WO2012122876A1 - 集成mems器件及其形成方法 - Google Patents

集成mems器件及其形成方法 Download PDF

Info

Publication number
WO2012122876A1
WO2012122876A1 PCT/CN2012/071491 CN2012071491W WO2012122876A1 WO 2012122876 A1 WO2012122876 A1 WO 2012122876A1 CN 2012071491 W CN2012071491 W CN 2012071491W WO 2012122876 A1 WO2012122876 A1 WO 2012122876A1
Authority
WO
WIPO (PCT)
Prior art keywords
microphone
substrate
layer
sensitive film
forming
Prior art date
Application number
PCT/CN2012/071491
Other languages
English (en)
French (fr)
Inventor
柳连俊
Original Assignee
迈尔森电子(天津)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 迈尔森电子(天津)有限公司 filed Critical 迈尔森电子(天津)有限公司
Publication of WO2012122876A1 publication Critical patent/WO2012122876A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0257Microphones or microspeakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0264Pressure sensors

Definitions

  • the present invention relates to the field of semiconductor technology, and in particular, the present invention relates to an integrated MEMS device and a method of forming the same. Background technique
  • MEMS Micro-Electro-Mechanical-System
  • MEMS pressure sensors are mainly used in various sensors.
  • the MEMS pressure sensor is a device for detecting pressure.
  • the current MEMS pressure sensor has a silicon piezoresistive pressure sensor and a silicon capacitive pressure sensor, both of which are microelectromechanical sensors generated on a silicon wafer.
  • MEMS pressure sensors are widely used in automotive electronics such as TPMS (tire pressure monitoring systems), consumer electronics such as tire pressure gauges, sphygmomanometers, industrial electronics such as digital pressure gauges, digital flow meters, industrial batch weighing.
  • a MEMS microphone is a device for converting sound signals. MEMS microphones are commonly used in cell phones, headsets, laptops, camcorders and cars.
  • the MEMS inertial sensor is a device that uses inertia for measurement.
  • the MEMS inertial sensor generally refers to an accelerometer or a cornering device (also known as a gyroscope).
  • the sensing principle there are mainly piezoresistive, capacitive, piezoelectric, tunneling current, and resonance.
  • Type thermoelectric coupling type and electromagnetic type.
  • MEMS inertial sensors are mainly used in portable devices such as mobile phones and game consoles in the field of consumer electronics.
  • ESP or ESC automotive electronic stability systems
  • Navigation system In the military or aerospace field, it is mainly used in communication satellite radio, missile seeker, etc.
  • an embodiment of the present invention provides an integrated MEMS device, including: a first substrate including a first surface and a second surface opposite thereto, the first substrate including a first region and a third region At least one or more conductive layers are formed on the first surface of the first substrate; a movable sensitive element of the inertial sensor is formed by using the first substrate of the first region; the second substrate and the third a substrate, the second substrate is bonded to a surface of the conductive layer on the first substrate, and the third substrate is combined with a movable sensitive element side of the inertial sensor formed by the first substrate, And the third substrate and the second substrate are respectively located on opposite sides of the movable sensitive element of the inertial sensor; the sensitive film or the back plate electrode of the microphone includes at least the first substrate of the third
  • the first substrate is a single crystal semiconductor material.
  • the conductive layer comprises a first electrical shielding layer of an inertial sensor.
  • the sensitive film of the microphone is a plurality of layers, and the sensitive film of the microphone includes one of the conductive layers and a conductive layer located in the layer a material layer above or below; or the sensitive film of the microphone comprises a first substrate, and a layer of material above or below the first substrate.
  • a conductive material layer combined with the first substrate is formed on the third substrate;
  • a sensitive film of the microphone or a back plate electrode of the microphone includes a first substrate on the third region One of the conductive layers, or the first substrate of the third region, or the layer of conductive material on the third substrate.
  • the first substrate further includes a second region
  • the integrated MEMS device further comprising: a sensitive film or a fixed electrode of the pressure sensor, including at least a first substrate of the second region, or at least a second region
  • the conductive layer comprises an inertial sensor, an interconnection layer of the pressure sensor and the microphone, a first electrical shielding layer of the inertial sensor, a support point of the fixed electrode of the inertial sensor, a support point of the movable sensitive element of the inertial sensor or Any combination thereof.
