっている。図17中、上層電極(i)と下層電極(iii)との間の電圧差を枠で囲って示している。
なお、上層電極(i)と下層電極(ii)の好ましい電位差、上層電極(i)と下層電極(iii)の好ましい電位差は、それぞれ、実施形態1において上述したものと同様である。その他の好ましい構成も、実施形態1において上述したものと同様である。
したがって、実施形態2で白表示時に上層電極(i)に印加する電圧値を、実施形態1と同じく6V/-6Vとすると、実施形態2の第1駆動方式の白表示時は、実施形態1の白表示時よりも高い透過率を得られることになる(表1参照)。このように、より高透過率とする観点からは、上層電極(i)-下層電極(iii)間の電位差が、7.5V以上であることが特に好ましい。このことは、実施形態1及び実施形態2でのシミュレーション透過率分布図(図8、図15)を見ても分かる。 
なお、表1は、実施形態1、2の第1駆動方式と第2駆動方式の白表示時の透過率を示したものであるが、いずれの実施形態においても、第1駆動方式の透過率に比べて第2駆動方式の透過率が高くなっていることが分かる。実施形態2の第2駆動方式は、各電極に実施形態1の第2駆動方式と同様に電圧を印加したものである。
Figure JPOXMLDOC01-appb-T000001
図18は、実施形態2の液晶表示装置をTFT駆動する場合の画素レイアウトの一例を示す平面模式図である。なお、図18は一例であり、電極構造、配線等はこの形状に限られるものではない。
実施形態2は、実施形態1とは異なり、下層電極(ii)と下層電極(iii)との両方で、印加する電圧が第1駆動方式と第2駆動方式で異なるため、両下層電極とも例えばラインごとにスキャン駆動することが好ましい。 
図19は、実施形態1及び実施形態2それぞれの第1駆動方式における上層電極(i)の電圧-透過率(V-T)特性を示すグラフである。
図19に示したV-T特性を示すグラフ(実測)からも、第1駆動方式で比較したときに、実施形態1に比べて実施形態2の方がより高い透過率を実現できることが分かる。
V-T特性は、トプコン社製の色彩輝度計BM-5Aを用いて、暗室・常温環境下で測定した。測定は、上層電極(i)を0Vから6Vまで0.5Vずつ変化させて行った。
すなわち、実施形態2の構成においても、第1駆動方式では、液晶分子を水平面内で異なる方位に互い違いに回転させる電界が形成でき、立上がり時、立下がり時ともに高速化が可能となり、広視野角と高速応答を両立できる。また、実施形態1より高い透過率を実現できる。また、第2駆動方式では、FFSモードと同様に、液晶分子を領域全体で同じ方向に回転させる電界を形成でき、広視野角と高透過率とを両立することができる。
<実施形態1、2と比較例1との応答特性の比較>
表2に実施形態1、2と比較例1の応答時間、透過率を示す。応答測定はパネル温度-30℃で実施した。
Tr+Tdの項目には、透過率が10%から90%まで変化する応答時間をTr、透過率が90%から10%まで変化する応答時間をTdとしたときのTr+Tdの値を記載している。
Figure JPOXMLDOC01-appb-T000002
(※1)実施形態1、2の応答時間は、第1駆動方式での値である。
(※2)実施形態1、2の透過率は、第2駆動方式での値である。
表2に示したように、実施形態2は後述する比較例1よりも応答時間/透過率が小さな値になっているため、高速応答と高透過率を両立できる駆動として、実施形態1と同様に比較例1よりも優れていると言える。
したがって、実施形態1、2の第1駆動方式では、液晶分子を水平面内で異なる方位に互い違いに回転させる電界が形成でき、立上がり時、立下がり時ともに高速化が可能となり、広視野角と高速応答を両立できる。実施形態1、2の第2駆動方式では、FFSモードと同様に、液晶分子を領域全体で同じ方向に回転させる電界を形成でき、広視野角と高透過率とを両立することができる。
(実施形態3)
