WO2018012356A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2018012356A1
WO2018012356A1 PCT/JP2017/024568 JP2017024568W WO2018012356A1 WO 2018012356 A1 WO2018012356 A1 WO 2018012356A1 JP 2017024568 W JP2017024568 W JP 2017024568W WO 2018012356 A1 WO2018012356 A1 WO 2018012356A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
liquid crystal
display device
crystal display
crystal molecules
Prior art date
Application number
PCT/JP2017/024568
Other languages
English (en)
French (fr)
Inventor
拓馬 友利
村田 充弘
洋典 岩田
聡 松村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US16/316,141 priority Critical patent/US10558085B2/en
Publication of WO2018012356A1 publication Critical patent/WO2018012356A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133784Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by rubbing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134318Electrodes characterised by their geometrical arrangement having a patterned common electrode

Definitions

  • the present invention relates to a liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device suitable for use in both a high temperature environment and a low temperature environment such as car navigation.
  • a liquid crystal display device is configured by sandwiching a liquid crystal display element between a pair of glass substrates or the like, and makes use of the features such as thinness, light weight, and low power consumption to provide car navigation, electronic books, photo frames, industrial equipment, televisions, personal computers. Smartphones, tablet devices, etc. are indispensable for daily life and business. In these applications, liquid crystal display devices of various modes related to electrode arrangement and substrate design for changing the optical characteristics of the liquid crystal layer have been studied.
  • a display method of a liquid crystal display device As a display method of a liquid crystal display device in recent years, vertical such as a multi-domain vertical alignment (MVA) mode in which liquid crystal molecules having negative dielectric anisotropy are vertically aligned with respect to a substrate surface.
  • MVA multi-domain vertical alignment
  • IPS In-plane switching
  • VA liquid crystal molecules with alignment
  • FFS fringe field switching
  • the FFS mode is a liquid crystal mode that is frequently used for smartphones and tablet terminals in recent years.
  • the FFS mode liquid crystal display device for example, formed on the first transparent substrate, the first and second transparent insulating substrates that are arranged to face each other with a predetermined distance through a liquid crystal layer containing a plurality of liquid crystal molecules, A plurality of gate bus lines and data bus lines arranged in a matrix form so as to limit unit pixels, thin film transistors provided at intersections of the gate bus lines and data bus lines, and arranged in each unit pixel And a counter electrode made of a transparent conductor and a unit electrode that is insulated from the counter electrode so as to form a fringe field together with the counter electrode, and is symmetrical about the long side of the pixel.
  • FFS having a plurality of upper and lower slits arranged at a predetermined inclination and a pixel electrode made of a transparent conductor
  • the liquid crystal display device over de is disclosed (for example, see Patent Document 1.).
  • a liquid crystal display device having an upper substrate and a liquid crystal layer sandwiched between the upper and lower substrates, the lower substrate including an electrode, and the electrode is in a layer different from the first electrode and the first electrode.
  • the liquid crystal layer includes a second electrode and a third electrode in the same layer as the second electrode, and the liquid crystal layer includes liquid crystal molecules aligned horizontally with respect to the main surface of the upper and lower substrates when no voltage is applied.
  • the liquid crystal display device rotates a part of the liquid crystal molecules in a horizontal plane with respect to the main surface, and another part of the liquid crystal molecules in the horizontal plane with respect to the main surface.
  • a liquid crystal display device is disclosed that is configured to execute a driving operation that generates an electric field that is rotated in a direction opposite to the unit by the electrode (see, for example, Patent Document 2). .
  • the FFS mode liquid crystal display device described in Patent Document 1 is disclosed to have a wide viewing angle characteristic and to improve the low aperture ratio and transmittance of the IPS mode liquid crystal display device (for example, Patent Document 1). 6 shown in Fig. 1.
  • Fig. 6 described in Patent Document 1 shows a planar pixel structure of an FFS mode liquid crystal display device.
  • the FFS mode liquid crystal display device described in Patent Document 1 can force the liquid crystal to respond by applying an electric field at the rising edge, but at the falling edge, the electric field application is stopped and the liquid crystal viscoelasticity is allowed to respond. Therefore, the response is slower than that in the vertical alignment mode such as the MVA mode, and there is room for improving the response characteristics.
  • an upper layer electrode provided with a slit and a planar lower layer electrode are disposed on the lower substrate via the upper layer electrode and an insulating layer.
  • the upper layer electrode is applied to a constant voltage at the time of rising (for example, any potential can be used as long as the potential difference between the upper layer electrode and the lower layer electrode is equal to or greater than a threshold value and can respond with a fringe electric field). It responds by setting the potential difference between the upper layer electrode and the lower layer electrode to be less than the threshold value and stopping (weakening) the fringe electric field.
  • a fringe electric field is generated by an electrode on the lower substrate (hereinafter also referred to as an FFS electrode), and liquid crystal molecules near the FFS electrode on the lower substrate are rotated in the same direction in a horizontal plane. Switching at the rise is performed. Further, switching at the time of falling is performed by returning the liquid crystal molecules to the original alignment state by viscoelasticity by cutting the fringe electric field.
  • the electric field for rotating the liquid crystal molecules is weak, and it takes time to rotate the liquid crystal molecules in the region.
  • the liquid crystal molecules rotate basically in the same direction, so that the distortion due to elastic deformation of the liquid crystal in the horizontal plane is small. Therefore, when switching is performed at the time of falling with the electric field turned off, the restoring force due to elastic strain acting to return to the original alignment state is small, and the response is slow. Accordingly, the response time is slow for both the switching at the rise and the switching at the fall.
  • the inventors paid attention to the electrode structure of the lower substrate.
  • the conventional FFS mode liquid crystal display device is configured by two kinds of electrodes to which the lower substrate electrode is arranged in two layers and which can apply different voltages. It is assumed that the electrodes are configured from three types of electrodes that can be applied with two different voltages arranged in two layers, and a pair of comb-like electrodes are arranged in at least one layer. Then, the present inventors have found that in such a liquid crystal display device (the liquid crystal display device described in Patent Document 2), a high-speed response can be realized in addition to a wide viewing angle.
  • a pair of comb-like electrodes to which two different voltages can be applied are applied with the amplitude center being 0 V and the polarity reversed so that the polarities are opposite to each other.
  • the liquid crystal display device is driven by applying a voltage in accordance with the gray scale to a pixel electrode provided in a layer different from the pair of comb-like electrodes while reversing the polarity.
  • the response is faster than the FFS mode, and the moving image visibility is improved.
  • a driving method is also referred to as a first driving method.
  • the amplitude center means an average value (intermediate value) between the maximum value and the minimum value of the AC voltage.
  • the liquid crystal display device is provided with a voltage different from that of the pair of comb-like electrodes in a voltage different from that of the pair of comb-like electrodes, as in the voltage application method in the conventional FFS mode liquid crystal display device. It is also possible to drive the liquid crystal by generating a fringe electric field between the upper and lower layer electrodes by applying a voltage corresponding to the gradation to the pixel electrode. In this case, a higher transmittance can be achieved than in the first driving method.
  • a driving method is also referred to as a second driving method.
  • the voltage is always applied to the lower layer electrode of the lower substrate.
  • the inventors further decided that the width of one specific electrode of the pair of comb-like electrodes is larger than the width of the other electrode. As a result, the liquid crystal can be in a desired orientation during black display in the first driving method, and the transmittance can be sufficiently reduced.
  • the alignment of the liquid crystal may break depending on the shape of the opening at the pixel end (upper electrode end).
  • the lower layer electrode is a comb-like electrode, the electric field generated differs from the pixel center in the region where the lower layer electrode near the pixel end does not exist in the second driving method. It was found that the alignment of the liquid crystal may be broken.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a liquid crystal display device capable of realizing a high contrast ratio and a wide viewing angle and also realizing a high-speed response.
  • the inventors of the present invention have a first drive method in which an electrode on a lower substrate includes a pair of comb-like electrodes and a pixel electrode provided in a layer different from the pair of comb-like electrodes.
  • the shape of the upper layer electrode of the pixel end is specified, and the linear portion of the upper layer electrode end has a specific bent structure.
  • the inventors of the present invention have arrived at the present invention by conceiving that the electrode structure thus identified can stabilize the alignment of the liquid crystal near the pixel end, and can solve the above-mentioned problem in an excellent manner. Is.
  • one embodiment of the present invention is a liquid crystal display device including an upper substrate and a liquid crystal layer sandwiched between the upper and lower substrates, and the lower substrate includes a first electrode and a layer different from the first electrode.
  • the first electrode includes a trunk and a plurality of branches branched from one side of the trunk, and the first electrode is provided between the branches and the branches.
  • the second electrode and the third electrode constitute a pair of comb-like electrodes, each of which has a trunk and a plurality of branches branched from one side of the trunk A plurality of branches of the second electrode when the lower substrate is viewed in plan view so that the other edge on the side of the trunk portion of the first electrode is an edge extending in the left-right direction on the upper side of the first electrode.
  • One of the parts overlaps with the trunk of the first electrode, and the other part is in the opening of the first electrode.
  • the liquid crystal layer may be a liquid crystal display device including liquid crystal molecules aligned in a horizontal direction when no voltage is applied to each electrode.
  • the “side of the trunk” means an edge along the longitudinal direction of the trunk.
  • the sides of the trunk part usually have a side where the branch part is branched and a side where the branch part is not branched.
  • the above “plan view of the lower substrate so that the other edge on the side of the trunk of the first electrode extends in the left-right direction above the first electrode” means in the longitudinal direction of the trunk of the first electrode.
  • the edge on the side where the branch part is not branched becomes the upper edge of the trunk part, and means that the main surface of the lower substrate is viewed in a plan view in a direction extending in the left-right direction.
  • the first electrode may be an electrode (comb-like electrode) including one trunk and a plurality of branches branched from one side edge of the trunk, and a pair of trunks facing each other.
  • An electrode (slit electrode) provided with a plurality of branches connected to each of the pair of trunks and extending between the trunks may be used.
  • the first electrode is preferably provided with a slit or a comb-like electrode. Whether the first electrode is a comb-like electrode or a slit electrode, an opening is provided between the plurality of branches. When the first electrode is a slit electrode, the opening is usually surrounded by an electrode frame on all four sides.
  • the opening is usually surrounded by an electrode frame on three sides and the other one is open.
  • the second electrode and the third electrode are comb-like electrodes, and both electrodes constitute a pair of comb-like electrodes.
  • an electrode having a comb-like shape is not called an electrode provided with a slit, but is called a comb-like electrode.
  • the lower substrate is viewed in plan so that the edge of one of the pair of trunks is the edge extending in the left-right direction on the upper side of the first electrode.
  • the above equations (1) to (4) may be satisfied.
  • the edge on the side where the branch portion is not branched extends in the left-right direction above the first electrode.
  • one of the plurality of branches of the second electrode is partially overlapped with the trunk of the first electrode and the other part is in the opening of the first electrode.
  • One part of the branch part of the two electrodes overlaps with the trunk part of the first electrode, and all or part of the other part may be in the opening.
  • the “second upper end of another part in the opening” in the “upper and lower distance between the other upper end and the lower end in the opening” (A) is provided in the second electrode.
  • One of the branches (a part of which overlaps with the trunk of the first electrode), which is the uppermost end in the region occupied by the portion in the opening.
  • the upper end may be a line or a point as shown in FIG.
  • the “lower end” is one of the branch portions of the second electrode (part of which overlaps with the trunk portion of the first electrode), and a region occupied by a portion in the opening portion, Say the lowest edge.
  • the lower end may be a line or a point as shown in FIG.
  • the “vertical distance” refers to the distance of the vertical component when the lower substrate is viewed in plan as described above.
  • the distance A is a distance represented by A shown in FIG.
  • the distance A is calculated for each upper side of the opening, and may be the same or different.
  • the distance A may satisfy the above formula (1) at the upper end of a certain opening, but the distance A preferably satisfies the above formula (1) in each opening. .
  • the distance A is the most important feature in the present invention.
  • the distance A is preferably 1.6 ⁇ m or more, more preferably 1.8 ⁇ m or more, further preferably 1.9 ⁇ m or more, and particularly preferably 2.8 ⁇ m or more.
  • the upper limit of this distance A is not specifically limited, For example, it is preferable that this distance A is 8 micrometers or less.
  • the branch portion of the third electrode used for calculating the distance B is the branch portion of the third electrode closest to the bending point when there are a plurality of branch portions of the third electrode below the bending point. is there.
  • the center line between the upper and lower sides of the third electrode branch is a line passing through equidistant points from the upper and lower ends of the third electrode branch (the width of the third electrode branch is 2).
  • the line is equally divided, and normally extends in the longitudinal direction (left-right direction) of the branch portion of the third electrode. Therefore, the distance B is usually the distance of the vertical component. Further, the bending point is a bending point of the edge of the branch portion to be bent on the opening side.
  • the distance B is a distance represented by B shown in FIG.
  • the distance B is basically calculated for each upper side of the opening, and may be the same or different. In the liquid crystal display device of the present invention, at least one of the distances B may satisfy the above formula (2), but each of the distances B preferably satisfies the above formula (2).
  • the branch portion of the first electrode may be bent at a plurality of locations. In this case, the bending point used for calculating the distance B is the bending point closest to the center of the pixel.
  • the distance B is an important feature next to the distance A in the present invention.
  • the distance B is preferably 5 ⁇ m or less, more preferably 4 ⁇ m or less, still more preferably 3 ⁇ m or less, and particularly preferably 0.8 ⁇ m or less. Note that in one embodiment of the present invention, the lower limit of the distance B may be 0 ⁇ m.
  • the “angle formed by the extending direction of the branch portion of the second electrode and the extending direction of one edge on the side of the trunk portion of the first electrode” is the extension of the branch portion of the second electrode. Of the angles formed by the direction and the extending direction of one edge on the side of the trunk portion of the first electrode, the angle is an acute angle.
  • One side edge of the trunk of the first electrode is one side of the trunk of the first electrode (the edge on the side where the branch is branched), and the branch protrudes. Say no edge of the part.
  • the “stretching direction” refers to the longitudinal direction of the electrode and the direction along the edge.
  • the angle C is an angle represented by C shown in FIG.
  • the angle C is basically calculated for each upper side of the opening, and may be the same or different.
  • at least one of the corners C may satisfy the above formula (3), but each of the corners C preferably satisfies the above formula (3).
  • the edge of the first electrode may be bent, and there may be a plurality of extending directions. In this case, the extending direction of the branch part of the second electrode and the side of the trunk part of the first electrode The smallest angle among the angles formed by the extending direction of one edge is defined as an angle C.
  • the angle C is important, but its importance is lower than the distance A, the distance B, and the angle D.
  • the angle C is preferably 18 ° or less, more preferably 15 ° or less, still more preferably 12 ° or less, and particularly preferably 3 ° or less. Note that in one embodiment of the present invention, the lower limit of the angle C may be 0 °.
  • the “angle formed by the extending direction of the trunk portion of the second electrode and the extending direction of the portion of the branch portion of the first electrode above the bending point” is the trunk portion of the second electrode.
  • an acute angle is defined.
  • the angle D is an angle represented by D shown in FIG.
  • the angle D is basically calculated for each upper side of the opening, and may be the same or different. In the liquid crystal display device of the present invention, it is sufficient that at least one of the corners D satisfies the above formula (4), but each of the corners D preferably satisfies the above formula (4).
  • the branch portion of the first electrode may be bent at a plurality of locations, in which case there are a plurality of “extension directions of the portion above the bending point”, and there are a plurality of corners D. Become. In this case, it is preferable that each of the plurality of corners D on the upper side of the opening satisfies the above formula (4).
  • the angle D is as important as the distance B in the present invention.
  • the angle D is preferably 8 ° or more, more preferably 9 ° or more, further preferably 9.5 ° or more, and particularly preferably 17 ° or more.
  • the upper limit value of the angle D may be 25 °.
  • the upper limit value of the angle D is preferably 20 °.
  • the liquid crystal display device of the present invention further satisfies D ⁇ 20 ° (5) satisfying the following formula (5). It is preferable.
  • the plurality of branch portions of the first electrode usually intersect with the plurality of branch portions of the second electrode and the plurality of branch portions of the third electrode.
  • the plurality of branches in the first electrode are substantially orthogonal (intersect at an angle of 75 to 90 °) with the branches of the second electrode and the branches of the third electrode.
  • the average width of the branch portions of the third electrode is larger than the average width of the branch portions of the second electrode.
  • the average width refers to the average width calculated for each branch.
  • the liquid crystal display according to the present invention is configured to execute a driving operation in which a potential difference between the first electrode and the third electrode is equal to or greater than a potential difference between the first electrode and the second electrode. This is one of the preferred forms of the device.
  • the driving operation in which the polarity of the voltage applied to the first electrode is the same as the polarity of the voltage applied to the second electrode and is opposite to the polarity of the voltage applied to the third electrode. It is preferable that it is comprised so that may be performed.
  • the liquid crystal mode of the liquid crystal display device of the present invention is such that the initial alignment of the liquid crystal is parallel type (the long axis of the liquid crystal molecules is substantially parallel to the main surface of the substrate. Is the direction of the major axis of the liquid crystal molecules.)
  • the liquid crystal display device of the present invention has a drive (first drive method) whose response is faster than the FFS mode, and a drive (second drive) that has higher transmittance than that drive.
  • Driving method can be realized by switching the voltage to be applied according to the purpose, and in addition to high transmittance and wide viewing angle, high-speed response can also be realized.
  • the average width of the branch portions of the third electrode is preferably 5.5 ⁇ m or more and 13 ⁇ m or less. In another aspect of the liquid crystal display device of the present invention, the average width of the branch portions of the third electrode is preferably 2.5 ⁇ m or more larger than the average width of the branch portions of the second electrode. In another aspect of the liquid crystal display device of the present invention, it is preferable that an average interval between the branch portion of the second electrode and the branch portion of the third electrode is 2.5 ⁇ m or more and 4.5 ⁇ m or less.
  • the liquid crystal display device of the present invention includes a first region in a pixel in which a part of the liquid crystal molecules is rotated in a horizontal plane with respect to the main surface of the upper and lower substrates, and another part of the liquid crystal molecules is the main surface.
  • the part of the liquid crystal molecules means a plurality of liquid crystal molecules constituting a part of the plurality of liquid crystal molecules included in the liquid crystal layer.
  • the generation of the electric field by the electrode provided in the lower substrate may be any means as long as the electric field is generated by at least one electrode selected from the first electrode, the second electrode, and the third electrode. It is preferable that when the display device is turned on, a lateral electric field is always generated between the second electrode and the third electrode and a voltage is applied to the first electrode for driving.