  • the conductive layer includes an interconnect layer including a first electrical shielding layer of an inertial sensor, an inertial sensor, a pressure sensor, and a microphone, the interconnect layer being closer to the first electrical shield layer than the first electrical shield layer a first surface of a substrate.
  • the third substrate is formed with a conductive material layer bonded to the first substrate; the sensitive film or the fixed electrode of the pressure sensor uses a conductive layer on the first substrate of the second region One of the layers is formed, or formed with a first substrate of the second region, or with a layer of conductive material on the third substrate.
  • the sensitive film of the pressure sensor comprises a material layer forming a first electrical shielding layer of the inertial sensor or a material layer including an interconnection layer forming the inertial sensor;
  • the sensitive film of the microphone comprises a forming body A material layer of the first electrical shielding layer of the inertial sensor or a material layer comprising an interconnect layer forming the inertial sensor.
  • the fixed electrode of the pressure sensor is formed by the first substrate of the second region, and the fixed electrode of the pressure sensor is formed with a hole; the back plate electrode of the microphone is used by the third region a first substrate is formed, the microphone A hole is formed in the back plate electrode.
  • a movable sensitive element of the pressure sensor is formed between the sensitive film of the pressure sensor and the fixed electrode of the pressure sensor, and the movable sensitive element of the pressure sensor and the sensitive film are connected by a connecting arm.
  • a hole is formed in the movable sensitive element of the pressure sensor;
  • a movable sensitive element of the microphone is further formed between the sensitive film of the microphone and the back plate electrode of the microphone, and the movable sensitive element of the microphone is The sensitive membranes of the microphone are connected by a connecting arm, and a hole is formed in the movable sensitive element of the microphone.
  • the sensitive film of the pressure sensor is a plurality of layers; the sensitive film includes one layer of a conductive layer, and a material layer located above or below the conductive layer of the layer; or, the sensitivity of the pressure sensor
  • the film includes a first substrate, and a layer of material above or below the first substrate.
  • the method further includes: a microphone channel opening exposing the sensitive film of the microphone or a back plate electrode of the microphone; a microphone cavity, a sensitive film located in the microphone and a back plate electrode of the microphone away from the microphone channel opening a pressure channel opening exposing the sensitive film of the pressure sensor; a hole formed in the sensitive film of the microphone, a hole formed in the back plate electrode of the microphone, and a hole in the sensitive film of the microphone Communicating with a hole in the back plate electrode of the microphone and a microphone cavity and a microphone channel opening; the microphone channel opening and the pressure channel opening of the pressure sensor are located at a sensitive film of the microphone and a back plate electrode of the microphone The same side; the microphone cavity is located on a side of the sensitive film of the microphone and the back plate electrode of the microphone away from the opening of the microphone channel and the pressure channel opening of the pressure sensor; the microphone cavity extends through the second a substrate, a second substrate, and a sensitive film or microphone of the microphone Between the backplate electrode a layer of material, or a
  • the present invention also provides a method of forming an integrated MEMS device, comprising: providing a second substrate and a third substrate; providing a first substrate, the first substrate including the first surface and opposite thereto a second surface, the first substrate includes a first region and a third region;
  • the substrate forms a movable sensitive element of the inertial sensor; forming a sensitive film or a back plate electrode of the microphone, the sensitive film or the back plate electrode of the microphone comprising at least the first substrate of the third region, or at least a third region
  • One of the conductive layers on the first substrate bonding the third substrate to one side of the movable sensitive element of the inertial sensor formed by the first substrate, and the third substrate and
  • the second substrate is respectively located on opposite sides of the movable sensitive element of the inertial sensor.
  • the first substrate is made of a single crystal semiconductor material.
  • the conductive layer comprises a first electrical shielding layer of an inertial sensor.
  • forming the conductive layer comprises forming an interconnection layer of an inertial sensor and a microphone, a first electrical shielding layer of the inertial sensor, a support point of a fixed electrode of the inertial sensor, a support point of a movable sensitive element of the inertial sensor or random combination.
  • forming the conductive layer comprises forming an interconnect layer of a first electrical shielding layer of an inertial sensor, an inertial sensor and a microphone, the interconnect layer being closer to the first lining than the first electrical shielding layer The first surface of the bottom.
