JP5638598B2 - 垂直に集積されたmems加速度トランスデューサ - Google Patents

垂直に集積されたmems加速度トランスデューサ Download PDF

Info

Publication number
JP5638598B2
JP5638598B2 JP2012502067A JP2012502067A JP5638598B2 JP 5638598 B2 JP5638598 B2 JP 5638598B2 JP 2012502067 A JP2012502067 A JP 2012502067A JP 2012502067 A JP2012502067 A JP 2012502067A JP 5638598 B2 JP5638598 B2 JP 5638598B2
Authority
JP
Japan
Prior art keywords
substrate
test mass
sensor
acceleration
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012502067A
Other languages
English (en)
Other versions
JP2012521565A5 (ja
JP2012521565A (ja
Inventor
リン、イーチェン
エフ. ミラー、トッド
エフ. ミラー、トッド
タック パーク、ウー
タック パーク、ウー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP USA Inc
Original Assignee
NXP USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NXP USA Inc filed Critical NXP USA Inc
Publication of JP2012521565A publication Critical patent/JP2012521565A/ja
Publication of JP2012521565A5 publication Critical patent/JP2012521565A5/ja
Application granted granted Critical
Publication of JP5638598B2 publication Critical patent/JP5638598B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0064Packages or encapsulation for protecting against electromagnetic or electrostatic interferences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/00743D packaging, i.e. encapsulation containing one or several MEMS devices arranged in planes non-parallel to the mounting board
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0814Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/082Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for two degrees of freedom of movement of a single mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0831Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type having the pivot axis between the longitudinal ends of the mass, e.g. see-saw configuration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0837Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being suspended so as to only allow movement perpendicular to the plane of the substrate, i.e. z-axis sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0848Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration using a plurality of mechanically coupled spring-mass systems, the sensitive direction of each system being different
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0851Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration using a plurality of spring-mass systems, each system having a different range of sensitivity to acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0862Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with particular means being integrated into a MEMS accelerometer structure for providing particular additional functionalities to those of a spring mass system
    • G01P2015/0871Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with particular means being integrated into a MEMS accelerometer structure for providing particular additional functionalities to those of a spring mass system using stopper structures for limiting the travel of the seismic mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0862Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with particular means being integrated into a MEMS accelerometer structure for providing particular additional functionalities to those of a spring mass system
    • G01P2015/088Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with particular means being integrated into a MEMS accelerometer structure for providing particular additional functionalities to those of a spring mass system for providing wafer-level encapsulation