  • a voltage applied to the first electrode specifically, the voltage applied to the first electrode during white display is increased to rotate the liquid crystal molecules, and the voltage at the first electrode is decreased during black display. This refers to rotating liquid crystal molecules in the opposite direction.
  • the first electrode may be arranged in a layer different from each of the second electrode and the third electrode, but is more than the second electrode and the third electrode. It is preferable to arrange on the liquid crystal layer side.
  • the first electrode is preferably arranged on the second electrode and the third electrode with an insulating layer or the like interposed therebetween.
  • the second electrode and the third electrode may be arranged in different layers, but are preferably arranged in the same layer.
  • a pair of comb-like electrodes being arranged in the same layer means that each comb-like electrode has a common member (for example, an insulating material) on the liquid crystal layer side and / or on the side opposite to the liquid crystal layer side. Layer, liquid crystal layer, etc.).
  • the first electrode, the second electrode, and the third electrode are usually electrically separated, and these voltages can be individually controlled.
  • the first electrode, the second electrode, and the third electrode can each be set to a voltage different from the threshold voltage.
  • the electrode for driving the liquid crystal may or may not be disposed on the upper substrate.
  • the electrode is not disposed. That is, it is one of the preferable forms in the liquid crystal display device of the present invention that the electrodes for driving the liquid crystal are disposed only on the lower substrate.
  • the liquid crystal display device of the present invention includes a first driving method for performing the driving operation, and a first region in a pixel in which a part of the liquid crystal molecules is rotated in a horizontal plane with respect to the main surface of the upper and lower substrates. And the liquid crystal molecules are rotated so that the number of the second regions for rotating another part of the liquid crystal molecules in a direction opposite to the part of the liquid crystal molecules in the horizontal plane with respect to the main surface is one or less. It is preferable that the electric field to be generated is configured to be switched to the second driving method for executing the driving operation for generating the electric field generated by the electrode provided on the lower substrate.
  • the second region is one or less means, for example, that there is one first region and one second region, or Says that it does not exist (it is 0).
  • Rotating within a horizontal plane may be anything that is substantially rotated in one direction within a horizontal plane.
  • the generation of the electric field by the electrode provided on the lower substrate means that the electric field is generated by at least one electrode selected from the first electrode, the second electrode, and the third electrode. For example, when the liquid crystal display device is powered on, it is preferable to apply voltage to the first electrode without driving the second electrode and the third electrode.
  • Driving by applying a voltage to the first electrode means that, as described above, the voltage applied to the first electrode is increased during white display, an electric field is generated to rotate the liquid crystal molecules, and the first electrode is rotated during black display. This means that the applied voltage is reduced and the electric field is weakened or zeroed to rotate the liquid crystal molecules in the reverse direction.
  • the liquid crystal molecules preferably have positive dielectric anisotropy.
  • the lower substrate includes a thin film transistor element, and the thin film transistor element includes an oxide semiconductor.
  • the configuration of the liquid crystal display device of the present invention is not particularly limited by other components, and other configurations that are usually used in liquid crystal display devices can be applied as appropriate.
  • liquid crystal display device of the present invention a high contrast ratio and a wide viewing angle can be realized, and a high-speed response can be realized.
  • FIG. 4 is a schematic plan view illustrating an electrode structure of a pixel and an initial alignment of liquid crystal in the liquid crystal display device of Example 1.
  • FIG. It is a cross-sectional schematic diagram which shows the cross section of the part corresponding to the line segment shown with the dashed-dotted line in FIG.
  • FIG. 3 is an enlarged schematic diagram showing an upper layer electrode (i), a lower layer electrode (ii), and a lower layer electrode (iii) of the liquid crystal display device of Example 1.
  • FIG. 6 is a schematic plan view illustrating applied voltages to the electrodes and alignment of liquid crystal molecules during white display in the first drive method of Example 1. It is a simulation result which shows the director distribution and transmittance
  • FIG. 6 is a schematic plan view illustrating applied voltages to the electrodes and the alignment of liquid crystal molecules during black display in the first drive method of Example 1.
  • FIG. 6 is a voltage relationship diagram illustrating applied voltages to each electrode during white display in the first drive method of Example 1.
  • FIG. 6 is a schematic plan view showing applied voltages to each electrode and alignment of liquid crystal molecules during white display in the second drive method of Example 1. It is a simulation result which shows the director distribution and the transmittance
  • FIG. 6 is a schematic plan view showing applied voltages to each electrode and the orientation of liquid crystal molecules during black display in the second drive method of Example 1. It is a plane schematic diagram which shows the upper layer electrode and lower layer electrode of a liquid crystal display device.
  • FIG. 3 is a schematic plan view illustrating each electrode structure of a pixel end portion of Example 1.
  • FIG. 6 is a schematic plan view showing each electrode structure of a pixel end portion of Comparative Example 1.
  • FIG. It is a simulation result which shows the director distribution and transmittance
  • FIG. 7 is a simulation result which shows the director distribution and transmittance
  • FIG. 6 is a schematic cross-sectional view showing an electrode structure of a liquid crystal display device of Comparative Example 1 and initial alignment of liquid crystal molecules.
  • FIG. 6 is a schematic plan view showing an upper layer electrode and a lower layer electrode of the liquid crystal display device of Comparative Example 1.
  • a pixel may be a picture element (sub-pixel) unless otherwise specified.
  • a picture element (sub pixel) refers to a region showing any single color, such as R (red), G (green), B (blue), or yellow (Y).
  • a pair of substrates sandwiching the liquid crystal layer is also referred to as an upper substrate and a lower substrate.
  • a substrate on the display surface side is also referred to as an upper substrate
  • a substrate on the opposite side to the display surface is also referred to as a lower substrate.
  • the electrode on the display surface side is also referred to as an upper layer electrode
  • the electrode on the opposite side to the display surface side is also referred to as a lower layer electrode.
  • the member and part which exhibit the same function are attached
  • (i) shows a slit electrode on the upper layer (liquid crystal layer side) of the lower substrate, and (ii) shows a comb on the lower layer (opposite side of the liquid crystal layer) of the lower substrate. A tooth-like electrode is shown, and (iii) shows another comb-like electrode on the lower layer of the lower substrate.
  • the upper layer electrode (i) may be a comb-like electrode.
  • the lower layer electrode (ii) and the lower layer electrode (iii) face each other when the substrate main surface is viewed in plan. In the drawing, layers not related to the electric field control of the liquid crystal such as a color filter and a black matrix are omitted.
  • the electrode of the lower substrate means at least one of the upper layer electrode (i), the lower layer electrode (ii), and the lower layer electrode (iii).
  • the slit electrode refers to an electrode provided with a slit, and usually includes a plurality of linear portions (linear electrode portions).
  • a slit is an opening of an electrode, for example, a region surrounded on four sides by an electrode frame.
  • the upper layer electrode (i), the lower layer electrode (ii), and the lower layer electrode (iii) can usually have different potentials at a threshold voltage or higher.
  • the threshold voltage means a voltage value that gives a transmittance of 5% when the transmittance in the bright state is set to 100%.
  • the potential different from the threshold voltage can be any voltage as long as it can realize a driving operation with a potential different from the threshold voltage. This makes it possible to suitably control the electric field applied to the liquid crystal layer. Become.
  • the upper layer electrode (i) is a pixel electrode and the lower layer electrode (ii) and the lower layer electrode (iii) are common electrodes, the upper layer electrode (i) may have a different potential.
  • a TFT thin film transistor element
  • an AC voltage AC voltage
  • AC driving AC driving
  • the lower layer electrode (ii) and the lower layer electrode that are AC-driven by applying an AC voltage to another TFT by using another TFT are commonly connected to each line, or are commonly connected in all pixels.
  • an AC voltage is applied by a TFT corresponding to the line or all pixels to AC drive the liquid crystal, or the line or all pixels are AC driven without using a TFT, or the lower layer electrode ( ii
  • a liquid crystal by applying a DC voltage may be or DC drive (DC drive) without using the TFT in the lower layer electrode (iii).
  • the generation of the electric field by the electrode means that the electric field is generated by at least one electrode selected from the first electrode, the second electrode, and the third electrode.
  • the display device When the display device is turned on, an electric field is always generated between the second electrode and the third electrode, the voltage of the first electrode is increased during white display to rotate the liquid crystal molecules, and the first electrode during black display is rotated. The voltage can be reduced to rotate the liquid crystal molecules in the opposite direction.
  • the angle between the extending direction of the linear portion of the upper electrode (i) and the alignment direction of the liquid crystal molecules the alignment direction of the liquid crystal molecules is on the right with respect to the extending direction of the linear portion of the upper electrode (i).
  • the turning angle it makes a positive angle
  • the counterclockwise angle with respect to the extending direction of the linear portion of the upper electrode (i) it makes a negative angle.
  • a two-layer electrode in which the lower electrode is a pair of comb-like electrodes and the upper electrode is a slit electrode (or a comb-like electrode) is interposed via an insulating film. It is preferable to arrange.
  • a lateral electric field is always applied between a pair of comb-like electrodes on the lower layer side (opposite side of the liquid crystal layer side) of the two layers of electrodes, and an upper-layer slit electrode (or comb-like electrode) ) Can be driven by applying a voltage.
  • rising means a period during which the display state changes from a dark state (black display) to a light state (white display).
  • the term “falling” means a period during which the display state changes from a bright state (white display) to a dark state (black display).
  • the initial alignment of liquid crystal refers to the alignment of liquid crystal molecules when no voltage is applied.
  • FIG. 1 is a schematic plan view illustrating an electrode structure of a pixel and an initial alignment of liquid crystal in the liquid crystal display device according to the first embodiment.
  • FIG. 1 is a plan view of the lower substrate in such a direction that the edge of the side of the trunk of the upper layer electrode (i) where the branch portion is not branched becomes the edge extending in the left-right direction above the upper layer electrode (i). Shows how it was done.
  • the upper layer electrode (i) is a slit electrode, and includes a plurality of linear portions as branches branched from the trunk.
  • the upper layer electrode (i) is a slit electrode, and its opening is surrounded by an electrode frame on all four sides. On the other hand, one of the openings may have no electrode frame and may be open. In other words, the upper layer electrode (i) may be, for example, a comb-like electrode instead of the slit electrode. It is also one of the preferred embodiments of the present invention that the upper electrode (i) has a comb shape.
  • the lower layer electrode (ii) and the lower layer electrode (iii) are each composed of a trunk portion and branch portions extending from the trunk portion when the lower substrate is viewed in plan.
  • the branch portions are a plurality of linear electrode portions that are substantially parallel to each other.
  • the lower layer electrode (ii) and the lower layer electrode (iii) each have a comb-teeth shape.
  • the structures of the upper layer electrode (i), the lower layer electrode (ii), and the lower electrode (iii) shown in FIG. 1 are examples, and the shape is not limited to this, and electrodes having various structures can be used.
  • the electrode width L of the linear portion is 3 ⁇ m, and the electrode interval S1 between the adjacent linear portions is 6 ⁇ m.
  • the electrode spacing S2 is 16 ⁇ m.
  • the electrode width L is preferably 2 ⁇ m or more and 7 ⁇ m or less, for example.
  • interval S1 is 2 micrometers or more and 14 micrometers or less, for example.
  • the ratio (L / S1) between the electrode width L and the electrode interval S1 is preferably 0.1 to 1.5.
  • a more preferable lower limit value of the ratio L / S1 is 0.2, and a more preferable upper limit value is 1.2.
  • the plurality of linear portions included in the upper layer electrode (i) are bent between the pixel central portion and each pixel end portion (two locations).
  • the extending direction of the branch portions of the lower electrode (ii) and the lower electrode (iii) is 87 ° with respect to the extending direction of the pixel central portion of the linear portion of the upper electrode (i).
  • the two comb-shaped electrodes of the lower substrate are extended at the center of the pixel of the linear portion of the upper electrode (i) when the extending direction of the linear portion which is a branch portion of the lower substrate is viewed in plan view. It intersects with the direction at an angle of 87 ° and intersects with the extending direction of each pixel end of the linear portion of the upper electrode (i) at an angle of 80 °.
  • the branch part of the lower electrode (ii) of the lower substrate is disposed between the branch part of the lower electrode (iii).
  • Example 1 two linearly polarizing plates having the polarization axis shown in FIG. 1 are used.
  • one linear polarizing plate is disposed on the outer side of the upper and lower substrates (on the side opposite to the liquid crystal layer side).
  • the linear polarizing plate is arranged in a crossed Nicols arrangement in which the polarization axis of the linear polarizing plate on the upper and lower substrates is perpendicular or parallel to the major axis of the liquid crystal molecules when no voltage is applied (the initial orientation of the liquid crystal).
  • a black mode liquid crystal display device was obtained.
  • the upper and lower substrates each have a linearly polarizing plate.
  • the upper layer electrode (i) is electrically connected to the drain electrode extending from the thin film transistor element TFT through the contact hole CH. At a timing selected by the gate bus line GL, a voltage supplied from the source driver through the source bus line SL is applied to the upper layer electrode (i) that drives the liquid crystal through the thin film transistor element TFT.
  • FIG. 2 is a schematic cross-sectional view showing a cross section of a portion corresponding to a line segment indicated by a one-dot chain line in FIG.
  • the liquid crystal display device according to the first embodiment is configured by laminating a lower substrate 10, a liquid crystal layer 30, and an upper substrate 20 in this order from the back side of the liquid crystal display device toward the observation surface side. ing.
  • the liquid crystal display device of Example 1 horizontally aligns the liquid crystal molecules LC when the potential difference between the electrodes of the upper and lower substrates is less than the threshold voltage (in FIG. 2, the liquid crystal molecules LC are Oriented from the front to the front.)
  • the lower layer electrode (ii) (not shown in FIG. 2) and the lower layer electrode (iii) of the lower substrate 10 are comb-like electrodes, respectively, as described above, and the lower layer electrode (ii) and the lower layer electrode (iii).
  • the upper electrode (i), which is a slit electrode, is disposed on the insulating layer 13.
  • the upper substrate 20 is not provided with a liquid crystal driving electrode, and only the lower substrate 10 is provided with a liquid crystal driving electrode.
  • the insulating layer 13 has a dielectric constant of 6.9 and an average thickness of 0.3 ⁇ m.
  • the insulating layers 13 are each composed of a nitride film SiN, but instead, an oxide film SiO 2 , an acrylic resin, or a combination of these materials can be used.
  • a horizontal alignment film (not shown) is provided on each of the upper and lower substrates on the liquid crystal layer side, and the major axis of the liquid crystal molecules when no voltage is applied forms an angle of 3 ° with the extending direction of the linear portion of the upper electrode (i). Were horizontally oriented.
  • the liquid crystal layer and the upper electrode (i) are adjacent to each other through a horizontal alignment film.
  • the horizontal alignment film is not limited as long as the liquid crystal molecules are aligned horizontally with respect to the film surface.
  • an alignment film that does not require alignment treatment such as a photo-alignment film
  • costs can be reduced by simplifying the process, and reliability and yield can be improved.
  • rubbing treatment there is a risk of liquid crystal contamination due to impurities from rubbing cloth etc., point defects due to foreign materials, display unevenness due to non-uniform rubbing within the liquid crystal panel, These disadvantages can be eliminated.
  • the liquid crystal includes liquid crystal molecules that are aligned in the horizontal direction when no voltage is applied.
  • the horizontal alignment means that the liquid crystal molecules are aligned in a direction substantially parallel to the main surface of the substrate in the technical field of the present invention, as long as they can exhibit optical effects.
  • the liquid crystal is substantially composed of liquid crystal molecules that are aligned in the horizontal direction when no voltage is applied.
  • the “when no voltage is applied” may be anything as long as it can be said that substantially no voltage is applied in the technical field of the present invention.
  • Such a horizontal alignment type liquid crystal is an advantageous system for obtaining a wide viewing angle characteristic and the like.
  • the liquid crystal layer includes liquid crystal molecules having positive dielectric anisotropy.
  • the liquid crystal molecules having positive dielectric anisotropy are aligned in a certain direction when an electric field is applied, and the alignment control is easy, and a faster response can be achieved.
  • the dielectric anisotropy ⁇ of the liquid crystal is preferably 3 or more, more preferably 4 or more, and still more preferably 5 or more. Further, the dielectric anisotropy ⁇ of the liquid crystal is preferably 30 or less, more preferably 20 or less, and still more preferably 10 or less. In the present specification, the dielectric anisotropy ⁇ of liquid crystal means that measured by an LCR meter.
  • the average thickness (cell gap) d LC of the liquid crystal layer 30 is 3.2 ⁇ m.
  • the average thickness d LC of the liquid crystal layer means a value calculated by averaging the thickness of the entire liquid crystal layer in the liquid crystal display device.
  • d LC ⁇ ⁇ n is preferably 100 nm or more, more preferably 150 nm or more, and further preferably 200 nm or more. Further, d LC ⁇ ⁇ n is preferably 550 nm or less, more preferably 500 nm or less, and further preferably 450 nm or less.
  • a liquid crystal driving method using the liquid crystal display device of this embodiment will be described.
  • driving capable of high-speed response by switching the voltage application method, two types of driving, that is, driving capable of high-speed response and driving realizing higher transmittance than that driving can be realized with the same configuration.
  • driving capable of realizing high-speed response is referred to as a first driving method
  • driving realizing higher transmittance is referred to as a second driving method.
  • gradation display is performed by changing the voltage of the upper electrode (i).
  • the lower electrode (ii) and the lower electrode (iii) are applied with the amplitude center being 0 V and the polarity reversed so that the polarities of the lower electrode (iii) and the lower electrode (iii) are opposite to each other.
  • the upper electrode (i) is driven by applying a voltage corresponding to the gradation with the polarity reversed.
  • the polarity of the voltage applied to the upper layer electrode (i) is the same as the polarity of the voltage applied to the lower layer electrode (ii), and the voltage applied to the lower layer electrode (iii) It is comprised so that drive operation different from the polarity of may be performed.
  • the driving operation in which the potential difference between the upper layer electrode (i) and the lower layer electrode (iii) is greater than or equal to the potential difference between the upper layer electrode (i) and the lower layer electrode (ii) is performed. It is also configured to execute.
  • the latter driving operation is executed even when the polarity of the voltage applied to the upper electrode (i), the polarity of the voltage applied to the lower electrode (ii), and the polarity of the voltage applied to the lower electrode (iii) are the same. it can.
  • the voltage may be symmetrically applied to the lower layer electrode (ii) and the lower layer electrode (iii) with an amplitude center of 6V and an amplitude of 0-12V with the amplitude center as the center.
  • the lower layer electrode (ii) and the lower layer electrode (iii) are both set to 0 V, and the voltage corresponding to the gradation is inverted and applied to the upper layer electrode (i), whereby the upper layer electrode (i) A liquid crystal is driven by generating a fringe electric field between the lower electrode (ii) and the lower electrode (iii). Due to the electrode structure according to the present invention, in the second driving method, in the region where there is no lower layer electrode near the pixel end (upper layer electrode end), the alignment failure of the liquid crystal generated due to the different electric field generated from the pixel central portion Can be sufficiently prevented, and a high contrast ratio can be achieved.
  • FIG. 3 is an enlarged schematic view showing the upper layer electrode (i), the lower layer electrode (ii), and the lower layer electrode (iii) of the liquid crystal display device of Example 1.
  • FIG. 3 shows a portion surrounded by a one-dot chain line in FIG.
  • one of the plurality of branches of the lower layer electrode (ii) partially overlaps the trunk of the upper layer electrode (i), and the other part is in the opening of the first electrode.
  • the vertical distance A between the other upper end and the lower end in the opening is 2 ⁇ m.
  • the plurality of branches provided in the first electrode are bent, and the distance B between the bending point and the center line between the top and bottom of the branch of the third electrode is 2.75 ⁇ m.
  • the angle C formed by the extending direction of the branch portion of the second electrode and the extending direction of the lower edge on the side of the trunk portion of the first electrode is 10 °.
