WO2017115429A1 - 水処理方法及び水処理システム - Google Patents

水処理方法及び水処理システム Download PDF

Info

Publication number
WO2017115429A1
WO2017115429A1 PCT/JP2015/086546 JP2015086546W WO2017115429A1 WO 2017115429 A1 WO2017115429 A1 WO 2017115429A1 JP 2015086546 W JP2015086546 W JP 2015086546W WO 2017115429 A1 WO2017115429 A1 WO 2017115429A1
Authority
WO
WIPO (PCT)
Prior art keywords
filtration
water
unit
rate
seawater
Prior art date
Application number
PCT/JP2015/086546
Other languages
English (en)
French (fr)
Inventor
田畑 雅之
竹内 和久
英夫 鈴木
英夫 岩橋
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2015/086546 priority Critical patent/WO2017115429A1/ja
Publication of WO2017115429A1 publication Critical patent/WO2017115429A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D36/00Filter circuits or combinations of filters with other separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D37/00Processes of filtration
    • B01D37/04Controlling the filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a water treatment method and a water treatment system for desalinating seawater, for example.
  • a water treatment system for desalinating seawater includes a desalination apparatus using a reverse osmosis membrane or the like.
  • the water treatment system uses a filtration device that filters particulate matter, bacteria, etc. in seawater upstream of the desalination treatment device as a pretreatment unit in order to suppress degradation of treatment performance due to contamination of the reverse osmosis membrane of the desalination treatment device. I have.
  • the quality of the treated water after filtration may change. Then, since the reverse osmosis membrane of a desalination processing apparatus will be contaminated, it is necessary to stabilize the filtration performance in a pre-processing part.
  • Patent Document 1 discloses a configuration in which a plurality of filtration devices are provided as a pretreatment unit, and the flow paths between the plurality of filtration devices are switched when the filtration performance of the filtration device is deteriorated. According to such a structure, when filtration performance falls, the flow path is switched and the quality of the water after filtration is stabilized by washing
  • variation of the to-be-processed water after filtration may occur by the fluctuation
  • seawater fluctuation include, for example, seawater temperature fluctuation.
  • the quality of the treated water will also return.
  • this invention is made in view of the said situation, and provides the water treatment method and water treatment system which can suppress the fluctuation
  • the water treatment method includes a water quality acquisition step of acquiring a water quality evaluation value of the water to be treated that has been subjected to the filtration treatment before the desalination treatment, and the acquired water quality evaluation value.
  • a filtration rate changing step of reducing the filtration rate of the water to be treated from a reference rate when the value is equal to or greater than a predetermined threshold value.
  • the water quality evaluation value of the treated water subjected to the filtration treatment is equal to or higher than a predetermined threshold value
  • the water quality after the filtration is improved by reducing the filtration speed of the treated water from the reference speed. Therefore, when the water quality fluctuation
  • the water treatment method is the water treatment method according to the first aspect, wherein the filtration rate changing step increases the number of filtration devices through which the treated water is passed.
  • the filtration rate in each of the filtration devices may be reduced by causing the water to be treated to flow through the filtration device and passing the water through the filtration device.
  • the water treatment method is the water treatment method according to the first or second aspect, wherein the filtration treatment sequentially passes the treated water through a plurality of stages of filtration devices, and the filtration In the speed changing step, the filtration rate of the first-stage filtration device may be made lower than the filtration rate of the second-stage and subsequent filtration devices.
  • the filtration rate of the first-stage filtration device may be made lower than the filtration rate of the second-stage and subsequent filtration devices.
  • the filtration speed changing step is performed after the second stage.
  • the treated water is diverted to a part of the filtration devices and the first-stage filtration device, and each water is passed therethrough, so that the first-stage You may make it reduce the filtration rate of the to-be-processed water which flows into a filtration apparatus.
  • the first stage is obtained by diverting the water to be treated to a part of the plurality of filtration apparatuses arranged in parallel after the second stage and the first stage filtration apparatus.
  • the number of filtration devices can be increased. Therefore, it is not necessary to provide a spare filtration device or the like by using some of the filtration devices arranged in parallel in the second and subsequent stages as the first-stage filtration device.
  • the water quality evaluation value is equal to or higher than a predetermined threshold value in a state where the filtration rate is reduced.
  • the filtration rate may be returned to the reference rate.
  • the water treatment system includes a treatment unit including a filtration device that performs filtration treatment on the treated water to be passed, and the treated water that has been subjected to the filtration treatment is concentrated water.
  • a reverse osmosis membrane device that separates into fresh water
  • a detection unit that detects a water quality evaluation value of the treated water between the treatment unit and the reverse osmosis membrane device, and information based on the water quality evaluation value is displayed.
  • the processing target in the filtration device A filtration rate adjusting unit for reducing the filtration rate of water.
  • the water to be treated can be desalinated by filtering the water to be treated in the treatment unit and then separating the water into concentrated water and fresh water using a reverse osmosis membrane device.
  • the water quality evaluation value of the water to be treated after the filtration treatment is detected by the detection unit before passing through the reverse osmosis membrane device.
  • Information based on the detected water quality evaluation value is displayed on the display unit, for example, as the water quality evaluation value itself or a determination result of the quality of the water quality evaluation value. The operator can determine whether or not the filtration rate needs to be adjusted by looking at the information displayed on the display unit.
  • the operator inputs a predetermined operation to the operation unit. Then, an operation part sends out the operation signal according to operation by an operator.
  • the filtration rate adjusting unit can reduce the filtration rate of the water to be treated in the filtration device based on the operation signal sent from the operation unit.
  • the water treatment system includes a treatment unit including a filtration device that performs filtration treatment on the treated water to be passed, and the treated water subjected to the filtration treatment is concentrated water.
  • a reverse osmosis membrane device that separates into fresh water, a detection unit that detects a water quality evaluation value of the water to be treated between the treatment unit and the reverse osmosis membrane device, and a threshold value in which the value of the water quality evaluation value is predetermined
  • the filtration rate adjustment part which reduces the filtration rate of the to-be-processed water in the said filtration apparatus is provided.
  • the water quality evaluation value of the water to be treated after the filtration treatment is detected by the detection unit before the water is passed through the reverse osmosis membrane device. If the detected water quality evaluation value is equal to or greater than a predetermined threshold value, the filtration rate adjusting unit reduces the filtration rate of the water to be treated in the filtration device.
  • the quality of the to-be-processed water to which the filtration process was performed falls, the quality of the water after filtration in a filtration apparatus improves by reducing the filtration rate of to-be-processed water automatically. Therefore, when the water quality fluctuation
  • the treatment unit includes a filtration device group including a plurality of filtration devices arranged in parallel to each other, and the filtration device.
  • a first switching unit that switches between water flow and non-water flow, and the filtration rate adjusting unit is configured to switch the first switching unit to allow the water to be treated to flow through the filtration device group.
  • the filtration rate may be reduced by increasing the number of By configuring in this way, reducing the filtration rate of each filtration device while increasing the number of filtration devices that pass the water to be treated reduces the amount of treated water in the whole of the plurality of filtration devices. Can be suppressed. Thereby, the fluctuation
  • the treatment unit includes a filtration device group including a plurality of filtration devices arranged in parallel to each other. And the filtration device group is provided in a plurality of stages in series with each other, and the processing unit is a filtration device of the filtration device group of the first stage that is part of the filtration device group of the filtration device group after the second stage.
  • a second switching unit that switches so as to be connected in parallel, and the filtration rate adjusting unit increases the number of the filtering devices in the first-stage filtering device group by switching the second switching unit.
  • FIG. 1 is a diagram showing the overall configuration of the water treatment system of this embodiment.
  • the water treatment system 10 of this embodiment includes a pretreatment unit 20, a cartridge filter 30, a high-pressure pump 40, a desalination treatment unit 50, and an energy recovery device 60. .
  • the pretreatment unit 20 is fed with seawater taken by a water intake pump (not shown) through a water intake pipe P1.
  • the pretreatment unit 20 performs a filtration process on the fed seawater (water to be treated) before passing the water into the desalination treatment unit 50, in other words, before desalination treatment is performed by the desalination treatment unit 50. Remove suspended solids.
  • a sand filtering device (filtering device) 21 is used as the pretreatment unit 20, and so-called non-chemical injection pretreatment is performed without adding a flocculant or a pH adjuster.
  • the sand filtration device 21 includes one or more stages of filter parts (filter medium layers) 21f.
  • the sand filtration device 21 includes a two-stage filter portion 21f.
  • the filter unit 21f includes a predetermined amount of sand (not shown) as a filter medium and a biofilm (not shown) grown and maintained on the surface of the sand.
  • the filter unit 21f removes an SDI (Silt Density Index) component that contaminates the desalination processing unit 50, a BOD (Biological Oxygen Demand) component that causes biofouling, and the like, using a biofilm.
  • the filter part 21f removes the particulate component contained in seawater with sand.
  • the cartridge filter 30 is connected to the downstream side of the pretreatment unit 20 via a connection pipe P3.