Description

本発明は、一般に加速トランスデューサに関する。特に、垂直に集積された微小電子機械システム(MEMS)加速度トランスデューサに関する。
加速度トランスデューサまたは加速度計は、加速力の測定に典型的に利用されるセンサである。この力は、一定力の重力のような静的な力であってもよいし、または加速度計を移動または振動することによって及ぼされる動的な力でもよい。加速度計は、加速度、または1つ、2つあるいは3つの軸または方向に沿った他の現象を感知し得る。この情報から、加速度計が備えられたデバイスの移動または方向が確認され得る。加速度計は、慣性航法システム、自動車におけるエアバッグ展開システム、種々なデバイスの保護システム、そして多くの科学的および工学的なシステムに用いられている。
容量式感知MEMS加速度計設計は、比較的安価であるため、高重力環境および小型デバイスでの動作に非常に望ましい。容量式加速度計は、加速度に対して電気容量の変化を感知し、励起された回路の出力を変更する。容量式感知加速度トランスデューサの1つのタイプは、トランスデューサパッケージの平面と概ね平行な1つまたは2つの軸に沿った移動を感知することが可能である。このタイプの加速度トランスデューサは、X軸方向の加速度および/またはY軸方向加速度、またはその両者の下に可動素子が実装された基板の表面とほぼ平行に移動する該可動素子を用いる。別のタイプの加速度トランスデューサは、トランスデューサパッケージの面に対して概ね垂直な軸に沿った移動を感知することが可能な「ティータートータ」または「シーソー」可動素子構成を有する。このタイプの加速度トランスデューサは、基板の表面に対して垂直なZ軸加速下に回転する移動素子またはプレートを用いる。両方のタイプの加速度計構造は、差動容量または相対容量を決定するために少なくとも二つの異なる容量を測定し得る。
従来の多軸加速度トランスデューサは、典型的にモノリシック設計を有する。モノリシック設計では、複数の感知構造が、同一の基板または同一デバイスウェハ上に、平面状に作成される。ダイサイズ減少は、より効率的なダイ面積設計処理、より積極的な組立(fabrication)処理、等によって達成可能であるが、製造コストの上昇または性能部分の犠牲のないこのような処理の効率には限界がある。
(発明の概要)
したがって、上述の当該技術分野における問題を克服する改善されたMEMS加速度トランスデューサおよび組立方法が必要とされている。
本発明の実施形態による微小電子機械システム(MEMS)加速度トランスデューサの分解斜視図である。 代表的実施形態による図1の加速度トランスデューサを製造するための組立処理のフローチャートである。 図1の加速度トランスデューサの二軸センサの上面図である。 図3の切断線4−4に沿った二軸センサの側面図である。 図1の加速度トランスデューサの単一軸センサの上面図である。 図5の切断線6−6に沿った単一軸センサの側面図である。 図1の加速度トランスデューサを形成するために、単一軸センサに接続された二軸センサの側面図である。 本発明の実施形態による、クロストーク容量効果を示す第1図およびクロストーク容量キャンセルを示す第2図である。 代替え実施形態による、図1のトランスデューサの側面図である。 別の代替え実施形態による、MEMS加速度トランスデューサの側面図である。
本明細書の教示にしたがって、小型加速度トランスデューサまたは加速度計が、図解のための例として提供される。加速度トランスデューサの実施形態は、1つ、2つ、または3つの軸に沿って検知することを含み得る。多軸検知は、トランスデューサの平面と平行な2軸の加速度を感知するように適合可能であり、同様にトランスデューサの平面と垂直な軸の加速度を感知するようにも適合可能である。また、加速度トランスデューサは、異なる加速度の感知範囲、すなわち、gレベル、で加速度を感知するように適合され得る。本発明の実施形態は、垂直に集積された、または積み重ねられた、加速度トランスデューサの組立方法をさらに含む。そのような加速度トランスデューサは、2つのトランスデューサウェハを別々に作成し、続いて、同一または異なる加速度感知範囲で1つ、2つ、または3つの軸に沿って感知可能な加速度トランスデューサを作成するために、2つのトランスデューサウェハを接合することにより形成される。
図1は、本発明の実施形態による、微小電子機械システム(MEMS)加速度トランスデューサ20の分解斜視図を示す。図示された実施形態において、トランスデューサ20は、3つの相互に直交方向の加速度を感知するように適合された多軸容量式加速度計である。詳細にはトランスデューサ20は、X軸に相当する方向22の加速度、Y軸に相当する方向24、Z軸に相当する方向26を感知する。明確にするために、以下、方向22、方向24、および方向26は、それぞれにX方向22、Y方向24、Z方向26と呼ぶ。トランスデューサ20は3つの相互に直交する方向の加速度を感知するものとして記載されているが、以下に詳細に説明されるように、トランスデューサ20はたった1つの方向のみ、または2つの相互に直交する方向の加速度を感知するように適合される場合もある。見易さのために、トランスデューサ20の層は別々に示されている。しかしながら、実施される時にはトランスデューサの層は実際には互いにぴったり合わされている。
一実施形態において、トランスデューサ20は、二軸(つまり二つの軸からなる)センサ28および単一軸(つまり一つの軸からなる)センサ30を含む。二軸センサ28はX方向22およびY方向24の加速度を感知するように適合され、単一軸センサ30はZ方向26の加速度を感知するように適合され得る。センサ28、30は別々に作成され、次に、センサ28の上にセンサ30が配置されたMEMSトランスデューサ20を形成するように互いに接合される。この個別のすなわち独立した組み立て方法は、特定のトランスデューサ応用において最も有利な製造方法を達成するように、2つのセンサ28、30に異なるトランスデューサ製造技術を利用することを可能にする。
二軸センサ28は、アンカーシステム38を介して基板36の表面34から離間配置された、すなわち、基板36の表面34の上方に自在に保持され、基板36の表面34から離間された状態で上方に配置された二試験質量32を含む。アンカーシステム38が試験質量32を基板36に可動式に接続する。一実施形態において、アンカーシステム38は、基板36の表面34に形成されたまたは接続された、幾つかのアンカー40を備えている。試験質量32は、2つの相互に直交する方向、すなわち、X方向22およびY方向24に望ましく伸び縮みするバネ42によりアンカー40に取付けられる。したがって、アンカーシステム38が、X方向22およびY方向24の加速度にそれぞれ応答して、試験質量32を基板36の表面34に対して実質的に平行移動することを可能にする。
センサ28の試験質量32は、第1セットの可動電極(以下、可動フィンガー44と称する)および第2セットの可動電極(以下、可動フィンガー46と称する)を含む。各可動フィンガー44は一対の固定電極(以下、固定フィンガー48、50と称する)によって包囲され、該固定フィンガー48、50は基板36の表面34に形成または取り付けられる。固定フィンガー48、50は基板36に非可動接続されている。すなわち、固定フィンガー48、50は基板36から離れて動かない。フィンガー44、48、50はX方向22と垂直に配置され、X方向22の加速度を決定するための差動容量式構造を形成する。同様に、各可動フィンガー46は一対の固定電極(以下、固定フィンガー52、54という)によって包囲され、該固定フィンガー52、54が基板36に非可動接続されるように、基板36の表面34に形成または取り付けられる。フィンガー46、52、54はY方向24と垂直に配置され、Y方向24の加速度を決定するための差動容量式構造を形成する。
二軸センサ28がX方向22の加速度を受ける時、可動フィンガー44と、隣接する固定フィンガー48、50との間の距離が変化するように、試験質量32がX方向22に移動し、それによってフィンガー間の容量が変化する。この容量変化が感知回路(図示せず)によって登録され、X方向22の加速度を表す出力信号に変換される。Y方向24の加速度は、試験質量32がY方向24に移動する時、可動フィンガー46と対応する固定フィンガー52、54との間の容量変化を登録することによって、同様に感知される。したがって、センサ28は、基板36の表面34と実質的に平行である直交方向、すなわち、X方向22およびY方向24の加速度を感知する。
図解のために、センサ38の種々の構造、例えば、試験質量32、可動フィンガー44、46、固定フィンガー48、50、52、54、バネ42およびアンカー40が提供された。特定設計の制約にしたがって、これら種々の素子は異なる形態をとってもよいことは当業者に理解される。例えば、試験質量32は異なる形状を有してもよく、可動フィンガー44、46および固定フィンガー48、50、52、54の数および配置は変わってもよい。この代表的実施形態では、合計で4つのアンカー40および4つのバネ42があり、1つのバネ42が各アンカー40を試験質量32に相互接続している。しかし、アンカー40またはバネ42の数および配置は変わってもよい。
単一軸センサ30は、基板56と、基板56の表面60から離間され可動式に接続された試験質量58とを備える。基板56は、キャパシタ電極素子または「プレート」を形成するために、表面60に堆積された所定構成のいくつかの導電性電極素子62を有する。代表的なシナリオにおいて、電極素子62は、刺激信号を受信する励起または感知電極として動作し得る。フィードバック信号が感知信号に重なった時、電極素子62はフィードバック電極として付加的に動作し得る。代替え実施形態では、公知の構成にしたがい、基板56の表面60に感知電極および励起電極が別々に形成され得る。