  • the sensitive film of the microphone is formed by a material layer forming a first electrical shielding layer of the inertial sensor, or the sensitive film of the microphone is used to form a first electricity of the inertial sensor Forming a layer of material on and/or under the shielding layer and/or the first electrically shielding layer, or forming a sensitive film of the microphone with a layer of material forming an interconnect layer of the inertial sensor, or a sensitive film of the microphone
  • the material layer of the interconnect layer forming the inertial sensor and the material layer above and/or below the layer interconnect layer are formed.
  • the back plate electrode of the microphone is formed by the first substrate of the third region, and the method for forming the integrated MEMS device further comprises the step of forming a hole in the back plate electrode of the microphone.
  • the method further includes: forming a movable sensitive element of the microphone between the sensitive film of the microphone and the back plate electrode of the microphone;
  • a hole is formed in the movable sensitive element of the microphone.
  • the sensitive film of the microphone is a plurality of layers, and the sensitive film of the microphone comprises a layer of a conductive layer and a material layer located above or below the conductive layer of the layer; or a sensitive film of the microphone A first substrate and a layer of material above or below the first substrate are included.
  • the method further includes: forming a conductive material layer bonded to the first substrate on the third substrate; the sensitive electrode or the back plate electrode of the microphone is on the first substrate of the third region One of the conductive layers, or the first substrate of the third region or a layer of conductive material on the third substrate is formed.
  • the first substrate further includes a second region
  • the method for forming the integrated MEMS device further includes:
  • the conductive layer comprises an inertial sensor, an interconnection layer of the pressure sensor and the microphone, a first electrical shielding layer of the inertial sensor, a support point of the fixed electrode of the inertial sensor, a support point of the movable sensitive element of the inertial sensor or Any combination thereof.
  • the conductive layer comprises an interconnect layer of a first electrical shielding layer of an inertial sensor, an inertial sensor, a pressure sensor and a microphone, the interconnect layer being closer to the first than the first electrical shielding layer The first surface of the village.
  • the sensitive film of the pressure sensor is formed by a material layer forming a first electrical shielding layer of the inertial sensor, or the sensitive film of the pressure sensor is used to form a first electrical shielding layer of the inertial sensor Forming a material layer above and/or below the first electrical shielding layer, or a sensitive film of the pressure sensor is formed with a layer of material forming an interconnect layer of the inertial sensor, or the pressure sensor The sensitive film is formed using an interconnect layer forming the inertial sensor and a layer of material above and/or below the interconnect layer.
  • the method further includes: forming a conductive material layer bonded to the first substrate on the third substrate;
  • the sensitive film or the fixed electrode of the pressure sensor uses one of the conductive layers on the first substrate of the second region, or the first substrate of the second region, or the third substrate A layer of conductive material is formed.
  • the sensitive film of the pressure sensor is formed by the first substrate; the fixed electrode of the pressure sensor is formed by a layer of conductive material on the third substrate.
  • the fixed electrode of the pressure sensor is formed by a first substrate of the second region, and the method for forming the integrated MEMS device further comprises the step of forming a hole in the fixed electrode of the pressure sensor.
  • the method further includes: forming a movable sensitive element of the pressure sensor between the sensitive film of the pressure sensor and the fixed electrode of the pressure sensor; forming a movable sensitive element between the pressure sensor and the sensitive film Connecting the connecting arms of each other; A hole is formed in the movable sensitive element of the pressure sensor.
  • the sensitive film of the pressure sensor is a plurality of layers; the sensitive film of the pressure sensor includes one layer of a conductive layer, and a material layer located above or below the conductive layer; or the pressure sensor
  • the sensitive film includes a first substrate, and a layer of material above or below the first substrate.