  • the cartridge filter 30 removes foreign matters having a predetermined diameter or more so that fine foreign matters having a size of, for example, about 1 to 5 ⁇ m, which could not be removed by the pretreatment unit 20, do not enter the high-pressure pump 40.
  • the high-pressure pump 40 is connected to the downstream side of the cartridge filter 30 via a connection pipe P4.
  • the high-pressure pump 40 increases the seawater that has passed through the cartridge filter 30 to a predetermined pressure, and sends the seawater to the desalination processing unit 50 through the connection pipe P5.
  • the desalination processing unit 50 performs a desalting process.
  • the desalting process is a process of removing or concentrating salt in seawater, for example.
  • the desalination process part 50 in this embodiment removes an ionic component from seawater using the reverse osmosis membrane F, for example.
  • Reverse osmosis membrane device Reverse osmosis membrane device
  • the reverse osmosis membrane treatment device 51 for seawater is connected to the downstream side of the high-pressure pump 40 via a connection pipe P5.
  • the seawater reverse osmosis membrane treatment apparatus 51 passes the seawater pressurized by the high-pressure pump 40 through the reverse osmosis membrane F through the connecting pipe P5, thereby obtaining permeated water from which salt (ionic components) has been removed.
  • the obtained permeated water is sent to the brackish water reverse osmosis membrane treatment device 52 through the connecting pipe P6.
  • the concentrated water containing the ion component removed by the seawater reverse osmosis membrane treatment device 51 is sent to the energy recovery device 60 via the connection pipe P7.
  • the concentrated water that has passed through the energy recovery device 60 is drained to the outside (the sea) through the drain pipe P8.
  • the brackish water reverse osmosis membrane treatment device 52 is connected to the downstream side of the seawater reverse osmosis membrane treatment device 51 via a connecting pipe P6.
  • the brackish water reverse osmosis membrane treatment device 52 passes the permeated water that has passed through the seawater reverse osmosis membrane treatment device 51 through the reverse osmosis membrane F, thereby further removing ionic components and obtaining pure water.
  • the obtained pure water is supplied to a water tank (not shown) or the like through the supply pipe P9.
  • minerals are added through a charging portion P10 provided in the supply pipe P9.
  • the concentrated water containing the ionic component removed by the brackish water reverse osmosis membrane treatment device 52 is discharged to the drain pipe P8 through the drain pipe P11 and drained to the outside (the sea).
  • the energy recovery device 60 recovers energy from the concentrated water discharged from the seawater reverse osmosis membrane treatment device 51.
  • the concentrated water discharged from the seawater reverse osmosis membrane treatment apparatus 51 is pressurized by the high-pressure pump 40.
  • the energy recovery device 60 includes a rotor (water turbine) 61 that is rotated by the flow of concentrated water fed from the connection pipe P7.
  • the rotor 61 obtains rotational energy from the pressurized concentrated water, and rotates the rotor 62 integrally connected to the rotor 61.
  • a branch pipe P12 branched from the connection pipe P4 is provided on the downstream side of the cartridge filter 30.
  • a portion of the seawater that has passed through the cartridge filter 30 passes through the branch pipe P12, passes through the energy recovery device 60, and is sent to the seawater reverse osmosis membrane treatment device 51 by the rotor 62.
  • the energy of the concentrated water recovered by the energy recovery device 60 can be used as part of the energy for feeding seawater to the seawater reverse osmosis membrane treatment device 51.
  • FIG. 2 is a diagram illustrating a configuration of a pretreatment unit of the water treatment system.
  • the preprocessing unit 20 includes a plurality of sand filtration devices 21, a detection unit 25, a display unit 26, an operation unit 27, and a filtration rate adjustment unit 28.
  • a plurality (two in the example of FIG. 2) of sand filtration devices 21 are provided in parallel.
  • One filtering device (filtering device) 21A always allows seawater to flow through the intake pipe P1.
  • the other filtration device (filtration device) 21B is connected to the intake pipe P1 via an on-off valve (first switching unit) V1.
  • the on-off valve V1 is normally closed and water is not passed to the sand filtration device 21B.
  • the detection unit 25 detects the water quality evaluation value of the seawater between the pretreatment unit 20 and the seawater reverse osmosis membrane treatment apparatus 51.
  • the water quality evaluation value to be detected for example, SDI (Silt Density Index: water quality index related to blockage of water treatment membrane), BFR (Biofilm Formation Rate: risk of biofilm (biofilm) generation on the surface of water treatment membrane) Water quality index to be evaluated), number of bacteria (number of bacteria present in sample water), ATP (Adenosine Tri-Phosate: energy substance present in all living organisms), TOC (Total Organic Carbon): total organic matter Carbon amount), AOC (Associable organic carbon: carbon amount of an organic substance that can be assimilated by organisms), COD (Chemical Oxygen Demand): oxidizing agent (potassium manganese peroxide, dichromate potassium) )), BOD (Biological Oxygen Demand: the amount of oxygen consumed when an organism decomposes organic matter, etc.), FT-IR (Fourier Trans
  • the detection unit 25 detects at least one of the water quality evaluation values as described above.
  • the detection of the water quality evaluation value may be performed by providing a sensor or the like in the connecting pipe P3 between the pretreatment unit 20 and the seawater reverse osmosis membrane treatment apparatus 51.
  • the detection of the water quality evaluation value may be performed separately by a sample sampled from the connecting pipe P3 between the pretreatment unit 20 and the seawater reverse osmosis membrane treatment apparatus 51.
  • the display unit 26 displays information based on the water quality evaluation value.
  • the display unit 26 can display information based on the water quality evaluation value, for example, as a quality determination value such as the water quality evaluation value itself or whether or not the water quality evaluation value is equal to or greater than a predetermined threshold value.
  • the operation unit 27 includes various switches that can be operated by the operator.
  • the operator operates the operation unit 27 according to the information displayed on the display unit 26 based on the water quality evaluation value.
  • the operation unit 27 sends a predetermined operation signal according to the operation of the operator.
  • the filtration rate adjusting unit 28 adjusts the filtration rate of seawater in the sand filtration device 21 based on the operation signal sent from the operation unit 27.
  • FIG. 3 is a diagram illustrating a flow of a water treatment method in the pretreatment unit.
  • FIG. 4 is a diagram illustrating a water flow state of the pretreatment unit in a state where the filtration rate is lowered.
  • (Water quality acquisition process) As shown in FIG. 3, in the pre-processing part 20, the water quality evaluation value of the seawater filtered by the sand filtration device 21A is first acquired by the detection part 25 (step S1).
  • the operator confirms the information based on the water quality evaluation value displayed on the display unit 26, and determines the quality of the seawater subjected to the filtration process (step S2).
  • step S3 the filtration rate adjusting unit 28 reduces the filtration rate of seawater in the sand filtration device 21 from the reference rate (step S3). To reduce the filtration rate, the on-off valve V1 is opened. Then, as shown in FIG.
  • the seawater sent to the pretreatment unit 20 through the intake pipe P1 is diverted and passed to both the sand filtration devices 21A and 21B.
  • the filtration rate is reduced to 50%.
  • the filtration rate is reduced to 50%, since the seawater is filtered by the two sand filtration devices 21A and 21B, the filtration amount as a whole does not change.
  • FIG. 5 is a figure which shows the change of the water quality evaluation value after filtration when changing the filtration rate.
  • the horizontal axis represents the filtration rate (filtration flow rate).
  • the vertical axis represents the difference between the SDI value when the filtration rate is changed in the range of 5 to 15 m / H and the SDI value (reference value) at the filtration rate of 10 m / H.
  • the SDI value becomes smaller than the reference value (10 m / H). That is, when the filtration rate is reduced, the water quality after filtration is improved. Therefore, in each of the sand filtration devices 21A and 21B, the filtration performance can be improved by lowering the filtration rate than the normal filtration rate in the sand filtration device 21A.
  • step S4 Even after the filtration speed is lowered from the reference speed, the water quality evaluation value of the seawater filtered by the sand filtration devices 21A and 21B is acquired by the detection unit 25 at a predetermined timing (step S4).
  • the operator confirms the information based on the water quality evaluation value displayed on the display unit 26, and determines the quality of the seawater subjected to the filtration process (Step S5).
  • the filtration speed of the seawater is determined from the reference speed. Reduce. Thereby, the water quality after filtration improves. Therefore, when the water quality fluctuation
  • the filtration process is performed by the sand filtration device 21 using a filter medium layer in which a biofilm is formed in the filter unit 21f.
  • the stability of the filtration performance is easily affected by the water quality fluctuation of the seawater.
  • the filtration performance can be effectively stabilized by reducing the filtration rate when the water quality of the seawater changes as described above.
  • the number of sand filtration devices 21 through which seawater is passed is increased, and seawater is diverted to the plurality of sand filtration devices 21 so that each sand is passed.
  • the filtration speed in the filtration device 21 is reduced. Thereby, it can suppress that the amount of treated water in the several sand filter apparatus 21 whole reduces. Therefore, the fluctuation
  • FIG. 6 is a diagram illustrating a configuration of the preprocessing unit in the first modification of the first embodiment.
  • the pretreatment unit 20 may be provided with a sand filtration device (filtration device) 21C in series on the downstream side of the sand filtration devices 21A and 21B.
  • the filtration process is performed by sequentially passing seawater through a plurality of stages of sand filtration devices 21A and 21B provided in series and a sand filtration device 21C.
  • the on-off valve V1 is opened when the water quality evaluation value of the seawater subjected to the filtration process is equal to or higher than a predetermined threshold value.
  • the seawater sent to the pretreatment unit 20 through the intake pipe P1 is first passed through both the upstream sand filtration devices 21A and 21B.
  • the filtration rate is reduced to 50%.
  • the water to be treated filtered by the sand filtration devices 21A and 21B joins and is passed through the downstream sand filtration device 21C. Thereby, in the sand filtration apparatus 21C on the downstream side, the filtration rate does not decrease.
  • the water quality after filtration with the sand filtration devices 21A and 21B on the front end side is reduced in the sand filtration device 21C on the downstream side.
