WO2012124538A1 - ファウリング生成の予測方法及び膜ろ過システム - Google Patents

ファウリング生成の予測方法及び膜ろ過システム Download PDF

Info

Publication number
WO2012124538A1
WO2012124538A1 PCT/JP2012/055643 JP2012055643W WO2012124538A1 WO 2012124538 A1 WO2012124538 A1 WO 2012124538A1 JP 2012055643 W JP2012055643 W JP 2012055643W WO 2012124538 A1 WO2012124538 A1 WO 2012124538A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
fouling
generation
fluorescence
raw water
Prior art date
Application number
PCT/JP2012/055643
Other languages
English (en)
French (fr)
Inventor
良一 有村
武士 松代
美和 石塚
太 黒川
潮子 栗原
理 山中
英顕 山形
夕佳 平賀
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2012124538A1 publication Critical patent/WO2012124538A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2611Irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2649Filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N2021/635Photosynthetic material analysis, e.g. chrorophyll
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6419Excitation at two or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1826Organic contamination in water

Definitions

  • Embodiments of the present invention relate to a prediction method of fouling generation in a membrane of a membrane filtration system and a membrane filtration system using this prediction method.
  • a membrane In the field of water treatment, there is a method of using a membrane to obtain domestic water, industrial water, agricultural water, or the like from raw water containing solutes such as ions and salts such as seawater, brackish water, groundwater, landfill leachate, or industrial wastewater.
  • a reverse osmosis membrane RO membrane (Reverse Osmosis Membrane)
  • RO membrane Reverse Osmosis Membrane
  • Water permeates the reverse osmosis membrane, but impurities other than water (such as ions and salts) do not permeate the reverse osmosis membrane.
  • the reverse osmosis membrane can separate the solution into water and solute by applying a pressure higher than the osmotic pressure according to the concentration of the solute to the solution.
  • fouling biological pollution
  • inorganic ions etc. released by dissolved organic matter, microorganisms, and microorganisms in the seawater.
  • Fouling is a biological soil, an irreversible soil that significantly reduces filterability. For this reason, it is necessary to suppress the generation of fouling in the membrane filtration system.
  • the operating conditions of the membrane filtration system, the cleaning conditions of the membrane, etc. are manipulated using the measurement of the amount of the fouling factor substance and the prediction of the possibility of fouling generation.
  • the measurement of the amount of fouling substances and the prediction of the possibility of fouling are, for example, turbidity of raw water, fouling index (FI) defined in JIS K3802, and TSTM D4189 / 22. Silt concentration index (SDI), modified fouling index (MFI), etc. are used.
  • the measurement of the amount of fouling substances and the prediction of the possibility of fouling may include, for example, water quality indicators such as total organic carbon concentration and ultraviolet absorbance, molecular weight indicating the size of organic matter in the raw water, and organic water content. Indices such as affinity (hydrophilicity or hydrophobicity) are also used. Furthermore, in recent years, when evaluating raw water, there is a method of using the measurement result of the fluorescence intensity of the raw water (see, for example, Patent Document 1).
  • the substance that causes fouling in the raw water is not a single substance, and a plurality of substances interact to generate fouling. Therefore, since the above-described method does not consider that a plurality of factors are acting, there is a problem that the above-described method cannot accurately predict fouling generation.
  • the challenge is to develop a fouling generation prediction method that more accurately predicts the generation of fouling in the membrane, and a membrane filtration system that uses the prediction results obtained by using this prediction method for filtration operating conditions and membrane cleaning conditions. Is to provide.
  • the prediction method of fouling generation is a prediction method of fouling generation in a membrane that filters raw water containing ions or salt.
  • the method for predicting the generation of fouling includes irradiating the raw water before filtration with a membrane with a plurality of excitation lights having different wavelengths; and the fluorescence intensity corresponding to each excitation light generated by the irradiation of the plurality of excitation lights. Measuring, and predicting fouling generation using a coefficient determined for each fluorescence wavelength range and a plurality of measured fluorescence intensity values.
  • FIG. 1 It is a figure explaining the membrane filtration system concerning Example 1.
  • FIG. 2 It is a figure explaining the relationship between the excitation wavelength of the substance contained in raw
  • FIG. 2 It is a figure explaining the membrane filtration system which concerns on Example 3.
  • This membrane filtration system performs membrane filtration of raw water containing solutes such as ions and salts such as seawater, brackish water, groundwater, landfill leachate, or industrial wastewater.
  • this prediction method measures a substance that causes fouling and predicts the generation of fouling. This prediction is used to prevent accumulation of fouling (biofouling) in the membrane and to eliminate fouling.
  • fouling biofouling
  • the membrane filtration system 100 includes a raw water tank 1, a supply pump 2, a fluorescence analyzer 20, a safety filter 7, a high-pressure pump 8, a reverse osmosis membrane 9, And a treated water tank 10.
  • the membrane filtration system 100 includes a fouling prediction unit 22 and a driving operation processing unit 23.
  • the raw water tank 1 stores raw water to be treated, and the raw water is supplied to the raw water tank 1 through a line L1.
  • Raw water is seawater, for example.
  • the raw water tank 1 is connected to the security filter 7 via a line L2.
  • the raw water stored in the raw water tank 1 is sent to the safety filter 7 by the supply pump 2 installed on the line L2.
  • the safety filter 7 removes turbidity having a particle size that is large to some extent from the raw water in order to suppress clogging of the reverse osmosis membrane 9.
  • the safety filter 7 is connected to the reverse osmosis membrane 9 via a line L3.
  • the raw water from which the turbidity having a large particle diameter has been removed is sent to the reverse osmosis membrane 9 by the high-pressure pump 8 installed on the line L3.
  • the high pressure pump 8 raises the pressure of the raw water that has passed through the safety filter 7 to a high pressure (for example, 6 MPa) necessary for the reverse osmosis membrane 9.
  • the reverse osmosis membrane 9 is a filtration membrane for removing solutes such as ions and salts contained in the raw water.
  • the treated water obtained by filtration through the reverse osmosis membrane 9 is sent to the treated water tank 10 via the line L4. Thereafter, the treated water in the treated water tank 10 is sent out via the line L6 and used as treated water, or further treatment is performed on the treated water as necessary.
  • the concentrated water remaining after the treated water is obtained by the reverse osmosis membrane 9 is discharged through the line L5 and further processed.