図20は、実施形態3の液晶表示装置の画素の電極構造及び液晶分子の初期配向を示す平面模式図である。図21は、図20中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。
実施形態3が実施形態1と異なる点は、下層電極(ii)及び下層電極(iii)において、隣り合う線状部分と線状部分との間の電極間隔S2を6μmで設定している点である。下基板の下層電極の形状以外の好ましい構成、好ましい電圧印加方法は、実施形態1の好ましい構成、好ましい電圧印加方法と同様である。
(実施形態4)
図22は、実施形態4の液晶表示装置の画素の電極構造及び液晶分子の初期配向を示す平面模式図である。図23は、図22中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。
実施形態4が実施形態1と異なる点は、下層電極(ii)、下層電極(iii)それぞれの延伸方向を上層電極(i)の延伸方向に対して85°としている点である。液晶の初期配向は、実施形態1と同じく、下層電極(ii)、下層電極(iii)それぞれの延伸方向に対して垂直としている。
(実施形態5)
図24は、実施形態5の液晶表示装置の画素の電極構造及び液晶分子の初期配向を示す平面模式図である。図25は、図24中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。
実施形態5が実施形態1と異なる構成は、下層電極(ii)、(iii)の延伸方向を上層電極(i)の延伸方向に対して87°としている点である。液晶の初期配向は、実施形態1と同じく、下層電極(ii)、下層電極(iii)それぞれの延伸方向に対して垂直としている。
(実施形態6)
図26は、実施形態6の液晶表示装置の画素の電極構造及び液晶分子の初期配向を示す平面模式図である。図27は、図26中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。
実施形態6が実施形態1と異なる点は、下層電極(ii)、下層電極(iii)それぞれの延伸方向を上層電極(i)の延伸方向に対して88°としている点である。液晶の初期配向は、実施形態1と同じく、下層電極(ii)、下層電極(iii)それぞれの延伸方向に対して垂直としている。
(実施形態7)
図28は、実施形態7の液晶表示装置の画素の電極構造及び液晶分子の初期配向を示す平面模式図である。図29は、図28中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。
実施形態7が実施形態1と異なる点は、液晶分子の初期配向を、実施形態1では上層電極(i)の延伸方向に対して右回りに7°としていたのに対して、実施形態7では上層電極(i)の延伸方向に対して左回りに7°としている点である。下層電極(ii)、下層電極(iii)それぞれの延伸方向は、実施形態1と同じであり、基板主面を平面視したときに上層電極(i)の延伸方向に対して83°であり、その結果、液晶の初期配向と76°の角度をなす。
(実施形態8)
図30は、実施形態8の液晶表示装置の画素の電極構造及び液晶分子の初期配向を示す平面模式図である。図31は、図30中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。
実施形態8が実施形態4と異なる点は、液晶分子の初期配向を、実施形態4では上層電極(i)の延伸方向に対して右回りに5°としていたのに対して、実施形態8では上層電極(i)の延伸方向に対して左回りに5°としている点である。下層電極(ii)、下層電極(iii)それぞれの延伸方向は、実施形態4と同じであり、基板主面を平面視したときに上層電極(i)の延伸方向に対して85°であり、その結果、液晶の初期配向と80°の角度をなす。
(実施形態9)
図32は、実施形態9の液晶表示装置の画素の電極構造及び液晶分子の初期配向を示す平面模式図である。図33は、図32中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。
