WO2017006789A1 - 液晶表示装置 - Google Patents
液晶表示装置 Download PDFInfo
- Publication number
- WO2017006789A1 WO2017006789A1 PCT/JP2016/068940 JP2016068940W WO2017006789A1 WO 2017006789 A1 WO2017006789 A1 WO 2017006789A1 JP 2016068940 W JP2016068940 W JP 2016068940W WO 2017006789 A1 WO2017006789 A1 WO 2017006789A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- liquid crystal
- display device
- crystal display
- crystal molecules
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134363—Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134318—Electrodes characterised by their geometrical arrangement having a patterned common electrode
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/40—Arrangements for improving the aperture ratio
Definitions
- the present invention relates to a liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device that performs display by applying an electric field using a plurality of electrodes.
- a liquid crystal display device is configured by sandwiching a liquid crystal display element between a pair of glass substrates or the like, and makes use of the features such as thinness, light weight, and low power consumption to provide car navigation, electronic books, photo frames, industrial equipment, televisions, personal computers. Smartphones, tablet devices, etc. are indispensable for daily life and business. In these applications, liquid crystal display devices of various modes related to electrode arrangement and substrate design for changing the optical characteristics of the liquid crystal layer have been studied.
- a vertical such as a multi-domain vertical alignment (MVA) mode in which liquid crystal molecules having negative dielectric anisotropy are vertically aligned with respect to a substrate surface.
- IPS In-plane switching
- VA alignment
- FFS fringe field switching
- the FFS mode is a liquid crystal mode that is frequently used for smartphones and tablet terminals in recent years.
- the FFS mode liquid crystal display device for example, formed on the first transparent substrate, the first and second transparent insulating substrates facing each other with a predetermined distance through a liquid crystal layer containing a plurality of liquid crystal molecules,
- the unit electrodes are arranged to be insulated from the counter electrode so as to form a fringe field together with the counter electrode made of a transparent conductor and the counter electrode, and are symmetrical about the long side of the pixel.
- FFS having a plurality of upper and lower slits arranged at a predetermined inclination and a pixel electrode made of a transparent conductor
- the liquid crystal display device over de is disclosed (for example, see Patent Document 1.).
- the FFS mode liquid crystal display device described in Patent Document 1 is disclosed to have a wide viewing angle characteristic and to improve the low aperture ratio and transmittance of the IPS mode liquid crystal display device (for example, Patent Document 1). 6 shown in Fig. 1.
- Fig. 6 described in Patent Document 1 shows a planar pixel structure of an FFS mode liquid crystal display device.
- the FFS mode liquid crystal display device described in Patent Document 1 can force the liquid crystal to respond by applying an electric field at the rising edge, but at the falling edge, the electric field application is stopped and the liquid crystal viscoelasticity is allowed to respond. Therefore, the response is slower than that in the vertical alignment mode such as the MVA mode, and there is room for improving the response characteristics.
- FIG. 20 is a schematic cross-sectional view of a liquid crystal display device having a conventional FFS mode electrode structure.
- FIG. 20 shows a structure of a liquid crystal display device.
- An upper layer electrode (iv) and an upper layer electrode (iv) are arranged on a lower substrate 810 on which an upper layer electrode (iv) that is an electrode provided with a slit is arranged.
- a lower electrode (v) that is a planar electrode is disposed with an insulating layer 813 interposed therebetween.
- the upper layer electrode (iv) is applied to a constant voltage at the start-up (for example, the potential difference between the upper layer electrode (iv) and the lower layer electrode (v) is equal to or greater than a threshold value and can respond with a fringe electric field).
- the potential difference between the upper layer electrode (iv) and the lower layer electrode (v) is made less than the threshold value, and the fringe electric field is stopped (weakened) to respond.
- the fringe electric field is generated at the FFS electrode on the lower substrate, and the liquid crystal molecules near the FFS electrode on the lower substrate are rotated in the same direction in the horizontal plane to perform switching at the time of rising. . Further, switching at the time of falling is performed by returning the liquid crystal molecules to the original alignment state by viscoelasticity by cutting the fringe electric field.
- the liquid crystal layer there is a region where the electric field for rotating the liquid crystal molecules is weak, and it takes time to rotate the liquid crystal molecules in the region. At this time, since the liquid crystal molecules rotate in the same direction, distortion due to elastic deformation of the liquid crystal in the horizontal plane is small.
- the response time is slow for both the switching at the rise and the switching at the fall.
- the present inventors have studied various liquid crystal display devices that perform display by applying an electric field using a plurality of electrodes, and have focused on the electrode structure of the lower substrate.
- the conventional FFS mode liquid crystal display device is composed of two layers of electrodes that can apply two different voltages to the electrodes provided on the lower substrate. It is assumed that the electrodes are configured by electrodes to which two different voltages can be applied, and the lower substrate includes a pair of comb-like electrodes.
- the present inventors have found that in such a liquid crystal display device, a high-speed response can be realized in addition to a wide viewing angle (for example, the response is faster than the FFS mode in Comparative Example 2 described later).
- Drive first drive method
- the black floating caused by the fact that the voltage is always applied to the lower layer electrode of the lower substrate.
- the transmittance from being sufficiently lowered during black display and to improve the contrast ratio.
- it is conceivable to reduce the voltage value of the lower layer electrode to prevent black floating if the voltage value of the lower layer electrode is decreased, the alignment of liquid crystal molecules may become unstable, and the target alignment is realized. There was room for ingenuity.
- the present invention has been made in view of the above situation, and an object of the present invention is to provide a liquid crystal display device capable of realizing a high contrast ratio and a wide viewing angle and also realizing a high-speed response.
- the inventors further decided that the width of one specific electrode of the pair of comb-like electrodes is larger than the width of the other electrode.
- the inventors of the present invention have arrived at the present invention by conceiving that the above problems can be solved with this electrode structure.
- one embodiment of the present invention is a liquid crystal display device including an upper and lower substrate and a liquid crystal layer sandwiched between the upper and lower substrates, and the liquid crystal layer is horizontal to the main surface of the upper and lower substrates when no voltage is applied.
- the lower substrate includes a first electrode, a second electrode in a layer different from the first electrode, and a third electrode in a layer different from the first electrode;
- One electrode has a plurality of linear portions, and the second electrode and the third electrode constitute a pair of comb-shaped electrodes, and the pair of comb-shaped electrodes respectively include a trunk portion and the trunk portion.
- at least one contour line of the plurality of linear portions in the first electrode is adjacent to each other in the branch portion of the second electrode and the third electrode.
- the length of the portion intersecting the branch portion of the third electrode and the portion intersecting the branch portion of the third electrode is the length of the portion intersecting the branch portion of the second electrode.
- the liquid crystal display device is configured to perform a driving operation in which the potential difference between the first electrode and the third electrode is equal to or greater than the potential difference between the first electrode and the second electrode. A certain liquid crystal display device may be used.
- Another embodiment of the present invention is a liquid crystal display device including an upper substrate and a liquid crystal layer sandwiched between the upper and lower substrates, and the liquid crystal layer is horizontal with respect to the main surface of the upper and lower substrates when no voltage is applied.
- the lower substrate includes a first electrode, a second electrode in a layer different from the first electrode, and a third electrode in a layer different from the first electrode,
- the first electrode has a plurality of linear portions
- the second electrode and the third electrode constitute a pair of comb-shaped electrodes
- the pair of comb-shaped electrodes respectively include a trunk and the A plurality of branch portions branched from the trunk portion, and when viewed in plan, at least one contour line of the plurality of linear portions in the first electrode includes the branch portion of the second electrode and the third portion adjacent to each other.
- the average width of the third electrode branch portion intersecting with the electrode branch portion is larger than the average width of the second electrode branch portion, and the liquid crystal display
- the liquid crystal display device is configured to perform a driving operation in which a potential difference between the first electrode and the third electrode is equal to or greater than a potential difference between the first electrode and the second electrode. Also good.
- the first electrode instead of performing a driving operation in which the potential difference between the first electrode and the third electrode is greater than or equal to the potential difference between the first electrode and the second electrode, the first electrode The drive operation may be executed in which the polarity of the voltage applied to the second electrode is the same as the polarity of the voltage applied to the second electrode and is opposite to the polarity of the voltage applied to the third electrode.
- the liquid crystal display device of the present invention is different from the invention described in Patent Document 1 in that the lower substrate has an electrode that can apply three types of voltages in at least two layers.
- the first electrode, the second electrode, and the third electrode are usually electrically separated, and these voltages can be individually controlled.
- the first electrode, the second electrode, and the third electrode can be set to different potentials at a threshold voltage or higher.
- the second electrode and the third electrode of the lower substrate constitute a pair of comb-like electrodes, and the second electrode and the third electrode are arranged on the second electrode via an insulating layer or the like. It is preferable that a slit electrode or a comb-like electrode is disposed as one electrode.
- the first electrode is preferably disposed closer to the liquid crystal layer than the second electrode and the third electrode.
- the first electrode is preferably provided with a slit or has a comb shape.
- the second electrode and the third electrode each have a comb shape.
- the length of the portion intersecting with the branch portion of the third electrode is preferably 5.5 ⁇ m or more and 13 ⁇ m or less.
- the average width of the branch portions of the third electrode is preferably 5.5 ⁇ m or more and 13 ⁇ m or less.
- the length of the portion that intersects the branch portion of the third electrode is preferably 2.5 ⁇ m or more than the length of the portion that intersects the branch portion of the second electrode.
- the average width of the branch portions of the third electrode is preferably 2.5 ⁇ m or more larger than the average width of the branch portions of the second electrode.
- an average interval between the branch portion of the second electrode and the branch portion of the third electrode is 2.5 ⁇ m or more and 4.5 ⁇ m or less.
- the driving operation rotates a part of the liquid crystal molecules in a horizontal plane with respect to the main surface of the upper and lower substrates, and another part of the liquid crystal molecules in the horizontal plane with respect to the main surface. It is preferable that an electric field that rotates in a direction opposite to a part of the electrode is generated by an electrode included in the lower substrate.
- an electric field that rotates in a direction opposite to a part of the electrode is generated by an electrode included in the lower substrate.
- a fringe electric field is generated at the FFS electrode of the lower substrate at the time of start-up, and the liquid crystal molecules are rotated in one direction by the fringe electric field.
- the provided electrode is composed of electrodes (the first electrode, the second electrode, and the third electrode described above) that can apply three kinds of voltages in two layers.
- the liquid crystal molecules in a certain region and the liquid crystal molecules in other regions in opposite directions within a horizontal plane.
- an electric field is generated between the second electrode and the third electrode at the time of falling, and the liquid crystal molecules in one region and the liquid crystal molecules in other regions can be rotated in the direction opposite to that at the time of rising in a horizontal plane. preferable.
- the driving operation includes a first region in a pixel in which a part of the liquid crystal molecules is rotated in a horizontal plane with respect to the main surface, and another part of the liquid crystal molecules in a horizontal plane with respect to the main surface. It is preferable that an electric field for rotating the liquid crystal molecules is generated by the electrode provided in the lower substrate so that two or more second regions rotated in a direction opposite to a part of the liquid crystal molecules are alternately arranged. Two or more first regions and two or more second regions are alternately arranged, even if two or more first regions and two or more second regions are alternately arranged in stripes. It may be well arranged alternately in a staggered pattern.
- the first electrode is provided with a slit
- the liquid crystal display device has a part of the liquid crystal molecules with respect to the main surface in a region overlapping the slit when the lower substrate is viewed in plan.
- a driving operation that causes the electrode to generate an electric field that rotates in a horizontal plane and rotates the other part of the liquid crystal molecules in the direction opposite to the part of the liquid crystal molecules in the horizontal plane with respect to the main surface. It is preferably configured to execute.
- the first electrode is provided with a slit
- the liquid crystal display device includes the liquid crystal molecule in a region overlapping with the slit provided in the first electrode when the lower substrate is viewed in plan.
- a part of the liquid crystal molecule is rotated in a horizontal plane with respect to the main surface, and the other part of the liquid crystal molecule is rotated in a direction opposite to the part of the liquid crystal molecule in the horizontal plane with respect to the main surface.
- a part of the liquid crystal molecule is rotated in a horizontal plane with respect to the main surface in a region overlapping with the inter-comb region of the second electrode and the third electrode, and the other one of the liquid crystal molecules It is preferable that a driving operation for generating an electric field for rotating the portion in a horizontal plane with respect to the main surface in a direction opposite to a part of the liquid crystal molecules is generated by the electrode.
- the electrode for driving the liquid crystal may or may not be disposed on the upper substrate.
- the electrode is not disposed. That is, it is one of the preferable forms in the liquid crystal display device of the present invention that the electrodes for driving the liquid crystal are disposed only on the lower substrate.
- the shape of the first electrode is not particularly limited.
- the first electrode is provided with a slit.
- the said 1st electrode is comb-tooth shape.
- an electrode having a comb-like shape is not called an electrode provided with a slit, but is called a comb-like electrode.
- the electrode generates a first driving method for performing the driving operation and an electric field for rotating the liquid crystal molecules in one direction within a horizontal plane with respect to the main surface of the upper and lower substrates. It is preferable that the second driving method for executing the driving operation is switched and executed. Rotating in one direction means that it is substantially rotated in one direction.
- the generation of the electric field by the electrode is not limited as long as the electric field is generated by at least one electrode selected from the first electrode, the second electrode, and the third electrode.
- a voltage is applied to the first electrode, an electric field is generated to rotate the liquid crystal molecules, the voltage applied to the first electrode is reduced during black display, the electric field is weakened or zeroed, and the liquid crystal molecules are rotated in the reverse direction. It is preferable to make it.
- the liquid crystal molecules preferably have positive dielectric anisotropy.
- the lower substrate includes a thin film transistor element, and the thin film transistor element includes an oxide semiconductor.
- the configuration of the liquid crystal display device of the present invention is not particularly limited by other components, and other configurations that are usually used in liquid crystal display devices can be applied as appropriate.
- liquid crystal display device of the present invention a high contrast ratio and a wide viewing angle can be realized, and a high-speed response can be realized.
- FIG. 3 is a schematic plan view showing an electrode structure of a pixel and an initial alignment of liquid crystal molecules in the liquid crystal display device of Example 1.
- FIG. It is a cross-sectional schematic diagram which shows the cross section of the part corresponding to the line segment shown with the dashed-dotted line in FIG. It is a schematic diagram which shows the upper layer electrode (i), lower layer electrode (ii), and lower layer electrode (iii) of Example 1.
- FIG. 6 is a schematic plan view illustrating applied voltages to the electrodes and alignment of liquid crystal molecules during white display in the first drive method of Example 1. It is a simulation result which shows the director distribution and transmittance
- FIG. 6 is a schematic plan view illustrating applied voltages to the electrodes and the alignment of liquid crystal molecules during black display in the first drive method of Example 1.
- FIG. 6 is a voltage relationship diagram illustrating applied voltages to each electrode during white display in the first drive method of Example 1.
- FIG. 6 is a schematic plan view showing applied voltages to each electrode and alignment of liquid crystal molecules during white display in the second drive method of Example 1. It is a simulation result which shows the director distribution and the transmittance
- FIG. 6 is a schematic plan view showing applied voltages to each electrode and the orientation of liquid crystal molecules during black display in the second drive method of Example 1.
- 3 is a schematic plan view illustrating an example of a pixel layout when the liquid crystal display device of Example 1 is TFT-driven.
- FIG. 1 is TFT-driven.
- FIG. 4 is a graph showing voltage-transmittance (VT) characteristics of an upper layer electrode (i) in each of the first driving method and the second driving method of Example 1. It is a graph which shows the normalized transmittance
- FIG. 10 is a schematic plan view showing the voltage applied to each electrode and the alignment of liquid crystal molecules during white display in the first drive method of Examples 2 to 9. 6 is a graph showing Tr + Td (ms) / transmittance (%) with respect to the average width a ( ⁇ m) of the third electrode of Examples 1 to 6 and Comparative Example 1.
- 6 is a graph showing Tr + Td (ms) / transmittance (%) with respect to the average distance c ( ⁇ m) between the second electrode and the third electrode of Examples 1, 7 to 9 and Comparative Example 1.
- 6 is a graph showing a contrast ratio with respect to an average width a ( ⁇ m) of a third electrode of Examples 1 to 6 and Comparative Example 1.
- 6 is a graph showing the contrast ratio with respect to the average distance c ( ⁇ m) between the second electrode and the third electrode of Examples 1, 7 to 9 and Comparative Example 1.
- 6 is a schematic cross-sectional view showing an electrode structure of a liquid crystal display device of Comparative Example 1 and initial alignment of liquid crystal molecules.
- FIG. 10 is a voltage relationship diagram showing applied voltages to each electrode during white display in the first drive method of Comparative Example 2. It is a plane schematic diagram which shows the applied voltage to each electrode at the time of the white display of the 2nd drive system of the comparative example 2, and the orientation of a liquid crystal molecule. It is a simulation result which shows the director distribution and transmittance
- 3 is a schematic diagram showing an electric field generated in Example 1.
- FIG. 10 is a schematic diagram showing an electric field generated in Comparative Example 2.
- FIG. 10 is a schematic diagram showing an electric field generated in Comparative Example 2.
- a pixel may be a picture element (sub-pixel) unless otherwise specified.
- a picture element (sub pixel) refers to a region showing any single color, such as R (red), G (green), B (blue), or yellow (Y).
- a pair of substrates sandwiching the liquid crystal layer is also referred to as an upper substrate and a lower substrate.
- a substrate on the display surface side is also referred to as an upper substrate
- a substrate on the opposite side to the display surface is also referred to as a lower substrate.
- the electrode on the display surface side is also referred to as an upper layer electrode
- the electrode on the opposite side to the display surface side is also referred to as a lower layer electrode.
- the member and part which exhibit the same function are attached
- (i) shows a slit electrode on the upper layer (liquid crystal layer side) of the lower substrate, and (ii) shows a comb on the lower layer (opposite side of the liquid crystal layer) of the lower substrate. A tooth-like electrode is shown, and (iii) shows another comb-like electrode on the lower layer of the lower substrate.
- the upper layer electrode (i) may be a comb-like electrode.
- the lower layer electrode (ii) and the lower layer electrode (iii) face each other when the substrate main surface is viewed in plan.
- the electrode of the lower substrate means at least one of the upper layer electrode (i), the lower layer electrode (ii), and the lower layer electrode (iii).
- the slit electrode refers to an electrode provided with a slit, and usually includes a plurality of linear portions (linear electrode portions).
- region in which the linear electrode is not formed is mentioned, for example.
- the upper layer electrode (i), the lower layer electrode (ii), and the lower layer electrode (iii) can usually have different potentials at a threshold voltage or higher.
- the threshold voltage means a voltage value that gives a transmittance of 5% when the transmittance in the bright state is set to 100%.
- the potential different from the threshold voltage can be any voltage as long as it can realize a driving operation with a potential different from the threshold voltage. This makes it possible to suitably control the electric field applied to the liquid crystal layer. Become.
- the upper layer electrode (i) is a pixel electrode and the lower layer electrode (ii) and the lower layer electrode (iii) are common electrodes, the upper layer electrode (i) may have a different potential.