  • the angle D formed by the extending direction of the trunk portion (not shown in FIG. 3) of the second electrode and the extending direction of the portion of the branch portion of the first electrode above the bending point is 10 °. .
  • the alignment stability of the liquid crystal is excellent in the second driving method.
  • the electrode width of the branch part of the lower electrode (ii) is 3 ⁇ m
  • the electrode width of the branch part of the lower electrode (iii) is 10 ⁇ m
  • the branch part of the lower electrode (ii) and the branch part of the lower electrode (iii) The electrode spacing between is 3 ⁇ m.
  • the average width of the branches of the lower layer electrode (iii) is larger than the average width of the branches of the lower layer electrode (ii), which is one of the preferred embodiments in the present invention. Thereby, in the first driving method, it is possible to prevent black floating and improve the contrast ratio.
  • the average electrode width in the branch part of the lower layer electrode (ii) is preferably 2.5 ⁇ m or more and 4.5 ⁇ m or less. Moreover, the average electrode width in the branch part of the lower layer electrode (iii) is preferably 5.5 ⁇ m or more, and more preferably 13 ⁇ m or less. Furthermore, the average electrode interval between the branch portion of the lower electrode (ii) and the branch portion of the lower electrode (iii) is preferably 2.5 ⁇ m or more, and more preferably 4.5 ⁇ m or less.
  • Each interval is an average value in the pixel.
  • FIG. 4 is a schematic plan view illustrating the voltage applied to each electrode and the orientation of liquid crystal molecules during white display in the first driving method of Example 1.
  • FIG. 5 is a simulation result showing the director distribution and transmittance distribution corresponding to FIG.
  • FIG. 6 is a schematic plan view illustrating the voltage applied to each electrode and the alignment of liquid crystal molecules during black display in the first driving method of Example 1.
  • FIG. 7 is a voltage relationship diagram illustrating the voltage applied to each electrode during white display in the first drive method of the first embodiment. 4 to 7 each show a portion corresponding to a portion surrounded by a broken line in FIG.
  • the lower layer electrode (ii) and the lower layer electrode (iii) are always applied by reversing the voltage with the amplitude center being 0 V so that the polarities are opposite to each other. Let it always occur.
  • the absolute value of the voltage applied to the lower layer electrode (ii) and the lower layer electrode (iii) is always constant. Then, the voltage is reversed and applied to the upper electrode (i) so that the voltage has the same polarity as the voltage applied to the lower electrode (ii), so that the liquid crystal molecules are staggered in different directions in the horizontal plane.
  • the liquid crystal molecules are rotated in different directions in the region 1 surrounded by the one-dot chain line and the region 2 surrounded by the two-dot chain line. It can be seen that 2 exists alternately.
  • the liquid crystal molecules rotate alternately in different directions in the horizontal plane.
  • the liquid crystal molecules rotate clockwise in the horizontal plane
  • the region 2 (second region) liquid crystal molecules rotate counterclockwise in the horizontal plane.
  • the operation of liquid crystal molecules at the time of falling will be described.
  • the first driving method since the voltage is always applied to the lower layer electrode (ii) and the lower layer electrode (iii) even at the falling response, when the voltage of the upper layer electrode (i) is weakened or zeroed, The transverse electric field generated between the lower electrode (ii) and the lower electrode (iii) forcibly rotates the liquid crystal molecules in a direction to return to the initial alignment. Further, in the case of the first driving method, bend alignment and splay alignment occur in the horizontal plane, and a large restoring force also acts due to the elastic strain induced thereby. Therefore, the falling response is also speeded up. As shown in FIG.
  • the upper layer electrode (i) is 0 V during black gradation display, and 1.3 V / ⁇ 1.3 V is applied to the lower layer electrode (ii). -1.3V / 1.3V is applied to the lower layer electrode (iii).
  • the first driving method there are at least two consecutive regions where the liquid crystal molecules rotate alternately in different directions in the plane. Thus, it is preferable that two or more regions where the liquid crystal molecules rotate in different directions exist continuously in a plane.
  • the potential of the upper electrode (i) is set to 0V.
  • other electrodes lower electrode (ii), lower layer in Example 1 are used except that the voltage of the pixel electrode (upper layer electrode (i) in Example 1) is reduced to zero from the voltage at the maximum transmittance.
  • the potential of the electrode (iii)) can be the same as that during white display in the first drive method, and the preferred range thereof is the same as that during white display in the first drive method.
  • the lower electrode (ii) of the lower substrate is 1.3 V / ⁇ 1.3 V and the lower electrode (iii) is ⁇ 1.3 V / 1 in both white display and black display. .3V.
  • the lower layer electrode (ii) and the lower layer electrode (iii) of the lower substrate have an absolute value of a constant voltage both during white display and black display.
  • the upper layer electrode (i) is a pixel electrode, and the voltage applied to the upper layer electrode (i) is changed to change the lower layer electrode (ii) and the lower layer electrode (ii).
  • a voltage having a certain magnitude is applied to the electrode (iii), and such a voltage application method is one of the preferred embodiments in the liquid crystal display device of the present invention.
  • FIG. 8 is a schematic plan view illustrating the voltage applied to each electrode and the orientation of liquid crystal molecules during white display in the second driving method of Example 1.
  • FIG. 9 is a simulation result showing the director distribution and transmittance distribution corresponding to FIG.
  • FIG. 10 is a schematic plan view showing the voltage applied to each electrode and the alignment of liquid crystal molecules during black display in the second drive method of Example 1.
  • FIG. 8 to 10 show portions corresponding to the linear portion of the upper layer electrode (i) and the portion surrounded by the branch portion of the lower layer electrode (ii) in FIG. 1, respectively.
  • the lower layer electrode (ii) and the lower layer electrode (iii) are both set to 0 V, and then the polarity is inverted to the upper layer electrode (i) and a voltage is applied to the upper layer electrode (i).
  • a fringe electric field is generated between the lower electrode (ii) and the lower electrode (iii), and liquid crystal molecules rotate in the same direction in response to the electric field.
  • 5 V / -5 V is applied to the upper layer electrode (i) during white gradation display.
  • the liquid crystal molecules rotate in the same direction, so that a high transmittance is obtained as a whole as compared with the first driving method.
  • the voltage of the upper layer electrode (i) varies depending on the display, but the upper limit is preferably 10V, more preferably 8V, and 7V. More preferably it is.
  • the operation of liquid crystal molecules at the time of falling will be described.
  • the liquid crystal molecules are rotated so as to return toward the alignment treatment direction (anchoring) by the restoring force of the liquid crystal molecules.
  • the voltage applied to the upper layer electrode (i) is 0 V during black display.
  • the voltage applied to the other electrodes (lower layer electrode (ii) and lower layer electrode (iii)) is 0 V, which is the same as in white display in the second drive method. It should be noted that the voltage applied to the upper layer electrode (i), the lower layer electrode (ii), and the lower layer electrode (iii) may be less than the threshold voltage during black display in the second driving method.
  • the lower electrode (ii) and the lower electrode (iii) are scan-driven for each line (gate bus line or the like), for example, because the applied voltage differs between the first driving method and the second driving method.
  • a thin film transistor element including an oxide semiconductor is preferably used as the thin film transistor element in the liquid crystal display device of Example 1 from the viewpoint of the transmittance improvement effect.
  • An oxide semiconductor shows higher carrier mobility than amorphous silicon. As a result, the area of the transistor occupying one pixel can be reduced, so that the aperture ratio increases and the light transmittance per pixel can be increased. Therefore, by using a thin film transistor element containing an oxide semiconductor, the effect of improving the contrast ratio, which is an effect of the present invention, can be obtained more remarkably.
  • the lower substrate preferably includes a thin film transistor element, and the thin film transistor element preferably includes an oxide semiconductor.
  • Embodiment 1 can be applied to any of a transmissive, reflective, and transflective liquid crystal display device. The same applies to the embodiments described later.
  • the upper and lower substrates included in the liquid crystal display device of Example 1 are a pair of substrates for sandwiching liquid crystal.
  • an insulating substrate such as glass or resin is used as a base, and wiring, electrodes, color filters, and the like are provided on the insulating substrate. It is formed by making as needed.
  • the liquid crystal display device of Example 1 can appropriately include a member (for example, a light source) included in a normal liquid crystal display device.
  • the liquid crystal display device according to the first embodiment preferably drives the liquid crystal by an active matrix driving method. The same applies to the embodiments described later.
  • FIG. 11 is a schematic plan view showing the upper layer electrode and the lower layer electrode of the liquid crystal display device. Note that FIG. 11 is an example, and the electrode structure is not limited to this shape.
  • 12 is a simulation result showing a director distribution and a transmittance distribution corresponding to a portion surrounded by a broken line in FIG.
  • FIG. 13 is a simulation result showing a director distribution and a transmittance distribution corresponding to the same part as in FIG. Comparative example 1 will be described later.
  • FIG. 14 is a schematic diagram showing the initial liquid crystal orientation and the liquid crystal orientation during white display. The more the liquid crystal is close to the desired rotation angle at the time of white display, the larger the S / N ratio and the more stable the alignment.
  • Example 1 and Comparative Example 1 show the transmittance distribution of the second driving method when 5 V is applied to the upper electrode (i), respectively.
  • the molecules rotate in the same direction in the region or maintain the initial alignment state, but in Comparative Example 1, some liquid crystal molecules at the pixel end rotate in the opposite direction, The orientation collapse has occurred at the location surrounded by the broken line.
  • Example 1 has a larger SN ratio and orientation is more stable than Comparative Example 1.
  • FIG. 15 is a schematic plan view illustrating each electrode structure of the pixel end portion of the first embodiment.
  • FIG. 15 shows a portion surrounded by a one-dot chain line in FIG.
  • FIG. 16 is a schematic plan view showing each electrode structure of the pixel end portion of Comparative Example 1.
  • one of the plurality of branches of the lower layer electrode (ii) partially overlaps the trunk of the upper layer electrode (i), and the other part is an opening of the upper layer electrode (i).
  • A be the distance between the top and bottom of the other part of the opening in the opening and the bottom.
  • each of the plurality of branches included in the upper electrode (i) is bent.
  • B be the distance between the bending point and the center line between the top and bottom of the branch of the lower layer electrode (iii). Further, the angle formed by the extending direction of the branch portion of the lower electrode (ii) and the extending direction of one edge (the edge on the side where the branch portion branches) of the trunk portion of the upper electrode (i) is defined as C And An angle formed by the extending direction of the trunk portion (not shown in FIG. 15) of the lower layer electrode (ii) and the extending direction of the branch portion of the upper layer electrode (i) above the bending point is defined as D. .
  • the values of A to D of Example 1 and Comparative Example 1 are shown in Table 2 below.
  • Comparative Example 1 and Example 1 differ only in the structure of the upper layer electrode (i). That is, D of Comparative Example 1 is 3 °.
  • the plurality of branches included in the upper layer electrode (i) are not bent, and the extending direction is the extending direction (bending point) of the pixel central portion of the branch of the upper layer electrode (i) in Example 1. It is the same as the extending direction of the lower part.
  • Example 3 shows the SN ratios at A to D and the pixel end.
  • Example 2 to 9 and Comparative Examples 1 to 5 the condition of one of A to D is given from the basic shape of Example 1.
  • FIGS. 17 and 18 are simulation results showing the director distribution and transmittance distribution in Example 6 and Example 7, respectively.
  • 19 and 20 are simulation results showing the director distribution and the transmittance distribution in Comparative Example 3 and Comparative Example 5, respectively.
  • FIG. 21 is a schematic diagram showing the relationship between the magnitude of the SN ratio and the presence or absence of orientation breakdown. The larger the S / N ratio, the more stable the alignment, and the collapse of the alignment disappears at ⁇ 1.11 or more.
  • Example 7 A shape with a low SN ratio and no alignment collapse (no region in which the liquid crystal molecules rotate in the opposite direction) is Example 7, and it is considered that the alignment is stable when the SN ratio is ⁇ 1.11 or more ( The higher the S / N ratio, the more stable the orientation).
  • FIG. 22 to FIG. 25 show the relationship between the above A to D and the pixel end SN ratio of the second driving method, in which Table 3 is graphed.
  • FIG. 22 to FIG. 25 are also graphs when the condition of any one of A to D is changed with Example 1 as the base shape, similarly to Table 3.
  • FIG. 22 is a graph showing the relationship between the distance A and the SN ratio.
  • FIG. 23 is a graph showing the relationship between the distance B and the SN ratio.
  • FIG. 24 is a graph showing the relationship between the angle C and the SN ratio.
  • FIG. 25 is a graph showing the relationship between the angle D and the SN ratio.
  • the S / N ratio is stable when it is within the range of 0 ⁇ m ⁇ B ⁇ 5.1 ⁇ m, but the S / N ratio is greatly decreased within the range of B> 5.1 ⁇ m.
  • the angle D is also the same as the distance B, and it can be said that the S / N ratio is stable if it is in the range of 6.5 ° ⁇ D ⁇ 25 °, but the SN ratio is greatly reduced at D ⁇ 6.5 °. It is preferable that D ⁇ 20 °.
  • the angle C is ⁇ 1.11 dB or more, which is the reference for alignment stability in the range of 0 ° ⁇ C ⁇ 20 °, and the influence on the alignment stability is small. From the above, it is considered that the distance A has the greatest influence on the alignment stability, and then the influence of the distance B and the angle D is large and the influence of the angle C is the smallest.
  • the electrode structure is such that A to D are within the above range, the alignment of the liquid crystal at the pixel end during white display in the second driving method is stabilized.
  • the examination results will be described in detail regarding the reason why such a correlation between the electrode structure and the alignment stability of the liquid crystal is observed.
  • FIG. 26 is a schematic plan view for explaining the relationship between the distance A and the alignment stability of liquid crystal molecules during white display in the second driving method.
  • the liquid crystal rotates in the direction perpendicular to the contour line of the upper layer electrode (i).
  • the distance A changes, the area of the region surrounded by the broken line in FIG. 26 (region in which the opening of the first electrode and the branch of the second electrode overlap) changes.
  • the fringe electric field generated between the upper layer and lower layer electrodes becomes stronger, the number of liquid crystal molecules aligned in a desired direction increases, and a stable alignment can be obtained. That is, the larger the value of A, the more the liquid crystal alignment is stabilized.
  • FIG. 27 is a schematic plan view illustrating the relationship between the corner C and the alignment stability of liquid crystal molecules during white display in the second drive method.
  • the liquid crystal rotates in the direction perpendicular to the contour line of the upper layer slit electrode.
  • the angle C increases, the number of liquid crystal molecules aligned in a desired orientation increases, while the area where the opening of the upper electrode (i) and the branch of the lower electrode (ii) overlap decreases.
  • the smaller the value of the corner C the more stable the liquid crystal alignment at the pixel end.
  • FIGS. 28 to 30 are schematic plan views illustrating the relationship between the angle D and the alignment stability of the liquid crystal molecules during the white display of the second driving method.
  • FIG. 28 shows an electrode structure of Comparative Example 1.
  • an electric field in which the liquid crystal molecules rotate in the direction opposite to the target direction is generated near the intersection of the upper layer electrode and the lower layer electrode, and the alignment of the liquid crystal is broken within the range surrounded by the broken line.
  • 29 and 30 show the electrode structure of Example 1.
  • the inclination of the upper layer electrode (i) becomes larger, so that the source of the electric field that rotates the liquid crystal in the opposite direction becomes farther, and the liquid crystal does not rotate reversely within the range surrounded by the broken line, The alignment is not broken. Further, as shown in FIG. 30, since the liquid crystal rotates in the direction perpendicular to the contour line of the upper electrode (i), the liquid crystal is easily rotated in a desired direction when the inclination is large.
  • FIG. 31 is a schematic cross-sectional view showing the electrode structure of the liquid crystal display device of Comparative Example 1 and the initial alignment of liquid crystal molecules.
  • 32 is a schematic plan view showing the upper layer electrode and the lower layer electrode of the liquid crystal display device of Comparative Example 1.
  • FIG. The liquid crystal display device of Comparative Example 1 has the same configuration as the liquid crystal display device of Example 1 described above, except that the angle D is 3 °.
  • the black display of the first driving method is performed by the specific electrode structure in which the average width of the branch portion of the lower electrode (iii) is larger than the average width of the branch portion of the lower electrode (ii).
  • the alignment stability of the liquid crystal molecules at the time can be improved, black floating can be prevented, and the contrast ratio in the first driving method can be greatly improved.
  • the alignment stability at the pixel end was inferior.
  • a strong electric field acts on the liquid crystal molecules in the entire horizontal plane because a lateral electric field is applied between the pair of lower comb-like electrodes when rising.
  • the response speed is increased, and at the time of falling, in addition to the strong restoring force to restore the in-plane bend and splay alignment as shown in FIG. 4, the liquid crystal molecules react to the electric field created by the lower comb electrode.
  • a high-speed response that cannot be realized in the conventional FFS mode can be realized.
  • the second driving method by setting both the comb-like electrodes on the lower side of the two-layer electrode to the same potential, a fringe electric field can be generated between the upper electrode and the high-speed driving as described above.
  • This is a drive that realizes a higher transmittance than a drive that realizes a response.
  • One of the features of the above-described embodiment is that these two types of driving can be switched according to the purpose and situation, and as a result, a wide viewing angle, a high-speed response, and a high transmittance can be realized.
  • the liquid crystal display device of the present invention includes the above-described three types of electrodes, at least the first driving method and the second driving method can be executed.
  • the liquid crystal display device of the above-described embodiment can perform display by appropriately switching between the first driving method and the second driving method.
  • display can be performed by appropriately combining white display and black display according to a desired display.
  • the liquid crystal display device of the present invention preferably includes a control device that executes the above-described first driving method, and includes a control device that performs switching between the first driving method and the second driving method described above. It is more preferable that As a result, a wide viewing angle can be realized, a high-speed response can be realized, and a high transmittance can be realized. Therefore, it is possible to realize a liquid crystal display device that satisfies all the characteristics of high-speed response, wide viewing angle, and high transmittance with a single electrode configuration.
  • the liquid crystal display device of the present invention preferably includes a control device that automatically switches between the first drive method and the second drive method described above according to a predetermined condition.
  • the control device includes, for example, a temperature sensor and automatically switches between the first drive method and the second drive method according to the temperature.
  • the control device employs a second drive method that can achieve high transmittance in an environment where the response speed is not a problem (for example, a temperature range where the lower limit is any one of ⁇ 20 ° C. to 20 ° C.).
  • a control device that executes and controls to execute the first drive method that can realize a high-speed response in a low temperature environment (for example, a temperature range in which the upper limit is any one of ⁇ 20 ° C. to 20 ° C.) in which the response speed becomes slow It is preferable. Thereby, a desired effect can be obtained more appropriately.
  • the liquid crystal display device of the present invention may include a control device that switches between the first drive method and the second drive method described above in accordance with a user instruction.
  • the present invention may also be a method for driving a liquid crystal display device using the above-described liquid crystal display device.
  • the liquid crystal display device of the present invention when it is sufficient to perform AC driving of the liquid crystal that applies an AC voltage only to the electrode of the lower substrate, a circuit and driver for AC driving are applied only to the electrode of the lower substrate as in the past. As long as the wiring is arranged. Therefore, for example, in order to apply AC voltage to the electrodes of the upper substrate together with the electrodes of the lower substrate to perform AC driving of the liquid crystal, circuits, drivers, and wirings for AC driving are arranged on the lower substrate and the upper substrate. Compared with the liquid crystal display device, the degree of freedom of driving of the liquid crystal display device of the present invention is remarkably high.
  • liquid crystal display device of the present invention examples include in-vehicle devices such as car navigation, electronic books, photo frames, industrial equipment, televisions, personal computers, smartphones, and tablet terminals.
  • the present invention is preferably applied to a device that can be used in both a high temperature environment and a low temperature environment, such as an in-vehicle device such as a car navigation system.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