実施形態9が実施形態5と異なる点は、液晶分子の初期配向を、実施形態5では上層電極(i)の延伸方向に対して右回りに3°としていたのに対して、実施形態9では上層電極(i)の延伸方向に対して左回りに3°としている点である。下層電極(ii)、下層電極(iii)それぞれの延伸方向は、実施形態5と同じであり、基板主面を平面視したときに上層電極(i)の延伸方向に対して87°であり、その結果、液晶の初期配向と84°の角度をなす。
(実施形態10)
図34は、実施形態10の液晶表示装置の画素の電極構造及び液晶分子の初期配向を示す平面模式図である。図35は、図34中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。
実施形態10が実施形態6と異なる点は、液晶分子の初期配向を、実施形態6では上層電極(i)の延伸方向に対して右回りに2°としていたのに対して、実施形態10では上層電極(i)の延伸方向に対して左回りに2°としている点である。下層電極(ii)、下層電極(iii)それぞれの延伸方向は、実施形態6と同じであり、基板主面を平面視したときに上層電極(i)の延伸方向に対して88°であり、その結果、液晶の初期配向と86°の角度をなす。
(実施形態11)
図36は、実施形態11の液晶表示装置の画素の電極構造及び液晶分子の初期配向を示す平面模式図である。図37は、図36中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。
実施形態11が実施形態1と異なる点は、下層電極(ii)、下層電極(iii)それぞれの延伸方向を上層電極(i)の延伸方向に対して90°としている点である。液晶の初期配向は、実施形態1と同じく、下層電極(ii)、下層電極(iii)それぞれの延伸方向に対して右回りに7°としている。
(比較例1)
図38は、比較例1の液晶表示装置の電極構造及び液晶分子の初期配向を示す断面模式図である。図38は、従来のFFSモードの液晶表示装置の電極構造の1例を示す断面模式図でもある。
比較例1では、下基板1110の下層電極(v)は面状電極であり、絶縁層1113を介してスリット電極である上層電極(iv)が配置されている。なお、上層電極(iv)は、スリット電極の代わりに、一対の櫛歯状電極であってもよい。上基板1120には、液晶制御用の電極は配置されていない。
上下基板の液晶層側にはそれぞれ水平配向膜(図示せず)を設け、電圧無印加時における液晶分子を、その方位角が上層電極(iv)のスリット延伸方向に対して7°となるように水平配向させた。また、上下基板の液晶層側と反対側にはそれぞれ偏光板(図示せず)を設けた。偏光板としては直線偏光板を用い、上下基板で偏光板の偏光軸が液晶分子の長軸に対して垂直又は平行のクロスニコル配置とし、ノーマリーブラックモードの液晶表示装置とした。また、液晶材料及びその厚みは実施形態1と同じとした。上層電極(iv)において、線状部分の電極幅Lは3.0μm、隣り合う線状部分と線状部分との間の電極間隔S1は6.0μmである。絶縁層1113の誘電率εは6.9である。なお、比較例1の液晶表示装置は、その他の構成、例えば配向膜材料、配向膜処理方法、絶縁膜材料等は、それぞれ上述した実施形態1の液晶表示装置の対応する部材と同様である。
比較例1は、下基板の上層電極(iv)-下層電極(v)間でフリンジ電界を発生させ、下電極付近の液晶分子を水平面内で同じ方向に回転させることで立上がり時のスイッチングを行っている。また、立下がり時のスイッチングは、フリンジ電界を切ることで、液晶分子を粘弾性により元の配向状態に戻すことにより行っている。 
しかし、液晶層中、液晶分子を回転させるための電界が弱い領域があり、当該領域における液晶分子の回転に時間を要する。また、この際、液晶分子は同じ方向に回転するため、水平面内における液晶の弾性変形によるひずみは小さい。そのため、電界を切って立下がり時のスイッチングを行う際に、元の配向状態に戻るために働く弾性ひずみ起因の復元力が小さく、応答が遅い。したがって、立上がり時のスイッチング、立下がり時のスイッチングともに応答時間が遅い。