  • the method further includes: forming a microphone channel opening, exposing a sensitive film of the microphone or a back plate electrode of the microphone; forming a microphone cavity, wherein the microphone cavity is located away from the sensitive film of the microphone and the back plate electrode of the microphone a side of the opening of the microphone channel; forming a pressure channel opening to expose a sensitive film of the pressure sensor; forming a hole in the sensitive film of the microphone, forming a hole in the back plate electrode of the microphone, the microphone A hole in the sensitive film is in communication with a hole in the back plate electrode of the microphone and a microphone cavity and a microphone channel opening; the microphone channel opening and the pressure channel opening of the pressure sensor are located in the sensitive film and microphone of the microphone The same side of the back plate electrode; the microphone cavity being located on a side of the sensitive film of the microphone and the back plate electrode of the microphone remote from the opening of the microphone channel and the pressure channel of the pressure sensor; the microphone cavity Through the second substrate, the second substrate and the a layer of material between the sensitive film of the microphone
  • a pressure-welded plate is further formed on the third substrate, and the method for forming the integrated MEMS device further comprises: forming a microphone channel opening, exposing a sensitive film of the microphone or a back plate electrode of the microphone; forming a microphone a cavity, the microphone cavity being located in the sensitive film and microphone of the microphone a side of the back plate electrode remote from the opening of the microphone channel; forming a pressure channel opening to expose the sensitive film of the pressure sensor;
  • the embodiment of the invention has the following advantages: forming a movable sensitive element of the inertial sensor by using the first substrate, and using one of the first substrate or the conductive layer on the first substrate The layer forms a sensitive film of the microphone, and the integrated MEMS device formed is small in size, low in cost, and high in reliability after packaging.
  • one of the conductive layers on the first substrate or the first substrate may be used to form a sensitive film of the pressure sensor and a sensitive film of the microphone, thereby forming an integrated inertial sensor and pressure.
  • the integrated MEMS device of the sensor and the microphone further enhances the integration of the integrated MEMS device of the present invention, and the integrated MEMS device formed is small in size and low in cost.
  • the movable sensitive element of the inertial sensor is fabricated by using the single crystal semiconductor material, and the movable sensitive element of the thick inertial sensor can be prepared, that is, the movable electrode can be used, thereby improving the quality of the mass and improving the quality of the mass. The sensitivity and reliability of the inertial sensor.
  • a conductive layer is further formed on the first substrate, and the conductive layer can be used to fabricate a first electrical shielding layer of the inertial sensor, wherein the first electrical shielding layer and the interconnect layer The shielded interconnects are electrically connected, thereby preventing the inertial sensor from being disturbed by external electrical signals.
  • the conductive layer of the embodiment of the present invention may further be a first electrical shielding layer including an inertial sensor, a supporting point of a fixed electrode of the inertial sensor, a supporting point of a movable sensitive element of the inertial sensor, or any combination thereof, such that These materials can be utilized to form different structures of the pressure sensor and the microphone, such as sensitive membranes and/or movable sensitive elements of the pressure sensor, or fixed electrodes, or, for example, sensitive membranes and/or fixed electrodes of the microphone, on the one hand It reduces the size of the integrated MEMS device; it also reduces the difficulty of the fabrication process, increases the flexibility of fabricating the device, and makes layout easier, adding flexibility for integration with other devices.
  • the conductive layer of the embodiment of the present invention may include an interconnect layer for fabricating an inertial sensor, a pressure sensor, and a microphone, in addition to the electrical shielding layer including the inertial sensor, such that the inertial transmission
  • the interconnect layer of the sensor, the pressure sensor and the microphone can be fabricated by using a common conductive layer, which further reduces the volume of the integrated MEMS device, reduces the volume of the integrated MEMS device on the one hand, and reduces the difficulty of the manufacturing process and increases
  • the flexibility to make devices and easier layout allows for increased flexibility for integration with other devices.
  • the sensitive film of the pressure sensor of the embodiment of the invention may be a plurality of layers or a single layer, so that the integrated MEMS device formed by the embodiment of the invention can be applied to a case where the pressure is relatively large, and the pressure is relatively small. Sensitive film is more sensitive.
  • the microphone cavity of the embodiment of the present invention is located at a side of the sensitive film of the microphone and the back plate electrode of the microphone away from the opening of the microphone channel and the pressure channel opening of the pressure sensor; a material layer between the second substrate, the second substrate and the microphone sensitive film or the back plate electrode of the microphone, or the microphone cavity penetrating the third substrate, the third substrate and the a material layer between the sensitive film of the microphone and the back plate electrode of the microphone; the microphone cavity acts as a common channel for the sound signal and the pressure signal, so that the pressure signal can pass through the cavity of the microphone, the hole in the back plate electrode of the microphone, the microphone
  • the holes in the sensitive film reach the opening of the pressure channel, so that the pressure channel opening does not need to be exposed to the outside, the pressure sensor is protected, and the pressure sensor is prevented from being disturbed and contaminated by the external environment, thereby improving the life and reliability of the pressure sensor.