  • Improved seawater is sent. Therefore, in the sand filtration device 21C on the downstream side, it is difficult to be affected by fluctuations in the quality of seawater before filtration, and filtration can be performed with stable water quality.
  • the second-stage sand filtration device 21C is provided in series on the downstream side of the first-stage sand filtration devices 21A and 21B. You may provide in series.
  • FIG. 7 shows the change in the water quality evaluation value after filtration in the second-stage sand filter when the filtration speed is constant in the first-stage sand filter and the filtration speed of the second-stage sand filter is changed.
  • the sand filtration device 21A is provided in the first stage, and the two sand filtration devices 21 arranged in parallel are provided in the second stage.
  • the first-stage sand filtration device 21A fixes the filtration speed to 12 m / H
  • the second-stage sand filtration device 21 fixes the filtration speed of one sand filtration device 21 to 12 m / H, and the other sand filtration device.
  • the filtration rate of the apparatus 21 was changed to 5 to 18 m / H.
  • the difference between the water quality (SDI) of the water filtered by the other sand filtration device 21 and the water quality (SDI) of the water filtered by the one sand filtration device 21 was evaluated.
  • the influence of the filtered water on the water quality is small even if the filtration rate is changed. It is considered that the results obtained by changing the flow rates of the first stage and the second stage are generated because the functions of the first-stage filtration device 21A and the second-stage filtration device 21B are different.
  • the first-stage filtration device 21A mainly functions as a filtration through a biofilm
  • the second-stage filtration device 21B mainly functions as a physical filtration. It is considered that the result of changing the flow rate of the filter is different from the result of changing the flow rate of the filter in the second stage filtration device.
  • FIG. 8 is a diagram illustrating a configuration of the preprocessing unit in the second modification of the first embodiment.
  • the pretreatment unit 20 includes a detection unit 25 that detects a water quality evaluation value of seawater between the pretreatment unit 20 and the seawater reverse osmosis membrane treatment device 51 (see FIG. 1), and filtration.
  • a speed adjusting unit 28B is a detection unit 25 that detects a water quality evaluation value of seawater between the pretreatment unit 20 and the seawater reverse osmosis membrane treatment device 51 (see FIG. 1), and filtration.
  • a speed adjusting unit 28B A speed adjusting unit 28B.
  • the filtration rate adjusting unit 28B receives information on the water quality evaluation value detected by the detecting unit 25 from the detecting unit 25 by an electrical signal.
  • the filtration rate adjusting unit 28B reduces the filtration rate of seawater in the sand filtration devices 21A and 21B as in the first embodiment when the value of the water quality evaluation value is equal to or greater than a predetermined threshold value. That is, unlike the first embodiment, there is no need for an operator to intervene.
  • FIG. 9 is a diagram illustrating a configuration of a pretreatment unit in the second embodiment of the water treatment method and the water treatment system.
  • FIG. 10 is a diagram illustrating a state in which the filtration rate is suppressed in the pretreatment unit in the second embodiment of the water treatment method and the water treatment system. As shown in FIG.
  • the pretreatment unit 20 (treatment unit) in this embodiment includes a filtration device group R including a plurality of sand filtration devices (filtration devices) 21D, 21E, and 21F arranged in parallel to each other. Yes. Furthermore, the pretreatment unit 20 includes a plurality of stages (two stages in the example of FIG. 9) of filtration apparatuses R1 and R2 including sand filtration apparatuses 21D, 21E, and 21F in series in the front and rear.
  • the pretreatment unit 20 is an on-off valve that switches so that some sand filtration devices 21D of the downstream filtration device group R2 are connected in parallel to the sand filtration devices 21D, 21E, and 21F of the upstream filtration device group R1. (Second switching section) V11 to V14 are provided.
  • the on-off valve V11 is provided in a connecting pipe P21 that connects between the sand filtration device 21D of the upstream filtration device group R1 and the sand filtration device 21D of the downstream filtration device group R2.
  • the on-off valve V12 is provided in the connecting pipe P22 that connects the sand filtering apparatus 21D of the downstream filtering apparatus group R2 and the connecting pipe P3.
  • the on-off valve V13 is provided in the parallel connection pipe P24. Furthermore, the on-off valve V14 is provided in the parallel connection pipe P25.
  • the parallel connection pipe P24 and the parallel connection pipe P25 connect the sand filtration device 21D of the downstream filtration device group R2 in parallel with the sand filtration devices 21D, 21E, and 21F of the upstream filtration device group R1.
  • the parallel connection pipe P24 branches from the upstream side of the sand filtration devices 21D, 21E, and 21F of the upstream filtration device group R1 and is connected to the upstream side of the sand filtration device 21D of the downstream filtration device group R2. .
  • the parallel connection pipe P25 extends from the downstream side of the sand filtration device 21D of the downstream filtration device group R2 to the downstream side (for example, the connecting pipe P23) of the sand filtration devices 21D, 21E, and 21F of the upstream filtration device group R1. Connected to join.
  • the on-off valves V13 and V14 are normally closed. Then, the seawater taken from the intake pipe P1 is diverted and passed to the sand filtration devices 21D, 21E, and 21F of the upstream filtration device group R1. The filtered water filtered by the sand filter devices 21D, 21E, and 21F of the upstream filter device group R1 is further filtered by the sand filter devices 21D, 21E, and 21F of the downstream filter device group R2.
  • the filtration rate of the seawater is lowered in the same manner as the flow shown in FIG. (Water quality acquisition process) That is, in the pretreatment unit 20, first, the water quality evaluation value of the seawater that has been filtered by the filtration device groups R1 and R2 is acquired by the detection unit 25 (step S1).
  • the operator confirms the information based on the water quality evaluation value displayed on the display unit 26, and determines the quality of the seawater subjected to the filtration process (step S2).
  • the operator performs a predetermined operation with the operation unit 27.
  • the filtration rate adjusting unit 28 closes the on-off valves V11 and V12 and opens the on-off valves V13 and V14 based on the operation signal sent from the operation unit 27.
  • some sand filtration devices 21D of the downstream filtration device group R2 are connected in parallel to the sand filtration devices 21D, 21E, and 21F of the upstream filtration device group R1.
  • the seawater taken from the intake pipe P1 is branched into the sand filtration devices 21D, 21E, and 21F of the upstream filtration device group R1 and the sand filtration device 21D of the downstream filtration device group R2 in parallel.
  • the filtered water filtered by the sand filter devices 21D, 21E, 21F of the upstream filter device group R1 and the sand filter device 21D of the downstream filter device group R2 is the sand filter device 21E of the downstream filter device group R2. Further filtered with 21F.
  • step S3 by increasing the number of sand filtration devices 21 through which seawater is passed in the first-stage filtration device group R1 on the upstream side, each sand filtration of the first-stage filtration device group R1.
  • the filtration rate in the device 21 is reduced (step S3).
  • the second-stage filtration device group R1 can obtain a filtered water amount for a total of 200%.
  • variation of the water quality after filtration can be suppressed, suppressing the reduction
  • the water quality evaluation value of the seawater filtered by the sand filtration devices 21A and 21B is acquired by the detection unit 25 at a predetermined timing (step S4).
  • the operator confirms the information based on the water quality evaluation value displayed on the display unit 26, and determines the quality of the seawater subjected to the filtration process (Step S5).
  • the pre-processing unit 20 of the second embodiment described above includes a part of the sand filtration devices 21D in the second-stage filtration device group R2, and the sand filtration devices 21D, 21E, and the first filtration device group R1.
  • the number of sand filtration devices 21 can be increased.
  • the seawater is divided into a plurality of sand filtration devices 21 and passed, so that the filtration in each sand filtration device 21 is performed.
  • the speed can be reduced, and fluctuations in water quality after filtration can be suppressed while suppressing reduction in the amount of treated water in the pretreatment unit 20.
  • the sand filtration devices 21 of the plurality of downstream sand filtration devices 21 as the first-stage sand filtration device 21, there is no need to provide a spare sand filtration device 21 or the like.
  • the present invention is not limited to the above-described embodiment, and includes various modifications made to the above-described embodiment without departing from the spirit of the present invention. That is, the specific shapes, configurations, and the like given in the embodiment are merely examples, and can be changed as appropriate.
  • the sand filter 21 is taken as an example of the filter, but the specific configuration is not limited at all.
  • a filtration device other than the sand filtration device 21 can be used as the filtration device of the pretreatment unit.
  • the pre-processing part 20 had a biofilm was demonstrated to an example.
  • the pretreatment unit 20 is not limited to having a biofilm.
  • a configuration in which filtration is performed in the pre-treatment of the desalting treatment may be used, and pre-treatment other than the pre-treatment with no chemical injection may be performed.
  • the number of the sand filtration devices 21 connected in parallel and in series can be changed as appropriate. That is, the number of sand filtration devices 21 connected in parallel may be four or more, or the number connected in series may be three or more.
  • the desalination process part 50 was set as the structure provided with the reverse osmosis membrane processing apparatus 51 for seawater, and the reverse osmosis membrane processing apparatus 52 for brackish water, it is not restricted to this. Only the seawater reverse osmosis membrane treatment apparatus 51 may be provided in the desalination treatment unit 50. Further, a flocculant, a pH adjuster, or the like may be introduced from an inlet P2 connected to the intake pipe P1 upstream of feeding the seawater to the pretreatment unit 20.
  • This invention can be applied to a water treatment system for desalinating seawater. According to the water treatment method and the water treatment system of the present invention, it is possible to suppress the fluctuation of the filtered water quality even when the quality of the water to be treated has changed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 水処理システムは、通水される海水にろ過処理を施す前処理部(20)と、ろ過処理が施された海水を濃縮水と淡水とに分離する海水用逆浸透膜処理装置と、前処理部(20)と海水用逆浸透膜処理装置との間における海水の水質評価値を検出する検出部(25)と、水質評価値に基づいた情報を表示する表示部(26)と、操作者が操作可能な操作部(27)と、表示部(26)に表示された情報に応じてなされる操作部(27)の操作によって送出される操作信号に基づいて、砂ろ過装置(21)における海水のろ過速度を低下させるろ過速度調整部(28)と、を備える。