試験質量58は、基板56の表面60に形成または取付けられたアンカーシステム64によって、基板56から回転できるように吊り下げられる。例えば、試験質量58は、アンカーシステム64の回転可能な可撓性部材66によって基板56の表面60上に可撓に吊られ、該回転可能な可撓性部材66は、試験質量58が回転軸68の周りを旋回または回転することを可能にする。ティータートータ型加速度計として動作することを意図する時、回転軸68の片側における試験質量58の区分70は、回転軸68の他側における試験質量58の区分72より相対的に大きな質量を有するように形成される。区分70のより大きな質量は、回転軸68をオフセットすることによって典型的に形成される。すなわち、回転軸68と区分70の端部76との間の長さ74は、回転軸68と区分72の端部80との間の長さ78より長い。また、電極素子62は、回転軸68および試験質量58の長手方向軸82に対して対称的にサイズ化および離間配置される。
代替え実施形態では、回転軸68は試験質量58の端部76と端部80間の中心にあり得る。このような構成において、区分70と区分72との間の異なる質量は、例えば、区分70と比べて区分72の質量が減少するように、区分72に試験質量58を貫通する開口を形成することによって達成され得る。或いは、例えば、区分72に対して区分70の質量が増加するように、試験質量58の区分70に付加的質量が加えられ得る。
区分70と72の質量差のおかげで、Z方向26の加速度に応答して試験質量58が回転軸68の周りを旋回し、したがって、固定電極素子62に対する試験質量58の位置が変化する。この位置変化が、1セットのキャパシタを生じ、該キャパシタの差、すなわち、差動容量が基板56の表面60に垂直なZ方向26の加速度を示す。
以下に詳しく記載されるように、表面60が表面34に向き合い、試験質量58が試験質量32に向き合うように、基板56は基板36に機械的に接続される。この基板56と基板36の機械的接続が、試験質量32および試験質量58の両者が中に配置されたチャンバを形成する。一実施形態において、この機械的接続が密封されたチャンバを生じる。したがって、多軸垂直集積あるいはスタックされた加速度トランスデューサが形成される。2つのセンサ28、30から形成されたトランスデューサ20のスタックされた構成は、従来技術のモノリシックデバイスに対してトランスデューサダイサイズを減少させることが可能であり、より魅力的なフォームファクタを生じ、MEMSデバイスの部品を密封するために通常利用される別のキャップウェハの必要性を排除できる。
MEMSセンサ応用は、より低い温度係数のオフセット(TCO)仕様を要する。「オフセット」という用語は、MEMSセンサの非励起状態での公称値からの出力偏差を指す。したがって、TCOは、MEMSデバイス等の半導体デバイスの性能に熱応力がどの程度影響するかという尺度である。MEMSデバイス応用のパッケージングは、異なる熱膨張係数を有する材料を使用することが多い。したがって、製造または動作の間に望ましくない高TCOが生じる可能性がある。これらの熱応力も、湿度および組立処理による応力も、下にある基板の変形(以下、パッケージング応力、という)を生じさせる可能性があり、MEMSセンサが測定誤差をさらに生じやすくする。試験質量32および58は互いに幾何学的に中心に配置される。センサ28、30の試験質量32、58の幾何学的な中心配置によって、好ましくない熱により誘起されるオフセットを減らすことが可能であり、したがって、より優れたTCO性能を得られる。
図2は、代表的実施形態による加速度トランスデューサ20を製造するための加速度トランスデューサ組立処理84のフローチャートを示す。処理84は、別のセンサ28、30を形成し、そしてそれらを接合し、加速度トランスデューサ20を形成する方法を一般に記載する。センサ28及び30の個別の形成により、特定トランスデューサ応用の最も有利な製造方法を達成するように、2つのセンサ28、30のための異なるトランスデューサ製造技術の利用が可能となる。また、MEMSデバイスは通常、蓋を有するキャビティパッケージを要する。組立処理84は、センサ30がセンサ28にスタックされ、それにより加速度トランスデューサ20の部品を密封するための個別のカップウェハの必要性を排除した、パッケージング技術を記載している。組立処理84を、単一加速度トランスデューサ20の組立に関連して以下に記載する。しかし、以下に記載された処理により、複数のトランスデューサ20の同時ウェハレベル製造が可能であることが当業者には理解される。次に、密封された個別加速トランスデューサを備えるために、個々のトランスデューサは、従来の仕様で切断またはダイスされ得る。
加速度トランスデューサ組立処理84は、二軸センサ28(図1)が形成されるタスク86を含む。二軸センサ28の形成は、試験質量32、アンカーシステム38、固定フィンガー48、50、52、54等を形成するための様々なパターニング、堆積、エッチング動作を含み得る。例えば、試験質量32のような可動部分の組立は、犠牲層としても知られる解放層の実装を含んでもよい。すなわち、可動部分は、アンカーシステム38のような次世代ビームが基板に取り付けられる位置で選択的に除去される犠牲層を堆積することによって、形成され得る。次に、犠牲層上に構造層が堆積され、構造化される。犠牲層はその後、構造層を変えない選択エッチング処理を用いて、可動部分を解放するために除去される。1つの実施形態において、二軸センサ28は、固い垂直な側壁を有する比較的高いマイクロ構造、すなわち、比較的厚い試験質量32を製造するために、高アスペクト比マイクロ機械加工処理を利用して形成されてもよい。例えば、5:1より大きなアスペクト比を有する3次元構造を形成するために、高アスペクト比マイクロ機械加工処理が利用される。
加速度トランスデューサ組立処理84はさらに、単一軸センサ30が形成されるタスク88を含む。単一軸センサ30の形成は、基板56の表面60上に吊られ、離間された状態で基板56の表面60上に配置された試験質量58を形成するため、そして電極素子62及びアンカーシステム64を形成するための、犠牲層及び構造層の種々なパターニング、堆積、及びエッチング動作を含み得る。1つの実施形態において、単一軸センサ30は、表面マイクロ機械加工処理を利用して形成される可能性がある。表面マイクロ機械加工によって、薄膜のポリシリコンまたは他の材料のパターニングが、本質的に二次元平面構造を形成することが可能となる。なぜなら、構造の厚さは堆積された膜の厚さによって制限されるからである。
タスク86は二軸センサ28の組立に関連し、タスク88は単一軸センサ30の組立に関連することに注意すべきである。したがって、簡単にするために、それらのタスクは連続する複数の動作として記載されているが、これらの異なる動作は単一製造施設の別の領域で並行して実行されてもよく、またはこれらの異なる動作は異なる製造施設で実行されてもよい。
加速度トランスデューサ組立処理84は、一実施形態では二軸センサ28及び単一軸センサ30の形成に関連して記載されていることにさらに注意すべきである。しかしながら、代替え実施形態では、センサ28、30は、特定設計要件にしたがって、単一軸または二軸センサのいかなる組み合わせであってもよい。例えば、センサ28はX方向22、Y方向24、またはZ方向26の1つを感知するように適合されてもよい。同様に、センサ30はX方向22、Y方向24、またはZ方向26の1つを感知するように適合されてもよい。したがって、加速度トランスデューサ20は、X方向22、Y方向24、またはZ方向26の1つのみ、またはそれらの任意の組み合わせを感知するように適合されてもよい。
センサ28、30の独立組立方法は、特定設計要件に従って、単一加速度トランスデューサパッケージ内の異なる感知範囲の加速度を感知するセンサ28、30の形成を更に可能にする。例えば、センサ28は、例として10〜100gの中程度のgの感知範囲の加速度を検知するために利用され得る。センサ30は、センサ28と同じ一つまたは複数の方向における加速度を検知してもよいが、例えば100gより大きな高いg感知範囲あるいは10gより少ない低いg感知範囲の異なる感知範囲の加速度を検知するように利用されてもよい。したがって、同一または異なる組立処理を利用するセンサ形成タスク86、88によって、所望応用の最適トランスデューサ設計の構成が可能となる。
タスク86、88に続いて、加速度トランスデューサ組立処理84は、タスク90に続く。タスク90で、加速度トランスデューサ20を形成するための従来ウェハ接合処理を用いて、センサ30はセンサ28に機械的に接続される。センサ28、30の接合は、それぞれに相当する基板36、56のボンディング周囲にボンディング層を塗布することによって達成され得る。そのようなボンディング層は、試験質量32、58を包囲する密封された接合部を形成するための、互いを接続する金属接合リングでも良い。ボンディング層は、密封された接合部を形成するために典型的に用いられる多数の異なる材料でも良い。そのような材料は、例えば、アルミニウム、銅、銀、金、インジウム、これらの合金、これらの化合物、ガラスフリット、等を含む。しかし、密封されたシールが望ましくない場合、代わりにボンディング層は充填されたエポキシまたは充填されたシリコーンから形成されてもよい。
接続タスク90の後に、タスク92が実行されてもよい。タスク92では、加速度トランスデューサ20が、従来処理に従ってさらなる動作を受けてもよく、例えば、ウェハー薄化、パッケージング、外部接続部を形成するためのワイヤボンディング、試験などである。タスク92に続いて、加速度トランスデューサ組立処理84が終了し、加速度トランスデューサ20は加速度測定に利用され得る。