図39は、比較例1の液晶表示装置の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図40は、比較例1の液晶表示装置の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。
図39及び図40に比較例1の電圧印加時の原理を示す。 
液晶分子は、初期配向では、画素電極である上層電極(iv)の延伸方向と7°の角度をなす方向に決定する。
先ず、立上がり時(白表示時)の液晶分子の動作について詳しく説明する。
上層電極(iv)に電圧を印加すると、上層電極(iv)と下層電極(v)にはフリンジ電界が発生する。このとき液晶は配向方位軸から遠ざかるように回転し黒表示から白表示へ光学変調する。本比較例では白階調表示時に画素電極に5Vを極性反転させて印加している。
次いで、立下がり時(黒表示時)の液晶分子の動作について説明する。 
電圧オフによってフリンジ電界が消滅し、初期配向方位(アンカリング)に向かって弾性体である液晶分子の復元力によって回転する。液晶を配向制御するために必要な配向膜、配向方法、絶縁膜は実施形態1で上述したものと同様である。
(実施形態3~11、比較例1)
実施形態3~11の効果の確認に関してはシンテック社製のLCD-Master3Dを使用しシミュレーションを実施した。比較例1についてもシミュレーションを実施した結果を表4で用いている。液晶の物性値は常温の物性値を用いている。
表3に実施形態3~11の第1駆動方式と第2駆動方式の白表示時の透過率を示す。それぞれの実施形態において、第1駆動方式の透過率に比べて第2駆動方式の透過率が高くなっていることが分かる。 
表4に実施形態3~11と比較例1の応答時間、透過率を示す。 
Tr+Tdの項目には、透過率が10%から90%まで変化する応答時間をTr、透過率が90%から10%まで変化する応答時間をTdとしたときのTr+Tdの値を記載している。
また高速応答と高透過率の両立の程度を確認する指標として応答時間/透過率を計算した。この値が小さいほど高速応答と高透過率を両立できていることになる。
表4に示したように、実施形態3~11は比較例1よりも応答時間/透過率が小さな値になっているため、高速応答と高透過率を両立できる駆動として、比較例1よりも優れていると言える。
実施形態1と実施形態3を合わせて考慮すると、本発明における下層電極(ii)と下層電極(iii)との櫛歯間隔S2は、3μm以上、6μm以下が特に望ましいと言える。
実施形態1、実施形態4~11を合わせて考慮すると、本発明における液晶分子の初期配向方位は、上層電極(i)の延伸方向となす角度が-7°以上、7°以下が望ましいと言える。
更に、上層電極(i)の延伸方向と下層電極(ii)の延伸方向とのなす角度、上層電極(i)の延伸方向と下層電極(iii)の延伸方向とのなす角度は、それぞれ、83~90°であることが好ましい。なお、下層電極(ii)の延伸方向と下層電極(iii)の延伸方向は、略平行であることが好ましい。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(※1)実施形態3~11の応答時間は、第1駆動方式での値である。
(※2)実施形態3~11の透過率は、第2駆動方式での値である。
上述した本実施形態の液晶表示装置は、第1駆動方式において、立上がり時には、下層の一対の櫛歯状電極間に横電界が印加されていることにより、水平面内全域の液晶分子に強い電界が働くため応答が高速化し、立ち下がり時には、図3に示すような面内ベンドおよびスプレイ配向が元に戻ろうとする強い復元力が働くことに加え、下層櫛歯状電極が作り出す電界に液晶分子が反応することで従来のFFSモードでは実現できない高速応答を実現できる。
また第2駆動方式において、2層電極下側の櫛歯状電極をともに同電位とすることで、上側のスリット電極との間にフリンジ電界を発生させることができ、上記のように駆動する高速応答を実現する駆動に比べて高い透過率を実現する駆動となる。 