  • the membrane filtration system 100 has a fluorescence analyzer 20 that measures the fluorescence intensity of the raw water flowing through the line L2.
  • a fluorescence analyzer 20 that measures the fluorescence intensity of the raw water flowing through the line L2.
  • a specific excitation light is applied to a molecule, a substance having a specific structure transitions to an excited state, and then emits fluorescence of various wavelengths when the substance returns to the original ground state.
  • This fluorescence intensity is proportional to the amount of substance. For this reason, fluorescence analysis is widely used for the identification of substances and the quantitative determination of substances.
  • the membrane filtration system 100 identifies a substance contained in raw water and obtains the amount of the substance by fluorescence analysis using the fluorescence analyzer 20.
  • FIG. 2 explains the peak of each substance obtained by the three-dimensional excitation fluorescence spectrum and the measurement conditions.
  • the peak 1 shown in FIG. 2 specifies the peak region of the proteinaceous substance.
  • the amount of a certain proteinaceous substance is measured by irradiating excitation light with a relatively short wavelength of 200 to 260 nm, preferably 220 to 240 nm, and measuring fluorescence with a wavelength of 240 to 400 nm, preferably 330 to 360 nm. Can be obtained. That is, the excitation light for measuring the proteinaceous substance is irradiated to the raw water, and the fluorescence intensity of the fluorescence from the proteinaceous substance obtained by this excitation light is measured.
  • Peak 2 shown in FIG. 2 identifies the peak region of the humic substance.
  • a humic substance is a typical substance among organic substances dissolved in water.
  • a humic-like substance is one of polymer compounds composed of various organic compounds. The various organic compounds are mainly formed by the degradation of plants by microorganisms.
  • a humic-like substance is an organic substance produced in the process in which cellulose such as trees and lignic acid are oxidized.
  • humic substances are considered to be precursors of trihalomethanes. By chlorination in water purification treatment, humic substances react with chlorine to increase trihalomethane in the treated water.
  • the amount of humin-like substance that is, the amount of dissolved organic matter whose main component is a humin-like substance is, for example, irradiated with excitation light having a wavelength of 310 to 390 nm, preferably 330 to 350 nm, for example, a wavelength of 360 to 530 nm, preferably It can be determined by measuring fluorescence at 420 to 450 nm. That is, excitation light for measuring the humin-like substance is irradiated to the raw water, and the fluorescence intensity of the fluorescence from the humin-like substance obtained by this excitation light is measured.
  • the concentration of chlorophyll a is a measure of the amount of algae.
  • the concentration of chlorophyll a can be determined by irradiating excitation light with a wavelength of 410 to 480 nm, preferably 420 to 440 nm, and measuring fluorescence with a wavelength of 590 to 750 nm, preferably 650 to 670 nm. That is, the excitation light for measuring chlorophyll a is irradiated to raw water, and the fluorescence intensity of the fluorescence from chlorophyll a obtained by this excitation light is measured.
  • the fluorescence analyzer 20 can measure a plurality of fluorescence intensities.
  • the fluorescence analyzer 20 may be composed of a plurality of analyzers that can measure fluorescence intensities with different measurement conditions.
  • the fluorescence analyzer 20 may be an analyzer that can measure a plurality of fluorescence intensities with different measurement conditions at a time.
  • pre-processing may be given to raw water.
  • pretreatment for example, a method of removing a turbid component having a large particle diameter using a filter such as a strainer may be used, or a defoaming tank may be used.
  • a reagent may be added to the raw water.
  • the fouling prediction unit 22 predicts the generation of fouling using the measurement result of the fluorescence analyzer 20.
  • the fouling prediction unit 22 uses the plurality of fluorescence intensities measured by the fluorescence analyzer 20 to determine the contents of the plurality of factor substances contained in the raw water.
  • the fouling prediction unit 22 predicts the possibility that fouling is generated by using the weighting factor determined for each fluorescence wavelength range and the contents of a plurality of factor substances contained in the raw water.
  • the mechanism of fouling generated on the membrane surface is that of microorganisms in seawater, organic substances released by microorganisms (eg, light-transmitting extracellular polymer particles (Transparent® Exopolymer® Particles)), humic substances, proteins It has been found that dissolved organic matter such as like substances is the main factor in fouling formation. Further, the amount of microorganisms present in the raw water and the concentration of organic matter released by the microorganisms are correlated with the chlorophyll a concentration of the raw water. Therefore, by measuring the concentration of chlorophyll a, the amount of microorganisms and the amount of organic matter released by the microorganisms can be grasped indirectly.
  • the membrane filtration system 100 has weighting factors A, B, and C determined for each factor substance from these relationships.
  • the weighting factor A of the protein substance, the weighting factor B of the humin-like substance, and the weighting factor C of the chlorophyll a have a relationship of A> B> C.
  • the degree of contribution to the fouling generation is not uniform and may vary depending on the environment of the water area. In this case, it is necessary to correct the degree of fouling generation contribution.
  • the fouling prediction unit 22 determines the possibility of fouling generation.
  • the represented value X is obtained by using the equation (1).
  • FIG. 3 shows a table for determining the possibility of fouling generation from a plurality of fluorescence intensities having different wavelengths. If FIG. 3 is used, the possibility of the generation of fouling can be determined without using Equation (1). For example, when the concentration of a proteinaceous substance having a large contribution to fouling generation is high, that is, when the fluorescence intensity value is large, the possibility of fouling generation of raw water is high (level 1 and level 2). Here, the level that has a high possibility of fouling generation is set to level 1. Further, for example, when the concentration of the proteinaceous substance having a large contribution to fouling generation is low, that is, the value of the fluorescence intensity is small, the possibility of fouling generation of raw water is low (level 3 and level 4).
  • the driving operation processing unit 23 uses the value obtained by the fouling prediction unit 22 to adjust the supply valve 2 and the regulating valve B1 provided on the line L5. To operate.
  • the operation processing unit 23 adjusts the supply pump 2 and the regulating valve B1 to adjust the reverse osmosis membrane 9. To reduce the flow rate of treated water permeating to line L4.
  • the operation processing unit 23 adjusts the supply pump 2 and the regulating valve B1 to flow the treated water that permeates from the reverse osmosis membrane 9 to the line L4. Increase.