Description

水処理方法及び水処理システム
 この発明は、例えば海水を淡水化処理する水処理方法及び水処理システムに関する。
 海水を淡水化処理する水処理システムは、逆浸透膜等を用いた淡水化処理装置を備えている。水処理システムは、淡水化処理装置の逆浸透膜の汚染による処理性能低下を抑えるため、淡水化処理装置の上流に、海水中の粒子状物質、細菌等をろ過するろ過装置を前処理部として備えている。
 水処理システムを利用していると、ろ過後の被処理水の水質変動が起きてしまうことがある。すると、淡水化処理装置の逆浸透膜を汚染してしまうため、前処理部におけるろ過性能を安定させる必要がある。
 特許文献1には、前処理部として複数のろ過装置を備えておき、ろ過装置のろ過性能が低下したときには、複数のろ過装置間の流路を切り換える構成が開示されている。このような構成によれば、ろ過性能が低下したときに、流路を切り換え、ろ過性能が低下したろ過装置のフィルタを洗浄又は交換することで、ろ過後の水質を安定させる。
特開2014-221459号公報
 ところで、水処理システムにおいては、被処理水である海水の変動によって、ろ過後の被処理水の水質変動が起きることがある。このような海水の変動としては、例えば、海水の温度の変動等がある。
 しかし、海水の変動がおさまれば、被処理水の水質も元に戻る。このため、特許文献1に開示された構成では、このような海水の変動に起因してろ過後の水質変動が起きた場合には対応することができない。
 この発明は、上記事情に鑑みてなされたものであり、被処理水の水質変動が起きた場合であってもろ過水質の変動を抑制することができる水処理方法及び水処理システムを提供する。
 この発明は、上記課題を解決するため、以下の手段を採用する。
 この発明の第一態様によれば、水処理方法は、脱塩処理を行う前のろ過処理が施された被処理水の水質評価値を取得する水質取得工程と、取得した前記水質評価値の値が予め定めた閾値以上となった際に、前記被処理水のろ過速度を基準速度から低下させるろ過速度変更工程と、を含む。
 このように、ろ過処理が施された被処理水の水質評価値が予め定めた閾値以上となった際、被処理水のろ過速度を基準速度から低下させると、ろ過後の水質が向上する。したがって、被処理水の水質変動が起きた場合、ろ過後の水質が低下してしまうのを抑制することができる。
 この発明の第二態様によれば、水処理方法は、第一態様の水処理方法において、前記ろ過速度変更工程は、前記被処理水が通水されるろ過装置の数を増加させるとともに、複数の前記ろ過装置に前記被処理水を分流させてそれぞれ通水することで、一つ一つの前記ろ過装置における前記ろ過速度を低下させるようにしてもよい。
 このように構成することで、被処理水を通水するろ過装置の数を増加させて、一つ一つのろ過装置のろ過速度を低下させると、複数のろ過装置の全体での処理水量が低減するのを抑えることができる。これにより、処理水量の低減を抑えつつ、ろ過後の水質の変動を抑制することができる。
 この発明の第三態様によれば、水処理方法は、第一又は第二態様の水処理方法において、前記ろ過処理は、複数段のろ過装置に前記被処理水を順次通水し、前記ろ過速度変更工程は、一段目の前記ろ過装置のろ過速度を二段目以降の前記ろ過装置のろ過速度よりも低下させるようにしてもよい。
 このように構成することで、一段目のろ過装置でろ過速度を低下させることで、二段目以降のろ過装置には、一段目のろ過装置でろ過後の水質が向上した被処理水が送られる。したがって、二段目以降のろ過装置では、ろ過前の被処理水の水質変動の影響を受けにくく、安定した水質でろ過を行うことができる。
 この発明の第四態様によれば、水処理方法は、第三態様において、二段目以降の前記ろ過装置の少なくとも一部を並列に複数配置し、前記ろ過速度変更工程は、二段目以降の並列に配置された複数の前記ろ過装置のうち、一部の前記ろ過装置と、一段目の前記ろ過装置とに前記被処理水を分流させてそれぞれ通水することで、前記一段目の前記ろ過装置に通水する被処理水のろ過速度を低下させるようにしてもよい。
 このように、二段目以降の並列に配置された複数のろ過装置のうちの一部のろ過装置と、一段目のろ過装置とに被処理水を分流させて通水することで、一段目のろ過装置の数を増加させることができる。したがって、二段目以降の並列に配置された複数のろ過装置のうちの一部のろ過装置を一段目のろ過装置としても用いることで、予備のろ過装置等を備える必要が無い。
 この発明の第五態様によれば、水処理方法は、第一から第四態様の何れか一つの態様において、前記ろ過速度を低下させた状態で、前記水質評価値が予め定めた閾値以上となった際に、前記ろ過速度を前記基準速度に戻すようにしてもよい。
 このように構成することで、ろ過前の被処理水の水質変動がおさまったときには、低下させていたろ過速度を元に戻すことで、被処理水の水質に応じた効率の良いろ過を行うことができる。
 この発明の第六態様によれば、水処理システムは、通水される被処理水にろ過処理を施すろ過装置を備えた処理部と、前記ろ過処理が施された被処理水を濃縮水と淡水とに分離する逆浸透膜装置と、前記処理部と前記逆浸透膜装置との間における前記被処理水の水質評価値を検出する検出部と、前記水質評価値に基づいた情報を表示する表示部と、操作者が操作可能な操作部と、前記表示部に表示された前記情報に応じてなされる前記操作部の操作によって送出される操作信号に基づいて、前記ろ過装置における前記被処理水のろ過速度を低下させるろ過速度調整部と、を備える。
 このような水処理システムによれば、処理部で被処理水をろ過した後、逆浸透膜装置で濃縮水と淡水とに分離することで、被処理水の淡水化処理を施すことができる。この水処理システムにおいては、逆浸透膜装置への通水前に、ろ過処理後の被処理水の水質評価値を検出部で検出する。検出された水質評価値に基づいた情報は、例えば、水質評価値そのもの、あるいは水質評価値の良否の判定結果等として、表示部に表示される。操作者は、表示部に表示された情報を見て、ろ過速度の調整が必要であるか否かを判断することができる。その判断の結果、ろ過速度の調整が必要であれば、操作者は、操作部に所定の操作を入力する。すると、操作部は、操作者による操作に応じた操作信号を送出する。ろ過速度調整部は、操作部から送出された操作信号に基づいて、ろ過装置における被処理水のろ過速度を低下させることができる。
 このようにして、ろ過処理が施された被処理水の水質が低下した場合に、被処理水のろ過速度を低下させることで、ろ過装置におけるろ過後の水質が向上する。したがって、被処理水の水質変動が起きた場合、ろ過後の水質が過度に低下してしまうのを抑制することができる。
 この発明の第七態様によれば、水処理システムは、通水される被処理水にろ過処理を施すろ過装置を備えた処理部と、前記ろ過処理が施された被処理水を濃縮水と淡水とに分離する逆浸透膜装置と、前記処理部と前記逆浸透膜装置との間における前記被処理水の水質評価値を検出する検出部と、前記水質評価値の値が予め定めた閾値以上となった際に、前記ろ過装置における前記被処理水のろ過速度を低下させるろ過速度調整部と、を備える。
 このような水処理システムによれば、逆浸透膜装置への通水前に、ろ過処理後の被処理水の水質評価値を検出部で検出する。検出された水質評価値が予め定めた閾値以上になっていれば、ろ過速度調整部は、ろ過装置における被処理水のろ過速度を低下させる。
 このようにして、ろ過処理が施された被処理水の水質が低下した場合に、被処理水のろ過速度を自動的に低下させることで、ろ過装置におけるろ過後の水質が向上する。したがって、被処理水の水質変動が起きた場合、ろ過後の水質が低下してしまうのを抑制することができる。
 この発明の第八態様によれば、水処理システムは、第六又は第七態様において、前記処理部は、互いに並列に配置された複数のろ過装置を含むろ過装置群と、前記ろ過装置への通水及び非通水を切り替える第一切替部と、を有し、前記ろ過速度調整部は、前記第一切替部を切り替えることによって前記ろ過装置群において前記被処理水が通水されるろ過装置の数を増加させることで、前記ろ過速度を低下させるようにしてもよい。
 このように構成することで、被処理水を通水するろ過装置の数を増加させつつ、一つ一つのろ過装置のろ過速度を低下させると、複数のろ過装置の全体での処理水量が低減するのを抑えることができる。これにより、処理水量の低減を抑えつつ、ろ過後の水質の変動を抑制することができる。
 この発明の第九態様によれば、水処理システムは、第六から第八態様の何れか一つの態様において、前記処理部は、互いに並列に配置された複数のろ過装置を含むろ過装置群を有するとともに、前記ろ過装置群が、互いに直列に複数段に設けられ、前記処理部は、二段目以降の前記ろ過装置群の一部の前記ろ過装置が一段目の前記ろ過装置群のろ過装置に並列に接続されるように切り替える第二切替部を有し、前記ろ過速度調整部は、前記第二切替部を切り替えることによって、一段目の前記ろ過装置群の前記ろ過装置の数を増加させることで、一段目の前記ろ過装置群の前記ろ過装置における前記ろ過速度を低下させるようにしてもよい。