これら2種類の駆動を目的や状況に応じて切り替えることができ、結果として広視野角、高速応答、および高透過率を実現できるのが上述した実施形態の特長の1つである。なお、本発明の液晶表示装置は、少なくとも第1駆動方式を実行できるものであればよい。
上述した本実施形態の液晶表示装置は、第1駆動方式と第2駆動方式とを適宜切り換えて表示を行うことができる。また、それぞれの駆動方式において、所望の表示に応じて、白表示と黒表示を適宜組み合わせて表示を行うことができる。
本発明の液晶表示装置は、上述した第1駆動方式を実行する制御装置を備えるものであることが好ましく、上述した第1駆動方式と第2駆動方式とを切り換えて実行する制御装置を備えるものであることがより好ましい。これによって、広視野角を実現するとともに、高速応答を実現したり、高透過率を実現したりすることができる。したがって、1種類の電極構成で高速応答、広視野角、高透過率の特性を全て満足する液晶表示装置を実現できる。
また、本発明の液晶表示装置は、所定の条件に応じて、上述した第1駆動方式と第2駆動方式とを自動的に切り換える制御装置を備えることが好ましい。該制御装置は、例えば、温度センサを搭載し、温度に応じて第1駆動方式と第2駆動方式とを自動的に切り換えるものであることが好ましい。例えば、該制御装置は、応答速度の遅延が問題とならない温度(例えば、下限が-20℃~20℃のいずれかである温度範囲)の環境下では高透過率を実現できる第2駆動方式を実行し、応答速度が遅くなる低温(例えば、上限が-20℃~20℃のいずれかである温度範囲)環境下では高速応答を実現できる第1駆動方式を実行するよう制御する制御装置であることが好ましい。これによって、所望の効果をより適切に得ることができる。
更に、本発明の液晶表示装置は、ユーザーの指示に応じて、上述した第1駆動方式と第2駆動方式とを切り換える制御装置を備えるものであってもよい。
また、本発明は、上述した液晶表示装置を用いた液晶表示装置の駆動方法であってもよい。
また本発明の液晶表示装置のように下基板が有する電極のみに交流電圧を印加する液晶の交流駆動を行えばよい場合には、従来通り下基板の当該電極のみに交流駆動用の回路、ドライバ、配線が配置されていればよい。したがって、例えば下基板が有する電極と共に上基板が有する電極にも交流電圧を印加して液晶の交流駆動を行うために下基板と共に上基板にも交流駆動用の回路、ドライバ、配線が配置されている液晶表示装置と比較して、本発明の液晶表示装置の駆動の自由度は格段に高いものである。
本発明の液晶表示装置としては、カーナビゲーション等の車載用の機器、電子ブック、フォトフレーム、産業機器、テレビ、パーソナルコンピュータ、スマートフォン、タブレット端末等が挙げられる。本発明は、例えば、カーナビゲーション等の車載用の機器等の高温環境下、低温環境下の両方で用いられ得る機器に適用されることが好ましい。
なお、下基板において、SEM(Scanning Electron Microscope:走査型電子顕微鏡)等の顕微鏡観察により、本発明の液晶表示装置に係る電極構造等を確認することができる。
(i):上層電極
(ii):下層電極
(iii):下層電極
(iv):上層電極
(v):下層電極
CH:コンタクトホール
TFT:薄膜トランジスタ素子
SL:ソースバスライン
GL:ゲートバスライン
LC:液晶分子
10、210、310、410、510、610、710、810、910、1010、1110:下基板
11、21、211、221、311、321、411、421、511、521、611、621、711、721、811、821、911、921、1011、1021、1111、1121:ガラス基板
13、213、313、413、513、613、713、813、913、1013、1113:絶縁層
20、220、320、420、520、620、720、820、920、1020、1120:上基板
30、230、330、430、530、630、730、830、930、1030、1130:液晶層