ここで図3〜4を参照すると、図3は加速度トランスデューサ20(図1)の二軸センサ28の上面図を示し、図4は図3の切断線4−4に沿った二軸センサ28の側面図を示している。二軸センサ28は、例えば、公知および開発途上の高アスペクトマイクロ機械加工処理を用いる加速度トランスデューサ組立処理84(図2)のタスク86(図2)の遂行を通して形成された。
一実施形態において、センサ28は、基板36の表面34上の分離層94を含む。分離層94上の導電性層96を形成するために、パターニング、エッチング、および/または堆積処理が実行される場合があり、導電性層96上に別の分離層98が形成されてもよい。導電性層96は、必要に応じて固定フィンガー48、50、52、54の間の適切な電気接続部を備えるために形成、パターニングされ得る。続いて分離層98上に、試験質量32、固定フィンガー48、50、52、54、アンカー40、およびバネ42が形成される。選択的犠牲層堆積及びエッチングにより、基板36の表面34から試験質量32が解放され、X方向22および/またはY方向24において感知される加速度に応答して、表面34と実質的に平行な試験質量32の移動が可能となる。
センサ28は、センサ28の他の部品と同時に形成される、シールリング100、1つまたは複数の内部接続部位102(簡単にするために、1つだけ示す)、および1つまたは複数の外部接続部位104(簡単にするために、1つだけ示す)をさらに含んでもよい。シールリング100は試験質量32を取り囲み、センサ28がセンサ30に接続される位置を規定する(図1)。内部接続部位102は、必要に応じてセンサ28とセンサ30との間の電気接続部を形成するために実行される。外部接続部位104は、必要に応じて、センサ28、30との間、センサ28と外部回路機構(図示せず)との間、またはその両者の間の電気接続部を形成するために実行される。
下にある犠牲層(図示せず)の除去および試験質量32の解放前に、かかる下にある構造の上に上面層106が堆積され得る。センサ28およびセンサ30(図1)との間の密封された接合部を形成するための接合媒体として働くべく上面層106がシールリング100上に残るように、上面層106はパターニングおよびエッチングされ得る。一実施形態において、上面層106は、例えば、アルミニウム、銅、銀、金、インジウム、これらの合金、これらの化合物などの導電性材料であってよい。したがって、以下に説明するように、後の電気接続部を形成するために上面層106が内部接続部位102および外部接続部位104上に残るよう、上面層106は適切にパターニングおよびエッチングされ得る。
本発明の一実施形態によれば、1つまたは複数の過移動停止部材108(簡単にするために、2つの過移動停止部材が示される)を形成すべく、上面層106がセンサ28の下にある固定構造の少なくとも1つの部分に残るように、上面層106が付加的にパターニングおよびエッチングされ得る。図示するように、過移動停止部材108は、一組の固定フィンガー52および54に形成され、その上方に延在する。よって、過移動停止部材108は、固定フィンガー52と54を介して基板36の表面34に非可動式に接続される。いったんセンサ28および30が接続されると、過移動停止部材108は、センサ30がZ方向26の過酷な加速度を受けると、試験質量58が試験質量32に接続できないように試験質量58(図1)の移動を制限する働きをする。
図5〜6を参照すると、図5は加速度トランスデューサ20(図1)の単一軸センサ30の上面図を示し、図6が図4の切断線6−6に沿った単一軸センサ30の側面図を示す。単一軸センサ30は、例えば、周知および発展途上の表面マイクロ機械加工処理を用いる加速度トランスデューサ組立処理84(図2)のタスク88(図2)の実行によって形成される。
1つの実施形態において、センサ30は基板56の上面60上の分離層110を含む。分離層110上の電極素子62を形成するために、パターニング、エッチング、および/または堆積処理が次に実行され得る。分離層110の上に試験質量58およびアンカーシステム64が形成される。選択的犠牲層堆積およびエッチングにより、試験質量58が基板56の表面60から解放され、Z方向26の感知された加速度に応答して試験質量58が回転軸68の周りを回転移動可能となる。
センサ30はシールリング112と、必要に応じて、1つまたは複数の内部接続部位114(簡単にするために、1つのみを示す)と、必要に応じて、センサ30の他の部品と同時に形成される1つまたは複数の外部接続部位(図示せず)とをさらに含み得る。シールリング112が試験質量58を取り囲み、センサ30がセンサ28(図3)に接続される位置を規定する。内部接続部位114は、必要に応じてセンサ28およびセンサ30との間の電気接続部を形成するために実行される可能性がある。外部接続部位が存在する場合、外部接続部位は、必要に応じてセンサ28とセンサ30との間および/またはセンサ30と外部回路機構(図示せず)との間の電気接続部を形成するために実行される可能性がある。
下にある犠牲層(図示せず)の除去および試験質量58の解放に先立って、かかる下にある構造の上に上面層11が堆積され得る。センサ28(図3)およびセンサ30との間の密封された接合部を形成するための接合媒体として働くべく上面層116がシールリング112上に残るように、上面層116はパターニングまたはエッチングされ得る。上面層106(図3)と同様に、上面層116は、例えば、アルミニウム、銅、銀、金、インジウム、これらの合金、これらの化合物などの導電性材料であってよい。したがって、以下に説明するように、後の電気接続部を形成するために上面層116が内部接続部位114および外部接続部位(存在する場合)上に残るよう、上面層116は適切にパターニングまたはエッチングされ得る。
本発明の一実施形態によれば、1つまたは複数の過移動停止部材108(簡単にするために1つのみを示す)を形成すべく、上面層116がセンサ30の下にある固定構造の少なくとも1つの部分上に残るように、上面層116は付加的に適切にパターニングまたはエッチングされ得る。図示するように、過移動停止部材118はアンカーシステム64の固定部分に形成され、固定部分の上方に延在する。したがって、過移動停止部材118は、アンカーシステム64を介して基板56の表面60に非可動式に接続される。いったんセンサ28および30が接続されると、過移動停止部材118は、センサ28がZ方向26の過酷な加速度を受ける時、試験質量32が試験質量58に接触できないように、試験質量32(図3)の移動を制限するよう機能する。すなわち、試験質量32は、試験質量32がX方向22(図1)またはY方向24(図1)のいずれかの加速度を受けると、X方向22(図1)および/またはY方向24(図1)に移動するように設計される。しかしながら、アンカーシステム38(図1)のコンプライアンスは、試験質量32が過度の加速度下でZ方向26への移動を受けることを可能にする。したがって、過移動停止部材118はこの望ましくない移動を制限する。
図7は、加速度トランスデューサ20を形成するために、単一軸センサ30に接続された二軸センサ28の側面図を示す。センサ28、30の各々の機能部品が配置された内部容量すなわちチャンバ120を形成するために、センサ30のシーリング112上の上面層116が、センサ28のシールリング100上の上面層106に接続される。また、外部接続部104を露出するために、基板56の一部分は切断される。
1つの実施形態において、上面層106および116はアルミニウムから形成され、接合は熱圧着法を用いて生じる。ただしこの接合技法に限定されるものではない。熱圧着法は、センサ28および/または30を約450℃まで加熱し、次に、所定圧力(例えば、1.37895〜2.7579MPa(200〜400ポンド/平方インチ))でセンサ30のシールリング112上の上面層116をセンサ28のシールリング100上の相当する上面層106に押圧することを含む。優れた物理および電気特性を有する密封接着が後に形成される。従来技術によると、接合する前に、例えば超音波スクラブ、ウェットエッチング、またはプラスマクリーニングによる酸化物分解の追加的動作が必要とされ得る。
シールリング100および112の各々の高さは、相当するセンサ28および30の構造部品の高さと釣り合う。したがって、上面層106および116の各々の適切な厚122が、センサ30の試験質量58と、試験質量32、およびセンサ28の固定フィンガー48、50、52、54との間の隙間またはギャップ124を生じる。ギャップ124は、センサ30とセンサ28との間のクロストーク容量を最小化するのに十分な幅を有するように構成される。代表的実施形態において、クロストーク容量を最小化するために約8マイクロメータのギャップ124の幅を生じるように、上面層106および116の各々の厚さ122は約4マイクロメータでもよい。アルミニウム対アルミニウム熱圧着法の実行が、ギャップ124の幅を制御することにおいて優れた精度を提供する。
過移動停止部材108および118は、試験質量32と試験質量58との間でチャンバ120内に配置される。過移動停止部材108がZ方向26における試験質量58の移動を制限する。同様に、過移動停止部材118はZ方向26における試験質量32の移動を制限する。したがって、代表的実施形態における上面層106および116の各々の厚122は約4マイクロメータであり、相当する過移動停止部材108および118は上面層106および116と連動して形成され、過移動停止部材108および118はまた約4マイクロメータの厚さである。したがって、過移動停止部材108および118が、Z方向26の移動を最大移動の4マイクロメータに制限する。