- a TFT thin film transistor element
- an AC voltage AC voltage
- AC driving AC driving
- the lower layer electrode (ii) and the lower layer electrode that are alternately connected to each other by applying an alternating voltage to the liquid crystal by another TFT, or are commonly connected for each line, or commonly connected in all pixels.
- the AC voltage is applied to the liquid crystal by applying the AC voltage with the TFT corresponding to the line or all pixels, or the DC voltage without using the TFT for the lower electrode (ii) and the lower electrode (iii).
- DC The liquid crystal by applying pressure) may or DC drive (DC drive).
- the generation of the electric field by the electrode means that the electric field is generated by at least one electrode selected from the first electrode, the second electrode, and the third electrode.
- the display device When the display device is turned on, an electric field is always generated between the second electrode and the third electrode, the voltage of the first electrode is increased during white display to rotate the liquid crystal molecules, and the first electrode during black display is rotated. It is preferable to rotate the liquid crystal molecules in the reverse direction by reducing the voltage.
- the angle between the extending direction of the linear portion of the upper electrode (i) and the alignment direction of the liquid crystal molecules the alignment direction of the liquid crystal molecules is on the right with respect to the extending direction of the linear portion of the upper electrode (i). When making a turning angle, it makes a positive angle, and when making a counterclockwise angle with respect to the extending direction of the linear portion of the upper electrode (i), it makes a negative angle.
- two layers of electrodes having a lower layer as a comb-like electrode and an upper layer as a slit electrode (or a comb-like electrode) may be disposed via an insulating film.
- a lateral electric field is always applied between the lower electrodes (opposite the liquid crystal layer side) of the two layers of electrodes, and the upper layer side slit electrode (or the comb electrodes) is applied. It is preferable to drive by applying a voltage.
- rising means a period during which the display state changes from a dark state (black display) to a light state (white display).
- the term “falling” means a period during which the display state changes from a bright state (white display) to a dark state (black display).
- the initial alignment of liquid crystal refers to the alignment of liquid crystal molecules when no voltage is applied.
- a part of the liquid crystal molecules means a part of the liquid crystal molecules included in the liquid crystal layer.
- the other part of the liquid crystal molecule which means a part of the liquid crystal molecule other than the part of the liquid crystal molecule among the liquid crystal molecules contained in the liquid crystal layer.
- FIG. 1 is a schematic plan view illustrating an electrode structure of a pixel and an initial alignment of liquid crystal molecules in the liquid crystal display device of Example 1.
- the upper layer electrode (i) includes a plurality of linear portions when the lower substrate is viewed in plan.
- the plurality of linear portions are substantially parallel to each other, and slits substantially parallel to each other are provided between the linear portions and the linear portions.
- the upper electrode (i) is provided with a slit.
- the upper electrode (i) may be a comb-like electrode instead of the slit electrode. It is also one of the preferred embodiments of the present invention that the upper electrode (i) has a comb shape.
- the lower layer electrode (ii) and the lower layer electrode (iii) are each composed of a trunk portion and branch portions extending from the trunk portion when the lower substrate is viewed in plan.
- the branch portions are a plurality of linear electrode portions that are substantially parallel to each other.
- the lower layer electrode (ii) and the lower layer electrode (iii) each have a comb-teeth shape.
- the upper electrode (i), the lower electrode (ii), and the lower electrode (iii) each have a linear portion.
- the structures of the upper layer electrode (i), the lower layer electrode (ii), and the lower electrode (iii) shown in FIG. 1 are examples, and the shape is not limited to this, and electrodes having various structures can be used.
- the electrode width L of the linear portion is 3 ⁇ m, and the electrode interval S1 between the adjacent linear portions is 6 ⁇ m.
- the electrode width L is preferably 2 ⁇ m or more and 7 ⁇ m or less, for example.
- interval S1 is 2 micrometers or more and 14 micrometers or less, for example.
- the ratio (L / S1) between the electrode width L and the electrode interval S1 is preferably 0.1 to 1.5.
- a more preferable lower limit value of the ratio L / S1 is 0.2, and a more preferable upper limit value is 1.2.
- each branch part of the lower layer electrode (ii) and the lower layer electrode (iii) is an important point of the present invention. This will be described in detail later with reference to FIG.
- the extending directions of the branch portions of the lower electrode (ii) and the lower electrode (iii) were 90 ° with respect to the extending direction of the linear portion of the upper electrode (i).
- the two comb-like electrodes of the lower substrate are 90 ° apart from the extension direction of the linear portion of the upper layer electrode (i) when the extension direction of the linear portion which is a branch portion of the lower substrate is viewed in plan view. It is arranged to intersect at an angle of.
- the angle is preferably 30 ° or more and 90 ° or less, more preferably 45 ° or more, further preferably 60 ° or more, and particularly preferably 75 ° or more. With such an electrode structure, the response time at the rise and fall can be further shortened.
- the branch part of the lower electrode (ii) of the lower substrate is disposed between the branch part of the lower electrode (iii).
- the electrode interval between the adjacent branch portions in the lower layer electrode (ii) is S2.
- the electrodes (upper layer electrode (i), lower layer electrode (ii), and lower layer electrode (iii)) of each layer are arranged in a positional relationship as shown in FIG.
- the upper layer electrode (i) of the lower substrate is provided with slits
- the lower layer electrode (ii) and the lower layer electrode (iii) of the lower substrate are each comb-like, but the upper layer electrode (i),
- the lower layer electrode (ii) and the lower layer electrode (iii) may each have a comb shape.
- Example 1 two linearly polarizing plates having the polarization axis shown in FIG. 1 are used.
- one linear polarizing plate is disposed on the outer side of the upper and lower substrates (on the side opposite to the liquid crystal layer side).
- the polarization axis of the linear polarizing plate on the upper and lower substrates is a crossed Nicols arrangement perpendicular or parallel to the major axis of the liquid crystal molecules LC when no voltage is applied (initial alignment orientation of the liquid crystal molecules), A normally black mode liquid crystal display device was obtained.
- the upper and lower substrates each have a linearly polarizing plate.
- the upper layer electrode (i) is electrically connected to the drain electrode extending from the thin film transistor element TFT through the contact hole CH. At a timing selected by the gate bus line GL, a voltage supplied from the source driver through the source bus line SL is applied to the upper layer electrode (i) that drives the liquid crystal through the thin film transistor element TFT.
- FIG. 2 is a schematic cross-sectional view showing a cross section of a portion corresponding to a line segment indicated by a one-dot chain line in FIG.
- the lower substrate 10 including the glass substrate 11, the liquid crystal layer 30, and the upper substrate 20 including the glass substrate 21 are observed from the back side of the liquid crystal display device.
- the layers are laminated in this order toward the surface side.
- the liquid crystal display device of Example 1 horizontally aligns the liquid crystal molecules LC when the potential difference between the electrodes of the upper and lower substrates is less than the threshold voltage (in FIG. 2, the liquid crystal molecules LC are Oriented from the front to the front.)
- the lower layer electrode (ii) (not shown in FIG. 2) and the lower layer electrode (iii) of the lower substrate 10 are comb-like electrodes, respectively, as described above, and the lower layer electrode (ii) and the lower layer electrode (iii).
- the upper electrode (i), which is a slit electrode, is disposed on the insulating layer 13.
- the upper substrate 20 is not provided with a liquid crystal driving electrode, and only the lower substrate 10 is provided with a liquid crystal driving electrode.
- the insulating layer 13 has a dielectric constant of 6.9 and an average thickness of 0.3 ⁇ m.
- the insulating layers 13 are each composed of a nitride film SiN, but instead, an oxide film SiO 2 , an acrylic resin, or a combination of these materials can be used.
- a horizontal alignment film (not shown) is provided on each of the upper and lower substrates on the liquid crystal layer side, and the major axis of the liquid crystal molecules when no voltage is applied forms an angle of 3 ° with the extending direction of the linear portion of the upper electrode (i). Were horizontally oriented.
- the liquid crystal layer and the upper electrode (i) are adjacent to each other through a horizontal alignment film.
- the horizontal alignment film is not limited as long as the liquid crystal molecules are aligned horizontally with respect to the film surface.
- the liquid crystal includes liquid crystal molecules that are aligned in a horizontal direction with respect to the main surface of the substrate when no voltage is applied.
- the orientation in the horizontal direction with respect to the main surface of the substrate means that the liquid crystal molecules are aligned substantially in the horizontal direction with respect to the main surface of the substrate in the technical field of the present invention and can exhibit optical effects. I just need it.
- the liquid crystal is substantially composed of liquid crystal molecules aligned in a horizontal direction with respect to the main surface of the substrate when no voltage is applied.
- the “when no voltage is applied” may be anything as long as it can be said that substantially no voltage is applied in the technical field of the present invention.
- Such a horizontal alignment type liquid crystal is an advantageous system for obtaining a wide viewing angle characteristic and the like.
- the liquid crystal layer includes liquid crystal molecules having positive dielectric anisotropy.
- the liquid crystal molecules having positive dielectric anisotropy are aligned in a certain direction when an electric field is applied, and the alignment control is easy, and a faster response can be achieved.
- the dielectric anisotropy ⁇ of the liquid crystal is preferably 3 or more, more preferably 4 or more, and still more preferably 5 or more. Further, the dielectric anisotropy ⁇ of the liquid crystal is preferably 30 or less, more preferably 20 or less, and still more preferably 10 or less. In the present specification, the dielectric anisotropy ⁇ of liquid crystal means that measured by an LCR meter.
- the average thickness (cell gap) d LC of the liquid crystal layer 30 is 3.2 ⁇ m.
- the average thickness d LC of the liquid crystal layer means a value calculated by averaging the thickness of the entire liquid crystal layer in the liquid crystal display device.
- d LC ⁇ ⁇ n is preferably 100 nm or more, more preferably 150 nm or more, and further preferably 200 nm or more. Further, d LC ⁇ ⁇ n is preferably 550 nm or less, more preferably 500 nm or less, and further preferably 450 nm or less.
- a liquid crystal driving method using the liquid crystal display device of this embodiment will be described.
- driving capable of high-speed response by switching the voltage application method, two types of driving, that is, driving capable of high-speed response and driving realizing higher transmittance than that driving can be realized with the same configuration.
- driving capable of realizing high-speed response is referred to as a first driving method
- driving realizing higher transmittance is referred to as a second driving method.
- gradation display is performed by changing the voltage of the upper electrode (i).
- the lower electrode (ii) and the lower electrode (iii) are applied with the amplitude center being 0 V and the polarity reversed so that the polarities of the lower electrode (iii) and the lower electrode (iii) are opposite to each other.
- the upper electrode (i) is driven by applying a voltage corresponding to the gradation with the polarity reversed.
- the polarity of the voltage applied to the upper electrode (i) is the same as the polarity of the voltage applied to the lower electrode (ii), and the voltage applied to the lower electrode (iii).
- the driving operation in which the potential difference between the upper layer electrode (i) and the lower layer electrode (iii) is greater than or equal to the potential difference between the upper layer electrode (i) and the lower layer electrode (ii) is performed. It is also configured to execute. The latter driving operation is executed even when the polarity of the voltage applied to the upper electrode (i), the polarity of the voltage applied to the lower electrode (ii), and the polarity of the voltage applied to the lower electrode (iii) are the same. it can.
- the voltage may be symmetrically applied to the lower layer electrode (ii) and the lower layer electrode (iii) with an amplitude center of 6V and an amplitude of 0-12V with the amplitude center as the center.
- the lower layer electrode (ii) and the lower layer electrode (iii) are both set to 0 V, and the voltage corresponding to the gradation is inverted and applied to the upper layer electrode (i), whereby the upper layer electrode (i) A liquid crystal is driven by generating a fringe electric field between the lower electrode (ii) and the lower electrode (iii).
- FIG. 3 is a schematic diagram illustrating the upper layer electrode (i), the lower layer electrode (ii), and the lower layer electrode (iii) of Example 1.
- the electrode width of the branch portion of the lower layer electrode (ii) (the length of the portion where the outline of the upper layer electrode (i) intersects the branch portion of the lower layer electrode (ii)) is 3 ⁇ m
- the lower layer electrode (iii) Electrode width (the length of the portion where the contour line of the upper layer electrode (i) intersects the branch portion of the lower layer electrode (iii)) is 8 ⁇ m, the branch portion of the lower layer electrode (ii) and the lower layer electrode (iii) The distance between the electrodes is 3.5 ⁇ m.
- At least one contour line of the plurality of linear portions in the upper layer electrode (i) intersects the branch portion of the lower layer electrode (ii) and the branch portion of the lower layer electrode (iii) that are adjacent to each other.
- the length of the portion where the contour line intersects the branch portion of the lower layer electrode (iii) is larger than the length of the portion intersecting the branch portion of the lower layer electrode (ii) or the branch of the lower layer electrode (iii)
- the average width of the portion is larger than the average width of the branches of the lower electrode (ii).
- the contrast ratio of the liquid crystal display device of the present invention can be improved.
- the upper layer electrode (i), the lower layer electrode (ii), and the lower layer electrode (iii) may be interchanged in the vertical relationship.
- the length of the portion intersecting the contour line or the average electrode width in the branch portion of the lower layer electrode (ii) is preferably 2.5 ⁇ m or more and 4.5 ⁇ m or less.
- the length of the portion intersecting the contour line or the average electrode width in the branch portion of the lower layer electrode (iii) is preferably 5.5 ⁇ m or more, and preferably 13 ⁇ m or less.
- the average electrode interval between the branch part of the lower electrode (ii) and the branch part of the lower electrode (iii) is preferably 2.5 ⁇ m or more, and more preferably 4.5 ⁇ m or less.
- Each interval is an average value in the picture element.
- interval are respectively substantially the same within a pixel.
- FIG. 4 is a schematic plan view illustrating the voltage applied to each electrode and the orientation of liquid crystal molecules during white display in the first driving method of Example 1.
- FIG. 5 is a simulation result showing the director distribution and transmittance distribution corresponding to FIG.
- FIG. 6 is a schematic plan view illustrating the voltage applied to each electrode and the alignment of liquid crystal molecules during black display in the first driving method of Example 1.
- FIG. 7 is a voltage relationship diagram illustrating the voltage applied to each electrode during white display in the first drive method of the first embodiment. 4 to 7 show portions corresponding to the linear portion of the upper layer electrode (i) and the portion surrounded by the branch portion of the lower layer electrode (ii) in FIG. 1, respectively.
- the lower layer electrode (ii) and the lower layer electrode (iii) are always applied by reversing the voltage with the amplitude center being 0 V so that the polarities are opposite to each other. Let it always occur.
- the absolute value of the voltage applied to the lower layer electrode (ii) and the lower layer electrode (iii) is always constant. Then, the voltage is reversed and applied to the upper electrode (i) so that the voltage has the same polarity as the voltage applied to the lower electrode (ii), so that the liquid crystal molecules are staggered in different directions in the horizontal plane.
- the liquid crystal molecules are rotated in different directions in the region 1 surrounded by the one-dot chain line and the region 2 surrounded by the two-dot chain line. It can be seen that 2 exists alternately.
- the liquid crystal molecules rotate alternately in different directions in the horizontal plane.
- the liquid crystal molecules rotate clockwise in the horizontal plane
- the region 2 (second region) liquid crystal molecules rotate counterclockwise in the horizontal plane.
- the operation of liquid crystal molecules at the time of falling will be described.
- the first driving method since the voltage is always applied to the lower layer electrode (ii) and the lower layer electrode (iii) even at the falling response, when the voltage of the upper layer electrode (i) is weakened or zeroed, The transverse electric field generated between the lower electrode (ii) and the lower electrode (iii) forcibly rotates the liquid crystal molecules in a direction to return to the initial alignment. Further, in the case of the first driving method, bend alignment and splay alignment occur in the horizontal plane, and a large restoring force also acts due to the elastic strain induced thereby. Therefore, the falling response is also speeded up. As shown in FIG.
- the upper layer electrode (i) is 0 V during black gradation display, and 1.3 V / ⁇ 1.3 V is applied to the lower layer electrode (ii). -1.3V / 1.3V is applied to the lower layer electrode (iii).
- the first driving method there are at least two consecutive regions where the liquid crystal molecules rotate alternately in different directions in the plane. Thus, it is preferable that two or more regions where the liquid crystal molecules rotate in different directions exist continuously in a plane.
- the potential of the upper electrode (i) is set to 0V.
- other electrodes lower electrode (ii), lower layer in Example 1 are used except that the voltage of the pixel electrode (upper layer electrode (i) in Example 1) is reduced to zero from the voltage at the maximum transmittance.
- the potential of the electrode (iii)) can be the same as that during white display in the first drive method, and the preferred range thereof is the same as that during white display in the first drive method.
- the lower electrode (ii) of the lower substrate is 1.3 V / ⁇ 1.3 V and the lower electrode (iii) is ⁇ 1.3 V / 1 in both white display and black display. .3V.
- the lower layer electrode (ii) and the lower layer electrode (iii) of the lower substrate have an absolute value of a constant voltage both during white display and black display.
- the upper layer electrode (i) is a pixel electrode, and the voltage applied to the upper layer electrode (i) is changed to change the lower layer electrode (ii) and the lower layer electrode (ii).
- the electrode (iii) is applied to a voltage having a constant magnitude, and such a voltage application method is one of the preferred embodiments in the liquid crystal display device of the present invention.
- the upper and lower positional relationship of each electrode may be changed as appropriate.
- FIG. 8 is a schematic plan view illustrating the voltage applied to each electrode and the orientation of liquid crystal molecules during white display in the second driving method of Example 1.
- FIG. 9 is a simulation result showing the director distribution and transmittance distribution corresponding to FIG.
- FIG. 10 is a schematic plan view showing the voltage applied to each electrode and the alignment of liquid crystal molecules during black display in the second drive method of Example 1.
- FIG. 8 to 10 show portions corresponding to the linear portion of the upper layer electrode (i) and the portion surrounded by the branch portion of the lower layer electrode (ii) in FIG. 1, respectively.
- the lower layer electrode (ii) and the lower layer electrode (iii) are both set to 0 V, and then the polarity is inverted to the upper layer electrode (i) and a voltage is applied to the upper layer electrode (i).
- a fringe electric field is generated between the lower electrode (ii) and the lower electrode (iii), and liquid crystal molecules rotate in the same direction in response to the electric field.
- 5 V / -5 V is applied to the upper layer electrode (i) during white gradation display.
- the liquid crystal molecules rotate in the same direction, so that a high transmittance is obtained as a whole as compared with the first driving method.
- the voltage of the upper layer electrode (i) varies depending on the display, but the upper limit is preferably 10V, more preferably 8V, and 7V. More preferably it is.
- the operation of liquid crystal molecules at the time of falling will be described.
- the liquid crystal molecules are rotated so as to return toward the alignment treatment direction (anchoring) by the restoring force of the liquid crystal molecules.
- the voltage applied to the upper layer electrode (i) is 0 V during black display.
- the voltage applied to the other electrodes (lower layer electrode (ii) and lower layer electrode (iii)) is 0 V, which is the same as in white display in the second drive method. It should be noted that the voltage applied to the upper layer electrode (i), the lower layer electrode (ii), and the lower layer electrode (iii) may be less than the threshold voltage during black display in the second driving method.