  • the membrane filtration system 100 and the fouling generation prediction method used in the membrane filtration system 100 a plurality of excitation lights having different wavelengths are irradiated, and the fluorescence intensity of each generated fluorescence is measured.
  • the content of each of a plurality of fouling factor substances in the raw water that is passed through the reverse osmosis membrane 9 can be measured. Therefore, the membrane filtration system 100 and the fouling generation prediction method according to the first embodiment of the present invention can more accurately predict the possibility of fouling generation from a plurality of fluorescence intensity values.
  • the membrane filtration system 100 can operate the system so as not to generate fouling in the membrane by utilizing the possibility of fouling generation predicted in this way.
  • the fluorescence analyzer 20 is installed in the line L2 and measures raw water flowing through the line L2.
  • the fluorescence analyzer 20 may be installed at other positions such as the line L3, the line L1, and the raw water tank 1.
  • the fluorescence analyzer 20 may be installed at other positions such as the line L3, the line L1, and the raw water tank 1.
  • FIG. 1 an example in which raw water is filtered with one reverse osmosis membrane has been described, but a plurality of reverse osmosis membranes may be installed in multiple stages in order to obtain higher quality water quality.
  • the membrane filtration system 200 includes a membrane 3, a first treated water tank 4, a second supply pump 6, a cleaning device between the supply pump 2 and the safety filter 7. It differs from the above-mentioned membrane filtration system 100 shown in FIG. Moreover, in this membrane filtration system 200, the treated water tank 10 shown in FIG. 1 becomes the 2nd treated water tank 10, and the supply pump 2 becomes the 1st supply pump 2.
  • FIG. 1 the treated water tank 10 shown in FIG. 1 becomes the 2nd treated water tank 10
  • the supply pump 2 becomes the 1st supply pump 2.
  • the membrane 3 uses, for example, an MF membrane (microfiltration membrane) or a UF membrane (ultrafiltration membrane) and is insoluble in turbidity, algae, microorganisms, etc. contained in raw water before being treated with the reverse osmosis membrane 9 Remove components from raw water.
  • the membrane 3 is connected to the raw water tank 1 through a line L21.
  • the raw water is sent from the raw water tank 1 to the membrane 3 by the first supply pump 2 installed on the line L21.
  • the treated water obtained by the treatment in the membrane 3 is sent to the first treated water tank 4 via the line L22.
  • the first treated water tank 4 is connected to the safety filter 7 via a line L24.
  • the treated water in the first treated water tank 4 is sent to the safety filter 7 by the second supply pump 6 installed on the line L24, and thereafter treated in the same manner as the treatment by the membrane filtration system 100 of the first embodiment. .
  • the membrane 3 is backwashed by supplying treated water from the first treated water tank 4 via the cleaning pump 24 via the L25. Backwash wastewater is drained through line 23. Further, the membrane 3 is cleaned by being supplied with a gas such as compressed air from the compressor 11.
  • the operation operation processing unit 23 of the membrane filtration system operates the cleaning pump 24 and the compressor 11 in addition to the first supply pump 2 and the regulating valve B1 using the prediction result by the fouling prediction unit 22.
  • the operation processing unit 23 adjusts the compressor 11 to increase the flow rate of air for air cleaning. Increase the cleaning time.
  • the operation processing unit 23 adjusts the compressor 11 to reduce the flow rate of air for air cleaning. Or shorten the cleaning time. That is, it adjusts so that the total amount of air may be reduced.
  • the driving operation processing unit 23 controls the cleaning pump 24 to supply backwash water to the membrane 3 from the line L25 and backwash the membrane 3.
  • water is sent from the membrane permeation side to the membrane supply side to remove the dirt adhering to the membrane surface.
  • the operation processing unit 23 increases the flow rate of backwash water for backwashing or sets the cleaning time. Or make it longer.
  • the operation processing unit 23 reduces the flow rate of backwash water for backwashing or shortens the washing time. That is, it adjusts so that the total amount of backwash water may be reduced.
  • the membrane 3 and the reverse osmosis are measured by measuring the fluorescence intensity of each fluorescence with respect to the excitation light having a plurality of wavelengths.
  • the content of each of a plurality of fouling factors in the raw water passed through the membrane 9 can be measured. Therefore, the membrane filtration system 200 and the fouling generation prediction method according to the second embodiment of the present invention can more accurately predict the possibility of fouling generation from a plurality of fluorescence intensity values.
  • the system is operated so that the fouling is not generated in the membrane 3 and the reverse osmosis membrane 9 by utilizing the possibility of the fouling generation predicted as described above, or the membrane 3 is washed. It can be operated.
  • the membrane filtration system 200 is more resistant to contamination of the reverse osmosis membrane 9 than the membrane filtration system 100. Can be reduced.
  • the membrane filtration system 300 according to the third embodiment is different from the membrane filtration system 200 in that the membrane filtration system 300 includes a water quality indicator measurement meter 21.
  • the fouling prediction unit 22 predicts the generation of fouling using the measurement result of the water quality index measurement meter 21 in addition to the measurement result of the fluorescence analyzer 20.
  • the water quality index meter 21 measures a value related to the quality of the raw water that causes fouling generation other than the fluorescence intensity.
  • the water quality indicator meter 21 measures the water temperature ( ⁇ ) of the raw water, the temperature ( ⁇ ) at the position where the membrane filtration system 300 exists, and the pH value ( ⁇ ) of the raw water.
  • the fouling prediction unit 22 uses, for example, a fouling by using a water quality index other than the fluorescence intensity, such as the fluorescence intensity and the water temperature ( ⁇ ), the air temperature ( ⁇ ), and the pH ( ⁇ ), as shown in Expression (2). Correct the prediction results.
  • the membrane filtration system 300 As described above, the membrane filtration system 300 according to the third embodiment and the fouling generation prediction method used in this membrane filtration system measure the fluorescence intensity and other water qualities of each fluorescence with respect to excitation light of a plurality of wavelengths. By doing so, the possibility of fouling generation can be predicted more accurately. Further, in the membrane filtration system 300, the operation of the system is operated so that fouling is not generated in the membrane 3 and the reverse osmosis membrane 9 by utilizing the possibility of fouling generation predicted in this way, You can manipulate the cleaning.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