図8は、本発明の1つの実施形態による、クロストーク容量効果128を示す第1図126、およびクロストーク容量キャンセル132を示す第2図130を示す。上述に説明されたように、感知電極に対する試験質量の移動が、試験質量と感知電極との間の容量を変化させる。試験質量が感知電極に接近するほど、容量が増加する。第1図126に示すように、センサ28が複数の固定フィンガー48および50を含むシナリオにおいて、センサ30の固定フィンガー48と試験質量58との間の、C+と表示されている第1容量134は、固定フィンガー50と試験質量58との間の、C−と表示されている第2容量136より大きくてもよい。C+でと表示されている容量134とC−と表示されている容量136の間の容量差が、クロストーク容量効果128を意味する。これがセンサ28における測定誤差を引き起こす可能性がある。
クロストーク容量効果128によるセンサ28における測定誤差を減少するために、代替え実施形態において、センサ30は付加的試験質量138を含み得る。この構成は第2図130に示される。一例として、試験質量58は、固定フィンガー48および50の一部分140またはサブセットと対向関係にある。試験質量138は基板56の表面60から離間配置され、フィンガー48および50の別の一部分142またはサブセットと対向関係にある。基板56の表面60にアンカーシステム144が形成され、別の回転軸146で試験質量138と回転可能に接続される。アンカーシステム144は、Z方向26の加速度に応答して、試験質量138が回転軸146の周囲を回転することを可能にする。
回転軸146は試験質量138の中央線からオフセットされる。これによって、試験質量138の区分148は試験質量138の区分150より相対的に大きな質量を有するように形成される。また、回転軸146のオフセットは、試験質量58の中央線から回転軸68のオフセットと一般に等しくかつ反対方向に配置される。したがって、試験質量138の区分148の質量は、試験質量58の区分70の質量と実質的に等しい。同様に、試験質量138の区分150の質量は、試験質量58の区分72の質量と実質的に等しい。したがって、Z方向26の加速度は、試験質量58および138の、等しいが反対方向の、それらの相当する回転軸68および146の周囲の回転を引き起こす。
この構造において、固定フィンガー48と試験質量58および138との間のC+と表示されている第1容量134の加算は、固定フィンガー50と試験質量58および138との間のC−と表示されている第2容量136の加算とおおよそ等しい。したがって、第2図130の構造において、クロストーク容量は均衡がとれ、すなわち、C+=C−であり、よってクロストーク容量キャンセル132を生じる。
図9は、代替え実施形態による、パッケージング後のトランスデューサ20の側面図を示す。アルミニウム対アルミニウム熱圧着法(上述)は、ギャップ124の幅の制御の点でその優れた精度のおかげで好ましい接合技法であるが、他の接合技法も採用される可能性がある。他の接合技法は、共晶接合、シリコン融解接合、ガラスフリット接合等を含むが、それらに限定されるわけではない。代表的実施形態において、接合部152は、ガラスフリット接合技法を用いてセンサ28および30のシールリング100と112との間に接合152が形成される。ガラスフリット接合技法が、MEMS技術に通常用いられる表面材料の接合を可能にし、ウェハレベル封止およびパッケージングに用いられ得る。ガラスフリット接合技法は、密封シーリング及び高い歩留りを可能にする。
この実施形態において、非導電性ガラスフリット接合技法において、センサ28および30との間の電気接続は、ワイヤボンディングによって達成され得る。例えば、トランスデューサ20は、センサ30の基板56を貫通して延びると共に基板56の外部表面158に接触部156を有する少なくとも1つのシリコン貫通ビア154を含む。接触部156と外部接続部位104との間にはワイヤボンド160が形成される。
図10が、別の代替え実施形態による、MEMS加速度トランスデューサ162の側面図を示す。上述したように、加速度トランスデューサの実施形態は、1つ、2つ、または3つの軸に沿った感知を含み得る。多軸感知は、トランスデューサの平面と平行な2つの直交軸の移動を感知するように適合され得る。また、加速度トランスデューサは、異なる加速度感知範囲、すなわち、gレベルの移動を検知するように適合され得る。
図示された実施形態において、トランスデューサ162は、異なる加速度感知範囲で2つの直交方向の加速度を感知するように適合された多軸容量式感知加速度計である。トランスデューサ162が、センサ28と、上述された方法にしたがって、センサ28に接続された別のセンサ164とを備えている。この実施形態において、センサ28がX方向22(図1)およびY方向24(図1)の加速度を感知する。同様に、センサ164がX方向22(図1)およびY方向24(図1)の加速度を感知する。
センサ164は、センサ28に関連して上述した構造と類似する構造を含み得る。例えば、センサ164は、基板168の表面166に形成されたアンカーシステム38(図1に図示)のようなアンカーシステムを備える。アンカーシステム(例えばアンカーシステム38)は、包括的に可動フィンガー172と言われる移動可能なフィンガーを有する試験質量170に接続される。包括的に固定フィンガー174と呼ばれる固定フィンガーは、基板169の表面166と非可動に接続され、各可動フィンガー172は差動容量構造を形成するために、一対の固定フィンガー174との間に配置される。したがって、アンカーシステム(例えば、アンカーシステム38)は、試験質量170がX方向22(図1)および/またはY方向24(図1)の加速度に応答して基板168の表面166と実質的に平行に移動することを可能にする。
センサ164の構成は、センサ28の感知方向と同一感知方向(すなわちX方向22およびY方向)の加速度を検知するセンサ28およびセンサ164の構成と類似する。しかしながら、センサ164は、センサ28の感知範囲と異なる感知範囲に亘る加速度を検知するよう適合される。一例として、センサ28は、例えば、10g未満の低gレベルでX方向22およびY方向24の加速度を感知するのに適している低g加速度センサでもよい。センサ164は、例えば、10〜100gの間の中程度のgレベルの加速度を検知に適している中程度g加速度センサでもよい。したがって、センサ28が、センサ164の第2感知範囲(中g)と異なる第1感知範囲(低g)に亘る加速度を感知する。異なる感知範囲は、特定のgを受けた時に試験質量32および170が適切に移動するよう、異なるバネコンプライアンスのアンカーシステムの実行によって達成され得る。しかしながら、当業者には、所望感知範囲を達成するように、他の構造特徴がセンサ28および164に実行され得ることが理解される。
本明細書では低gおよび中g加速度計について記載されるが、他の実施形態において、トランスデューサパッケージは特定応用に特定された低g、中g、および高g加速度計のいかなる組み合わせも含む可能性があることが更に理解されるべきであろう。また、特定感知範囲が本明細書に記載されているが、様々な感知範囲が設けられる可能性があることも理解されるべきであろう。更に、X方向22および/またはY方向24の感知に関連して異なる感知範囲に亘る加速度感知が記載されているが、代替え実施形態において、トランスデューサは、各センサがZ方向26(図1)の加速度を異なる感知範囲に亘って感知する2つのセンサを含んでもよい。
1つの実施形態において、トランスデューサ162は、トランスデューサ162のためのチップスケールパッケージ構成を形成するためのシリコン貫通ビア176を更に含む。チップスケールパッケージは、該表面実装集積回路パッケージの全体のパッケージサイズが通常、内部のダイのサイズよりも20パーセント大きいサイズ以下である、一種の表面実装集積回路パッケージである。シリコン貫通ビアは、シリコンウェハまたはダイを完全に貫通する垂直な電気接続部である。この構成において、チップスケールパッケージトランスデューサ162が、外部接触部178に電気的に接続されたシリコン貫通ビア176の多くを含み、該シリコン貫通ビア176は、垂直に構成された表面実装電気接続部を節約する空間を作り出すことに用いられる可能性がある。電気接続は、本明細書記載された技法に限定されるものではなく、現行のおよび開発中の技術が代替え的に実行されてもよいことを当業者であれば理解され、現行のおよび開発中の技術には、様々の様式のピンまたはリード、平坦な接触部、半田ボール(ボールグリドアレイ)、部品の本部における末端、等を含むがこれらのものに限定されない。
本明細書に記載された実施形態は、垂直に集積された、または積層構成の2つのセンサを含む小型MEMS加速度トランスデューサを備えている。加速度トランスデューサの実施形態は、1つ、2つ、または3つの相互に直交な軸に沿っての感知を含む可能性がある。多軸感知は、トランスデューサの平面と垂直な2つの直交する軸における移動の検知と同様に、トランスデューサの平面と平行な軸の移動をも感知するように適合される可能性がある。更に、加速度トランスデューサは、例えば、低g、中g、高gまたはこれらのいかなる組み合わせにおける異なる加速度感知範囲の移動を検知するように適合される可能性がある。本発明の別の実施形態は、垂直に集積、または積層の加速度トランスデューサに関する組立方法を更に含む。このような加速度トランスデューサは、2つのセンサを個別に組み立て、次に2つのセンサを結合して同一または異なる加速度感知範囲で1つ、2つ、または3つの軸に沿った感知可能な加速度トランスデューサを作り出すことによって形成される。
前述の詳細な説明は、具体的な例示の実施の形態を参照しながら本発明を説明するものである。しかし、添付の特許請求の範囲で定義された本発明の範囲から逸脱することなく様々な修正及び変更が加えられ得ることが理解されよう。