- FIG. 11 is a schematic plan view illustrating an example of a pixel layout when the liquid crystal display device of Example 1 is TFT-driven. Note that FIG. 11 is an example, and the electrode structure, wiring, and the like are not limited to this shape.
- the lower electrode (ii) and the lower electrode (iii) are scan-driven for each line (gate bus line or the like), for example, because the applied voltage differs between the first driving method and the second driving method.
- a thin film transistor element including an oxide semiconductor is preferably used as the thin film transistor element in the liquid crystal display device of Example 1 from the viewpoint of the transmittance improvement effect.
- An oxide semiconductor shows higher carrier mobility than amorphous silicon. As a result, the area of the transistor occupying one pixel can be reduced, so that the aperture ratio increases and the light transmittance per pixel can be increased. Therefore, by using a thin film transistor element containing an oxide semiconductor, the effect of improving the contrast ratio, which is an effect of the present invention, can be obtained more remarkably.
- the lower substrate preferably includes a thin film transistor element, and the thin film transistor element preferably includes an oxide semiconductor.
- Embodiment 1 can be applied to any of a transmissive, reflective, and transflective liquid crystal display device. The same applies to the embodiments described later.
- FIG. 12 is a graph showing the voltage-transmittance (VT) characteristics of the upper layer electrode (i) in each of the first drive method and the second drive method in Example 1.
- VT voltage-transmittance
- the second drive method maximum transmittance 34.5%) has a higher maximum transmittance than the first drive method (maximum transmittance 24.2%), and can be switched from the first drive method to the second drive method. It was found that the transmittance was improved.
- the lower substrate was a two-layer electrode.
- the electrode included in the lower substrate is composed of an electrode provided with an upper slit and a pair of lower comb-like electrodes, respectively, according to a preferred embodiment of the liquid crystal display device of the present invention.
- the liquid crystal display device that generates the electric field according to the first driving method can exhibit the effects of the present invention.
- a pair of comb-like electrodes is used instead of the slit electrodes. It may be used.
- a liquid crystal molecule is rotated in a horizontal plane by generating a transverse electric field between the pair of comb-like electrodes.
- the relationship between the alignment direction of the liquid crystal molecules and the electrode arrangement may be considered by replacing the extending direction of the linear portion of the slit electrode included in the FFS electrode with the extending direction of the branch portions of the pair of comb-like electrodes.
- the upper and lower substrates included in the liquid crystal display device of Example 1 are a pair of substrates for sandwiching liquid crystal.
- an insulating substrate such as glass or resin is used as a base, and wiring, electrodes, color filters, and the like are provided on the insulating substrate. It is formed by making as needed.
- the liquid crystal display device of Example 1 can appropriately include a member (for example, a light source) included in a normal liquid crystal display device.
- the liquid crystal display device according to the first embodiment preferably drives the liquid crystal by an active matrix driving method. The same applies to the embodiments described later.
- FIG. 13 is a graph showing the normalized transmittance with respect to time at the rise of Example 1 and Comparative Example 1.
- FIG. 14 is a graph showing the normalized transmittance with respect to time at the fall of Example 1 and Comparative Example 1.
- Comparative Example 1 relates to a conventional FFS mode liquid crystal display device, and the configuration thereof will be described later.
- Table 2 shows the response time and transmittance of Example 1 and Comparative Example 1.
- Tr + Td the value of Tr + Td when the response time when the transmittance changes from 10% to 90% is Tr and the response time when the transmittance changes from 90% to 10% is Td is described.
- Example 1 The response time in Example 1 is a value in the first driving method.
- the transmittance in Example 1 is a value obtained in the second driving method.
- Example 13 and 14 show the response simulation results of Example 1 and Comparative Example 1.
- FIG. It can be seen that Example 1 is faster than Comparative Example 1 for both the rising response and the falling response.
- Response time / transmittance was calculated as an index to confirm the degree of compatibility between high-speed response and high transmittance. The smaller this value is, the higher the speed response and the higher transmittance can be achieved. Since Example 1 has a smaller response time / transmittance than Comparative Example 1, it can be said that it is superior to Comparative Example 1 as a drive that can achieve both high-speed response and high transmittance.
- FIG. 15 is a schematic plan view showing the voltage applied to each electrode and the orientation of liquid crystal molecules during white display in the first drive method of Examples 2 to 9.
- the a and c values shown in FIG. 15 were changed as shown in Table 3 below (the b value was fixed at 3 ⁇ m). All other conditions are the same as in Example 1.
- the value a shown in FIG. 15 indicates the length of the portion where at least one contour line of the plurality of linear portions in the upper layer electrode (i) intersects the branch portion of the lower layer electrode (iii). Further, the b value shown in FIG.
- Tr + Td the value of Tr + Td when the response time when the transmittance changes from 10% to 90% is Tr and the response time when the transmittance changes from 90% to 10% is Td is described.
- Response time / transmittance was calculated as an index for confirming the degree of compatibility between high-speed response and high transmittance. The smaller this value is, the higher the speed response and the higher transmittance can be achieved.
- Table 5 since the response times / transmittance values of Examples 2 to 9 are smaller than those of Comparative Example 1, as a drive that can achieve both high-speed response and high transmittance, it is more suitable than Comparative Example 1. It can be said that it is excellent.
- FIG. 16 is a graph showing Tr + Td (ms) / transmittance (%) with respect to the average width a ( ⁇ m) of the third electrodes of Examples 1 to 6 and Comparative Example 1.
- FIG. 17 is a graph showing Tr + Td (ms) / transmittance (%) with respect to the average distance c ( ⁇ m) between the second electrode and the third electrode in Examples 1, 7 to 9, and Comparative Example 1.
- FIG. 18 is a graph showing the contrast ratio with respect to the average width a ( ⁇ m) of the third electrodes of Examples 1 to 6 and Comparative Example 1.
- FIG. 19 is a graph showing the contrast ratio with respect to the average distance c ( ⁇ m) between the second electrode and the third electrode in Examples 1, 7 to 9, and Comparative Example 1. 16 and 17, the smaller Tr + Td (ms) / transmittance (%) is better.
- the contrast ratio (CR) is preferably as large as possible.
- FIGS. A graph of the above table is shown in FIGS. From the relationship between the a value, Tr + Td / transmittance, and contrast ratio, the range of the a value where the structure proposed in the present invention exhibits excellent performance is 5.5 ⁇ m ⁇ a ⁇ 13 ⁇ m. Further, since the b value is fixed at 3 ⁇ m, it can be said that the range of the ab value exhibiting excellent performance is 2.5 ⁇ m ⁇ ab ⁇ 10 ⁇ m. From the relationship between the c value, Tr + Td / transmittance, and contrast ratio, the range of the c value where the structure proposed in the present invention exhibits excellent performance is 2.5 ⁇ m ⁇ c ⁇ 4.5 ⁇ m.
- the c value is preferably 2.5 ⁇ m or more for manufacturing reasons such as yield, the c value is set to 2.5 ⁇ m or more. Note that the smaller the b value, the better the characteristics. However, for manufacturing reasons such as yield, it is preferably 2.5 ⁇ m or more, and is preferably as small as possible.
- FIG. 20 is a schematic cross-sectional view showing the electrode structure of the liquid crystal display device of Comparative Example 1 and the initial alignment of liquid crystal molecules.
- FIG. 20 is also a schematic cross-sectional view showing an example of an electrode structure of a conventional FFS mode liquid crystal display device.
- FIG. 20 is a cross-sectional view taken along the alternate long and short dash line shown in FIG.
- the lower layer electrode (v) of the lower substrate 810 having the glass substrate 811 is a planar electrode
- the upper layer electrode (iv) that is a slit electrode is disposed through the insulating layer 813.
- a pair of comb-like electrodes may be used instead of the slit electrodes in the upper layer electrode (iv) of the lower substrate.
- the upper substrate 820 having the glass substrate 821 is not provided with an electrode for liquid crystal control.
- a horizontal alignment film (not shown) is provided on each of the upper and lower substrates on the liquid crystal layer 830 side, and the liquid crystal molecules when no voltage is applied have an azimuth of 5 with respect to the extending direction of the linear portion of the upper electrode (iv). It was horizontally aligned to be A polarizing plate (not shown) was provided on the opposite side of the upper and lower substrates to the liquid crystal layer side. A linearly polarizing plate is used as the polarizing plate, and the polarizing axis of the polarizing plate is vertically or parallel to the long axis of the liquid crystal molecules when no voltage is applied between the upper and lower substrates, and a normally black mode liquid crystal display device did.
- the liquid crystal material and its thickness were the same as those in Example 1.
- the electrode width of the linear portion is 3 ⁇ m, and the electrode interval between the adjacent linear portions is 6 ⁇ m.
- the dielectric constant ⁇ of the insulating layer 813 is 6.9.
- the liquid crystal display device of Comparative Example 1 is the same as the corresponding member of the liquid crystal display device of Example 1 described above, for example, the alignment film material, the alignment film processing method, and the insulating film material.
- Comparative Example 1 performs switching at the time of rising by generating a fringe electric field between the upper layer electrode (iv) and the lower layer electrode (v) of the lower substrate and rotating the liquid crystal molecules near the lower substrate in the same direction in the horizontal plane. ing. Further, switching at the time of falling is performed by weakening or setting the fringe electric field to zero and returning the liquid crystal molecules to the original alignment state by viscoelasticity. However, in the liquid crystal layer, there is a region where the electric field for rotating the liquid crystal molecules is weak, and it takes time to rotate the liquid crystal molecules in the region. At this time, since the liquid crystal molecules rotate in the same direction, distortion due to elastic deformation of the liquid crystal in the horizontal plane is small.
- the response time is slow for both the switching at the rise and the switching at the fall.
- FIG. 21 is a schematic plan view showing the voltage applied to each electrode and the orientation of liquid crystal molecules during white display of the liquid crystal display device of Comparative Example 1.
- FIG. 22 is a schematic plan view showing the voltage applied to each electrode and the orientation of liquid crystal molecules when the liquid crystal display device of Comparative Example 1 displays black. 21 and 22 show the principle of the voltage application of Comparative Example 1 when applied. In the initial orientation, the liquid crystal molecules are determined in a direction that forms an angle of 5 ° with the extending direction of the linear portion of the upper electrode (iv) that is the pixel electrode, as described above.
- the upper layer electrode (i) includes a plurality of linear portions when the lower substrate is viewed in plan.
- the plurality of linear portions are substantially parallel to each other, and slits substantially parallel to each other are provided between the linear portions and the linear portions.
- the lower layer electrode (ii) and the lower layer electrode (iii) are each composed of a trunk portion and branch portions extending from the trunk portion when the lower substrate is viewed in plan.
- the branch portions are a plurality of linear electrode portions that are substantially parallel to each other.
- the extending direction of the branch portions of the lower layer electrode (ii) and the lower layer electrode (iii) was 90 ° with respect to the extending direction of the linear portion of the upper layer electrode (i).
- the electrode width of the linear portion is 3 ⁇ m, and the electrode interval between the adjacent linear portions is 6 ⁇ m.
- the electrode width of the linear part is 3 ⁇ m, and the electrode interval between the adjacent linear part and the linear part Is 3 ⁇ m.
- FIG. 23 is a schematic plan view showing the voltage applied to each electrode and the orientation of liquid crystal molecules during white display in the first drive method of Comparative Example 2.
- FIG. 24 is a simulation result showing the director distribution and transmittance distribution corresponding to FIG.
- FIG. 25 is a schematic plan view showing the voltage applied to each electrode and the orientation of liquid crystal molecules during black display in the first drive method of Comparative Example 2.
- FIG. 26 is a voltage relationship diagram showing voltages applied to the electrodes during white display in the first drive method of Comparative Example 2.
- the major axis of the liquid crystal molecules when no voltage is applied is an orientation that forms 3 ° with the extending direction of the linear portion of the upper electrode (i).
- the lower layer electrode (ii) and the lower layer electrode (iii) are always applied by reversing the voltage with the amplitude center being 0 V so that the polarities are opposite to each other. Let it always occur.
- the absolute value of the voltage applied to the lower layer electrode (ii) and the lower layer electrode (iii) is always constant. Then, by applying a voltage to the upper electrode (i) with the polarity reversed, an electric field is generated that alternately rotates the liquid crystal molecules in different directions in the horizontal plane, and the liquid crystal molecules bend in the horizontal plane by the electric field.
- the liquid crystal molecules rotate in different directions in the region 1 surrounded by the one-dot chain line and the region 2 surrounded by the two-dot chain line. It can be seen that 2 exists alternately.
- the liquid crystal molecules rotate alternately in different directions in the horizontal plane.
- the liquid crystal molecules rotate clockwise in the horizontal plane
- the liquid crystal molecules rotate counterclockwise in the horizontal plane.
- the operation of liquid crystal molecules at the time of falling will be described.
- the liquid crystal molecules react with the lateral electric field generated by the lower layer electrode (ii) and the lower layer electrode (iii), and the initial orientation direction is changed by the electric field. Force to rotate.
- the restoring force of the liquid crystal molecules that have been bend-aligned and splay-aligned in the horizontal plane at the time of white display works simultaneously to further accelerate the response.
- the upper layer electrode (i) is 0 V during black display, 2.0 V / ⁇ 2.0 V is applied to the lower layer electrode (ii), and ⁇ 2 is applied to the lower layer electrode (iii). 0.0V / 2.0V is applied.
- FIG. 27 is a schematic plan view showing the voltage applied to each electrode and the orientation of liquid crystal molecules during white display in the second drive method of Comparative Example 2.
- FIG. 28 is a simulation result showing the director distribution and transmittance distribution corresponding to FIG.
- FIG. 29 is a schematic plan view illustrating the voltage applied to each electrode and the alignment of liquid crystal molecules during black display in the second drive method of Comparative Example 2.
- the lower layer electrode (ii) and the lower layer electrode (iii) are both set to 0 V, and then the polarity is inverted to the upper layer electrode (i) and a voltage is applied to the upper layer electrode (i).
- a fringe electric field is generated between the lower electrode (ii) and the lower electrode (iii), and liquid crystal molecules rotate in the same direction in response to the electric field.
- 5 V / -5 V is applied to the upper layer electrode (i) during white gradation display.
- the liquid crystal molecules rotate in the same direction, so that a high transmittance is obtained as a whole as compared with the first driving method of Comparative Example 2.
- Table 6 shows the white transmittance, black transmittance, and contrast ratio (CR) of the first driving methods of Examples 1 to 9 and Comparative Example 2. It can be seen that the contrast of Examples 1 to 9 is greatly improved compared to Comparative Example 2 (the reason will be described later).
- the transmittance during black display is 0.06%
- the transmittance during white display is 24.2%
- the transmittance during black display is 0.20%
- the transmittance during white display is 21.8%.
- FIG. 30 is a schematic diagram illustrating an electric field generated in the first embodiment.
- FIG. 31 is a schematic diagram showing an electric field generated in Comparative Example 2.
- the magnitude of the voltage applied to the lower layer electrodes (ii) and (iii) is at least 2.0 V.
- the orientation is stable even when the voltage applied to the lower layer electrodes (ii) and (iii) is 1.3V. The reason will be described below.
- Example 1 the lower layer electrodes (ii) and (iii) The orientation is stabilized even when the voltage applied to is 1.3V. Since the contrast ratio improves as the applied voltage to the lower layer electrodes (ii) and (iii) decreases, in Example 1, the applied voltage to the lower layer electrodes (ii) and (iii) is decreased to improve the contrast ratio accordingly. can do. The reason will be described below.
- Comparative Example 2 an electric field that rotates the liquid crystal molecules in the target direction is generated only near the intersection of the upper layer electrode (i) and the lower layer electrode (iii).
- Comparative Example 2 as shown in FIG. 31, the distance d2 between the electric field generation sources for rotating the liquid crystal molecules in opposite directions is small. Therefore, the alignment of the liquid crystal molecules becomes unstable and easily collapses.
- the distance d1 between the electric field generation sources for rotating the liquid crystal molecules in opposite directions is large. Therefore, the alignment of the liquid crystal molecules is stabilized.
- the liquid crystal display device of the embodiment described above performs a driving operation in which the potential difference between the upper layer electrode (i) and the lower layer electrode (iii) is greater than or equal to the potential difference between the upper layer electrode (i) and the lower layer electrode (ii).
- the average width of the branches of the lower layer electrode (iii) is larger than the average width of the branches of the lower layer electrode (ii), thereby improving the alignment stability of the liquid crystal molecules,
- the applied voltage to the lower layer electrodes (ii) and (iii) can be reduced, and the contrast ratio can be greatly improved.
- the liquid crystal display device of the present invention performs a driving operation in which the potential difference between the upper layer electrode (i) and the lower layer electrode (iii) is greater than or equal to the potential difference between the upper layer electrode (i) and the lower layer electrode (ii).
- the average width of the branches of the lower layer electrode (iii) is preferably larger than the average width of the branches of the lower layer electrode (ii).
- the driving operation in which the above-described potential difference between the first electrode and the third electrode is greater than or equal to the potential difference between the first electrode and the second electrode is usually applied in the first driving method.
- the voltage applied to the first electrode May be the same as the polarity of the voltage applied to the second electrode, and a driving operation opposite to the polarity of the voltage applied to the third electrode may be executed.
- a strong electric field is applied to the liquid crystal molecules in the entire horizontal plane because a lateral electric field is applied between the pair of lower comb-like electrodes when rising.
- the response speed is increased, and at the time of falling, in addition to the strong restoring force to restore the in-plane bend and splay alignment as shown in FIG. 4, the liquid crystal molecules are applied to the electric field created by the lower comb-like electrode.
- the second driving method by setting both the comb-like electrodes on the lower side of the two-layer electrode to the same potential, a fringe electric field can be generated between the upper electrode and the high-speed driving as described above.
- This is a drive that realizes a higher transmittance than a drive that realizes a response.
- One of the features of the above-described embodiment is that these two types of driving can be switched according to the purpose and situation, and as a result, a wide viewing angle, high-speed response, and high transmittance can be realized.
- the liquid crystal display device of the present invention only needs to be capable of executing at least the first driving method.
- the liquid crystal display device of the above-described embodiment can perform display by appropriately switching between the first driving method and the second driving method.
- display can be performed by appropriately combining white display and black display according to a desired display.
- the liquid crystal display device of the present invention preferably includes a control device that executes the above-described first driving method, and includes a control device that performs switching between the first driving method and the second driving method described above. It is more preferable that As a result, a wide viewing angle can be realized, a high-speed response can be realized, and a high transmittance can be realized. Therefore, it is possible to realize a liquid crystal display device that satisfies all of the characteristics of high-speed response, wide viewing angle, and high transmittance with a single electrode configuration.
- the liquid crystal display device of the present invention preferably includes a control device that automatically switches between the first drive method and the second drive method described above according to a predetermined condition.
- the control device includes, for example, a temperature sensor and automatically switches between the first drive method and the second drive method according to the temperature.
- the control device employs a second drive method that can achieve high transmittance in an environment where the response speed is not a problem (for example, a temperature range where the lower limit is any one of ⁇ 20 ° C. to 20 ° C.).