イオン又は塩分を含む原水をろ過する膜モジュールでのファウリング生成の予測方法であって、膜モジュールでろ過する前の原水に、波長の異なる複数の励起光を照射するステップと、複数の励起光の照射によって生じるそれぞれの蛍光の蛍光強度を測定するステップと、蛍光の波長の範囲毎に定められた係数と、測定された複数の蛍光強度の値とを利用してファウリングの生成を予測するステップとを備える。

Description

ファウリング生成の予測方法及び膜ろ過システム 関連出願の引用
 本出願は、平成23年3月15日に出願した先行する日本国特許出願第2011-056698号による優先権の利益に基礎をおき、かつその利益を求めており、その内容全体が引用によりここに包含される。
 本発明の実施例は、膜ろ過システムの膜におけるファウリング生成の予測方法及びこの予測方法を利用する膜ろ過システムに関する。
 水処理分野において、膜を用いて海水、汽水、地下水、埋立地浸出水又は産業廃水等のイオンや塩類等の溶質を含む原水から生活用水、工業用水又は農業用水等を得る方法がある。例えば、膜として逆浸透膜(RO膜(Reverse Osmosis Membrane))が使用される。水は逆浸透膜を透過するが、水以外の不純物(イオンや塩類等)は逆浸透膜を透過しない。溶質の濃度に応じた浸透圧以上の圧力を溶液に加えることによって、逆浸透膜は溶液を水と溶質に分離することができる。
 このような膜で海水をろ過すると、海水中の溶存有機物、微生物、微生物等が放出する粘性の高い有機物、無機イオン等が原因で、膜表面にファウリング(バイオファウリング)が生成される。ファウリングは生物的な汚れであり、不可逆的な汚れであって、ろ過性を著しく低下させる。このため、膜ろ過システムではファウリングの生成を抑制する必要がある。
 ファウリングの生成を抑制するために、ファウリングの要因物質の量の測定やファウリング生成の可能性の予測を利用して膜ろ過システムの運転条件や膜の洗浄条件等が操作される。ファウリングの要因物質量の測定やファウリング生成の可能性の予測には、例えば、原水の濁度、JIS K3802に定義されているファウリングインデックス(FI)、TSTM D4189/22に定義されているシルト濃度指数(SDI)、修正ファウリング指数(Modified Fouling Index:MFI)等が用いられている。またファウリングの要因物質量の測定やファウリング生成の可能性の予測には、例えば、全有機炭素濃度や紫外線吸光度等の水質指標や、原水中の有機物の大きさを表わす分子量、有機物の水に対する親和性(親水性や疎水性)等の指標も用いられている。さらに、近年では、原水を評価するにあたり、原水の蛍光強度の測定結果を利用する方法がある(例えば、特許文献1参照)。
 しかしながら、原水中でファウリングの要因となる物質は単一の物質ではなく、複数の物質が相互に作用してファウリングを生成する。したがって、上述した方法は複数の要因が作用し合っていることを考慮しないので、上述した方法はファウリング生成の正確な予測ができないという問題がある。
特開2007-252978号公報
 課題は、膜におけるファウリングの生成をより正確に予測するファウリング生成の予測方法及びこの予測方法を利用して得た予測結果をろ過の運転条件や膜の洗浄条件に利用する膜ろ過システムを提供することである。
 実施例に係るファウリング生成の予測方法は、イオン又は塩分を含む原水をろ過する膜でのファウリング生成の予測方法である。このファウリング生成の予測方法は、膜でろ過する前の原水に、波長の異なる複数の励起光を照射するステップと;複数の励起光の照射により生じるそれぞれ励起光に対応した蛍光の蛍光強度を測定するステップと;および、蛍光の波長の範囲毎に定められた係数と、測定された複数の蛍光強度の値とを用いてファウリング生成を予測するステップと;を備える。
実施例1に係る膜ろ過システムを説明する図である。 原水に含まれる物質の励起波長と蛍光波長の関係を説明する図である。 原水に含まれるファウリング要因物質とその寄与度との関係を説明する図である。 実施例2に係る膜ろ過システムを説明する図である。 実施例3に係る膜ろ過システムを説明する図である。
 以下に、図面を用いて本発明の実施例に係るファウリング生成の予測方法及び膜ろ過システムについて説明する。この膜ろ過システムは、海水、汽水、地下水、埋立地浸出水又は産業廃水等のイオンや塩類等の溶質を含む原水を膜ろ過する。また、この予測方法は、ファウリングの要因となる物質を測定し、ファウリングの生成を予測する。この予測は、膜へのファウリング(バイオファウリング)の蓄積の防止やファウリングの除去のため利用される。以下の説明では、同一の構成には同一の符号を付して重複説明を省略する。
 図1に示すように、実施例1に係る膜ろ過システム100は、原水槽1と、供給ポンプ2と、蛍光分析計20と、保安フィルタ7と、高圧ポンプ8と、逆浸透膜9と、処理水槽10とを備えている。また、膜ろ過システム100は、ファウリング予測部22と、運転操作処理部23とを備えている。
 原水槽1は処理対象の原水を貯留し、原水はラインL1を介して原水槽1に供給される。原水は、例えば海水である。原水槽1は、ラインL2を介して保安フィルタ7と接続されている。原水槽1内に貯留された原水は、ラインL2上に設置された供給ポンプ2によって、保安フィルタ7に送られる。
 保安フィルタ7は、逆浸透膜9の目詰まりを抑制するため、ある程度粒径が大きな濁質等を原水から除去する。保安フィルタ7は、ラインL3を介して逆浸透膜9と接続されている。粒径の大きな濁質が取り除かれた原水は、ラインL3上に設置される高圧ポンプ8によって、逆浸透膜9に送られる。高圧ポンプ8は、保安フィルタ7を通過した原水の圧力を、逆浸透膜9で必要な高圧(例えば、6MPa)に上げる。
 逆浸透膜9は、原水に含まれるイオンや塩類等の溶質を除去するろ過膜である。逆浸透膜9によるろ過で得られた処理水は、ラインL4を介して処理水槽10に送られる。その後、処理水槽10内の処理水はラインL6を介して送出され、処理水として使用される、或いは、必要に応じてさらに他の処理が処理水に施される。また、逆浸透膜9で処理水が得られた後に残った濃縮水は、ラインL5を介して排出されて、さらに処理される。
 図1に示すように、膜ろ過システム100は、ラインL2を流れる原水の蛍光強度を測定する蛍光分析計20を有している。分子に特定の励起光を当てると、特定の構造を持つ物質は励起状態へ遷移し、その後、物質が元の基底状態へ戻る際に様々な波長の蛍光を放出する。この蛍光強度は物質量に比例する。このため、蛍光分析は物質の特定と物質量の定量に広く用いられている。実施例1の膜ろ過システム100は、蛍光分析計20を利用した蛍光分析によって、原水に含まれる物質を特定し、またその物質の量を求める。
 海水に含まれるファウリングの生成の原因物質として、タンパク質様物質、フミン様物質(humin)、クロロフィルa等がある。図2は、3次元励起蛍光スペクトルで得られた、各物質のピークと、測定条件について説明する。