 このように構成することで、二段目以降のろ過装置群のうちの一部のろ過装置を、一段目のろ過装置に並列に接続させることで、一段目のろ過装置の数を増加させることができる。このように、二段目以降の複数のろ過装置のうちの一部のろ過装置を一段目のろ過装置としても用いることで、予備のろ過装置等を備える必要が無い。
 特に一段目のろ過装置でろ過速度を低下させることで、ろ過性能を向上できるため、二段目以降のろ過装置では、ろ過前の被処理水の水質変動の影響を受けにくく、安定した水質でろ過を行うことができる。
 上述した水処理方法及び水処理システムによれば、被処理水の水質変動が起きた場合であってもろ過水質の変動を抑制することができる。
この発明の実施形態に係る水処理システムの全体構成を示す図である。 第一実施形態に係る上記水処理システムの前処理部の構成を示す図である。 前処理部における水処理方法の流れを示す図である。 ろ過速度を低下させた状態における前処理部の通水状況を示す図である。 ろ過速度を変動させたときの、ろ過後の水質評価値の変化を示す図である。 第一実施形態の第一変形例における前処理部の構成を示す図である。 一段目の砂ろ過装置でろ過速度を一定とし、二段目の砂ろ過装置のろ過速度を変化させたときの、二段目の砂ろ過装置におけるろ過後の水質評価値の変化を示す図である。 第一実施形態の第二変形例における前処理部の構成を示す図である。 水処理方法及び水処理システムの第二実施形態における前処理部の構成を示す図である。 前処理部において、ろ過速度を抑えている状態における通水状況を示す図である。
 以下、この発明の実施形態に係る水処理方法及び水処理システムを図面に基づき説明する。
(第一実施形態)
 図1は、この実施形態の水処理システムの全体構成を示す図である。
 図1に示すように、この実施形態の水処理システム10は、前処理部20と、カートリッジフィルタ30と、高圧ポンプ40と、淡水化処理部50と、エネルギー回収装置60と、を備えている。
 前処理部20は、取水ポンプ(図示無し)で取水した海水が取水管P1を通して送り込まれる。前処理部20は、送り込まれた海水(被処理水)を、淡水化処理部50への通水前、言い換えれば淡水化処理部50により脱塩処理が行われる前に、ろ過処理し、海水中の懸濁物質等を除去する。この実施形態では、前処理部20として、砂ろ過装置(ろ過装置)21を用い、凝集剤やpH調整剤等の投入等を行わず、いわゆる無薬注前処理を行う。
 砂ろ過装置21は、一段以上のフィルタ部(ろ材層)21fを備えている。この実施形態では、砂ろ過装置21は、二段のフィルタ部21fを備えている。フィルタ部21fは、ろ材として、所定量の砂(図示無し)と、砂の表面で成長・維持される生物膜(図示無し)と、を備えている。フィルタ部21fは、生物膜により、淡水化処理部50を汚損するSDI(Silt Dencity Index:汚れ指数)成分、バイオファウリングの原因となるBOD(Biological Oxygen Demand)成分等を除去する。また、フィルタ部21fは、砂により、海水に含まれる微粒子成分を除去する。
 カートリッジフィルタ30は、前処理部20の下流側に、接続管P3を介して接続されている。カートリッジフィルタ30は、前処理部20で除去しきれなかった、例えば1~5μm程度の微細な異物が高圧ポンプ40内に入り込まないよう、所定径以上の異物を除去する。
 高圧ポンプ40は、カートリッジフィルタ30の下流側に、接続管P4を介して接続されている。高圧ポンプ40は、カートリッジフィルタ30を経た海水を、所定圧力に昇圧し、接続管P5を通して淡水化処理部50に送り込む。
 淡水化処理部50は、脱塩処理を行う。ここで、脱塩処理とは、例えば、海水中の塩分を除去、又は、濃縮させる処理である。この実施形態における淡水化処理部50は、例えば、逆浸透膜Fを用い、海水からイオン成分を除去する。この実施形態では、淡水化処理部50として、海水用逆浸透膜(Sea Water Reverse Osmosis Membrane)処理装置(逆浸透膜装置)51と、汽水用逆浸透膜(Brackish Water Reverse Osmosis Membrane)処理装置(逆浸透膜装置)52と、を備える。
 海水用逆浸透膜処理装置51は、高圧ポンプ40の下流側に、接続管P5を介して接続されている。海水用逆浸透膜処理装置51は、高圧ポンプ40で昇圧された海水を、接続管P5を介して逆浸透膜Fに通すことで、塩分(イオン成分)が除去された透過水を得る。得られた透過水は、接続管P6を介して汽水用逆浸透膜処理装置52に送り込まれる。海水用逆浸透膜処理装置51で除去されたイオン成分を含む濃縮水は、接続管P7を介してエネルギー回収装置60に送られる。エネルギー回収装置60を経た濃縮水は、排水管P8を経て外部(海)に排水される。
 汽水用逆浸透膜処理装置52は、海水用逆浸透膜処理装置51の下流側に、接続管P6を介して接続されている。汽水用逆浸透膜処理装置52は、海水用逆浸透膜処理装置51を経た透過水を逆浸透膜Fに通すことで、さらにイオン成分を除去し、純水を得る。得られた純水は、供給管P9を介し、水タンク(図示無し)等に供給される。ここで、得られた純水を飲料用等とする場合には、供給管P9に設けられた投入部P10でミネラルを添加する。汽水用逆浸透膜処理装置52で除去されたイオン成分を含む濃縮水は、排水管P11を介して排水管P8に排出され、外部(海)に排水される。
 エネルギー回収装置60は、海水用逆浸透膜処理装置51から排出される濃縮水からエネルギーを回収する。海水用逆浸透膜処理装置51から排出される濃縮水は、高圧ポンプ40によって加圧されている。エネルギー回収装置60は、接続管P7から送り込まれる濃縮水の水流によって回転するロータ(水車)61を備えている。ロータ61は、加圧された濃縮水によって回転エネルギーを得て、ロータ61と一体に連結されたロータ62を回転させる。カートリッジフィルタ30の下流側には、接続管P4から分岐する分岐管P12が設けられている。カートリッジフィルタ30を経た海水の一部は、分岐管P12を経てエネルギー回収装置60を通ってロータ62により海水用逆浸透膜処理装置51に送り込まれる。このようにして、海水用逆浸透膜処理装置51に海水を送り込むエネルギーの一部として、エネルギー回収装置60で回収した濃縮水のエネルギーを用いることができる。
 図2は、上記水処理システムの前処理部の構成を示す図である。
 図2に示すように、前処理部20は、複数の砂ろ過装置21と、検出部25と、表示部26と、操作部27と、ろ過速度調整部28と、を備える。
 この実施形態において、砂ろ過装置21は、複数(図2の例では2台)が並列に設けられている。一方のろ過装置(ろ過装置)21Aは、常時、取水管P1から海水が通水される。他方のろ過装置(ろ過装置)21Bは、取水管P1に、開閉弁(第一切替部)V1を介して接続されている。開閉弁V1は、通常時は閉状態とされ、砂ろ過装置21Bへの通水はなされていない。
 検出部25は、前処理部20と海水用逆浸透膜処理装置51との間における海水の水質評価値を検出する。検出する水質評価値としては、例えば、SDI(Silt Dencity Index:水処理膜の閉塞に関与する水質指標)、BFR(Biofilm Formation Rate:水処理膜面でのバイオフィルム(生物膜)の発生リスクを評価する水質指標)、細菌数(試料水中に存在する細菌の数)、ATP(Adenosine Tri-Phoshate:全ての生物に存在するエネルギー物質)、TOC(Total Organic Carbon(全有機炭素):有機物の全炭素量)、AOC(Assimilable organic carbon:生物が同化(Assimilation)可能な有機物の炭素量)、COD(Chemical Oxygen Demand:酸化剤(過酸化マンガンカリウム、二クロム酸カリウム)により、有機物等が分解されるときに消費される酸素量)、BOD(Biological Oxygen Demand:生物が有機物等を分解するときに消費される酸素量)、FT-IR(Fourier Transform - Infrared spectrometer(フーリエ変換赤外分光光度計))による有機物特有の構造の検出、UV吸収量(有機物によるUltra Violet(紫外光)の吸収量)等がある。
 検出部25は、上記したような水質評価値の少なくとも一つを検出する。水質評価値の検出は、前処理部20と海水用逆浸透膜処理装置51との間の接続管P3内にセンサ等を設け、このセンサによって行ってもよい。水質評価値の検出は、更に、前処理部20と海水用逆浸透膜処理装置51との間の接続管P3内からサンプリングした試料により、別途検出作業を行ってもよい。
 表示部26は、水質評価値に基づいた情報を表示する。表示部26は、水質評価値に基づいた情報を、例えば、水質評価値そのもの、あるいは水質評価値が予め定めた閾値以上であるか否か等の良否の判定結果として表示することができる。