本発明は、高コントラスト比及び広視野角を実現するとともに、高速応答を実現することができる液晶表示装置を提供する。本発明は、上下基板、及び、上下基板に挟持された液晶層をもつ液晶表示装置であって、該下基板は、第1電極、並びに、該第1電極とは異なる層に配置されている第2電極及び第3電極を備え、該第1電極は、幹部と、該幹部から分岐した複数の枝部とを備え、枝部と枝部との間には開口部が設けられており、該第2電極及び該第3電極は、一対の櫛歯状電極を構成し、それぞれ、幹部と、該幹部から分岐した複数の枝部とを備え、該第1電極の複数の枝部は、それぞれ、所定の角度に屈曲しており、各電極の構造が特定されている液晶表示装置である。

Description

液晶表示装置
本発明は、液晶表示装置に関する。より詳しくは、カーナビゲーション等の、高温環境下、低温環境下の両方で用いられるのに好適な液晶表示装置に関する。
液晶表示装置は、一対のガラス基板等に液晶表示素子を挟持して構成され、薄型で軽量かつ低消費電力といった特長を活かして、カーナビゲーション、電子ブック、フォトフレーム、産業機器、テレビ、パーソナルコンピュータ、スマートフォン、タブレット端末等、日常生活やビジネスに欠かすことのできないものとなっている。これらの用途において、液晶層の光学特性を変化させるための電極配置や基板の設計に係る各種モードの液晶表示装置が検討されている。
近年の液晶表示装置の表示方式としては、負の誘電率異方性を有する液晶分子を基板面に対して垂直配向させた、マルチドメイン垂直配向(MVA:Multi-domain Vertical Alignment)モード等の垂直配向(VA)モードや、正又は負の誘電率異方性を有する液晶分子を基板面に対して水平配向させて液晶層に対し横電界を印加する面内スイッチング(IPS:In-Plane Switching)モード、縞状電界スイッチング(FFS:Fringe Field Switching)モード等が挙げられる。
中でも、FFSモードは、近年スマートフォン、タブレット端末に多く使用されている液晶モードである。FFSモードの液晶表示装置として、例えば、複数個の液晶分子を含む液晶層を介して所定の距離をもって対向配置される第1及び第2透明絶縁基板と、前記第1透明基板上に形成され、かつ単位画素を限定するようにマトリクス形態で配置される複数個のゲートバスライン及びデータバスラインと、前記ゲートバスラインとデータバスラインとの交叉部に設けられる薄膜トランジスタと、前記各単位画素に配置され、かつ透明導電体からなるカウンタ電極と、前記カウンタ電極と一緒にフリンジフィールドを形成するように、各単位画素に前記カウンタ電極と絶縁して配置され、画素の長辺を中心に対称をなすように所定の傾きで配列された複数個の上部スリット及び下部スリットを有し、かつ透明導電体からなる画素電極とを含むFFSモードの液晶表示装置が開示されている(例えば、特許文献1参照。)。
また上下基板、及び、上下基板に挟持された液晶層をもつ液晶表示装置であって、該下基板は、電極を備え、該電極は、第1電極、該第1電極とは異なる層にある第2電極、及び、該第2電極と同一の層にある第3電極から構成され、該液晶層は、電圧無印加時に該上下基板の主面に対して水平に配向する液晶分子を含み、該液晶表示装置は、該液晶分子の一部を該主面に対して水平面内で回転させ、かつ、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる電界を該電極によって発生させる駆動操作を実行するように構成されたものであることを特徴とする液晶表示装置が開示されている(例えば、特許文献2参照。)。
特開2002-182230号公報 国際公開第2016/088658号公報
特許文献1に記載のFFSモードの液晶表示装置は、広視野角特性を有し、かつIPSモードの液晶表示装置の低い開口率及び透過率を改善する旨が開示されている(例えば、特許文献1に記載の図6参照。特許文献1に記載の図6は、FFSモードの液晶表示装置の平面画素構造を示す。)。しかし、特許文献1に記載のFFSモードの液晶表示装置は、立上がりでは電界印加で液晶を強制的に応答させることができるが、立下がりでは電界印加を止めて液晶の粘弾性にまかせて応答させるため、MVAモード等の垂直配向モードに比べて応答が遅く、応答特性を改善する余地があった。
特許文献1に記載のFFSモードの液晶表示装置は、下基板に、スリットが設けられた上層電極、及び、該上層電極と絶縁層を介して面状の下層電極が配置されている。該液晶表示装置は、立上がりでは上層電極が一定の電圧に印加され(例えば、上層電極と下層電極との電位差が閾値以上であり、フリンジ電界で応答できるものであればよい。)、立下がりでは上層電極と下層電極との間の電位差を閾値未満とし、フリンジ電界を止める(弱める)ことで応答する。
従来のFFSモードは、上述したように下基板の電極(以下、FFS電極とも言う。)でフリンジ電界を発生させ、下基板のFFS電極付近の液晶分子を水平面内で同じ方向に回転させることで立上がり時のスイッチングを行っている。また、立下がり時のスイッチングは、フリンジ電界を切ることで、液晶分子を粘弾性により元の配向状態に戻すことにより行っている。
しかし、液晶層中、液晶分子を回転させるための電界が弱い領域があり、当該領域における液晶分子の回転に時間を要する。また、この際、液晶分子は複数のスリットの長手方向が規則的に平行に並んで配置されている場合は基本的に同じ方向に回転するため、水平面内における液晶の弾性変形によるひずみは小さい。そのため、電界を切って立下がり時のスイッチングを行う際に、元の配向状態に戻るために働く弾性ひずみ起因の復元力が小さく、応答が遅い。したがって、立上がり時のスイッチング、立下がり時のスイッチングともに応答時間が遅い。
ここで、本発明者らは、下基板の電極構造に着目した。そして、従来のFFSモードの液晶表示装置は、下基板の電極が2層に配置された2種の異なる電圧を印加できる電極から構成されるが、本発明者らは、下基板の電極を少なくとも2層に配置された3種の異なる電圧を印加できる電極から構成されるものとし、少なくとも1層に一対の櫛歯状電極が配置されるものとした。そして、本発明者らは、このような液晶表示装置(特許文献2に記載の液晶表示装置)において、広視野角に加えて、高速応答も実現できることを見出した。例えば、2種の異なる電圧を印加できる一対の櫛歯状電極は互いに極性が逆になるように振幅センターを0Vとして電圧を極性反転させて印加することで、横電界を常に発生させておき、一対の櫛歯状電極とは異なる層に設けられた画素電極に階調に応じた電圧を極性反転させて印加することで液晶表示装置を駆動する。これにより、FFSモードよりも応答が高速化し、動画視認性がより良くなる。以下では、このような駆動方式を第1駆動方式とも言う。なお、振幅センターとは、交流電圧の最大値と最小値との平均値(中間値)を言う。また、上記液晶表示装置は、従来のFFSモードの液晶表示装置における電圧印加方法のように、一対の櫛歯状電極の電圧はともに0Vとしておき、一対の櫛歯状電極とは異なる層に設けられた画素電極に階調に応じた電圧を印加することで、上下層電極間にフリンジ電界を発生させて液晶を駆動することも可能である。この場合は、第1駆動方式よりも高い透過率を達成することができる。以下では、このような駆動方式を第2駆動方式とも言う。例えば、電圧の印加方法を制御することにより第1駆動方式と第2駆動方式とを目的に応じて自動的に切り替え可能な液晶表示装置を実現することも可能である。
ところで、このような特許文献2に記載の液晶表示装置の、FFSモードよりも応答が高速化する駆動(第1駆動方式)において、下基板の下層電極に常に電圧を印加していることが原因で発生する黒浮き(黒表示時において透過率が充分に低下しないこと)を防いでコントラスト比を向上するための工夫の余地があった。これに対しては、本発明者らは、更に、一対の櫛歯状電極のうち、特定の一方の電極の幅を、他方の電極の幅よりも大きくすることとした。これにより、第1駆動方式の黒表示時において液晶を所望の配向とすることができ、透過率を充分に低下することが可能となった。
一方、上記液晶表示装置では、第2駆動方式の時、画素端(上層電極端部)の開口部形状によっては液晶の配向崩れが発生する場合があった。本発明者らは、その原因として、下層電極が櫛歯状電極であるため、第2駆動方式の時、画素端付近の下層電極が存在しない領域で、画素中央部と発生する電界が異なることで液晶の配向崩れが発生する場合があることを見出した。
本発明は、上記現状に鑑みてなされたものであり、高コントラスト比及び広視野角を実現するとともに、高速応答を実現することができる液晶表示装置を提供することを目的とするものである。
本発明者らは、下基板の電極が、一対の櫛歯状電極と、一対の櫛歯状電極とは異なる層に設けられた画素電極とを備え、電圧の印加方法によって、第1駆動方式を実現したり第2駆動方式を実現したりすることができる液晶表示装置において、画素端部の上層電極の形状を特定し、上層電極端部の線状部分を特定の屈曲構造とした。本発明者らは、このように特定された電極構造により、画素端付近の液晶の配向を安定化することができ、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明の一態様は、上下基板、及び、上下基板に挟持された液晶層をもつ液晶表示装置であって、該下基板は、第1電極、並びに、該第1電極とは異なる層に配置されている第2電極及び第3電極を備え、該第1電極は、幹部と、該幹部の側方の一方から分岐した複数の枝部とを備え、枝部と枝部との間には開口部が設けられており、該第2電極及び該第3電極は、一対の櫛歯状電極を構成し、それぞれ、幹部と、該幹部の側方の一方から分岐した複数の枝部とを備え、該第1電極の幹部の側方の他方の縁が第1電極の上側を左右方向に延びる縁となるように下基板を平面視したときに、該第2電極の複数の枝部の1つは、その一部が該第1電極の幹部と重畳するとともに、他の一部が該第1電極の開口部内にあり、該開口部内にある他の一部の上端と、下端との間の上下間距離をAとし、該第1電極が備える複数の枝部は、それぞれ、屈曲しており、その屈曲点と、該第3電極の枝部の上下間の中心線との距離をBとし、該第2電極の枝部の延伸方向と、該第1電極の幹部の側方の一方の縁の延伸方向とがなす角をCとし、該第2電極の幹部の延伸方向と、該第1電極の枝部の、該屈曲点よりも上側の部分の延伸方向とがなす角をDとすると、以下の式(1)~式(4)を満たし、該液晶層は、各電極への電圧無印加時に水平方向に配向する液晶分子を含むことを特徴とする液晶表示装置であってもよい。
1.5μm≦A  (1)
0μm≦B≦5.1μm  (2)
0°≦C≦20°  (3)
6.5°≦D≦25°  (4)
上記「幹部の側方」とは、幹部の長手方向に沿う縁を言う。第1電極では、幹部の側方は、通常、枝部が分岐している側と枝部が分岐していない側とがある。
上記「該第1電極の幹部の側方の他方の縁が第1電極の上側を左右方向に延びる縁となるように下基板を平面視」とは、該第1電極の幹部の長手方向に沿う縁のうち、枝部が分岐していない側の縁が、該幹部の上側の縁となり、左右方向に延伸する向きで下基板の主面を平面視することを言う。
上記第1電極は、1つの幹部と、該幹部の側方の一方の縁から分岐した複数の枝部とを備える電極(櫛歯状電極)であってもよく、互いに対向する一対の幹部と、該一対の幹部のそれぞれと接続されて、該幹部間を延びる複数の枝部とを備える電極(スリット電極)であってもよい。換言すれば、該第1電極は、スリットが設けられているか、又は、櫛歯状電極であることが好ましい。該第1電極は、櫛歯状電極であっても、スリット電極であっても、複数の枝部間に開口部が設けられている。該第1電極がスリット電極である場合、該開口部は、通常、その四方が電極の枠で囲われている。また、該第1電極が櫛歯状電極である場合、該開口部は、通常、その四方のうち三方が電極の枠で囲われており、残りの一方は開放されている。なお、上記該第2電極及び上記第3電極は、それぞれ、櫛歯状電極であり、両電極が一対の櫛歯状電極を構成する。本明細書中、その形状が櫛歯状である電極は、スリットが設けられている電極とは言わず、櫛歯状電極と言う。
上記第1電極がスリット電極である場合、該一対の幹部の一方について、枝部が分岐していない側の縁が第1電極の上側を左右方向に延びる縁となるように下基板を平面視したときに、上記(1)~(4)の式を満たせばよいが、該一対の幹部のそれぞれについて、枝部が分岐していない側の縁が第1電極の上側を左右方向に延びるように下基板を平面視したときに、いずれも上記(1)~(4)の式を満たすことが好ましい。これにより、画素の上端側の電極構造だけでなく、下端側の電極構造も適切に特定することができる。
上記「該第2電極の複数の枝部の1つは、その一部が該第1電極の幹部と重畳するとともに、他の一部が該第1電極の開口部内にあり」は、該第2電極が備える枝部の1つの一部が該第1電極の幹部と重畳するとともに、その他の部分の全部又は一部が該開口部内にあればよい。
上記「該開口部内にある他の一部の上端と、下端との間の上下間距離」(A)における「該開口部内にある他の一部の上端」とは、上記第2電極が備える枝部の1つ(その一部が上記第1電極の幹部と重畳する)であって、該開口部内にある部分が占める領域中、最も上側にある端を言う。該上端は、線であってもよく、図15に示すように点であってもよい。同様に、「下端」とは、上記第2電極が備える枝部の1つ(その一部が上記第1電極の幹部と重畳する)であって、該開口部内にある部分が占める領域中、最も下側にある端を言う。該下端は、図15に示すように線であってもよく、点であってもよい。「上下間距離」とは、上述したように下基板を平面視したときの、上下方向成分の距離を言う。例えば上記距離Aは、図15で示すAで表される距離である。該距離Aは、該開口部の上側ごとに算出されるものであり、それぞれ同一であってもよく、異なっていてもよい。本発明の液晶表示装置では、ある1つの開口部の上端において該距離Aが上記式(1)を満たせばよいが、それぞれの開口部において該距離Aが上記式(1)を満たすことが好ましい。
上記距離Aは、本発明において最も重要な特徴である。該距離Aは、1.6μm以上であることが好ましく、1.8μm以上であることがより好ましく、1.9μm以上であることが更に好ましく、2.8μm以上であることが特に好ましい。該距離Aの上限は特に限定されないが、例えば、該距離Aが8μm以下であることが好ましい。
上記「該第1電極が備える複数の枝部は、それぞれ、屈曲しており、その屈曲点と、該第3電極の枝部の上下間の中心線との距離」(B)は、該第1電極の枝部の屈曲点と、該屈曲点の下側にある該第3電極の枝部の上下間の中心線との距離である。該距離Bの算出に用いる該第3電極の枝部は、該屈曲点の下側に該第3電極の枝部が複数ある場合は、該屈曲点に最も近い該第3電極の枝部である。また、該第3電極の枝部の上下間の中心線とは、該第3電極の枝部の上端及び下端のそれぞれからの等距離点を通る線(第3電極の枝部の幅を2等分する線)を言い、通常は該第3電極の枝部の長手方向(左右方向)に延びる。したがって、該距離Bは、通常は上下方向成分の距離である。更に、該屈曲点は、屈曲する枝部の、開口部側の縁の屈曲点である。例えば上記距離Bは、図15で示すBで表される距離である。該距離Bは、基本的に開口部の上側ごとに算出されるものであり、それぞれ同一であってもよく、異なっていてもよい。本発明の液晶表示装置では、該距離Bの少なくとも1つが上記式(2)を満たせばよいが、該距離Bのそれぞれが上記式(2)を満たすことが好ましい。第1電極の枝部は、複数箇所で屈曲していてもよく、その場合、該距離Bの算出に用いる該屈曲点は、最も画素の中央に近い屈曲点である。
上記距離Bは、本発明において上記距離Aに次いで重要な特徴である。該距離Bは、5μm以下であることが好ましく、4μm以下であることがより好ましく、3μm以下であることが更に好ましく、0.8μm以下であることが特に好ましい。なお、本発明の一態様では、該距離Bの下限は0μmであってもよい。
上記「該第2電極の枝部の延伸方向と、該第1電極の幹部の側方の一方の縁の延伸方向とがなす角」(C)とは、該第2電極の枝部の延伸方向と、該第1電極の幹部の側方の一方の縁の延伸方向とがなす角のうち、鋭角となる角を言う。「該第1電極の幹部の側方の一方の縁」とは、該第1電極の幹部の側方の一方(枝部が分岐している側の縁)であって、枝部が突出していない部分の縁を言う。「延伸方向」とは、電極の長手方向や縁に沿った方向を言う。例えば該角Cは、図15で示すCで表される角度である。該角Cは、基本的に開口部の上側ごとに算出されるものであり、それぞれ同一であってもよく、異なっていてもよい。本発明の液晶表示装置では、該角Cの少なくとも1つが上記式(3)を満たせばよいが、該角Cのそれぞれが上記式(3)を満たすことが好ましい。また、例えば該第1電極の縁が屈曲しており、その延伸方向が複数あってもよく、その場合、該第2電極の枝部の延伸方向と、該第1電極の幹部の側方の一方の縁の延伸方向とがなす角のうち最も小さい角を角Cとする。