Claims (13)

  1. 上下基板、及び、上下基板に挟持された液晶層をもつ液晶表示装置であって、
    該下基板は、電極を備え、
    該電極は、第1電極、該第1電極とは異なる層にある第2電極、及び、該第2電極と同一の層にある第3電極から構成され、
    該液晶層は、電圧無印加時に該上下基板の主面に対して水平に配向する液晶分子を含み、
    該液晶表示装置は、該液晶分子の一部を該主面に対して水平面内で回転させ、かつ、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる電界を該電極によって発生させる駆動操作を実行するように構成されたものである
    ことを特徴とする液晶表示装置。
  2. 前記液晶表示装置は、前記上下基板の主面を平面視したときに、絵素内で、前記液晶分子の一部がある方位に配向する第1領域と、該液晶分子の他の一部が該液晶分子の一部とは異なる方位に配向する第2領域とがそれぞれ2つ以上交互に並ぶように液晶分子を回転させる電界を前記電極によって発生させる駆動操作を実行するように構成されたものである
    ことを特徴とする請求項1に記載の液晶表示装置。
  3. 前記第1電極、前記第2電極、及び、前記第3電極の少なくとも1つは、スリットが設けられており、
    前記液晶表示装置は、前記上下基板の主面を平面視したときに、該スリットと重畳する領域内で、前記液晶分子の一部を該主面に対して水平面内で回転させ、かつ、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる電界を前記電極によって発生させる駆動操作を実行するように構成されたものである
    ことを特徴とする請求項1又は2に記載の液晶表示装置。
  4. 前記駆動操作を実行する第1駆動方式と、
    前記液晶分子を前記上下基板の主面に対して水平面内で1方向に回転させる電界を前記電極によって発生させる駆動操作を実行する第2駆動方式とを切り換えて実行するように構成されたものである
    ことを特徴とする請求項1~3のいずれかに記載の液晶表示装置。
  5. 前記第1電極は、前記第2電極及び前記第3電極よりも液晶層側に配置されている
    ことを特徴とする請求項1~4のいずれかに記載の液晶表示装置。
  6. 前記第2電極及び前記第3電極は、それぞれ、櫛歯状である
    ことを特徴とする請求項1~5のいずれかに記載の液晶表示装置。
  7. 前記上下基板の主面を平面視したときに、前記第2電極の延伸方向及び前記第3電極の延伸方向と、電圧無印加時における液晶分子の配向方向とが、交差する
    ことを特徴とする請求項6に記載の液晶表示装置。
  8. 前記第2電極及び前記第3電極の櫛歯間隔が3μm以上、6μm以下である
    ことを特徴とする請求項6又は7に記載の液晶表示装置。
  9. 前記第1電極は、スリットが設けられているか、又は、櫛歯状である
    ことを特徴とする請求項1~8のいずれかに記載の液晶表示装置。 
  10. 前記上下基板の主面を平面視したときに、前記第1電極の延伸方向と電圧無印加時における液晶分子の配向方向とのなす角度が、-7°以上、7°以下である
    ことを特徴とする請求項9に記載の液晶表示装置。
  11. 前記上下基板の主面を平面視したときに、前記第1電極の延伸方向と、前記第2電極の延伸方向及び前記第3電極の延伸方向とのなす角度が、83~90°である
    ことを特徴とする請求項9又は10に記載の液晶表示装置。
  12. 前記液晶分子は、正の誘電率異方性を有する
    ことを特徴とする請求項1~11のいずれかに記載の液晶表示装置。
  13. 前記下基板は、薄膜トランジスタ素子を備え、
    該薄膜トランジスタ素子は、酸化物半導体を含む
    ことを特徴とする請求項1~12のいずれかに記載の液晶表示装置。
PCT/JP2015/083320 2014-12-04 2015-11-27 液晶表示装置 WO2016088658A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/532,734 US20170343869A1 (en) 2014-12-04 2015-11-27 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-246148 2014-12-04
JP2014246148 2014-12-04