 操作部27は、操作者が操作可能な各種のスイッチ等からなる。操作者は、表示部26に表示された、水質評価値に基づいた情報に応じ、操作部27を操作する。操作部27は、操作者の操作に応じて所定の操作信号を送出する。
 ろ過速度調整部28は、操作部27から送出される操作信号に基づいて、砂ろ過装置21における海水のろ過速度を調整する。
 次に、上述した前処理部20における水処理方法について説明する。
 図3は、前処理部における水処理方法の流れを示す図である。図4は、ろ過速度を低下させた状態における前処理部の通水状況を示す図である。
(水質取得工程)
 図3に示すように、前処理部20においては、まず、砂ろ過装置21Aでろ過処理が施された海水の水質評価値を検出部25により取得する(ステップS1)。
 操作者は、表示部26に表示される水質評価値に基づいた情報を確認し、ろ過処理が施された海水の水質の良否を判定する(ステップS2)。
(ろ過速度変更工程)
 その結果、水質評価値が、予め定めた閾値以上でなければ、ステップS1に戻る。
 一方で、海水の水質が悪化し、水質評価値が、予め定めた閾値以上の場合、操作者は、操作部27で所定の操作を行う。すると、ろ過速度調整部28は、操作部27から送出された操作信号に基づいて、砂ろ過装置21における海水のろ過速度を基準速度から低下させる(ステップS3)。
 ろ過速度を低下させるには、開閉弁V1を開く。すると、図4に示すように、取水管P1を通って前処理部20に送り込まれる海水は、分流して砂ろ過装置21A,21Bの双方に通水される。その結果、砂ろ過装置21A,21Bのそれぞれにおいては、ろ過速度が50%に低下する。
 このとき、砂ろ過装置21A,21Bのそれぞれにおいては、ろ過速度が50%に低下するものの、2台の砂ろ過装置21A,21Bで海水をろ過するため、全体としてのろ過処理量は変わらない。
 ここで、図5は、ろ過速度を変動させたときの、ろ過後の水質評価値の変化を示す図である。この図5において、横軸はろ過速度(ろ過流速)である。縦軸は、ろ過速度を5~15m/Hの範囲で変化させたときのSDI値の、ろ過速度10m/HにおけるSDI値(基準値)に対する差である。
 図5に示すように、ろ過速度を低下させると、基準値(10m/H)よりもSDI値が小さくなる。すなわち、ろ過速度を低下させると、ろ過後の水質が向上している。
 したがって、砂ろ過装置21A,21Bのそれぞれにおいては、ろ過速度を、砂ろ過装置21Aにおける通常時のろ過速度よりも低下させることで、ろ過性能を向上させることができる。
 ろ過速度を基準速度から低下させた後も、所定のタイミングで、砂ろ過装置21A,21Bでろ過処理が施された海水の水質評価値を検出部25により取得する(ステップS4)。
 操作者は、表示部26に表示される水質評価値に基づいた情報を確認し、ろ過処理が施された海水の水質の良否を判定する(ステップS5)。
(ろ過速度変更工程)
 その結果、水質評価値が、予め定めた閾値以上のままであれば、ステップS4に戻る。
 一方、水質評価値が、予め定めた閾値よりも低い値となっていた場合、開閉弁V1を閉じ、低下させていた砂ろ過装置21Aにおける海水のろ過速度を基準速度に復帰させる(ステップS6)。
 したがって、上述した第一実施形態の水処理方法及び水処理システムによれば、ろ過処理が施された海水の水質評価値が予め定めた閾値以上となった際、海水のろ過速度を基準速度から低下させる。これにより、ろ過後の水質が向上する。したがって、海水の水質変動が起きた場合、ろ過後の水質が過度に低下してしまうのを抑制することができる。
 また、ろ過処理は、フィルタ部21fに、生物膜が形成されたろ材層を用いた砂ろ過装置21で行う。
 この砂ろ過装置21は、凝集剤やpH調整剤等の投入等を行わない場合、海水の水質変動により、ろ過処理性能の安定性が影響受け易い。しかし、砂ろ過装置21でろ過処理を行う場合、上述したように海水の水質変動が起きた場合にろ過速度を低下させることで、ろ過処理性能を有効に安定させることができる。
 さらに、ろ過速度変更工程では、海水が通水される砂ろ過装置21の数を増加させるとともに、複数の砂ろ過装置21に対して海水を分流させて通水することで、一つ一つの砂ろ過装置21におけるろ過速度を低下させる。これにより、複数の砂ろ過装置21の全体での処理水量が低減するのを抑えることができる。したがって、前処理部20における処理水量の低減を抑えつつ、ろ過後の水質の変動を抑制することができる。
 このようにして、上述した水処理方法及び水処理システム10によれば、海水の水質変動が起きた場合であっても、ろ過水質の変動を抑制することができる。
(第一実施形態の第一変形例)
 図6は、上記第一実施形態の第一変形例における前処理部の構成を示す図である。
 この図6に示すように、前処理部20は、砂ろ過装置21A,21Bの下流側に、砂ろ過装置(ろ過装置)21Cを直列に設けるようにしてもよい。
 このような前処理部20では、ろ過処理は、直列に設けられた複数段の砂ろ過装置21Aおよび21Bと、砂ろ過装置21Cとに、海水を順次通水することで行う。ろ過処理が施された海水の水質評価値が予め定めた閾値以上となった際、開閉弁V1を開く。すると、取水管P1を通って前処理部20に送り込まれる海水は、まず、上流側の砂ろ過装置21A,21Bの双方に通水される。その結果、砂ろ過装置21A,21Bのそれぞれにおいては、ろ過速度が50%に低下する。
 砂ろ過装置21A,21Bでろ過された被処理水は、下流側の砂ろ過装置21Cに合流して通水される。これにより、下流側の砂ろ過装置21Cでは、ろ過速度が低下しない。
 このように、上流側である一段目の砂ろ過装置21A,21Bでろ過速度を低下させることで、下流側の砂ろ過装置21Cには、前端側の砂ろ過装置21A,21Bでろ過後の水質が向上した海水が送られる。したがって、下流側の砂ろ過装置21Cでは、ろ過前の海水の水質変動の影響を受けにくく、安定した水質でろ過を行うことができる。
 上記前処理部20では、一段目の砂ろ過装置21A,21Bの下流側に、二段目の砂ろ過装置21Cを直列に設けるようにしたが、さらには、3段目以降の砂ろ過装置を直列に設けてもよい。
 図7は、一段目の砂ろ過装置でろ過速度を一定とし、二段目の砂ろ過装置のろ過速度を変化させたときの、二段目の砂ろ過装置におけるろ過後の水質評価値の変化を示す図である。
 ここでは、一段目には砂ろ過装置21Aを設けて、二段目には並列に配置された2つの砂ろ過装置21を設けた。一段目の砂ろ過装置21Aは、ろ過速度を12m/Hに固定し、二段目の砂ろ過装置21では、一方の砂ろ過装置21のろ過速度を12m/Hに固定し、他方の砂ろ過装置21のろ過速度を5~18m/Hに変化させた。このときの、他方の砂ろ過装置21でろ過した水の水質(SDI)の、一方の砂ろ過装置21でろ過した水の水質(SDI)に対する差を評価した。
 その結果、二段目の砂ろ過装置21では、上述した一段目の砂ろ過装置21とは異なり、ろ過速度を変化させてもろ過した水の水質への影響は小さい。これらの1段目及び2段目の流速をそれぞれ変えた結果は、1段目のろ過装置21Aと2段目のろ過装置21Bとで機能が異なるために生じたものと考えられる。すなわち、1段目のろ過装置21Aは生物膜によるろ過としての機能が主であり、2段目のろ過装置21Bは物理的なろ過の機能が主であるために、1段目のろ過装置でろか流速を変えた結果と2段目のろ過装置でろか流速を変えた結果が異なったものと考えられる。
(第一実施形態の第二変形例)
 図8は、上記第一実施形態の第二変形例における前処理部の構成を示す図である。
 この図8に示すように、前処理部20は、前処理部20と海水用逆浸透膜処理装置51(図1参照)との間における海水の水質評価値を検出する検出部25と、ろ過速度調整部28Bと、を備える。
 この第二変形例において、ろ過速度調整部28Bは、検出部25で検出した水質評価値の情報を、電気的な信号により検出部25から受け取る。ろ過速度調整部28Bは、水質評価値の値が予め定めた閾値以上となった際に、上記第一実施形態と同様に、砂ろ過装置21A,21Bにおける海水のろ過速度を低下させる。すなわち、上記第一実施形態のように、操作者が介在する必要が無い。
 このようにして、ろ過処理が施された海水の水質が低下した場合に、海水のろ過速度を自動的に低下させることで、砂ろ過装置21A,21Bにおけるろ過後の水質が向上する。したがって、海水の水質変動が起きた場合に迅速にろ過速度を低下させて、ろ過後の水質が過度に低下してしまうことを抑制できる。
(第二実施形態)
 次に、この発明にかかる水処理方法及び水処理システムの第二実施形態について説明する。以下に説明する第二実施形態においては、第一実施形態と前処理部の構成のみが異なるので、第一実施形態と同一部分に同一符号を付して説明するとともに、水処理システム10の全体構成等、重複説明を省略する。
 図9は、上記水処理方法及び水処理システムの第二実施形態における前処理部の構成を示す図である。図10は、上記水処理方法及び水処理システムの第二実施形態における前処理部において、ろ過速度を抑えている状態を示す図である。