- a control device that executes and controls to execute the first drive method that can realize a high-speed response in a low temperature environment (for example, a temperature range in which the upper limit is any one of ⁇ 20 ° C. to 20 ° C.) in which the response speed becomes slow. It is preferable. Thereby, a desired effect can be obtained more appropriately.
- the liquid crystal display device of the present invention may include a control device that switches between the first drive method and the second drive method described above in accordance with a user instruction.
- the present invention may also be a method for driving a liquid crystal display device using the above-described liquid crystal display device.
- the liquid crystal display device of the present invention when it is sufficient to perform AC driving of the liquid crystal that applies an AC voltage only to the electrode of the lower substrate, a circuit and driver for AC driving are applied only to the electrode of the lower substrate as in the past. As long as the wiring is arranged. Therefore, for example, an AC drive circuit, driver, and wiring are arranged on the upper substrate together with the lower substrate in order to apply AC voltage to the electrode included in the upper substrate together with the electrode included in the lower substrate to perform AC driving of the liquid crystal. Compared with the liquid crystal display device, the degree of freedom of driving of the liquid crystal display device of the present invention is remarkably high.
- liquid crystal display device of the present invention examples include in-vehicle devices such as car navigation, electronic books, photo frames, industrial equipment, televisions, personal computers, smartphones, and tablet terminals.
- the present invention is preferably applied to a device that can be used in both a high temperature environment and a low temperature environment, such as an in-vehicle device such as a car navigation system.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Geometry (AREA)
- Liquid Crystal (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
Abstract
本発明は、高コントラスト比及び広視野角を実現するとともに、高速応答を実現することができる液晶表示装置を提供する。 本発明の液晶表示装置は、平面視したときに、第1電極における複数の線状部分の少なくとも1つの輪郭線は、互いに隣接する第2電極の枝部及び第3電極の枝部と交差し、第3電極の枝部と交差する部分の長さは、第2電極の枝部と交差する部分の長さよりも大きく、第1電極と第3電極との間の電位差が第1電極と第2電極との間の電位差以上である駆動操作を実行するように構成されたものである。
Description
本発明は、液晶表示装置に関する。より詳しくは、複数の電極により電界を印加して表示をおこなう液晶表示装置に関する。
液晶表示装置は、一対のガラス基板等に液晶表示素子を挟持して構成され、薄型で軽量かつ低消費電力といった特長を活かして、カーナビゲーション、電子ブック、フォトフレーム、産業機器、テレビ、パーソナルコンピュータ、スマートフォン、タブレット端末等、日常生活やビジネスに欠かすことのできないものとなっている。これらの用途において、液晶層の光学特性を変化させるための電極配置や基板の設計に係る各種モードの液晶表示装置が検討されている。
近年の液晶表示装置の表示方式としては、負の誘電率異方性を有する液晶分子を基板面に対して垂直配向させた、マルチドメイン垂直配向(MVA:Multi-domain Vertical Alignment)モード等の垂直配向(VA)モードや、正又は負の誘電率異方性を有する液晶分子を基板面に対して水平配向させて液晶層に対し横電界を印加する面内スイッチング(IPS:In-Plane Switching)モード、縞状電界スイッチング(FFS:Fringe Field Switching)モード等が挙げられる。
中でも、FFSモードは、近年スマートフォン、タブレット端末に多く使用されている液晶モードである。FFSモードの液晶表示装置として、例えば、複数個の液晶分子を含む液晶層を介して所定の距離をもって対向配置される第1及び第2透明絶縁基板と、上記第1透明基板上に形成され、かつ単位画素を限定するようにマトリクス形態で配置される複数個のゲートバスライン及びデータバスラインと、上記ゲートバスラインとデータバスラインとの交叉部に設けられる薄膜トランジスタと、上記各単位画素に配置され、かつ透明導電体からなるカウンタ電極と、上記カウンタ電極と一緒にフリンジフィールドを形成するように、各単位画素に上記カウンタ電極と絶縁して配置され、画素の長辺を中心に対称をなすように所定の傾きで配列された複数個の上部スリット及び下部スリットを有し、かつ透明導電体からなる画素電極とを含むFFSモードの液晶表示装置が開示されている(例えば、特許文献1参照。)。
特許文献1に記載のFFSモードの液晶表示装置は、広視野角特性を有し、かつIPSモードの液晶表示装置の低い開口率及び透過率を改善する旨が開示されている(例えば、特許文献1に記載の図6参照。特許文献1に記載の図6は、FFSモードの液晶表示装置の平面画素構造を示す。)。しかし、特許文献1に記載のFFSモードの液晶表示装置は、立上がりでは電界印加で液晶を強制的に応答させることができるが、立下がりでは電界印加を止めて液晶の粘弾性にまかせて応答させるため、MVAモード等の垂直配向モードに比べて応答が遅く、応答特性を改善する余地があった。
特許文献1に記載のFFSモードの液晶表示装置の一例を、図20を用いて説明する。図20は、従来のFFSモードの電極構造を有する液晶表示装置の断面模式図である。図20は、液晶表示装置の構造を示しており、スリットが設けられた電極である上層電極(iv)が配置された下基板810に、上層電極(iv)、及び、該上層電極(iv)と絶縁層813を介して面状電極である下層電極(v)が配置されている。該液晶表示装置は、立上がりでは上層電極(iv)が一定の電圧に印加され(例えば、上層電極(iv)と下層電極(v)との電位差が閾値以上であり、フリンジ電界で応答できるものであればよい。)、立下がりでは上層電極(iv)と下層電極(v)との間の電位差を閾値未満とし、フリンジ電界を止める(弱める)ことで応答する。
従来のFFSモードは、上述したように下基板のFFS電極でフリンジ電界を発生させ、下基板のFFS電極付近の液晶分子を水平面内で同じ方向に回転させることで立上がり時のスイッチングを行っている。また、立下がり時のスイッチングは、フリンジ電界を切ることで、液晶分子を粘弾性により元の配向状態に戻すことにより行っている。
しかし、液晶層中、液晶分子を回転させるための電界が弱い領域があり、当該領域における液晶分子の回転に時間を要する。また、この際、液晶分子は同じ方向に回転するため、水平面内における液晶の弾性変形によるひずみは小さい。そのため、電界を切って立下がり時のスイッチングを行う際に、元の配向状態に戻るために働く弾性ひずみ起因の復元力が小さく、応答が遅い。したがって、立上がり時のスイッチング、立下がり時のスイッチングともに応答時間が遅い。
しかし、液晶層中、液晶分子を回転させるための電界が弱い領域があり、当該領域における液晶分子の回転に時間を要する。また、この際、液晶分子は同じ方向に回転するため、水平面内における液晶の弾性変形によるひずみは小さい。そのため、電界を切って立下がり時のスイッチングを行う際に、元の配向状態に戻るために働く弾性ひずみ起因の復元力が小さく、応答が遅い。したがって、立上がり時のスイッチング、立下がり時のスイッチングともに応答時間が遅い。
ここで、本発明者らは、複数の電極により電界を印加して表示をおこなう液晶表示装置を種々検討し、下基板の電極構造に着目した。そして、従来のFFSモードの液晶表示装置は下基板が備える電極が2層で2つの異なる電圧を印加できる電極から構成されるが、本発明者らは、下基板が備える電極が2層で3つの異なる電圧を印加できる電極から構成されるものとし、下基板が一対の櫛歯状電極を備えるものとした。そして、本発明者らは、このような液晶表示装置において、広視野角に加えて、高速応答も実現できることを見出した(例えば、後述する比較例2の、FFSモードよりも応答が高速化する駆動〔第1駆動方式〕)。ここで、このような液晶表示装置の、FFSモードよりも応答が高速化する駆動(第1駆動方式)において、下基板の下層電極に常に電圧を印加していることが原因で発生する黒浮き(黒表示時において透過率が充分に低下しないこと)を防いでコントラスト比を向上するための工夫の余地があった。黒浮きを防ぐために下層電極の電圧値を小さくすることが考えられるが、下層電極の電圧値を小さくした場合は、液晶分子の配向が不安定になるおそれがあり、目的とする配向を実現するための工夫の余地があった。
本発明は、上記現状に鑑みてなされたものであり、高コントラスト比及び広視野角を実現するとともに、高速応答を実現することができる液晶表示装置を提供することを目的とするものである。
本発明者らは、更に、一対の櫛歯状電極のうち、特定の一方の電極の幅を、他方の電極の幅よりも大きくすることとした。本発明者らは、この電極構造により、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明の一態様は、上下基板、及び、上下基板に挟持された液晶層をもつ液晶表示装置であって、該液晶層は、電圧無印加時に上下基板の主面に対して水平に配向する液晶分子を含み、該下基板は、第1電極、該第1電極とは異なる層にある第2電極、及び、該第1電極とは異なる層にある第3電極を備え、該第1電極は、複数の線状部分を有し、該第2電極及び該第3電極は、一対の櫛歯状電極を構成し、該一対の櫛歯状電極は、それぞれ、幹部と、該幹部から分岐した複数の枝部とを備え、平面視したときに、該第1電極における複数の線状部分の少なくとも1つの輪郭線は、互いに隣接する該第2電極の枝部及び該第3電極の枝部と交差し、該第3電極の枝部と交差する部分の長さは、該第2電極の枝部と交差する部分の長さよりも大きく、該液晶表示装置は、第1電極と第3電極との間の電位差が第1電極と第2電極との間の電位差以上である駆動操作を実行するように構成されたものである液晶表示装置であってもよい。
また本発明の別の一態様は、上下基板、及び、上下基板に挟持された液晶層をもつ液晶表示装置であって、該液晶層は、電圧無印加時に上下基板の主面に対して水平に配向する液晶分子を含み、該下基板は、第1電極、該第1電極とは異なる層にある第2電極、及び、該第1電極とは異なる層にある第3電極を備え、該第1電極は、複数の線状部分を有し、該第2電極及び該第3電極は、一対の櫛歯状電極を構成し、該一対の櫛歯状電極は、それぞれ、幹部と、該幹部から分岐した複数の枝部とを備え、平面視したときに、該第1電極における複数の線状部分の少なくとも1つの輪郭線は、互いに隣接する該第2電極の枝部及び該第3電極の枝部と交差し、該第3電極の枝部の平均幅は、該第2電極の枝部の平均幅よりも大きく、該液晶表示装置は、第1電極と第3電極との間の電位差が第1電極と第2電極との間の電位差以上である駆動操作を実行するように構成されたものである液晶表示装置であってもよい。
また上述した本発明の液晶表示装置において、第1電極と第3電極との間の電位差が第1電極と第2電極との間の電位差以上である駆動操作を実行する代わりに、第1電極に印加する電圧の極性が、第2電極に印加する電圧の極性と同じであり、第3電極に印加する電圧の極性と逆である駆動操作を実行してもよい。
また上述した本発明の液晶表示装置において、第1電極と第3電極との間の電位差が第1電極と第2電極との間の電位差以上である駆動操作を実行する代わりに、第1電極に印加する電圧の極性が、第2電極に印加する電圧の極性と同じであり、第3電極に印加する電圧の極性と逆である駆動操作を実行してもよい。
なお、本発明の液晶表示装置は、下基板が少なくとも2層で3種類の電圧を印加できる電極をもつ構成である点で特許文献1に記載の発明と異なる。
本発明の液晶表示装置においては、通常、第1電極、第2電極及び第3電極のそれぞれが電気的に分離されており、これらの電圧を個別に制御することができる。言い換えれば、通常、第1電極、第2電極、及び、第3電極は、それぞれ、閾値電圧以上で異なる電位とすることができるものである。本発明の液晶表示装置は、例えば、下基板の第2電極及び第3電極が一対の櫛歯状電極を構成し、該第2電極及び該第3電極の上に絶縁層等を介して第1電極としてスリット電極又は櫛歯状電極が配置されている構成とすることが好ましい。
上記第1電極は、上記第2電極及び上記第3電極よりも液晶層側に配置されていることが好ましい。また、上記第1電極は、スリットが設けられているか、又は、櫛歯状であることが好ましい。なお、上記該第2電極及び上記第3電極は、それぞれ、櫛歯状である。
本発明の一態様の液晶表示装置において、上記該第3電極の枝部と交差する部分の長さは、5.5μm以上、13μm以下であることが好ましい。また、本発明の別の一態様の液晶表示装置において、上記第3電極の枝部の平均幅は、5.5μm以上、13μm以下であることが好ましい。
本発明の一態様の液晶表示装置において、上記第3電極の枝部と交差する部分の長さは、上記第2電極の枝部と交差する部分の長さよりも2.5μm以上大きいことが好ましい。また、本発明の別の一態様の液晶表示装置において、上記第3電極の枝部の平均幅は、上記第2電極の枝部の平均幅よりも2.5μm以上大きいことが好ましい。
本発明の液晶表示装置において、上記第2電極の枝部と、上記第3電極の枝部との平均間隔は、2.5μm以上、4.5μm以下であることが好ましい。
上記駆動操作は、上記液晶分子の一部を上記上下基板の主面に対して水平面内で回転させ、かつ、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる電界を上記下基板が備える電極によって発生させることが好ましい。
従来のFFSモードの液晶表示装置では、立上がり時に下基板のFFS電極でフリンジ電界を発生させ、該フリンジ電界で液晶分子を1方向に回転させるだけだが、本発明の液晶表示装置では、下基板が備える電極が2層で3種類の電圧を印加できる電極(上述した第1電極、第2電極、及び、第3電極)から構成され、例えば、立上がり時に第1電極と第2電極との間で電界を発生させ、ある領域の液晶分子とその他の領域の液晶分子とを水平面内で互いに逆方向に回転させることが好ましい。また、立下がり時に第2電極と第3電極との間で電界を発生させ、ある領域の液晶分子とその他の領域の液晶分子とをそれぞれ水平面内で立上がり時とは逆方向に回転させることが好ましい。
従来のFFSモードの液晶表示装置では、立上がり時に下基板のFFS電極でフリンジ電界を発生させ、該フリンジ電界で液晶分子を1方向に回転させるだけだが、本発明の液晶表示装置では、下基板が備える電極が2層で3種類の電圧を印加できる電極(上述した第1電極、第2電極、及び、第3電極)から構成され、例えば、立上がり時に第1電極と第2電極との間で電界を発生させ、ある領域の液晶分子とその他の領域の液晶分子とを水平面内で互いに逆方向に回転させることが好ましい。また、立下がり時に第2電極と第3電極との間で電界を発生させ、ある領域の液晶分子とその他の領域の液晶分子とをそれぞれ水平面内で立上がり時とは逆方向に回転させることが好ましい。
上記駆動操作は、画素内で、上記液晶分子の一部を上記主面に対して水平面内で回転させる第1領域と、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる第2領域とがそれぞれ2つ以上交互に並ぶように液晶分子を回転させる電界を上記下基板が備える電極によって発生させることが好ましい。
第1領域と、第2領域とがそれぞれ2つ以上交互に並ぶとは、2つ以上の第1領域と、2つ以上の第2領域とが、交互に縞状に並ぶものであってもよく、交互に千鳥格子状に並ぶものであってもよい。
第1領域と、第2領域とがそれぞれ2つ以上交互に並ぶとは、2つ以上の第1領域と、2つ以上の第2領域とが、交互に縞状に並ぶものであってもよく、交互に千鳥格子状に並ぶものであってもよい。
上記第1電極は、スリットが設けられており、上記液晶表示装置は、上記下基板を平面視したときに、該スリットと重畳する領域内で、上記液晶分子の一部を該主面に対して水平面内で回転させ、かつ、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる電界を上記電極によって発生させる駆動操作を実行するように構成されたものであることが好ましい。
なお、本明細書中、「スリットと重畳する領域内で、上記液晶分子の一部を該主面に対して水平面内で回転させ、かつ、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる」とは、下基板を平面視したときに、1つのスリットと重畳し、1つのスリットに対応する領域の少なくとも1つにおいて液晶分子の一部を水平面内で回転させ、かつ、該液晶分子の他の一部を水平面内で該液晶分子の一部とは逆方向に回転させるものであればよいが、下基板を平面視したときに、1つのスリットと重畳し、1つのスリットに対応する領域のそれぞれにおいて液晶分子の一部を水平面内で回転させ、かつ、該液晶分子の他の一部を水平面内で該液晶分子の一部とは逆方向に回転させるものであることが好ましい。
中でも、上記第1電極は、スリットが設けられており、上記液晶表示装置は、上記下基板を平面視したときに、該第1電極に設けられたスリットと重畳する領域内で、上記液晶分子の一部を該主面に対して水平面内で回転させ、かつ、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させるとともに、該第2電極及び該第3電極の櫛歯間領域と重畳する領域内で、該液晶分子の一部を該主面に対して水平面内で回転させ、かつ、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる電界を上記電極によって発生させる駆動操作を実行するように構成されたものであることが好ましい。
本発明の液晶表示装置においては、上基板に液晶駆動用の電極は配置されていてもよく、配置されていなくてもよいが、例えば、配置されていないものとすることが好ましい。すなわち、下基板のみに液晶駆動用の電極が配置されていることが本発明の液晶表示装置における好ましい形態の1つである。