Claims (5)

  1. 加速度を感知するように適合されたトランスデューサであって、
    第1表面を有する第1基板と、
    前記第1表面に可動に接続され、前記第1基板の第1表面から離間された第1試験質量と、
    第2表面を有する第2基板であって、該第2表面が前記第1表面に向き合うように前記第1基板に接続された第2基板と、
    前記第2表面に可動に接続され、前記第2基板の前記第2表面から離間されるとともに、第1試験質量に向き合って配置された第2試験質量と
    前記第2基板の前記第2表面に形成され、第1回転軸において前記第2試験質量に回転可能に接続される第1アンカーシステムであって、前記第2基板の前記第2表面と垂直な方向の前記加速度に応答して、前記第2試験質量が前記第1回転軸の周囲を回転することを可能にする第1アンカーシステムと、
    前記第1基板の前記第1表面に形成された固定感知フィンガーであって、
    第2試験質量が前記固定感知フィンガーの第1部分と反対の関係に配置される固定感知フィンガーと、
    前記第2表面に接続され、前記第2基板の前記第2表面から離間配置された第3試験質量であって、前記固定感知フィンガーの第2部分と反対の関係にある第3試験質量と、
    前記第2基板の前記第2表面に形成され、第2回転軸において前記第3試験質量に回転可能に接続される第2アンカーシステムであって、前記第2表面と垂直な方向の前記加速度に応答して、前記第3試験質量が前記第2回転軸の周囲を回転することを可能にする第2アンカーシステムと、
    を備えたトランスデューサ。
  2. 前記第2試験質量が第1端部、第2端部、前記第1回転軸および前記第1端部との間に形成された第1区分、前記第1回転軸および前記第2端部との間に形成された第2区分を含み、前記第1区分が前記第2区分より大きな質量を示し、
    前記トランスデューサが、
    前記第2基板の前記第2表面に形成された第1電極素子および第2電極素子を含み、前記第1電極素子は前記第1区分に向き合い、前記第2電極素子は前記第2区分に向き合い、前記第1電極素子および前記第2電極素子はそれぞれ、前記第2表面と垂直方向の前記加速度を感知するように適合される、
    請求項記載のトランスデューサ。
  3. 前記第1試験質量および前記第2試験質量の両者が中に配置される密封チャンバを形成するために、前記第2基板が前記第1基板に接続される、
    請求項1記載のトランスデューサ。
  4. 加速度を感知するように適合された微小電子機械システム(MEMS)トランスデューサを製造する方法において、
    前記加速度を感知するように適合された第1センサを形成するステップであって、前記第1センサが第1表面、前記第1表面に可動に接続され、第1基板上に離間された状態で配置された第1試験質量、および前記第1表面に形成された第1固定電極を有するステップと、
    前記加速度を感知するように適合された第2センサを形成するステップであって、前記第2センサが、第2表面、前記第2表面に可動に接続され、前記第1表面上に離間された状態で配置された第2試験質量および第3試験質量、ならびに前記第2表面に形成された第2固定電極を有するステップと、
    前記第1センサおよび前記第2センサを形成した後、前記第2表面が前記第1表面に向き合うように、かつ前記第2試験質量が第1試験質量に対面して配置されるように第2基板を前記第1基板に接続するステップと、を含み、
    前記第2センサを形成するステップは、
    前記第2基板の前記第2表面に、第1回転軸において前記第2試験質量に回転可能に接続される第1アンカーシステムを形成することと、
    前記第2基板の前記第2表面に、第2回転軸において前記第3試験質量に回転可能に接続される第2アンカーシステムを形成することと、を含み、
    前記第1アンカーシステムは前記第2基板の前記第2表面と垂直な方向の前記加速度に応答して、前記第2試験質量が前記第1回転軸の周囲を回転することを可能にし、
    前記第2アンカーシステムは前記第2基板の前記第2表面と垂直な方向の前記加速度に応答して、前記第3試験質量が前記第2回転軸の周囲を回転することを可能にし、
    前記第2基板を前記第1基板に接続したとき、前記第1固定電極の第1部分と前記第2試験質量とが反対の関係に配置されるとともに、前記第1固定電極の第2部分と前記第3試験質量とが反対の関係に配置される、方法。
  5. 前記第1試験質量および前記第2試験質量が配置された密封チャンバを形成するために、前記接続ステップが前記第2基板を前記第1基板に接続する、
    請求項記載の方法。
JP2012502067A 2009-03-24 2010-02-26 垂直に集積されたmems加速度トランスデューサ Expired - Fee Related JP5638598B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/409,920 US8186221B2 (en) 2009-03-24 2009-03-24 Vertically integrated MEMS acceleration transducer
US12/409,920 2009-03-24
PCT/US2010/025579 WO2010110989A2 (en) 2009-03-24 2010-02-26 Vertically integrated mems acceleration transducer