 図9に示すように、この実施形態における前処理部20(処理部)は、互いに並列に配置された複数の砂ろ過装置(ろ過装置)21D,21E,21Fを含むろ過装置群Rを備えている。さらに、前処理部20は、砂ろ過装置21D,21E,21Fをそれぞれ含む複数段(図9の例では二段)のろ過装置群R1,R2を、前後に直列に備えている。
 前処理部20は、下流側のろ過装置群R2の一部の砂ろ過装置21Dが、上流側のろ過装置群R1の砂ろ過装置21D,21E,21Fに並列に接続されるように切り替える開閉弁(第二切替部)V11~V14を有している。
 開閉弁V11は、上流側のろ過装置群R1の砂ろ過装置21Dと、下流側のろ過装置群R2の砂ろ過装置21Dとの間を接続する連結管P21に設けられている。
 開閉弁V12は、下流側のろ過装置群R2の砂ろ過装置21Dと、接続管P3とを連結する連結管P22に設けられている。
 開閉弁V13は、並列接続管P24に設けられている。さらに、開閉弁V14は、並列接続管P25に設けられている。
 並列接続管P24と並列接続管P25は、下流側のろ過装置群R2の砂ろ過装置21Dを上流側のろ過装置群R1の砂ろ過装置21D,21E,21Fと並列に接続する。
 並列接続管P24は、上流側のろ過装置群R1の砂ろ過装置21D,21E,21Fの上流側から分岐して、下流側のろ過装置群R2の砂ろ過装置21Dの上流側に接続されている。
 並列接続管P25は、下流側のろ過装置群R2の砂ろ過装置21Dの下流側から、上流側のろ過装置群R1の砂ろ過装置21D,21E,21Fの下流側(例えば、連結管P23)に合流するように接続されている。
 このような前処理部20では、通常時は、開閉弁V13,V14を閉状態としておく。すると、取水管P1から取水した海水は、上流側のろ過装置群R1の砂ろ過装置21D,21E,21Fに分流して通水される。上流側のろ過装置群R1の砂ろ過装置21D,21E,21Fでろ過されたろ過水は、それぞれ下流側のろ過装置群R2の砂ろ過装置21D,21E,21Fでさらにろ過される。
 前処理部20では、ろ過処理が施された海水の水質が低下した場合に、図3に示した流れと同様にして、海水のろ過速度を低下させる。
(水質取得工程)
 すなわち、前処理部20においては、まず、ろ過装置群R1,R2でろ過処理が施された海水の水質評価値を検出部25により取得する(ステップS1)。
 操作者は、表示部26に表示される水質評価値に基づいた情報を確認し、ろ過処理が施された海水の水質の良否を判定する(ステップS2)。
(ろ過速度変更工程)
 その結果、水質評価値が、予め定めた閾値以上の場合、操作者は、操作部27で所定の操作を行う。ろ過速度調整部28は、操作部27から送出された操作信号に基づいて、開閉弁V11,V12を閉じるとともに、開閉弁V13,V14を開く。
 すると、図10に示すように、下流側のろ過装置群R2の一部の砂ろ過装置21Dが、上流側のろ過装置群R1の砂ろ過装置21D,21E,21Fに並列に接続される。これにより、取水管P1から取水した海水は、上流側のろ過装置群R1の砂ろ過装置21D,21E,21Fと、下流側のろ過装置群R2の砂ろ過装置21Dと、に分岐して並行に流れる。上流側のろ過装置群R1の砂ろ過装置21D,21E,21F及び下流側のろ過装置群R2の砂ろ過装置21Dでろ過されたろ過水は、下流側のろ過装置群R2の砂ろ過装置21E,21Fでさらにろ過される。
 このようにして、上流側である一段目のろ過装置群R1において、海水が通水される砂ろ過装置21の数を増加させることで、一段目のろ過装置群R1の一つ一つの砂ろ過装置21におけるろ過速度が低下する(ステップS3)。
 このように構成することで、海水を通水する砂ろ過装置21の数を増加させつつ、一つ一つの砂ろ過装置21のろ過速度を低下させると、前処理部20全体での処理水量が低減するのを抑えることができる。
 例えば、図9の状態のまま、一段目のろ過装置群R1の砂ろ過装置21D,21E,21Fでのろ過速度を50%に低下させると、二段目のろ過装置群R2の砂ろ過装置21D,21E,21Fを経てろ過されるろ過水は、合計150%分のろ過水量となってしまう。
 これに対し、図10の状態では、一段目のろ過装置群R1の砂ろ過装置21D,21E,21F及び二段目のろ過装置群R2のろ過速度を50%に低下させても、二段目のろ過装置群R2の砂ろ過装置21E,21Fを経てろ過されるろ過水は、合計200%分のろ過水量を得ることができる。
 このようにして、ろ過水量(処理水量)の低減を抑えつつ、ろ過後の水質の変動を抑制することができる。
 この場合も、ろ過速度を基準速度から低下させた後、所定のタイミングで、砂ろ過装置21A,21Bでろ過処理が施された海水の水質評価値を検出部25により取得する(ステップS4)。
 操作者は、表示部26に表示される水質評価値に基づいた情報を確認し、ろ過処理が施された海水の水質の良否を判定する(ステップS5)。
(ろ過速度変更工程)
 その結果、水質評価値が、予め定めた閾値以上のままであれば、ステップS4に戻る。
 一方、水質評価値が、予め定めた閾値よりも低い値となっていた場合、開閉弁V11,V12を開くとともに、開閉弁V13,V14を閉じ、低下させていた一段目のろ過装置群R1の砂ろ過装置21D,21E,21F及び二段目のろ過装置群R2のろ過速度を基準速度に復帰させる(ステップS6)。
 上述した第二実施形態の前処理部20は、二段目のろ過装置群R2のうちの一部の砂ろ過装置21Dを、一段目のろ過装置群R1を構成する砂ろ過装置21D,21E,21Fに並列に連結させ、二段目のろ過装置群R2の砂ろ過装置21Dと、一段目の砂ろ過装置21D,21E,21Fとに対して並行に海水を通水することで、一段目の砂ろ過装置21の数を増加させることができる。このように、海水が通水される砂ろ過装置21の数を増加させさせるとともに、複数の砂ろ過装置21に海水を分流させて通水することで、一つ一つの砂ろ過装置21におけるろ過速度を低下させることができ、前処理部20における処理水量の低減を抑えつつ、ろ過後の水質の変動を抑制することができる。しかも、下流側の複数の砂ろ過装置21のうちの一部の砂ろ過装置21を一段目の砂ろ過装置21としても用いることで、予備の砂ろ過装置21等を備える必要が無い。
(その他の変形例)
 この発明は、上述した実施形態に限定されるものではなく、この発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な形状や構成等は一例にすぎず、適宜変更が可能である。
 例えば、ろ過装置として砂ろ過装置21を例に挙げたが、その具体的な構成は何ら限定するものではない。さらに、砂ろ過装置21以外のろ過装置を、前処理部のろ過装置に用いることもできる。
 さらに、上述した各実施形態においては、前処理部20が生物膜を有する場合を一例に説明した。しかし、前処理部20は、生物膜を有する場合に限られない。さらに、無薬注前処理を行う場合を一例に説明したが、脱塩処理の前処理でろ過を行う構成であればよく、無薬注前処理以外の前処理を行っても良い。
 さらに、砂ろ過装置21を並列、直列に接続する数は、適宜変更することができる。つまり、砂ろ過装置21の並列に接続する数を4つ以上にしたり、直列に接続したりする数を3つ以上にしてもよい。
 淡水化処理部50を、海水用逆浸透膜処理装置51と、汽水用逆浸透膜処理装置52とを備える構成としたが、これに限らない。海水用逆浸透膜処理装置51のみを淡水化処理部50に備えるようにしてもよい。
 また、前処理部20に海水を送り込む上流で、取水管P1に接続された投入口P2から、凝集剤やpH調整剤等を投入するようにしてもよい。
 これ以外にも、例えば、上記各実施形態及びその変形例では、海水を淡水化する水処理システムを例に挙げたが、それ以外の用途の水処理システムに対しても、本発明を有効に適用することができる。
 この発明は、海水を淡水化処理する等の水処理システムに適用できる。この発明の水処理方法及び水処理システムによれば、被処理水の水質変動が起きた場合であってもろ過水質の変動を抑制することができる。
10 水処理システム
20 前処理部(処理部)
21,21A,21B,21C、21D,21E,21F 砂ろ過装置(ろ過装置)
21f フィルタ部(ろ材層)
25 検出部
26 表示部
27 操作部
28,28B ろ過速度調整部
30 カートリッジフィルタ
40 高圧ポンプ
50 淡水化処理部
51 海水用逆浸透膜処理装置(逆浸透膜装置)
52 汽水用逆浸透膜処理装置(逆浸透膜装置)
60 エネルギー回収装置
61,62 ロータ
F 逆浸透膜
P1 取水管
P2 投入口
P3,P4,P5,P6,P7 接続管
P8 排水管
P9 供給管
P10 投入部
P11 排水管
P12 分岐管
P21,P22,P23,P26 連結管
P24,P25 並列接続管
R,R1,R2 ろ過装置群
S1,S2,S3,S4,S5,S6 工程
V1 開閉弁(第一切替部)
V11~V14 開閉弁(第二切替部)