  • FIG. 1 is a schematic structural view of an X-axis and a Y-axis acceleration sensor according to an embodiment of the present invention
  • FIG. 2 is a perspective view showing a three-dimensional structure of a Z-axis and a microphone sensor according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of a cornering device according to an embodiment of the present invention
  • FIG. 5 is a schematic structural view of a cornering device of an embodiment of the present invention
  • FIG. 7 is a schematic cross-sectional view showing a method of forming an integrated MEMS device according to an embodiment of the present invention
  • FIG. 1 is a schematic structural view of an X-axis and a Y-axis acceleration sensor according to an embodiment of the present invention
  • FIG. 2 is a perspective view showing a three-dimensional structure of a Z-axis and a microphone sensor according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of a cornering device according to an embodiment of the present invention
  • Embodiments of the present invention form a movable sensitive element of an inertial sensor by using a first substrate, and form a sensitive film of a microphone using a first substrate or a conductive layer on the first substrate to form a sensitive film of the microphone.
  • the integrated MEMS device is small in size, low in cost, and highly reliable after packaging.
  • one of the conductive layers on the first substrate or the first substrate may be used to form a sensitive film of the pressure sensor and a sensitive film of the microphone, thereby forming an integrated inertial sensor and pressure.
  • the integrated MEMS device of the sensor and the microphone further enhances the integration of the integrated MEMS device of the present invention, and the integrated MEMS device formed is small in size and low in cost.
  • the movable sensitive element of the inertial sensor is fabricated by using the single crystal semiconductor material, and the movable sensitive element of the thick inertial sensor can be prepared, that is, the movable electrode can be used, thereby improving the quality of the mass and improving the quality of the mass.
  • the sensitivity and reliability of the inertial sensor is further formed on the first substrate, and the conductive layer can be used to fabricate a first electrical shielding layer of the inertial sensor, wherein the first electrical shielding layer and the interconnect layer The shielded interconnects are electrically connected, thereby preventing the inertial sensor from being disturbed by external electrical signals.
  • the conductive layer of the embodiment of the present invention may further be a first electrical shielding layer including an inertial sensor, a supporting point of a fixed electrode of the inertial sensor, a supporting point of a movable sensitive element of the inertial sensor, or any combination thereof, such that These materials can be utilized to form different structures of the pressure sensor and the microphone, such as sensitive membranes and/or movable sensitive elements of the pressure sensor, or fixed electrodes, or, for example, sensitive membranes and/or fixed electrodes of the microphone, on the one hand It reduces the size of the integrated MEMS device; it also reduces the difficulty of the fabrication process, increases the flexibility of fabricating the device, and makes layout easier, adding flexibility to integrate with other devices.
  • the conductive layer of the embodiment of the present invention may include an interconnection layer for fabricating an inertial sensor, a pressure sensor, and a microphone, in addition to the electrical shielding layer including the inertial sensor, such that the interconnection layer of the inertial sensor, the pressure sensor, and the microphone Can be fabricated with a common conductive layer, further reducing the size of the integrated MEMS device, on the one hand reducing the size of the integrated MEMS device; reducing the difficulty of the manufacturing process, increasing the flexibility of the device and making the layout easier Increased with The flexibility of his device for integration.
  • the sensitive film of the pressure sensor of the embodiment of the invention may be a plurality of layers or a single layer, so that the integrated MEMS device formed by the embodiment of the invention can be applied to a case where the pressure is relatively large, and can also be applied to the pressure comparison d, Where sensitive films are required to be sensitive.
  • the microphone cavity of the embodiment of the present invention is located at a side of the sensitive film of the microphone and the back plate electrode of the microphone away from the opening of the microphone channel and the pressure channel opening of the pressure sensor; a material layer between the second substrate, the second substrate and the back sensitive electrode of the microphone sensitive film or microphone, or the microphone cavity extending through the third substrate, the third substrate and the microphone a layer of material between the sensitive film and the back plate electrode of the microphone; the microphone cavity acts as a common channel for the sound signal and the pressure signal, so that the pressure signal can pass through the cavity of the microphone, the hole in the back plate electrode of the microphone, and the sensitivity of the microphone
  • the holes in the film reach the opening of the pressure channel, so that the pressure channel opening does not need to be exposed to the outside, the pressure sensor is protected, the pressure sensor is prevented from being interfered and contaminated by the external environment, and the life and reliability of the pressure sensor are improved.