Publications (3)

Publication Number Publication Date
JP2012521565A JP2012521565A (ja) 2012-09-13
JP2012521565A5 JP2012521565A5 (ja) 2013-04-11
JP5638598B2 true JP5638598B2 (ja) 2014-12-10

Family

ID=42781747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012502067A Expired - Fee Related JP5638598B2 (ja) 2009-03-24 2010-02-26 垂直に集積されたmems加速度トランスデューサ

Country Status (5)

Country Link
US (1) US8186221B2 (ja)
EP (1) EP2411817B1 (ja)
JP (1) JP5638598B2 (ja)
CN (1) CN102356324B (ja)
WO (1) WO2010110989A2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014048292A (ja) * 2012-08-30 2014-03-17 Freescale Semiconductor Inc 差分容量出力を有する圧力センサ
JP2017538100A (ja) * 2014-10-03 2017-12-21 アナログ ディヴァイスィズ インク Z軸アンカートラッキングを備えたmems加速度計
US10203352B2 (en) 2016-08-04 2019-02-12 Analog Devices, Inc. Anchor tracking apparatus for in-plane accelerometers and related methods
US10261105B2 (en) 2017-02-10 2019-04-16 Analog Devices, Inc. Anchor tracking for MEMS accelerometers

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008017156A1 (de) * 2008-04-03 2009-10-08 Continental Teves Ag & Co. Ohg Mikromechanischer Beschleunigungssensor
US8220330B2 (en) * 2009-03-24 2012-07-17 Freescale Semiconductor, Inc. Vertically integrated MEMS sensor device with multi-stimulus sensing
DE102009027897B4 (de) * 2009-07-21 2023-07-20 Robert Bosch Gmbh Mikromechanischer Drehratensensor
DE102009029095B4 (de) * 2009-09-02 2017-05-18 Robert Bosch Gmbh Mikromechanisches Bauelement
DE102009029202B4 (de) * 2009-09-04 2017-05-24 Robert Bosch Gmbh Verfahren zum Herstellen eines mikromechanischen Systems
US9021880B2 (en) * 2010-04-30 2015-05-05 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric three-axis gyroscope and stacked lateral overlap transducer (slot) based three-axis accelerometer
DE102010039057B4 (de) * 2010-08-09 2018-06-14 Robert Bosch Gmbh Sensormodul
US8749486B2 (en) * 2010-12-21 2014-06-10 Stmicroelectronics, Inc. Control surface for touch and multi-touch control of a cursor using a micro electro mechanical system (MEMS) sensor
US8927311B2 (en) * 2011-02-16 2015-01-06 Freescale Semiconductor, Inc. MEMS device having variable gap width and method of manufacture
US9229026B2 (en) * 2011-04-13 2016-01-05 Northrop Grumman Guaidance and Electronics Company, Inc. Accelerometer systems and methods
US9069005B2 (en) * 2011-06-17 2015-06-30 Avago Technologies General Ip (Singapore) Pte. Ltd. Capacitance detector for accelerometer and gyroscope and accelerometer and gyroscope with capacitance detector
US9065358B2 (en) 2011-07-11 2015-06-23 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS structure and method of forming same
TWI649565B (zh) * 2012-01-12 2019-02-01 芬蘭商村田電子公司 加速度感測器結構和其之使用
US9085456B2 (en) 2012-01-16 2015-07-21 Taiwan Semiconductor Manufacturing Company, Ltd. Support structure for TSV in MEMS structure
US9061887B2 (en) * 2012-02-24 2015-06-23 Spatial Photonics, Inc. Moisture-resistant package
US9027403B2 (en) * 2012-04-04 2015-05-12 Analog Devices, Inc. Wide G range accelerometer
US10371714B2 (en) * 2012-06-14 2019-08-06 Analog Devices, Inc. Teeter-totter type MEMS accelerometer with electrodes on circuit wafer
JP5714648B2 (ja) * 2012-11-16 2015-05-07 株式会社豊田中央研究所 力学量memsセンサ及び力学量memsセンサシステム
US9470709B2 (en) 2013-01-28 2016-10-18 Analog Devices, Inc. Teeter totter accelerometer with unbalanced mass
US9190937B2 (en) * 2013-02-06 2015-11-17 Freescale Semiconductor, Inc. Stiction resistant mems device and method of operation
US9297825B2 (en) 2013-03-05 2016-03-29 Analog Devices, Inc. Tilt mode accelerometer with improved offset and noise performance
US9580302B2 (en) 2013-03-15 2017-02-28 Versana Micro Inc. Cell phone having a monolithically integrated multi-sensor device on a semiconductor substrate and method therefor
US9556017B2 (en) 2013-06-25 2017-01-31 Analog Devices, Inc. Apparatus and method for preventing stiction of MEMS devices encapsulated by active circuitry
US10081535B2 (en) 2013-06-25 2018-09-25 Analog Devices, Inc. Apparatus and method for shielding and biasing in MEMS devices encapsulated by active circuitry
JP6150056B2 (ja) * 2013-07-24 2017-06-21 セイコーエプソン株式会社 機能素子、電子機器、および移動体
US9837935B2 (en) 2013-10-29 2017-12-05 Honeywell International Inc. All-silicon electrode capacitive transducer on a glass substrate
DE102013222616A1 (de) * 2013-11-07 2015-05-07 Robert Bosch Gmbh Mikromechanische Sensorvorrichtung
US8973439B1 (en) * 2013-12-23 2015-03-10 Invensense, Inc. MEMS accelerometer with proof masses moving in anti-phase direction normal to the plane of the substrate
FI126797B (en) 2014-02-26 2017-05-31 Murata Manufacturing Co Stop at Structure
FI126599B (en) 2014-02-26 2017-03-15 Murata Manufacturing Co Microelectromechanical frame structure
FI126598B (en) 2014-02-26 2017-03-15 Murata Manufacturing Co Microelectromechanical device with motion limitation devices
US9523577B1 (en) * 2014-02-27 2016-12-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon nanotube tape vibrating gyroscope
TWI614208B (zh) * 2014-04-09 2018-02-11 立錡科技股份有限公司 微機電元件
CN105242068B (zh) * 2014-07-11 2018-06-08 广芯电子技术(上海)股份有限公司 Mems加速度传感器的隔离硅墙
US9604841B2 (en) 2014-11-06 2017-03-28 Analog Devices, Inc. MEMS sensor cap with multiple isolated electrodes
US10330471B2 (en) * 2014-11-27 2019-06-25 Goertek, Inc. Triaxial micro-electromechanical gyroscope
CN110058051B (zh) * 2014-12-11 2021-08-06 意法半导体股份有限公司 具有减少漂移功能的z轴微机电检测结构
US10073113B2 (en) 2014-12-22 2018-09-11 Analog Devices, Inc. Silicon-based MEMS devices including wells embedded with high density metal
CN106153982B (zh) * 2015-04-03 2019-05-17 中芯国际集成电路制造(上海)有限公司 一种mems加速度传感器及其制作方法
US9903718B2 (en) * 2015-05-28 2018-02-27 Invensense, Inc. MEMS device mechanical amplitude control
US9681243B2 (en) 2015-06-17 2017-06-13 Robert Bosch Gmbh In-plane overtravel stops for MEMS microphone
US10078098B2 (en) 2015-06-23 2018-09-18 Analog Devices, Inc. Z axis accelerometer design with offset compensation
US9752900B2 (en) * 2015-07-10 2017-09-05 Wyrobek International, Inc. Multi-plate capacitive transducer
US20170023606A1 (en) * 2015-07-23 2017-01-26 Freescale Semiconductor, Inc. Mems device with flexible travel stops and method of fabrication
DE102015217921A1 (de) * 2015-09-18 2017-03-23 Robert Bosch Gmbh Mikromechanisches Bauelement
WO2017061640A1 (ko) * 2015-10-06 2017-04-13 주식회사 스탠딩에그 Mems 장치, 이를 포함하는 mems 패키지 및 사용자 단말기
US10352960B1 (en) * 2015-10-30 2019-07-16 Garmin International, Inc. Free mass MEMS accelerometer
DE102017208357A1 (de) * 2017-05-18 2018-11-22 Robert Bosch Gmbh Mikroelektromechanisches Bauelement
US11099207B2 (en) 2018-10-25 2021-08-24 Analog Devices, Inc. Low-noise multi-axis accelerometers and related methods
CN109374917B (zh) * 2018-11-15 2020-07-31 中国兵器工业集团第二一四研究所苏州研发中心 蜂窝状微止挡结构设计方法
DE102019200839A1 (de) * 2019-01-24 2020-07-30 Robert Bosch Gmbh Mikromechanischer Inertialsensor
JP2021004791A (ja) 2019-06-26 2021-01-14 セイコーエプソン株式会社 慣性センサー、電子機器および移動体
JPWO2021246107A1 (ja) * 2020-06-05 2021-12-09
US20220276615A1 (en) * 2021-02-26 2022-09-01 Honeywell International Inc. Thermal metamaterial for low power mems thermal control
WO2023205471A1 (en) * 2022-04-21 2023-10-26 Mei Micro, Inc. Method for fabrication of a multiple range accelerometer