 図2に示されるピーク1は、タンパク質様物質のピーク領域を特定している。ある種のタンパク質様物質の量は、比較的短波長である200~260nm付近、望ましくは220~240nmの励起光を照射し、波長240~400nm付近、望ましくは330~360nmの蛍光を測定することによって、求めることができる。すなわち、タンパク質様物質を測定するための励起光が原水へ照射され、この励起光により得られるタンパク質様物質からの蛍光の蛍光強度が測定される。
 図2に示されるピーク2は、フミン様物質のピーク領域を特定している。フミン様物質は、水中に溶存する有機物の中で代表的な物質である。フミン様物質は、種々雑多な有機化合物によって構成される高分子化合物の1つである。その種々雑多な有機化合物は、主として、微生物による植物の分解によって形成される。フミン様物質は、樹木等のセルロースやリグニン酸が酸化される過程で生じる有機物である。浄水処理においては、フミン様物質は、トリハロメタンの前駆物質と考えられている。浄水処理における塩素処理により、フミン様物質は塩素と反応して処理水中のトリハロメタンを増大する。フミン様物質の量、即ち主成分がフミン様物質である溶存有機物の量は、例えば、波長310~390nm、望ましくは330~350nmの励起光を照射して、例えば、波長360~530nm、望ましくは420~450nmの蛍光を測定することによって、求めることができる。すなわち、フミン様物質を測定するための励起光が原水へ照射され、この励起光により得られるフミン様物質からの蛍光の蛍光強度が測定される。
 図2に示されるピーク3は、クロロフィルaのピーク領域を特定している。クロロフィルaの濃度は藻類量の目安となる。クロロフィルaの濃度は、波長410~480nm付近、望ましくは420~440nmの励起光を照射して、波長590~750nm付近、望ましくは650~670nmの蛍光を測定することによって、求めることができる。すなわち、クロロフィルaを測定するための励起光が原水へ照射され、この励起光により得られるクロロフィルaからの蛍光の蛍光強度が測定される。
 蛍光分析計20は、複数の蛍光強度を測定できる。例えば蛍光分析計20は、それぞれ測定条件の異なる蛍光強度を測定できる複数の分析計によって構成されてもよい。また、蛍光分析計20は、測定条件の異なる複数の蛍光強度を一度に測定できる分析計であってもよい。
 なお、この励起光を原水へ照射する前に、前処理が原水に施されてもよい。前処理は、例えば、ストレーナのようなフィルタを用いて粒径の大きな濁質成分を除去する方法を用いても良いし、また脱泡槽を用いても良い。また測定感度を上げるために、原水へ試薬を添加してもよい。
 ファウリング予測部22は、蛍光分析計20の測定結果を利用して、ファウリングの生成を予測する。ファウリング予測部22は、蛍光分析計20の測定された複数の蛍光強度を使用して原水に含まれる複数の要因物質のそれぞれの含有量を求める。ファウリング予測部22は、蛍光の波長の範囲ごとにそれぞれ定められた重み係数と原水に含まれる複数の要因物質のそれぞれの含有量を使用してファウリングが生成される可能性を予測する。
 近年、膜表面に生成されるファウリングの生成メカニズムにおいては、海水中の微生物や、微生物が放出する有機物(例えば、光透過性の細胞外ポリマー粒子(Transparent Exopolymer Particles))、フミン様物質、タンパク質様物質等の溶存有機物がファウリング生成の主要因であることが、分かってきている。また、原水中に存在する微生物量や微生物が放出する有機物の濃度は、原水のクロロフィルa濃度に相関がある。このため、クロロフィルaの濃度を測定することにより、間接的に微生物量や微生物が放出する有機物量を把握できる。膜ろ過システム100は、これらの関係から各要因物質について定めた重み係数A,B,Cを有している。
 例えば、ファウリングの生成寄与の度合いについてタンパク質様物質、フミン様物質、クロロフィルaを比較したとき、タンパク質様物質が最も高く、クロロフィルaが最も低いとする。このとき、タンパク質用物質の重み係数A、フミン様物質の重み係数B、クロロフィルaの重み係数Cは、A>B>Cの関係になる。ここで、このファウリング生成寄与の度合いは、一律ではなく、水域の環境によって異なる場合もある。この場合は、ファウリング生成寄与の度合いの修正が必要である。
 また、蛍光分析計20で得られた、タンパク質様物質、フミン様物質、クロロフィルaの蛍光強度が、それぞれF1、F2、F3であるとき、ファウリング予測部22は、ファウリング生成の可能性を表わす値Xを、式(1)を用いて求める。
 X=A×F1+B×F2+C×F3 …(1)
 これにより、ファウリング生成の原因物質のファウリング生成に対する寄与の度合いを考慮してファウリング生成の可能性を評価できる。すなわち、ファウリング生成に対する寄与の度合いが高い物質の蛍光強度が小さいときには、寄与の度合いが低い物質の蛍光強度が大きくても、被処理水全体としてのファウリング生成の可能性は小さくなる。
 図3は、波長の異なる複数の蛍光強度からファウリング生成の可能性を求めるためのテーブルを示す。図3を用いれば、式(1)を利用せずに、ファウリングの生成の可能性を判定できる。例えば、ファウリング生成の寄与の度合いが大きいタンパク質様物質の濃度が高い、つまり蛍光強度の値が大きい場合、原水のファウリング生成の可能性が高くなる(レベル1やレベル2)。ここではファウリング生成の可能性が高いものをレベル1としている。また例えば、ファウリング生成の寄与の度合いが大きいタンパク質様物質の濃度が低い、つまり蛍光強度の値が小さい場合、原水のファウリング生成の可能性が低くなる(レベル3やレベル4)。
 ファウリング予測部22がファウリングの生成について予測すると、運転操作処理部23は、ファウリング予測部22が求めた値を利用して、供給ポンプ2とラインL5上に設けられた調整弁B1とを操作する。ろ過の流量が多いとファウリング生成量が多い。したがって、ファウリング予測部22が計算したファウリング生成の可能性を表す値が所定値より大きくなった場合、運転操作処理部23は、供給ポンプ2及び調整弁B1を調節して逆浸透膜9からラインL4へ透過する処理水の流量を減らす。ファウリング生成の可能性を表す値が所定値より小さくなった場合、運転操作処理部23は、供給ポンプ2及び調整弁B1を調節して逆浸透膜9からラインL4へ透過する処理水の流量を増やす。
 上述したように、膜ろ過システム100及びこの膜ろ過システム100で利用されるファウリング生成の予測方法では、波長の異なる複数の励起光の照射し、生じたそれぞれの蛍光の蛍光強度を測定することにより、逆浸透膜9へ通水される原水中の複数のファウリングの要因物質のそれぞれの含有量を測定できる。したがって、本発明の実施例1に係る膜ろ過システム100及びファウリング生成の予測方法は、複数の蛍光強度の値からファウリング生成の可能性をより正確に予測できる。また、膜ろ過システム100は、このようにして予測されたファウリング生成の可能性を利用することによって、膜にファウリングが生成されないようにシステムを運転できる。