上記角Cは、重要であるが、その重要度は距離A、距離B、角Dと比べると低い。該角Cは、18°以下であることが好ましく、15°以下であることがより好ましく、12°以下であることが更に好ましく、3°以下であることが特に好ましい。なお、本発明の一態様では、該角Cの下限は0°であってもよい。
上記「該第2電極の幹部の延伸方向と、該第1電極の枝部の、該屈曲点よりも上側の部分の延伸方向とがなす角」(D)とは、該第2電極の幹部の延伸方向と、該第1電極の枝部の、該屈曲点よりも上側の部分の延伸方向とがなす角のうち、鋭角となる角を言う。例えば該角Dは、図15で示すDで表される角度である。該角Dは、基本的に開口部の上側ごとに算出されるものであり、それぞれ同一であってもよく、異なっていてもよい。本発明の液晶表示装置では、該角Dの少なくとも1つが上記式(4)を満たせばよいが、該角Dのそれぞれが上記式(4)を満たすことが好ましい。また、第1電極の枝部は、複数箇所で屈曲していてもよく、その場合、「該屈曲点よりも上側の部分の延伸方向」が複数あることになり、角Dが複数あることになる。この場合、開口部の上側において複数ある角Dのそれぞれが上記式(4)を満たすことが好ましい。
上記角Dは、本発明において上記距離Bと同等程度に重要な特徴である。該角Dは、8°以上であることが好ましく、9°以上であることがより好ましく、9.5°以上であることが更に好ましく、17°以上であることが特に好ましい。また、本発明の一態様では、該角Dの上限値は、25°であってもよい。角Dの上限値は、20°であることが好ましい。例えば、本発明の液晶表示装置は、更に、以下の式(5)を満たす
D≦20°  (5)
ことが好ましい。
上述したように下基板を平面視したとき、該第1電極の複数の枝部は、通常、該第2電極の複数の枝部及び該第3電極の複数の枝部と交差する。例えば、該第1電極における複数の枝部が、該第2電極の枝部及び該第3電極の枝部と略直交(75~90°の角度で交差)することが好ましい。
上記第3電極の枝部の平均幅は、上記第2電極の枝部の平均幅よりも大きいことが本発明の液晶表示装置の好ましい形態の1つである。平均幅とは、1本の枝部ごとに算出される平均幅を言う。
また、第1電極と第3電極との間の電位差が第1電極と第2電極との間の電位差以上である駆動操作を実行するように構成されたものであることが本発明の液晶表示装置の好ましい形態の1つである。
更に、本発明の液晶表示装置は、第1電極に印加する電圧の極性が、第2電極に印加する電圧の極性と同じであり、第3電極に印加する電圧の極性と逆である駆動操作を実行するように構成されたものであることが好ましい。
本発明の液晶表示装置の液晶モードは、液晶の初期配向が平行型(液晶分子の長軸が基板主面に対して実質的に平行であることを言う。以下でも、液晶の配向〔方位〕とは、液晶分子の長軸の向きを言う。)である。
本発明の液晶表示装置は、このような電極構造を有することにより、FFSモードよりも応答が高速化する駆動(第1駆動方式)や、その駆動よりも高い透過率が得られる駆動(第2駆動方式)を、目的に応じて印加する電圧を切り替えることで実現でき、高透過率及び広視野角に加えて高速応答も実現できる。
本発明の液晶表示装置の一態様において、上記第3電極の枝部の平均幅は、5.5μm以上、13μm以下であることが好ましい。
また本発明の液晶表示装置の別の一態様において、上記第3電極の枝部の平均幅は、上記第2電極の枝部の平均幅よりも2.5μm以上大きいことが好ましい。
本発明の液晶表示装置の別の一態様において、上記第2電極の枝部と、上記第3電極の枝部との平均間隔は、2.5μm以上、4.5μm以下であることが好ましい。
本発明の液晶表示装置は、画素内で、上記液晶分子の一部を上記上下基板の主面に対して水平面内で回転させる第1領域と、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる第2領域とがそれぞれ2つ以上交互に並ぶように液晶分子を回転させる電界を上記下基板が備える電極によって発生させる駆動操作を実行するように構成されたものであることが好ましい。上記第1駆動方式により、このような電界が発生する。なお、第1領域と、第2領域とがそれぞれ2つ以上交互に並ぶとは、2つ以上の第1領域と、2つ以上の第2領域とが、交互に縞状に並ぶものであってもよく、交互に千鳥格子状に並ぶものであってもよい。なお、上記液晶分子の一部とは、液晶層中に含まれる複数の液晶分子のうちの一部を構成する複数の液晶分子を意味する。上記液晶分子の他の一部も同様であり、液晶層中に含まれる複数の液晶分子のうちの上記液晶分子の一部以外の複数の液晶分子を意味する。
上記電界を上記下基板が備える電極によって発生させるとは、第1電極、第2電極、及び、第3電極から選ばれる少なくとも1つの電極によって上記電界を発生させるものであればよく、例えば、液晶表示装置の電源オン時に、第2電極と第3電極との間で常に横電界を発生させるとともに、第1電極に電圧を印加して駆動することが好ましい。第1電極に電圧を印加して駆動するとは、具体的には、白表示時に第1電極に印加する電圧を大きくして液晶分子を回転させ、黒表示時に第1電極の電圧を小さくして液晶分子を逆方向に回転させることを言う。
なお、本発明の液晶表示装置において、上記第1電極は、上記第2電極及び上記第3電極のそれぞれと異なる層に配置されていれば良いが、上記第2電極及び上記第3電極よりも液晶層側に配置されていることが好ましい。例えば、該第2電極及び該第3電極の上に絶縁層等を介して第1電極が配置されている構成とすることが好ましい。
また、上記第2電極及び上記第3電極は、異なる層に配置されていてもよいが、同一の層に配置されていることが好ましい。一対の櫛歯状電極が同一の層に配置されているとは、それぞれの櫛歯状電極が、その液晶層側、及び/又は、液晶層側と反対側において、共通する部材(例えば、絶縁層、液晶層等)と接していることを言う。
本発明の液晶表示装置においては、通常、第1電極、第2電極及び第3電極のそれぞれが電気的に分離されており、これらの電圧を個別に制御することができる。言い換えれば、通常、第1電極、第2電極、及び、第3電極は、それぞれ、閾値電圧以上で異なる電圧とすることができるものである。
本発明の液晶表示装置においては、上基板に液晶駆動用の電極は配置されていてもよく、配置されていなくてもよいが、例えば、配置されていないものとすることが好ましい。すなわち、下基板のみに液晶駆動用の電極が配置されていることが本発明の液晶表示装置における好ましい形態の1つである。
そして、本発明の液晶表示装置は、上記駆動操作を実行する第1駆動方式と、画素内で、上記液晶分子の一部を上記上下基板の主面に対して水平面内で回転させる第1領域と、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる第2領域とがそれぞれ1つ以下になるように液晶分子を回転させる電界を上記下基板が備える電極によって発生させる駆動操作を実行する第2駆動方式とを切り換えて実行するように構成されたものであることが好ましい。上記「・・・第1領域と、・・・第2領域とがそれぞれ1つ以下になる」とは、例えば、第1領域が1つあり、第2領域は1つであるか、又は、存在しない(0である)ことを言う。水平面内で回転させるとは、実質的に1方向に水平面内で回転させるものであればよい。また、該第2駆動方式において、該電界を該下基板が備える電極によって発生させるとは、第1電極、第2電極、及び、第3電極から選ばれる少なくとも1つの電極によって上記電界を発生させるものであればよく、例えば、液晶表示装置の電源オン時に、第2電極及び第3電極には電圧を印加せず、第1電極に電圧を印加して駆動することが好ましい。第1電極に電圧を印加して駆動するとは、上述したように、白表示時に第1電極に印加する電圧を大きくし、電界を発生させて液晶分子を回転させ、黒表示時に第1電極に印加する電圧を小さくし、該電界を弱めるか又はゼロにして液晶分子を逆方向に回転させることを言う。
本発明の液晶表示装置において、上記液晶分子は、正の誘電率異方性を有することが好ましい。
本発明の液晶表示装置において、上記下基板は、薄膜トランジスタ素子を備え、該薄膜トランジスタ素子は、酸化物半導体を含むことが好ましい。
本発明の液晶表示装置の構成としては、その他の構成要素により特に限定されるものではなく、液晶表示装置に通常用いられるその他の構成を適宜適用することができる。
本発明の液晶表示装置によれば、高コントラスト比及び広視野角を実現するとともに、高速応答を実現することができる。
実施例1の液晶表示装置の画素の電極構造及び液晶の初期配向を示す平面模式図である。 図1中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。 実施例1の液晶表示装置の上層電極(i)、下層電極(ii)、及び、下層電極(iii)を示す拡大模式図である。 実施例1の第1駆動方式の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。 図4に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。 実施例1の第1駆動方式の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。 実施例1の第1駆動方式の白表示時における各電極への印加電圧を示す電圧関係図である。 実施例1の第2駆動方式の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。 図8に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。 実施例1の第2駆動方式の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。 液晶表示装置の上層電極及び下層電極を示す平面模式図である。 実施例1における、図11の破線で囲んだ箇所に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。 比較例1における、図12と同様の箇所に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。 液晶初期方位と、白表示時の液晶方位とを示す模式図である。 実施例1の画素端部の各電極構造を示す平面模式図である。 比較例1の画素端部の各電極構造を示す平面模式図である。 実施例6におけるダイレクタ分布及び透過率分布を示すシミュレーション結果である。 実施例7におけるダイレクタ分布及び透過率分布を示すシミュレーション結果である。 比較例3におけるダイレクタ分布及び透過率分布を示すシミュレーション結果である。 比較例5におけるダイレクタ分布及び透過率分布を示すシミュレーション結果である。 SN比の大小と配向崩れの有無との関係を示す模式図である。 距離AとSN比の関係を示すグラフである。 距離BとSN比の関係を示すグラフである。 角CとSN比の関係を示すグラフである。 角DとSN比の関係を示すグラフである。 距離Aと、第2駆動方式の白表示時における液晶分子の配向安定性との関係を説明する平面模式図である。 角Cと、第2駆動方式の白表示時における液晶分子の配向安定性との関係を説明する平面模式図である。 角Dと、第2駆動方式の白表示時における液晶分子の配向安定性との関係を説明する平面模式図である。 角Dと、第2駆動方式の白表示時における液晶分子の配向安定性との関係を説明する平面模式図である。 角Dと、第2駆動方式の白表示時における液晶分子の配向安定性との関係を説明する平面模式図である。 比較例1の液晶表示装置の電極構造及び液晶分子の初期配向を示す断面模式図である。 比較例1の液晶表示装置の上層電極及び下層電極を示す平面模式図である。
以下に実施例を掲げ、本発明を図面を参照して更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。本明細書中、画素とは、特に明示しない限り、絵素(サブ画素)であってもよい。絵素(サブ画素)とは、例えばR(赤)、G(緑)、B(青)、又は、黄(Y)等の、いずれかの単色を示す領域をいう。また、液晶層を挟持する一対の基板を上下基板ともいい、これらのうち、表示面側の基板を上基板ともいい、表示面と反対側の基板を下基板ともいう。更に、基板に配置される電極のうち、表示面側の電極を上層電極ともいい、表示面側と反対側の電極を下層電極ともいう。
なお、各実施例において、同様の機能を発揮する部材及び部分は同じ符号を付している。また、図中、特に断らない限り、(i)は、下基板の上層(液晶層側)にあるスリット電極を示し、(ii)は、下基板の下層(液晶層側と反対側)の櫛歯状電極を示し、(iii)は、下基板の下層のもう1つの櫛歯状電極を示す。なお、上層電極(i)は、櫛歯状電極であってもよい。下層電極(ii)、及び、下層電極(iii)は基板主面を平面視したときに互いに対向している。また、図中、カラーフィルタ、ブラックマトリクスなど、液晶の電界制御に関わらない層は省略している。
本明細書中、下基板の電極とは、上層電極(i)、下層電極(ii)、及び、下層電極(iii)の少なくとも1つを意味する。
本明細書中、スリット電極とは、スリットが設けられている電極を言い、通常は複数の線状部分(線状電極部分)を含む。本明細書中、スリットは、電極の開口部であって、例えば四方を、電極の枠で囲まれている領域である。
上記上層電極(i)、下層電極(ii)、及び、下層電極(iii)は、通常、閾値電圧以上で異なる電位とすることができるものである。本明細書中、閾値電圧とは、明状態の透過率を100%に設定したとき、5%の透過率を与える電圧値を意味する。閾値電圧以上で異なる電位とすることができるとは、閾値電圧以上で異なる電位とする駆動操作を実現できるものであればよく、これにより液晶層に印加する電界を好適に制御することが可能となる。異なる電位とすることができる構成としては、例えば、上層電極(i)が画素電極であり、下層電極(ii)及び下層電極(iii)が共通電極である場合は、該上層電極(i)にTFT(薄膜トランジスタ素子)を接続して、電圧の値を変化させて交流電圧(AC電圧)を印加して液晶を交流駆動(AC駆動)すると共に、該下層電極(ii)及び該下層電極(iii)に別のTFTで交流電圧を印加して液晶をAC駆動したり、ラインごとに共通接続されているか、又は、すべての画素内で共通接続されている該下層電極(ii)及び該下層電極(iii)に、該ライン又はすべての画素に対応するTFTで交流電圧を印加して液晶をAC駆動したり、該ライン又はすべての画素をTFTを用いないでAC駆動したり、該下層電極(ii)及び該下層電極(iii)にTFTを用いないで直流電圧(DC電圧)を印加して液晶を直流駆動(DC駆動)したりしてもよい。
本明細書中、電界を上記電極によって発生させるとは、第1電極、第2電極、及び、第3電極から選ばれる少なくとも1つの電極によって上記電界を発生させるものであればよく、例えば、液晶表示装置の電源オン時に、第2電極と第3電極との間で常に電界を発生させるとともに、白表示時に第1電極の電圧を大きくして液晶分子を回転させ、黒表示時に第1電極の電圧を小さくして液晶分子を逆方向に回転させることができる。
なお、上層電極(i)の線状部分の延伸方向と液晶分子の配向方向とのなす角度については、液晶分子の配向方向が、上層電極(i)の線状部分の延伸方向に対して右回りの角度をなすときは正の角度をなし、上層電極(i)の線状部分の延伸方向に対して左回りの角度をなすときは負の角度をなすものとする。
例えば、横電界で駆動する本発明の液晶表示装置において、下層電極を一対の櫛歯状電極、上層電極をスリット電極(又は櫛歯状電極)とする2層の電極を、絶縁膜を介して配置することが好ましい。当該液晶表示装置において、2層の電極の下層側(液晶層側と反対側)の一対の櫛歯状電極間に常に横電界を印加しておき、上層側のスリット電極(又は櫛歯状電極)に電圧を印加して駆動することができる。
本明細書中、立上がりとは、暗状態(黒表示)から明状態(白表示)に表示状態が変化する間を意味する。また、立下がりとは、明状態(白表示)から暗状態(黒表示)に表示状態が変化する間を意味する。また、液晶の初期配向とは、電圧無印加時での液晶分子の配向を言う。
(実施例1)
図1は、実施例1の液晶表示装置の画素の電極構造及び液晶の初期配向を示す平面模式図である。図1は、上層電極(i)の幹部の側方のうち枝部が分岐していない側の縁が上層電極(i)の上側を左右方向に延びる縁となる向きで、下基板を平面視した様子を示す。
上層電極(i)は、スリット電極であり、幹部から分岐する枝部として複数の線状部分を含む。該複数の線状部分は、画素の上側から、画素上端部と画素中央部との間で屈曲し、画素中央部と画素下端部との間で屈曲しているが、該複数の線状部分の画素上端部どうし、画素中央部どうし、画素下端部どうしでは、それぞれ略平行である。なお、図1では、上述したように上層電極(i)がスリット電極であり、その開口部はその四方が電極の枠で囲まれている。一方、該開口部のうち一方に電極の枠がなく、開放されていてもよい。言い換えれば、上層電極(i)はスリット電極である代わりに例えば櫛歯状電極であってもよい。上層電極(i)が櫛歯状であることもまた本発明の好ましい形態の1つである。