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176031A (en) * 1990-11-05 1993-01-05 Sundstrand Corporation Viscously coupled dual beam accelerometer
US5576483A (en) 1993-10-01 1996-11-19 Hysitron Incorporated Capacitive transducer with electrostatic actuation
US5542296A (en) 1995-01-03 1996-08-06 Reidemeister; Eric P. Compact capacitive acceleration sensor
EP0877255A1 (en) 1997-05-09 1998-11-11 TMS Technologies, Inc. Micromechanical Accelerometer for Automotive Applications
JPH1151959A (ja) * 1997-08-06 1999-02-26 Murata Mfg Co Ltd 圧電振動子
US7335971B2 (en) * 2003-03-31 2008-02-26 Robert Bosch Gmbh Method for protecting encapsulated sensor structures using stack packaging
US6845670B1 (en) * 2003-07-08 2005-01-25 Freescale Semiconductor, Inc. Single proof mass, 3 axis MEMS transducer
FR2862761B1 (fr) * 2003-11-25 2006-02-03 Thales Sa Accelerometre differentiel micro-usine multiaxes
JP2005292114A (ja) * 2004-03-11 2005-10-20 Denso Corp センサ装置
FR2880127B1 (fr) * 2004-12-29 2007-03-02 Commissariat Energie Atomique Accelerometre micro-usine a peignes capacitifs
US7121141B2 (en) * 2005-01-28 2006-10-17 Freescale Semiconductor, Inc. Z-axis accelerometer with at least two gap sizes and travel stops disposed outside an active capacitor area
US20060179940A1 (en) 2005-02-11 2006-08-17 Finemems Inc. Ultra-small Profile, Low Cost Chip Scale Accelerometers of Two and Three Axes Based on Wafer Level Packaging
US7258011B2 (en) * 2005-11-21 2007-08-21 Invensense Inc. Multiple axis accelerometer
JP4595862B2 (ja) * 2006-03-28 2010-12-08 パナソニック電工株式会社 静電容量式センサ
JP5092462B2 (ja) 2006-06-13 2012-12-05 株式会社デンソー 力学量センサ
JP2007333641A (ja) * 2006-06-16 2007-12-27 Sony Corp 慣性センサおよび慣性センサの製造方法
EP1879034B1 (en) * 2006-07-14 2009-11-18 STMicroelectronics S.r.l. Microelectromechanical inertial sensor, in particular for free-fall detection applications
US7851876B2 (en) 2006-10-20 2010-12-14 Hewlett-Packard Development Company, L.P. Micro electro mechanical system
ITTO20070033A1 (it) * 2007-01-19 2008-07-20 St Microelectronics Srl Dispositivo microelettromeccanico ad asse z con struttura di arresto perfezionata
US7779689B2 (en) 2007-02-21 2010-08-24 Freescale Semiconductor, Inc. Multiple axis transducer with multiple sensing range capability
US7858440B2 (en) * 2007-09-21 2010-12-28 Infineon Technologies Ag Stacked semiconductor chips
CN101270988B (zh) * 2008-03-14 2011-11-30 江苏英特神斯科技有限公司 多轴惯性传感器及测量多轴平动和转动加速度的方法
US8220330B2 (en) * 2009-03-24 2012-07-17 Freescale Semiconductor, Inc. Vertically integrated MEMS sensor device with multi-stimulus sensing
JP5605347B2 (ja) * 2011-11-01 2014-10-15 株式会社デンソー 半導体装置の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014048292A (ja) * 2012-08-30 2014-03-17 Freescale Semiconductor Inc 差分容量出力を有する圧力センサ
JP2017538100A (ja) * 2014-10-03 2017-12-21 アナログ ディヴァイスィズ インク Z軸アンカートラッキングを備えたmems加速度計
US10203351B2 (en) 2014-10-03 2019-02-12 Analog Devices, Inc. MEMS accelerometer with Z axis anchor tracking
US10203352B2 (en) 2016-08-04 2019-02-12 Analog Devices, Inc. Anchor tracking apparatus for in-plane accelerometers and related methods
US10261105B2 (en) 2017-02-10 2019-04-16 Analog Devices, Inc. Anchor tracking for MEMS accelerometers

Also Published As

Publication number Publication date
WO2010110989A2 (en) 2010-09-30
CN102356324B (zh) 2014-12-24
US20100242600A1 (en) 2010-09-30
US8186221B2 (en) 2012-05-29
EP2411817A2 (en) 2012-02-01
CN102356324A (zh) 2012-02-15
WO2010110989A3 (en) 2011-01-13
EP2411817A4 (en) 2014-07-23
EP2411817B1 (en) 2016-05-04
JP2012521565A (ja) 2012-09-13

Similar Documents

Publication Publication Date Title
JP5638598B2 (ja) 垂直に集積されたmems加速度トランスデューサ
EP2414775B1 (en) Environmentally robust disc resonator gyroscope
US7327003B2 (en) Sensor system
US8220330B2 (en) Vertically integrated MEMS sensor device with multi-stimulus sensing
TWI310365B (en) Sensor device and production method therefor
TWI598965B (zh) 混合整合構件及其製造方法
JP5450451B2 (ja) 垂直方向に集積した電子回路およびウェハスケール密封包装を含むx−y軸二重質量音叉ジャイロスコープ
JP2012225920A (ja) マイクロ−電子機械システム(mems)デバイス
US8925384B2 (en) MEMS sensor with stress isolation and method of fabrication
JP5137404B2 (ja) 3つの軸線に沿った加速度を検知すべく採用可能な面一のプルーフマス
JP2005534897A (ja) モノリシックシリコン加速度センサー
JP5048344B2 (ja) 分離応力アイソレータ
JP2005249454A (ja) 容量型加速度センサ
JP4335545B2 (ja) 圧力と加速度との双方を検出するセンサおよびその製造方法
JP6285541B2 (ja) 加速度検出装置
JP6343102B2 (ja) 慣性力センサ
Vercesi et al. Thelma-Double: a new technology platform for manufacturing of high-performance MEMS inertial sensors
US11898845B2 (en) Micromachined multi-axis gyroscopes with reduced stress sensitivity
JP2010107240A (ja) 1軸加速度センサ及びそれを用いた3軸加速度センサ
JP6555238B2 (ja) 力学量センサおよびその製造方法
JP4665733B2 (ja) センサエレメント
EP2873095B1 (en) Semiconductor secured to substrate via hole in substrate
WO2018030045A1 (ja) 力学量センサおよびその製造方法
JP2010216843A (ja) 力学量検出センサ

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141022

LAPS Cancellation because of no payment of annual fees