 なお、図1に示す例では、蛍光分析計20は、ラインL2に設置され、ラインL2を流れる原水を測定する。しかし、逆浸透膜9に流入する原水の蛍光強度を測定できれば、ラインL3、ラインL1、原水槽1等の他の位置に蛍光分析計20が設置されていてもよい。また、図1に示す例では、1つの逆浸透膜で原水をろ過する例を説明したが、さらに良質な水質を得るため、複数の逆浸透膜を多段に設置してもよい。
 図4に示すように、実施例2に係る膜ろ過システム200は、膜ろ過システム200が供給ポンプ2と保安フィルタ7の間に、膜3、第1処理水槽4、第2供給ポンプ6、洗浄用ポンプ24及びコンプレッサ11を備えている点で、図1に示した上述した膜ろ過システム100と異なる。また、この膜ろ過システム200では、図1に示した処理水槽10は第2処理水槽10となり、供給ポンプ2は第1供給ポンプ2となる。
 膜3は、例えば、MF膜(精密ろ過膜)又はUF膜(限外ろ過膜)を利用し、逆浸透膜9で処理する前の原水に含まれる濁度、藻類、微生物等の不溶解性成分を原水から除去する。膜3は、ラインL21を介して原水槽1と接続されている。ラインL21上に設置される第1供給ポンプ2によって、原水槽1から原水が膜3に送られる。膜3における処理で得られた処理水は、ラインL22を介して第1処理水槽4に送られる。
 第1処理水槽4は、ラインL24を介して保安フィルタ7と接続されている。第1処理水槽4内の処理水は、ラインL24上に設置される第2供給ポンプ6によって、保安フィルタ7に送られ、その後は実施例1の膜ろ過システム100による処理と同様に処理される。
 膜3は、第1処理水槽4からL25を介して洗浄用ポンプ24により処理水が供給されることで、逆洗浄される。逆洗浄の排水はライン23を通って排水される。また、膜3は、コンプレッサ11から圧縮された空気等の気体が供給され、洗浄される。
 また、膜ろ過システムの運転操作処理部23は、ファウリング予測部22による予測結果を利用して、第1供給ポンプ2、調整弁B1に加え、洗浄用ポンプ24及びコンプレッサ11も操作する。
 一般に、空気洗浄では空気の流量が多い程、また、洗浄時間が長い程、膜表面に付着した汚れが剥離し、ファウリング生成は抑制される。したがって、ファウリング生成予測部22が計算したファウリング生成の可能性を表す値が所定値より大きくなった場合、運転操作処理部23は、コンプレッサ11を調節して空気洗浄の空気の流量を増やしたり洗浄時間を長くしたりする。一方、ファウリング生成予測部22が計算したファウリング生成の可能性を表す値が所定値より小さくなった場合、運転操作処理部23は、コンプレッサ11を調節して空気洗浄の空気の流量を減らしたり洗浄時間を短くしたりする。すなわち、空気の合計量を減らすように調整する。
 さらに、運転操作処理部23は、洗浄用ポンプ24を制御してラインL25から逆洗水を膜3に供給して膜3を逆洗浄する。逆洗浄では、水を膜の透過側から膜の供給側に送り、膜表面に付着した汚れを除去する。一般に、逆洗浄では、逆洗水の流量が多い程、また洗浄時間が長い程、膜表面に付着した汚れが剥離し、ファウリング生成は抑制される。したがって、ファウリング生成予測部22の計算したファウリング生成の可能性を表す値が所定値より大きくなった場合、運転操作処理部23は、逆洗浄の逆洗水の流量を増やしたり洗浄時間を長くしたりする。一方、ファウリング生成の可能性を表す値が所定値より小さくなった場合、運転操作処理部23は、逆洗浄の逆洗水の流量を減らしたり洗浄時間を短くしたりする。すなわち、逆洗水の合計量を減らすように調整する。
 上述したように、膜ろ過システム200及びこの膜ろ過システムで利用されるファウリング生成の予測方法では、複数の波長の励起光に対するそれぞれの蛍光の蛍光強度を測定することにより、膜3および逆浸透膜9へ通水される原水中の複数のファウリングの要因物質のそれぞれの含有量を測定することができる。したがって、本発明の第2実施例に係る膜ろ過システム200及びファウリング生成の予測方法は、複数の蛍光強度の値からファウリング生成の可能性をより正確に予測できる。また、膜ろ過システム200では、このように予測されたファウリング生成の可能性を利用して膜3、逆浸透膜9でファウリングが生成されないようにシステムを運転したり、膜3の洗浄を操作したりできる。
 また、MF膜又はUF膜を利用した膜3で原水を前処理して原水中の不溶解性成分を除去するので、膜ろ過システム200は膜ろ過システム100に比べて逆浸透膜9の汚れを減らすことができる。
 図5に示すように、実施例3に係る膜ろ過システム300は、膜ろ過システム300が水質指標測定計21を備えている点で、膜ろ過システム200と異なる。また、ファウリング予測部22は、蛍光分析計20の測定結果に加え、水質指標測定計21の測定結果を利用してファウリングの生成を予測する。
 ファウリングの生成は、原水に含まれる物質量の他に、水温、気温、pH、全有機炭素濃度、紫外線吸光度、ファウリングインデックス(FI)、シルト濃度指数(SDI)、修正ファウリング指数(MFI)等の要因にも影響される。したがって、水質指標測定計21は、蛍光強度以外のファウリング生成の要因となる原水の水質に関する値を測定する。ここでは、膜ろ過システム300では、水質指標測定計21は、原水の水温(α)、この膜ろ過システム300が存在する位置の気温(β)、原水のpH値(γ)を測定する。
 ファウリング予測部22は、例えば、式(2)に示すように、蛍光強度と、水温(α)、気温(β)、pH(γ)等の蛍光強度以外の水質指標を利用してファウリング予測の結果を補正する。
 X=A×F1+B×F2+C×F3+F(α,β,γ) …(2)
 上述したように、実施例3に係る膜ろ過システム300及びこの膜ろ過システムで利用されるファウリング生成の予測方法は、複数の波長の励起光に対するそれぞれの蛍光の蛍光強度及び他の水質を測定することにより、ファウリング生成の可能性をより正確に予測できる。また、膜ろ過システム300では、このように予測されたファウリング生成の可能性を利用して膜3、逆浸透膜9でファウリングが生成されないようにシステムの運転を操作したり、膜3の洗浄を操作したりできる。
 本発明の各実施例を説明したが、これらの実施例は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施例やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 100,200,300…膜ろ過システム
 1…原水槽
 2…供給ポンプ,第1供給ポンプ
 3…膜
 4…第1処理水槽
 6…第2供給ポンプ
 7…保安フィルタ
 8…高圧ポンプ
 9…逆浸透膜
 10…処理水槽,第2処理水槽
 11…コンプレッサ
 20…蛍光分析計
 21…水質指標測定計
 22…ファウリング予測部
 23…運転操作処理部