下層電極(ii)、下層電極(iii)は、それぞれ、下基板を平面視したときに、幹部及び幹部から延びる枝部から構成される。枝部は、それぞれ略平行な複数の線状電極部分である。このように、下層電極(ii)及び下層電極(iii)は、それぞれ、櫛歯状である。
なお、図1に示した上層電極(i)、下層電極(ii)、及び、下電電極(iii)の構造は一例であり、この形状には限られず、種々の構造の電極を使用できる。
上記上層電極(i)において、線状部分の電極幅Lは3μm、隣り合う線状部分と線状部分との間の電極間隔S1は6μmである。また、電極間隔S2は16μmである。上記電極幅Lは、例えば2μm以上、7μm以下が好ましい。また、上記電極間隔S1は、例えば2μm以上、14μm以下であることが好ましい。電極幅Lと電極間隔S1との比(L/S1)は、0.1~1.5が好ましい。該比L/S1のより好ましい下限値は、0.2であり、より好ましい上限値は、1.2である。
上述したように、上層電極(i)が備える複数の線状部分は、それぞれ、画素中央部と各画素端部との間(2箇所)で屈曲している。
後述する図3に示すように、下層電極(ii)、下層電極(iii)それぞれの枝部の延伸方向は、上層電極(i)の線状部分の画素中央部の延伸方向に対して87°をなす方向とし、上層電極(i)の線状部分の各画素端部(画素上端部及び画素下端部のそれぞれ)の延伸方向に対して80°をなす方向とした。言い換えれば、下基板が有する2つの櫛歯状電極は、その枝部である線状部分の延伸方向が下基板を平面視したときに上層電極(i)の線状部分の画素中央部の延伸方向と87°の角度で交わり、上層電極(i)の線状部分の各画素端部の延伸方向と80°の角度で交わるように配置されている。
また図1における、下基板の下層電極(ii)が有する枝部は、下層電極(iii)が有する枝部と枝部との間に配置されている。
実施例1では図1に示す偏光軸をもつ2枚の直線偏光板を使用する。実施例1では、直線偏光板が、上下基板の外側(液晶層側と反対側)に1枚ずつ配置されている。直線偏光板の配置としては、上下基板で直線偏光板の偏光軸が、電圧無印加時における液晶分子の長軸(液晶の初期配向方位)に対して垂直又は平行のクロスニコル配置とし、ノーマリーブラックモードの液晶表示装置とした。このように、上下基板がそれぞれ直線偏光板を有することが好ましい。
上層電極(i)は、コンタクトホールCHを介して薄膜トランジスタ素子TFTから延びているドレイン電極と電気的に接続される。ゲートバスラインGLで選択されたタイミングで、ソースドライバからソースバスラインSLを介して供給された電圧を、薄膜トランジスタ素子TFTを通じて液晶を駆動する上層電極(i)に印加する。
図2は、図1中の一点鎖線で示した線分に対応する部分の断面を示す断面模式図である。
実施例1の液晶表示装置は、図2に示されるように、下基板10、液晶層30及び上基板20が、液晶表示装置の背面側から観察面側に向かってこの順に積層されて構成されている。
実施例1の液晶表示装置は、図2に示されるように、上下基板が有する各電極間の電位差が閾値電圧未満では液晶分子LCを水平配向させる(図2では、液晶分子LCは断面の奥から手前に向かって配向している。)。
下基板10の下層電極(ii)(図2では示されていない。)、下層電極(iii)は、それぞれ、上述したように櫛歯状電極であり、下層電極(ii)、下層電極(iii)の上に、絶縁層13を介してスリット電極である上層電極(i)が配置されている。上基板20には液晶駆動用の電極は設けられておらず、下基板10のみに液晶駆動用の電極が設けられている。
絶縁層13の誘電率は6.9、平均厚みは0.3μmである。絶縁層13は、それぞれ、窒化膜SiNで構成されるものであるが、その代わりに、酸化膜SiOや、アクリル系樹脂等、又は、それらの材料の組み合わせも使用可能である。
上下基板の液晶層側にはそれぞれ水平配向膜(図示せず)を設け、電圧無印加時における液晶分子の長軸が上層電極(i)の線状部分の延伸方向と3°の角度をなすように水平配向させた。なお、液晶層と上層電極(i)は水平配向膜を介して隣接する。水平配向膜としては、膜面に対して液晶分子を水平に沿わせるものである限り限定されず、例えば有機材料から形成された配向膜(例えば、誘電率ε=3~4の配向膜);無機材料から形成された配向膜(例えば、誘電率ε=5~7の配向膜);光活性材料から形成された光配向膜;ラビング処理等によって配向処理がなされた配向膜等が挙げられる。なお、光配向膜等の、配向処理が必要ない配向膜を用いることによって、プロセスの簡略化によりコストを削減するとともに、信頼性及び歩留まりを向上することができる。また、ラビング処理をおこなった場合、ラビング布などからの不純物混入による液晶汚染、異物による点欠陥不良、液晶パネル内でラビングが不均一であるために表示ムラが発生するなどのおそれがあるが、これら不利点も無いものとすることができる。
上記液晶は、上述したように、電圧無印加時に水平方向に配向する液晶分子を含む。なお、水平方向に配向するとは、本発明の技術分野において液晶分子が基板主面に対して実質的に平行方向に配向すると言え、光学的な作用効果を発揮できるものであればよい。上記液晶は、電圧無印加時に水平方向に配向する液晶分子から実質的に構成されるものであることが好適である。上記「電圧無印加時に」は、本発明の技術分野において実質的に電圧が印加されていないといえるものであればよい。このような水平配向型の液晶は、広視野角の特性等を得るのに有利な方式である。
実施例1の液晶表示装置における液晶層30中の液晶材料の誘電率異方性は正である(誘電率異方性Δε=5.9、粘度(回転粘性度)γ1=89cps、屈折率異方性Δn=0.109、パネルのRe=350nm)。このように、液晶層は、正の誘電率異方性を有する液晶分子を含むことが本発明の好ましい形態の1つである。正の誘電率異方性を有する液晶分子は、電界を印加した場合に一定方向に配向されるものであり、配向制御が容易であり、より高速応答化することができる。液晶の誘電率異方性Δεは、3以上であることが好ましく、4以上であることがより好ましく、5以上であることが更に好ましい。また、該液晶の誘電率異方性Δεは、30以下であることが好ましく、20以下であることがより好ましく、10以下であることが更に好ましい。本明細書中、液晶の誘電率異方性Δεは、LCRメーターにより測定されるものを意味する。
実施例1では、液晶層30の平均厚み(セルギャップ)dLCは3.2μmである。
本明細書中、液晶層の平均厚みdLCは、液晶表示装置における液晶層全体の厚みを平均して算出されるものを意味する。
LC×Δnは100nm以上であることが好ましく、150nm以上であることがより好ましく、200nm以上であることが更に好ましい。また、dLC×Δnは550nm以下であることが好ましく、500nm以下であることがより好ましく、450nm以下であることが更に好ましい。
以下では、本実施例の液晶表示装置を用いた液晶の駆動方法について説明する。
本実施例では、高速応答可能な駆動を実現することができる。また、電圧の印加方法を切り替えることで、高速応答可能な駆動と、その駆動よりも高い透過率を実現する駆動の2種類の駆動を同じ構成で実現することができる。 
本明細書中、高速応答を実現できる駆動を第1駆動方式、それより高い透過率を実現する駆動は第2駆動方式と、それぞれ呼ぶことにする。
第1駆動方式、第2駆動方式ともに上層電極(i)の電圧を変化させて階調表示を行う。
第1駆動方式は、下層電極(ii)及び下層電極(iii)は互いに極性が逆になるように振幅センターを0Vとして電圧を極性反転させて印加することで、横電界を常に発生させておき、上層電極(i)に階調に応じた電圧を極性反転させて印加することで駆動する。ここで、実施例1の液晶表示装置は、上層電極(i)に印加する電圧の極性が、下層電極(ii)に印加する電圧の極性と同じであり、下層電極(iii)に印加する電圧の極性とは異なる駆動操作を実行するように構成されたものである。また、実施例1の液晶表示装置は、上層電極(i)と下層電極(iii)との間の電位差が上層電極(i)と下層電極(ii)との間の電位差以上である駆動操作を実行するように構成されたものでもある。後者の駆動操作は、上層電極(i)に印加する電圧の極性、下層電極(ii)に印加する電圧の極性、及び、下層電極(iii)に印加する電圧の極性が同じであっても実行できる。例えば、下層電極(ii)及び下層電極(iii)に対し、振幅センターを6Vとして振幅0-12Vで振幅センターを中心として対称的に電圧を印加してもよい。
第2駆動方式は、下層電極(ii)、下層電極(iii)はともに0Vとしておき、上層電極(i)に階調に応じた電圧を極性反転させて印加することで、上層電極(i)と、下層電極(ii)及び下層電極(iii)との間にフリンジ電界を発生させて液晶を駆動する。本発明に係る電極構造により、第2駆動方式の時、画素端(上層電極端部)付近の下層電極が存在しない領域で、画素中央部と発生する電界が異なることで発生する液晶の配向崩れを充分に防止することができ、高コントラスト比を達成することができる。
図3は、実施例1の液晶表示装置の上層電極(i)、下層電極(ii)、及び、下層電極(iii)を示す拡大模式図である。図3は、図1の一点鎖線で囲んだ部分を示す。
図3では、下層電極(ii)の複数の枝部の1つは、その一部が上層電極(i)の幹部と重畳するとともに、他の一部が該第1電極の開口部内にあり、該開口部内にある他の一部の上端と、下端との間の上下間距離Aが2μmである。また、第1電極が備える複数の枝部は、それぞれ、屈曲しており、その屈曲点と、該第3電極の枝部の上下間の中心線との距離Bが2.75μmである。更に、該第2電極の枝部の延伸方向と、該第1電極の幹部の側方の下方の縁の延伸方向とがなす角Cが10°である。そして、該第2電極の幹部(図3では示さず)の延伸方向と、該第1電極の枝部の、該屈曲点よりも上側の部分の延伸方向とがなす角Dが10°である。後述するように、このような電極形状とすることにより、第2駆動方式において液晶の配向安定性が優れたものとなる。
図3中、下層電極(ii)の枝部の電極幅は3μm、下層電極(iii)の枝部の電極幅は10μm、下層電極(ii)の枝部と下層電極(iii)の枝部との間の電極間隔は3μmである。
実施例1及びその変形例では、下層電極(iii)の枝部の平均幅が、下層電極(ii)の枝部の平均幅よりも大きく、これが本発明における好ましい形態の1つである。これにより、第1駆動方式において黒浮きを防いでコントラスト比を向上することができる。
下層電極(ii)の枝部における平均電極幅は、2.5μm以上、4.5μm以下が好ましい。また、下層電極(iii)の枝部における平均電極幅は、5.5μm以上が好ましく、また、13μm以下が好ましい。更に、また下層電極(ii)の枝部と下層電極(iii)の枝部との間の平均電極間隔は、2.5μm以上であることが好ましく、4.5μm以下であることが好ましい。
なお、下層電極(ii)の平均電極幅、下層電極(iii)の平均電極幅、並びに、互いに隣接する下層電極(ii)の枝部と下層電極(iii)の枝部との間の平均電極間隔は、それぞれ、画素内における平均値である。
図4は、実施例1の第1駆動方式の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図5は、図4に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。図6は、実施例1の第1駆動方式の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図7は、実施例1の第1駆動方式の白表示時における各電極への印加電圧を示す電圧関係図である。図4~図7は、それぞれ、図1中の破線で囲んだ部分に対応する部分を示す。
先ず、立上がり時の液晶分子の動作について詳しく説明する。
下層電極(ii)及び下層電極(iii)は、図4及び図7に示すように、互いに極性が逆になるように、振幅センターを0Vとして電圧を極性反転させて常に印加し、横電界を常に発生させておく。なお、下層電極(ii)及び下層電極(iii)に印加する電圧の絶対値は常に一定である。その上で上層電極(i)に、電圧を、下層電極(ii)に印加する電圧の極性と同じ極性となるように極性反転させて印加することで、水平面内で液晶分子を異なる方位に互い違いに回転させる電界が発生し、その電界によって液晶分子が当該水平面内でベンド配向及びスプレイ配向をするような形で配向する。本実施例の第1駆動方式では白階調表示時に上層電極(i)に6V/-6Vを印加し、下層電極(ii)に1.3V/-1.3Vを印加し、下層電極(iii)に-1.3V/1.3Vを印加している。実施例1の液晶表示装置では、下層電極(iii)の平均幅が下層電極(ii)の平均幅よりも広いことにより、下層電極(ii)、下層電極(iii)への印加電圧を小さくしても液晶分子の配向の安定性を維持できるため、黒浮きを小さくするために下層電極(ii)、下層電極(iii)への印加電圧を小さくすることが可能である。
シミュレーションによる透過率分布図(図5)を見て分かるように、一点鎖線で囲んだ領域1と二点鎖線で囲んだ領域2とで液晶分子は異なる方位に回転しており、領域1と領域2とは互い違いに存在していることがわかる。すなわち、第1駆動方式では、液晶分子が水平面内で異なる方位に互い違いに回転する。図5に示した領域1(第1領域)では、液晶分子は水平面内で時計回りの向きに回転し、領域2(第2領域)では、液晶分子は水平面内で反時計回りの向きに回転する。言い換えれば、下基板を平面視したときに、上層電極(i)の線状電極間(上層電極(i)のスリットと重畳する領域内)、下層電極(ii)の枝部である線状電極間、下層電極(iii)の枝部である線状電極間で、それぞれ液晶分子が水平面内で1方向に回転するのではなく、異なる2方向に回転する。
また下層電極(ii)及び下層電極(iii)間に横電界が発生するように、下層電極(ii)及び下層電極(iii)に常に電圧が印加されていることにより、立上がり応答時には、水平面内の全領域に強い電界が印加される。そのため、立上がり応答が高速化される。
次いで、立下がり時の液晶分子の動作について説明する。
第1駆動方式では、立下がり応答時にも下層電極(ii)及び下層電極(iii)には常に電圧が印加されているため、上層電極(i)の電圧を弱めるか又はゼロにした際に、下層電極(ii)-下層電極(iii)間で発生する横電界によって液晶分子が初期配向に戻る方向へ強制的に回転する。更に、第1駆動方式の場合には、水平面内でベンド配向及びスプレイ配向が発生し、それによって誘起される弾性ひずみにより大きな復元力も働く。よって、立下がり応答も高速化する。図6に示すように、本実施例の第1駆動方式では黒階調表示時に上層電極(i)は0Vであり、下層電極(ii)には1.3V/-1.3Vを印加し、下層電極(iii)には-1.3V/1.3Vを印加している。なお、上記第1駆動方式においては、液晶分子が平面内で異なる方位に回転する領域が交互に少なくとも2領域連続して存在する。このように、液晶分子が異なる方位に回転する領域が平面内で2領域以上連続で存在することが好ましい。
上述したように、図6では、上層電極(i)の電位を0Vとした。このように画素電極(実施例1では上層電極(i))の電圧を最大透過率時の電圧から弱めたりゼロにしたりする以外は、その他の電極(実施例1では下層電極(ii)、下層電極(iii))の電位等は第1駆動方式の白表示時と同じものとすることができ、その好ましい範囲等も第1駆動方式の白表示時におけるものと同様である。例えば、実施例1においては、白表示時及び黒表示時のいずれも下基板の下層電極(ii)が1.3V/-1.3Vであり、下層電極(iii)が-1.3V/1.3Vである。このように、本発明の液晶表示装置は、下基板の下層電極(ii)及び下層電極(iii)が、白表示時及び黒表示時のいずれも一定の電圧の絶対値であることが好ましい。
上述した第1駆動方式における各電極への電圧印加方法としては、上層電極(i)が画素電極であり、この上層電極(i)に印加される電圧を変化させ、下層電極(ii)及び下層電極(iii)に一定の大きさの電圧が印加されており、このような電圧印加方法は本発明の液晶表示装置における好ましい形態の1つである。
図8は、実施例1の第2駆動方式の白表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。図9は、図8に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。図10は、実施例1の第2駆動方式の黒表示時における各電極への印加電圧、及び、液晶分子の配向を示す平面模式図である。
図8~図10は、それぞれ、図1中の上層電極(i)の線状部分及び下層電極(ii)の枝部で囲んだ部分に対応する部分を示す。
