WO2012124172A1 - 光照射装置及び画像読取装置 - Google Patents

光照射装置及び画像読取装置 Download PDF

Info

Publication number
WO2012124172A1
WO2012124172A1 PCT/JP2011/057198 JP2011057198W WO2012124172A1 WO 2012124172 A1 WO2012124172 A1 WO 2012124172A1 JP 2011057198 W JP2011057198 W JP 2011057198W WO 2012124172 A1 WO2012124172 A1 WO 2012124172A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide plate
light guide
image reading
reflected
Prior art date
Application number
PCT/JP2011/057198
Other languages
English (en)
French (fr)
Inventor
靖宏 田上
篠原 正幸
宏一 竹村
一洋 工藤
芳爵 太子
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2012124172A1 publication Critical patent/WO2012124172A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02815Means for illuminating the original, not specific to a particular type of pick-up head
    • H04N1/02845Means for illuminating the original, not specific to a particular type of pick-up head using an elongated light source, e.g. tubular lamp, LED array
    • H04N1/02865Means for illuminating the original, not specific to a particular type of pick-up head using an elongated light source, e.g. tubular lamp, LED array using an array of light sources or a combination of such arrays, e.g. an LED bar
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02815Means for illuminating the original, not specific to a particular type of pick-up head
    • H04N1/02845Means for illuminating the original, not specific to a particular type of pick-up head using an elongated light source, e.g. tubular lamp, LED array
    • H04N1/0285Means for illuminating the original, not specific to a particular type of pick-up head using an elongated light source, e.g. tubular lamp, LED array in combination with at least one reflector which is in fixed relation to the light source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02815Means for illuminating the original, not specific to a particular type of pick-up head
    • H04N1/02845Means for illuminating the original, not specific to a particular type of pick-up head using an elongated light source, e.g. tubular lamp, LED array
    • H04N1/02855Means for illuminating the original, not specific to a particular type of pick-up head using an elongated light source, e.g. tubular lamp, LED array in combination with a light guide, e.g. optical fibre, glass plate

Definitions

  • the present invention relates to a light irradiation device and an image reading device. Specifically, the present invention relates to a light irradiation device for irradiating light from two directions. The present invention also relates to an image reading device for generating image information by irradiating an object with light emitted from the light irradiation device. The present invention further relates to a scanner and a copier provided with the image reading apparatus.
  • FIG. 1 is a diagram showing a basic configuration of an image reading apparatus used for a scanner or the like.
  • the image reading device 11 is disposed under the glass plate 12 on which the document 13 is placed.
  • the image reading device 11 includes a light irradiating device 14 that transmits light through a glass plate 12 and irradiates a document 13, an imaging optical system 15 that is configured by a lens, and an image sensor 16 that is configured by a CCD or CIS.
  • the light emitted from the light irradiation device 14 illuminates the document 13 placed downward on the glass plate 12.
  • the light reflected by the lower surface of the document 13 passes through the imaging optical system 15 and is received by the image sensor 16.
  • a part of the image of the document 13 is converted into an electric signal or image information by the image sensor 16.
  • a space for guiding the light reflected by the document 13 to the image sensor 16 needs to be provided above the imaging optical system 15, and this is a prohibited space Sa in which a light blocking object cannot be disposed. It has become. Therefore, since the light irradiation device 14 cannot be disposed in the prohibited space Sa, the light irradiation device 14 is disposed at a position away from the prohibited space Sa and irradiates light obliquely toward the document 13. Further, by irradiating light on the original 13 obliquely, the regular reflection light is prevented from entering the image sensor 16.
  • Patent Document 1 An example of such an image reading apparatus is disclosed in Patent Document 1.
  • a light irradiation device 14A used in the image reading device described in Patent Document 1 is shown in FIG.
  • the light guide plate 18 is fixed to the inclined surface 17a of the fixed base 17, a plurality of LEDs 19 are arranged facing the rear end surface of the light guide plate 18, and the light guide plate 18 and the LEDs 19 are covered with a cover 20.
  • a diffusion sheet 21 is attached between the fixed base 17 and the cover 20 so as to face the front end surface of the light guide plate 18.
  • the height of the light irradiation device 14A is increased. Therefore, in addition to the necessity of the prohibited space Sb on the light irradiation device 14A, the height of the light irradiation device 14A is increased, and it is difficult to reduce the thickness of the image reading device. In addition, the dead space in the image reading apparatus increases.
  • FIG. 3 is a cross-sectional view of the light irradiation device 14B used in the image reading device of Patent Document 2.
  • This light irradiation device 14 ⁇ / b> B includes an LED 19, a light guide 22 and a mirror 23.
  • the light guide 22 is disposed substantially horizontally, and includes a light incident surface 22 a on a surface facing the LED 19, and a first light output surface 22 b and a second light output surface 22 c on the opposite side of the LED 19.
  • the light L emitted from the LED 19 enters the light guide 22 from the light incident surface 22a, and a part of the light L in the light guide 22 is emitted obliquely upward from the first light output surface 22b.
  • the mirror 23 is disposed obliquely at a position facing the second light exit surface 22c, and a part of the light L in the light guide 22 is emitted almost horizontally from the second light exit surface 22c and enters the mirror 23.
  • the light L reflected by the mirror 23 is emitted obliquely upward. Accordingly, the light irradiation surface of the document is irradiated with the light L from two directions, and the illuminance unevenness on the light irradiation surface of the document is reduced.
  • the light guide 22 is arranged almost horizontally, but the light guide 22 is not a simple plate. That is, the thickness of the light guide 22 on the first and second light exit surfaces 22b and 22c is considerably thicker than the thickness on the light entrance surface 22a, and the vicinity of the first light exit surface 22b is guided. It protrudes upward from the body 22. For this reason, the thickness of the light guide 22 becomes considerably thick, and the image reading apparatus cannot be sufficiently thinned. In addition, the dead space in the image reading apparatus also increases.
  • FIG. 4 is a side view showing the image reading apparatus disclosed in Patent Document 3.
  • the light irradiation device 14 ⁇ / b> C is provided at a position separating the prohibited space (Sb) on the lower surface side of the glass plate 12.
  • the light guide plate 18 is attached to the fixed base 17 in an oblique posture.
  • a mirror 23 is positioned in front of the light guide plate 18. Then, the light L emitted obliquely upward from the upper half of the front end surface of the light guide plate 18 is irradiated to the document 13 as it is.
  • the light L emitted from the lower half portion of the front end face of the light guide plate 18 is reflected obliquely upward by the mirror 23 and is irradiated onto the document 13 from the opposite side.
  • the light irradiation apparatus includes a light source, a light guide plate that guides light emitted from the light source from one end, and a plurality of deflection patterns provided on a main surface of the light guide plate, First light reflecting means for totally reflecting a part of light guided in the light guide plate to be emitted from one main surface of the light guide plate, and the first light reflecting means in the light guide plate are provided.
  • Second light reflecting means for reflecting the light that has passed through the region toward the same main surface as the light totally reflected by the first light reflecting means, and the first light reflecting means.
  • the light reflected and emitted from the main surface of the light guide plate is emitted from a direction perpendicular to the main surface toward a direction inclined to the second light reflecting means, and reflected by the second light reflecting means.
  • Directed light is directed from a direction perpendicular to the main surface of the light guide plate toward the first light reflecting means side. It is characterized by being configured to be emitted.
  • the object can be irradiated with light from two directions, the illuminance unevenness of the object can be reduced.
  • light is emitted in an oblique direction by totally reflecting light by the first light reflecting means, and light is reflected by reflecting light by the second light reflecting means. Since the light is emitted in an oblique direction, it is not necessary to install the light guide plate in an oblique posture, and the height of the light irradiation device can be reduced.
  • the first light reflecting means is constituted by a plurality of deflection patterns, the controllability of the light emitted from the light guide plate by the first light reflecting means is improved, and the substantially parallel light is emitted.
  • the illuminance of the object can be increased by focusing the light.
  • the second light reflecting means may be a mirror disposed obliquely so as to face an end face located at the other end of the light guide plate. According to this embodiment, the reflected light can be emitted obliquely upward by reflecting the light emitted from the end face of the light guide plate with the mirror.
  • the second light reflecting means includes a mirror disposed in parallel with the end face facing the end face located at the other end of the light guide plate, and the light guide.
  • a plurality of reflective patterns that are provided on the main surface of the light plate and are reflected by the mirror and returned to the light guide plate to be totally reflected and emitted from the main surface of the light guide plate.
  • the light reflected by the mirror is returned to the light guide plate, totally reflected by the reflection pattern, and emitted obliquely upward from the light guide plate, so that it is emitted from the light guide plate by the second light reflecting means.
  • the illuminance of the object can be increased by emitting or collecting substantially parallel light.
  • this embodiment can be combined with an embodiment in which light guided from the light source side is totally reflected by the reflection pattern and emitted obliquely from the light guide plate as will be described later.
  • the light leaked from the end face of the light guide plate without being totally reflected by the reflection pattern can be reflected by the mirror and re-entered into the light guide plate. Then, the re-incident light can be totally reflected again by the reflection pattern and emitted from the light guide plate. Therefore, the light use efficiency is further improved.
  • the inclination angle of the inclined surface for totally reflecting the light reflected by the mirror and returning in the reflection pattern is 40 degrees or less. If the angle of inclination of the inclined surface (second plane in the embodiment) of the reflection pattern is set to 40 degrees or less, the direction of the light emitted from the light guide plate by the second light reflecting means is changed to the first light reflecting means side. It is because it can tilt to.
  • the thickness of the light guide plate is t
  • the refractive index of the light guide plate is n, both extending from the end face located at the other end of the light guide plate to the upper and lower ends of the mirror.
  • the angle formed by the line segments is 2 ⁇
  • the length P along the direction perpendicular to the end face of the light guide plate of the region where the deflection pattern is formed in the light guide plate is: P ⁇ 3t / (2tan ⁇ )
  • arcsin (sin ⁇ / n) It is desirable to satisfy the condition. According to such an embodiment, the amount of light emitted from the end face of the light guide plate to the outside of the mirror and lost can be reduced, and the light utilization efficiency can be increased.
  • the second light reflecting means is provided on the main surface of the light guide plate and totally reflects light in the light guide plate to It is characterized by comprising a plurality of reflection patterns that are emitted from the surface.
  • the light guided from the light source side through the region of the first light reflecting means is totally reflected by the reflection pattern, and can be emitted obliquely from the light guide plate.
  • the second light reflecting means is composed of a plurality of reflecting patterns, the controllability of the light emitted from the light guide plate by the second light reflecting means is enhanced, and substantially parallel light is emitted. Or the light can be condensed to increase the illuminance of the object.
  • the inclination angle of the inclined surface for totally reflecting light in the deflection pattern is 40 degrees or less, and the inclination angle of the inclined surface for totally reflecting light in the reflection pattern is 45 degrees. It is desirable to set it above. This is because if the inclination angle of the inclined surface of the deflection pattern is set to 40 degrees or less, the direction of the light emitted from the light guide plate by the first light reflecting means can be inclined to the second light reflecting means side. Further, if the inclination angle of the inclined surface (first plane in the embodiment) of the reflection pattern is set to 45 degrees or more, the direction of the light emitted from the light guide plate by the second light reflecting means is changed to the first light reflection. This is because it can be tilted toward the means.
  • An image reading apparatus includes a light irradiation apparatus according to the present invention for irradiating a reading object with light, an image sensor for reading an image of the reading object, and reflected light reflected by the reading object. And an imaging optical system for forming an image on the image sensor, reflected by the object to be read and passed between the first light reflector and the second light reflector and incident on the image sensor. The light to be transmitted is not shielded between the first light reflecting means and the second light reflecting means.
  • the image reading apparatus of the present invention uses the light irradiation apparatus of the present invention, the image reading apparatus can be made compact by reducing the height of the image reading apparatus. Further, it is possible to increase the illuminance of the light irradiated to the reading object and reduce the illuminance unevenness.
  • An image reading apparatus is characterized in that the light guide plate is arranged in parallel to the reading object.
  • the light guide plate is arranged horizontally, the height of the light irradiation device can be made extremely small and thin, and the height of the built-in space of the image reading device can be made very small. .
  • An image reading apparatus is characterized in that the light guide plate and the second light reflecting means are arranged so as not to enter the optical path. According to such an embodiment, the light reflected by the reading object and incident on the image sensor is not shielded by the light guide plate or the second light reflecting means, so that the reading accuracy in the imaging element is not easily lowered. .
  • the light guide plate is disposed so as to traverse an optical path of light reflected by the reading object and incident on the imaging element, and the light guide plate includes The region through which the optical path passes is formed to be transparent and smooth.
  • the light guide plate crosses the optical path of the light incident on the image sensor.
  • the light guide plate is formed transparent and smooth, so that the light incident on the image sensor is It is difficult to block light by the light guide plate, and reading accuracy in the imaging element is unlikely to decrease.
  • the light irradiation device is movable in a direction parallel to the reading object, and the imaging optical system and the imaging element are fixed,
  • An optical path adjustment device that adjusts the optical path length between the light irradiation device and the imaging device to be constant even when the light irradiation device moves is provided. Since this embodiment includes the optical path adjusting device, the optical path length between the light irradiation position of the reading object and the imaging device can be kept constant even when the light irradiation device is scanned. Therefore, the imaging optical system and the image sensor can be fixed, and the structure of the image reading apparatus can be simplified.
  • the image reading apparatus of the present invention can be used in a scanner or a copying apparatus, and can contribute to miniaturization of the scanner or the copying apparatus and improvement of reading accuracy.
  • the means for solving the above-described problems in the present invention has a feature in which the above-described constituent elements are appropriately combined, and the present invention enables many variations by combining such constituent elements. .
  • FIG. 1 is a diagram showing a basic configuration of an image reading apparatus used in a scanner or the like.
  • FIG. 2A is a side view of a light irradiation device used in the image reading device disclosed in Patent Document 1.
  • FIG. 2B is a schematic diagram illustrating a configuration of the image reading apparatus disclosed in Patent Document 1.
  • FIG. 3 is a cross-sectional view of a light irradiation apparatus used in the image reading apparatus disclosed in Patent Document 2.
  • FIG. 4 is a side view of the image reading apparatus disclosed in Patent Document 3.
  • FIG. 5 is a schematic diagram of an image reading apparatus according to Embodiment 1 of the present invention.
  • FIG. 6A is a cross-sectional view of a light source and a light guide plate used in the above image reading apparatus.
  • FIG. 6A is a cross-sectional view of a light source and a light guide plate used in the above image reading apparatus.
  • FIG. 6B is a view of the light source and the light guide plate as viewed from the lower surface side.
  • FIG. 7 is a perspective view showing a specific example of the light irradiation apparatus in the first embodiment.
  • FIG. 8 is a plan view of a specific example of the light irradiation device.
  • FIG. 9 is a cross-sectional view of a specific example of the light irradiation device.
  • FIG. 10 shows a case where only one of the light emitted from the light exit surface of the light guide plate and the light emitted from the exit end surface of the light guide plate and reflected by the mirror is irradiated, and the case where both lights are irradiated simultaneously.
  • FIG. 10 shows a case where only one of the light emitted from the light exit surface of the light guide plate and the light emitted from the exit end surface of the light guide plate and reflected by the mirror is irradiated, and the case where both lights are irradiated simultaneously.
  • FIG. 6 is a diagram illustrating a result of simulating brightness distribution on the lower surface of a document.
  • FIG. 11A is a schematic cross-sectional view of the light guide plate.
  • FIG. 11B is an enlarged view of a portion J in FIG.
  • FIG. 12 is a diagram showing the relationship between the inclination angle of the first plane of the deflection pattern and the directivity angle of light emitted from the light exit surface of the light guide plate.
  • FIG. 13A is a schematic cross-sectional view of a light guide plate having a protruding deflection pattern.
  • FIG. 13B is an enlarged view of a portion J in FIG.
  • FIG. 14A is a schematic cross-sectional view of a light guide plate having a deflection pattern formed on the upper surface (light exit surface).
  • FIG. 14B is an enlarged view of a portion J in FIG.
  • FIGS. 15A, 15B, and 15C are schematic diagrams illustrating various different arrangements of deflection patterns.
  • FIG. 16 is a diagram for explaining a method for determining the length of the pattern area, and shows light that exits the light guide plate and enters the mirror.
  • 17A and 17B are diagrams for explaining a method for determining the length of the pattern area, and FIG. 17A shows light guided through the light guide plate. (B) represents the light emitted from the end face of the light guide plate.
  • FIG. 18 is a diagram illustrating an intensity distribution (directional characteristic) of light emitted from each end face of a light guide plate having no deflection pattern and a light guide plate having a deflection pattern.
  • FIG. 16 is a diagram for explaining a method for determining the length of the pattern area, and shows light that exits the light guide plate and enters the mirror.
  • 17A and 17B are diagrams for explaining a method for
  • FIG. 19 shows a simulation of how much of the total amount of light emitted from the exit end face of the light guide plate is emitted within a range of ⁇ 20 degrees when the length of the pattern area is changed. It is a figure which shows a result.
  • 20A, 20B, and 20C are schematic cross-sectional views of the light guide plate showing various arrangements of the pattern areas.
  • FIG. 21A is a schematic diagram illustrating a light irradiation apparatus using a plane mirror.
  • FIG. 21B is a schematic diagram showing a light irradiation apparatus using a concave mirror-like mirror.
  • FIG. 22 is a schematic diagram of an image reading apparatus according to Embodiment 2 of the present invention.
  • FIG. 23 is a schematic cross-sectional view of a light guide plate used in an image reading apparatus according to Embodiment 3 of the present invention.
  • FIG. 24 is a schematic diagram of an image reading apparatus according to Embodiment 4 of the present invention.
  • FIG. 25A is an explanatory diagram of the action of the deflection pattern located on the side closer to the light source in the fourth embodiment.
  • FIG. 25B is an operation explanatory diagram of the reflection pattern located on the side far from the light source.
  • FIG. 26 is a schematic diagram of an image reading apparatus according to Embodiment 5 of the present invention.
  • FIG. 27A is an explanatory diagram of the operation of the reflection pattern in the fifth embodiment.
  • FIG. 27B is a diagram illustrating a protruding reflective pattern.
  • FIG. 28 is a schematic diagram of an image reading apparatus according to Embodiment 6 of the present invention.
  • FIG. 29 is a schematic block diagram of a scanner according to the seventh embodiment of the present invention.
  • FIG. 30 is a schematic block diagram of a copying apparatus according to an eighth embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the image reading device 31.
  • 6A is a cross-sectional view of the light source 37 and the light guide plate 38 used in the image reading device 31, and
  • FIG. 6B is a view of the light source 37 and the light guide plate 38 as seen from the lower surface side.
  • the image reading device 31 is disposed below a transparent glass plate 32 (document table) on which the document 33 is placed.
  • the image reading device 31 includes a light irradiation device 34, an imaging optical system 35, and an image sensor 36.
  • the image sensor 36 converts an image of the document 33 into an electric signal or image information, and is composed of a CCD element, a CIS element, a CMOS element, or the like.
  • the imaging optical system 35 is an optical system for forming a reduced image of a part of the document 33 on the image sensor 36, and includes one or a plurality of lenses and a diaphragm.
  • the light irradiation device 34 emits light to illuminate a part of the document 33.
  • the light irradiation device 34 includes a light source 37, a light guide plate 38 and a mirror 42.
  • the light source 37 has a white LED sealed in a resin package.
  • the light guide plate 38 is formed into a plate having a substantially uniform thickness by a transparent resin having a high refractive index such as polycarbonate resin (PC) or polymethylmethacrylate resin (PMMA).
  • the light guide plate 38 is installed horizontally (that is, installed in parallel with the glass plate 32), one end surface is the incident end surface 40a, the other end surface is the emission end surface 40b, and the upper surface is the light emission surface 40c. Become. As shown in FIG.
  • a plurality of light sources 37 are arranged in a line along the incident end face 40a at a position facing the incident end face 40a of the light guide plate 38.
  • a plurality of deflection patterns 39 having a prism shape with a triangular cross section are provided on the lower surface of the light guide plate 38 (the surface opposite to the light emitting surface 40c).
  • Each deflection pattern 39 extends in the width direction of the light guide plate 38 (or the arrangement direction of the light sources 37), and has a uniform cross section along the width direction of the light guide plate 38.
  • a mirror 42 is disposed in a direction perpendicular to the emission end face 40b.
  • the mirror 42 is a combination of two reflecting plates 43a and 43b at different angles so as to be recessed at the boundary portion.
  • the mirror 42 is disposed so as to be inclined so that the lower side is close to the emission end face 40b and the upper side is far from the emission end face 40b.
  • the light L emitted from the light source 37 behaves as shown in FIG. 5 and FIG. 6 (A). That is, the light L emitted from the light source 37 enters the light guide plate 38 from the incident end surface 40a, and travels in the light guide plate 38 toward the output end surface 40b while repeating total reflection on the upper and lower surfaces of the light guide plate 38.
  • the light Lu incident by the deflection pattern 39 is totally reflected by the deflection pattern 39 and exits obliquely upward from the light exit surface 40c, as shown in FIG. 6A.
  • the light Lu emitted from the light emitting surface 40c irradiates the light irradiation area of the document 33 from obliquely below.
  • the light Le that has reached the emission end face 40 b out of the light that has entered the light guide plate 38 passes through the emission end face 40 b and enters the mirror 42.
  • the light Le incident on the mirror 42 is collected by being reflected by the reflectors 43a and 43b, and irradiates the light irradiation area of the document 33 from obliquely below on the side opposite to the light Lu.
  • the light irradiation surface of the document 33 is obliquely irradiated with light Lu and Le from two directions, and the brightness on the light irradiation surface of the document 33 is made uniform. About this effect, measurement data are shown later.
  • the light irradiation device 34 has a sufficient length with respect to an assumed document size in a direction perpendicular to the paper surface of FIG. 5 (main scanning direction of the image reading device 31; hereinafter referred to as a width direction). However, it is shorter than the length of the original 33 in the length direction (sub-scanning direction of the image reading device 31). Therefore, the image reading device 31 reads the document 33 while moving (scanning) along the length direction at a constant speed, and the entire image 33 is read by storing the read image data in the memory. .
  • the light incident on the imaging optical system 35 through the prohibited space Sa is read by the image sensor 36. Therefore, when the light passing through the prohibited space Sa is blocked, the image read by the image sensor 36 is lost. Therefore, it is necessary for the light irradiation device 34 not to enter the prohibited space Sa. That is, it is desirable that the light guide plate 38 and the mirror 42 be separated from the prohibited space Sa so as not to enter the prohibited space Sa. However, if the light guide plate 38 and the mirror 42 are too far away from the prohibited space Sa, the length of the light irradiation device 34 is increased, and the size of the light irradiation device 34 is increased. Therefore, in this embodiment, the light guide plate 38 is installed so that the emission end face 40b is positioned at the edge of the prohibited space Sa, and the mirror 42 is also installed so that the lower end thereof is positioned at the edge of the prohibited space Sa.
  • the forbidden space Sa in the image reading device 31 is determined by the positions of the imaging optical system 35 and the image sensor 36, and the length D of the forbidden space Sa is determined by the lens and aperture opening length in the imaging optical system 35. Is.
  • the image reading device 31 is arranged by being lowered from the lower surface of the glass plate 32 by the height H (several mm) of the prohibited space Sb.
  • the upper end of the mirror 42 (and the light irradiation device 34 as shown in FIGS. 7 to 9 to be described later) is positioned at a position lower than the lower surface of the glass plate 32 by the height H of the prohibited space Sb.
  • the top edge is positioned.
  • FIG. 7 is a perspective view of the light irradiation device 34 and is a view of the light irradiation device 34 as viewed from obliquely below with the light irradiation device 34 in the vertical direction.
  • FIG. 8 is a plan view of the light irradiation device 34.
  • FIG. 9 is a cross-sectional view of the light irradiation device 34.
  • the light irradiation device 34 is configured on a metal frame 44.
  • the frame main body 45 constitutes the main part of the frame 44.
  • a mirror support 46 is raised on one side along the longitudinal direction of the frame main body 45.
  • a mirror sub-supporting part 46 a is formed by cutting and raising a part of the mirror supporting part 46 below the mirror supporting part 46.
  • the angle of the mirror support portion 46 is equal to the installation angle of the reflection plate 43a, and the reflection plate 43a can be set to a desired angle by fixing the reflection plate 43a to the mirror support portion 46.
  • the angle of the mirror sub-supporting portion 46a is equal to the installation angle of the reflecting plate 43b, and the reflecting plate 43b can be set to a desired angle by fixing the reflecting plate 43b to the mirror sub-supporting portion 46a.
  • the remaining three sides of the frame body 45 are bent downward, thereby increasing the strength of the frame body 45.
  • fixing pieces 47 for attaching the light irradiation device 34 to the moving stage for sub-scanning are provided at both ends of the frame 44.
  • a printed wiring board 49 on which a plurality of light sources 37 are mounted at a constant pitch is fixed to the upper surface of the frame main body 45. Further, a claw 52 protrudes upward from the frame main body 45 through a hole in the printed wiring board 49, and the light guide plate 38 is positioned by being hooked on the claw 52 and fixed on the upper surface of the printed wiring board 49. The incident end face 40 a of the fixed light guide plate 38 faces each light source 37.
  • a flexible printed circuit board 50 is connected to the printed circuit board 49 by a connector 51.
  • an opening 48 for making the frame main body 45 coincide with the prohibited space Sa is formed.
  • the positional relationship among the light source 37, the light guide plate 38, and the mirror 42 can be accurately determined, and the light irradiation device 34 can be easily integrated into the moving stage. Can be done.
  • the light Lu reflected by the deflection pattern 39 and emitted from the light exit surface 40 c and the light Le emitted from the exit end surface 40 b and reflected by the mirror 42 are reflected on the document 33.
  • the light irradiation surface can be obliquely irradiated from different directions. Therefore, the brightness of the light irradiation surface of the document 33 can be made uniform. Further, since the light is obliquely irradiated, it is possible to prevent the light regularly reflected by the light irradiation surface of the document 33 from entering the image sensor 36.
  • FIG. 10 shows the result of the simulation of the brightness distribution on the lower surface of the document 33 when only one of the light Lu and Le is irradiated and when both are irradiated simultaneously.
  • a light guide plate 38 made of polycarbonate resin having a thickness of 0.5 mm and a length of 11 mm was used.
  • the deflection pattern 39 recessed in the lower surface of the light guide plate 38 has a cross-sectional shape of a right triangle and an inclined surface (first flat surface 39a described later) having an inclination angle of 30 degrees, and is along the width direction of the light guide plate 38. It has a uniform cross section and extends from end to end.
  • the length of the area where the deflection pattern 39 is provided on the lower surface of the light guide plate 38 (hereinafter referred to as the pattern area) is about 4 mm, and the pattern occupation area ratio (pattern density) of the deflection pattern 39 in the pattern area is 50%.
  • the horizontal axis represents the distance X in the length direction (sub-scanning direction) measured from the center of the prohibited space Sa
  • the vertical axis represents the brightness of the lower surface of the document 33.
  • D shown in FIG. 10 is the length of the prohibited space Sa (about 3 mm) and corresponds to the image reading area.
  • the brightness distribution when only the light Lu reflected from the deflection pattern 39 and emitted from the light emitting surface 40c is irradiated onto the document 33 is indicated by a broken line (light guide plate side) in FIG. .
  • the brightness distribution when only the light Le emitted from the emission end face 40b and reflected by the mirror 42 is irradiated onto the document 33 is indicated by a thin solid line (mirror side) in FIG.
  • the brightness distribution when both the light beams Lu and Le are simultaneously irradiated is indicated by a thick solid line (total) in FIG.
  • the brightness on the mirror side decreases in the region D as indicated by the broken line.
  • the brightness on the light guide plate side in the region D decreases as shown by a thin solid line.
  • the two lights Lu and Le are irradiated simultaneously, the two brightnesses are added together, so that the brightness distribution in the region D becomes substantially uniform as shown by a thick solid line.
  • unevenness in illuminance of the image read by the image sensor 36 is reduced. If the pattern density of the deflection pattern 39 is adjusted, it is possible to adjust the amount of light Lu from the light guide plate side and the amount of light Le from the mirror side. The brightness at can be made more uniform.
  • the light use efficiency can be increased, so that the illuminance of the light irradiation area of the document can be increased if a light source having the same brightness is used.
  • the reason for this is as follows. First, regarding the light Lu emitted from the light guide plate side, only light that is incident at an incident angle smaller than the critical angle of total reflection on the light emitting surface 40c by being totally reflected by the deflection pattern 39 is emitted. The light is emitted from the surface 40c. For this reason, the directivity of the light Lu emitted from the light emitting surface 40c is narrow, and it is difficult to spread until the original 33 is irradiated.
  • the mirror-side light Le As for the mirror-side light Le, the light reflected by the reflecting plate 43a and the light reflected by the reflecting plate 43b are partially overlapped and irradiated onto the document 33, so that the mirror-side light Le is also difficult to spread. . Therefore, the amount of light that irradiates outside the reading area of the document 33 is reduced, the light use efficiency is improved, and the illuminance of the reading area is increased.
  • the image reading device 31 and the light irradiation device 34 can be reduced in size, particularly reduced in thickness. That is, in the image reading apparatus 31 of the present embodiment, since the plate-shaped light guide plate 38 is disposed horizontally, the light irradiation apparatus 34 can be reduced in size by reducing the height of the light irradiation apparatus 34. As a result, the image reading device 31 is also reduced in height and made compact.
  • FIG. 11A is a cross-sectional view of the light guide plate
  • FIG. 11B is an enlarged view of a portion J in FIG. 11A.
  • the deflection pattern 39 is a recess formed by two planes.
  • the plane (inclined surface) closer to the light source 37 of the two planes totally reflects the light from the light source 37 and emits it from the light emitting surface 40c. Therefore, the first flat surface 39a is provided.
  • the inclination angle ⁇ (the angle measured from the lower surface of the light guide plate 38) of the first plane 39a is preferably 40 degrees or less.
  • the reason why the inclination angle ⁇ of the first plane 39a is desirably 40 degrees or less is based on the simulation result shown in FIG. FIG. 12 shows the relationship between the inclination angle ⁇ and the directivity angle ⁇ of the first plane 39a when polycarbonate resin (PC) is used as the light guide plate material and when polymethyl methacrylate resin (PMMA) is used.
  • the directivity angle ⁇ is an angle between the peak direction of the intensity of the light L emitted from the light exit surface 40c of the light guide plate 38 and the normal N standing on the light exit surface 40c.
  • the directivity angle ⁇ is a positive value when the peak direction of the light intensity is tilted away from the light source 37, and is a negative value when the light intensity is tilted toward the light source 37. Since the light (Lu) emitted from the light emitting surface 40c must be emitted obliquely to the mirror side, not the vertical emission, the directivity angle ⁇ must be a positive value larger than zero. Therefore, according to FIG. 12, it is desirable that the inclination angle ⁇ of the first plane 39a is 40 degrees or less.
  • An inclination angle ⁇ (an angle measured from the lower surface of the light guide plate 38) of the second plane 39b continuous with the first plane 39a on the side farther from the light source 37 than the first plane 39a is occupied by one deflection pattern 39.
  • an angle close to 90 degrees is desirable.
  • the inclination angle ⁇ is somewhat larger than 90 degrees. It may be the same size as ⁇ .
  • the tip of the deflection pattern 39 (the boundary between both flat surfaces 39a and 39b) does not need to be square and may be rounded.
  • FIGS. 13A and 13B show different forms of the deflection pattern 39.
  • the deflection pattern 39 may protrude from the lower surface of the light guide plate 38.
  • the deflection pattern 39 is also composed of two planes and has a triangular cross section.
  • the first plane 39a for totally reflecting the light from the light source side and emitting it from the light emitting surface 40c is the second plane. It is located farther from the light source 37 than 39b.
  • the inclination angle ⁇ of the first plane 39a and the inclination angle ⁇ of the second plane 39b may be in the same range as in the deflection pattern 39 of FIG.
  • FIG. 14 (A) and 14 (B) show further different forms of the deflection pattern 39.
  • FIG. The deflection pattern 39 may be recessed or projecting from the upper surface (light emitting surface 40c) of the light guide plate 38.
  • the light incident on the first plane 39c of the deflection pattern 39 transmits through the first plane 39c and is refracted when transmitted through the first plane 39c. Then, the light is emitted from the light emitting surface 40c obliquely upward.
  • the deflection pattern 39 may be recessed or projecting on the lower surface of the light guide plate 38 as described above, and may be recessed or projecting on the upper surface of the light guide plate 38. 39 is described as being recessed in the lower surface of the light guide plate 38.
  • the deflection pattern 39 may be arranged in a lattice pattern that is shorter than the width of the light guide plate 38. As shown in FIG. 15B, the deflection pattern 39 may be a staggered arrangement of the deflection patterns 39 that are shorter than the width of the light guide plate 38. The deflection pattern 39 may be randomly arranged as shown in FIG.
  • the pattern density of the deflection pattern 39 is preferably about 50%. However, the value is not limited to this value as long as it is appropriately determined in consideration of the balance of the light amount of the light Lu from the deflection pattern 39 and the light Le from the mirror 42. Absent.
  • a pattern area for providing the deflection pattern 39 will be described. 16 to 20 are diagrams for explaining the pattern area.
  • the light that does not enter the mirror 42 becomes a loss, as is the light Lb indicated by the dashed arrow in FIG. Therefore, it is necessary to reduce such loss light Lb as much as possible.
  • the mirror 42 is arranged directly in front of the emission end face 40b, so that the light emitted downward from ⁇ is substantially removed from the mirror 42, and the light emitted upward from + ⁇ is also substantially removed from the mirror 42. It is assumed that light having an emission angle from ⁇ b between ⁇ and + ⁇ is substantially incident on the mirror 42.
  • the emission angle of light emitted from the emission end face 40b is 0 degree in the direction perpendicular to the emission end face 40b, the emission angle inclined upward is a positive value, and the emission angle inclined downward is a negative value. Therefore, it is desirable that light having an emission angle of + ⁇ or more or light of ⁇ or less is not emitted from the emission end face 40b.
  • the emission angle ⁇ ( ⁇ 0) is determined from the relationship between the mirror 42 and the end face position of the light guide plate 38. For example, if the horizontal distance between the output end face 40b and the mirror 42 is K and the height of the mirror 42 is G, as can be seen from FIG. tan ⁇ ⁇ G / 2K It is expressed by the relational expression.
  • the incident angle ⁇ when light emitted from the exit end face 40b with the exit angle ⁇ enters the exit end face 40b is Snell's law if the refractive index of the light guide plate 38 is n.
  • arcsin (sin ⁇ / n) It is represented by
  • the light guided at an angle larger than ⁇ with respect to the direction perpendicular to the emission end face 40b may be totally reflected by the deflection pattern 39 and emitted from the light emission face 40c.
  • the deflection pattern 39 only has to be in the region up to 3 t / (2 tan ⁇ ) as measured from the incident end face 40a. That is, the pattern area where the deflection pattern 39 is provided starts from the incident end face 40a, and the length P of the pattern area is P ⁇ 3t / (2tan ⁇ ) And it is sufficient.
  • the shortest length of the pattern area is 3.4 mm. Therefore, the length P of the pattern area may be 3.4 mm or more.
  • FIG. 18 is a simulation when verifying how much the directivity spread of the light emitted from the emission end face 40b is changed by the deflection pattern 39.
  • FIG. The horizontal axis of FIG. 18 shows the emission angle of light emitted from the emission end face 40b measured from the direction perpendicular to the emission end face 40b (the emission angle of light inclined upward is a positive value, and the emission angle of light inclined downward is shown).
  • the vertical axis represents the light intensity at each emission angle.
  • the model used for this simulation uses a light guide plate having a length of 11 mm, a thickness of 0.5 mm, and a refractive index of 1.59, and a pattern area having a length of 4 mm is set on the lower surface of the light guide plate 38.
  • a large number of deflection patterns 39 having a right-angled triangular cross section having a first plane 39a with an inclination angle of 30 degrees are arranged therein.
  • the deflection pattern 39 is provided in this pattern area, the light in the region where the emission angle is larger than +20 degrees and the region where the emission angle is smaller than ⁇ 20 degrees is greatly reduced as compared with the case where there is no deflection pattern.
  • the light intensity of the emitted light is limited to a fairly narrow range. This tendency is the same even if the refractive index of the light guide plate changes.
  • FIG. 19 shows a simulation of how much of the total amount of light emitted from the emission end face 40b is emitted within a certain range when the length P of the pattern area changes.
  • the horizontal axis of FIG. 19 represents the length P of the pattern area
  • the vertical axis represents a range within ⁇ 20 degrees with respect to the total amount of light emitted from the emission end face 40b (the direction of 20 degrees upward and the direction of 20 degrees downward).
  • the ratio of the amount of light emitted to (between) is shown.
  • the vertical axis is normalized so as to be 1 when the length P of the pattern area is zero (that is, when the deflection pattern 39 does not exist).
  • the model used for this simulation uses a light guide plate having a length of 11 mm, a thickness of 0.5 mm, and a refractive index of 1.59, and a cross section having a first plane with an inclination angle of 30 degrees in the pattern area on the lower surface of the light guide plate.
  • a large number of right-angled triangular deflection patterns 39 are arranged. From FIG. 19, it can be seen that as the length P of the pattern area is increased, the ratio of light emitted within a range of ⁇ 20 degrees from the emission end face 40b is increased and the efficiency is improved (however, emission from the emission end face 40b is improved). The total amount of light to be reduced decreases as the length P of the pattern area increases).
  • the amount of light emitted within a range of ⁇ 20 degrees is 1.7 times that when there is no deflection pattern.
  • Such a tendency is the same even in a range other than ⁇ 20 degrees. This tendency is the same regardless of the position of the pattern area even if the refractive index of the light guide plate changes.
  • the pattern area In the past, the range from the incident end face 40a to the length P was used as the pattern area (FIG. 17). However, as illustrated in FIGS. 20A, 20B, and 20C, the length of the pattern area is illustrated. The pattern area may be changed to an arbitrary position while leaving P unchanged. This is because as long as the pattern area length P is the same, the effect of collecting the light emitted from the emission end face 40b within a certain range is the same regardless of where the pattern area starts.
  • FIG. 21A and FIG. 21B are diagrams showing different mirror shapes.
  • the mirror 42 As the mirror 42, as shown in FIG. 21A, a single plane mirror may be used. By using a single plane mirror, the cost of the mirror 42 can be reduced. Further, as shown in FIG. 21B, the mirror 42 may be a concave mirror. If a concave mirror-like mirror is used, it is possible to increase the illuminance by condensing the light applied to the document.
  • FIG. 22 is a schematic diagram of an image reading device 61 according to Embodiment 2 of the present invention.
  • the image reading device 61 is different from the image reading device 31 of the first embodiment in the structure of the light guide plate 38. Since other parts are the same as those of the first embodiment, the description thereof is omitted.
  • the light guide plate 38 used in the image reading device 61 is disposed horizontally so as to cross the prohibited space Sa.
  • the deflection pattern 39 is provided on the side closer to the light source 37 than the region through which the optical path (prohibited space Sa) of the light reflected from the original 33 and incident on the image sensor 36 passes through the light guide plate 38.
  • the upper and lower surfaces are formed smoothly, and the upper and lower surfaces are formed in parallel. (And of course transparent.) Therefore, even if the light guide plate 38 crosses the optical path, the light reflected by the document 33 and incident on the image sensor 36 is not blocked by the light guide plate 38, and the image reading performance is unlikely to deteriorate.
  • the exit end face 40b of the light guide plate 38 faces the mirror 42 at a position beyond the prohibited space Sa. According to such an arrangement, the mirror 42 can be brought close to the emission end face 40b, so that the height of the mirror 42 can be reduced. As a result, the height of the light irradiation device 34 can be further reduced, and the image reading device 61 can be made compact.
  • FIG. 23 is a schematic sectional view showing the shape of the light guide plate 38 used in the image reading apparatus according to the third embodiment of the present invention.
  • the inclination angle of the first plane 39 a of the deflection pattern 39 far from the light source 37 is larger than the inclination angle of the first plane 39 a of the deflection pattern 39 near the light source 37. ing. That is, the inclination angle of the first plane 39a of the deflection pattern 39 is changed so as to gradually increase from the side closer to the light source 37 to the side farther from the light source 37 or gradually.
  • the light emitted from the light emitting surface 40c at a portion far from the light source 37 is perpendicular to the light emitting surface 40c than the light emitted from the light emitting surface 40c near the light source 37. Since it approaches the direction, the light Lu emitted from the light emitting surface 40c is condensed and applied to the document 33, and the illuminance increases.
  • FIG. 24 is a schematic diagram showing an image reading device 62 according to the fourth embodiment of the present invention.
  • the light guide plate 38 is disposed horizontally so as to cross the prohibited space Sa.
  • the deflection pattern 39 is provided on the side closer to the light source 37 than the region through which the optical path (prohibited space Sa) of the light reflected from the original 33 and incident on the image sensor 36 passes through the light guide plate 38.
  • a plurality of reflective patterns 63 are provided on the light guide plate 38 on the side farther from the light source 37 than the region through which the optical path of the light reflected by the original 33 and incident on the image sensor 36 passes.
  • the reflection pattern 63 is constituted by two planes and has a prism shape with a triangular cross section.
  • the reflection pattern 63 extends along the width direction of the light guide plate 38 and has a uniform cross-sectional shape.
  • the reflection pattern 63 is arranged along the length direction of the light guide plate 38.
  • the deflection pattern 39 and the reflection pattern 63 are provided so as not to enter the prohibited space Sa.
  • the reflective pattern 63 may protrude from the lower surface of the light guide plate 38, or may be recessed or protruded from the upper surface of the light guide plate 38.
  • the deflection pattern 39 totally reflects light at the first plane 39a located on the light source side and emits light Lu obliquely upward of the prohibited space Sa.
  • the inclination angle ⁇ is preferably 40 degrees or less.
  • the reflection pattern 63 totally reflects light on the first plane 63a located on the light source side and emits light Le obliquely upward above the prohibited space Sa. It is. That is, since the directivity angle ⁇ of the light Le that is totally reflected by the reflection pattern 63 and is emitted from the light emission surface 40c must be a negative value, the simulation result of FIG. It can be seen that the inclination angle ⁇ of the one plane 63a is desirably 45 degrees or more.
  • the light path of the light that is reflected by the document 33 and incident on the image sensor 36 passes through the light guide plate 38 between the area where the deflection pattern 39 is provided and the area where the reflection pattern 63 is provided.
  • the upper surface and the lower surface are formed smoothly, and the upper surface and the lower surface are formed in parallel. Therefore, even if the light guide plate 38 crosses the optical path, the light reflected by the document 33 and incident on the image sensor 36 is not blocked by the light guide plate 38, and the image reading performance is unlikely to deteriorate.
  • the height of the light irradiation device 34 can be further reduced, and the image reading device 61 can be made compact. Further, since no mirror is used, the cost of the light irradiation device 34 can be reduced, and it is not necessary to adjust the position and angle of the mirror, so that assembly is facilitated.
  • the light totally reflected by the reflecting pattern 63 having a prism shape is emitted from the light emitting surface 40c because only the light incident on the light emitting surface 40c at an incident angle smaller than the critical angle of total reflection is emitted from the light emitting surface 40c.
  • the directivity of the incident light Le becomes narrower. Therefore, the illuminance of the document 33 can be increased by reducing the spread of the emitted light Le.
  • FIG. 26 is a schematic diagram showing an image reading device 64 according to Embodiment 5 of the present invention.
  • the image reading device 64 is based on the image reading device 62 of Embodiment 4 and further improves the light utilization efficiency.
  • a mirror 65 is arranged in parallel to face the emission end surface 40 b, and light leaking from the light emission surface 40 c is reflected by the mirror 65 to re-enter the light guide plate 38 from the light emission surface 40 c. I am letting. As shown in FIG.
  • the re-incident light is reflected on the second plane 63b of the reflection pattern 63, that is, on the other side of the reflection pattern 63 located on the side farther from the light source 37 than the first plane 63a. Incident on the inclined surface.
  • the light Le totally reflected by the second plane 63b is emitted in a direction substantially parallel to the light Le totally reflected by the first plane 63a.
  • the inclination angle ⁇ of the first plane 63a is 45 degrees or more.
  • the inclination angle ⁇ of the second plane 63b is preferably 40 degrees or less.
  • the light reaching the emission end face 40 b without being totally reflected by the reflection pattern 63, and the light leaking to the outside from the emission end face 40 b can be reflected by the mirror 42 and re-enter the light guide plate 38. .
  • the re-incident light can be totally reflected by the reflection pattern 63 and emitted. Therefore, the light use efficiency is increased and the illuminance of the document 33 is increased.
  • the reflective pattern 63 may protrude in a prism shape as shown in FIG.
  • the first plane 63a that totally reflects the light from the light source side is an inclined surface far from the light source
  • the second plane 63b that totally reflects the returned light is an inclined surface near the light source.
  • FIG. 28 is a schematic diagram showing an image reading apparatus according to Embodiment 6 of the present invention.
  • the light irradiation device 34 is fixed on a moving stage (not shown), and is sub-scanned in the horizontal direction by the moving stage.
  • the imaging optical system 35 and the image sensor 36 are fixed.
  • the light irradiation device 34 includes a reflection mirror 69, and the light reflected by the document 33 is reflected by the reflection mirror 69 to be converted into a horizontal optical path.
  • the light reflected by the reflection mirror 69 enters the optical path adjustment device 66 and is reflected back by the two reflection mirrors 67 and 68 in the optical path adjustment device 66.
  • the optical path adjusting device 66 can be translated horizontally, and the amount of movement is such that the optical path length from the light irradiation surface of the document 33 to the image sensor 36 is constant no matter where the light irradiation device 34 is. To be controlled.
  • the imaging optical system 35 and the image pickup device 36 can be fixed, the structure of the image reading apparatus can be simplified. Moreover, even if the light irradiation device 34 moves and the image sensor 36 is stationary, the optical path adjustment device 66 adjusts the optical path length from the light irradiation surface of the document 33 to the image sensor 36 so that it is constant. The entire document 33 is read with uniform accuracy.
  • FIG. 29 is a schematic block diagram of a scanner 71 using the image reading apparatus according to the present invention, for example, the image reading apparatus of the sixth embodiment.
  • the processing circuit 72 receives the instruction to read, the processing circuit 72 scans the light irradiation device 34 while causing the light irradiation device 34 to emit light and irradiate the original 33 with light.
  • the processing circuit 72 controls the moving distance of the optical path adjusting device 66.
  • the electrical signal output from the image sensor 36 is sent to the processing circuit 72 as serial data, converted into predetermined image information, and temporarily stored in a storage device 73 such as a memory or a hard disk.
  • the image information stored in the storage device 73 is transmitted from the output unit 74 to an external personal computer or the like in response to a request.
  • the storage device 73 may be a storage device in a personal computer.
  • FIG. 30 is a schematic block diagram of a copying apparatus 81 using an image reading apparatus 82 according to the present invention.
  • the processing circuit 83 operates the image reading device 82 to read the document 33.
  • the electrical signal output from the image reading device 82 is sent to the processing circuit 83 as serial data, converted into predetermined image information, and temporarily stored in a storage device 84 such as a memory or a hard disk.
  • the image information stored in the storage device 84 is sent to a printing device 85 including a photosensitive drum, toner, a paper feeding device, and the like, and a printed matter is output from the printing device 85.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Light Sources And Details Of Projection-Printing Devices (AREA)

Abstract

 光照射装置の高さを低くして画像読取装置の薄型化を図ることができ、また光照射面の照度ムラを小さくすることのできる光照射装置及び画像読取装置を提供する。光照射装置34から出射された光Lu、Leは、原稿33の下面に斜め照射される。原稿33で反射された光は、結像光学系35を通って撮像素子36に入射し、原稿33の画像が読み取られる。光照射装置34は、板状の導光板38と、導光板38の入射端面40aに対向配置された光源37と、導光板38の出射端面40bと対向する位置に斜めに設置されたミラー42とからなる。導光板38の下面には、偏向パターン39が形成されている。光源37からの出射光は導光板38内を導光し、その光の一部は偏向パターン39で全反射され、導光板38の上面から斜めに出射する。また、出射端面40bから出射した光は、ミラー42で反射されて斜め上方へ出射する。

Description

光照射装置及び画像読取装置
 本発明は光照射装置及び画像読取装置に関する。具体的には、本発明は、2方向から光を照射させるための光照射装置に関する。また、本発明は、当該光照射装置から出射した光を対象物に照射して画像情報を生成するための画像読取装置に関する。さらに、本発明は、当該画像読取装置を備えたスキャナ及びコピー機に関する。
(画像読取装置の基本的構成)
 図1は、スキャナなどに用いられる画像読取装置の基本的構成を示す図である。画像読取装置11は、原稿13を置くためのガラス板12の下に配置されている。画像読取装置11は、ガラス板12を透過させて光を原稿13に照射させるための光照射装置14と、レンズで構成された結像光学系15と、CCDやCISからなる撮像素子16によって構成されている。光照射装置14から出射した光は、ガラス板12上に下向きに置かれた原稿13を照明する。原稿13の下面で反射した光は、結像光学系15を通過した後、撮像素子16で受光される。そして、原稿13の一部の画像が、撮像素子16により電気信号又は画像情報に変換される。
 このような画像読取装置11では、ガラス板12の下面に沿って移動しながら原稿13の全体を読み取るので、画像読取装置11をガラス板12の下面に近づけ過ぎると、画像読取装置11がガラス板12の下面を擦って傷つける恐れがある。そのため、ガラス板12の下方には、画像読取装置11を配置することのできない一定高さHの禁止スペースSbが存在し、画像読取装置11は禁止スペースSbの下に配置される。
 また、結像光学系15の上方には、原稿13で反射した光を撮像素子16へ導くための空間をあけておく必要があり、ここは光を遮るものを配置することのできない禁止スペースSaとなっている。したがって、光照射装置14を禁止スペースSaに配置することができないので、光照射装置14は禁止スペースSaから外れた位置に配置し、原稿13に向けて斜めに光を照射している。また、原稿13に対して斜めに光を照射することにより、正反射光が撮像素子16に入射するのを防いでいる。
(特許文献1について)
 このような画像読取装置としては、たとえば特許文献1に開示されたものがある。特許文献1に記載された画像読取装置に用いられている光照射装置14Aを図2(A)に示す。光照射装置14Aは、固定台17の傾斜面17aに導光板18を固定し、導光板18の後端面に対向させて複数個のLED19を配置し、導光板18とLED19をカバー20で覆っている。また、導光板18の前端面に対向させて固定台17とカバー20の間に拡散シート21を取り付けている。
 この画像読取装置では、導光板18を斜めに設置しているために光照射装置14Aの高さが高くなる。それ故、光照射装置14Aの上に禁止スペースSbが必要なことに加えて、光照射装置14Aの高さが大きくなり、画像読取装置の薄型化が困難である。また、画像読取装置内のデッドスペースが大きくなる。
 また、特許文献1の画像読取装置では、図2(B)に示すように、複数個のLED19を一列に配列しているので、光照射装置14Aを原稿13に近づけて設置すると、原稿面にリップル状の照度ムラが生じる。そのため、導光板18の前端面に配置した拡散シート21で出射光を拡散させて照度ムラを低減させている。しかし、拡散シート21で出射光を拡散させているので、光の利用効率が低下して原稿13の光照射面が暗くなる不具合がある。
(特許文献2について)
 特許文献2に開示された画像読取装置では、拡散シートを用いないで原稿の光照射面における照度の均一化を図っている。図3は特許文献2の画像読取装置に用いられている光照射装置14Bの断面図である。この光照射装置14Bは、LED19、導光体22及びミラー23によって構成されている。導光体22は、ほぼ水平に配置されており、LED19と対向する面に入光面22aを備え、LED19と反対側に第1出光面22bと第2出光面22cを備える。LED19から出射した光Lは入光面22aから導光体22内に入射し、導光体22内の光Lの一部は第1出光面22bから斜め上方へ向けて出射される。また、ミラー23は第2出光面22cに対向する位置に斜めに配置されており、導光体22内の光Lの一部は第2出光面22cからほぼ水平に出射されてミラー23に入射し、ミラー23で反射された光Lは斜め上方へ向けて出射される。したがって、原稿の光照射面には2方向から光Lが照射され、原稿の光照射面における照度ムラが小さくなる。
 この画像読取装置では、導光体22はほぼ水平に配置されているが、導光体22は単純な板状ではない。すなわち、第1及び第2出光面22b、22c側における導光体22の厚みは、入光面22a側における厚みに比べてかなり厚くなっており、しかも、第1出光面22bの近傍は導光体22から上方へ飛び出ている。このため導光体22の厚みがかなり厚いものとなり、画像読取装置の薄型化を十分に行えない。また、画像読取装置内のデッドスペースも大きくなる。
 また、特許文献2の画像読取装置では、第2出光面22cから出射する光は放射状に出射するので、原稿の光照射面に達するときにはかなり広がっている。そのため、第2出光面22cから出射する光の利用効率が悪く、原稿の照度が低くなる。
(特許文献3について)
 図4は、特許文献3に開示された画像読取装置を示す側面図である。この画像読取装置では、ガラス板12の下面側の禁止スペース(Sb)を隔てた位置に光照射装置14Cを設けている。この光照射装置14Cでも、導光板18は斜め姿勢で固定台17に取り付けられている。導光板18の前方にはミラー23が位置している。そして、導光板18の前端面の上半部から斜め上方へ出射した光Lは、そのまま原稿13に照射される。一方、導光板18の前端面の下半部から出射した光Lは、ミラー23で斜め上方へ反射され、反対側から原稿13に照射される。
 この特許文献3の画像読取装置では、導光板18が斜めに配置されているので、特許文献1の光照射装置14Aと同様に、光照射装置14Cの高さが高くなる。そのため、画像読取装置の高さを小さくすることができず、画像読取装置の薄型化が困難である。また、画像読取装置内のデッドスペースが大きくなる。
 また、導光板18の前端面の上半分から出射される光Lも、前端面の下半部から出射してミラー23で反射される光Lも、いずれも放射状に出射しているので、原稿を照射するときにはかなり広がっている。そのため、導光板18から出射する光の利用効率が悪く、原稿の照度が低くなる。
特開2008-180841号公報 特開2010-26179号公報 特開2010-130056号公報
 本発明は、上記のような技術的課題に鑑みてなされたものであって、その目的とするところは、光照射装置の高さを低くして画像読取装置の薄型化を図ることができ、また光照射面の照度ムラを小さくすることのできる光照射装置や画像読取装置を提供することにある。
 本発明に係る光照射装置は、光源と、前記光源から発した光を一方端部から取り込んで導光させる導光板と、前記導光板の主面に設けた複数個の偏向パターンからなり、前記導光板内を導光する光の一部を全反射させて前記導光板の一方の主面から出射させる第1の光反射手段と、前記導光板内の前記第1の光反射手段が設けられた領域を通過した光を、前記第1の光反射手段で全反射された光と同じ主面側へ向けて反射させる第2の光反射手段とを備え、前記第1の光反射手段で全反射され前記導光板の主面から出射された光が、当該主面に垂直な方向から前記第2の光反射手段側へ傾いた方向に向けて出射され、前記第2の光反射手段で反射された光が、前記導光板の主面に垂直な方向から前記第1の光反射手段側へ傾いた方向に向けて出射されるように構成されていることを特徴としている。
 本発明の光照射装置にあっては、2方向から対象物に光を照射することができるので、対象物の照度ムラを小さくできる。また、本発明の光照射装置にあっては、第1の光反射手段で光を全反射させることによって光を斜め方向へ出射させ、第2の光反射手段で光を反射させることによって光を斜め方向へ出射させているので、導光板を斜め姿勢で設置する必要がなく、光照射装置の高さを小さくできる。また、第1の光反射手段は複数個の偏向パターンによって構成されているので、第1の光反射手段によって導光板から出射される光の制御性が高くなり、ほぼ平行な光を出射させたり、集光させたりすることによって、対象物の照度を高くできる。
 本発明のある実施態様に係る光照射装置における前記第2の光反射手段は、前記導光板の他方端部に位置する端面に対向させて斜めに配置されたミラーであってもよい。かかる実施態様によれば、導光板の端面から出射した光をミラーで反射させることにより反射光を斜め上方へ向けて出射させることができる。
 本発明の別な実施態様に係る光照射装置における前記第2の光反射手段は、前記導光板の他方端部に位置する端面に対向させて当該端面と平行に配置されたミラーと、前記導光板の主面に設けられていて前記ミラーで反射して前記導光板内へ戻った光を全反射させて前記導光板の主面から出射させる複数個の反射用パターンとから構成されていてもよい。かかる実施態様によれば、ミラーで反射した光を導光板へ戻して反射用パターンで全反射させて導光板から斜め上方へ出射させているので、第2の光反射手段によって導光板から出射される光の制御性が高くなり、ほぼ平行な光を出射させたり、集光させたりすることによって、対象物の照度を高くできる。
 また、この実施形態は、後述のように光源側から導光されてきた光を反射用パターンで全反射させて導光板から斜めに出射させる実施形態と組み合わせることも可能である。その場合には、反射用パターンで全反射されることなく導光板の端面から漏れた光を、ミラーで反射させて導光板内へ再入射させることができる。そして、再入射した光を再び反射用パターンで全反射させて導光板から出射させることができる。そのため、光の利用効率がより一層向上する。
 この実施形態の場合には、前記反射用パターンにおいて前記ミラーで反射して戻ってきた光を全反射させるための傾斜面の傾斜角を40度以下にすることが望ましい。反射用パターンの当該傾斜面(実施形態における第2平面)の傾斜角を40度以下にすれば、第2の光反射手段によって導光板から出射される光の方向を第1の光反射手段側へ傾けることができるからである。
 本発明のミラーを用いた実施態様においては、前記導光板の厚みをt、前記導光板の屈折率をn、前記導光板の他方端部に位置する端面から前記ミラーの上下両端へ延ばした両線分どうしのなす角度を2φとしたとき、前記導光板において前記偏向パターンを形成された領域の、前記導光板端面に垂直な方向に沿った長さPが、
   P≧3t/(2tanγ)
   ただし、γ=arcsin(sinφ/n)
という条件を満たしていることが望ましい。かかる実施態様によれば、導光板の端面からミラー外へ出射されて損失となる光量を少なくでき、光の利用効率を高めることができる。
 本発明のさらに別な実施態様に係る光照射装置における前記第2の光反射手段は、前記導光板の主面に設けられていて前記導光板内の光を全反射させて前記導光板の主面から出射させる複数個の反射用パターンからなることを特徴としている。かかる実施態様によれば、第1の光反射手段の領域を通過して光源側から導光してきた光を反射用パターンで全反射させることにより導光板から斜め方向へ出射させることができる。しかも、第2の光反射手段は複数個の反射用パターンで構成されているので、第2の光反射手段によって導光板から出射される光の制御性が高くなり、ほぼ平行な光を出射させたり、集光させたりすることによって、対象物の照度を高くできる。
 この実施態様の場合には、前記偏向パターンにおいて光を全反射させるための傾斜面の傾斜角が40度以下とし、前記反射用パターンにおいて光を全反射させるための傾斜面の傾斜角が45度以上とすることが望ましい。偏向パターンの当該傾斜面の傾斜角を40度以下にすれば、第1の光反射手段によって導光板から出射される光の方向を第2の光反射手段側へ傾けることができるからである。また、反射用パターンの当該傾斜面(実施形態の第1平面)の傾斜角を45度以上にすれば、第2の光反射手段によって導光板から出射される光の方向を第1の光反射手段側へ傾けることができるからである。
 本発明に係る画像読取装置は、読取対象物に光を照射させるための、本発明に係る光照射装置と、前記読取対象物の像を読み取る撮像素子と、前記読取対象物で反射した反射光を前記撮像素子に結像させるための結像光学系とを備え、前記読取対象物により反射され前記第1の光反射手段と前記第2の光反射手段の間を通って前記撮像素子に入射する光が、前記第1の光反射手段と前記第2光反射手段との間で遮光されないように構成されていることを特徴としている。
 本発明の画像読取装置は、本発明の光照射装置を用いているので、画像読取装置の高さを低くして画像読取装置をコンパクト化できる。また、読取対象物に照射される光の照度を高くできるとともに照度ムラを小さくできる。
 本発明のある実施態様に係る画像読取装置は、前記導光板が、前記読取対象物と平行に配置されていることを特徴としている。かかる実施態様では、導光板を水平に配置しているので、光照射装置の高さを非常に小さくして薄型化することができ、画像読取装置の組込スペースの高さを非常に小さくできる。
 本発明のさらに別な実施態様に係る画像読取装置は、前記導光板と前記第2の光反射手段が、前記光路内に入り込まないように配置されていることを特徴としている。かかる実施態様によれば、読取対象物で反射されて撮像素子に入射する光が導光板や第2の光反射手段によって遮光されることがないので、結像素子における読み取り精度が低下しにくくなる。
 本発明のさらに別な実施態様に係る画像読取装置は、前記導光板が、前記読取対象物により反射され前記撮像素子に入射する光の光路を横断するように配置され、前記導光板のうち前記光路が通過する領域が、透明かつ平滑に形成されていることを特徴としている。かかる実施態様では、導光板が撮像素子に入射する光の光路を横断しているが、横断している領域では、導光板が透明かつ平滑に形成されているので、撮像素子に入射する光が導光板によって遮光されにくく、結像素子における読み取り精度が低下しにくい。
 本発明のさらに別な実施態様に係る画像読取装置においては、前記光照射装置が前記読取対象物と平行な方向に移動可能であり、前記結像光学系と前記撮像素子が固定されており、前記光照射装置が移動しても前記光照射装置と前記結像装置との間の光路長が一定となるように調整する光路調整装置を備えていることを特徴としている。かかる実施態様は光路調整装置を備えているので、光照射装置が走査されても読取対象物の光照射位置と撮像装置との間の光路長を一定に保つことができる。したがって、結像光学系や撮像素子を固定させることができ、画像読取装置の構造を簡略にすることができる。
 また、本発明の画像読取装置は、スキャナや複写装置に用いてスキャナや複写装置の小型化や読み取り精度の向上に寄与することができる。
 なお、本発明における前記課題を解決するための手段は、以上説明した構成要素を適宜組み合せた特徴を有するものであり、本発明はかかる構成要素の組合せによる多くのバリエーションを可能とするものである。
図1は、スキャナなどに用いられている画像読取装置の基本的構成を示す図である。 図2(A)は、特許文献1に開示された画像読取装置に用いられている光照射装置の側面図である。図2(B)は、特許文献1に開示された画像読取装置の構成を示す概略図である。 図3は、特許文献2に開示された画像読取装置に用いられている光照射装置の断面図である。 図4は、特許文献3に開示された画像読取装置の側面図である。 図5は、本発明の実施形態1による画像読取装置の概略図である。 図6(A)は、同上の画像読取装置に用いられている光源及び導光板の断面図である。図6(B)は、当該光源及び当該導光板を下面側から見た図である。 図7は、実施形態1における光照射装置の具体例を示す斜視図である。 図8は、上記光照射装置の具体例の平面図である。 図9は、上記光照射装置の具体例の断面図である。 図10は、導光板の光出射面から出射された光と導光板の出射端面から出てミラーで反射された光のうち一方だけを照射した場合と、両方の光を同時に照射した場合との、原稿の下面における明るさの分布をシミュレーションした結果を表した図である。 図11(A)は、導光板の概略断面図である。図11(B)は、図11(A)のJ部を拡大した図である。 図12は、偏向パターンの第1平面の傾斜角度と、導光板の光出射面から出射される光の指向角との関係を表した図である。 図13(A)は、突出した偏向パターンを有する導光板の概略断面図である。図13(B)は、図13(A)のJ部を拡大した図である。 図14(A)は、上面(光出射面)に偏向パターンを形成された導光板の概略断面図である。図14(B)は、図14(A)のJ部を拡大した図である。 図15(A)、図15(B)及び図15(C)は、偏向パターンの種々の異なる配置を示す概略図である。 図16は、パターンエリアの長さを定めるための方法を説明する図であって、導光板から出てミラーに入射する光を表している。 図17(A)及び図17(B)は、パターンエリアの長さを定めるための方法を説明する図であって、図17(A)は導光板内を導光する光を表し、図17(B)は導光板の端面から出射する光を表している。 図18は、偏向パターンのない導光板と偏向パターンを有する導光板の各端面から出射する光の強度分布(指向特性)を示す図である。 図19は、パターンエリアの長さを変化させたとき、導光板の出射端面から出射する全光量のうち、どれだけの割合の光量がある±20度の範囲内に出射されるかをシミュレーションした結果を示す図である。 図20(A)、図20(B)及び図20(C)は、パターンエリアのさまざまな配置を示す導光板の概略断面図である。 図21(A)は、平面ミラーを用いた光照射装置を示す概略図である。図21(B)は、凹面鏡状のミラーを用いた光照射装置を示す概略図である。 図22は、本発明の実施形態2による画像読取装置の概略図である。 図23は、本発明の実施形態3による画像読取装置に用いられる導光板の概略断面図である。 図24は、本発明の実施形態4による画像読取装置の概略図である。 図25(A)は、実施形態4における光源に近い側に位置する偏向パターンの作用説明図である。図25(B)は、光源から遠い側に位置する反射用パターンの作用説明図である。 図26は、本発明の実施形態5による画像読取装置の概略図である。 図27(A)は、実施形態5における反射用パターンの作用説明図である。図27(B)は、突出形状の反射用パターンを示す図である。 図28は、本発明の実施形態6による画像読取装置の概略図である。 図29は、本発明の実施形態7によるスキャナの概略ブロック図である。 図30は、本発明の実施形態8による複写装置の概略ブロック図である。
 以下、添付図面を参照しながら本発明の好適な実施形態を説明する。但し、本発明は以下の実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲において種々設計変更することができる。
〔第1の実施形態〕
(画像読取装置の構造)
 以下、図5及び図6を参照して本発明の実施形態1による画像読取装置31の基本的な構造を説明する。図5は、画像読取装置31の概略図である。図6(A)は、画像読取装置31に用いられている光源37と導光板38の断面図、図6(B)は、光源37と導光板38を下面側から見た図である。
 画像読取装置31は、原稿33を置くための透明なガラス板32(原稿置台)の下方に配置されている。画像読取装置31は、光照射装置34、結像光学系35および撮像素子36からなる。撮像素子36は、原稿33の画像を電気信号又は画像情報に変換するものであって、CCD素子、CIS素子又はCMOS素子などからなる。結像光学系35は、原稿33の一部の縮小画像を撮像素子36に結像させるための光学系であって、1枚又は複数枚のレンズや絞りなどによって構成されている。光照射装置34は、原稿33の一部に光を出射して照明する。
 光照射装置34は、光源37、導光板38及びミラー42によって構成される。光源37は、樹脂パッケージ内に白色LEDを封止したものである。導光板38は、ポリカーボネイト樹脂(PC)やポリメチルメタクリル樹脂(PMMA)などの屈折率の高い透明樹脂によってほぼ均一な厚みの板状に成形されている。導光板38は、水平に設置されており(つまり、ガラス板32と平行に設置されている。)、一方端面が入射端面40aとなり、他方端面が出射端面40bとなり、上面が光出射面40cとなる。図6(B)に示すように、導光板38の入射端面40aと対向する位置には、入射端面40aに沿って複数個の光源37が一列に配列している。また、導光板38の下面(光出射面40cと反対面)には、断面が三角形のプリズム状をした複数本の偏向パターン39が凹設されている。各偏向パターン39は、導光板38の幅方向(あるいは、光源37の配列方向)に延びており、導光板38の幅方向に沿って均一な断面を有している。出射端面40bに垂直な方向には、ミラー42が配置されている。ミラー42は、境界部分で窪むように角度を異ならせて2枚の反射板43a、43bを組み合わせたものである。このミラー42は、下方が出射端面40bに近くなり、上方が出射端面40bから遠くなるように傾けて配置される。
 しかして、この光照射装置34においては、光源37から出射した光Lは、図5及び図6(A)に表したような挙動を示す。すなわち、光源37から出射した光Lは、入射端面40aから導光板38内に入射し、導光板38の上面と下面で全反射を繰り返しながら出射端面40bに向けて導光板38内を進む。その途中で偏向パターン39により入射した光Luは、図6(A)に示すように、偏向パターン39で全反射され、光出射面40cから斜め上方へ出射する。光出射面40cから出射した光Luは、原稿33の光照射領域に斜め下方から照射する。一方、導光板38内に入射した光のうち出射端面40bに到達した光Leは、出射端面40bを透過してミラー42に入射する。ミラー42に入射した光Leは、反射板43a、43bで反射されることによって集光され、光Luと反対側において原稿33の光照射領域に斜め下方から照射する。この結果、原稿33の光照射面には2方向から光Lu、Leが斜め照射されることになり、原稿33の光照射面における明るさが均一化される。この効果については、後に測定データを示す。
 さらに、原稿33の光照射面で拡散反射された光のうち、下方(禁止スペースSa)へ反射された光は結像光学系35を通過することによって撮像素子36で結像され、原稿33の一部が読み取られる。ここで、光照射装置34は、図5の紙面に垂直な方向(画像読取装置31の主走査方向;以下、幅方向という。)では、想定される原稿サイズに対して十分な長さを有しているが、長さ方向(画像読取装置31の副走査方向)では原稿33の長さに比べて短くなっている。そのため、画像読取装置31は、その長さ方向に沿って一定速度で移動(走査)しながら原稿33を読み取っていき、読み取った画像のデータがメモリに蓄積されることで原稿33全体が読み取られる。
 上記画像読取装置31においては、禁止スペースSaを通って結像光学系35に入射する光が、撮像素子36によって読み取られる。そのため、禁止スペースSaを通る光が遮られると、撮像素子36で読み取られる画像が欠けることになる。したがって、光照射装置34は、禁止スペースSa内に入り込まないようにする必要がある。すなわち、導光板38とミラー42は、禁止スペースSa内に入り込まないように禁止スペースSaから離しておくことが望ましい。しかし、導光板38とミラー42をあまり禁止スペースSaから離しすぎると光照射装置34の長さが長くなり、光照射装置34のサイズが大きくなる。そのため、この実施形態では、出射端面40bが禁止スペースSaの縁に位置するように導光板38を設置し、ミラー42もその下端が禁止スペースSaの縁に位置するように設置している。
 なお、画像読取装置31における禁止スペースSaは、結像光学系35や撮像素子36の位置によって決まり、また禁止スペースSaの長さDは結像光学系35におけるレンズや絞りの開口長さによって決まるものである。
 また、画像読取装置31とガラス板32との間には、画像読取装置31を移動(副走査)させるときに画像読取装置31とガラス板12との干渉を防止するための空間(禁止スペースSb)をあけておく必要がある。したがって、画像読取装置31は、ガラス板32の下面から禁止スペースSbの高さH(数mm)だけ下げて配置されている。具体的には、ガラス板32の下面から禁止スペースSbの高さHだけ下がった位置に、ミラー42の上端(また、後述の図7-図9のような光照射装置34では、フレーム44の上端)が位置するようにしている。
(光照射装置の詳細な構造)
 つぎに、光照射装置34のより具体的な構造の一例を図7-図9により説明する。図7は、光照射装置34の斜視図であって、光照射装置34を縦にして斜め下方から見た図である。図8は、光照射装置34の平面図である。図9は、光照射装置34の断面図である。
 光照射装置34は、金属製のフレーム44の上に構成されている。フレーム本体45はフレーム44の主部を構成している。フレーム本体45の長手方向に沿った一辺には、ミラー支持部46が立ち上げられている。さらに、ミラー支持部46の下部では、ミラー支持部46の一部を切り起こすことによってミラー副支持部46aが形成されている。ミラー支持部46の角度は反射板43aの設置角度と等しくなっており、ミラー支持部46に反射板43aを固定することによって反射板43aを所望角度に設定することができる。ミラー副支持部46aの角度は反射板43bの設置角度と等しくなっており、ミラー副支持部46aに反射板43bを固定することによって反射板43bを所望角度に設定することができる。フレーム本体45の残り3辺は下方へ折り曲げてあり、これによってフレーム本体45の強度を高めている。また、フレーム44の両端には、光照射装置34を副走査用の移動ステージに取り付けるための固定用片47を設けている。
 フレーム本体45の上面には、複数個の光源37を一定ピッチ毎に実装したプリント配線基板49が固定されている。さらに、フレーム本体45からは、プリント配線基板49の孔を通して上方へ爪52が突出しており、この爪52に引っ掛けることによって導光板38が位置決めされ、プリント配線基板49の上面で固定されている。固定された導光板38の入射端面40aは、各光源37と対向している。プリント配線基板49には、コネクタ51によってフレキシブルプリント基板50が接続されている。
 導光板38の出射端面40bとミラー42との間において、フレーム本体45には禁止スペースSaと一致させるための開口48があけられている。
 このような構造の光照射装置34を用いれば、光源37と導光板38とミラー42との位置関係を正確に定めることができ、また光照射装置34の移動ステージへの組込みも一括して簡単に行うことができる。
(作用効果)
 本実施形態の画像読取装置31によれば、偏向パターン39で反射して光出射面40cから出射した光Luと、出射端面40bから出射してミラー42で反射した光Leとを、原稿33の光照射面に対して異なる方向から斜め照射することができる。よって、原稿33の光照射面の明るさを均一化することができる。また、光を斜め照射しているので、原稿33の光照射面で正反射した光が撮像素子36に入射するのを防ぐことができる。
 図10は、光Lu、Leのうち一方だけを照射したときと、両方を同時に照射したときの、原稿33の下面における明るさの分布をシミュレーションにより求めた結果を表す。このシミュレーションに用いたモデルでは、厚み0.5mm、長さ11mmのポリカーボネイト樹脂製の導光板38を用いた。導光板38の下面に凹設された偏向パターン39は、断面形状が直角三角形で傾斜面(後述の第1平面39a)の傾斜角が30度のものであり、導光板38の幅方向に沿って均一な断面で端から端まで延びている。導光板38下面の偏向パターン39が設けられている領域(以下、パターンエリアという。)の長さは約4mmとし、パターンエリアにおける偏向パターン39のパターン占有面積割合(パターン密度)は50%とした。図10において、横軸は禁止スペースSaの中心から測った長さ方向(副走査方向)における距離X、縦軸は原稿33の下面の明るさである。また、図10に示すDは、禁止スペースSaの長さ(約3mm)であって、画像読取領域に対応している。
 このようなモデルを用いて、偏向パターン39で反射して光出射面40cから出射した光Luだけを原稿33に照射したときの明るさの分布を、図10において破線(導光板側)で示す。また、出射端面40bから出射してミラー42で反射した光Leだけを原稿33に照射したときの明るさの分布を、図10において細実線(ミラー側)で示す。また、同時に両方の光Lu、Leを照射したときの明るさの分布を、図10において太実線(合計)で示す。導光板側の光Luだけを照射した場合には、破線のように領域D内でミラー側の明るさが低下する。また、ミラー側の光Leだけを照射した場合には、細実線のように領域D内で導光板側の明るさが低下する。これに対し、両方の光Lu、Leを同時に照射した場合には、2つの明るさが足し合わされるので、太実線のように領域D内における明るさの分布がほぼ均一になる。この結果、画像読取装置31によれば、撮像素子36によって読み取られる画像の照度ムラが低減されることになる。なお、偏向パターン39のパターン密度を調整すれば、導光板側からの光Luの量とミラー側からの光Leの量を調整することができるので、パターン密度を調整することで原稿の読取領域における明るさをさらに均一にすることができる。
 つぎに、本実施形態の画像読取装置31によれば、光の利用効率を高めることができるので、同じ明るさの光源を用いた場合であれば、原稿の光照射領域の照度を高くできる。この理由は、以下のとおりである。まず、導光板側から出射される光Luについていえば、偏向パターン39で全反射されることによって光出射面40cに対して全反射の臨界角よりも小さな入射角で入射した光だけが光出射面40cから出射される。そのため光出射面40cから出射する光Luの指向性が狭く、原稿33に照射されるまでに広がりにくい。また、ミラー側の光Leについては、反射板43aで反射される光と反射板43bで反射される光とが一部重なりあって原稿33に照射されるので、ミラー側の光Leも広がりにくい。よって、原稿33の読取領域外を照射する光が少なくなり、光の利用効率が向上して読取領域の照度が高くなる。
 つぎに、本実施形態の画像読取装置31によれば、画像読取装置31や光照射装置34の小型化、特に薄型化を図ることことができる。すなわち、本実施形態の画像読取装置31では、板状をした導光板38を水平に配置しているので、光照射装置34の高さを小さくして光照射装置34を小型化できる。その結果、画像読取装置31も高さが小さくなってコンパクト化される。
(偏向パターンについて)
 つぎに、導光板38に設けた偏向パターン39の断面形状について説明する。図11(A)は導光板の断面図であり、図11(B)は図11(A)のJ部拡大図である。偏向パターン39は、2つの平面によって構成された凹部である。導光板38の裏面に設けられた偏向パターン39では、2つの平面のうち光源37に近い側の平面(傾斜面)が、光源37側からの光を全反射させて光出射面40cから出射させるための第1平面39aとなっている。この第1平面39aの傾斜角α(導光板38の下面から測った角度)は、40度以下であることが望ましい。
 第1平面39aの傾斜角αが40度以下であることが望ましい理由は、図12に示すシミュレーション結果に基づく。図12は、導光板材料としてポリカーボネイト樹脂(PC)を用いた場合とポリメチルメタクリレート樹脂(PMMA)を用いた場合における、第1平面39aの傾斜角度αと指向角θとの関係を表している。ここで指向角θとは、図11(A)に示すように、導光板38の光出射面40cから出射する光Lの強度のピーク方向が光出射面40cに立てた法線Nとなす角度をいう。指向角θは、光強度のピーク方向が光源37から遠くなる方向へ傾いている場合に正値となり、光源37に近づく方向へ傾いている場合に負値となる。光出射面40cから出射する光(Lu)は、垂直出射でなく、ミラー側へ傾いて斜め出射しなければならないので、指向角θはゼロよりも大きな正値でなければならない。よって、図12によれば、第1平面39aの傾斜角度αは40度以下であることが望ましい。
 第1平面39aよりも光源37から遠い側で第1平面39aと連続している第2平面39bの傾斜角度β(導光板38の下面から測った角度)は、1個の偏向パターン39の占有面積を小さくして一定のパターンエリア内でのパターン数を増やすためには90度に近い角度が望ましい。しかし、偏向パターン39の加工のしやすさ、たとえば偏向パターン39を成形するための金型からの離型性を考えれば、この傾斜角度βは90度よりもある程度大きいことが望ましく、たとえば傾斜角αと同じ大きさであってもよい。また、偏向パターン39の先端(両平面39a、39bの境界)は、角張っている必要はなく、丸味を帯びていてもよい。
 図13(A)及び図13(B)は、偏向パターン39の異なる形態を表す。偏向パターン39は、導光板38の下面に突出していてもよい。この偏向パターン39も2つの平面によって構成されていて断面三角形状をしているが、光源側からの光を全反射させて光出射面40cから出射させるための第1平面39aは、第2平面39bよりも光源37から遠い側に位置している。第1平面39aの傾斜角αや第2平面39bの傾斜角βは、図11の偏向パターン39の場合と同様な範囲にあればよい。
 図14(A)及び図14(B)は、偏向パターン39のさらに異なる形態を表す。偏向パターン39は、導光板38の上面(光出射面40c)に凹設又は突設されていてもよい。導光板38の上面に設けられた偏向パターン39の場合には、偏向パターン39の第1平面39cに入射した光は、第1平面39cを透過するとともに、第1平面39cを透過するときに屈折し、光出射面40cから斜め上方へ向けて出射される。
 偏向パターン39は、上記のように導光板38の下面に凹設又は突設されていてもよく、導光板38の上面に凹設又は突設されていてもよいが、以下においては、偏向パターン39は導光板38の下面に凹設されているものとして説明する。
 また、偏向パターン39は、図15(A)に示すように、導光板38の幅に比べて短い偏向パターン39を格子状に並べてもよい。偏向パターン39は、図15(B)に示すように、導光板38の幅に比べて短い偏向パターン39を千鳥状に配置してもよい。偏向パターン39は、図15(C)に示すように、ランダムに配置されていてもよい。
 偏向パターン39のパターン密度は50%程度が好ましいが、偏向パターン39からの光Luとミラー42からの光Leとの光量のバランスなどを考慮して適宜定めるのであれば、この値に限るものではない。
(パターンエリアについて)
 偏向パターン39を設けるためのパターンエリアについて説明する。図16-図20は、パターンエリアを説明するための図である。図16に破線矢印で示す光Lbのように、導光板38の出射端面40bから出射した光のうちミラー42に入射しない光はロスとなる。したがって、このようなロス光Lbはできるだけ少なくする必要がある。
 いま、ミラー42は出射端面40bの真っ直ぐ前方に配置されていて、-φよりも下方へ出射する光はほぼミラー42から外れ、+φよりも上方へ出射する光もほぼミラー42から外れ、出射端面40bからの出射角が-φと+φの間の光がほぼミラー42に入射するものとする。なお、出射端面40bから出射される光の出射角は、出射端面40bに垂直な方向を0度とし、上方へ傾いた出射角を正値、下方へ傾いた出射角を負値とする。したがって、出射端面40bからは出射角が+φ以上の光や、-φ以下の光は出射されないことが望ましい。この出射角φ(≧0)は、ミラー42と導光板38の端面位置との関係から決定される。たとえば、出射端面40bとミラー42との水平距離をK、ミラー42の高さをGとすれば、図16から分かるように、
   tanφ≒G/2K
という関係式で表される。
 図17(B)に示すように出射端面40bから出射角φで出射される光が出射端面40bに入射するときの入射角γは、導光板38の屈折率をnとすれば、スネルの法則より、   γ=arcsin(sinφ/n)
で表される。出射端面40bから出射角が+φよりも大きな光や-φよりも小さな光を出射させないためには、+γよりも大きな入射角や-γよりも小さな入射角で光が出射端面40bに入射しなければよい。それには、出射端面40bに垂直な方向に対してγよりも大きな角度で導光する光を偏向パターン39で全反射させて光出射面40cから出射させればよい。
 出射端面40bに垂直な方向に対してγよりも大きな角度で導光する光を偏向パターン39で全反射させてできるだけ少なくし、γよりも小さな角度で導光する光を光出射面40cに到達させるためには、図17(A)から分かるように、導光板38の厚みをtとしたとき、入射端面40aから測って3t/(2tanγ)までの領域に偏向パターン39があればよい。すなわち、偏向パターン39を設けるパターンエリアを入射端面40aから始めて、パターンエリアの長さPを
   P ≧ 3t/(2tanγ)
とすればよい。
 たとえば、φ=20度、導光板38の厚みt=0.5mmで、導光板材料がポリカーボネイト樹脂(屈折率n=1.59)である場合には、γ=12.4度となるので、パターンエリアの最短長さは3.4mmとなる。よって、パターンエリアの長さPは3.4mm以上にすればよい。
 図18は、偏向パターン39によって出射端面40bから出射される光の指向性広がりがどの程度変化するかを検証した際のシミュレーションである。図18の横軸は出射端面40bから出射される光の、出射端面40bに垂直な方向から測った出射角度(上方へ傾いた光の出射角度を正値、下方へ傾いた光の出射角度を負値としている。)を示し、縦軸は各出射角度における光の強度を表している。このシミュレーションに用いたモデルは、長さが11mm、厚みが0.5mm、屈折率が1.59の導光板を用い、導光板38の下面に長さが4mmのパターンエリアを設定し、当該エリア内に傾斜角30度の第1平面39aを有する断面直角三角形状の偏向パターン39を多数配置したものである。図18の細実線で表した光強度曲線は、導光板38に偏向パターン39を設けていない場合であって、出射光の光強度はかなりの広がりを有している。また、太実線で表した光強度曲線は、導光板38の下面に長さP=4mmのパターンエリアを設けた場合である。このパターンエリア内に偏向パターン39を設けた場合には、偏向パターンがない場合に比べて、+20度よりも出射角の大きな領域と-20度よりも出射角の小さな領域の光が大きく減少していて、出射光の光強度はかなり狭い範囲に限定されていることが分かる。この傾向は、導光板の屈折率が変わっても同様である。
 図19は、パターンエリアの長さPが変化したとき、出射端面40bから出射する全光量のうち、どれだけの割合の光量がある一定の範囲内に出射されるかをシミュレーションしたものである。図19の横軸はパターンエリアの長さPを表し、縦軸は出射端面40bから出射する全光量に対する、±20度以内の範囲(上方へ20度の方向と下方へ20度の方向との間)へ出射される光量の割合を表している。ただし、縦軸はパターンエリアの長さPがゼロの場合(つまり、偏向パターン39が存在しない場合)に1となるように規格化している。このシミュレーションに用いたモデルは、長さが11mm、厚みが0.5mm、屈折率が1.59の導光板を用い、導光板下面のパターンエリア内に傾斜角30度の第1平面を有する断面直角三角形状の偏向パターン39を多数配置したものである。図19からは、パターンエリアの長さPが長くなるに従って、出射端面40bから±20度以内の範囲に出射する光の割合が増加して効率がよくなることが分かる(ただし、出射端面40bから出射する全光量は、パターンエリアの長さPが長くなるに従って減少する)。特に、パターンエリアの長さPが3.4mmの場合には、±20度以内の範囲に出射する光量は偏向パターンがない場合の1.7倍になっている。このような傾向は、±20度以外の範囲であっても同様である。また、この傾向は、導光板の屈折率が変わっても、パターンエリアがどの位置にあっても、同様である。
 また、これまでは入射端面40aから長さPまでの範囲をパターンエリアとした(図17)が、図20(A)、(B)、(C)に例示するように、パターンエリアの長さPをそのままにしてパターンエリアを任意の位置に変更してもよい。パターンエリアの長さPが同じであれば、パターンエリアがどの位置から始まっていても、出射端面40bから出射する光をある範囲内に集める効果に変わりはないからである。
(異なるミラー形状)
 図21(A)及び図21(B)は異なるミラー形状を示す図である。ミラー42は、図21(A)に示すように、1枚の平面ミラーを用いてもよい。1枚の平面ミラーを用いることで、ミラー42のコストを低減できる。また、ミラー42は、図21(B)に示すように、凹面鏡状のミラーを用いてもよい。凹面鏡状のミラーを用いれば、原稿に照射する光を集光させて照度を高くすることができる。
〔第2の実施形態〕
 図22は本発明の実施形態2による画像読取装置61の概略図である。この画像読取装置61は、実施形態1の画像読取装置31とは導光板38の構造が異なっている。他の部分は、実施形態1と同様であるので、説明は省略する。
 この画像読取装置61に用いられている導光板38は、禁止スペースSaを横断するようにして水平に配置されている。偏向パターン39は、導光板38のうち原稿33で反射して撮像素子36に入射する光の光路(禁止スペースSa)が通過する領域よりも光源37に近い側に設けられている。導光板38のうち原稿33で反射して撮像素子36に入射する光の光路が通過する領域は、上面及び下面が平滑に形成されており、かつ、上面と下面とが平行に形成されている(また、当然ながら透明となっている)。したがって、導光板38が当該光路を横断していても、原稿33で反射されて撮像素子36に入射する光が導光板38で遮られることがなく、画像の読み取り性能が低下しにくい。
 導光板38の出射端面40bは、禁止スペースSaを越えた位置でミラー42に対向している。このような配置によれば、ミラー42を出射端面40bに接近させることができるので、ミラー42の高さを小さくすることができる。この結果、光照射装置34の高さをより小さくでき、画像読取装置61をコンパクト化できる。
〔第3の実施形態〕
 図23は、本発明の実施形態3の画像読取装置に用いられている導光板38の形状を示す概略断面図である。この導光板38では、光源37に近い側の偏向パターン39の第1平面39aの傾斜角よりも、光源37から遠い側の偏向パターン39の第1平面39aの傾斜角の方が大きくなるようにしている。すなわち、偏向パターン39の第1平面39aの傾斜角を、光源37に近い側から遠い側へ向けて次第に、あるいは区分的に次第に大きくなるように変化させている。このような実施形態によれば、光源37に近い部分で光出射面40cから出射する光よりも、光源37から遠い部分で光出射面40cから出射する光の方が光出射面40cに垂直な方向に近づくので、光出射面40cから出射される光Luは集光して原稿33に照射され、照度が高くなる。
〔第4の実施形態〕
 図24は本発明の実施形態4の画像読取装置62を示す概略図である。この画像読取装置62では、導光板38は、禁止スペースSaを横断するようにして水平に配置されている。偏向パターン39は、導光板38のうち原稿33で反射して撮像素子36に入射する光の光路(禁止スペースSa)が通過する領域よりも光源37に近い側に設けられている。また、導光板38のうち原稿33で反射して撮像素子36に入射する光の光路が通過する領域よりも光源37から遠い側に複数個の反射用パターン63が設けられている。
 反射用パターン63は、2つの平面によって構成されていて断面三角形状のプリズム状をしている。反射用パターン63は、導光板38の幅方向に沿って延びていて、均一な断面形状を有している。また、反射用パターン63は導光板38の長さ方向に沿って配列されている。偏向パターン39も反射用パターン63も禁止スペースSa内に入り込まないように設けられている。なお、反射用パターン63は、導光板38の下面に突出していてもよく、また導光板38の上面に凹設又は突設されていてもよい。
 偏向パターン39は、図25(A)に示すように、光源側に位置する第1平面39aで光を全反射させて禁止スペースSaの上方へ向けて斜めに光Luを出射させるものであり、その傾斜角度αは40度以下であることが望ましい。また、反射用パターン63は、図25(B)に示すように、光源側に位置する第1平面63aで光を全反射させて禁止スペースSaの上方へ向けて斜めに光Leを出射させるものである。すなわち、反射用パターン63で全反射されて光出射面40cから出射する光Leの指向角θは負値にならなければならないので、図12のシミュレーション結果を援用すれば、反射用パターン63の第1平面63aの傾斜角度εは、45度以上であることが望ましいことが分かる。
 この実施形態では、原稿33で反射して撮像素子36に入射する光の光路は、偏向パターン39の設けられている領域と反射用パターン63の設けられている領域との中間で導光板38を通過しており、導光板38の当該光路が通過する領域は、上面及び下面が平滑に形成されており、かつ、上面と下面とが平行に形成されている。したがって、導光板38が当該光路を横断していても、原稿33で反射されて撮像素子36に入射する光が導光板38で遮られることがなく、画像の読み取り性能が低下しにくい。
 この実施形態では、ミラーを用いていないので、光照射装置34の高さをより一層小さくでき、画像読取装置61をコンパクト化できる。また、ミラーを用いていないので、光照射装置34のコストを安価にでき、ミラーの位置や角度を調整する必要がないので、組立も容易になる。
 また、プリズム状をした反射用パターン63で全反射させた光は、光出射面40cに全反射の臨界角よりも小さな入射角で入射した光だけが光出射面40cから出射されるので、出射光Leは指向性が狭くなる。よって、出射光Leの広がりを小さくして原稿33の照度を高くできる。
〔第5の実施形態〕
 図26は、本発明の実施形態5による画像読取装置64を示す概略図である。この画像読取装置64は、実施形態4の画像読取装置62を基礎として、さらに光利用効率の向上を図ったものである。この画像読取装置64では、出射端面40bと対向させて平行にミラー65を配置し、光出射面40cから漏れた光をミラー65で反射させることによって光出射面40cから導光板38内へ再入射させている。図27(A)に示すように、再入射した光は、反射用パターン63の第2平面63b、すなわち第1平面63aよりも光源37から遠い側に位置している反射用パターン63のもう一方の傾斜面に入射する。第2平面63bで全反射された光Leは、第1平面63aで全反射した光Leとほぼ平行な方向へ出射される。
 第1平面63aの傾斜角度εは45度以上であったが、図12を参照すれば、第2平面63bの傾斜角度νは40度以下であることが望ましい。また、第1平面63aと第2平面63bはそれぞれの全反射光が平行に出射されるように各傾斜角度ε、νを決めることが望ましい。
 この実施形態によれば、反射用パターン63で全反射されることなく出射端面40bに達し、出射端面40bから外部へ漏れた光をミラー42で反射させて導光板38へ再入射させることができる。そして、この再入射した光を反射用パターン63で全反射して出射させることができる。よって、光利用効率が高くなり、原稿33の照度が高くなる。
 なお、反射用パターン63は、図27(B)に示すように、プリズム状に突出していてもよい。この場合には、光源側からの光を全反射させる第1平面63aは光源から遠い側の傾斜面となり、戻ってきた光を全反射させる第2平面63bは光源に近い側の傾斜面となる。
〔第6の実施形態〕
 図28は、本発明の実施形態6による画像読取装置を示す概略図である。この画像読取装置では、光照射装置34は移動ステージ(図示せず)の上に固定されており、移動ステージによって水平方向に副走査される。結像光学系35及び撮像素子36は固定されている。光照射装置34は、反射ミラー69を備えており、原稿33で反射した光は、反射ミラー69で反射されることによって水平な光路に変換される。反射ミラー69で反射された光は光路調整装置66に入射し、光路調整装置66内の2枚の反射ミラー67、68によって回帰反射される。そして、回帰反射した水平な光路の光は、結像光学系35を通って撮像素子36に入射する。光路調整装置66は、水平に平行移動できるようになっており、その移動量は、光照射装置34がどこにあっても原稿33の光照射面から撮像素子36までの光路長が一定となるように制御される。
 このような画像読取装置によれば、結像光学系35及び撮像素子36を固定することができるので、画像読取装置の構造を簡単にすることができる。しかも、光照射装置34が移動し、撮像素子36が静止していても、光路調整装置66により原稿33の光照射面から撮像素子36までの光路長が一定となるように調整されるので、原稿33の全体が均一な精度で読み取られる。
〔第7の実施形態〕
 図29は、本発明に係る画像読取装置、たとえば実施形態6の画像読取装置を用いたスキャナ71の概略ブロック図である。処理回路72は、読取指示の命令を受け取ると、光照射装置34を発光させて原稿33に光を照射しながら、光照射装置34を走査させる。このとき同時に、処理回路72は光路調整装置66の移動距離を制御する。また、撮像素子36から出力された電気信号はシリアルデータとして処理回路72へ送られ、所定の画像情報に変換されてメモリやハードディスクなどの記憶装置73に一時保存される。記憶装置73に保存された画像情報は要求に応じて出力部74から外部のパソコンなどへ送信される。なお、記憶装置73は、パソコン内の記憶装置あってもよい。
〔第8の実施形態〕
 図30は、本発明に係る画像読み取り装置82を用いた複写装置81の概略ブロック図である。処理回路83は、スタート命令を受け取ると、画像読取装置82を稼働させて原稿33を読み取らせる。画像読取装置82から出力された電気信号はシリアルデータとして処理回路83へ送られ、所定の画像情報に変換されてメモリやハードディスクなどの記憶装置84に一時保存される。ついで、記憶装置84に保存された画像情報は、感光ドラムやトナー、給紙装置などを備えた印刷装置85へ送られ、印刷装置85から印刷物が出力される。
 31、61、62、64   画像読取装置
 33   原稿
 34   光照射装置
 35   結像光学系
 36   撮像素子
 37   光源
 38   導光板
 39   偏向パターン
 42   ミラー
 43a   反射板
 43b   反射板
 63   反射用パターン
 65   ミラー
 66   光路調整装置
 71   スキャナ
 81   複写装置

Claims (14)

  1.  光源と、
     前記光源から発した光を一方端部から取り込んで導光させる導光板と、
     前記導光板の主面に設けた複数個の偏向パターンからなり、前記導光板内を導光する光の一部を全反射させて前記導光板の一方の主面から出射させる第1の光反射手段と、
     前記導光板内の前記第1の光反射手段が設けられた領域を通過した光を、前記第1の光反射手段で全反射された光と同じ主面側へ向けて反射させる第2の光反射手段とを備え、 前記第1の光反射手段で全反射され前記導光板の主面から出射された光が、当該主面に垂直な方向から前記第2の光反射手段側へ傾いた方向に向けて出射され、
     前記第2の光反射手段で反射された光が、前記導光板の主面に垂直な方向から前記第1の光反射手段側へ傾いた方向に向けて出射されるように構成された光照射装置。
  2.  前記第2の光反射手段は、前記導光板の他方端部に位置する端面に対向させて斜めに配置されたミラーであることを特徴とする、請求項1に記載の光照射装置。
  3.  前記第2の光反射手段は、前記導光板の他方端部に位置する端面に対向させて当該端面と平行に配置されたミラーと、前記導光板の主面に設けられていて前記ミラーで反射して前記導光板内へ戻った光を全反射させて前記導光板の主面から出射させる複数個の反射用パターンとからなることを特徴とする、請求項1に記載の光照射装置。
  4.  前記反射用パターンにおいて前記ミラーで反射して戻ってきた光を全反射させるための傾斜面の傾斜角が40度以下であることを特徴とする、請求項3に記載の光照射装置。
  5.  前記導光板の厚みをt、前記導光板の屈折率をn、前記導光板の他方端部に位置する端面から前記ミラーの上下両端へ延ばした両線分どうしのなす角度を2φとしたとき、
     前記導光板において前記偏向パターンを形成された領域の、前記導光板端面に垂直な方向に沿った長さPが、
       P≧3t/(2tanγ)
       ただし、γ=arcsin(sinφ/n)
    という条件を満たしていることを特徴とする、請求項2又は3に記載の光照射装置。
  6.  前記第2の光反射手段は、前記導光板の主面に設けられていて前記導光板内の光を全反射させて前記導光板の主面から出射させる複数個の反射用パターンからなることを特徴とする、請求項1に記載の光照射装置。
  7.  前記偏向パターンにおいて光を全反射させるための傾斜面の傾斜角が40度以下であり、前記反射用パターンにおいて光を全反射させるための傾斜面の傾斜角が45度以上であることを特徴とする、請求項6に記載の光照射装置。
  8.  読取対象物に光を照射させるための、請求項1に記載の光照射装置と、
     前記読取対象物の像を読み取る撮像素子と、
     前記読取対象物で反射した反射光を前記撮像素子に結像させるための結像光学系とを備え、
     前記読取対象物により反射され前記第1の光反射手段と前記第2の光反射手段の間を通って前記撮像素子に入射する光が、前記第1の光反射手段と前記第2光反射手段との間で遮光されないように構成されていることを特徴とする画像読取装置。
  9.  前記導光板は、前記読取対象物と平行に配置されていることを特徴とする、請求項8に記載の画像読取装置。
  10.  前記導光板と前記第2の光反射手段は、前記光路内に入り込まないように配置されていることを特徴とする、請求項8に記載の画像読取装置。
  11.  前記導光板は、前記読取対象物により反射され前記撮像素子に入射する光の光路を横断するように配置され、
     前記導光板のうち前記光路が通過する領域は、透明かつ平滑に形成されていることを特徴とする、請求項8に記載の画像読取装置。
  12.  前記光照射装置は前記読取対象物と平行な方向に移動可能であり、前記結像光学系と前記撮像素子は固定されており、
     前記光照射装置が移動しても前記光照射装置と前記結像装置との間の光路長が一定となるように調整する光路調整装置を備えていることを特徴とする、請求項8に記載の画像読取装置。
  13.  請求項8に記載の画像読取装置と、
     前記画像読取装置により取得された画像を所定形式の画像データとして取り出す処理回路とを備えたスキャナ。
  14.  請求項8に記載の画像読取装置と、
     画像データに基づいて当該画像を印刷する印刷装置と、
     前記画像読取装置により取得された画像を所定形式の画像データとして取り出し、当該画像データに基づいて前記印刷装置により画像を複製させる処理回路とを備えた複写装置。
PCT/JP2011/057198 2011-03-15 2011-03-24 光照射装置及び画像読取装置 WO2012124172A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011057298A JP2012195709A (ja) 2011-03-15 2011-03-15 光照射装置及び画像読取装置
JP2011-057298 2011-03-15

Publications (1)

Publication Number Publication Date
WO2012124172A1 true WO2012124172A1 (ja) 2012-09-20

Family

ID=46830276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057198 WO2012124172A1 (ja) 2011-03-15 2011-03-24 光照射装置及び画像読取装置

Country Status (2)

Country Link
JP (1) JP2012195709A (ja)
WO (1) WO2012124172A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5915126B2 (ja) * 2011-11-30 2016-05-11 株式会社リコー 照明装置および画像読取装置
JP6136155B2 (ja) * 2012-09-14 2017-05-31 株式会社リコー 原稿照明ユニット、原稿読取装置、及び画像形成装置
JP6123989B2 (ja) * 2013-02-19 2017-05-10 株式会社リコー 光照射光学系、画像読取装置、画像形成装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000101788A (ja) * 1998-09-18 2000-04-07 Ricoh Co Ltd 照明装置
JP2009295598A (ja) * 2009-09-18 2009-12-17 Toppan Printing Co Ltd 導光板、それを用いた照明装置および表示装置
JP2010252340A (ja) * 2009-04-17 2010-11-04 Toshiba Corp 照明装置および画像読取装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000101788A (ja) * 1998-09-18 2000-04-07 Ricoh Co Ltd 照明装置
JP2010252340A (ja) * 2009-04-17 2010-11-04 Toshiba Corp 照明装置および画像読取装置
JP2009295598A (ja) * 2009-09-18 2009-12-17 Toppan Printing Co Ltd 導光板、それを用いた照明装置および表示装置

Also Published As

Publication number Publication date
JP2012195709A (ja) 2012-10-11

Similar Documents

Publication Publication Date Title
TW460716B (en) Light guide, line illumination apparatus, and image acquisition system
US8167475B2 (en) Linear lighting apparatus and image reader using the same
US7755811B2 (en) Document illuminator
US8830542B2 (en) Illumination apparatus and image reading apparatus
JP5654137B2 (ja) 照明ユニット及びそれを用いた画像読取装置
EP2773094B1 (en) Lighting unit and image scanner using same
JP3043239B2 (ja) 画像読み取り装置
KR20110100578A (ko) 광원 장치
JP2001005122A (ja) 照明装置及びそれを備えるイメージセンサ、原稿読取装置、情報処理システム
WO2012124172A1 (ja) 光照射装置及び画像読取装置
JP6435790B2 (ja) 光照射装置、画像読取装置及び画像形成装置
JP6299636B2 (ja) 照明装置、及び画像読取装置
JP5012790B2 (ja) 照明装置及びそれを用いた画像読取装置
JP2010109652A (ja) 照明装置及び画像読取装置
US7760434B2 (en) Document illuminator with surface lens
JP2005252646A (ja) 画像読取装置
US7746520B2 (en) Document illuminator
US7715063B2 (en) CVT integrated illuminator
JP2009077005A (ja) 照明装置、及び該照明装置を有する画像読取装置
JP2013197606A (ja) 画像読取装置
JP2000101790A (ja) 照明装置
US20160212291A1 (en) Light guide, illuminating device and image reading apparatus
JP2000224379A (ja) 画像読取り装置
WO2013042348A1 (ja) 読取装置
JP6520402B2 (ja) 光照射装置、画像読取装置及び画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860748

Country of ref document: EP

Kind code of ref document: A1