  • the MEMS inertial sensor and the MEMS microphone include: a first substrate including a first surface and a second surface opposite thereto, the first substrate including a first region and a third region; at least one or more conductive layers Forming on a first surface of the first substrate; a movable sensitive element of the inertial sensor, being formed by the first substrate of the first region; a second substrate and a third substrate, the second substrate Bonding with a surface of the conductive layer on the first substrate, the third substrate is bonded to a side of the movable sensitive element of the inertial sensor formed by the first substrate, and the third substrate and the The second substrate is respectively located on opposite sides of the movable sensitive element of the inertial sensor; the sensitive film or the back plate electrode of the microphone, the first substrate including at least the third region, or the first substrate including at least the third region One of the conductive layers on the top.
  • the integrated MEMS device of the above embodiment integrates a MEMS inertial sensor and a MEMS microphone.
  • the sensitive film of the microphone includes at least one of a first substrate of a third region or a conductive layer on a first substrate including at least a third region, thereby improving integration of the integrated MEMS device, Integrating MEMS inertial sensors and MEMS microphones in the same device increases device integration and reliability.
  • the material of the first substrate should be a semiconductor material.
  • the material of the first substrate may be amorphous silicon, polycrystalline silicon, germanium silicon, single crystal silicon or the like.
  • the first substrate is a single crystal semiconductor material, and the mass of the movable sensitive element of the inertial sensor fabricated by using the single crystal semiconductor material is large, so that the quality of the mass can be increased, and the quality is improved. The sensitivity and reliability of inertial sensors.
  • the conductive layer includes a first electrical shielding layer of an inertial sensor, and the first electrical shielding layer can be electrically connected to a shield interconnection in an interconnection layer of the inertial sensor, thereby The inertial sensor can be prevented from being disturbed by external electrical signals.
  • the sensitive film of the microphone is a plurality of layers, and the sensitive film of the microphone includes one of the conductive layers and a material layer above or below the conductive layer of the layer.
  • the sensitive film of the microphone comprises a first substrate and a material layer located above or below the first substrate, so that the integrated MEMS device formed by the embodiment of the invention can be applied to a relatively large pressure Occasionally, it can also be applied to occasions where the pressure is relatively small and the sensitive film is sensitive.
  • the third substrate is formed with a conductive material layer bonded to the first substrate;
  • the sensitive film of the microphone or the back plate electrode of the microphone includes one of the conductive layers on the first substrate of the third region, or the first substrate of the third region, or the third substrate A layer of conductive material on it.
  • the microphone of the present invention may include: a sensitive film of the microphone and a back plate electrode of the microphone, wherein the sensitive film of the microphone includes one of the conductive layers on the first substrate of the third region a layer; a backing electrode or a sensitive film of the microphone, another layer of the conductive layer on the first substrate of the third region, or a first substrate of the third region, or a third substrate a layer of conductive material; or
  • the sensitive film of the microphone includes a first substrate of a third region, a back electrode of the microphone uses one of the conductive layers on the first substrate of the third region, or a conductive layer on the third substrate Forming a material layer; or, the sensitive film of the microphone includes a layer of conductive material on the third substrate, the back plate electrode of the microphone is used in one of the
  • the integrated MEMS device of the present invention may also be a device integrating an inertial sensor, a pressure sensor, and a microphone.
  • the integrated MEMS device includes: a first substrate, including the first a surface and a second surface opposite thereto, the first substrate including a first region, a second region, and a third region; at least one or more conductive layers formed on the first surface of the first substrate a movable sensitive element of the inertial sensor, formed by the first substrate of the first region; a second substrate and a third substrate, a surface of the second substrate and the conductive layer on the first substrate
  • the third substrate is coupled to a movable sensitive element side of the inertial sensor formed by the first substrate, and the third substrate and the second substrate are respectively located at a movable sensitivity of the inertial sensor The opposite sides of the element; the sensitive film or the back plate electrode of the microphone, the first substrate including at least the third region, or one of the conductive layers on the first substrate including at least the third region; sensitivity of the pressure sensor thin Or the fixed electrode, a second substrate comprising at least a first region, or at least a first conductive layer on the
  • the integrated MEMS device simultaneously integrates a MEMS inertial sensor, a pressure sensor, and a microphone, and forms a movable sensitive element of the inertial sensor by using the first substrate, and uses the first substrate or the conductive layer on the first substrate
  • the first layer forms a sensitive film of the pressure sensor and a sensitive film of the microphone
  • the integrated MEMS formed is small in size, low in cost, and highly reliable after packaging.