先ず、立上がり時の液晶分子の動作について詳しく説明する。 
図8に示すように、下層電極(ii)、下層電極(iii)をともに0Vにしておき、その上で上層電極(i)に極性反転させて電圧を印加することで、上層電極(i)と、下層電極(ii)及び下層電極(iii)との間でフリンジ電界が発生し、その電界に反応して液晶分子が同方位に回転する。本実施例の第2駆動方式では白階調表示時に上層電極(i)に5V/-5Vを印加している。
シミュレーションによる透過率分布図(図9)を見て分かるように、液晶分子が同方位に回転することで、第1駆動方式と比べて全体として高透過率が得られている。
第2駆動方式の白表示時では、上層電極(i)の電圧は、表示に応じて変化するものであるが、その上限が10Vであることが好ましく、8Vであることがより好ましく、7Vであることが更に好ましい。
次いで、立下がり時の液晶分子の動作について説明する。
図10に示すように、上層電極(i)に印加していた電圧をオフすることによって、液晶分子の復元力によって配向処理方位(アンカリング)に向かって戻るように回転する。本実施例の第2駆動方式では黒表示時に上層電極(i)への印加電圧は0Vである。その他の各電極(下層電極(ii)、下層電極(iii))への印加電圧は、第2駆動方式の白表示時と同様であり、0Vである。なお、第2駆動方式の黒表示時では、上層電極(i)、下層電極(ii)及び下層電極(iii)への印加電圧は、閾値電圧未満とすればよい。
実施例1では、下層電極(ii)及び下層電極(iii)は、印加する電圧が第1駆動方式と第2駆動方式で異なるため、例えばライン(ゲートバスライン等)ごとにスキャン駆動する。
なお、実施例1の液晶表示装置における薄膜トランジスタ素子には、透過率改善効果の観点から酸化物半導体を含む薄膜トランジスタ素子を用いることが好ましい。酸化物半導体は、アモルファスシリコンよりも高いキャリア移動度を示す。これにより、1画素に占めるトランジスタの面積を小さくすることができるため開口率が増加し、1画素あたりの光の透過率を高めることが可能となる。したがって、酸化物半導体を含む薄膜トランジスタ素子を用いることで、本発明の効果であるコントラスト比向上効果をより顕著に得ることができる。すなわち、本発明の液晶表示装置において、下基板は、薄膜トランジスタ素子を備え、該薄膜トランジスタ素子は、酸化物半導体を含むことが好ましい。
実施例1の液晶表示装置は、透過型、反射型、半透過型のいずれの液晶表示装置にも適用することができる。後述する実施例においても同様である。
実施例1の液晶表示装置が備える上下基板は、液晶を挟持するための一対の基板であり、例えば、ガラス、樹脂等の絶縁基板を母体とし、絶縁基板上に配線、電極、カラーフィルタ等を必要に応じて作り込むことで形成される。
なお、実施例1の液晶表示装置は、通常の液晶表示装置が備える部材(例えば、光源等)を適宜備えることができる。また、実施例1の液晶表示装置は、アクティブマトリクス駆動方式によって液晶を駆動するものであることが好ましい。後述する実施例においても同様である。
図11は、液晶表示装置の上層電極及び下層電極を示す平面模式図である。なお、図11は一例であり、電極構造はこの形状に限られるものではない。図12は、実施例1における、図11の破線で囲んだ箇所に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。図13は、比較例1における、図12と同様の箇所に対応するダイレクタ分布及び透過率分布を示すシミュレーション結果である。比較例1については、後述する。図14は、液晶初期方位と、白表示時の液晶方位とを示す模式図である。白表示時の所望の回転角度に近い液晶が多いほどSN比は大きくなり、安定に配向していることになる。
実施例1と比較例1は、それぞれ、上層電極(i)の5V印加時の第2駆動方式の透過率分布を示す。実施例1では、領域内で分子が同方位に回転するか、又は、初期配向の状態を維持しているが、比較例1は、画素端における一部の液晶分子が逆方位に回転し、破線で囲んだ箇所で配向崩れが発生している。 
第2駆動方式の白表示時(5V印加時)の画素端部の配向状態を下記の指標で評価した。
下基板の配向膜と液晶層との界面をZ=0とすると、Z=0.66μmにおけるXY平面上の液晶分子の回転角度をΦ、抽出数をnとし、 
回転角度Φの全2乗和をSn
Sn=Φ +Φ +・・・・+Φ  
回転角度Φの平均の効果をSm
Sm=(Φ+Φ+・・・・+Φ/n
誤差変動をSe
Se=Sn-Sm
誤差分散をVe
Ve=Se/(n-1) 
とすると、
SN比(dB)=10log((Sm-Ve)/Ve/n) 
と表される。式から分かるように、SN比が大きいほど、液晶の回転角度のばらつきが少ない、すなわち画素端の液晶分子が同じ方位に回転しており、配向が安定していることが分かる。
実施例1及び比較例1それぞれの第2駆動方式の5V印加時(白表示時)のSN比を下記表1に記す。 
Figure JPOXMLDOC01-appb-T000001
表1の結果から、比較例1より実施例1の方が、SN比が大きく、配向が安定していることが分かる。
図15は、実施例1の画素端部の各電極構造を示す平面模式図である。図15は、図1の一点鎖線で囲んだ部分を示す。図16は、比較例1の画素端部の各電極構造を示す平面模式図である。
図15に示すように、下層電極(ii)の複数の枝部の1つは、その一部が上層電極(i)の幹部と重畳するとともに、他の一部が上層電極(i)の開口部内にある。該開口部内にある他の一部の上端と、下端との間の上下間距離をAとする。また、上層電極(i)が備える複数の枝部は、それぞれ、屈曲している。その屈曲点と、下層電極(iii)の枝部の上下間の中心線との距離をBとする。更に、下層電極(ii)の枝部の延伸方向と、上層電極(i)の幹部の側方の一方の縁(枝部が分岐している側の縁)の延伸方向とがなす角をCとする。そして、下層電極(ii)の幹部(図15に示さず)の延伸方向と、上層電極(i)の枝部の、該屈曲点よりも上側の部分の延伸方向とがなす角をDとする。
実施例1及び比較例1のA~Dの値を下記表2に記す。
Figure JPOXMLDOC01-appb-T000002
表2に示すように、比較例1と実施例1とは、上層電極(i)の構造のみ異なる。すなわち、比較例1のDは3°である。比較例1では、上層電極(i)が備える複数の枝部が屈曲しておらず、その延伸方向は、実施例1における上層電極(i)の枝部の画素中央部の延伸方向(屈曲点よりも下側部分の延伸方向)と同じである。
上記A~Dの値を変更することにより、第2駆動方式の画素端の配向安定性を、シミュレーションを用いて検証した。
下記表3に該A~Dと画素端でのSN比を示す。実施例2~9、比較例1~5では、実施例1の基本形状から、A~Dの内1か所の条件を振っている。
Figure JPOXMLDOC01-appb-T000003
図17、図18は、それぞれ、実施例6、実施例7におけるダイレクタ分布及び透過率分布を示すシミュレーション結果である。図19、図20は、それぞれ、比較例3、比較例5におけるダイレクタ分布及び透過率分布を示すシミュレーション結果である。
図21は、SN比の大小と配向崩れの有無との関係を示す模式図である。SN比が大きい方が配向は安定し、-1.11以上で配向崩れが無くなる。
透過率分布から画素端の配向崩れの発生の有無で評価すると、実施例1、実施例6、及び、実施例7では配向崩れが見られないのに対し、比較例1、比較例3、及び、比較例5では配向崩れが発生しており、画素端の形状が適切でない。SN比と合わせて比較すると、実施例1、実施例6及び実施例7のSN比は比較例1と比べて高い値であり、透過率分布からも配向崩れはなく、配向が安定していることがわかる。しかしながら、比較例2~5ではSN比が比較例1より高い値であるが、配向崩れが発生しており、充分に配向が安定しているとは言えない。SN比が低く配向崩れが発生していない(液晶分子が逆方位に回転している領域がない)形状は実施例7となり、SN比が-1.11以上であると配向が安定すると考える(SN比が高い方が、配向が安定する)。
図22~図25に、表3をグラフ化した、上記A~Dと第2駆動方式の画素端SN比の関係を示す。図22~図25も、表3と同様に、実施例1をベース形状として当該A~Dの内いずれか1か所の条件を変更した際のグラフである。
図22は、距離AとSN比の関係を示すグラフである。図23は、距離BとSN比の関係を示すグラフである。図24は、角CとSN比の関係を示すグラフである。図25は、角DとSN比の関係を示すグラフである。
SN比が実施例7のSN比-1.11以上となる領域から、図22~図25で示される上記A~Dと第2駆動方式の画素端SN比の関係から、優れた配向安定性を示すA~Dの各範囲は、A≧1.5μm、0μm≦B≦5.1μm、0°≦C≦20°、6.5°≦D≦25°となる。
上記距離AとSN比の関係から、Aが増加するに伴い、画素端のSN比は増加傾向が見られ、距離Aが配向安定性に及ぼす影響は大きい。
上記距離BとSN比の関係から、0μm≦B≦5.1μmの範囲内であればSN比は安定しているが、B>5.1μmの範囲では大きくSN比が下がる。
上記角Dも距離Bと同様で、6.5°≦D≦25°の範囲内であればSN比は安定していると言えるが、D<6.5°では大きくSN比が下がる。D≦20°であることが好ましい。
角Cに関しては、0°≦C≦20°の範囲で配向安定の基準である-1.11dB以上であり、配向安定性への影響は小さい。
以上から、距離Aが最も配向安定性に影響を及ぼし、次いで、距離B及び角Dの影響が大きく、角Cの影響が最も小さいと考えられる。
上記A~Dが上記範囲内となるような電極構造にした際に、第2駆動方式における白表示時の画素端の液晶の配向が安定になる。以下では、このような電極構造と液晶の配向安定性との相関関係が見られる理由について、検討結果を詳述する。
<実施例1が比較例1に対して第2駆動方式の白表示時の画素端の配向安定性が向上する理由>
[距離(A)に関して] 
図26は、距離Aと、第2駆動方式の白表示時における液晶分子の配向安定性との関係を説明する平面模式図である。
上層電極(i)の輪郭線に垂直な方位に液晶は回転する。
上記距離Aが変化すると、図26中の破線で囲まれた領域の面積(第1電極の開口部と、第2電極の枝部とが重畳する領域)が変化するが、該面積が大きいほど、上層-下層電極間で発生するフリンジ電界が強くなり、所望の方位に配向する液晶分子が増え、安定な配向が得られる。すなわち、Aの値が大きいほど液晶の配向は安定化する。 
[距離(B)に関して]
上層電極(i)の輪郭線に垂直な方位に液晶は回転するため、スリットの傾きが大きい方が液晶は所望の方位に回転し易くなる。
液晶分子は隣接する液晶分子の動作の影響を受けるため、上層電極(i)の枝部の屈曲点が下層電極(iii)の枝部の上下間の中心線に近いほど(距離Bの値が小さいほど)、スリットの傾きが大きい領域が増加するため、所望の方位に配向しやすくなる液晶分子が増え、結果として画素端部の液晶も所望の方位に配向し易くなる。 
[角Cに関して]
図27は、角Cと、第2駆動方式の白表示時における液晶分子の配向安定性との関係を説明する平面模式図である。
上層スリット電極の輪郭線に垂直な方位に液晶は回転する。
角Cが大きくなると、所望の方位に配向する液晶分子が増える一方で、上層電極(i)の開口部と下層電極(ii)の枝部とが重なる面積が減ってしまう。
結果として、角Cの値が小さいほど、画素端の液晶配向は安定となる。
[角Dに関して]
図28~図30は、角Dと、第2駆動方式の白表示時における液晶分子の配向安定性との関係を説明する平面模式図である。
図28は、比較例1の電極構造を示す。比較例1の電極構造では、上層電極-下層電極の交差点近傍にて液晶分子が狙いの方向と逆に回転させる電界が発生し、破線で囲んだ範囲内で液晶の配向崩れが発生する。図29及び図30は、実施例1の電極構造を示す。図29に示すように、上層電極(i)の傾きが大きくなることにより、液晶を逆方位に回転させる電界の発生源が遠くなり、破線で囲んだ範囲内で液晶が逆に回転せず、配向崩れが発生しない。また、図30に示すように、上層電極(i)の輪郭線に垂直な方位に液晶は回転するため、傾きが大きい方が液晶は所望の方位に回転し易くなる。
(比較例1)
図31は、比較例1の液晶表示装置の電極構造及び液晶分子の初期配向を示す断面模式図である。図32は、比較例1の液晶表示装置の上層電極及び下層電極を示す平面模式図である。
比較例1の液晶表示装置は、角Dが3°である以外は、上述した実施例1の液晶表示装置の構成と同様である。
比較例1の液晶表示装置は、下層電極(iii)の枝部の平均幅が、下層電極(ii)の枝部の平均幅よりも大きいという特定の電極構造により、第1駆動方式の黒表示時における液晶分子の配向安定性が向上し、黒浮きを防止することができ、第1駆動方式におけるコントラスト比を大きく向上することができるが、上述したように、実施例1と比較すると、第2駆動方式の白表示時において、画素端での配向安定性に劣るものであった。
上述した実施例の液晶表示装置は、第1駆動方式において、立上がり時には、下層の一対の櫛歯状電極間に横電界が印加されていることにより、水平面内全域の液晶分子に強い電界が働くため応答が高速化し、立ち下がり時には、図4に示すような面内ベンド及びスプレイ配向が元に戻ろうとする強い復元力が働くことに加え、下層櫛歯状電極が作り出す電界に液晶分子が反応することで従来のFFSモードでは実現できない高速応答を実現できる。
また第2駆動方式において、2層電極下側の櫛歯状電極をともに同電位とすることで、上側のスリット電極との間にフリンジ電界を発生させることができ、上記のように駆動する高速応答を実現する駆動に比べて高い透過率を実現する駆動となる。 
これら2種類の駆動を目的や状況に応じて切り替えることができ、結果として広視野角、高速応答、及び、高透過率を実現できるのが上述した実施例の特長の1つである。なお、本発明の液晶表示装置は、上述した3種の電極を有するため、少なくとも第1駆動方式及び第2駆動方式を実行できる。
上述した実施例の液晶表示装置は、第1駆動方式と第2駆動方式とを適宜切り換えて表示を行うことができる。また、それぞれの駆動方式において、所望の表示に応じて、白表示と黒表示を適宜組み合わせて表示を行うことができる。
本発明の液晶表示装置は、上述した第1駆動方式を実行する制御装置を備えるものであることが好ましく、上述した第1駆動方式と第2駆動方式とを切り換えて実行する制御装置を備えるものであることがより好ましい。これによって、広視野角を実現するとともに、高速応答を実現したり、高透過率を実現したりすることができる。したがって、1種類の電極構成で高速応答、広視野角、高透過率の特性を全て満足する液晶表示装置を実現できる。
また、本発明の液晶表示装置は、所定の条件に応じて、上述した第1駆動方式と第2駆動方式とを自動的に切り換える制御装置を備えることが好ましい。該制御装置は、例えば、温度センサを搭載し、温度に応じて第1駆動方式と第2駆動方式とを自動的に切り換えるものであることが好ましい。例えば、該制御装置は、応答速度の遅延が問題とならない温度(例えば、下限が-20℃~20℃のいずれかである温度範囲)の環境下では高透過率を実現できる第2駆動方式を実行し、応答速度が遅くなる低温(例えば、上限が-20℃~20℃のいずれかである温度範囲)環境下では高速応答を実現できる第1駆動方式を実行するよう制御する制御装置であることが好ましい。これによって、所望の効果をより適切に得ることができる。
更に、本発明の液晶表示装置は、ユーザーの指示に応じて、上述した第1駆動方式と第2駆動方式とを切り換える制御装置を備えるものであってもよい。
また、本発明は、上述した液晶表示装置を用いた液晶表示装置の駆動方法であってもよい。
また本発明の液晶表示装置のように下基板が有する電極のみに交流電圧を印加する液晶の交流駆動を行えばよい場合には、従来通り下基板の当該電極のみに交流駆動用の回路、ドライバ、配線が配置されていればよい。したがって、例えば下基板が有する電極と共に上基板が有する電極にも交流電圧を印加して液晶の交流駆動を行うために下基板と共に上基板にも交流駆動用の回路、ドライバ、配線が配置されている液晶表示装置と比較して、本発明の液晶表示装置の駆動の自由度は格段に高いものである。
本発明の液晶表示装置としては、カーナビゲーション等の車載用の機器、電子ブック、フォトフレーム、産業機器、テレビ、パーソナルコンピュータ、スマートフォン、タブレット端末等が挙げられる。本発明は、例えば、カーナビゲーション等の車載用の機器等の高温環境下、低温環境下の両方で用いられ得る機器に適用されることが好ましい。
(i):上層電極
(ii):下層電極
(iii):下層電極
(iv):上層電極
(v):下層電極
CH:コンタクトホール
TFT:薄膜トランジスタ素子
SL:ソースバスライン
GL:ゲートバスライン
LC:液晶分子
10、110:下基板
11、21、111、121:ガラス基板
13、113:絶縁層
20、120:上基板
30、130:液晶層