Claims (9)

  1.  脱塩処理を行う前のろ過処理が施された被処理水の水質評価値を取得する水質取得工程と、
     取得した前記水質評価値の値が予め定めた閾値以上となった際に、前記被処理水のろ過速度を基準速度から低下させるろ過速度変更工程と、
    を含む水処理方法。
  2.  前記ろ過速度変更工程は、前記被処理水が通水されるろ過装置の数を増加させるとともに、複数の前記ろ過装置に前記被処理水を分流させてそれぞれ通水することで、一つ一つの前記ろ過装置における前記ろ過速度を低下させる請求項1に記載の水処理方法。
  3.  前記ろ過処理は、複数段のろ過装置に前記被処理水を順次通水し、
     前記ろ過速度変更工程は、一段目の前記ろ過装置のろ過速度を二段目以降の前記ろ過装置のろ過速度よりも低下させる請求項2に記載の水処理方法。
  4.  二段目以降の前記ろ過装置の少なくとも一部を並列に複数配置し、
     前記ろ過速度変更工程は、二段目以降の並列に配置された複数の前記ろ過装置のうち、一部の前記ろ過装置と、一段目の前記ろ過装置とに前記被処理水を分流させてそれぞれ通水することで、前記一段目の前記ろ過装置に通水する被処理水のろ過速度を低下させる請求項3に記載の水処理方法。
  5.  前記ろ過速度を低下させた状態で、前記水質評価値が予め定めた閾値以上となった際に、前記ろ過速度を前記基準速度に戻す請求項1から4の何れか一項に記載の水処理方法。
  6.  通水される被処理水にろ過処理を施すろ過装置を備えた処理部と、
     前記ろ過処理が施された被処理水を濃縮水と淡水とに分離する逆浸透膜装置と、
     前記処理部と前記逆浸透膜装置との間における前記被処理水の水質評価値を検出する検出部と、
     前記水質評価値に基づいた情報を表示する表示部と、
     操作者が操作可能な操作部と、
     前記表示部に表示された前記情報に応じてなされる前記操作部の操作によって送出される操作信号に基づいて、前記ろ過装置における前記被処理水のろ過速度を低下させるろ過速度調整部と、
    を備える水処理システム。
  7.  通水される被処理水にろ過処理を施すろ過装置を備えた処理部と、
     前記ろ過処理が施された被処理水を濃縮水と淡水とに分離する逆浸透膜装置と、
     前記処理部と前記逆浸透膜装置との間における前記被処理水の水質評価値を検出する検出部と、
     前記水質評価値の値が予め定めた閾値以上となった際に、前記ろ過装置における前記被処理水のろ過速度を低下させるろ過速度調整部と、
     を備える水処理システム。
  8.  前記処理部は、
     互いに並列に配置された複数のろ過装置を含むろ過装置群と、
     前記ろ過装置への通水及び非通水を切り替える第一切替部と、を有し、
     前記ろ過速度調整部は、前記第一切替部を切り替えることによって前記ろ過装置群において前記被処理水が通水されるろ過装置の数を増加させて前記ろ過速度を低下させる請求項6または7に記載の水処理システム。
  9.  前記処理部は、互いに並列に配置された複数のろ過装置を含むろ過装置群を有するとともに、前記ろ過装置群が、互いに直列に複数段に設けられ、
     前記処理部は、二段目以降の前記ろ過装置群の一部の前記ろ過装置が一段目の前記ろ過装置群のろ過装置に並列に接続されるように切り替える第二切替部を有し、
     前記ろ過速度調整部は、前記第二切替部を切り替えることによって、一段目の前記ろ過装置群の前記ろ過装置の数を増加させて、一段目の前記ろ過装置群の前記ろ過装置における前記ろ過速度を低下させる請求項6から8の何れか一項に記載の水処理システム。
PCT/JP2015/086546 2015-12-28 2015-12-28 水処理方法及び水処理システム WO2017115429A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/086546 WO2017115429A1 (ja) 2015-12-28 2015-12-28 水処理方法及び水処理システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/086546 WO2017115429A1 (ja) 2015-12-28 2015-12-28 水処理方法及び水処理システム

Publications (1)

Publication Number Publication Date
WO2017115429A1 true WO2017115429A1 (ja) 2017-07-06

Family

ID=59224735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086546 WO2017115429A1 (ja) 2015-12-28 2015-12-28 水処理方法及び水処理システム

Country Status (1)

Country Link
WO (1) WO2017115429A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111470645A (zh) * 2020-05-07 2020-07-31 胡贤友 一种反渗透废水回用装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575713A (en) * 1978-12-04 1980-06-07 Hitachi Ltd Controller for filtration flow rate
JPS5575712A (en) * 1978-12-04 1980-06-07 Hitachi Ltd Controller for filtration basin
JPS5673004U (ja) * 1979-11-06 1981-06-16
JPS5969117A (ja) * 1982-10-15 1984-04-19 Hibiya Sogo Setsubi Kk 濾過器の組み合わせ使用法
JPS62187610U (ja) * 1986-05-22 1987-11-28
JPH10202021A (ja) * 1991-12-04 1998-08-04 Wako Sangyo Kk 多連式フィルタ装置の使用方法
JP2005334777A (ja) * 2004-05-27 2005-12-08 Kubota Corp 浄水設備
WO2008096585A1 (ja) * 2007-02-05 2008-08-14 Toray Industries, Inc. ろ過装置および水処理方法
JP2008259949A (ja) * 2007-04-11 2008-10-30 Teraoka Seiko Co Ltd 浄水装置
JP2011177604A (ja) * 2010-02-26 2011-09-15 Hitachi Ltd 海水淡水化装置
JP2011194273A (ja) * 2010-03-17 2011-10-06 Miura Co Ltd 濾過システム
JP2012192315A (ja) * 2011-03-15 2012-10-11 Toshiba Corp ファウリング生成の予測方法及び膜ろ過システム
JP2013010066A (ja) * 2011-06-28 2013-01-17 Suido Kiko Kaisha Ltd 水処理システム
JP2013022544A (ja) * 2011-07-25 2013-02-04 Kubota Corp 膜処理装置およびその運転方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575713A (en) * 1978-12-04 1980-06-07 Hitachi Ltd Controller for filtration flow rate
JPS5575712A (en) * 1978-12-04 1980-06-07 Hitachi Ltd Controller for filtration basin
JPS5673004U (ja) * 1979-11-06 1981-06-16
JPS5969117A (ja) * 1982-10-15 1984-04-19 Hibiya Sogo Setsubi Kk 濾過器の組み合わせ使用法
JPS62187610U (ja) * 1986-05-22 1987-11-28
JPH10202021A (ja) * 1991-12-04 1998-08-04 Wako Sangyo Kk 多連式フィルタ装置の使用方法
JP2005334777A (ja) * 2004-05-27 2005-12-08 Kubota Corp 浄水設備
WO2008096585A1 (ja) * 2007-02-05 2008-08-14 Toray Industries, Inc. ろ過装置および水処理方法
JP2008259949A (ja) * 2007-04-11 2008-10-30 Teraoka Seiko Co Ltd 浄水装置
JP2011177604A (ja) * 2010-02-26 2011-09-15 Hitachi Ltd 海水淡水化装置
JP2011194273A (ja) * 2010-03-17 2011-10-06 Miura Co Ltd 濾過システム
JP2012192315A (ja) * 2011-03-15 2012-10-11 Toshiba Corp ファウリング生成の予測方法及び膜ろ過システム
JP2013010066A (ja) * 2011-06-28 2013-01-17 Suido Kiko Kaisha Ltd 水処理システム
JP2013022544A (ja) * 2011-07-25 2013-02-04 Kubota Corp 膜処理装置およびその運転方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111470645A (zh) * 2020-05-07 2020-07-31 胡贤友 一种反渗透废水回用装置

Similar Documents

Publication Publication Date Title
Jeong et al. In-depth analyses of organic matters in a full-scale seawater desalination plant and an autopsy of reverse osmosis membrane
Zhu et al. Characterization of membrane fouling in a microfiltration ceramic membrane system treating secondary effluent
US20180280888A1 (en) Reverse osmosis treatment apparatus and reverse osmosis treatment method
JP5923294B2 (ja) 逆浸透処理装置
WO2013005369A1 (ja) 水浄化システム及び水浄化方法
KR101193902B1 (ko) 정수 생산을 위한 막여과 정수 처리 시스템 및 방법
WO2012086479A1 (ja) 逆浸透処理装置
JP6194887B2 (ja) 淡水製造方法
JP2012223723A (ja) 海水淡水化システムの制御装置及びその制御方法
JP2008161797A (ja) 淡水製造装置の運転方法および淡水製造装置
US20190039022A1 (en) Method for controlling operation of reverse osmosis membrane apparatus and reverse osmosis membrane treatment system
Mijatović et al. Removal of natural organic matter by ultrafiltration and nanofiltration for drinking water production
JP6554781B2 (ja) 逆浸透膜装置の運転方法、及び逆浸透膜装置
KR101550702B1 (ko) 높은 회수율로 정수 생산을 위한 막여과 정수 처리 시스템 및 방법
Lee et al. An autopsy study of hollow fiber and multibore ultrafiltration membranes from a pilot-scale ultra high-recovery filtration system for surface water treatment
WO2017115429A1 (ja) 水処理方法及び水処理システム
Altmann et al. Effectiveness of ceramic ultrafiltration as pretreatment for seawater reverse osmosis
KR101402346B1 (ko) 역삼투 해수담수화 방법
CN206970356U (zh) 含微污染水的净化系统
WO2013031545A1 (ja) 淡水化システムおよび淡水化方法
CN101391826A (zh) 一种含固体不溶物海水的旋流-膜分离脱盐方法
Chang et al. Comparison of SAR (sodium adsorption ratio) between RO and NF processes for the reclamation of secondary effluent
WO2016056130A1 (ja) 原水の濾過処理システム及び濾過装置の洗浄方法
Zheng et al. Ceramic microfiltration–influence of pretreatment on operational performance
WO2017115423A1 (ja) 水処理システム及び水処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15912095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15912095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP