WO2012122879A1 - Mems惯性传感器及其形成方法 - Google Patents

Mems惯性传感器及其形成方法 Download PDF

Info

Publication number
WO2012122879A1
WO2012122879A1 PCT/CN2012/071495 CN2012071495W WO2012122879A1 WO 2012122879 A1 WO2012122879 A1 WO 2012122879A1 CN 2012071495 W CN2012071495 W CN 2012071495W WO 2012122879 A1 WO2012122879 A1 WO 2012122879A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
sensor
mems inertial
inertial sensor
Prior art date
Application number
PCT/CN2012/071495
Other languages
English (en)
French (fr)
Inventor
柳连俊
Original Assignee
迈尔森电子(天津)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 迈尔森电子(天津)有限公司 filed Critical 迈尔森电子(天津)有限公司
Priority to US14/004,838 priority Critical patent/US9958471B2/en
Publication of WO2012122879A1 publication Critical patent/WO2012122879A1/zh
Priority to US15/924,789 priority patent/US10591508B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00341Processes for manufacturing microsystems not provided for in groups B81C1/00023 - B81C1/00261
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5769Manufacturing; Mounting; Housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0814Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type

Definitions

  • the present invention relates to the field of semiconductor technology, and in particular, the present invention relates to a MEMS inertial sensor and a method of forming the same. Background technique
  • Inertial sensors are instruments that measure acceleration and angular velocity.
  • MEMS Micro-Electro-Mechanical-System
  • MEMS inertial sensors generally employ a capacitive inertial sensor, which generally includes a fixed electrode that detects the motion of the object, and a movable sensitive element (generally called a movable electrode) that causes a change in capacitance between the object and the fixed electrode. And an electrical signal connection electrically connected to the fixed electrode and the movable electrode.
  • the movable sensitive elements generally also act as masses to reduce the bulk weight of the entire device. As far as the mass itself is concerned, the greater the mass, the greater the inertia.
  • polysilicon method In the prior art, companies such as Bosch, ST, Freescale, and ADI mostly use deposited polycrystalline silicon as a structural material for fabricating MEMS inertial sensors (hereinafter referred to as polysilicon method).
  • the polysilicon method has the advantages of a process cartridge, but the material stress is large, which affects the repeatability of the device on the one hand.
  • the thickness thereof is small, which limits the size of the sensor, It is conducive to the production of high-sensitivity inertial sensors, and because of its poor reproducibility, the production yield is reduced, resulting in increased costs.
  • 6,170,332 B1 discloses a micromechanical acceleration sensor fabricated using a single silicon wafer to form portions of a MEMS inertial sensor in a wafer by etching, but due to etching techniques The inherent defects - unevenness, the resulting sensor performance such as reliability will be affected.
  • the Z-axis sensor of the aforementioned U.S. patent detects the magnitude of the Z-axis acceleration by causing a change in capacitance due to a change in the capacitance area caused by the displacement in the vertical direction, so that the design of the vertical direction (Z-axis) sensor is limited.
  • the problem solved by the present invention is to provide a MEMS inertial sensor and a method for forming the same, which overcomes the defects of the prior art MEMS inertial sensor with poor reliability and repeatability and low yield.
  • an embodiment of the present invention provides a MEMS inertial sensor, including: a movable sensitive element, a second substrate and a third substrate; wherein the movable sensitive element is formed by using a first substrate, a substrate is a single crystal semiconductor material, the first substrate includes opposing first and second surfaces, and the first surface of the first substrate is formed with one or more conductive layers, the second a substrate bonded to a surface of one or more conductive layers on the first substrate, the third substrate being bonded to a side of the movable sensitive element, and the third substrate and the second The substrates are respectively located on opposite sides of the movable sensitive element.
  • the one or more conductive layers comprise a first electrical shielding layer of the MEMS inertial sensor, an interconnect layer, a support point of the fixed electrode, a support point of the movable sensitive element, or any combination of the foregoing structures.
  • the interconnect layer includes one or more interconnect layers.
  • the one or more conductive layers comprise a first electrical shielding layer.
  • the one or more conductive layers comprise a first electrical shielding layer and an interconnect layer, the interconnect layer being closer to the first surface of the first substrate than the first electrical shielding layer .
  • the MEMS inertial sensor further comprises an anti-blocking structure, the anti-blocking structure being fabricated using the first substrate, or the one or more conductive layers.
  • the MEMS inertial sensor is an acceleration sensor, and the acceleration sensor package Includes an X-axis sensor, a Y-axis sensor, a Z-axis sensor, or any combination thereof.
  • the MEMS inertial sensor is a corner, and the corner includes an X-axis corner, a Y-axis corner, or a Z-axis corner or any combination thereof, the corner further includes a detecting electrode and a fixed electrode.
  • the one or more conductive layers comprise a first electrical shielding layer of a MEMS inertial sensor, the second substrate being bonded to the first substrate directly or via a conductive bonding layer On the electrical shielding layer, the second substrate and the first electrical shielding layer together serve as an electrical shielding layer of the sensor.
  • the one or more conductive layers comprise a first electrical shielding layer of a MEMS inertial sensor
  • the second substrate is bonded to one or more layers on the first substrate by a bonding layer
  • the bonding layer includes at least one insulating layer
  • the first electrical shielding layer serves as an electrical shielding layer of the sensor.
  • the second surface of the first substrate is a thinned surface, and the movable sensitive element of the sensor is formed by using the thinned first substrate.
  • an embodiment of the present invention further provides a method for forming a MEMS inertial sensor, including: providing a first substrate, the first substrate is a single crystal semiconductor substrate, and the first substrate has a first surface And a second surface opposite thereto; forming one or more conductive layers on the first surface of the first substrate; providing a second substrate; bonding the second substrate to the first substrate a surface of the layer or the plurality of conductive layers; forming a movable sensitive element from the second surface side of the first substrate with the first substrate; providing a third substrate; bonding the third substrate to the movable sensitive On one side of the element, the third substrate and the second substrate are respectively located on opposite sides of the movable sensitive element.
  • the one or more conductive layers comprise a first electrical shielding layer of the MEMS inertial sensor, an interconnect layer, a support point of the fixed electrode, a support point of the movable sensitive element, or any combination of the foregoing structures.
  • the interconnect layer includes one or more interconnect layers.
  • the one or more conductive layers comprise a first electrical shielding layer.
  • the one or more conductive layers comprise a first electrical shielding layer and an interconnect layer, the interconnect layer being closer to the first surface of the first substrate than the first electrical shielding layer .
  • the method further comprises: fabricating the first substrate or the one or more conductive layers Anti-blocking structural steps of MEMS inertial sensors.
  • the MEMS inertial sensor is an acceleration sensor, and the acceleration sensor comprises an X-axis sensor, a Y-axis sensor, a Z-axis sensor or any combination thereof.
  • the MEMS inertial sensor is a corner, and the corner includes an X-axis corner, a Y-axis corner, a Z-axis corner, or any combination thereof.
  • the method further comprises the step of forming a fixed electrode of the corner device using the first substrate.
  • the one or more conductive layers comprise a first electrical shielding layer of the sensor, and the second substrate is bonded to the one or more conductive layers on the first substrate directly or through the bonding layer.
  • the one or more conductive layers comprise a first electrical shielding layer of the sensor
  • the second substrate is bonded to the one or more conductive layers on the first substrate directly or through the bonding layer.
  • the surface is a second substrate bonded to the one or more conductive layers on the first substrate via a bonding layer, the bonding layer comprising at least one insulating layer, the first electrical shielding The layer acts as an electrical shield for the sensor.
  • the method further comprises performing a thinning step from the second surface side of the first substrate.
  • the technical solution has the following advantages: by using a single crystal semiconductor material (first substrate) to fabricate sensor sensitive elements, a movable sensor of a thick inertial sensor can be prepared, that is, a movable electrode Therefore, the quality of the mass can be increased, the sensitivity and reliability of the MEMS inertial sensor can be improved, and the sensor sensitive element can be improved by using the single crystal semiconductor material (the first substrate) to improve the repeatability and yield of the MEMS inertial sensor.
  • one or more conductive layers are further formed on the first substrate, and the one or more conductive layers may be used to fabricate an electrical shielding layer of a MEMS inertial sensor, a MEMS inertial sensor.
  • the interconnect layer, the fixed electrode of the MEMS inertial sensor, the support point of the fixed electrode of the MEMS inertial sensor, the support point of the movable sensitive element of the MEMS inertial sensor, or any combination of the foregoing structures thus reducing the manufacturing process on the one hand Difficulty, increased flexibility in making MEMS inertial sensors and easier layout, and increased with other devices
  • the MEMS inertial sensor is prevented from being disturbed by the external environment.
  • the MEMS inertial sensor of the embodiment of the present invention includes an anti-blocking structure, and the anti-blocking structure is fabricated by using the first substrate or the one or more conductive layers to form a process cartridge of an anti-blocking structure.
  • FIG. 1 is a schematic view showing the structure of a sensor of an X-axis and a Y-axis according to an embodiment of the present invention
  • FIG. 2 is a perspective view showing a three-dimensional structure of a sensor of an embodiment of the present invention
  • FIG. 3 is another embodiment of the present invention. Schematic diagram of the three-dimensional sensor of the example;
  • FIG. 4 is a schematic structural view of a cornering device according to an embodiment of the present invention
  • FIG. 5 is a schematic cross-sectional structural view of a cornering device according to an embodiment of the present invention
  • FIG. 6 is a flow chart of a method for forming an inertial sensor according to an embodiment of the present invention.
  • 7 to 17 are schematic cross-sectional views showing a method of forming an inertial sensor of the present invention according to an embodiment of the present invention;
  • FIG. 18 to 21 are schematic cross-sectional views showing a method of forming an inertial sensor with an anti-blocking structure according to an embodiment of the present invention
  • Figs. 22 to 24 are diagrams showing an inertial sensor having an anti-blocking structure according to another embodiment of the present invention.
  • FIG. 25 to FIG. 28 are schematic cross-sectional views showing a method of forming an inertial sensor with an anti-blocking structure according to still another embodiment of the present invention.
  • a movable sensor of a thick inertial sensor can be prepared, that is, a movable electrode can improve the sensitivity and reliability of the MEMS inertial sensor.
  • a single crystal semiconductor material (first substrate) making sensor-sensitive elements can improve the repeatability and yield of MEMS inertial sensors.
  • one or more conductive layers are further formed on the first substrate, and the one or more conductive layers may be used to fabricate an electrical shielding layer of a MEMS inertial sensor, a MEMS inertial sensor.
  • the interconnect layer, the fixed electrode of the MEMS inertial sensor, the support point of the fixed electrode of the MEMS inertial sensor, the support point of the movable sensitive element of the MEMS inertial sensor, or any combination of the foregoing structures thus reducing the manufacturing process on the one hand Difficulty, increased flexibility in making MEMS inertial sensors and easier layout, and increased with other devices to prevent the MEMS inertial sensors from being disturbed by the external environment.
  • the MEMS inertial sensor of the embodiment of the present invention includes an anti-blocking structure, and the anti-blocking structure is fabricated by using the first substrate or the one or more conductive layers to form a process cartridge of an anti-blocking structure.
  • an embodiment of the present invention provides a MEMS inertial sensor, including: a movable sensitive element; a second substrate and a third substrate, the movable sensitive element being located between the second substrate and the third substrate
  • the movable sensitive element is formed using a first substrate, the first substrate is a single crystal semiconductor material, and the first substrate includes opposing first and second surfaces, the first substrate Forming one or more conductive layers on the first surface, the second substrate being combined with a surface of one or more conductive layers on the first substrate, the third substrate and the movable
  • the side of the sensitive element opposite the second substrate is bonded.
  • the second substrate may be directly bonded or bonded to a surface of one or more conductive layers on the first substrate by a bonding layer, where the third substrate and the second substrate are respectively located The opposite sides of the movable sensitive element.
  • the MEMS inertial sensor of the present invention may be an acceleration sensor or a cornering device (also known as a gyroscope), and both the cornering device and the acceleration sensor include sensor units for signal conversion (such as converting acceleration or rotational angular velocity into electrical signals).
  • the sensor unit includes a movable sensitive element (also referred to as a movable electrode), a fixed electrode, and an interconnect layer for correspondingly extracting the movable electrode and the fixed electrode, and a support point for supporting the movable electrode and the fixed electrode.
  • the sensor unit is a core structure of the MEMS inertial sensor, and the movable electrode of the MEMS inertial sensor of the present invention
  • the material is a single crystal semiconductor material.
  • the acceleration sensor includes an X-axis sensor, a Y-axis sensor, a Z-axis sensor, or a combination thereof.
  • FIG. 1 is a schematic top view of an X-axis sensor of an acceleration sensor according to an embodiment of the present invention, including: a fixed electrode and Moving electrode.
  • the fixed electrode includes two adjacent fixed electrode fingers, which are a first fixed electrode finger 101 and a second fixed electrode finger 102, respectively.
  • the movable electrode includes movable electrode fingers arranged in parallel, which are a first movable electrode finger 103 and a second movable electrode finger 104, respectively, and two ends of all movable electrode fingers are respectively connected to two parallel movable connections.
  • Each of the two adjacent fixed electrode fingers is staggered with a movable electrode finger in the middle, such that the first fixed electrode finger 101 and the first movable electrode finger 103 constitute a first capacitor, and the second fixed electrode finger 102 and The second movable electrode finger 104 constitutes a second capacitor.
  • the acceleration sensor When the movable electrode moves along the X axis, the distance between the two plates of the capacitor changes, and the changes of the two capacitors are reversed. By detecting the changed capacitance, the acceleration sensor can be obtained. Acceleration along the X-axis direction.
  • the acceleration sensor may further include a Y-axis sensor.
  • the structure of the Y-axis sensor is similar to that of the X-axis sensor, and will not be described in detail herein.
  • the accelerometer further includes a Z-axis sensor.
  • the structure of the Z-axis sensor generally has two structures. For details, please refer to FIG. 2 and FIG. 3. Referring first to FIG.
  • the method includes: a fixed electrode and a movable electrode, the fixed electrode
  • the first fixed electrode 201 and the second fixed electrode 202 are included, and the movable electrode includes a first movable electrode 203 and a second movable electrode 204, and the fixed electrode is fixed on the substrate 200.
  • the movable electrode is movable around the torsion axis 206, and the movable electrode is further provided with a weighting beam.
  • a weighting beam 205 is disposed outside the second movable electrode 204. Therefore, the movable electrode has an asymmetrical structure with respect to the torsion axis 206.
  • the fixed electrode and the movable electrode constitute two plates of the capacitor.
  • Another Z-axis sensor includes: a movable electrode and a fixed electrode, wherein the movable electrode includes a plurality of movable electrode fingers 301, and the middle portions of the plurality of movable electrode fingers 301 are connected by a beam
  • the fixed electrode includes a first fixed electrode finger 302 and a second fixed electrode finger 303, the first fixed electrode finger 302 and the second fixed electrode finger 303
  • the movable electrode fingers 301 are disposed opposite to each other to form two capacitors.
  • the above two types of xenon sensors have different structures, and the sensing principle is similar. Both are based on the change of the capacitance of the capacitor formed between the movable electrode and the fixed electrode to sense the acceleration information in the x-axis direction, but the difference between the two is
  • the structure shown in Fig. 2 is based on changing the distance between the two plates of the capacitor, and the structure shown in Fig. 3 is changed in accordance with the area between the two plates of the capacitor.
  • FIG. 4 is a schematic plan view showing the structure of the corner device
  • FIG. 5 is a schematic cross-sectional view along AA of FIG. 4.
  • the corner device includes: a movable electrode, a fixed electrode, a detecting electrode, specifically, the movable electrode
  • the first movable electrode 901 and the second movable electrode 902 are included;
  • the fixed electrode includes a first fixed electrode 903, a second fixed electrode 904, and a third fixed electrode 905, and the third fixed electrode 905 is located at the first fixed electrode.
  • the first movable electrode 901 is located between the first fixed electrode 903 and the third fixed electrode 905, and the second movable electrode 902 is located at the second fixed electrode 904
  • the third fixed electrodes 905 two first finger capacitors are formed between the first movable electrode 901 and the first fixed electrode 903 and the third fixed electrode 905, and the second movable electrode 902 and the second fixed electrode are respectively fixed.
  • Two interdigital capacitors are respectively formed between the electrode 904 and the third fixed electrode 905.
  • the first fixed electrode 903 is moved in the direction, and when there is a potential difference between the third fixed electrode 905 and the first movable electrode 901, the first movable electrode 901 moves toward the third fixed electrode 905.
  • the same is true between the second movable electrode 902 and the second fixed electrode 904 and the third fixed electrode 905, so that the first movable electrode 901 and the second movable electrode 902 are in an alternating current electrical signal. Under the action, it will move toward the first fixed electrode 903 or the second fixed electrode 904, or move toward the third fixed electrode 905, respectively.
  • the corner further includes a first detecting electrode 906 and a second detecting electrode 907, and the first detecting electrode 906 and the second detecting electrode 907 respectively have an intersection with the first movable electrode 901 and the second movable electrode 902 a stacking area, and a cavity or medium between the detecting electrode and the movable electrode, Referring to FIG. 5, a capacitor is formed between the detecting electrode and the movable electrode.
  • the first movable electrode 901 and the second movable electrode 902 move in the X-axis direction, the device has a Y-axis along the Y-axis.
  • the first movable electrode 901 and the second movable electrode 902 When rotating, the first movable electrode 901 and the second movable electrode 902 generate displacement in the Z-axis direction, and the capacitance of the capacitor formed between the detecting electrode and the movable electrode is changed, so that the angular velocity can be perceived. information.
  • the foregoing acceleration sensor and the structure of the cornerer only give the structure of the fixed electrode and the movable electrode portion, and the actual acceleration sensor and the corner device further include other structures, including, for example, a first substrate for forming a movable electrode,
  • the first substrate is a single crystal semiconductor material, and the first substrate includes a first surface and a second surface.
  • the second surface of the first substrate is a thinned surface, and the MEMS inertial sensor including the acceleration sensor and the movable electrode of the corner is formed using the thinned first substrate.
  • the MEMS inertial sensor may further include a second substrate, the second substrate is mainly used for mechanical support, and the second substrate is bonded to a surface of one or more conductive layers on the first substrate .
  • the one or more conductive layers comprise a first electrical shielding layer of the sensor (the first electrical shielding layer is a conductive layer furthest from the first surface of the first substrate), whether the layer or Whether the multilayer conductive layer includes an interconnect layer of a sensor, the second substrate may be bonded to a surface of the first electrical shield layer on the first substrate.
  • the second substrate is bonded to the first electrical shielding layer on the first substrate directly or via a conductive bonding layer, the second substrate and the first electrical shielding layer together An electrical shielding layer of the sensor; if the second substrate is bonded to one or more conductive layers on the first substrate via a bonding layer, and the bonding layer includes at least one insulating layer
  • the first electrical shielding layer acts alone as an electrical shielding layer of the sensor.
  • the MEMS inertial sensor may further include a third substrate coupled to one side of the movable electrode of the sensor.
  • the third substrate is used to seal the sensor while including circuitry.
  • One or more conductive layers are formed on the first surface of the first substrate, and the one or more conductive layers may be a first electrical shielding layer of the MEMS inertial sensor, an interconnection layer of the MEMS inertial sensor, and a MEMS The support point of the fixed electrode of the inertial sensor, the support point of the movable electrode of the MEMS inertial sensor, or any combination of the foregoing structures.
  • the one or more conductive layers comprise a first electrical shielding layer, or both a first electrical shielding layer and an interconnect layer, wherein the one or more conductive layers comprise a first electrical shielding layer and an interconnect layer
  • the interconnect layer is closer to the first surface of the first substrate than the first electrical shield layer.
  • the interconnect layer includes one or more interconnecting wires electrically connected to the fixed electrode, the movable electrode, and the detecting electrode (corner) of the MEMS inertial sensor.
  • the support point is for fixing an electrode required to support the sensor, and the support point generally includes a connecting arm electrically connecting the movable electrode, the fixed electrode, the detecting electrode (corner), and for fixing the movable The fixed end of the electrode, the fixed electrode, and the detecting electrode.
  • the one or more conductive layers are only the first electrical shielding layer of the MEMS inertial sensor, other structures required for the MEMS inertial sensor such as a fixed electrode, a detecting electrode (corner), an interconnect layer, a support point, etc. It can be formed on other substrates.
  • a fixed electrode and a support point by using a conductive layer forming the first electrical shielding layer, and to form an interconnection layer, a detecting electrode (corner) and the like on other substrates;
  • a support point may be formed using the first substrate, such as a support point of the movable electrode.
  • the one or more conductive layers are interconnect layers of MEMS inertial sensors
  • other structures required for the MEMS inertial sensors such as fixed electrodes, probe electrodes (corners), support points, etc.
  • it can also be fabricated by using the material of the interconnect layer forming the MEMS inertial sensor, or even by forming the one or more conductive layers, but by additionally forming another layer or layers of conductive material.
  • These structures; further, the support points, such as the support points of the movable electrodes, may also be formed using the first substrate. If the one or more conductive layers comprise both an interconnect layer of a MEMS inertial sensor and
  • a first electrical shielding layer of the MEMS inertial sensor the interconnect layer being closer to the first surface of the first substrate than the first electrical shielding layer, and other structures required for the MEMS inertial sensor are fixed
  • the electrode, the detecting electrode (corner), the support point, and the like may be formed on other substrates.
  • one or more conductive layers forming the interconnect layer of the sensor may be formed, or may not be used.
  • One or more conductive layers are formed, but formed by additionally forming one or more layers of conductive material; further, the support points, such as the support points of the movable electrodes, may be formed by using the first substrate. .
  • the MEMS inertial sensor is an acceleration sensor
  • the sensor includes an X-axis sensor, a Y-axis sensor, a Z-axis sensor, or any combination thereof.
  • the X-axis sensor, the movable electrode of the Y-axis sensor, and the fixed electrode may be formed using the first substrate.
  • the Z-axis sensor adopts the structure as shown in FIG.
  • the fixed electrode of the Z-axis sensor is formed by using the one or more conductive layers.
  • the fixed electrode of the Z-axis sensor is formed using a material forming the first electrical shielding layer.
  • the fixed electrode of the Z-axis sensor is formed The material of the interconnect layer is formed, and further, the fixed electrode of the Z-axis sensor is formed using a layer of conductive material in the interconnect layer closest to the first substrate. If the Z-axis sensor adopts the structure as shown in FIG.
  • the fixed electrode of the Z-axis sensor is formed using the first substrate. Further preferably, the fixed electrode or the movable electrode side of the Z-axis sensor of the acceleration sensor is formed with an anti-blocking structure for preventing adhesion of the movable sensitive element when it comes into contact with the fixed electrode, the anti-blocking
  • the structure may be made of a conductive layer material or an insulating layer material, and as a preferred embodiment of the present invention, one or more conductive layers are formed or formed using a first substrate. Regardless of the structure shown in FIG. 2 or the structure shown in FIG. 3, preferably, the anti-blocking structure is formed using one or more conductive layers, and further optimized, adopting the closest to the first A conductive layer of the substrate is formed.
  • the angler includes an X-axis corner, a Y-axis corner, a Z-axis corner, or any combination thereof, the X-axis corner, the Y-axis corner, and the Z-axis corner
  • the director refers to a corner device for detecting angular velocities in the X-axis, Y-axis, and Z-axis directions, respectively.
  • the corner device further includes a detecting electrode and a fixed electrode.
  • the fixed electrode of the X-axis corner device and the Y-axis corner device is formed by using the first substrate, the X-axis corner device and the Y-axis corner
  • the detecting electrode of the device is formed by the one or more conductive layers, and the fixed electrode and the probe of the Z-axis corner device
  • the electrodes are all formed using a first substrate.
  • the one or more conductive layers are the interconnect layers of the corners
  • the material forming the interconnect layer may be used to form the detecting electrodes of the X-axis corner or the Y-axis corner.
  • the material forming the first electrical shielding layer may be used to form the detecting electrodes of the X-axis or the Y-axis.
  • the fixed electrode of the corner device is formed by using the first substrate. Since the fixed electrode can be formed relatively thick, the stretching distance is relatively large in use, and the driving speed is relatively large, so that the detection sensitivity is relatively high.
  • the fixed electrode or the movable electrode side of the X-axis corner or the Y-axis corner of the corner device is formed with an anti-blocking structure, and the movable electrode and the fixed electrode of the X-axis or Y-axis are both Formed by the first substrate, the anti-blocking structure may be fabricated using the first substrate, or the one or more conductive layers.
  • the invention can flexibly form various types by forming one or more conductive layers on the first substrate.
  • the MEMS inertial sensor, and the formation of the movable electrode of the sensor by using the first substrate, can overcome the deficiencies caused by the prior art using the polysilicon layer to form the MEMS inertial sensor, such as the polysilicon stress in the prior art.
  • a defect that results in a limited thickness is also, for the corner device, since the movable electrode is prepared by using a single crystal semiconductor substrate, the thickness and mass of the movable electrode formed are large, so that the angular velocity can be detected sensitively.
  • the present invention also provides an embodiment of a method of forming a MEMS inertial sensor, which is specifically implemented by the following steps. Referring to FIG.
  • the method includes: performing step S101, providing a first substrate, wherein the first substrate is a single crystal semiconductor a first substrate having a first surface and a second surface opposite thereto; performing step S103, forming one or more conductive layers on the first surface of the first substrate; performing step S105, providing a second substrate; performing step S107, bonding the second substrate directly or through a bonding layer And forming a surface of the one or more conductive layers on the first substrate; performing step S109, forming a movable electrode of the sensor from the second surface side of the first substrate by using the first substrate; performing step S111; Providing a third substrate; performing step S113, bonding a third substrate to a side of the movable electrode opposite to the second substrate.
  • one or more conductive layers on the first substrate of the present invention may include an interconnect layer, a first electrical shielding layer, a support point of a fixed electrode, a support point of a movable electrode, or the foregoing structures
  • Any combination of the MEMS inertial sensors of the present invention is also diverse, and the methods of forming the MEMS inertial sensors are also diverse, and the method embodiments of the MEMS inertial sensors of the present invention, which are presented below, are on the first substrate.
  • One or more conductive layers include an interconnect layer, a support point of a fixed electrode, and a first electrical shielding layer as an example.
  • a first substrate 401 is provided, the first substrate 401 including a first surface and a second surface opposite thereto.
  • the first substrate 401 may be a single crystal semiconductor material, for example, the first substrate 401 may be a single crystal semiconductor material such as single crystal silicon, single crystal germanium silicon or the like.
  • the first substrate 401 is single crystal silicon.
  • Forming an interconnect layer on the first surface of the first substrate 401 specifically includes: forming a first insulating layer 402 on the first surface of the first substrate 401, etching the first insulating layer 402, A first opening is formed in the first insulating layer 402, and the first opening exposes the first substrate 401.
  • the first insulating layer 402 may be a dielectric material such as silicon oxide, silicon nitride or silicon oxynitride. As an embodiment, the first insulating layer 402 is silicon oxide.
  • the first interconnect layer 403 specifically includes discrete interconnects for different purposes, each for routing different signals.
  • the first interconnect layer 403 includes: a lead electrode for extracting a sensor sensitive element Fixed electrode interconnection 403a, first interconnect 403b, second interconnect 403c, first shield interconnect 403d, second shield interconnect 403e, first shield interconnect 403d, second shield interconnect Line 403e is used to electrically connect the corresponding electrode in the sensor to the electrical shielding layer.
  • a support point 403f for forming a fixed electrode is further included, and the support point 403f further has an electrical connection and is electrically connected to the fixed electrode interconnection 403a.
  • the support point 403f of the fixed electrode and the interconnect layer are formed using a first conductive layer material forming the interconnect layer.
  • the first conductive layer may be doped polysilicon or other conductive material.
  • the first conductive layer is polysilicon. And if the first conductive layer is polysilicon, further comprising the step of holding the first conductive layer.
  • the formation of the MEMS inertial sensor further includes forming a movable electrode interconnection line for extracting the movable electrode, and a movable electrode support point.
  • a movable electrode interconnection line for extracting the movable electrode
  • a movable electrode support point for extracting the movable electrode.
  • a second insulating layer 404 is formed on the first interconnect layer 403, and the second insulating layer 404 fills a gap between the discrete interconnect lines.
  • the second insulating layer 404 may be made of a dielectric material such as silicon oxide, silicon nitride or silicon oxynitride.
  • the second insulating layer 404 is the same as the first insulating layer 402 and is silicon oxide.
  • the second insulating layer 404 is then etched to form openings (not shown) for electrical connection with subsequently formed layers of material.
  • the interconnect layer may include a plurality of layers, and the interconnect layers of the plurality of layers are separated by an insulating layer.
  • a layer is taken as an example for illustration.
  • other structures required for the sensor are formed using the material forming the interconnect layer, such as the support point of the fixed electrode and the support point of the movable electrode (not shown) Show), further reducing the process steps.
  • a second conductive layer 405 is formed on the second insulating layer 404, and the second conductive layer 405 is used to form a first electrical shielding layer, and the first electrical shielding layer is used as an electrical shielding layer. Accessing an electrical shielding signal, which may be a ground signal, a DC drive signal, or other drive Signal, the electrical shielding layer of the invention has the advantages of making a tube and having a flexible design.
  • the second conductive layer 405 is filled with the opening, and is electrically connected to the first shield interconnection 403d and the second shield interconnection 403e.
  • the second conductive layer 405 may be doped polysilicon or a conductive material.
  • the second conductive layer 405 is made of polysilicon, and further includes a step of holding the polysilicon. No longer detailed.
  • a third insulating layer (not shown) may also be formed on the second conductive layer 405, the third insulating layer being used as a subsequent bonding process with the second substrate Bonding layer, generally the third insulating layer is made of silicon oxide.
  • a second substrate 501 which serves primarily as a mechanical support for the sensor.
  • the second substrate 501 may be a single crystal semiconductor material, for example, the second substrate 501 may be single crystal silicon, single crystal germanium, or single crystal germanium silicon.
  • the second substrate 501 may also be As another material, as an embodiment of the present invention, the second substrate 501 is single crystal silicon.
  • a fourth insulating layer (not shown) may be formed on the second substrate 501, and the fourth insulating layer is used as a bonding layer in the subsequent bonding process with the first substrate to increase the bonding strength therebetween.
  • the fourth insulating layer is preferably silicon oxide, and the fourth insulating layer and the foregoing third insulating layer may be formed only one layer, and may of course be formed or not formed; and, the first substrate
  • the bonding layer between the second substrate 501 and the second substrate 501 may also be a conductive material, such as polysilicon, which is specifically illustrated herein and should not unduly limit the scope of the present invention.
  • the second substrate 501 is bonded to the interconnect layer on the first substrate 401 and the surface of the first electrical shielding layer, and the first substrate 401 and the second substrate 501 are combined.
  • MEMS microelectromechanical
  • the first electrical shielding layer and the second substrate 501 will collectively serve as an electrical shielding layer of the sensor; if the second substrate 501 is bonded to the first substrate on the first substrate 401 via a bonding layer On the shield, the key The bonding layer includes at least one electrical insulating layer, such as a fourth insulating layer formed on the second substrate 501 or a third insulating layer formed on the first electrical shielding layer, the first electrical shielding layer being separately used as the The electrical shielding layer of the sensor is specifically described here.
  • the second substrate 501 before combining the second substrate 501 with the first substrate 401, it is necessary to polish the two bonding surfaces, such as the first electrical shielding layer on the first substrate 401 or the third.
  • An insulating layer (if a third insulating layer is formed on the first electrical shielding layer) is polished, and if a fourth insulating layer is formed on the second substrate 501, the fourth insulating layer may be polished and then bonded. .
  • the second surface of the first substrate 401 on which the interconnect layer is not formed is thinned, thinned to a thickness of 5 ⁇ m to ⁇ , and after the thinning step, the first substrate 401 is formed.
  • the thinned first substrate 401 is then used to form the movable electrode of the MEMS inertial sensor of the present invention.
  • an electrical connection layer is formed on the second surface of the first substrate 401.
  • the electrical connection layer is used to fabricate a pad that subsequently bonds a third substrate to the first substrate or to a pad that is subsequently soldered to a peripheral circuit or both.
  • the electrical connection layer is selected according to the subsequent method of forming the sensor sealing method. If the sealing method is followed by the bonding glass method, a solder pad needs to be formed; if the metal alloy is used for sealing, a bonding pad needs to be formed. Moreover, the position of the formed bonding pad and the bonding pad is also different, as described later.
  • the electrical connection layer is made of a conductive material, such as a metal, an alloy or other conductive material, and further, may be a metal Al or a metal. Cu, or other conductive bonding material.
  • the electrical connection layer is etched to remove the adhesive layer other than the bonding area of the third substrate or the pad soldered to the peripheral circuit (see, for example, the following), and the exposed portion is exposed.
  • the surface of the first "bottom 401" forms an electrical connection structure 601, which may be an adhesive pad or a pad.
  • the first mask layer 602 may be a photoresist, a silicon oxide, a silicon nitride, or the like.
  • the first mask layer 602 is used as a mask in the process of subsequently etching the first substrate 401. Referring to FIG. 12, the first mask layer 602 is patterned, and the pattern to be transferred is transferred to the first mask layer 602. Next, the first substrate 401 is etched by using the patterned first mask layer 602 as a mask until the first insulating layer 402 is exposed. After this step, the preliminary structure of the MEMS inertial sensor is formed.
  • a fixed electrode 406 and a movable electrode 407 are electrically connected, and the fixed electrode 406 is electrically connected to the fixed electrode interconnection 403a, and the movable electrode 407 is electrically connected to the movable electrode interconnection (not shown).
  • a first sensor structure 408, a second sensor structure 409, a first sealing sensor structure 410 and a second sealing sensor structure 411 are also formed, the first sealing sensor structure 410 and The second sealed sensor structure 411 is electrically connected to the first shield interconnection 403d and the second shield interconnection 403e, respectively, and is used for sealing the formed movable electrode and the fixed electrode in the subsequent packaging process.
  • the fixed electrode 406 and the movable electrode 407 constitute two plates of the capacitor. Referring to FIG. 13, a portion of the first insulating layer 402 is removed, and the first insulating layer 402 under the movable electrode 407 is completely removed, and the movable electrode 407 is released to form a movable movable electrode 407, thereby realizing sensor sensitive elements. The release of the structure. When the movable electrode 407 moves, the distance between the movable electrode 407 and the fixed electrode 406 changes. During the removal of the portion of the first insulating layer 402, the remaining first mask layer 602 is removed. The removal of the portion of the first insulating layer 402 requires a selective etchant according to the material.
  • the first insulating layer 402 is silicon oxide, and the etchant for removing the first insulating layer 402 may be Choose hydrofluoric acid.
  • the etchant for removing the first insulating layer 402 may be Choose hydrofluoric acid.
  • the amount of the remaining first insulating layer 402 under the first sensor structure 408, the second sensor structure 409, the first seal sensor structure 410, and the second seal sensor structure 411 can be controlled.
  • the sealing of the third substrate includes two methods, including a bonding glass sealing method and a metal alloy.
  • the sealing method first referring to FIG. 14, includes: providing a third substrate 10, the third substrate 10 may be silicon, and the third substrate 10 is formed.
  • the third substrate 10 includes a bonding region that will subsequently bond with the second surface of the first substrate and seal the movable and fixed electrodes of the formed MEMS inertial sensor.
  • a fifth insulating layer may be formed on the third substrate 10 on the periphery of the sealed cavity 11.
  • the fifth insulating layer 12 may be silicon oxide, silicon nitride, silicon oxynitride or the like. As an embodiment, the fifth insulating layer 12 is silicon oxide.
  • a bonding glass 13 is provided, the bonding glass 13 is bonded to a corresponding bonding region on the third substrate 10, and a third substrate having a bonding glass 13 is bonded to a side of the movable electrode formed by the first substrate, and a position of the third substrate is opposite to the position of the second substrate, and then a portion of the third substrate 10 is removed to expose the electrical connection structure 601 to form
  • the third substrate 10, that is, the bonding area of the two does not overlap with the electrical connection structure, where the electrical connection structure is a solder pad, and then the external signal processing circuit needs to be electrically connected to the bonding pad. .
  • the third substrate 10 herein may have no structure of electrical connection, that is, it may be a blank silicon wafer. Of course, the third substrate 10 may also be made of other insulating materials. If the third substrate 10 does not have any electrically connected structure, the interconnect layer, the support point, the fixed electrode, and the electrical shielding layer required by the sensor need to be formed on the first substrate, which is specifically described in the art. The skilled person knows how to make a reasonable layout according to the packaging method.
  • a third substrate 20 is provided.
  • the third substrate 20 is silicon, and a CMOS circuit (not shown) may be formed in the third substrate 20.
  • the leads, or pads, and combinations thereof, may even have other electrical structures within the third substrate 20.
  • the third substrate 20 is bonded to a movable electrode side formed by using the first substrate, and the position of the third substrate is opposite to the position of the second substrate.
  • the electrical connection structure 601 of the portion located on the second surface of the first substrate serves here as an adhesive layer, that is, in the bonding region, and the corresponding structure on the bonding layer and the third substrate 20. Corresponding to electrical connection.
  • the electrical connection structure 601 of other portions on the second surface of the first substrate can also serve as the extracted electrodes.
  • the fixed electric power required for the MEMS inertial sensor a pole, an interconnect layer, a support point, a probe electrode (turner) may be formed on the first substrate or the third substrate, and it is specifically described herein that those skilled in the art know how to make a reasonable layout according to the packaging method. It is emphasized that the scope of protection of the present invention should not be unduly limited.
  • the above method for forming a MEMS inertial sensor selects a relatively typical fixed electrode, a movable electrode, a first sealing sensor structure, a second sealing sensor structure, and a corresponding interconnection layer and a method for forming the supporting point.
  • first interconnect line, the second interconnect line, the first sensor structure, and the second sensor structure are also given in the above embodiments, and these structures are used to indicate other structures that may be applied to the sensor. It is shown in this embodiment that it is shown to those skilled in the art that the method of preparing a sensor using the present invention can form not only a movable electrode suspended in a cavity but also a fixing fixed on a fixed electrode interconnection line by a support point.
  • the upper first sensor structure and the second sensor structure can form all of the structures required for the acceleration sensor. It is specifically stated herein that the scope of protection of the present invention should not be unduly limited.
  • the X-axis sensor of the acceleration sensor is taken as an example for detailed description.
  • the forming method is basically similar, and those skilled in the art know how to form the Z-axis sensor for the acceleration sensor.
  • the manufacturing method thereof is similar to the manufacturing method of the X-axis sensor, except that the layout or the design is different, so the Z-axis sensor for the acceleration sensor is The method of formation is not described in detail, and those skilled in the art will know how to change, modify or supplement based on the ordinary technical knowledge in the art and the embodiments of the present invention.
  • the corner device it is structurally used to test the direction of the corners in each direction (ie, the X-axis corner, the Y-axis, the Z-turn).
  • the structure is similar to the sensor in the three directions of the acceleration sensor ( That is, a combination of an X-axis sensor, a Y-axis sensor, and a Z sensor), if the sensor of each direction of the acceleration sensor can be formed by the method of the present invention, the corner structure of each direction can be formed by the method of the present invention, and only the difference is only Depending on the layout or the design, the method of forming the corner is not described in detail, and those skilled in the art know how to change, tamper or supplement based on the ordinary technical knowledge in the art and the embodiments of the present invention.
  • the present invention also provides a method for forming an inertial sensor.
  • an anti-blocking structure is formed for preventing the movable electrode from coming into contact with other parts to cause adhesion, thereby damaging the device.
  • a Z-axis acceleration sensor will be described as an example. Please refer to FIG. 18 to FIG. 21 for details.
  • a first substrate 701 is provided, the first substrate 701 comprising a first surface and a second surface opposite thereto.
  • the first substrate 701 may be a single crystal semiconductor material.
  • the first substrate 701 is single crystal silicon.
  • first insulating layer 702 Forming a first insulating layer 702 on the first surface of the first substrate 701, etching the first insulating layer 702, forming different first openings 703 and second openings in the first insulating layer 702 704 and a third opening 705, wherein the first opening 703 is for filling a conductive material to form a fixed electrode support point or other electrical connection or mechanical structure.
  • the second opening 704 is used to fill a conductive material to form an anti-blocking structure subsequently.
  • the first insulating layer 702 may be a dielectric material such as silicon oxide, silicon nitride or silicon oxynitride. As an embodiment, the first insulating layer 702 is silicon oxide.
  • a first conductive layer is formed on the first insulating layer 702, and the first conductive layer fills the first opening 703, the second opening 704, and the third opening 705, and etches the first
  • the conductive layer forms a torsion axis interconnection 703a, a fixed electrode 703b, an anti-blocking structure interconnection 703c, a first interconnection 703d, a first shield interconnection 703e, and a second shield interconnection 703f.
  • a second insulating layer 706 is formed on the first conductive layer, then an opening is formed in the second insulating layer, and a second conductive layer 707 is formed on the second insulating layer as an electrical shielding layer, the second conductive The layer 707 is electrically connected to the first shield interconnection 703e and the second shield interconnection 703f.
  • the structure includes: a torsion shaft 708, The movable electrode 709, the first sensor structure 710, the second sensor structure 711, the sealing structure 712, and the third sensor structure 713.
  • the torsion shaft 708 is electrically connected to the torsion axis interconnection 703a, and the movable electrode 709 is electrically connected to a movable electrode interconnection (not shown), and the sealing structure 712
  • the first shielding structure and the second shielding structure are respectively electrically connected, and the first sensor structure 710, the second sensor structure 711, and the third sensor structure 713 respectively represent other structures required for the formed Z-axis sensor.
  • An anti-blocking structure is formed on the fixed electrode 703b facing the lower side of the movable electrode 709 and the anti-blocking structure interconnection 703c.
  • a MEMS inertial sensor with an anti-blocking structure of an embodiment of the present invention is formed.
  • the present invention also provides another embodiment of a method for forming a MEMS inertial sensor with an anti-blocking structure.
  • FIG. 22 to FIG. 24 for details.
  • the first opening 803 is used to form an anti-blocking structure subsequently.
  • the method of specifically forming the first quasi-insulating layer 802 may be performed by deposition.
  • the first quasi-insulation layer 802 is formed by thermal oxidation.
  • the thickness of the first quasi-insulating layer 802 does not reach a predetermined thickness as the interconnect layer isolation layer.
  • the thickness of the first quasi-insulating layer 802 in this embodiment is only equivalent to the anti-blocking structure. thickness of. Therefore, the depth of the first opening 803 here corresponds to the thickness of the first quasi-insulating layer 802, that is, the first opening 803 exposes the first substrate 801.
  • deposition is performed, and the thickness of the first quasi-insulating layer 802 is gradually increased to form a first target insulating layer 804.
  • the thickness of the first target insulating layer 804 is controlled by controlling the time and conditions of deposition. thickness of.
  • the first opening 803 is used to fill the conductive layer to form an anti-blocking structure. Then, referring to FIG. 24, a second opening 805, a third opening 806 and a fourth opening 807 are respectively formed in the first target insulating layer 804, and the second opening 805 is used for filling a conductive material to form a torsion axis interconnection. a wire or other electrical connection or mechanical structure, the third opening 806 and the fourth opening 807 are for filling The conductive material forms a shield interconnect.
  • a MEMS inertial sensor with an anti-blocking structure according to another embodiment of the present invention can be formed.
  • the fixed electrode of the Z-axis sensor is formed using one or more conductive layers on the first surface of the first semiconductor substrate, and optimally, the closest to the first substrate is employed.
  • the conductive layer forms the Z-axis sensor fixed electrode and the anti-blocking structure.
  • the invention also provides an embodiment of a method for forming a MEMS inertial sensor with an anti-blocking structure, please refer to FIGS. 25 to 28. Referring first to FIG.
  • a first substrate 901 is provided, and a first mask layer 902 is formed on the first substrate 901, and the position of the first mask layer 902 corresponds to a position where an anti-blocking structure is subsequently formed.
  • the first substrate 901 is etched by using the first mask layer 902 as a mask to form a first substrate 901, thereby forming a position covering the first mask layer 902.
  • Anti-blocking structure 903. is formed on the first substrate 901.
  • a step of forming a movable electrode is performed to form a movable electrode having an anti-blocking structure made of a first substrate.
  • a torsion shaft 904, a movable electrode 905, and a first sensor structure are formed.
  • the sealing structure 908 is electrically connected to the first shielding structure and the second shielding structure, respectively, and the first sensor structure 906, the second sensor structure 907, and the third sensor structure 909 respectively represent other structures required for the formed Z-axis sensor.
  • An anti-blocking structure is formed on the movable electrode 905 facing the fixed electrode 903a and the anti-blocking structure interconnection 903b.
  • a MEMS inertial sensor having an anti-blocking structure on the movable electrode according to still another embodiment of the present invention is formed.
  • the corner it is also possible to provide an anti-blocking structure on the corner, as described above, since it is structurally used to test the corners of each direction (ie, the X-axis corner, the Y-axis corner)
  • the structure of the Z-turner is similar to the sensor of the three directions of the acceleration sensor (ie, the X-axis sensor, the Y-axis sensor, the Z-sensor), so the method of setting the anti-blocking structure on the corner is similar to A method of providing an anti-blocking structure on the acceleration sensor, and a method for providing an anti-blocking structure on the cornering device will not be described in detail herein, and those skilled in the art know how to form a variation based on the foregoing technical solutions.
  • the present invention is disclosed in the above preferred embodiments, but it is not intended to limit the scope of the invention, and the present invention may be made without

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Description

MEMS惯性传感器及其形成方法
本申请要求于 2011 年 3 月 15 日提交中国专利局、 申请号为 201110061571.2、 发明名称为" MEMS惯性传感器及其形成方法"的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及半导体技术领域, 特别地, 本发明涉及 MEMS惯性传感器及 其形成方法。 背景技术
在很多运动物体的控制、 检测和导航系统中, 不仅需要位移、 角位移、 速 度信息, 更需要加速度、 角速度信息。 惯性传感器(包括加速度传感器与角速 度传感器)就是一种测试加速度、 角速度的仪器。
从 二 十 世 纪 八 十 年 代 末 开 始 , 随 着 微 机 电 系 统 ( Micro-Electro-Mechanical-System, MEMS )技术的发展, 各种传感器实现了 £小型化, 以 MEMS技术为基础的 MEMS惯性传感器由于采用 MEMS加工 工艺, 实现了批量生产, 克服了原有惯性传感器体积大、 成本高等缺点, 成为 未来发展的主要方向。
目前的 MEMS惯性传感器通常采用电容式惯性传感器, 所述电容式惯性 传感器一般包括探测物体运动的固定电极、物体运动导致与固定电极之间发生 电容变化的可移动敏感元素 (一般称可动电极)、 以及与固定电极和可动电极 相电连接的电信号连接。 在 MEMS惯性传感器中, 可移动敏感元素一般也充 当质量块以减少整个器件体积重量,就质量块本身来说,质量越大,惯性越大。
现有技术中, Bosch, ST, Freescale, ADI等公司现大多用淀积的多晶硅 作为制作 MEMS惯性传感器的结构材料(以下筒称多晶硅方法)。 所述多晶硅 方法具有工艺筒便的优点,但是其材料应力较大, 一方面会影响到器件的重复 性, 另一方面由于多晶硅内部具有应力, 其厚度较小, 对传感器的尺寸造成限 制, 不利于制作高灵敏度的惯性传感器, 而且由于其重复性不够好, 生产成品 率下降, 造成成本上升。 专利号为 US6,170,332B1的美国专利公开了一种微机械加速度传感器,其 采用单一硅晶圆进行制作, 通过刻蚀方法在一个晶圆中形成 MEMS惯性传感 器的各个部分,但是由于刻蚀技术自身固有的缺陷 -不均匀,故形成的传感器 性能比如可靠性会受到影响。
而且前述美国专利中的 Z轴传感器根据竖直方向的位移所引起电容器面 积变化从而引起电容量的变化来侦测 Z轴加速度的大小,这样竖直方向( Z轴) 传感器的设计受到限制。
发明内容
本发明解决的问题是提供一种 MEMS惯性传感器及其形成方法, 克服了 现有技术的 MEMS惯性传感器的可靠性和重复性不好、 成品率低的缺陷。
为解决上述问题, 本发明实施例提供了一种 MEMS惯性传感器, 包括: 可移动敏感元素, 第二衬底和第三衬底; 所述可移动敏感元素采用第一衬底形 成, 所述第一衬底为单晶半导体材料, 所述第一衬底包括相对的第一表面和第 二表面, 所述第一衬底的第一表面上形成有一层或者多层导电层, 所述第二衬 底与所述第一衬底上的一层或者多层导电层的表面结合,所述第三衬底与所述 可移动敏感元素的一侧结合,且所述第三衬底和第二衬底分别位于所述可移动 敏感元素的相对两侧。
可选地, 所述一层或者多层导电层包括 MEMS惯性传感器的第一电屏蔽 层、 互连层、 固定电极的支撑点、 可移动敏感元素的支撑点、 或者前述结构的 任意组合, 所述互连层包括一层或者多层互连线。
可选地, 所述一层或者多层导电层包括第一电屏蔽层。
可选地, 所述一层或者多层导电层包括第一电屏蔽层和互连层, 所述互连 层比所述第一电屏蔽层更为靠近所述第一衬底的第一表面。 可选地, 所述 MEMS惯性传感器还包括抗粘连结构, 所述抗粘连结构采 用所述第一衬底、 或者所述一层或者多层导电层制作。
可选地, 所述 MEMS惯性传感器为加速度传感器, 所述加速度传感器包 括 X轴传感器、 Y轴传感器、 Z轴传感器或其任意组合。 可选地,所述 MEMS惯性传感器为转角器,所述转角器包括 X轴转角器、 Y轴转角器、或 Z轴转角器或其任意组合,所述转角器还包括探测电极和固定 电极。 可选地, 所述一层或者多层导电层包括 MEMS惯性传感器的第一电屏蔽 层 ,所述第二衬底直接或者经过导电的键合层结合至所述第一衬底上的第一电 屏蔽层上, 所述第二衬底与所述第一电屏蔽层共同作为传感器的电学屏蔽层。 可选地, 所述一层或者多层导电层包括 MEMS惯性传感器的第一电屏蔽 层,所述第二衬底通过键合层键合至所述第一衬底上的一层或者多层导电层表 面上, 所述键合层至少包括一层绝缘层, 所述第一电屏蔽层作为传感器的电学 展蔽层。 可选地, 所述第一衬底的第二表面为经过减薄的表面, 所述传感器的可动 敏感元素采用减薄后的第一衬底形成。 相应地, 本发明实施例还提供一种 MEMS惯性传感器的形成方法, 包括: 提供第一衬底, 所述第一衬底为单晶的半导体衬底, 所述第一衬底具有第一表 面和与之相对的第二表面; 在第一衬底的第一表面上形成一层或者多层导电 层; 提供第二衬底; 将第二衬底结合至所述第一衬底上的一层或者多层导电层 的表面; 从所述第一衬底的第二表面侧采用第一衬底形成可移动敏感元素; 提 供第三衬底; 将第三衬底结合至所述可移动敏感元素的一侧, 所述第三衬底和 第二衬底分别位于所述可移动敏感元素的相对两侧。 可选地, 所述一层或者多层导电层包括 MEMS惯性传感器的第一电屏蔽 层、 互连层、 固定电极的支撑点、 可移动敏感元素的支撑点、 或者前述结构的 任意组合, 所述互连层包括一层或者多层互连线。 可选地, 所述一层或者多层导电层包括第一电屏蔽层。 可选地, 所述一层或者多层导电层包括第一电屏蔽层和互连层, 所述互连 层比所述第一电屏蔽层更为靠近所述第一衬底的第一表面。 可选地, 还包括采用所述第一衬底或者一层或者多层导电层制作所述 MEMS惯性传感器的抗粘连结构步骤。 可选地, 所述 MEMS惯性传感器为加速度传感器, 所述加速度传感器包 括 X轴传感器、 Y轴传感器、 Z轴传感器或其任意组合。 可选地,所述 MEMS惯性传感器为转角器,所述转角器包括 X轴转角器、 Y轴转角器、 Z轴转角器或其任意组合。 可选地, 还包括采用所述第一衬底形成所述转角器的固定电极步骤。 可选地, 所述一层或者多层导电层包括传感器的第一电屏蔽层, 所述将第 二衬底直接或者通过键合层结合至第一衬底上的一层或者多层导电层的表面 为将第二衬底直接或者经过导电的键合层结合至所述第一衬底上的第一电屏 蔽层上, 所述第二衬底与所述第一电屏蔽层共同作为传感器的电学屏蔽层。 可选地, 所述一层或者多层导电层包括传感器的第一电屏蔽层, 所述将第 二衬底直接或者通过键合层结合至第一衬底上的一层或者多层导电层的表面 为将第二衬底经由键合层键合至所述第一衬底上的一层或者多层导电层上,所 述键合层至少包括一层绝缘层, 所述第一电屏蔽层作为传感器的电学屏蔽层。 可选地,在从所述第一衬底的第二表面侧采用第一衬底形成传感器的可移 动敏感元素步骤之前还包括从所述第一衬底的第二表面侧进行减薄步骤。 与现有技术相比,本技术方案具有以下优点:通过采用单晶半导体材料(第 一衬底 )制作传感器敏感元素,从而可以制备出较厚的惯性传感器的可移动敏 感元件, 即可动电极, 从而可以加大质量块的质量, 提高 MEMS惯性传感器 的灵敏度和可靠性, 而且采用单晶半导体材料(第一衬底 )制作传感器敏感元 素可以提高制作 MEMS惯性传感器的重复性以及成品率。 而且, 本发明实施例通过在所述第一衬底上还形成一层或者多层导电层, 所述一层或者多层导电层可以用于制作 MEMS 惯性传感器的电学屏蔽层、 MEMS惯性传感器的互连层、 MEMS惯性传感器的固定电极、 MEMS惯性传 感器的固定电极的支撑点、 MEMS 惯性传感器的可移动敏感元素的支撑点、 或者包括前述结构的任意组合, 这样, 一方面降低了制作工艺的难度, 增加了 制作 MEMS惯性传感器的灵活性以及更易于进行布局, 而且增加了与其他器 而防止所述 MEMS惯性传感器受到外界环境的干扰。 此外, 本发明实施例的 MEMS惯性传感器包括抗粘连结构, 所述抗粘连 结构采用所述第一衬底、或者所述一层或者多层导电层制作, 形成抗粘连结构 的工艺筒单。
附图说明 图 1是本发明的一个实施例的 X轴、 Y轴的传感器结构示意图; 图 2是本发明的一个实施例的 Z轴的传感器立体结构示意图; 图 3是本发明的另一个实施例的 Z轴的传感器立体结构示意图;
图 4是本发明的一个实施例的转角器的结构示意图; 图 5是本发明的一个实施例的转角器的剖面结构示意图; 图 6是本发明的一个实施例的形成惯性传感器的方法的流程示意图; 图 7至图 17是本发明的一个实施例的形成本发明的惯性传感器的方法的 剖面结构示意图;
图 18至 21是本发明的一个实施例的形成带有抗粘连结构的惯性传感器的 方法的剖面结构示意图; 图 22至 24是本发明的另一个实施例的形成带有抗粘连结构的惯性传感器 的方法的剖面结构示意图; 图 25至 28是本发明的又一个实施例的形成带有抗粘连结构的惯性传感器 的方法的剖面结构示意图。 具体实施方式
本发明实施例通过采用单晶半导体材料(第一衬底)制作传感器敏感元素, 从而可以制备出较厚的惯性传感器的可移动敏感元件, 即可动电极, 提高 MEMS惯性传感器的灵敏度和可靠性, 而且采用单晶半导体材料(第一衬底) 制作传感器敏感元素可以提高制作 MEMS惯性传感器的重复性以及成品率。 而且, 本发明实施例通过在所述第一衬底上还形成一层或者多层导电层, 所述一层或者多层导电层可以用于制作 MEMS 惯性传感器的电学屏蔽层、 MEMS惯性传感器的互连层、 MEMS惯性传感器的固定电极、 MEMS惯性传 感器的固定电极的支撑点、 MEMS 惯性传感器的可移动敏感元素的支撑点、 或者包括前述结构的任意组合, 这样, 一方面降低了制作工艺的难度, 增加了 制作 MEMS惯性传感器的灵活性以及更易于进行布局, 而且增加了与其他器 而防止所述 MEMS惯性传感器受到外界环境的干扰。 此外, 本发明实施例的 MEMS惯性传感器包括抗粘连结构, 所述抗粘连 结构采用所述第一衬底、或者所述一层或者多层导电层制作, 形成抗粘连结构 的工艺筒单。
为了达到上述发明目的, 本发明提供了如下了技术方案。 首先, 本发明实施例提供一种 MEMS惯性传感器, 包括: 可移动敏感元 素; 第二衬底和第三衬底, 所述可移动敏感元素位于所述第二衬底和第三衬底 之间; 所述可移动敏感元素采用第一衬底形成, 所述第一衬底为单晶半导体材 料, 所述第一衬底包括相对的第一表面和第二表面, 所述第一衬底的第一表面 上形成有一层或者多层导电层,所述第二衬底与所述第一衬底上的一层或者多 层导电层的表面结合,所述第三衬底与所述可移动敏感元素的与所述第二衬底 相对的一侧结合。其中, 所述第二衬底可以直接结合或者通过键合层结合至所 述第一衬底上的一层或者多层导电层的表面,所述第三衬底和第二衬底分别位 于所述可移动敏感元素的相对两侧。 本发明的 MEMS惯性传感器可以是加速度传感器或者转角器(又称陀螺 仪), 无论是转角器还是加速度传感器, 均包括用于信号转换(比如将加速度 或者转动的角速度转换为电信号 )的传感器单元, 所述传感器单元包括可移动 敏感元素 (又称可动电极)、 固定电极、 以及将可动电极和固定电极进行对应 引出的互连层、 用于支撑可动电极、 固定电极的支撑点, 所述传感器单元为所 述 MEMS惯性传感器的核心结构,本发明的 MEMS惯性传感器的可动电极的 材质为单晶半导体材料。 通常, 所述加速度传感器包括 X轴传感器、 Y轴传感器、 Z轴传感器或其 结合, 图 1给出本发明的一个实施例的加速度传感器的 X轴传感器的俯视结 构示意图, 包括: 固定电极以及可动电极。 所述固定电极包括两个相邻的固定 电极指, 分别为第一固定电极指 101和第二固定电极指 102。 所述可动电极包 括平行排列的可动电极指,分别为第一可动电极指 103和第二可动电极指 104, 所有可动电极指的两端分别连接至平行的两条可动连接臂上(未标记)。 每两 个相邻的固定电极指中间交错排列一个可动电极指, 这样, 所述第一固定电极 指 101与第一可动电极指 103组成第一电容器,所述第二固定电极指 102与第 二可动电极指 104组成第二电容器。 当可动电极沿 X轴运动的时候, 所述电 容器的两个极板之间距离会发生改变, 而且两个电容器的变化情况相反,通过 侦测改变的电容量, 可以获得所述加速度传感器的沿 X轴方向的加速度。 所述加速度传感器的还可以包括 Y轴传感器, 本领域技术人员知晓, 所 述 Y轴传感器的结构与所述 X轴传感器的结构类似, 在此不再详述。 所述加速度传感器的还包括 Z轴传感器, 通常 Z轴传感器的结构具有两 种结构, 具体请参照图 2和图 3, 首先请参照图 2, 包括: 固定电极和可动电 极, 所述固定电极包括第一固定电极 201、 第二固定电极 202, 所述可动电极 包括第一可动电极 203和第二可动电极 204,所述固定电极固定在基板 200上。 所述可动电极可以围绕扭转轴 206进行运动,所述可动电极上还设置有加重梁 ( Seismic mass ) , 本实施例中, 在所述第二可动电极 204的外侧设置了加重梁 205 , 故所述可动电极相对于所述扭转轴 206为非对称结构。 所述固定电极和 可动电极构成电容器的两个极板, 当所述加速度传感器运动的时候, 所述固定 电极与所述可动电极之间的电容量会发生改变,通过侦测电容量的改变, 可以 获得所述加速度传感器沿 Z轴方向的加速度信息。 另一种 Z轴传感器请参照图 3, 包括: 可动电极和固定电极, 所述可动电 极包括多个可动电极指 301 , 所述多个可动电极指 301的中部通过横梁进行连 接形成一体结构并且可以上下移动, 所述固定电极包括第一固定电极指 302 和第二固定电极指 303, 所述第一固定电极指 302和第二固定电极指 303与所 述可动电极指 301 之间相对放置, 形成两个电容器, 当所述可动电极指 301 上下运动时, 所述可动电极指 301与第一固定电极指 302和第二固定电极指 303之间形成的电容器的电容量发生改变,从而可以获得 Z轴方向的加速度信
上述两种 Ζ轴传感器的结构不同,其传感原理类似,均是根据可动电极与 固定电极之间形成的电容器的电容量的改变感知 Ζ轴方向加速度信息,但是二 者之间不同的是,图 2所示的结构是根据改变电容器的两个极板之间的距离改 变电容量,而图 3所示的结构是根据改变电容器的两个极板之间的面积改变电 谷里。
图 4给出转角器的俯视结构示意图,图 5给出沿图 4中 AA,的剖面结构示 意图, 所述转角器包括: 可动电极、 固定电极、 探测电极, 具体地, 所述可动 电极包括第一可动电极 901、 第二可动电极 902; 所述固定电极包括第一固定 电极 903、 第二固定电极 904、 第三固定电极 905 , 所述第三固定电极 905位 于第一固定电极 903和第二固定电极 904之间;所述第一可动电极 901位于第 一固定电极 903和第三固定电极 905之间,所述第二可动电极 902位于所述第 二固定电极 904与第三固定电极 905之间,所述第一可动电极 901与第一固定 电极 903和第三固定电极 905之间分别形成两个叉指电容器,所述第二可动电 极 902与第二固定电极 904和第三固定电极 905之间分别形成两个叉指电容 器, 当第一固定电极 903与第一可动电极 901之间具有电位差, 所述第一可动 电极 901会向所述第一固定电极 903方向进行运动,当第三固定电极 905与第 一可动电极 901之间具有电位差,所述第一可动电极 901会向所述第三固定电 极 905方向进行运动,对于所述第二可动电极 902与第二固定电极 904和第三 固定电极 905之间具有同样的情况,故所述第一可动电极 901和第二可动电极 902在交流的电信号作用下会分别向靠近第一固定电极 903或者第二固定电极 904方向运动、 或者向靠近第三固定电极 905方向运动。
所述转角器还包括第一探测电极 906和第二探测电极 907 , 所述第一探测 电极 906和第二探测电极 907分别与第一可动电极 901和第二可动电极 902 之间具有交叠面积, 而且所述探测电极与可动电极之间具有空腔或者介质, 具 体请参照图 5 , 所述探测电极与可动电极之间形成电容器, 当所述第一可动电 极 901和第二可动电极 902沿 X轴方向运动时候, 同时, 器件具有沿 Y轴的 转动时,所述第一可动电极 901和第二可动电极 902会产生沿 Z轴方向的位移, 所述探测电极与可动电极之间形成的电容器的电容量发生改变,从而可以感知 角速度信息。
前述的加速度传感器以及转角器的结构仅给出固定电极和可动电极部分 的结构, 实际的加速度传感器以及转角器还包括其他结构, 比如包括: 用于形成可动电极的第一衬底, 所述第一衬底为单晶半导体材料, 所述第 一衬底包括第一表面和第二表面。 所述第一衬底的第二表面为经过减薄的表 面, 所述 MEMS惯性传感器包括加速度传感器和转角器的可动动电极采用减 薄后的第一衬底形成。 所述 MEMS惯性传感器还可以包括第二衬底, 所述第二衬底主要用于机 械支撑, 所述第二衬底结合至所述第一衬底上的一层或者多层导电层的表面。 若所述一层或者多层导电层包括传感器的第一电屏蔽层(所述第一电屏蔽层为 最远离所述第一衬底的第一表面的导电层), 无论所述一层或者多层导电层是 否包括传感器的互连层,所述第二衬底可以结合至第一衬底上的第一电屏蔽层 的表面。 而且, 若所述第二衬底直接或者经过导电的键合层结合至所述第一衬 底上的第一电屏蔽层上,所述第二衬底与所述第一电屏蔽层共同作为传感器的 电学屏蔽层;若所述第二衬底经由键合层键合至所述第一衬底上的一层或者多 层导电层上,且所述键合层至少包括一层绝缘层的话,所述第一电屏蔽层单独 作为传感器的电学屏蔽层。
所述 MEMS惯性传感器还可以包括第三衬底, 所述第三衬底结合至所述 传感器的可动电极的一侧。所述第三衬底用于将所述传感器进行密封, 同时可 以包含电路。 所述第一衬底的第一表面上形成有一层或者多层导电层,所述一层或者多 层导电层可以为 MEMS惯性传感器的第一电屏蔽层、 MEMS惯性传感器的互 连层、 MEMS惯性传感器的固定电极的支撑点、 MEMS惯性传感器的可动电 极的支撑点、 或者前述结构的任意组合。 所述一层或者多层导电层包括第一电屏蔽层、或者既包括第一电屏蔽层又 包括互连层, 在所述一层或者多层导电层包括第一电屏蔽层和互连层的情况 下, 所述互连层比所述第一电屏蔽层更为靠近所述第一衬底的第一表面。 所述互连层包括一层或者多层互连线, 所述一层或者多层互连线与所述 MEMS惯性传感器的固定电极、 可动电极、 探测电极(转角器)对应电连接。 所述支撑点用于固定支撑所述传感器所需的电极,所述支撑点通常包括电 连接所述可动电极、 固定电极、 探测电极(转角器)的连接臂以及用于固定所 述可动电极、 固定电极、 探测电极的固定端。 若所述一层或者多层导电层仅为 MEMS惯性传感器的第一电屏蔽层, 所 述 MEMS惯性传感器所需的其他结构比如固定电极、 探测电极(转角器)、 互 连层、 支撑点等可以在其他衬底上形成, 当然也可以采用形成第一电屏蔽层的 导电层制作固定电极、支撑点,在其他衬底上形成互连层、探测电极(转角器) 等结构; 而且, 还可以采用第一衬底形成支撑点, 比如可动电极的支撑点。 若所述一层或者多层导电层为 MEMS惯性传感器的互连层, 所述 MEMS 惯性传感器所需的其他结构比如固定电极、 探测电极(转角器)、 支撑点等可 以在其他衬底上形成, 当然也可以采用形成 MEMS惯性传感器的互连层的材 料来制作, 甚至还可以不采用所述一层或者多层导电层形成, 而是通过额外形 成其它的一层或者多层导电材料层制作这些结构; 再者, 所述支撑点, 比如可 动电极的支撑点还可以采用第一衬底形成。 若所述一层或者多层导电层既包括 MEMS 惯性传感器的互连层又包括
MEMS 惯性传感器的第一电屏蔽层, 所述互连层要比所述第一电屏蔽层更为 靠近所述第一衬底的第一表面, 所述 MEMS惯性传感器所需的其他结构比如 固定电极、 探测电极(转角器)、 支撑点等可以在其他衬底上形成, 当然, 也 可以采用形成所述传感器的互连层的一层或者多层导电层形成,甚至还可以不 采用所述一层或者多层导电层形成,而是通过额外形成的其它的一层或者多层 导电材料层形成; 再者, 所述支撑点, 比如可动电极的支撑点还可以采用第一 衬底形成。 依次类推, 根据实际的工艺、 实际 MEMS惯性传感器的需求以及目的, 基于本发明的思想还可以对所述 MEMS惯性传感器的固定电极、 支撑点、 互 连线、 探测电极(转角器)作出其他各种设计和布局, 在此特别说明, 不应过 分限制本发明的范围。 若所述 MEMS惯性传感器为加速度传感器,所述传感器包括 X轴传感器、 Y轴传感器、 Z轴传感器或其任意组合。 所述 X轴传感器、 Y轴传感器的可动 电极和固定电极均可采用所述第一衬底形成。 若所述 Z轴传感器采用如图 2所示的结构, 所述 Z轴传感器的固定电极 采用所述一层或者多层导电层形成。优选地, 若所述一层或者多层导电层仅包 括第一电屏蔽层,所述 Z轴传感器的固定电极采用形成所述第一电屏蔽层的材 料形成。 再优选地, 若所述一层或者多层导电层包括互连层, 无论所述一层或 者多层导电层是否还包括第一电屏蔽层,所述 Z轴传感器的固定电极采用形成 所述互连层的材料形成, 而且, 再进一步地, 所述 Z轴传感器的固定电极采用 最靠近所述第一衬底的互连层中的导电材料层形成。 若所述 Z轴传感器采用如图 3所示的结构, 所述 Z轴传感器的固定电极 采用所述第一衬底形成。 进一步优选地,所述加速度传感器的 Z轴传感器的固定电极或者可动电极 侧形成有抗粘连结构,用于防止所述可动敏感元素与所述固定电极相接触时造 成粘连, 所述抗粘连结构可以导电层材料或者绝缘层材料制作,作为本发明的 一个优选实施例, 采用一层或者多层导电层形成, 或者采用第一衬底形成。 不 管采用如图 2所示的结构, 还是如图 3所示的结构, 优选地, 所述抗粘连结构 采用一层或者多层导电层形成, 而且再进一步优化地,采用最靠近所述第一衬 底的导电层形成。 若所述 MEMS惯性传感器为转角器, 所述转角器包括 X轴转角器、 Y轴 转角器、 Z轴转角器或其任意组合, 所述 X轴转角器、 Y轴转角器、 以及 Z 轴转角器是指分别用于探测 X轴、 Y轴、 Z轴方向的角速度的转角器。 所述转 角器还包括探测电极和固定电极, 作为一个实施例, 所述 X轴转角器、 Y轴 转角器的固定电极采用所述第一衬底形成, 所述 X轴转角器、 Y轴转角器的 探测电极采用所述一层或者多层导电层形成,所述 Z轴转角器的固定电极和探 测电极均采用第一衬底形成。 优选地, 若所述一层或者多层导电层为所述转角器的互连层, 可以采用形 成所述互连层的材料形成 X轴转角器或者 Y轴转角器的探测电极。 优选地, 若所述一层或者多层导电层仅包括第一电屏蔽层, 可以采用形成 所述第一电屏蔽层的材料形成 X轴转角器或者 Y轴转角器的探测电极。 采用所述第一衬底形成所述转角器的固定电极,由于固定电极可以形成的 比较厚, 这样在使用中拉伸的距离比较大, 驱动的速度比较大, 从而探测灵敏 度比较高。
进一步优化地, 所述转角器的 X轴转角器或者 Y轴转角器的固定电极或 者可动电极侧形成有抗粘连结构, 由于 X轴转角器或者 Y轴转角器的可动电 极和固定电极均采用所述第一衬底形成,所述抗粘连结构可以采用所述第一衬 底、 或者所述一层或者多层导电层制作。 本发明通过在第一衬底上形成一层或者多层导电层,可以灵活地形成各类
MEMS惯性传感器, 而且由于采用所述第一衬底形成所述传感器的可动电极, 还可以克服现有技术的采用多晶硅层形成 MEMS惯性传感器所带来的不足, 比如现有技术的由于多晶硅应力导致厚度受到限制的缺陷。 同样, 对于转角器来说, 由于采用单晶的半导体衬底制备可动电极, 形成 的可动电极的厚度和质量较大, 这样也可以灵敏地探测角速度。 尽管现有技术也公开采用单晶硅来制作 MEMS惯性传感器, 但是如前所 述, 由于其 MEMS惯性传感器的各个部分均采用刻蚀的方法形成, 由于刻蚀 方法的自身的不均匀性, 形成的可移动敏感元件结构不均匀, 影响器件性能, 比如可靠性。 本发明还提供一种形成 MEMS惯性传感器的方法的实施例, 具体通过如 下步骤实现, 请参照图 6, 包括: 执行步骤 S101 , 提供第一衬底, 所述第一衬 底为单晶的半导体衬底, 所述第一衬底具有第一表面和与之相对的第二表面; 执行步骤 S103, 在第一衬底的第一表面上形成一层或者多层导电层; 执行步 骤 S105, 提供第二衬底; 执行步骤 S107, 将第二衬底直接或者通过键合层结 合至第一衬底上的一层或者多层导电层的表面; 执行步骤 S109, 从所述第一 衬底的第二表面侧采用第一衬底形成传感器的可动电极; 执行步骤 S111 , 提 供第三衬底; 执行步骤 S113, 将第三衬底结合至所述可动电极的与所述第二 衬底相对的一侧。 下面结合说明书附图 7 ~ 17, 详细说明形成本发明的惯性传 感器的方法。 如前所述, 本发明的第一衬底上的一层或者多层导电层可以包括互连层、 第一电屏蔽层、 固定电极的支撑点、 可动电极的支撑点、 或者前述这些结构的 任意组合,因此本发明 MEMS惯性传感器的结构也是多样的,形成这些 MEMS 惯性传感器的方法也是多样的, 下文给出的形成本发明的 MEMS惯性传感器 的方法实施例中以第一衬底上的一层或者多层导电层既包括互连层、固定电极 的支撑点、 又包括第一电屏蔽层为例加以说明, 若第一衬底上的一层或者多层 导电层还可以为其他结构或者包括其他结构,本领域技术人员可以基于此实施 例以及本领域的普通技术知识进行类推,在此特别强调, 不应过分限制本发明 的保护范围。 首先请参照图 7, 提供第一衬底 401 , 所述第一衬底 401包括第一表面和 与之相对的第二表面。 所述第一衬底 401可以为单晶的半导体材料,比如所述第一衬底 401可以 为单晶硅、 单晶锗硅等单晶的半导体材料。 作为本发明的一个实施例, 所述第 一衬底 401为单晶硅。 在第一衬底 401的第一表面形成互连层, 具体包括: 在所述第一衬底 401 的第一表面上形成第一绝缘层 402, 刻蚀所述第一绝缘层 402, 在所述第一绝 缘层 402内形成第一开口, 所述第一开口暴露出所述第一衬底 401。 所述第一 绝缘层 402可以为氧化硅、 氮化硅、 氮氧化硅等介质材料, 作为一个实施例, 所述第一绝缘层 402为氧化硅。 在所述第一绝缘层 402上形成第一导电层,所述第一导电层填充满所述第 一开口,刻蚀所述第一导电层,形成第一互连线层 403,所述第一互连线层 403 具体包括分立的作为不同用途的互连线, 分别用于将不同的信号引出。本实施 例中, 所述第一互连线层 403包括: 用于将传感器敏感元素的固定电极引出的 固定电极互连线 403a、 第一互连线 403b、 第二互连线 403c、 第一屏蔽互连线 403d, 第二屏蔽互连线 403e, 第一屏蔽互连线 403d、 第二屏蔽互连线 403e用 于将传感器中的对应电极与电学屏蔽层进行电连接。
本实施例中, 还包括形成固定电极的支撑点 403f, 所述支撑点 403f还具 有电连接的作用, 与所述固定电极互连线 403a电连接。 作为一个实施例, 所 述固定电极的支撑点 403f 与所述互连层采用形成所述互连层的第一导电层材 料形成。
所述第一导电层可以为采用掺杂多晶硅或者其他导电材料,作为本发明的 一个实施例, 所述第一导电层为多晶硅。 若所述第一导电层为多晶硅, 还包括 对所述第一导电层进行捧杂的步骤。
通常形成 MEMS惯性传感器还包括形成用于将可动电极引出的可动电极 互连线、 可动电极支撑点, 为了筒化示图, 本实施例中没有示出, 本领域技术 人员知晓如何形成, 在此特意说明, 不应过分限制本发明的保护范围。
接着, 在所述第一互连线层 403上形成第二绝缘层 404, 所述第二绝缘层 404填充满所述分立的互连线之间的间隙。 所述第二绝缘层 404可以采用氧化 硅、 氮化硅、 氮氧化硅等介质材料, 作为本发明一个实施例, 所述第二绝缘层 404与第一绝缘层 402相同, 均为氧化硅。 然后要对所述第二绝缘层 404进行刻蚀, 形成开口 (未图示), 以便与后 续形成的材料层进行电连接。
在实际 MEMS惯性传感器中, 所述互连层可能包括多层, 多层的互连层 之间具有绝缘层进行隔离, 本实施例中均以一层为例加以说明。 而且, 在本实施例中, 形成传感器的互连层的同时, 采用形成所述互连层 的材料形成传感器所需的其他结构, 比如固定电极的支撑点、可动电极的支撑 点 (未图示), 进一步减少了工艺步骤。 参考图 8, 在所述第二绝缘层 404上形成第二导电层 405 , 所述第二导电 层 405用于制作第一电屏蔽层, 所述第一电屏蔽层作为电学屏蔽层, 用于接入 电屏蔽信号, 所述电屏蔽信号可以是接地信号、 直流驱动信号、 或者其他驱动 信号, 本发明的电学屏蔽层具有制作筒便, 设计灵活等优点。
由于在所述第二绝缘层 404中形成有开口,所述第二导电层 405填充满开 口, 与第一屏蔽互连线 403d、 第二屏蔽互连线 403e对应电连接。 所述第二导电层 405可以采用掺杂的多晶硅或者导电材料,作为本发明的 一个实施例, 所述第二导电层 405采用多晶硅,故还包括对所述多晶硅进行捧 杂的步骤, 在此不再详述。 形成第二导电层 405之后,还可以在所述第二导电层 405上形成第三绝缘 层(未图示), 所述第三绝缘层用于在后续与第二衬底键合过程中作为键合层, 通常所述第三绝缘层采用氧化硅。
请参照图 9, 提供第二衬底 501 , 所述第二衬底 501主要作为所述传感器 的机械支撑。所述第二衬底 501可以为单晶的半导体材料, 比如所述第二衬底 501可以为单晶硅、 单晶锗、 或者单晶锗硅, 当然, 所述第二衬底 501也可以 为其他材料, 作为本发明的一个实施例, 所述第二衬底 501为单晶硅。
还可以在所述第二衬底 501上形成第四绝缘层(未图示), 所述第四绝缘 层用于后续与第一衬底键合过程中作为键合层,增加二者结合力, 所述第四绝 缘层优选氧化硅,所述第四绝缘层和前述的第三绝缘层仅形成一层就可以, 当 然也可以都形成, 甚至都不形成; 而且, 所述第一衬底和第二衬底 501之间的 键合层还可以为导电材料, 比如采用多晶硅, 在此特意说明, 不应过分限制本 发明的保护范围。
接着, 请参照图 10, 将第二衬底 501键合至第一衬底 401上的互连层和 第一电屏蔽层的表面, 将所述第一衬底 401 和第二衬底 501 合成为微机电 ( MEMS )晶圆, 所述将第二衬底 501与第一衬底 401进行键合技术为本领域 公知技术, 在此不再详述。 若第二衬底 501直接或者通过导电的键合层结合至第一衬底 401上的第一 电屏蔽层上, 即二者之间没有其他材料层或者二者之间仅存在导电的键合层, 所述第一电屏蔽层和所述第二衬底 501将共同作为所述传感器的电学屏蔽层; 若第二衬底 501经由键合层结合至第一衬底 401上的第一电屏蔽层上,所述键 合层包含至少一层电学绝缘层,比如所述第二衬底 501上形成有第四绝缘层或 者第一电屏蔽层上形成有第三绝缘层,所述第一电屏蔽层单独作为所述传感器 的电学屏蔽层, 在此特意说明。 同时需要说明的是,在将第二衬底 501与第一衬底 401结合之前, 需要对 两个结合面进行抛光,比如对所述第一衬底 401上的第一电屏蔽层或者第三绝 缘层(若所述第一电屏蔽层上形成有第三绝缘层)进行抛光, 若第二衬底 501 上形成有第四绝缘层, 也可能对第四绝缘层进行抛光, 然后进行键合。
然后, 沿所述第一衬底 401的未形成互连层的第二表面进行减薄, 减薄至 厚度为 5μιη至 ΙΟΟμιη, 经过减薄步骤后, 形成第一衬底 401,。 然后要采用减 薄后的第一衬底 401, 形成本发明的 MEMS惯性传感器的可动电极。
参照图 11 , 在所述第一衬底 401,的第二表面上形成电连接层。 所述电连 接层用于制作后续将第三衬底结合至所述第一衬底上粘合垫或者用于制作后 续与外围电路进行焊接的焊垫或者二者皆制作。
这里需要注意的是,所述电连接层根据后续对形成的传感器密封方法进行 选择, 若后续采用粘合玻璃法进行密封, 需要形成焊垫; 若后续采用金属合金 进行密封, 需要形成粘合垫; 而且, 形成的粘合垫与焊垫的位置也不同, 具体 请参见后文描述。 无论用于制作粘合垫还是用于制作焊垫或者两者皆有,所述电连接层均采 用导电材料制作, 比如可以为金属、 合金或者其他导电材料, 进一步地, 可以 为金属 Al、 金属 Cu、 或其它导电粘合材料。
然后对所述电连接层进行刻蚀,去除与所述第三衬底粘合区域或者与外围 电路焊接的焊垫的区域(具体请参见后文区分)之外的粘合层, 暴露出部分第 一^"底 401, 的表面, 形成电连结构 601 , 所述电连结构 601可以为粘合垫或 者焊垫。
在所述电连结构 601 上以及暴露出的第一衬底 401, 上形成第一掩膜层
602, 所述第一掩膜层 602可以采用光刻胶、 氧化硅、 氮化硅等, 所述第一掩 膜层 602用作后续刻蚀第一衬底 401, 过程中的掩膜。 请参照图 12, 对所述第一掩膜层 602进行图形化, 将待转移的图形转移 至所述第一掩膜层 602中。 接着, 以图形化后的第一掩膜层 602为掩膜刻蚀第一衬底 401,, 直至暴 露出第一绝缘层 402。 经过此步骤, 形成 MEMS惯性传感器的初步结构。 具 体形成了: 固定电极 406和可动电极 407, 所述固定电极 406与所述固定电极 互连线 403a电连接, 所述可动电极 407与可动电极互连线电连接 (未示出)。 同时, 经过刻蚀第一衬底 401,, 还形成了第一传感器结构 408、 第二传感 器结构 409、 第一密封传感器结构 410和第二密封传感器结构 411 , 所述第一 密封传感器结构 410和第二密封传感器结构 411分别与第一屏蔽互连线 403d、 第二屏蔽互连线 403e对应电连接, 而且用于在后续封装过程中对形成的可动 电极和固定电极进行密封。 所述固定电极 406和可动电极 407构成电容器的两个极板。 请参照图 13 ,去除部分第一绝缘层 402, 所述可动电极 407下的第一绝缘 层 402被完全去除, 释放可动电极 407, 形成可移动的可动电极 407, 从而实 现传感器敏感元素结构的释放。所述可动电极 407发生移动时候,所述可动电 极 407与所述固定电极 406之间的距离发生改变。 在去除所述部分第一绝缘层 402过程中,同时余留的第一掩膜层 602被去 除。 去除所述部分第一绝缘层 402需要根据材料进行选择刻蚀剂,作为本发明 的一个实施例, 所述第一绝缘层 402为氧化硅,去除所述第一绝缘层 402的刻 蚀剂可以选择氢氟酸。通过控制刻蚀时间,可以控制所述第一传感器结构 408、 第二传感器结构 409、 第一密封传感器结构 410和第二密封传感器结构 411之 下的保留的第一绝缘层 402的量。 经过上述工艺, 形成了本发明实施例的传感器,后续需要在所述传感器上 将所述传感器进行密封, 所述对第三衬底进行密封包括两种方式, 包括粘合玻 璃密封方法和金属合金密封方法, 首先请参照图 14, 包括: 提供第三衬底 10, 所述第三衬底 10可以为硅, 所述第三衬底 10中形成 有密封腔 11 , 所述密封腔 11 位置与所述传感器位置相对应, 用于容纳所述 MEMS惯性传感器的可动电极和固定电极。 所述第三衬底 10包括结合区域, 所述结合区域后续将与所述第一衬底的第二表面进行结合并将形成的 MEMS 惯性传感器的可动电极和固定电极进行密封。
可选地,可以在所述密封腔 11的外围的第三衬底 10上形成有第五绝缘层
12, 所述第五绝缘层 12可以为氧化硅、 氮化硅、 氮氧化硅等。 作为一个实施 例, 所述第五绝缘层 12为氧化硅。 请参照图 15,提供粘合玻璃 13,将所述粘合玻璃 13粘合至所述第三衬底 10上的对应结合区域, 将具有粘合玻璃 13的第三衬底结合至采用所述第一衬 底形成的可动电极的一侧, 而且所述第三衬底的位置与所述第二衬底位置相 对, 然后去除部分第三衬底 10, 露出所述电连接结构 601 ,形成第三衬底 10,, 即二者结合区域与所述电连接结构不交叠, 此处所述电连接结构为焊垫,后续 还需要将外界的信号处理电路与所述焊垫进行电连接。
此处的第三衬底 10中可以不具有任何电连接的结构, 即可以为空白的硅 片, 当然所述第三衬底 10也可以采用其它绝缘材料。若第三衬底 10中没有任 何电连接的结构, 那么传感器所需的互连层、 支撑点、 固定电极、 电学屏蔽层 需要形成在所述第一衬底上,在此特意说明, 本领域技术人员知晓如何根据封 装方法进行合理布局。
下面对金属合金密封法进行描述, 请参照图 16, 提供第三衬底 20, 所述 第三衬底 20为硅, 所述第三衬底 20中可以形成有 CMOS电路(未示出)、 引 线、 或焊垫及其结合, 甚至所述第三衬底 20内也可以不具有其他电学结构。
请参照图 17, 将所述第三衬底 20与采用所述第一衬底形成的可动电极一 侧进行结合, 而且所述第三衬底的位置与所述第二衬底位置相对,位于第一衬 底的第二表面上的部分的所述电连接结构 601在此处充当粘合层,即位于粘合 区域, 所述粘合层与所述第三衬底 20上的相应结构对应电连接。 当然位于第 一衬底的第二表面上的其它部分的所述电连接结构 601 还可以充当引出的电 极。
若采用金属合金密封法进行密封, 所述 MEMS惯性传感器所需的固定电 极、 互连层、 支撑点、 探测电极(转角器)可以形成在所述第一衬底或者第三 衬底上,在此特意说明,本领域技术人员知晓如何根据封装方法进行合理布局, 在此强调, 不应过分限制本发明的保护范围。 上述的形成 MEMS 惯性传感器的方法选取了比较有典型意义的固定电 极、 可动电极、 第一密封传感器结构、 第二密封传感器结构以及其对应的互连 层、 支撑点的形成方法进行了详细说明; 同时, 上述实施例中还给出了第一互 连线、 第二互连线、 第一传感器结构、 第二传感器结构, 这些结构用于表示传 感器中还可能应用到的其它结构。在此实施例中给出用于向本领域技术人员显 示, 采用本发明的制备传感器的方法不但可以形成悬浮在空腔内的可动电极、 通过支撑点固定在固定电极互连线上的固定电极、以及固定在所述第一屏蔽电 极和第二屏蔽电极上的第一密封传感器结构和第二密封传感器结构;采用本发 明的方法还可以形成通过第一绝缘层固定在所述互连层上方的第一传感器结 构和第二传感器结构,即采用本发明的方法可以形成所述加速度传感器所需要 的所有结构。 在此特别加以说明, 不应过分限制本发明的保护范围。 同时, 在 上述实施例中, 以加速度传感器的 X轴传感器为例加以详细说明, 对于加速 度传感器的 Y轴传感器, 其形成方法基本类似, 本领域技术人员知晓如何形 成, 对于加速传感器的 Z轴传感器, 其无论采用如图 2还是如图 3所示的 Z 轴传感器结构, 其制作方法类似于所述 X轴传感器的制作方法, 区别在于布 局、 或者设计不同, 故关于加速度传感器的 Z轴传感器的形成方法不再详述, 基于本领域的普通技术知识以及本发明的实施例,本领域技术人员知晓如何变 更、 修改或者增补。 再者, 对于转角器, 从结构上来说, 其用于测试每个方向的转角器(即 X 轴转角器、 Y轴转角器、 Z转角器)结构类似于加速传感器的三个方向的传感 器(即 X轴传感器、 Y轴传感器、 Z传感器)的综合体, 若采用本发明的方法 可以形成加速度传感器的每个方向的传感器,采用本发明的方法也可以形成各 个方向的转角器结构, 区别仅在于布局、 或者设计的不同, 故关于转角器的形 成方法不再详述,基于本领域的普通技术知识以及本发明的实施例, 本领域技 术人员知晓如何变更、 爹改或者增补。 本发明还提供了另一种惯性传感器的形成方法,本实施例中的所述惯性传 感器中形成有抗粘连结构, 用于防止所述可动电极与其它相接触而产生粘连, 从而损伤器件。 在此以 Z轴加速度传感器为例加以介绍, 具体请参照图 18至 图 21。
首先请参照图 18,提供第一衬底 701 , 所述第一衬底 701包括第一表面和 与之相对的第二表面。 所述第一衬底 701可以为单晶的半导体材料。 作为本发明的一个实施例, 所述第一衬底 701为单晶硅。
在所述第一衬底 701的第一表面上形成第一绝缘层 702, 刻蚀所述第一绝 缘层 702, 在所述第一绝缘层 702内形成不同的第一开口 703和第二开口 704 和第三开口 705 , 其中第一开口 703用于填充导电材料从而形成固定电极支撑 点或其它电连接或机械结构。所述第二开口 704用于填充导电材料从而在后续 形成抗粘连结构。
所述第一绝缘层 702可以为氧化硅、 氮化硅、 氮氧化硅等介质材料, 作为 一个实施例, 所述第一绝缘层 702为氧化硅。
参照图 19, 在所述第一绝缘层 702上形成第一导电层, 所述第一导电层 填充满所述第一开口 703、 第二开口 704和第三开口 705 , 刻蚀所述第一导电 层, 形成扭转轴互连线 703a、 固定电极 703b, 抗粘连结构互连线 703c、 第一 互连线 703d、 第一屏蔽互连线 703e、 和第二屏蔽互连线 703f。
参照图 20,在第一导电层上形成第二绝缘层 706,接着在第二绝缘层中形 成开口, 在第二绝缘层上形成第二导电层 707, 作为电学屏蔽层, 所述第二导 电层 707与第一屏蔽互连线 703e和第二屏蔽互连线 703f对应电连接。
然后请参照附图 9 ~ 12的相应工艺, 经过这些工艺, 形成本发明另一个实 施例的具有抗粘连结构的传感器的可动电极, 形成的结构请参照图 21 , 具体 包括: 扭转轴 708、可动电极 709、第一传感器结构 710、第二传感器结构 711、 密封结构 712、第三传感器结构 713。所述扭转轴 708与所述扭转轴互连线 703a 电连接,所述可动电极 709与可动电极互连线电连接(未示出), 密封结构 712 分别与所述第一屏蔽结构、 第二屏蔽结构电连接, 第一传感器结构 710、 第二 传感器结构 711、第三传感器结构 713分别代表形成的 Z轴传感器所需要的其 他结构。 在面对着可动电极 709的下方的固定电极 703b上和抗粘连结构互连 线 703c 上形成有抗粘连结构。 形成了本发明实施例的带有抗粘连结构的 MEMS惯性传感器。 本发明还提供另一种带有抗粘连结构的 MEMS惯性传感器的形成方法实 施例, 具体请参照图 22至图 24。 首先请参照图 22提供第一衬底 801 , 所述第一衬底 801包括第一表面和 与之相对的第二表面。 在所述第一衬底 801的第一表面上形成第一准绝缘层 802, 刻蚀所述第一 准绝缘层 802, 在所述第一准绝缘层 802内形成第一开口 803 , 所述第一开口 803用于在后续形成抗粘连结构。 具体形成所述第一准绝缘层 802的方法可以采用淀积的方式。作为本发明 的一个实施例, 所述第一准绝缘层 802采用热氧化形成。 需要特别说明的是, 所述第一准绝缘层 802的厚度并未达到预定的作为互连层隔离层的厚度,本实 施例中的第一准绝缘层 802的厚度仅仅是相当于抗粘连结构的厚度。故此处第 一开口 803的深度相当于第一准绝缘层 802的厚度,即所述第一开口 803暴露 出所述第一衬底 801。
请参照图 23 , 进行淀积, 第一准绝缘层 802厚度逐渐增大, 形成第一目 标绝缘层 804,通过控制淀积的时间、条件从而控制形成的第一目标绝缘层 804 的厚度为预期的厚度。
由于第一准绝缘层中具有第一开口, 经过淀积, 第一开口位置仍然比其他 位置相对要低, 形成第一开口 803,。 所述第一开口 803, 用于填充导电层形成 抗粘连结构。 然后,请参照图 24,在所述第一目标绝缘层 804中分别形成第二开口 805、 第三开口 806和第四开口 807, 所述第二开口 805用于填充导电材料形成扭转 轴互连线或其它电连接或机械结构,所述第三开口 806和第四开口 807用于填 充导电材料形成屏蔽互连线。
然后请参照前述的对图 19 ~ 21的相关描述, 从而可以形成本发明另一个 实施例的带有抗粘连结构的 MEMS惯性传感器。 在上述实施例中,所述 Z轴传感器的固定电极采用所述第一半导体衬底的 第一表面上的一层或者多层导电层形成, 而且优化地, 采用最靠近所述第一衬 底的导电层形成所述 Z轴传感器固定电极和抗粘连结构。 本发明还提供又一种带有抗粘连结构的 MEMS惯性传感器的形成方法实 施例, 请参照图 25至 28。 首先请参照图 25 ,提供第一衬底 901 ,在所述第一衬底 901上形成第一掩 膜层 902, 所述第一掩膜层 902的位置与后续形成抗粘连结构的位置相对应。 请参照图 26, 以所述第一掩膜层 902为掩膜, 对所述第一衬底 901进行 刻蚀, 形成第一衬底 901,, 从而在覆盖有第一掩膜层 902位置形成抗粘连结 构 903。 然后, 请参照图 27, 在所述第一衬底 901, 上形成互连层和电学屏蔽层, 具体请参照前述图 19和图 20的相关工艺, 在此不再详述。 接着, 下面要进行形成可动电极步骤, 形成了采用第一衬底制作的具有抗 粘连结构的可动电极, 具体请参照图 28, 形成了扭转轴 904、 可动电极 905、 第一传感器结构 906、 第二传感器结构 907、 密封结构 908、 第三传感器结构 909。 密封结构 908分别与第一屏蔽结构、 第二屏蔽结构电连接, 第一传感器 结构 906、第二传感器结构 907和第三传感器结构 909分别代表形成的 Z轴传 感器所需要的其他结构。 在面对着固定电极 903a以及抗粘连结构互连线 903b 的可动电极 905上形成有抗粘连结构。从而形成本发明又一实施例的在可动电 极上带有抗粘连结构的 MEMS惯性传感器。 对于转角器来说, 还可以在所述转角器上设置抗粘连结构, 如前所述, 由 于从结构上说, 其用于测试每个方向的转角器(即 X轴转角器、 Y轴转角器、 Z转角器)结构类似于加速传感器的三个方向的传感器(即 X轴传感器、 Y轴 传感器、 Z传感器)的综合体, 故在转角器上设置抗粘连结构的方法类似于在 所述加速度传感器上设置抗粘连结构的方法,关于转角器上设置抗粘连结构的 方法在此不再详述, 本领域技术人员基于前述的技术方案知晓如何变通形成。 本发明虽然以较佳实施例公开如上,但其并不是用来限定权利要求,任何 本领域技术人员在不脱离本发明的精神和范围内,都可以做出可能的变动和修 改, 因此本发明的保护范围应当以本发明权利要求所界定的范围为准。

Claims

权 利 要 求
1、 一种 MEMS惯性传感器, 包括: 可移动敏感元素; 第二衬底和第三衬底;
其特征在于, 所述可移动敏感元素采用第一衬底形成, 所述第一衬底为单晶半导体材 料, 所述第一衬底包括相对的第一表面和第二表面, 所述第一衬底的第一表面 上形成有一层或者多层导电层,所述第二衬底与所述第一衬底上的一层或者多 层导电层的表面结合, 所述第三衬底与所述可移动敏感元素的一侧结合,且所 述第三衬底和第二衬底分别位于所述可移动敏感元素的相对两侧。
2、 如权利要求 1所述 MEMS惯性传感器, 其特征在于, 所述一层或者多 层导电层包括 MEMS惯性传感器的第一电屏蔽层、互连层、固定电极的支撑点、 可移动敏感元素的支撑点、或者前述结构的任意组合,所述互连层包括一层或 者多层互连线。
3、 如权利要求 1所述 MEMS惯性传感器, 其特征在于, 所述一层或者多 层导电层包括第一电屏蔽层。
4、 如权利要求 1所述 MEMS惯性传感器, 其特征在于, 所述一层或者多 层导电层包括第一电屏蔽层和互连层,所述互连层比所述第一电屏蔽层更为靠 近所述第一衬底的第一表面。
5、 如权利要求 1所述 MEMS惯性传感器, 其特征在于, 还包括抗粘连结 构, 所述抗粘连结构采用所述第一衬底、 或者所述一层或者多层导电层制作。
6、如权利要求 1所述 MEMS惯性传感器, 其特征在于, 所述 MEMS惯性传 感器为加速度传感器, 所述加速度传感器包括 X轴传感器、 Y轴传感器、 Z轴传 感器或其任意组合。
7、如权利要求 1所述 MEMS惯性传感器, 其特征在于, 所述 MEMS惯性传 感器为转角器, 所述转角器包括 X轴转角器、 Y轴转角器、 或 Z轴转角器或其任 意组合。
8、 如权利要求 1所述 MEMS惯性传感器, 其特征在于, 所述一层或者多 层导电层包括 MEMS惯性传感器的第一电屏蔽层,所述第二衬底直接或者经过 导电的键合层结合至所述第一衬底上的第一电屏蔽层上,所述第二衬底与所述 第一电屏蔽层共同作为传感器的电学屏蔽层。
9、 如权利要求 1所述 MEMS惯性传感器, 其特征在于, 所述一层或者多 层导电层包括 MEMS惯性传感器的第一电屏蔽层,所述第二衬底经由键合层键 合至所述第一衬底上的一层或者多层导电层表面上,所述键合层至少包括一层 绝缘层, 所述第一电屏蔽层作为传感器的电学屏蔽层。
10、 如权利要求 1所述惯性传感器, 其特征在于, 所述第一衬底的第二表 面为经过减薄的表面, 所述传感器的可动敏感元素采用减薄后的第一衬底形 成。
11、 一种 MEMS惯性传感器的形成方法, 其特征在于, 包括: 提供第一衬底, 所述第一衬底为单晶的半导体衬底, 所述第一衬底具有 第一表面和与之相对的第二表面; 在第一衬底的第一表面上形成一层或者多层导电层;
提供第二衬底;
将第二衬底结合至所述第一衬底上的一层或者多层导电层的表面; 从所述第一衬底的第二表面侧采用第一衬底形成可移动敏感元素; 提供第三衬底;
将第三衬底结合至所述可移动敏感元素的一侧, 所述第三衬底与所述第 二衬底分别位于所述可移动敏感元素相对两侧。
12、 如权利要求 11所述的 MEMS惯性传感器的形成方法, 其特征在于, 所述一层或者多层导电层包括 MEMS惯性传感器的第一电屏蔽层、 互连层、 固 定电极的支撑点、 可移动敏感元素的支撑点、 或者前述结构的任意组合, 所述 互连层包括一层或者多层互连线。
13、 如权利要求 11所述的 MEMS惯性传感器的形成方法, 其特征在于, 所述一层或者多层导电层包括第一电屏蔽层。
14、 如权利要求 11所述的 MEMS惯性传感器的形成方法, 其特征在于, 所述一层或者多层导电层包括第一电屏蔽层和互连层,所述互连层比所述第一 电屏蔽层更为靠近所述第一衬底的第一表面。
15、 如权利要求 11所述的 MEMS惯性传感器的形成方法, 其特征在于, 还包括采用所述第一衬底或者一层或者多层导电层制作所述 MEMS惯性传感 器的抗粘连结构步骤。
16、 如权利要求 11所述的 MEMS惯性传感器的形成方法, 其特征在于, 所述 MEMS惯性传感器为加速度传感器, 所述加速度传感器包括 X轴传感器、
Y轴传感器、 Z轴传感器或其任意组合。
17、 如权利要求 11所述的 MEMS惯性传感器的形成方法, 其特征在于, 所述 MEMS惯性传感器为转角器, 所述转角器包括 X轴转角器、 Y轴转角器、 Z 轴转角器或其任意组合。
18、 如权利要求 17所述的 MEMS惯性传感器的形成方法, 其特征在于, 还包括采用所述第一衬底形成所述转角器的固定电极步骤。
19、 如权利要求 11所述的 MEMS惯性传感器的形成方法, 其特征在于, 所述一层或者多层导电层包括传感器的第一电屏蔽层,所述将第二衬底直接或 者通过键合层结合至第一衬底上的一层或者多层导电层的表面为将第二衬底 直接或者经过导电的键合层结合至所述第一衬底上的第一电屏蔽层上,所述第 二衬底与所述第一电屏蔽层共同作为传感器的电学屏蔽层。
20、 如权利要求 11所述的 MEMS惯性传感器的形成方法, 其特征在于, 所述一层或者多层导电层包括传感器的第一电屏蔽层,所述将第二衬底结合至 第一衬底上的一层或者多层导电层的表面为将第二衬底通过键合层键合至所 述第一衬底上的一层或者多层导电层上, 所述键合层至少包括一层绝缘层, 所 述第一电屏蔽层作为传感器的电学屏蔽层。
21、 如权利要求 11所述的 MEMS惯性传感器的形成方法, 其特征在于, 在从所述第一衬底的第二表面侧采用第一衬底形成传感器的可移动敏感元素 步骤之前还包括从所述第一衬底的第二表面侧进行减薄步骤。
PCT/CN2012/071495 2011-03-15 2012-02-23 Mems惯性传感器及其形成方法 WO2012122879A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/004,838 US9958471B2 (en) 2011-03-15 2012-02-23 MEMS inertial sensor and forming method therefor
US15/924,789 US10591508B2 (en) 2011-03-15 2018-03-19 MEMS inertial sensor and forming method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110061571.2 2011-03-15
CN2011100615712A CN102156203B (zh) 2011-03-15 2011-03-15 Mems惯性传感器及其形成方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/004,838 A-371-Of-International US9958471B2 (en) 2011-03-15 2012-02-23 MEMS inertial sensor and forming method therefor
US15/924,789 Continuation US10591508B2 (en) 2011-03-15 2018-03-19 MEMS inertial sensor and forming method therefor

Publications (1)

Publication Number Publication Date
WO2012122879A1 true WO2012122879A1 (zh) 2012-09-20

Family

ID=44437770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071495 WO2012122879A1 (zh) 2011-03-15 2012-02-23 Mems惯性传感器及其形成方法

Country Status (3)

Country Link
US (2) US9958471B2 (zh)
CN (1) CN102156203B (zh)
WO (1) WO2012122879A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018026677A1 (en) * 2016-08-04 2018-02-08 Analog Devices, Inc. Anchor tracking apparatus for in-plane accelerometers and related methods
US10203351B2 (en) 2014-10-03 2019-02-12 Analog Devices, Inc. MEMS accelerometer with Z axis anchor tracking
US10261105B2 (en) 2017-02-10 2019-04-16 Analog Devices, Inc. Anchor tracking for MEMS accelerometers

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102156203B (zh) 2011-03-15 2013-07-24 迈尔森电子(天津)有限公司 Mems惯性传感器及其形成方法
CN102180435B (zh) * 2011-03-15 2012-10-10 迈尔森电子(天津)有限公司 集成mems器件及其形成方法
WO2013118248A1 (ja) * 2012-02-06 2013-08-15 株式会社日立製作所 発光素子
CN103708409B (zh) * 2013-10-25 2015-10-07 张家港丽恒光微电子科技有限公司 压力传感器和惯性传感器及其形成方法
CN104609359B (zh) * 2013-11-05 2016-03-16 中芯国际集成电路制造(上海)有限公司 电容式mems惯性传感器的形成方法
CN104678125B (zh) * 2013-11-27 2019-07-02 中芯国际集成电路制造(上海)有限公司 Mems加速度传感器的形成方法
US9840409B2 (en) * 2015-01-28 2017-12-12 Invensense, Inc. Translating Z axis accelerometer
CN106033091B (zh) * 2015-03-11 2022-04-29 中芯国际集成电路制造(上海)有限公司 一种mems加速度传感器及其制备方法、电子装置
US11112269B2 (en) * 2018-07-09 2021-09-07 Analog Devices, Inc. Methods and systems for self-testing MEMS inertial sensors
US11088093B1 (en) * 2020-05-28 2021-08-10 X-Celeprint Limited Micro-component anti-stiction structures
CN112194097B (zh) * 2020-12-07 2021-05-07 中芯集成电路制造(绍兴)有限公司 一种惯性传感器及其形成方法
CN114620671B (zh) * 2022-05-16 2022-08-30 苏州敏芯微电子技术股份有限公司 一种微机电系统传感器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135804A (ja) * 1997-08-29 1999-05-21 Matsushita Electric Works Ltd 半導体加速度センサ及びその製造方法
US20060213268A1 (en) * 2005-03-24 2006-09-28 Denso Corporation Acceleration sensor and method for manufacturing the same
CN101059530A (zh) * 2006-04-21 2007-10-24 索尼株式会社 位移传感器及其制造方法
WO2010061777A1 (ja) * 2008-11-25 2010-06-03 パナソニック電工株式会社 加速度センサ
CN101786593A (zh) * 2010-01-18 2010-07-28 北京大学 差分式高精度加速度计的加工方法
CN102156203A (zh) * 2011-03-15 2011-08-17 迈尔森电子(天津)有限公司 Mems惯性传感器及其形成方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2786321B2 (ja) * 1990-09-07 1998-08-13 株式会社日立製作所 半導体容量式加速度センサ及びその製造方法
US6199874B1 (en) * 1993-05-26 2001-03-13 Cornell Research Foundation Inc. Microelectromechanical accelerometer for automotive applications
JPH07191055A (ja) * 1993-12-27 1995-07-28 Hitachi Ltd 静電容量式加速度センサ
DE69626972T2 (de) * 1996-07-31 2004-01-08 Stmicroelectronics S.R.L., Agrate Brianza Integrierter kapazitiver Halbleiter-Beschleunigungsmessaufnehmer sowie Verfahren zu seiner Herstellung
US6048774A (en) * 1997-06-26 2000-04-11 Denso Corporation Method of manufacturing dynamic amount semiconductor sensor
JPH11258265A (ja) * 1998-03-16 1999-09-24 Akebono Brake Ind Co Ltd 半導体加速度センサ及びその製造方法
US6308569B1 (en) * 1999-07-30 2001-10-30 Litton Systems, Inc. Micro-mechanical inertial sensors
US20050132803A1 (en) * 2003-12-23 2005-06-23 Baldwin David J. Low cost integrated MEMS hybrid
US7250353B2 (en) 2005-03-29 2007-07-31 Invensense, Inc. Method and system of releasing a MEMS structure
DE102008042350A1 (de) * 2008-09-25 2010-04-01 Robert Bosch Gmbh Mikromechanisches Bauelement und Verfahren zu dessen Herstellung
TWI419239B (zh) * 2008-11-19 2013-12-11 Miradia Inc 用於形成陀螺儀與加速度感測儀之方法和結構
JP5316479B2 (ja) * 2009-06-09 2013-10-16 株式会社デンソー 半導体力学量センサの製造方法及び半導体力学量センサ
CN102183677B (zh) * 2011-03-15 2012-08-08 迈尔森电子(天津)有限公司 集成惯性传感器与压力传感器及其形成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135804A (ja) * 1997-08-29 1999-05-21 Matsushita Electric Works Ltd 半導体加速度センサ及びその製造方法
US20060213268A1 (en) * 2005-03-24 2006-09-28 Denso Corporation Acceleration sensor and method for manufacturing the same
CN101059530A (zh) * 2006-04-21 2007-10-24 索尼株式会社 位移传感器及其制造方法
WO2010061777A1 (ja) * 2008-11-25 2010-06-03 パナソニック電工株式会社 加速度センサ
CN101786593A (zh) * 2010-01-18 2010-07-28 北京大学 差分式高精度加速度计的加工方法
CN102156203A (zh) * 2011-03-15 2011-08-17 迈尔森电子(天津)有限公司 Mems惯性传感器及其形成方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10203351B2 (en) 2014-10-03 2019-02-12 Analog Devices, Inc. MEMS accelerometer with Z axis anchor tracking
WO2018026677A1 (en) * 2016-08-04 2018-02-08 Analog Devices, Inc. Anchor tracking apparatus for in-plane accelerometers and related methods
US10203352B2 (en) 2016-08-04 2019-02-12 Analog Devices, Inc. Anchor tracking apparatus for in-plane accelerometers and related methods
US10261105B2 (en) 2017-02-10 2019-04-16 Analog Devices, Inc. Anchor tracking for MEMS accelerometers

Also Published As

Publication number Publication date
US20130340526A1 (en) 2013-12-26
CN102156203A (zh) 2011-08-17
US20180210006A1 (en) 2018-07-26
US9958471B2 (en) 2018-05-01
CN102156203B (zh) 2013-07-24
US10591508B2 (en) 2020-03-17

Similar Documents

Publication Publication Date Title
WO2012122879A1 (zh) Mems惯性传感器及其形成方法
US9650237B2 (en) Electromechanical device including a suspended structure and method of fabricating the same
US9448251B2 (en) Integrated inertial sensor and pressure sensor, and forming method therefor
CN102955046B (zh) 一种单片集成cmos mems多层金属三轴电容式加速度传感器及制备方法
US7690255B2 (en) Three-axis inertial sensor and method of forming
WO2012122876A1 (zh) 集成mems器件及其形成方法
JP5638598B2 (ja) 垂直に集積されたmems加速度トランスデューサ
TWI419239B (zh) 用於形成陀螺儀與加速度感測儀之方法和結構
TWI402209B (zh) 微電子機械系統
CN106959106B (zh) 一种基于soi封装的熔融石英微半球谐振陀螺仪及其加工方法
TWI675444B (zh) 微機電系統裝置與微機電系統的封裝方法
KR20010044908A (ko) 고진공 패키징 마이크로자이로스코프 및 그 제조방법
US9383382B2 (en) Microelectromechanical sensor with out-of-plane sensing and process for manufacturing a microelectromechanical sensor
CN110668394B (zh) 一种抗干扰耐过载mems加速度计的制备方法
TWI634069B (zh) 混合整合構件及其製造方法
WO2014044016A1 (zh) 一种加速度计及其制造工艺
WO2014044015A1 (zh) 一种加速度计及其制造工艺
CN112209332B (zh) 一种单片六轴imu的双面电极制作及圆片级真空封装方法
JP2011196966A (ja) 慣性センサ
CN113432761A (zh) 带惯性环境补偿功能的机器人用触觉传感器及其制作方法
JP2010078425A (ja) 加速度センサ
JP2010107240A (ja) 1軸加速度センサ及びそれを用いた3軸加速度センサ
US11981560B2 (en) Stress-isolated MEMS device comprising substrate having cavity and method of manufacture
US20210380403A1 (en) Stress-isolated mems device comprising substrate having cavity and method of manufacture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758109

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14004838

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12758109

Country of ref document: EP

Kind code of ref document: A1