更に、上記第1電極の形状は特に限定されないが、例えば、上記第1電極は、スリットが設けられていることが本発明の好ましい形態の1つである。また、上記第1電極は、櫛歯状であることもまた本発明の好ましい形態の1つである。本明細書中、その形状が櫛歯状である電極は、スリットが設けられている電極とは言わず、櫛歯状電極と言う。
更に、上記第1電極の形状は特に限定されないが、例えば、上記第1電極は、スリットが設けられていることが本発明の好ましい形態の1つである。また、上記第1電極は、櫛歯状であることもまた本発明の好ましい形態の1つである。本明細書中、その形状が櫛歯状である電極は、スリットが設けられている電極とは言わず、櫛歯状電極と言う。
そして、本発明の液晶表示装置は、上記駆動操作を実行する第1駆動方式と、上記液晶分子を上記上下基板の主面に対して水平面内で1方向に回転させる電界を上記電極によって発生させる駆動操作を実行する第2駆動方式とを切り換えて実行するように構成されたものであることが好ましい。1方向に回転させるとは、実質的に1方向に回転させるものであればよい。また、上記電界を上記電極によって発生させるとは、第1電極、第2電極、及び、第3電極から選ばれる少なくとも1つの電極によって上記電界を発生させるものであればよく、例えば、白表示時に第1電極に電圧を印加し、電界を発生させて液晶分子を回転させ、黒表示時に第1電極に印加する電圧を小さくし、該電界を弱めて又はゼロにして液晶分子を逆方向に回転させることが好ましい。
本発明の液晶表示装置において、上記液晶分子は、正の誘電率異方性を有することが好ましい。
本発明の液晶表示装置において、上記下基板は、薄膜トランジスタ素子を備え、該薄膜トランジスタ素子は、酸化物半導体を含むことが好ましい。
本発明の液晶表示装置の構成としては、その他の構成要素により特に限定されるものではなく、液晶表示装置に通常用いられるその他の構成を適宜適用することができる。
本発明の液晶表示装置によれば、高コントラスト比及び広視野角を実現するとともに、高速応答を実現することができる。
以下に実施例を掲げ、本発明を図面を参照して更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。本明細書中、画素とは、特に明示しない限り、絵素(サブ画素)であってもよい。絵素(サブ画素)とは、例えばR(赤)、G(緑)、B(青)、又は、黄(Y)等の、いずれかの単色を示す領域をいう。また、液晶層を挟持する一対の基板を上下基板ともいい、これらのうち、表示面側の基板を上基板ともいい、表示面と反対側の基板を下基板ともいう。更に、基板に配置される電極のうち、表示面側の電極を上層電極ともいい、表示面側と反対側の電極を下層電極ともいう。
なお、各実施例において、同様の機能を発揮する部材及び部分は同じ符号を付している。また、図中、特に断らない限り、(i)は、下基板の上層(液晶層側)にあるスリット電極を示し、(ii)は、下基板の下層(液晶層側と反対側)の櫛歯状電極を示し、(iii)は、下基板の下層のもう1つの櫛歯状電極を示す。なお、上層電極(i)は、櫛歯状電極であってもよい。下層電極(ii)、及び、下層電極(iii)は基板主面を平面視したときに互いに対向している。(iv)は、FFS構造を持つ電極層における上層電極を示し、(v)は、FFS構造を持つ電極層における下層電極を示す。また、図中、カラーフィルタ、ブラックマトリクスなど、液晶の電界制御に関わらない層は省略している。
本明細書中、下基板の電極とは、上層電極(i)、下層電極(ii)、及び、下層電極(iii)の少なくとも1つを意味する。
本明細書中、スリット電極とは、スリットが設けられている電極を言い、通常は複数の線状部分(線状電極部分)を含む。スリットとしては、例えば、線状電極が形成されていない領域が挙げられる。
上記上層電極(i)、下層電極(ii)、及び、下層電極(iii)は、通常、閾値電圧以上で異なる電位とすることができるものである。本明細書中、閾値電圧とは、明状態の透過率を100%に設定したとき、5%の透過率を与える電圧値を意味する。閾値電圧以上で異なる電位とすることができるとは、閾値電圧以上で異なる電位とする駆動操作を実現できるものであればよく、これにより液晶層に印加する電界を好適に制御することが可能となる。異なる電位とすることができる構成としては、例えば、上層電極(i)が画素電極であり、下層電極(ii)及び下層電極(iii)が共通電極である場合は、該上層電極(i)にTFT(薄膜トランジスタ素子)を接続して、電圧の値を変化させて交流電圧(AC電圧)を印加して液晶を交流駆動(AC駆動)すると共に、該下層電極(ii)及び該下層電極(iii)に別のTFTで交流電圧を印加して液晶を交流駆動したり、ラインごとに共通接続されているか、又は、すべての画素内で共通接続されている該下層電極(ii)及び該下層電極(iii)に、該ライン又はすべての画素に対応するTFTで交流電圧を印加して液晶を交流駆動したり、該下層電極(ii)及び該下層電極(iii)にTFTを用いないで直流電圧(DC電圧)を印加して液晶を直流駆動(DC駆動)したりしてもよい。
本明細書中、電界を上記電極によって発生させるとは、第1電極、第2電極、及び、第3電極から選ばれる少なくとも1つの電極によって上記電界を発生させるものであればよく、例えば、液晶表示装置の電源オン時に、第2電極と第3電極との間で常に電界を発生させるとともに、白表示時に第1電極の電圧を大きくして液晶分子を回転させ、黒表示時に第1電極の電圧を小さくして液晶分子を逆方向に回転させることが好ましい。
なお、上層電極(i)の線状部分の延伸方向と液晶分子の配向方向とのなす角度については、液晶分子の配向方向が、上層電極(i)の線状部分の延伸方向に対して右回りの角度をなすときは正の角度をなし、上層電極(i)の線状部分の延伸方向に対して左回りの角度をなすときは負の角度をなすものとする。
なお、上層電極(i)の線状部分の延伸方向と液晶分子の配向方向とのなす角度については、液晶分子の配向方向が、上層電極(i)の線状部分の延伸方向に対して右回りの角度をなすときは正の角度をなし、上層電極(i)の線状部分の延伸方向に対して左回りの角度をなすときは負の角度をなすものとする。
例えば、横電界で駆動する本発明の液晶表示装置において、下層を櫛歯状電極、上層をスリット電極(又は櫛歯状電極)とする2層の電極を、絶縁膜を介して配置することが好ましい。当該液晶表示装置において、2層の電極の下層側(液晶層側と反対側)の櫛歯状電極間に常に横電界を印加しておき、上層側のスリット電極(又は櫛歯状電極)に電圧を印加して駆動することが好ましい。
本明細書中、立上がりとは、暗状態(黒表示)から明状態(白表示)に表示状態が変化する間を意味する。また、立下がりとは、明状態(白表示)から暗状態(黒表示)に表示状態が変化する間を意味する。また、液晶の初期配向とは、電圧無印加時での液晶分子の配向を言う。
本明細書中、液晶分子の一部とは、液晶層中に含まれる液晶分子のうちの一部の液晶分子を意味する。上記液晶分子の他の一部も同様であり、液晶層中に含まれる液晶分子のうちの上記液晶分子の一部以外の他の一部の液晶分子を意味する。
(実施例1)
図1は、実施例1の液晶表示装置の画素の電極構造及び液晶分子の初期配向を示す平面模式図である。
上層電極(i)は、下基板を平面視したときに、複数の線状部分を含む。該複数の線状部分はそれぞれ略平行であり、該線状部分と該線状部分との間には、それぞれ、互いに略平行なスリットが設けられている。このように、上層電極(i)は、スリットが設けられていることが本発明の好ましい形態の1つである。なお、上層電極(i)はスリット電極である代わりに櫛歯状電極であってもよい。上層電極(i)が櫛歯状であることもまた本発明の好ましい形態の1つである。
図1は、実施例1の液晶表示装置の画素の電極構造及び液晶分子の初期配向を示す平面模式図である。
上層電極(i)は、下基板を平面視したときに、複数の線状部分を含む。該複数の線状部分はそれぞれ略平行であり、該線状部分と該線状部分との間には、それぞれ、互いに略平行なスリットが設けられている。このように、上層電極(i)は、スリットが設けられていることが本発明の好ましい形態の1つである。なお、上層電極(i)はスリット電極である代わりに櫛歯状電極であってもよい。上層電極(i)が櫛歯状であることもまた本発明の好ましい形態の1つである。
下層電極(ii)、下層電極(iii)は、それぞれ、下基板を平面視したときに、幹部及び幹部から延びる枝部から構成される。枝部は、それぞれ略平行な複数の線状電極部分である。このように、下層電極(ii)及び下層電極(iii)は、それぞれ、櫛歯状である。
上記のように、上層電極(i)、下層電極(ii)、及び、下電電極(iii)が、それぞれ、線状部分を有することが好ましい。
なお、図1に示した上層電極(i)、下層電極(ii)、及び、下電電極(iii)の構造は一例であり、この形状には限られず、種々の構造の電極を使用できる。
上記のように、上層電極(i)、下層電極(ii)、及び、下電電極(iii)が、それぞれ、線状部分を有することが好ましい。
なお、図1に示した上層電極(i)、下層電極(ii)、及び、下電電極(iii)の構造は一例であり、この形状には限られず、種々の構造の電極を使用できる。
上記上層電極(i)において、線状部分の電極幅Lは3μm、隣り合う線状部分と線状部分との間の電極間隔S1は6μmである。上記電極幅Lは、例えば2μm以上、7μm以下が好ましい。また、上記電極間隔S1は、例えば2μm以上、14μm以下であることが好ましい。電極幅Lと電極間隔S1との比(L/S1)は、0.1~1.5が好ましい。該比L/S1のより好ましい下限値は、0.2であり、より好ましい上限値は、1.2である。
下層電極(ii)、下層電極(iii)それぞれの枝部の幅が本発明の重要なポイントである。これについては後述する図3において詳しく説明する。
下層電極(ii)、下層電極(iii)それぞれの枝部の延伸方向は、上層電極(i)の線状部分の延伸方向に対して90°をなす方向とした。言い換えれば、下基板が有する2つの櫛歯状電極は、その枝部である線状部分の延伸方向が下基板を平面視したときに上層電極(i)の線状部分の延伸方向と90°の角度で交わるように配置されている。該角度は、30°以上、90°以下であることが好ましく、45°以上であることがより好ましく、60°以上であることが更に好ましく、75°以上であることが特に好ましい。このような電極構造により、立上がり時及び立下がり時における応答時間をより短くすることができる。
下層電極(ii)、下層電極(iii)それぞれの枝部の延伸方向は、上層電極(i)の線状部分の延伸方向に対して90°をなす方向とした。言い換えれば、下基板が有する2つの櫛歯状電極は、その枝部である線状部分の延伸方向が下基板を平面視したときに上層電極(i)の線状部分の延伸方向と90°の角度で交わるように配置されている。該角度は、30°以上、90°以下であることが好ましく、45°以上であることがより好ましく、60°以上であることが更に好ましく、75°以上であることが特に好ましい。このような電極構造により、立上がり時及び立下がり時における応答時間をより短くすることができる。
また図1における、下基板の下層電極(ii)が有する枝部は、下層電極(iii)が有する枝部と枝部との間に配置されている。なお、下層電極(ii)における隣り合う枝部と枝部との間の電極間隔がS2である。
各層の電極(上層電極(i)、下層電極(ii)、及び、下層電極(iii))は、図1に示すような位置関係で配置されている。このように、下基板の上層電極(i)は、スリットが設けられており、下基板の下層電極(ii)、下層電極(iii)はそれぞれ櫛歯状であるが、上層電極(i)、下層電極(ii)、及び、下層電極(iii)がそれぞれ櫛歯状であってもよい。
実施例1では図1に示す偏光軸をもつ2枚の直線偏光板を使用する。実施例1では、直線偏光板が、上下基板の外側(液晶層側と反対側)に1枚ずつ配置されている。直線偏光板の配置としては、上下基板で直線偏光板の偏光軸が、電圧無印加時における液晶分子LCの長軸(液晶分子の初期配向方位)に対して垂直又は平行のクロスニコル配置とし、ノーマリーブラックモードの液晶表示装置とした。このように、上下基板がそれぞれ直線偏光板を有することが好ましい。
上層電極(i)は、コンタクトホールCHを介して薄膜トランジスタ素子TFTから延びているドレイン電極と電気的に接続される。ゲートバスラインGLで選択されたタイミングで、ソースドライバからソースバスラインSLを介して供給された電圧を、薄膜トランジスタ素子TFTを通じて液晶を駆動する上層電極(i)に印加する。
図2は、図1中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。
実施例1の液晶表示装置は、図2に示されるように、ガラス基板11を備える下基板10、液晶層30、及び、ガラス基板21を備える上基板20が、液晶表示装置の背面側から観察面側に向かってこの順に積層されて構成されている。
実施例1の液晶表示装置は、図2に示されるように、ガラス基板11を備える下基板10、液晶層30、及び、ガラス基板21を備える上基板20が、液晶表示装置の背面側から観察面側に向かってこの順に積層されて構成されている。
実施例1の液晶表示装置は、図2に示されるように、上下基板が有する各電極間の電位差が閾値電圧未満では液晶分子LCを水平配向させる(図2では、液晶分子LCは断面の奥から手前に向かって配向している。)。
下基板10の下層電極(ii)(図2では示されていない。)、下層電極(iii)は、それぞれ、上述したように櫛歯状電極であり、下層電極(ii)、下層電極(iii)の上に、絶縁層13を介してスリット電極である上層電極(i)が配置されている。上基板20には液晶駆動用の電極は設けられておらず、下基板10のみに液晶駆動用の電極が設けられている。
絶縁層13の誘電率は6.9、平均厚みは0.3μmである。絶縁層13は、それぞれ、窒化膜SiNで構成されるものであるが、その代わりに、酸化膜SiO2や、アクリル系樹脂等、又は、それらの材料の組み合わせも使用可能である。
上下基板の液晶層側にはそれぞれ水平配向膜(図示せず)を設け、電圧無印加時における液晶分子の長軸が上層電極(i)の線状部分の延伸方向と3°の角度をなすように水平配向させた。なお、液晶層と上層電極(i)は水平配向膜を介して隣接する。水平配向膜としては、膜面に対して液晶分子を水平に沿わせるものである限り限定されず、例えば有機材料から形成された配向膜(例えば、誘電率ε=3~4の配向膜);無機材料から形成された配向膜(例えば、誘電率ε=5~7の配向膜);光活性材料から形成された光配向膜;ラビング処理等によって配向処理がなされた配向膜等が挙げられる。なお、光配向膜等の、配向処理が必要ない配向膜を用いることによって、プロセスの簡略化によりコストを削減するとともに、信頼性及び歩留まりを向上することができる。また、ラビング処理をおこなった場合、ラビング布などからの不純物混入による液晶汚染、異物による点欠陥不良、液晶パネル内でラビングが不均一であるために表示ムラが発生するなどのおそれがあるが、これら不利点も無いものとすることができる。
上記液晶は、電圧無印加時に基板主面に対して水平方向に配向する液晶分子を含む。なお、基板主面に対して水平方向に配向するとは、本発明の技術分野において液晶分子が基板主面に対して実質的に水平方向に配向すると言え、光学的な作用効果を発揮できるものであればよい。上記液晶は、電圧無印加時に基板主面に対して水平方向に配向する液晶分子から実質的に構成されるものであることが好適である。上記「電圧無印加時に」は、本発明の技術分野において実質的に電圧が印加されていないといえるものであればよい。このような水平配向型の液晶は、広視野角の特性等を得るのに有利な方式である。
実施例1の液晶表示装置における液晶層30中の液晶材料の誘電率異方性は正である(誘電率異方性Δε=5.9、粘度(回転粘性度)γ1=89cps、屈折率異方性Δn=0.109、パネルのRe=350nm)。このように、液晶層は、正の誘電率異方性を有する液晶分子を含むことが本発明の好ましい形態の1つである。正の誘電率異方性を有する液晶分子は、電界を印加した場合に一定方向に配向されるものであり、配向制御が容易であり、より高速応答化することができる。液晶の誘電率異方性Δεは、3以上であることが好ましく、4以上であることがより好ましく、5以上であることが更に好ましい。また、該液晶の誘電率異方性Δεは、30以下であることが好ましく、20以下であることがより好ましく、10以下であることが更に好ましい。本明細書中、液晶の誘電率異方性Δεは、LCRメーターにより測定されるものを意味する。
実施例1では、液晶層30の平均厚み(セルギャップ)dLCは3.2μmである。
本明細書中、液晶層の平均厚みdLCは、液晶表示装置における液晶層全体の厚みを平均して算出されるものを意味する。
dLC×Δnは100nm以上であることが好ましく、150nm以上であることがより好ましく、200nm以上であることが更に好ましい。また、dLC×Δnは550nm以下であることが好ましく、500nm以下であることがより好ましく、450nm以下であることが更に好ましい。
本明細書中、液晶層の平均厚みdLCは、液晶表示装置における液晶層全体の厚みを平均して算出されるものを意味する。
dLC×Δnは100nm以上であることが好ましく、150nm以上であることがより好ましく、200nm以上であることが更に好ましい。また、dLC×Δnは550nm以下であることが好ましく、500nm以下であることがより好ましく、450nm以下であることが更に好ましい。
以下では、本実施例の液晶表示装置を用いた液晶の駆動方法について説明する。
本実施例では、高速応答可能な駆動を実現することができる。また、電圧の印加方法を切り替えることで、高速応答可能な駆動と、その駆動よりも高い透過率を実現する駆動の2種類の駆動を同じ構成で実現することができる。
本明細書中、高速応答を実現できる駆動を第1駆動方式、それより高い透過率を実現する駆動は第2駆動方式と、それぞれ呼ぶことにする。
本実施例では、高速応答可能な駆動を実現することができる。また、電圧の印加方法を切り替えることで、高速応答可能な駆動と、その駆動よりも高い透過率を実現する駆動の2種類の駆動を同じ構成で実現することができる。
本明細書中、高速応答を実現できる駆動を第1駆動方式、それより高い透過率を実現する駆動は第2駆動方式と、それぞれ呼ぶことにする。
第1駆動方式、第2駆動方式ともに上層電極(i)の電圧を変化させて階調表示を行う。
第1駆動方式は、下層電極(ii)及び下層電極(iii)は互いに極性が逆になるように振幅センターを0Vとして電圧を極性反転させて印加することで、横電界を常に発生させておき、上層電極(i)に階調に応じた電圧を極性反転させて印加することで駆動する。ここで、実施例1の液晶表示装置は、上層電極(i)に印加する電圧の極性は、下層電極(ii)に印加する電圧の極性と同じであり、下層電極(iii)に印加する電圧の極性とは異なる駆動操作を実行するように構成されたものである。また、実施例1の液晶表示装置は、上層電極(i)と下層電極(iii)との間の電位差が上層電極(i)と下層電極(ii)との間の電位差以上である駆動操作を実行するように構成されたものでもある。後者の駆動操作は、上層電極(i)に印加する電圧の極性、下層電極(ii)に印加する電圧の極性、及び、下層電極(iii)に印加する電圧の極性が同じであっても実行できる。例えば、下層電極(ii)及び下層電極(iii)に対し、振幅センターを6Vとして振幅0-12Vで振幅センターを中心として対称的に電圧を印加してもよい。
第2駆動方式は、下層電極(ii)、下層電極(iii)はともに0Vとしておき、上層電極(i)に階調に応じた電圧を極性反転させて印加することで、上層電極(i)と、下層電極(ii)及び下層電極(iii)との間にフリンジ電界を発生させて液晶を駆動する。
第1駆動方式は、下層電極(ii)及び下層電極(iii)は互いに極性が逆になるように振幅センターを0Vとして電圧を極性反転させて印加することで、横電界を常に発生させておき、上層電極(i)に階調に応じた電圧を極性反転させて印加することで駆動する。ここで、実施例1の液晶表示装置は、上層電極(i)に印加する電圧の極性は、下層電極(ii)に印加する電圧の極性と同じであり、下層電極(iii)に印加する電圧の極性とは異なる駆動操作を実行するように構成されたものである。また、実施例1の液晶表示装置は、上層電極(i)と下層電極(iii)との間の電位差が上層電極(i)と下層電極(ii)との間の電位差以上である駆動操作を実行するように構成されたものでもある。後者の駆動操作は、上層電極(i)に印加する電圧の極性、下層電極(ii)に印加する電圧の極性、及び、下層電極(iii)に印加する電圧の極性が同じであっても実行できる。例えば、下層電極(ii)及び下層電極(iii)に対し、振幅センターを6Vとして振幅0-12Vで振幅センターを中心として対称的に電圧を印加してもよい。