Publications (1)

Publication Number Publication Date
WO2016088658A1 true WO2016088658A1 (ja) 2016-06-09

Family

ID=56091603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083320 WO2016088658A1 (ja) 2014-12-04 2015-11-27 液晶表示装置

Country Status (2)

Country Link
US (1) US20170343869A1 (ja)
WO (1) WO2016088658A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018008584A1 (ja) * 2016-07-06 2018-01-11 シャープ株式会社 液晶表示装置
WO2018012356A1 (ja) * 2016-07-12 2018-01-18 シャープ株式会社 液晶表示装置
DE102017119180B4 (de) 2017-02-15 2022-05-12 Xiamen Tianma Micro-Electronics Co., Ltd Anordnungssubstrat, Anzeigetafel und Anzeigevorrichtung
JP7527472B2 (ja) 2021-03-31 2024-08-02 株式会社ジャパンディスプレイ 液晶光制御装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102542844B1 (ko) * 2016-04-07 2023-06-12 티씨엘 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 표시 장치 및 이의 제조 방법
JP2019148684A (ja) * 2018-02-27 2019-09-05 セイコーエプソン株式会社 液晶装置、電子機器、および液晶装置の駆動方法
JP2020201429A (ja) * 2019-06-12 2020-12-17 三菱電機株式会社 液晶表示装置、及び、その製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007140467A (ja) * 2005-11-22 2007-06-07 Samsung Electronics Co Ltd 表示装置
WO2013001979A1 (ja) * 2011-06-27 2013-01-03 シャープ株式会社 液晶駆動装置及び液晶表示装置
JP2013254052A (ja) * 2012-06-06 2013-12-19 Japan Display Inc 液晶表示装置
JP2014102488A (ja) * 2012-11-20 2014-06-05 Samsung Display Co Ltd 偏光板及びこれを備える液晶表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101088384B1 (ko) * 2004-09-16 2011-12-01 엘지디스플레이 주식회사 액정표시장치용 기판 및 그 제조방법
JP2010122572A (ja) * 2008-11-21 2010-06-03 Sony Corp 表示装置、表示装置の駆動方法、および電子機器
US8355109B2 (en) * 2009-11-24 2013-01-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device comprising a liquid crystal material exhibiting a blue phase and a structure body projecting into the liquid crystal layer
JP5935394B2 (ja) * 2012-03-01 2016-06-15 Nltテクノロジー株式会社 横電界方式の液晶表示装置
CN102789101A (zh) * 2012-07-27 2012-11-21 京东方科技集团股份有限公司 一种蓝相液晶面板和显示装置
US10185188B2 (en) * 2015-03-12 2019-01-22 Sharp Kabushiki Kaisha Liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007140467A (ja) * 2005-11-22 2007-06-07 Samsung Electronics Co Ltd 表示装置
WO2013001979A1 (ja) * 2011-06-27 2013-01-03 シャープ株式会社 液晶駆動装置及び液晶表示装置
JP2013254052A (ja) * 2012-06-06 2013-12-19 Japan Display Inc 液晶表示装置
JP2014102488A (ja) * 2012-11-20 2014-06-05 Samsung Display Co Ltd 偏光板及びこれを備える液晶表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018008584A1 (ja) * 2016-07-06 2018-01-11 シャープ株式会社 液晶表示装置
WO2018012356A1 (ja) * 2016-07-12 2018-01-18 シャープ株式会社 液晶表示装置
US10558085B2 (en) 2016-07-12 2020-02-11 Sharp Kabushiki Kaisha Liquid crystal display device
DE102017119180B4 (de) 2017-02-15 2022-05-12 Xiamen Tianma Micro-Electronics Co., Ltd Anordnungssubstrat, Anzeigetafel und Anzeigevorrichtung
JP7527472B2 (ja) 2021-03-31 2024-08-02 株式会社ジャパンディスプレイ 液晶光制御装置

Also Published As

Publication number Publication date
US20170343869A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
WO2016088658A1 (ja) 液晶表示装置
WO2013146635A1 (ja) 液晶駆動方法及び液晶表示装置
WO2013161636A1 (ja) 液晶表示パネル、液晶表示装置及び薄膜トランジスタアレイ基板
US9804449B2 (en) Liquid crystal display device
JP5728587B2 (ja) 液晶駆動方法及び液晶表示装置
US9645453B2 (en) Liquid crystal panel having a plurality of first common electrodes and a plurality of first pixel electrodes alternately arranged on a lower substrate, and display device incorporating the same
JP5898307B2 (ja) 液晶駆動方法及び液晶表示装置
JPWO2013065529A1 (ja) 薄膜トランジスタアレイ基板及び液晶表示装置
US9766510B2 (en) Pixel unit and array substrate
WO2013058157A1 (ja) 液晶表示パネル及び液晶表示装置
WO2016143686A1 (ja) 液晶表示装置
WO2016080271A1 (ja) 液晶表示装置
WO2016013500A1 (ja) 液晶表示装置
JP5878978B2 (ja) 液晶駆動方法及び液晶表示装置
US10558085B2 (en) Liquid crystal display device
KR100934566B1 (ko) 프린지 인플레인 필드 스위칭 액정표시소자
WO2016031638A1 (ja) 液晶表示装置
US9841643B2 (en) Liquid crystal display apparatus
US10754207B2 (en) Liquid crystal display device
WO2017006789A1 (ja) 液晶表示装置
US10634960B2 (en) Liquid crystal display device
WO2016013499A1 (ja) 液晶表示装置
WO2016006506A1 (ja) 液晶表示装置
WO2016021527A1 (ja) 液晶表示装置
WO2012165312A1 (ja) 液晶表示パネル及び液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865277

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15532734

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15865277

Country of ref document: EP

Kind code of ref document: A1