  • the material of the first substrate is a single crystal semiconductor material, so that the mass of the movable electrode of the MEMS inertial sensor is formed, thereby increasing the quality of the mass and improving the reliability of the MEMS device.
  • the material of the first substrate may be other semiconductor materials such as polysilicon, amorphous silicon, germanium silicon or the like.
  • the integrated MEMS device of the embodiment of the invention comprises a MEMS inertial sensor, which may be an acceleration sensor or a corner device (also known as a gyroscope), whether it is a corner device or an acceleration sensor, including for signal conversion (such as acceleration) Or a sensor unit whose rotational angular velocity is converted into an electrical signal, the sensor unit comprising a movable sensitive element (also referred to as a movable electrode), a fixed electrode, and an interconnect layer for correspondingly extracting the movable electrode and the fixed electrode,
  • the sensor unit is a core structure of the MEMS inertial sensor, and the movable electrode of the MEMS inertial sensor of the embodiment of the invention is made of a single crystal semiconductor material.
  • FIG. 1 is a schematic top view of an X-axis sensor of an acceleration sensor according to an embodiment of the present invention, including: a fixed electrode and Moving electrode.
  • the fixed electrode includes two adjacent fixed electrode fingers, which are a first fixed electrode finger 101 and a second fixed electrode finger 102, respectively.
  • the movable electrode includes movable electrode fingers arranged in parallel, which are a first movable electrode finger 103 and a second movable electrode finger 104, respectively, and two ends of all movable electrode fingers are respectively connected to two parallel movable connections.
  • Each of the two adjacent fixed electrode fingers is staggered with a movable electrode finger in the middle, such that the first fixed electrode finger 101 and the first movable electrode finger 103 constitute a first capacitor, and the second fixed electrode finger 102 and The second movable electrode finger 104 constitutes a second capacitor.
  • the acceleration sensor can be obtained. Acceleration along the X-axis direction.
  • the acceleration sensor may further include a Y-axis sensor.
  • the structure of the Y-axis sensor is similar to that of the X-axis sensor, and will not be described in detail herein.
  • the acceleration sensor further includes a Z-axis sensor, and generally the structure of the Z-axis sensor has two For details, please refer to FIG. 2 and FIG. 3 .
  • the method includes: a fixed electrode and a movable electrode.
  • the fixed electrode includes a first fixed electrode 201 and a second fixed electrode 202
  • the movable electrode includes The first movable electrode 203 and the second movable electrode 204 are fixed to the substrate 200.
  • the movable electrode is movable around the torsion axis 206, and the movable electrode is further provided with a weighting beam.
  • the weighting beam 205 is disposed outside the second movable electrode 204. Therefore, the movable electrode has an asymmetrical structure with respect to the torsion axis 206.
  • the fixed electrode and the movable electrode constitute two plates of the capacitor.
  • the fixed electrode includes a first fixed electrode finger 302 and a second fixed electrode finger 303, the first fixed electrode finger 302 and the second fixed electrode finger 303 and the movable electrode finger 301 When placed oppositely, two capacitors are formed.
  • the movable electrode fingers 301 move up and down, the capacitance of the capacitor formed between the movable electrode fingers 301 and the first fixed electrode fingers 302 and the second fixed electrode fingers 303 A change occurs to obtain an acceleration letter in the Z-axis direction
  • the above two kinds of Z-axis sensors have different structures, and the sensing principle is similar, and the Z-axis direction acceleration information is sensed according to the change of the capacitance of the capacitor formed between the movable electrode and the fixed electrode, but the difference between the two is
  • the structure shown in Fig. 2 is based on changing the distance between the two plates of the capacitor, and the structure shown in Fig. 3 is changed in accordance with the area between the two plates of the capacitor.
  • FIG. 4 is a schematic plan view showing a corner structure of the corner device
  • FIG. 5 is a schematic cross-sectional view along AA' of FIG. 4.
  • the corner device includes: a movable electrode, a fixed electrode, a detecting electrode, specifically, the movable electrode
  • the first movable electrode 901 and the second movable electrode 902 are included;
  • the fixed electrode includes a first fixed electrode 903, a second fixed electrode 904, and a third fixed electrode 905, and the third fixed electrode 905 is located at the first fixed electrode.