Claims (11)

  1.  イオン又は塩分を含む原水をろ過する膜でのファウリング生成の予測方法であって、
     膜でろ過する前の原水に、波長の異なる複数の励起光を照射するステップと、
     前記複数の励起光の照射により生じるそれぞれの励起光に対応した蛍光の蛍光強度を測定するステップと、
     蛍光の波長の範囲毎に定められた係数と、前記測定された複数の蛍光強度の値とを用いてファウリング生成を予測するステップと、
     を備えることを特徴とするファウリング生成の予測方法。
  2.  波長の異なる前記複数の励起光を照射する前記ステップは、
     タンパク質様物質を測定するための第1励起光を照射するステップと、フミン様物質を測定するための第2励起光を照射するステップと、クロロフィルaを測定するための第3励起光を照射するステップとを含み、
     前記複数の励起光の照射により生じるそれぞれの励起光に対応した前記蛍光の蛍光強度を測定する前記ステップは、
     前記第1励起光により得られる前記タンパク質様物質からの蛍光の蛍光強度を測定するステップと、
    前記第2励起光により得られる前記フミン様物質からの蛍光の蛍光強度を測定するステップと、
     前記第3励起光により得られる前記クロロフィルaからの蛍光の蛍光強度を測定するステップを含む、
     ことを特徴とする請求項1に記載のファウリング生成の予測方法。
  3.  前記ファウリング生成を予測するステップでは、前記係数及び前記蛍光強度の値を利用する数式を利用してファウリング生成の可能性を表す値を計算する
     ことを特徴とする請求項1に記載のファウリング生成の予測方法。
  4.  前記膜でろ過する前の原水の水質指標を測定するステップをさらに備え、
     前記ファウリング生成を予測するステップでは、前記係数及び前記蛍光強度の値とともに、測定された水質指標の値を利用する数式を利用してファウリング生成の可能性を表す値を計算する
     ことを特徴とする請求項1に記載のファウリング生成の予測方法。
  5.  前記水質指標の値は、原水の濁度、原水の温度、pH値、全有機炭素濃度又は紫外線吸光度、ファウリングインデックス(FI)、シルト濃度指数(SDI)、修正ファウリング指数(MFI)の少なくともいずれか一つの値であることを特徴とする請求項4に記載のファウリング生成の予測方法。
  6.  イオン又は塩分を含む原水をろ過する膜ろ過システムであって、
     膜でろ過する前の原水に、波長の異なる複数の励起光を照射し、それぞれの励起光に対応して生じた蛍光の蛍光強度を測定する蛍光分析計と、
     蛍光の波長の範囲毎に定められた係数と、測定された複数の蛍光強度の値とを利用してファウリング生成を予測するファウリング生成予測部と、
     を備えることを特徴とする膜ろ過システム。
  7.  前記ファウリング生成予測部は、前記係数及び前記蛍光強度の値を利用する数式を利用してファウリング生成の可能性を表す値を計算する
     ことを特徴とする請求項6に記載の膜ろ過システム。
  8.  前記膜は、逆浸透膜を有することを特徴とする請求項7に記載の膜ろ過システム。
  9.  前記膜は、原水の流れに沿って順に配置された、精密ろ過膜又は限外ろ過膜からなる第1の膜と、逆浸透膜からなる第2の膜とを有することを特徴とする請求項7に記載の膜ろ過システム。
  10.  さらに、前記膜に供給される原水の量を調整するポンプと、
     前記膜で処理水が得られた後の残った濃縮水を排出するラインに接続された弁と、
     前記ポンプと前記弁を操作する運転操作処理部を有し、
     前記ファウリング生成予測部が計算したファウリング生成の可能性を表す値が予め定めた値よりも大きくなった場合、前記膜を通過する処理水の流量を減らすように、前記運転操作処理部が前記ポンプ及び前記弁を操作し、
     前記ファウリング生成予測部が計算したファウリング生成の可能性を表す値が予め定めた値よりも小さくなった場合、前記膜を通過する処理水の流量を増やすように、前記運転操作処理部が前記ポンプ及び前記弁を操作する
    ことを特徴とする請求項8に記載の膜ろ過システム。
  11.  さらに、第1の膜を逆洗浄する洗浄水を供給する洗浄用ポンプと、
     第1の膜を空気洗浄する空気を供給するコンプレッサと、
     前記洗浄用ポンプと前記コンプレッサの運転を操作する運転操作処理部を有し、
     前記ファウリング生成予測部が計算したファウリング生成の可能性を表す値が予め定めた値よりも大きくなった場合、前記第1の膜に供給される前記洗浄水の量を増やすように前記運転操作処理部が前記洗浄用ポンプを操作し、また前記第1の膜に供給される前記空気の量を増やすように前記運転操作処理部が前記コンプレッサを操作し、
     前記ファウリング生成予測部が計算したファウリング生成の可能性を表す値が予め定めた値よりも小さくなった場合、前記第1の膜に供給される前記洗浄水の量を減らすように前記運転操作処理部が前記洗浄用ポンプを操作し、また前記第1の膜に供給される前記空気の量が減らすように前記運転操作処理部が前記コンプレッサを操作する
    ことを特徴とする請求項9に記載の膜ろ過システム。
PCT/JP2012/055643 2011-03-15 2012-03-06 ファウリング生成の予測方法及び膜ろ過システム WO2012124538A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011056698A JP5618874B2 (ja) 2011-03-15 2011-03-15 ファウリング生成の予測方法及び膜ろ過システム
JP2011-056698 2011-03-15

Publications (1)

Publication Number Publication Date
WO2012124538A1 true WO2012124538A1 (ja) 2012-09-20

Family

ID=46830613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055643 WO2012124538A1 (ja) 2011-03-15 2012-03-06 ファウリング生成の予測方法及び膜ろ過システム

Country Status (2)

Country Link
JP (1) JP5618874B2 (ja)
WO (1) WO2012124538A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018179556A (ja) * 2017-04-04 2018-11-15 三浦工業株式会社 水質監視装置及び水処理システム