Claims (10)

  1. 上下基板、及び、上下基板に挟持された液晶層をもつ液晶表示装置であって、
    該下基板は、第1電極、並びに、該第1電極とは異なる層に配置されている第2電極及び第3電極を備え、
    該第1電極は、幹部と、該幹部の側方の一方から分岐した複数の枝部とを備え、枝部と枝部との間には開口部が設けられており、
    該第2電極及び該第3電極は、一対の櫛歯状電極を構成し、それぞれ、幹部と、該幹部の側方の一方から分岐した複数の枝部とを備え、
    該第1電極の幹部の側方の他方の縁が第1電極の上側を左右方向に延びる縁となるように下基板を平面視したときに、該第2電極の複数の枝部の1つは、その一部が該第1電極の幹部と重畳するとともに、他の一部が該第1電極の開口部内にあり、該開口部内にある他の一部の上端と、下端との間の上下間距離をAとし、
    該第1電極が備える複数の枝部は、それぞれ、屈曲しており、その屈曲点と、該第3電極の枝部の上下間の中心線との距離をBとし、
    該第2電極の枝部の延伸方向と、該第1電極の幹部の側方の一方の縁の延伸方向とがなす角をCとし、
    該第2電極の幹部の延伸方向と、該第1電極の枝部の、該屈曲点よりも上側の部分の延伸方向とがなす角をDとすると、
    以下の式(1)~式(4)を満たし、
    該液晶層は、各電極への電圧無印加時に水平方向に配向する液晶分子を含む
    ことを特徴とする液晶表示装置。
    1.5μm≦A  (1)
    0μm≦B≦5.1μm  (2)
    0°≦C≦20°  (3)
    6.5°≦D≦25°  (4)
  2. 更に、以下の式(5)を満たす
    D≦20°  (5)
    ことを特徴とする請求項1に記載の液晶表示装置。
  3. 前記液晶表示装置は、画素内で、前記液晶分子の一部を前記上下基板の主面に対して水平面内で回転させる第1領域と、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる第2領域とがそれぞれ2つ以上交互に並ぶように液晶分子を回転させる電界を前記下基板が備える電極によって発生させる駆動操作を実行するように構成されたものである
    ことを特徴とする請求項1又は2に記載の液晶表示装置。
  4. 前記駆動操作を実行する第1駆動方式と、
    画素内で、前記液晶分子の一部を前記上下基板の主面に対して水平面内で回転させる第1領域と、該液晶分子の他の一部を該主面に対して水平面内で該液晶分子の一部とは逆方向に回転させる第2領域とがそれぞれ1つ以下になるように液晶分子を回転させる電界を前記下基板が備える電極によって発生させる駆動操作を実行する第2駆動方式とを切り換えて実行するように構成されたものである
    ことを特徴とする請求項3に記載の液晶表示装置。
  5. 前記第1電極は、スリットが設けられているか、又は、櫛歯状電極である
    ことを特徴とする請求項1~4のいずれかに記載の液晶表示装置。
  6. 前記第1電極と前記第3電極との間の電位差が前記第1電極と前記第2電極との間の電位差以上である駆動操作を実行するように構成されたものである
    ことを特徴とする請求項1~5のいずれかに記載の液晶表示装置。
  7. 前記第3電極の枝部の平均幅は、前記第2電極の枝部の平均幅よりも大きい
    ことを特徴とする請求項1~6のいずれかに記載の液晶表示装置。
  8. 前記第1電極は、前記第2電極及び前記第3電極よりも液晶層側に配置されている
    ことを特徴とする請求項1~7のいずれかに記載の液晶表示装置。
  9. 前記液晶分子は、正の誘電率異方性を有する
    ことを特徴とする請求項1~8のいずれかに記載の液晶表示装置。
  10. 前記下基板は、薄膜トランジスタ素子を備え、
    該薄膜トランジスタ素子は、酸化物半導体を含む
    ことを特徴とする請求項1~9のいずれかに記載の液晶表示装置。
PCT/JP2017/024568 2016-07-12 2017-07-05 液晶表示装置 WO2018012356A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/316,141 US10558085B2 (en) 2016-07-12 2017-07-05 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016137923 2016-07-12
JP2016-137923 2016-07-12

Publications (1)

Publication Number Publication Date
WO2018012356A1 true WO2018012356A1 (ja) 2018-01-18

Family

ID=60951698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024568 WO2018012356A1 (ja) 2016-07-12 2017-07-05 液晶表示装置

Country Status (2)

Country Link
US (1) US10558085B2 (ja)
WO (1) WO2018012356A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110568676B (zh) * 2019-01-07 2021-12-21 友达光电股份有限公司 像素结构
TWI732476B (zh) * 2020-03-02 2021-07-01 友達光電股份有限公司 顯示裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179368A (ja) * 1994-12-26 1996-07-12 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2003186034A (ja) * 2001-12-19 2003-07-03 Hitachi Ltd アクティブマトリクス型液晶表示装置
JP2006350282A (ja) * 2005-06-14 2006-12-28 Boe Hydis Technology Co Ltd フリンジフィールドスイッチングモード液晶表示装置
WO2016080271A1 (ja) * 2014-11-19 2016-05-26 シャープ株式会社 液晶表示装置
WO2016088658A1 (ja) * 2014-12-04 2016-06-09 シャープ株式会社 液晶表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482468B1 (ko) 2000-10-10 2005-04-14 비오이 하이디스 테크놀로지 주식회사 프린지 필드 구동 액정 표시 장치
WO2012090839A1 (ja) * 2010-12-28 2012-07-05 シャープ株式会社 液晶パネル、及び、液晶ディスプレイ
JP2015163908A (ja) * 2012-06-21 2015-09-10 シャープ株式会社 液晶表示装置
JP2015179100A (ja) * 2012-07-23 2015-10-08 シャープ株式会社 液晶表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179368A (ja) * 1994-12-26 1996-07-12 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2003186034A (ja) * 2001-12-19 2003-07-03 Hitachi Ltd アクティブマトリクス型液晶表示装置
JP2006350282A (ja) * 2005-06-14 2006-12-28 Boe Hydis Technology Co Ltd フリンジフィールドスイッチングモード液晶表示装置
WO2016080271A1 (ja) * 2014-11-19 2016-05-26 シャープ株式会社 液晶表示装置
WO2016088658A1 (ja) * 2014-12-04 2016-06-09 シャープ株式会社 液晶表示装置

Also Published As

Publication number Publication date
US10558085B2 (en) 2020-02-11
US20190212615A1 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
WO2016088658A1 (ja) 液晶表示装置
JP5898307B2 (ja) 液晶駆動方法及び液晶表示装置
JP5728587B2 (ja) 液晶駆動方法及び液晶表示装置
WO2013161636A1 (ja) 液晶表示パネル、液晶表示装置及び薄膜トランジスタアレイ基板
WO2012128061A1 (ja) 液晶駆動方法及び液晶表示装置
WO2013001983A1 (ja) 液晶表示パネル及び液晶表示装置
KR102276993B1 (ko) 액정 표시 장치
US9405160B2 (en) Active matrix substrate and liquid crystal display device
JP5339351B2 (ja) 液晶表示パネル
WO2018012356A1 (ja) 液晶表示装置
WO2016143686A1 (ja) 液晶表示装置
WO2016080271A1 (ja) 液晶表示装置
JP5878978B2 (ja) 液晶駆動方法及び液晶表示装置
WO2016013500A1 (ja) 液晶表示装置
US10008168B2 (en) Liquid crystal display having increased degree of freedom in design
WO2015012092A1 (ja) 液晶表示装置
US10754207B2 (en) Liquid crystal display device
WO2017006789A1 (ja) 液晶表示装置
WO2018008584A1 (ja) 液晶表示装置
KR20160041165A (ko) 액정 표시 장치
WO2016013499A1 (ja) 液晶表示装置
WO2016006506A1 (ja) 液晶表示装置
WO2016021527A1 (ja) 液晶表示装置
WO2012165312A1 (ja) 液晶表示パネル及び液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17827485

Country of ref document: EP

Kind code of ref document: A1