第2駆動方式は、下層電極(ii)、下層電極(iii)はともに0Vとしておき、上層電極(i)に階調に応じた電圧を極性反転させて印加することで、上層電極(i)と、下層電極(ii)及び下層電極(iii)との間にフリンジ電界を発生させて液晶を駆動する。
図3は、実施例1の上層電極(i)、下層電極(ii)、及び、下層電極(iii)を示す模式図である。
図3中、下層電極(ii)の枝部の電極幅(上層電極(i)の輪郭線が、下層電極(ii)の枝部と交差する部分の長さ)は3μm、下層電極(iii)の枝部の電極幅(上層電極(i)の輪郭線が、下層電極(iii)の枝部と交差する部分の長さ)は8μm、下層電極(ii)の枝部と下層電極(iii)の枝部との間の電極間隔は3.5μmである。
本発明においては、上層電極(i)における複数の線状部分の少なくとも1つの輪郭線が、互いに隣接する下層電極(ii)の枝部及び下層電極(iii)の枝部と交差するものであって、該輪郭線が、下層電極(iii)の枝部と交差する部分の長さが、下層電極(ii)の枝部と交差する部分の長さよりも大きいか、下層電極(iii)の枝部の平均幅が、下層電極(ii)の枝部の平均幅よりも大きいものであればよい。これにより、後述するように、本発明の液晶表示装置のコントラスト比を向上することができる。なお、上層電極(i)と下層電極(ii)及び下層電極(iii)とは、上下関係が入れ替わってもよい。
図3中、下層電極(ii)の枝部の電極幅(上層電極(i)の輪郭線が、下層電極(ii)の枝部と交差する部分の長さ)は3μm、下層電極(iii)の枝部の電極幅(上層電極(i)の輪郭線が、下層電極(iii)の枝部と交差する部分の長さ)は8μm、下層電極(ii)の枝部と下層電極(iii)の枝部との間の電極間隔は3.5μmである。
本発明においては、上層電極(i)における複数の線状部分の少なくとも1つの輪郭線が、互いに隣接する下層電極(ii)の枝部及び下層電極(iii)の枝部と交差するものであって、該輪郭線が、下層電極(iii)の枝部と交差する部分の長さが、下層電極(ii)の枝部と交差する部分の長さよりも大きいか、下層電極(iii)の枝部の平均幅が、下層電極(ii)の枝部の平均幅よりも大きいものであればよい。これにより、後述するように、本発明の液晶表示装置のコントラスト比を向上することができる。なお、上層電極(i)と下層電極(ii)及び下層電極(iii)とは、上下関係が入れ替わってもよい。
下層電極(ii)の枝部における、上記輪郭線と交差する部分の長さ、又は、平均電極幅は、2.5μm以上、4.5μm以下が好ましい。
また下層電極(iii)の枝部における、上記輪郭線と交差する部分の長さ、又は、平均電極幅は、5.5μm以上が好ましく、また、13μm以下が好ましい。
また下層電極(ii)の枝部と下層電極(iii)の枝部との間の平均電極間隔は、2.5μm以上であることが好ましく、4.5μm以下であることが好ましい。
なお、下層電極(ii)の平均電極幅、下層電極(iii)の平均電極幅、並びに、互いに隣接する下層電極(ii)の枝部と下層電極(iii)の枝部との間の平均電極間隔は、それぞれ、絵素内における平均値である。なお、これら平均電極幅及び平均電極間隔は、それぞれ、絵素内で略同一であることが好ましい。
また下層電極(iii)の枝部における、上記輪郭線と交差する部分の長さ、又は、平均電極幅は、5.5μm以上が好ましく、また、13μm以下が好ましい。
また下層電極(ii)の枝部と下層電極(iii)の枝部との間の平均電極間隔は、2.5μm以上であることが好ましく、4.5μm以下であることが好ましい。
なお、下層電極(ii)の平均電極幅、下層電極(iii)の平均電極幅、並びに、互いに隣接する下層電極(ii)の枝部と下層電極(iii)の枝部との間の平均電極間隔は、それぞれ、絵素内における平均値である。なお、これら平均電極幅及び平均電極間隔は、それぞれ、絵素内で略同一であることが好ましい。
図4は、実施例1の第1駆動方式の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図5は、図4に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。図6は、実施例1の第1駆動方式の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図7は、実施例1の第1駆動方式の白表示時における各電極への印加電圧を示す電圧関係図である。図4~図7は、それぞれ、図1中の上層電極(i)の線状部分及び下層電極(ii)の枝部で囲んだ部分に対応する部分を示す。
先ず、立上がり時の液晶分子の動作について詳しく説明する。
下層電極(ii)及び下層電極(iii)は、図4及び図7に示すように、互いに極性が逆になるように、振幅センターを0Vとして電圧を極性反転させて常に印加し、横電界を常に発生させておく。なお、下層電極(ii)及び下層電極(iii)に印加する電圧の絶対値は常に一定である。その上で上層電極(i)に、電圧を、下層電極(ii)に印加する電圧の極性と同じ極性となるように極性反転させて印加することで、水平面内で液晶分子を異なる方位に互い違いに回転させる電界が発生し、その電界によって液晶分子が当該水平面内でベンド配向及びスプレイ配向をするような形で配向する。本実施例の第1駆動方式では白階調表示時に上層電極(i)に6V/-6Vを印加し、下層電極(ii)に1.3V/-1.3Vを印加し、下層電極(iii)に-1.3V/1.3Vを印加している。実施例1の液晶表示装置では、後述する理由により、下層電極(ii)、下層電極(iii)への印加電圧を小さくしても液晶分子の配向の安定性を維持できるため、黒浮きを小さくするために下層電極(ii)、下層電極(iii)への印加電圧を小さくすることが可能である。
下層電極(ii)及び下層電極(iii)は、図4及び図7に示すように、互いに極性が逆になるように、振幅センターを0Vとして電圧を極性反転させて常に印加し、横電界を常に発生させておく。なお、下層電極(ii)及び下層電極(iii)に印加する電圧の絶対値は常に一定である。その上で上層電極(i)に、電圧を、下層電極(ii)に印加する電圧の極性と同じ極性となるように極性反転させて印加することで、水平面内で液晶分子を異なる方位に互い違いに回転させる電界が発生し、その電界によって液晶分子が当該水平面内でベンド配向及びスプレイ配向をするような形で配向する。本実施例の第1駆動方式では白階調表示時に上層電極(i)に6V/-6Vを印加し、下層電極(ii)に1.3V/-1.3Vを印加し、下層電極(iii)に-1.3V/1.3Vを印加している。実施例1の液晶表示装置では、後述する理由により、下層電極(ii)、下層電極(iii)への印加電圧を小さくしても液晶分子の配向の安定性を維持できるため、黒浮きを小さくするために下層電極(ii)、下層電極(iii)への印加電圧を小さくすることが可能である。
シミュレーションによる透過率分布図(図5)を見て分かるように、一点鎖線で囲んだ領域1と二点鎖線で囲んだ領域2とで液晶分子は異なる方位に回転しており、領域1と領域2とは互い違いに存在していることがわかる。すなわち、第1駆動方式では、液晶分子が水平面内で異なる方位に互い違いに回転する。図5に示した領域1(第1領域)では、液晶分子は水平面内で時計回りの向きに回転し、領域2(第2領域)では、液晶分子は水平面内で反時計回りの向きに回転する。言い換えれば、下基板を平面視したときに、上層電極(i)の線状電極間(上層電極(i)のスリットと重畳する領域内)、下層電極(ii)の枝部である線状電極間、下層電極(iii)の枝部である線状電極間で、それぞれ液晶分子が水平面内で1方向に回転するのではなく、異なる2方向に回転する。
また下層電極(ii)及び下層電極(iii)間に横電界が発生するように、下層電極(ii)及び下層電極(iii)に常に電圧が印加されていることにより、立上がり応答時には、水平面内の全領域に強い電界が印加される。そのため、立上がり応答が高速化される。
次いで、立下がり時の液晶分子の動作について説明する。
第1駆動方式では、立下がり応答時にも下層電極(ii)及び下層電極(iii)には常に電圧が印加されているため、上層電極(i)の電圧を弱めるか又はゼロにした際に、下層電極(ii)-下層電極(iii)間で発生する横電界によって液晶分子が初期配向に戻る方向へ強制的に回転する。さらに、第1駆動方式の場合には、水平面内でベンド配向及びスプレイ配向が発生し、それによって誘起される弾性ひずみにより大きな復元力も働く。よって、立下がり応答も高速化する。図6に示すように、本実施例の第1駆動方式では黒階調表示時に上層電極(i)は0Vであり、下層電極(ii)には1.3V/-1.3Vを印加し、下層電極(iii)には-1.3V/1.3Vを印加している。なお、上記第1駆動方式においては、液晶分子が平面内で異なる方位に回転する領域が交互に少なくとも2領域連続して存在する。このように、液晶分子が異なる方位に回転する領域が平面内で2領域以上連続で存在することが好ましい。
第1駆動方式では、立下がり応答時にも下層電極(ii)及び下層電極(iii)には常に電圧が印加されているため、上層電極(i)の電圧を弱めるか又はゼロにした際に、下層電極(ii)-下層電極(iii)間で発生する横電界によって液晶分子が初期配向に戻る方向へ強制的に回転する。さらに、第1駆動方式の場合には、水平面内でベンド配向及びスプレイ配向が発生し、それによって誘起される弾性ひずみにより大きな復元力も働く。よって、立下がり応答も高速化する。図6に示すように、本実施例の第1駆動方式では黒階調表示時に上層電極(i)は0Vであり、下層電極(ii)には1.3V/-1.3Vを印加し、下層電極(iii)には-1.3V/1.3Vを印加している。なお、上記第1駆動方式においては、液晶分子が平面内で異なる方位に回転する領域が交互に少なくとも2領域連続して存在する。このように、液晶分子が異なる方位に回転する領域が平面内で2領域以上連続で存在することが好ましい。
上述したように、図6では、上層電極(i)の電位を0Vとした。このように画素電極(実施例1では上層電極(i))の電圧を最大透過率時の電圧から弱めたりゼロにしたりする以外は、その他の電極(実施例1では下層電極(ii)、下層電極(iii))の電位等は第1駆動方式の白表示時と同じものとすることができ、その好ましい範囲等も第1駆動方式の白表示時におけるものと同様である。例えば、実施例1においては、白表示時及び黒表示時のいずれも下基板の下層電極(ii)が1.3V/-1.3Vであり、下層電極(iii)が-1.3V/1.3Vである。このように、本発明の液晶表示装置は、下基板の下層電極(ii)及び下層電極(iii)が、白表示時及び黒表示時のいずれも一定の電圧の絶対値であることが好ましい。
上述した第1駆動方式における各電極への電圧印加方法としては、上層電極(i)が画素電極であり、この上層電極(i)に印加される電圧を変化させ、下層電極(ii)及び下層電極(iii)が一定の大きさの電圧に印加しており、このような電圧印加方法は本発明の液晶表示装置における好ましい形態の1つである。しかしながら、本発明の作用効果が発揮される限り、各電極の上下の配置関係は適宜変更されてもよい。
図8は、実施例1の第2駆動方式の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図9は、図8に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。図10は、実施例1の第2駆動方式の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。
図8~図10は、それぞれ、図1中の上層電極(i)の線状部分及び下層電極(ii)の枝部で囲んだ部分に対応する部分を示す。
図8~図10は、それぞれ、図1中の上層電極(i)の線状部分及び下層電極(ii)の枝部で囲んだ部分に対応する部分を示す。
先ず、立上がり時の液晶分子の動作について詳しく説明する。
図8に示すように、下層電極(ii)、下層電極(iii)をともに0Vにしておき、その上で上層電極(i)に極性反転させて電圧を印加することで、上層電極(i)と、下層電極(ii)及び下層電極(iii)との間でフリンジ電界が発生し、その電界に反応して液晶分子が同方位に回転する。本実施例の第2駆動方式では白階調表示時に上層電極(i)に5V/-5Vを印加している。
シミュレーションによる透過率分布図(図9)を見て分かるように、液晶分子が同方位に回転することで、第1駆動方式と比べて全体として高透過率が得られている。
図8に示すように、下層電極(ii)、下層電極(iii)をともに0Vにしておき、その上で上層電極(i)に極性反転させて電圧を印加することで、上層電極(i)と、下層電極(ii)及び下層電極(iii)との間でフリンジ電界が発生し、その電界に反応して液晶分子が同方位に回転する。本実施例の第2駆動方式では白階調表示時に上層電極(i)に5V/-5Vを印加している。
シミュレーションによる透過率分布図(図9)を見て分かるように、液晶分子が同方位に回転することで、第1駆動方式と比べて全体として高透過率が得られている。
第2駆動方式の白表示時では、上層電極(i)の電圧は、表示に応じて変化するものであるが、その上限が10Vであることが好ましく、8Vであることがより好ましく、7Vであることが更に好ましい。
次いで、立下がり時の液晶分子の動作について説明する。
図10に示すように、上層電極(i)に印加していた電圧をオフすることによって、液晶分子の復元力によって配向処理方位(アンカリング)に向かって戻るように回転する。本実施例の第2駆動方式では黒表示時に上層電極(i)への印加電圧は0Vである。その他の各電極(下層電極(ii)、下層電極(iii))への印加電圧は、第2駆動方式の白表示時と同様であり、0Vである。なお、第2駆動方式の黒表示時では、上層電極(i)、下層電極(ii)及び下層電極(iii)への印加電圧は、閾値電圧未満とすればよい。
図10に示すように、上層電極(i)に印加していた電圧をオフすることによって、液晶分子の復元力によって配向処理方位(アンカリング)に向かって戻るように回転する。本実施例の第2駆動方式では黒表示時に上層電極(i)への印加電圧は0Vである。その他の各電極(下層電極(ii)、下層電極(iii))への印加電圧は、第2駆動方式の白表示時と同様であり、0Vである。なお、第2駆動方式の黒表示時では、上層電極(i)、下層電極(ii)及び下層電極(iii)への印加電圧は、閾値電圧未満とすればよい。
図11は、実施例1の液晶表示装置をTFT駆動する場合の画素レイアウトの一例を示す平面模式図である。なお、図11は一例であり、電極構造、配線等はこの形状に限られるものではない。
実施例1では、下層電極(ii)及び下層電極(iii)は、印加する電圧が第1駆動方式と第2駆動方式で異なるため、例えばライン(ゲートバスライン等)ごとにスキャン駆動する。
実施例1では、下層電極(ii)及び下層電極(iii)は、印加する電圧が第1駆動方式と第2駆動方式で異なるため、例えばライン(ゲートバスライン等)ごとにスキャン駆動する。
なお、実施例1の液晶表示装置における薄膜トランジスタ素子には、透過率改善効果の観点から酸化物半導体を含む薄膜トランジスタ素子を用いることが好ましい。酸化物半導体は、アモルファスシリコンよりも高いキャリア移動度を示す。これにより、1画素に占めるトランジスタの面積を小さくすることができるため開口率が増加し、1画素あたりの光の透過率を高めることが可能となる。したがって、酸化物半導体を含む薄膜トランジスタ素子を用いることで、本発明の効果であるコントラスト比向上効果をより顕著に得ることができる。すなわち、本発明の液晶表示装置において、下基板は、薄膜トランジスタ素子を備え、該薄膜トランジスタ素子は、酸化物半導体を含むことが好ましい。
実施例1の液晶表示装置は、透過型、反射型、半透過型のいずれの液晶表示装置にも適用することができる。後述する実施例においても同様である。
図12は、実施例1の第1駆動方式及び第2駆動方式それぞれの上層電極(i)の電圧-透過率(V-T)特性を示すグラフである。
LCD Master3Dを用いて実施例1の第1駆動方式及び第2駆動方式の電圧-透過率(V-T)特性を計算することで、第1駆動方式から第2駆動方式に切り替えることによる高透過率化に対する効果の有無を検証した。第2駆動方式(最大透過率34.5%)は第1駆動方式(最大透過率24.2%)と比較して最大透過率が高く、第1駆動方式から第2駆動方式への切り替えで透過率が改善できていることがわかった。
LCD Master3Dを用いて実施例1の第1駆動方式及び第2駆動方式の電圧-透過率(V-T)特性を計算することで、第1駆動方式から第2駆動方式に切り替えることによる高透過率化に対する効果の有無を検証した。第2駆動方式(最大透過率34.5%)は第1駆動方式(最大透過率24.2%)と比較して最大透過率が高く、第1駆動方式から第2駆動方式への切り替えで透過率が改善できていることがわかった。
実施例1では下基板を2層電極とした。このように、下基板が有する電極は、それぞれ、上層のスリットが設けられている電極、及び、下層の一対の櫛歯状電極から構成されることが本発明の液晶表示装置における好ましい形態の1つである。しかしながら、第1駆動方式に係る電界を発生させる液晶表示装置であれば本発明の効果を発揮できるため、例えば、下基板の上層電極(i)においてスリット電極の代わりに一対の櫛歯状電極を用いてもよい。一対の櫛歯状電極を用いる場合、一対の櫛歯状電極間で横電界を発生させることにより液晶分子を水平面内で回転させる。液晶分子の配向方向と電極配置との関係は、FFS電極に含まれるスリット電極の線状部分の延伸方向を一対の櫛歯状電極の枝部の延伸方向に置き換えて考えればよい。
実施例1の液晶表示装置が備える上下基板は、液晶を挟持するための一対の基板であり、例えば、ガラス、樹脂等の絶縁基板を母体とし、絶縁基板上に配線、電極、カラーフィルタ等を必要に応じて作り込むことで形成される。
なお、実施例1の液晶表示装置は、通常の液晶表示装置が備える部材(例えば、光源等)を適宜備えることができる。また、実施例1の液晶表示装置は、アクティブマトリクス駆動方式によって液晶を駆動するものであることが好ましい。後述する実施例においても同様である。
<実施例1と比較例1との応答特性の比較>
図13は、実施例1及び比較例1の立上がり時における時間に対する規格化透過率を示すグラフである。図14は、実施例1及び比較例1の立下がり時における時間に対する規格化透過率を示すグラフである。なお、比較例1は、従来のFFSモードの液晶表示装置に係るものであり、その構成については後述する。
下記表2に実施例1と比較例1の応答時間、透過率を示す。Tr+Tdの項目には、透過率が10%から90%まで変化する応答時間をTr、透過率が90%から10%まで変化する応答時間をTdとしたときのTr+Tdの値を記載している。
図13は、実施例1及び比較例1の立上がり時における時間に対する規格化透過率を示すグラフである。図14は、実施例1及び比較例1の立下がり時における時間に対する規格化透過率を示すグラフである。なお、比較例1は、従来のFFSモードの液晶表示装置に係るものであり、その構成については後述する。
下記表2に実施例1と比較例1の応答時間、透過率を示す。Tr+Tdの項目には、透過率が10%から90%まで変化する応答時間をTr、透過率が90%から10%まで変化する応答時間をTdとしたときのTr+Tdの値を記載している。
図13及び図14に実施例1と比較例1の応答シミュレーションの結果を示す。立上がり応答、立下がり応答ともに比較例1に対して実施例1の方が速いことが分かる。
高速応答と高透過率の両立の程度を確認する指標として応答時間/透過率を計算した。この値が小さいほど高速応答と高透過率を両立できていることになる。
実施例1は、比較例1よりも応答時間/透過率が小さな値になっているため、高速応答と高透過率を両立できる駆動として、比較例1よりも優れていると言える。
高速応答と高透過率の両立の程度を確認する指標として応答時間/透過率を計算した。この値が小さいほど高速応答と高透過率を両立できていることになる。
実施例1は、比較例1よりも応答時間/透過率が小さな値になっているため、高速応答と高透過率を両立できる駆動として、比較例1よりも優れていると言える。
(実施例2~9)
図15は、実施例2~9の第1駆動方式の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。
実施例2~9は、図15に示したa値及びc値を下記表3に示すように変更したものである(b値は3μmで固定した)。その他の条件は全て実施例1と同じである。なお、図15に示したa値は、上層電極(i)における複数の線状部分の少なくとも1つの輪郭線が、下層電極(iii)の枝部と交差する部分の長さを示す。また、図15に示したb値は、上層電極(i)における複数の線状部分の少なくとも1つの輪郭線が、下層電極(ii)の枝部と交差する部分の長さを示す。
実施例2~9の効果の確認に関してはシンテック社製のLCD-Master3Dを使用しシミュレーションを実施した。比較例1についてもシミュレーションを実施した結果を表5で用いている。
表4に実施例2~9の第1駆動方式と第2駆動方式の白表示時の透過率を示す。それぞれの実施例において、第1駆動方式の透過率に比べて第2駆動方式の透過率が高くなっていることが分かる。
表5に実施例2~9と比較例1の応答時間、透過率を示す。
Tr+Tdの項目には、透過率が10%から90%まで変化する応答時間をTr、透過率が90%から10%まで変化する応答時間をTdとしたときのTr+Tdの値を記載している。
また高速応答と高透過率の両立の程度を確認する指標として応答時間/透過率を計算した。この値が小さいほど高速応答と高透過率を両立できていることになる。
表5に示したように、実施例2~9は比較例1よりも応答時間/透過率が小さな値になっているため、高速応答と高透過率を両立できる駆動として、比較例1よりも優れていると言える。
図15は、実施例2~9の第1駆動方式の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。
実施例2~9は、図15に示したa値及びc値を下記表3に示すように変更したものである(b値は3μmで固定した)。その他の条件は全て実施例1と同じである。なお、図15に示したa値は、上層電極(i)における複数の線状部分の少なくとも1つの輪郭線が、下層電極(iii)の枝部と交差する部分の長さを示す。また、図15に示したb値は、上層電極(i)における複数の線状部分の少なくとも1つの輪郭線が、下層電極(ii)の枝部と交差する部分の長さを示す。
実施例2~9の効果の確認に関してはシンテック社製のLCD-Master3Dを使用しシミュレーションを実施した。比較例1についてもシミュレーションを実施した結果を表5で用いている。
表4に実施例2~9の第1駆動方式と第2駆動方式の白表示時の透過率を示す。それぞれの実施例において、第1駆動方式の透過率に比べて第2駆動方式の透過率が高くなっていることが分かる。
表5に実施例2~9と比較例1の応答時間、透過率を示す。
Tr+Tdの項目には、透過率が10%から90%まで変化する応答時間をTr、透過率が90%から10%まで変化する応答時間をTdとしたときのTr+Tdの値を記載している。
また高速応答と高透過率の両立の程度を確認する指標として応答時間/透過率を計算した。この値が小さいほど高速応答と高透過率を両立できていることになる。
表5に示したように、実施例2~9は比較例1よりも応答時間/透過率が小さな値になっているため、高速応答と高透過率を両立できる駆動として、比較例1よりも優れていると言える。
図16は、実施例1~6及び比較例1の第3電極の平均幅a(μm)に対するTr+Td(ms)/透過率(%)を示すグラフである。図17は、実施例1、7~9及び比較例1の第2電極と第3電極との平均間隔c(μm)に対するTr+Td(ms)/透過率(%)を示すグラフである。図18は、実施例1~6及び比較例1の第3電極の平均幅a(μm)に対するコントラスト比を示すグラフである。図19は、実施例1、7~9及び比較例1の第2電極と第3電極との平均間隔c(μm)に対するコントラスト比を示すグラフである。なお、図16及び図17において、Tr+Td(ms)/透過率(%)は、小さいほど良い。また、図18及び図19において、コントラスト比(CR)は、大きいほど良い。
上記表をグラフ化したものを図16~図18に示す。
a値とTr+Td/透過率及びコントラスト比との関係より、本発明で提案する構造が優れた性能を示すa値の範囲は、5.5μm≦a≦13μmとなる。
またb値が3μmで固定されていることから、優れた性能を示すa-bの値の範囲としては、2.5μm≦a-b≦10μmであるとも言える。
c値とTr+Td/透過率及びコントラスト比との関係より、本発明で提案する構造が優れた性能を示すc値の範囲は、2.5μm≦c≦4.5μmである。
歩留まりなど製造上の理由よりc値は2.5μm以上が望ましいため、c値は2.5μm以上とした。
なお、b値は小さいほど特性は良くなるが、歩留まりなど製造上の理由より2.5μm以上で、できる限り小さい方が望ましい。
a値とTr+Td/透過率及びコントラスト比との関係より、本発明で提案する構造が優れた性能を示すa値の範囲は、5.5μm≦a≦13μmとなる。
またb値が3μmで固定されていることから、優れた性能を示すa-bの値の範囲としては、2.5μm≦a-b≦10μmであるとも言える。
c値とTr+Td/透過率及びコントラスト比との関係より、本発明で提案する構造が優れた性能を示すc値の範囲は、2.5μm≦c≦4.5μmである。
歩留まりなど製造上の理由よりc値は2.5μm以上が望ましいため、c値は2.5μm以上とした。
なお、b値は小さいほど特性は良くなるが、歩留まりなど製造上の理由より2.5μm以上で、できる限り小さい方が望ましい。
(比較例1)
図20は、比較例1の液晶表示装置の電極構造及び液晶分子の初期配向を示す断面模式図である。図20は、従来のFFSモードの液晶表示装置の電極構造の1例を示す断面模式図でもある。図20は、後述する図22に示した一点鎖線における断面図を示す。
比較例1では、ガラス基板811を有する下基板810の下層電極(v)は面状電極であり、絶縁層813を介してスリット電極である上層電極(iv)が配置されている。なお、下基板の上層電極(iv)においてスリット電極の代わりに一対の櫛歯状電極を用いてもよい。ガラス基板821を有する上基板820には、液晶制御用の電極は配置されていない。
図20は、比較例1の液晶表示装置の電極構造及び液晶分子の初期配向を示す断面模式図である。図20は、従来のFFSモードの液晶表示装置の電極構造の1例を示す断面模式図でもある。図20は、後述する図22に示した一点鎖線における断面図を示す。
比較例1では、ガラス基板811を有する下基板810の下層電極(v)は面状電極であり、絶縁層813を介してスリット電極である上層電極(iv)が配置されている。なお、下基板の上層電極(iv)においてスリット電極の代わりに一対の櫛歯状電極を用いてもよい。ガラス基板821を有する上基板820には、液晶制御用の電極は配置されていない。
上下基板の液晶層830側にはそれぞれ水平配向膜(図示せず)を設け、電圧無印加時における液晶分子を、その方位角が上層電極(iv)の線状部分の延伸方向に対して5°となるように水平配向させた。また、上下基板の液晶層側と反対側にはそれぞれ偏光板(図示せず)を設けた。偏光板としては直線偏光板を用い、上下基板で偏光板の偏光軸が電圧無印加時における液晶分子の長軸に対して垂直又は平行のクロスニコル配置とし、ノーマリーブラックモードの液晶表示装置とした。また、液晶材料及びその厚みは実施例1と同じとした。上層電極(iv)において、線状部分の電極幅は3μm、隣り合う線状部分と線状部分との間の電極間隔は6μmである。絶縁層813の誘電率εは6.9である。なお、比較例1の液晶表示装置は、その他の構成、例えば配向膜材料、配向膜処理方法、絶縁膜材料等は、それぞれ上述した実施例1の液晶表示装置の対応する部材と同様である。
比較例1は、下基板の上層電極(iv)-下層電極(v)間でフリンジ電界を発生させ、下基板付近の液晶分子を水平面内で同じ方向に回転させることで立上がり時のスイッチングを行っている。また、立下がり時のスイッチングは、フリンジ電界を弱めて又はゼロにして、液晶分子を粘弾性により元の配向状態に戻すことにより行っている。
しかし、液晶層中、液晶分子を回転させるための電界が弱い領域があり、当該領域における液晶分子の回転に時間を要する。また、この際、液晶分子は同じ方向に回転するため、水平面内における液晶の弾性変形によるひずみは小さい。そのため、電界を弱めて又はゼロにして立下がり時のスイッチングを行う際に、元の配向状態に戻るために働く弾性ひずみ起因の復元力が小さく、応答が遅い。したがって、立上がり時のスイッチング、立下がり時のスイッチングともに応答時間が遅い。
しかし、液晶層中、液晶分子を回転させるための電界が弱い領域があり、当該領域における液晶分子の回転に時間を要する。また、この際、液晶分子は同じ方向に回転するため、水平面内における液晶の弾性変形によるひずみは小さい。そのため、電界を弱めて又はゼロにして立下がり時のスイッチングを行う際に、元の配向状態に戻るために働く弾性ひずみ起因の復元力が小さく、応答が遅い。したがって、立上がり時のスイッチング、立下がり時のスイッチングともに応答時間が遅い。
図21は、比較例1の液晶表示装置の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図22は、比較例1の液晶表示装置の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図21及び図22に比較例1の電圧印加時の原理を示す。
液晶分子は、初期配向では、上述したように、画素電極である上層電極(iv)の線状部分の延伸方向と5°の角度をなす方向に決定する。
液晶分子は、初期配向では、上述したように、画素電極である上層電極(iv)の線状部分の延伸方向と5°の角度をなす方向に決定する。
先ず、立上がり時の液晶分子の動作について詳しく説明する。
上層電極(iv)に電圧を印加すると、上層電極(iv)と下層電極(v)にはフリンジ電界が発生する。このとき液晶は配向方位軸から遠ざかるように回転し黒表示から白表示へ光学変調する。本比較例では白階調表示時に上層電極(iv)に5Vを極性反転させて印加している。
上層電極(iv)に電圧を印加すると、上層電極(iv)と下層電極(v)にはフリンジ電界が発生する。このとき液晶は配向方位軸から遠ざかるように回転し黒表示から白表示へ光学変調する。本比較例では白階調表示時に上層電極(iv)に5Vを極性反転させて印加している。
次いで、立下がり時の液晶分子の動作について説明する。
電圧オフによってフリンジ電界が消滅し、初期配向方位(アンカリング)に向かって弾性体である液晶分子の復元力によって回転する。液晶を配向制御するために必要な配向膜、配向方法、絶縁膜は実施例1で上述したものと同様である。
電圧オフによってフリンジ電界が消滅し、初期配向方位(アンカリング)に向かって弾性体である液晶分子の復元力によって回転する。液晶を配向制御するために必要な配向膜、配向方法、絶縁膜は実施例1で上述したものと同様である。
(比較例2)
比較例2の液晶表示装置は、後述する図に示すように、下基板に上層電極(i)、下層電極(ii)、下層電極(ii)と同層に設けられた下層電極(iii)を備える。
上層電極(i)は、下基板を平面視したときに、複数の線状部分を含む。該複数の線状部分はそれぞれ略平行であり、該線状部分と該線状部分との間には、それぞれ、互いに略平行なスリットが設けられている。
比較例2の液晶表示装置は、後述する図に示すように、下基板に上層電極(i)、下層電極(ii)、下層電極(ii)と同層に設けられた下層電極(iii)を備える。
上層電極(i)は、下基板を平面視したときに、複数の線状部分を含む。該複数の線状部分はそれぞれ略平行であり、該線状部分と該線状部分との間には、それぞれ、互いに略平行なスリットが設けられている。
下層電極(ii)、下層電極(iii)は、それぞれ、下基板を平面視したときに、幹部及び幹部から延びる枝部から構成される。枝部は、それぞれ略平行な複数の線状電極部分である。
上記下層電極(ii)、上記下層電極(iii)それぞれの枝部の延伸方向は、上層電極(i)の線状部分の延伸方向に対して90°をなす方向とした。また、上記上層電極(i)において、線状部分の電極幅は3μm、隣り合う線状部分と線状部分との間の電極間隔は6μmである。上記下層電極(ii)及び下層電極(iii)から構成される一対の櫛歯電極の枝部において、線状部分の電極幅は3μm、隣り合う線状部分と線状部分との間の電極間隔は3μmである。
以下では、比較例2の液晶表示装置を用いた液晶の駆動方法について説明する。
比較例2では、高速応答可能な駆動を実現する。また、電圧の印加方法を切り替えることで、高速応答可能な駆動と、その駆動よりも高い透過率を実現する駆動の2種類の駆動を同じ構成で実現する。実施例1と同様に、高速応答を実現する駆動を第1駆動方式、それより高い透過率を実現する駆動は第2駆動方式と、それぞれ呼ぶことにする。
比較例2では、高速応答可能な駆動を実現する。また、電圧の印加方法を切り替えることで、高速応答可能な駆動と、その駆動よりも高い透過率を実現する駆動の2種類の駆動を同じ構成で実現する。実施例1と同様に、高速応答を実現する駆動を第1駆動方式、それより高い透過率を実現する駆動は第2駆動方式と、それぞれ呼ぶことにする。
図23は、比較例2の第1駆動方式の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図24は、図23に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。図25は、比較例2の第1駆動方式の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図26は、比較例2の第1駆動方式の白表示時における各電極への印加電圧を示す電圧関係図である。なお、実施例1と同様に、電圧無印加時における液晶分子の長軸が上層電極(i)の線状部分の延伸方向と3°をなす方位となる。
先ず、立上がり時の液晶分子の動作について詳しく説明する。
下層電極(ii)及び下層電極(iii)は、図23及び図26に示すように、互いに極性が逆になるように、振幅センターを0Vとして電圧を極性反転させて常に印加し、横電界を常に発生させておく。なお、下層電極(ii)及び下層電極(iii)に印加する電圧の絶対値は常に一定である。その上で上層電極(i)に電圧を極性反転させて印加することで、水平面内で液晶分子を異なる方位に互い違いに回転させる電界が発生し、その電界によって液晶分子が当該水平面内でベンド配向及びスプレイ配向をするような形で配向する。比較例2の第1駆動方式では白階調表示時に上層電極(i)に6V/-6Vを印加し、下層電極(ii)に2.0V/-2.0Vを印加し、下層電極(iii)に-2.0V/2.0Vを印加している。
下層電極(ii)及び下層電極(iii)は、図23及び図26に示すように、互いに極性が逆になるように、振幅センターを0Vとして電圧を極性反転させて常に印加し、横電界を常に発生させておく。なお、下層電極(ii)及び下層電極(iii)に印加する電圧の絶対値は常に一定である。その上で上層電極(i)に電圧を極性反転させて印加することで、水平面内で液晶分子を異なる方位に互い違いに回転させる電界が発生し、その電界によって液晶分子が当該水平面内でベンド配向及びスプレイ配向をするような形で配向する。比較例2の第1駆動方式では白階調表示時に上層電極(i)に6V/-6Vを印加し、下層電極(ii)に2.0V/-2.0Vを印加し、下層電極(iii)に-2.0V/2.0Vを印加している。
シミュレーションによる透過率分布図(図24)を見て分かるように、一点鎖線で囲まれる領域1と二点鎖線で囲まれる領域2とで液晶分子は異なる方位に回転しており、領域1と領域2とは互い違いに存在していることがわかる。すなわち、第1駆動方式では、液晶分子が水平面内で異なる方位に互い違いに回転する。図24に示した領域1(第1領域)では、液晶分子は水平面内で時計回りの向きに回転し、領域2(第2領域)では、液晶分子は水平面内で反時計回りの向きに回転する。
次いで、立下がり時の液晶分子の動作について説明する。
図25に示すように、上層電極(i)に印加していた電圧を弱めることによって、下層電極(ii)及び下層電極(iii)による横電界に液晶分子が反応し、初期配向方位へ電界により強制的に回転する。また、白表示時に水平面内でベンド配向及びスプレイ配向していた液晶分子の復元力も同時に働き、応答をさらに加速させる。比較例2の第1駆動方式では黒表示時に上層電極(i)は0Vであり、下層電極(ii)には2.0V/-2.0Vを印加し、下層電極(iii)には-2.0V/2.0Vを印加している。
図25に示すように、上層電極(i)に印加していた電圧を弱めることによって、下層電極(ii)及び下層電極(iii)による横電界に液晶分子が反応し、初期配向方位へ電界により強制的に回転する。また、白表示時に水平面内でベンド配向及びスプレイ配向していた液晶分子の復元力も同時に働き、応答をさらに加速させる。比較例2の第1駆動方式では黒表示時に上層電極(i)は0Vであり、下層電極(ii)には2.0V/-2.0Vを印加し、下層電極(iii)には-2.0V/2.0Vを印加している。
図27は、比較例2の第2駆動方式の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図28は、図27に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。図29は、比較例2の第2駆動方式の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。
先ず、立上がり時の液晶分子の動作について詳しく説明する。
図27に示すように、下層電極(ii)、下層電極(iii)をともに0Vにしておき、その上で上層電極(i)に極性反転させて電圧を印加することで、上層電極(i)と、下層電極(ii)及び下層電極(iii)との間でフリンジ電界が発生し、その電界に反応して液晶分子が同方位に回転する。比較例2の第2駆動方式では白階調表示時に上層電極(i)に5V/-5Vを印加している。
シミュレーションによる透過率分布図(図28)を見て分かるように、液晶分子が同方位に回転することで、比較例2の第1駆動方式と比べて全体として高透過率が得られている。
図27に示すように、下層電極(ii)、下層電極(iii)をともに0Vにしておき、その上で上層電極(i)に極性反転させて電圧を印加することで、上層電極(i)と、下層電極(ii)及び下層電極(iii)との間でフリンジ電界が発生し、その電界に反応して液晶分子が同方位に回転する。比較例2の第2駆動方式では白階調表示時に上層電極(i)に5V/-5Vを印加している。
シミュレーションによる透過率分布図(図28)を見て分かるように、液晶分子が同方位に回転することで、比較例2の第1駆動方式と比べて全体として高透過率が得られている。
次いで、立下がり時の液晶分子の動作について説明する。
図29に示すように、上層電極(i)に印加していた電圧をオフすることによって、液晶分子の復元力によって配向処理方位(アンカリング)に向かって戻るように回転する。比較例2の第2駆動方式では黒表示時に上層電極(i)に0Vを印加している。その他の各電極(下層電極(ii)、下層電極(iii))への印加電圧は、第2駆動方式の白表示時と同様であり、0Vを印加している。
比較例2の液晶表示装置の上述した以外のその他の構成は、上述した実施例1の液晶表示装置の構成と同様である。
図29に示すように、上層電極(i)に印加していた電圧をオフすることによって、液晶分子の復元力によって配向処理方位(アンカリング)に向かって戻るように回転する。比較例2の第2駆動方式では黒表示時に上層電極(i)に0Vを印加している。その他の各電極(下層電極(ii)、下層電極(iii))への印加電圧は、第2駆動方式の白表示時と同様であり、0Vを印加している。
比較例2の液晶表示装置の上述した以外のその他の構成は、上述した実施例1の液晶表示装置の構成と同様である。
表6に実施例1~9と比較例2の第1駆動方式の白透過率、黒透過率、およびコントラスト比(CR)を示す。比較例2に対して、実施例1~9のコントラストが大きく改善していることが分かる(理由については後述する)。なお、例えば、実施例1の第1駆動方式における黒表示時の透過率は0.06%であり、白表示時の透過率は24.2%である。また、比較例2の第1駆動方式における黒表示時の透過率は0.20%であり、白表示時の透過率は21.8%である。
<実施例1~9が比較例2に対して配向安定性が向上する理由>
図30は、実施例1において発生する電界を示す模式図である。図31は、比較例2において発生する電界を示す模式図である。
比較例2の液晶表示装置の第1駆動方式を配向安定させるためには、下層電極(ii)、(iii)に印加する電圧の大きさを少なくとも2.0Vとすることが望ましいが、実施例1~9では下層電極(ii)、(iii)に印加する電圧の大きさが1.3Vでも配向が安定する。その理由を以下に説明する。
比較例2の第1駆動方式を配向安定させるためには、下層電極(ii)、(iii)に2.0Vを印加する必要があるが、実施例1では下層電極(ii)、(iii)への印加電圧が1.3Vでも配向が安定化する。下層電極(ii)、(iii)への印加電圧が小さいほどコントラスト比は改善するため、実施例1では下層電極(ii)、(iii)への印加電圧を小さくしてその分コントラスト比を改善することができる。その理由を以下に説明する。
図30は、実施例1において発生する電界を示す模式図である。図31は、比較例2において発生する電界を示す模式図である。
比較例2の液晶表示装置の第1駆動方式を配向安定させるためには、下層電極(ii)、(iii)に印加する電圧の大きさを少なくとも2.0Vとすることが望ましいが、実施例1~9では下層電極(ii)、(iii)に印加する電圧の大きさが1.3Vでも配向が安定する。その理由を以下に説明する。
比較例2の第1駆動方式を配向安定させるためには、下層電極(ii)、(iii)に2.0Vを印加する必要があるが、実施例1では下層電極(ii)、(iii)への印加電圧が1.3Vでも配向が安定化する。下層電極(ii)、(iii)への印加電圧が小さいほどコントラスト比は改善するため、実施例1では下層電極(ii)、(iii)への印加電圧を小さくしてその分コントラスト比を改善することができる。その理由を以下に説明する。
比較例2では、上層電極(i)-下層電極(iii)の交差点近傍のみ、液晶分子を狙いの方向に回転させる電界が発生する。
また比較例2では、図31に示されるように、液晶分子を互いに逆方位に回転させるための電界の発生源間の距離d2が小さい。したがって、液晶分子の配向が不安定になり崩れやすい。
実施例1では、図30に示されるように、液晶分子を互いに逆方位に回転させるための電界の発生源間の距離d1が大きい。したがって、液晶分子の配向が安定化する。
また比較例2では、図31に示されるように、液晶分子を互いに逆方位に回転させるための電界の発生源間の距離d2が小さい。したがって、液晶分子の配向が不安定になり崩れやすい。
実施例1では、図30に示されるように、液晶分子を互いに逆方位に回転させるための電界の発生源間の距離d1が大きい。したがって、液晶分子の配向が安定化する。
上述した実施例の液晶表示装置は、上層電極(i)と下層電極(iii)との間の電位差が上層電極(i)と下層電極(ii)との間の電位差以上である駆動操作を実行するように構成されたものであり、下層電極(iii)の枝部の平均幅は、下層電極(ii)の枝部の平均幅よりも大きいことにより、液晶分子の配向安定性が向上し、下層電極(ii)、(iii)への印加電圧を小さくすることができ、コントラスト比を大きく向上することができる。
言い換えれば、本発明の液晶表示装置は、上層電極(i)と下層電極(iii)との間の電位差が上層電極(i)と下層電極(ii)との間の電位差以上である駆動操作を実行するように構成されたものであり、下層電極(iii)の枝部の平均幅は、下層電極(ii)の枝部の平均幅よりも大きいことが好ましい。
なお、上述した第1電極と第3電極との間の電位差が第1電極と第2電極との間の電位差以上である駆動操作は、通常、第1駆動方式において適用されるものである。また、上述したように、第1電極と第3電極との間の電位差が第1電極と第2電極との間の電位差以上である駆動操作を実行する代わりに、第1電極に印加する電圧の極性が、第2電極に印加する電圧の極性と同じであり、第3電極に印加する電圧の極性と逆である駆動操作を実行してもよい。
言い換えれば、本発明の液晶表示装置は、上層電極(i)と下層電極(iii)との間の電位差が上層電極(i)と下層電極(ii)との間の電位差以上である駆動操作を実行するように構成されたものであり、下層電極(iii)の枝部の平均幅は、下層電極(ii)の枝部の平均幅よりも大きいことが好ましい。
なお、上述した第1電極と第3電極との間の電位差が第1電極と第2電極との間の電位差以上である駆動操作は、通常、第1駆動方式において適用されるものである。また、上述したように、第1電極と第3電極との間の電位差が第1電極と第2電極との間の電位差以上である駆動操作を実行する代わりに、第1電極に印加する電圧の極性が、第2電極に印加する電圧の極性と同じであり、第3電極に印加する電圧の極性と逆である駆動操作を実行してもよい。
また上述した実施例の液晶表示装置は、第1駆動方式において、立上がり時には、下層の一対の櫛歯状電極間に横電界が印加されていることにより、水平面内全域の液晶分子に強い電界が働くため応答が高速化し、立ち下がり時には、図4に示すような面内ベンドおよびスプレイ配向が元に戻ろうとする強い復元力が働くことに加え、下層櫛歯状電極が作り出す電界に液晶分子が反応することで従来のFFSモードでは実現できない高速応答を実現できる。
また第2駆動方式において、2層電極下側の櫛歯状電極をともに同電位とすることで、上側のスリット電極との間にフリンジ電界を発生させることができ、上記のように駆動する高速応答を実現する駆動に比べて高い透過率を実現する駆動となる。
これら2種類の駆動を目的や状況に応じて切り替えることができ、結果として広視野角、高速応答、および高透過率を実現できるのが上述した実施例の特長の1つである。なお、本発明の液晶表示装置は、少なくとも第1駆動方式を実行できるものであればよい。
また第2駆動方式において、2層電極下側の櫛歯状電極をともに同電位とすることで、上側のスリット電極との間にフリンジ電界を発生させることができ、上記のように駆動する高速応答を実現する駆動に比べて高い透過率を実現する駆動となる。
これら2種類の駆動を目的や状況に応じて切り替えることができ、結果として広視野角、高速応答、および高透過率を実現できるのが上述した実施例の特長の1つである。なお、本発明の液晶表示装置は、少なくとも第1駆動方式を実行できるものであればよい。
上述した実施例の液晶表示装置は、第1駆動方式と第2駆動方式とを適宜切り換えて表示を行うことができる。また、それぞれの駆動方式において、所望の表示に応じて、白表示と黒表示を適宜組み合わせて表示を行うことができる。
本発明の液晶表示装置は、上述した第1駆動方式を実行する制御装置を備えるものであることが好ましく、上述した第1駆動方式と第2駆動方式とを切り換えて実行する制御装置を備えるものであることがより好ましい。これによって、広視野角を実現するとともに、高速応答を実現したり、高透過率を実現したりすることができる。したがって、1種類の電極構成で高速応答、広視野角、高透過率の特性を全て満足する液晶表示装置を実現できる。
また、本発明の液晶表示装置は、所定の条件に応じて、上述した第1駆動方式と第2駆動方式とを自動的に切り換える制御装置を備えることが好ましい。該制御装置は、例えば、温度センサを搭載し、温度に応じて第1駆動方式と第2駆動方式とを自動的に切り換えるものであることが好ましい。例えば、該制御装置は、応答速度の遅延が問題とならない温度(例えば、下限が-20℃~20℃のいずれかである温度範囲)の環境下では高透過率を実現できる第2駆動方式を実行し、応答速度が遅くなる低温(例えば、上限が-20℃~20℃のいずれかである温度範囲)環境下では高速応答を実現できる第1駆動方式を実行するよう制御する制御装置であることが好ましい。これによって、所望の効果をより適切に得ることができる。
更に、本発明の液晶表示装置は、ユーザーの指示に応じて、上述した第1駆動方式と第2駆動方式とを切り換える制御装置を備えるものであってもよい。
また、本発明は、上述した液晶表示装置を用いた液晶表示装置の駆動方法であってもよい。
また、本発明の液晶表示装置は、所定の条件に応じて、上述した第1駆動方式と第2駆動方式とを自動的に切り換える制御装置を備えることが好ましい。該制御装置は、例えば、温度センサを搭載し、温度に応じて第1駆動方式と第2駆動方式とを自動的に切り換えるものであることが好ましい。例えば、該制御装置は、応答速度の遅延が問題とならない温度(例えば、下限が-20℃~20℃のいずれかである温度範囲)の環境下では高透過率を実現できる第2駆動方式を実行し、応答速度が遅くなる低温(例えば、上限が-20℃~20℃のいずれかである温度範囲)環境下では高速応答を実現できる第1駆動方式を実行するよう制御する制御装置であることが好ましい。これによって、所望の効果をより適切に得ることができる。
更に、本発明の液晶表示装置は、ユーザーの指示に応じて、上述した第1駆動方式と第2駆動方式とを切り換える制御装置を備えるものであってもよい。
また、本発明は、上述した液晶表示装置を用いた液晶表示装置の駆動方法であってもよい。
また本発明の液晶表示装置のように下基板が有する電極のみに交流電圧を印加する液晶の交流駆動を行えばよい場合には、従来通り下基板の当該電極のみに交流駆動用の回路、ドライバ、配線が配置されていればよい。したがって、例えば下基板が有する電極と共に上基板が有する電極にも交流電圧を印加して液晶の交流駆動を行うために下基板と共に上基板にも交流駆動用の回路、ドライバ、配線が配置されている液晶表示装置と比較して、本発明の液晶表示装置の駆動の自由度は格段に高いものである。
本発明の液晶表示装置としては、カーナビゲーション等の車載用の機器、電子ブック、フォトフレーム、産業機器、テレビ、パーソナルコンピュータ、スマートフォン、タブレット端末等が挙げられる。本発明は、例えば、カーナビゲーション等の車載用の機器等の高温環境下、低温環境下の両方で用いられ得る機器に適用されることが好ましい。
(i):上層電極
(ii):下層電極
(iii):下層電極
(iv):上層電極
(v):下層電極
CH:コンタクトホール
TFT:薄膜トランジスタ素子
SL:ソースバスライン
GL:ゲートバスライン
LC:液晶分子
10、810:下基板
11、21、811、821:ガラス基板
13、813:絶縁層
20、820:上基板
30、830:液晶層
(ii):下層電極
(iii):下層電極
(iv):上層電極
(v):下層電極
CH:コンタクトホール
TFT:薄膜トランジスタ素子
SL:ソースバスライン
GL:ゲートバスライン
LC:液晶分子
10、810:下基板
11、21、811、821:ガラス基板
13、813:絶縁層
20、820:上基板
30、830:液晶層
Claims (13)
- 上下基板、及び、上下基板に挟持された液晶層をもつ液晶表示装置であって、
該液晶層は、電圧無印加時に上下基板の主面に対して水平に配向する液晶分子を含み、
該下基板は、第1電極、該第1電極とは異なる層にある第2電極、及び、該第1電極とは異なる層にある第3電極を備え、
該第1電極は、複数の線状部分を有し、
該第2電極及び該第3電極は、一対の櫛歯状電極を構成し、
該一対の櫛歯状電極は、それぞれ、幹部と、該幹部から分岐した複数の枝部とを備え、
平面視したときに、該第1電極における複数の線状部分の少なくとも1つの輪郭線は、互いに隣接する該第2電極の枝部及び該第3電極の枝部と交差し、該第3電極の枝部と交差する部分の長さは、該第2電極の枝部と交差する部分の長さよりも大きく、
該液晶表示装置は、第1電極と第3電極との間の電位差が第1電極と第2電極との間の電位差以上である駆動操作を実行するように構成されたものである
ことを特徴とする液晶表示装置。 - 前記第3電極の枝部と交差する部分の長さは、5.5μm以上、13μm以下である
ことを特徴とする請求項1に記載の液晶表示装置。 - 前記第3電極の枝部と交差する部分の長さは、前記第2電極の枝部と交差する部分の長さよりも2.5μm以上大きい
ことを特徴とする請求項1又は2に記載の液晶表示装置。 - 上下基板、及び、上下基板に挟持された液晶層をもつ液晶表示装置であって、
該液晶層は、電圧無印加時に上下基板の主面に対して水平に配向する液晶分子を含み、
該下基板は、第1電極、該第1電極とは異なる層にある第2電極、及び、該第1電極とは異なる層にある第3電極を備え、
該第1電極は、複数の線状部分を有し、
該第2電極及び該第3電極は、一対の櫛歯状電極を構成し、
該一対の櫛歯状電極は、それぞれ、幹部と、該幹部から分岐した複数の枝部とを備え、
平面視したときに、該第1電極における複数の線状部分の少なくとも1つの輪郭線は、互いに隣接する該第2電極の枝部及び該第3電極の枝部と交差し、該第3電極の枝部の平均幅は、該第2電極の枝部の平均幅よりも大きく、
該液晶表示装置は、第1電極と第3電極との間の電位差が第1電極と第2電極との間の電位差以上である駆動操作を実行するように構成されたものである
ことを特徴とする液晶表示装置。 - 前記第3電極の枝部の平均幅は、5.5μm以上、13μm以下である
ことを特徴とする請求項4に記載の液晶表示装置。 - 前記第3電極の枝部の平均幅は、前記第2電極の枝部の平均幅よりも2.5μm以上大きい
ことを特徴とする請求項4又は5に記載の液晶表示装置。 - 前記第2電極の枝部と、前記第3電極の枝部との平均間隔は、2.5μm以上、4.5μm以下である
ことを特徴とする請求項1~6のいずれかに記載の液晶表示装置。 - 前記駆動操作は、前記液晶分子の一部を前記上下基板の主面に対して水平面内で回転させ、かつ、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる電界を前記下基板が備える電極によって発生させる
ことを特徴とする請求項1~7のいずれかに記載の液晶表示装置。 - 前記駆動操作は、画素内で、前記液晶分子の一部を前記主面に対して水平面内で回転させる第1領域と、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる第2領域とがそれぞれ2つ以上交互に並ぶように液晶分子を回転させる電界を前記下基板が備える電極によって発生させる
ことを特徴とする請求項8に記載の液晶表示装置。 - 前記駆動操作を実行する第1駆動方式と、
前記液晶分子を前記上下基板の主面に対して水平面内で1方向に回転させる電界を前記電極によって発生させる駆動操作を実行する第2駆動方式とを切り換えて実行するように構成されたものである
ことを特徴とする請求項1~9のいずれかに記載の液晶表示装置。 - 前記第1電極は、前記第2電極及び前記第3電極よりも液晶層側に配置されている
ことを特徴とする請求項1~10のいずれかに記載の液晶表示装置。 - 前記液晶分子は、正の誘電率異方性を有する
ことを特徴とする請求項1~11のいずれかに記載の液晶表示装置。 - 前記下基板は、薄膜トランジスタ素子を備え、
該薄膜トランジスタ素子は、酸化物半導体を含む
ことを特徴とする請求項1~12のいずれかに記載の液晶表示装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/741,247 US10317750B2 (en) | 2015-07-03 | 2016-06-27 | Liquid crystal display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015134562 | 2015-07-03 | ||
JP2015-134562 | 2015-07-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017006789A1 true WO2017006789A1 (ja) | 2017-01-12 |
Family
ID=57685459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/068940 WO2017006789A1 (ja) | 2015-07-03 | 2016-06-27 | 液晶表示装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US10317750B2 (ja) |
WO (1) | WO2017006789A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130033666A1 (en) * | 2011-08-01 | 2013-02-07 | Te-Chen Chung | Liquid crystal display device |
CN103676353A (zh) * | 2013-12-04 | 2014-03-26 | 京东方科技集团股份有限公司 | 像素结构、阵列基板及显示装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2327797A (en) * | 1997-07-31 | 1999-02-03 | Sharp Kk | Spatial light modulator and display |
US6636289B2 (en) * | 2000-04-19 | 2003-10-21 | Lg.Philips Lcd Co., Ltd. | In-plane switching LCD panel with multiple domains and rubbing directions symetric about a line |
KR100482468B1 (ko) | 2000-10-10 | 2005-04-14 | 비오이 하이디스 테크놀로지 주식회사 | 프린지 필드 구동 액정 표시 장치 |
JP5116277B2 (ja) * | 2006-09-29 | 2013-01-09 | 株式会社半導体エネルギー研究所 | 半導体装置、表示装置、液晶表示装置、表示モジュール及び電子機器 |
-
2016
- 2016-06-27 WO PCT/JP2016/068940 patent/WO2017006789A1/ja active Application Filing
- 2016-06-27 US US15/741,247 patent/US10317750B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130033666A1 (en) * | 2011-08-01 | 2013-02-07 | Te-Chen Chung | Liquid crystal display device |
CN103676353A (zh) * | 2013-12-04 | 2014-03-26 | 京东方科技集团股份有限公司 | 像素结构、阵列基板及显示装置 |
Also Published As
Publication number | Publication date |
---|---|
US20180188613A1 (en) | 2018-07-05 |
US10317750B2 (en) | 2019-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4543006B2 (ja) | 液晶表示素子及びその製造方法 | |
WO2016088658A1 (ja) | 液晶表示装置 | |
WO2013146635A1 (ja) | 液晶駆動方法及び液晶表示装置 | |
WO2013161636A1 (ja) | 液晶表示パネル、液晶表示装置及び薄膜トランジスタアレイ基板 | |
JP5728587B2 (ja) | 液晶駆動方法及び液晶表示装置 | |
JP5898307B2 (ja) | 液晶駆動方法及び液晶表示装置 | |
US9645453B2 (en) | Liquid crystal panel having a plurality of first common electrodes and a plurality of first pixel electrodes alternately arranged on a lower substrate, and display device incorporating the same | |
US20160299394A1 (en) | Liquid crystal display device | |
EP2579093A1 (en) | Active matrix substrate and liquid crystal display device | |
WO2016143686A1 (ja) | 液晶表示装置 | |
CN105487304B (zh) | 液晶显示器 | |
WO2016080271A1 (ja) | 液晶表示装置 | |
WO2016013500A1 (ja) | 液晶表示装置 | |
CN106125441B (zh) | 一种窄视角模式的低驱动电压蓝相液晶显示器 | |
KR101624826B1 (ko) | 액정 구동 방법 및 액정 표시 장치 | |
US10558085B2 (en) | Liquid crystal display device | |
WO2015012092A1 (ja) | 液晶表示装置 | |
KR100934566B1 (ko) | 프린지 인플레인 필드 스위칭 액정표시소자 | |
CN106125406B (zh) | 一种窄视角显示的垂直取向液晶显示器 | |
WO2017006789A1 (ja) | 液晶表示装置 | |
US10754207B2 (en) | Liquid crystal display device | |
US10634960B2 (en) | Liquid crystal display device | |
WO2016013499A1 (ja) | 液晶表示装置 | |
WO2016006506A1 (ja) | 液晶表示装置 | |
WO2016021527A1 (ja) | 液晶表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16821258 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16821258 Country of ref document: EP Kind code of ref document: A1 |