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6178577B2 (ja) 2013-01-17 2017-08-09 アズビル株式会社 微生物検出システム及び微生物検出方法
JP5677476B2 (ja) * 2013-01-18 2015-02-25 株式会社東芝 膜ファウリング診断・制御装置、膜ファウリング診断・制御方法及び膜ファウリング診断・制御プログラム
JP6425918B2 (ja) 2014-05-27 2018-11-21 アズビル株式会社 精製水製造装置の監視システム及び精製水製造装置の監視方法
JP6532471B2 (ja) * 2014-09-11 2019-06-19 三菱重工エンジニアリング株式会社 水処理装置及び水処理方法
US10184892B2 (en) * 2014-10-29 2019-01-22 Horiba Instruments Incorporated Determination of water treatment parameters based on absorbance and fluorescence
JP6581372B2 (ja) * 2015-03-23 2019-09-25 オルガノ株式会社 樹脂粒子に吸着した有機物の吸着状態判定方法
WO2017115423A1 (ja) * 2015-12-28 2017-07-06 三菱重工業株式会社 水処理システム及び水処理方法
WO2017115429A1 (ja) * 2015-12-28 2017-07-06 三菱重工業株式会社 水処理方法及び水処理システム
KR101795910B1 (ko) * 2016-02-23 2017-11-08 두산중공업 주식회사 유기성 막 오염의 예측 방법
JP6719291B2 (ja) * 2016-06-24 2020-07-08 オルガノ株式会社 水処理装置の有機分離膜の洗浄方法
KR102029013B1 (ko) * 2018-02-26 2019-11-08 건국대학교 산학협력단 바이오파울링 현장 감지 장치를 포함하는 막여과 시스템 및 이의 감지 방법
JP7195177B2 (ja) * 2019-02-25 2022-12-23 オルガノ株式会社 超純水中の有機物評価方法、および超純水製造システムにおける有機物特定方法
KR102445794B1 (ko) * 2019-11-27 2022-09-22 주식회사 제이제이앤컴퍼니스 양식 시스템 및 그 제어방법
JPWO2022085802A1 (ja) * 2020-10-23 2022-04-28

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294434A (ja) * 1994-04-28 1995-11-10 Toshiba Corp 水質検査方法
JP2002166265A (ja) * 2000-11-30 2002-06-11 Toshiba Corp 蛍光分析計を用いた水処理制御システム
JP2003090797A (ja) * 2001-09-17 2003-03-28 Toshiba Eng Co Ltd 蛍光分析水質測定システム
JP2003126855A (ja) * 2001-10-26 2003-05-07 Toshiba Corp 膜濾過システム
JP2007090287A (ja) * 2005-09-30 2007-04-12 Toray Ind Inc 造水装置および造水方法
JP2007252978A (ja) * 2006-03-20 2007-10-04 Kurita Water Ind Ltd 逆浸透膜供給水の評価方法及び装置と水処理装置の運転管理方法
JP2008194560A (ja) * 2007-02-08 2008-08-28 Kurita Water Ind Ltd 膜分離装置被処理水の評価方法、水処理方法及び水処理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294434A (ja) * 1994-04-28 1995-11-10 Toshiba Corp 水質検査方法
JP2002166265A (ja) * 2000-11-30 2002-06-11 Toshiba Corp 蛍光分析計を用いた水処理制御システム
JP2003090797A (ja) * 2001-09-17 2003-03-28 Toshiba Eng Co Ltd 蛍光分析水質測定システム
JP2003126855A (ja) * 2001-10-26 2003-05-07 Toshiba Corp 膜濾過システム
JP2007090287A (ja) * 2005-09-30 2007-04-12 Toray Ind Inc 造水装置および造水方法
JP2007252978A (ja) * 2006-03-20 2007-10-04 Kurita Water Ind Ltd 逆浸透膜供給水の評価方法及び装置と水処理装置の運転管理方法
JP2008194560A (ja) * 2007-02-08 2008-08-28 Kurita Water Ind Ltd 膜分離装置被処理水の評価方法、水処理方法及び水処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018179556A (ja) * 2017-04-04 2018-11-15 三浦工業株式会社 水質監視装置及び水処理システム

Also Published As

Publication number Publication date
JP2012192315A (ja) 2012-10-11
JP5618874B2 (ja) 2014-11-05

Similar Documents

Publication Publication Date Title
WO2012124538A1 (ja) ファウリング生成の予測方法及び膜ろ過システム
Alventosa-deLara et al. Ultrafiltration ceramic membrane performance during the treatment of model solutions containing dye and salt
Köhler et al. Upgrading coagulation with hollow-fibre nanofiltration for improved organic matter removal during surface water treatment
JP4867413B2 (ja) 逆浸透膜供給水の評価方法及び装置と水処理装置の運転管理方法
Jeong et al. Foulant analysis of a reverse osmosis membrane used pretreated seawater
Qu et al. Tertiary treatment of secondary effluent using ultrafiltration for wastewater reuse: correlating membrane fouling with rejection of effluent organic matter and hydrophobic pharmaceuticals
JP2009240902A (ja) 水処理方法および水処理装置
Kimura et al. Irreversible fouling in hollow-fiber PVDF MF/UF membranes filtering surface water: Effects of precoagulation and identification of the foulant
JP6567274B2 (ja) 分離膜の汚染状態分析方法、その方法を用いるろ過対象水の水質評価方法
JP6679439B2 (ja) 逆浸透膜供給水の膜閉塞性評価方法、及び膜閉塞性評価装置、その膜閉塞性評価方法を用いた水処理装置の運転管理方法
Malczewska et al. Efficacy of hybrid adsorption/membrane pretreatment for low pressure membrane
Lidén et al. Integrity breaches in a hollow fiber nanofilter–Effects on natural organic matter and virus-like particle removal
Yu et al. Understanding ultrafiltration membrane fouling by soluble microbial product and effluent organic matter using fluorescence excitation–emission matrix coupled with parallel factor analysis
WO2013157188A1 (ja) 膜ファウリングの評価方法および分離膜の洗浄方法
JP2019206000A (ja) 分離膜の汚染状態分析方法、その方法を用いるろ過対象水の水質評価方法、及び分離膜の汚染状態分析方法を行うためのろ過システム
Yu et al. Long-term fouling evolution of polyvinyl chloride ultrafiltration membranes in a hybrid short-length sedimentation/ultrafiltration process for drinking water production
Gupta et al. Contributions of surface and pore deposition to (ir) reversible fouling during constant flux microfiltration of secondary municipal wastewater effluent
Leparc et al. Water quality and performance evaluation at seawater reverse osmosis plants through the use of advanced analytical tools
Cran et al. Root cause analysis for membrane system validation failure at a full-scale recycled water treatment plant
Lidén et al. Uses of fluorescence excitation-emissions indices in predicting water treatment efficiency
KR101550702B1 (ko) 높은 회수율로 정수 생산을 위한 막여과 정수 처리 시스템 및 방법
Gasia-Bruch et al. Field experience with a 20,000 m3/d integrated membrane seawater desalination plant in Cyprus
Subhi et al. Potential of fluorescence excitation emission matrix (FEEM) analysis for foulant characterisation in membrane bioreactors (MBRs)
JP7033841B2 (ja) 逆浸透膜供給水の膜閉塞性評価方法及びその膜閉塞性評価方法を用いた水処理装置の運転管理方法
Hilal et al. Enhanced membrane pre‐treatment processes using macromolecular adsorption and coagulation in desalination plants: a review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12756908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12756908

Country of ref document: EP

Kind code of ref document: A1