  • the first movable electrode 901 is located between the first fixed electrode 903 and the third fixed electrode 905, and the second movable electrode 902 is located at the Between the two fixed electrodes 904 and the third fixed electrode 905, two first finger capacitors are respectively formed between the first movable electrode 901 and the first fixed electrode 903 and the third fixed electrode 905, and the second movable electrode Between the 902 and the second fixed electrode 904 and the third fixed electrode 905, two interdigital capacitors are respectively formed.
  • the first movable electrode 901 is moved toward the first fixed electrode 903.
  • the first movable electrode 901 When there is a potential difference between the third fixed electrode 905 and the first movable electrode 901, the first movable electrode 901 is directed to the third fixed electrode. The movement is performed in the 905 direction.
  • the first movable electrode 901 and the second movable electrode 902 are in the same state. Under the action of the alternating electrical signal, it moves toward the first fixed electrode 903 or the second fixed electrode 904, respectively, or moves toward the third fixed electrode 905.
  • the cornering device further includes a detecting electrode, the detecting electrode includes a first detecting electrode 906 and a second detecting electrode 907, and the first detecting electrode 906 and the second detecting electrode 907 are respectively connected to the first movable electrode 901 and the second
  • the movable electrode 902 has an overlapping area between the movable electrode 902, and a cavity or a medium is disposed between the detecting electrode and the movable electrode. Referring to FIG. 5, a capacitor is formed between the detecting electrode and the movable electrode.
  • the integrated MEMS device of the embodiment of the present invention further includes a MEMS pressure sensor, which generally includes a sensitive film of the pressure sensor and a fixed electrode of the pressure sensor, and the sensitive film of the pressure sensor and the fixed electrode of the pressure sensor constitute a capacitor.
  • the sensitive film of the pressure sensor is used to sense the external pressure and deform under the external pressure, thereby changing the capacitance of the capacitor and obtaining the pressure information.
  • the sensitive film of the pressure sensor acts as the external pressure.
  • the components are in turn as movable sensitive elements (ie moving electrodes).
  • a movable electrode may be additionally disposed between the sensitive film and the fixed electrode of the pressure sensor, and a connecting arm is provided between the movable electrode and the sensitive film of the pressure sensor, when the sensitive film of the pressure sensor has deformation
  • the capacitance between the movable electrode of the pressure sensing device and the fixed electrode of the pressure sensor is changed by measuring the movable electrode and the pressure sensor of the pressure sensor.
  • the pressure between the fixed electrodes can be used to know the pressure information.
  • the integrated MEMS device further includes a microphone, and the microphone includes a sensitive film of the microphone and a back plate electrode of the microphone.
  • the sensitive film of the microphone and the back plate electrode of the microphone constitute a capacitor, and the sensitive film of the microphone is used for sensing an external sound signal, and is deformed under the action of the sound signal, thereby changing the capacitance of the capacitor, obtaining The sound information corresponding to the sound signal, at this time, the sensitive film of the microphone acts as a movable sensitive element (ie, a movable electrode).
  • the sensitive film of the microphone there may also be a partial insulating layer in one or more conductive layers (the insulating layer is used for mutual insulation of interconnects in the one or more conductive layers);
  • a movable electrode of the microphone may be additionally disposed, and a movable arm of the microphone and a sensitive film of the microphone have a connecting arm, when the microphone When the sensitive film is deformed, the movable electrode may move, so that the distance between the movable electrode of the microphone and the back plate electrode of the microphone changes, so that the movable electrode of the microphone and the back plate of the microphone
  • the capacitance between the electrodes changes, and by measuring the capacitance between the microphone movable electrode and the back plate electrode of the microphone, sound information can be obtained.
  • the first surface of the first substrate is formed with one or more conductive layers; the second substrate is directly bonded or bonded to one or more conductive layers on the first substrate through a bonding layer a movable sensitive element of the inertial sensor, formed with a first substrate of the first region, the third substrate bonded to a side of the first substrate forming a movable sensitive element of the inertial sensor, the third
  • the substrate and the second substrate are respectively located on opposite sides of the movable sensitive element of the inertial sensor;
  • the sensitive film of the microphone includes at least a first substrate of the third region, or a portion including at least the third region One of one or more conductive layers on a substrate.
  • the MEMS device of the embodiment of the invention further includes other structures, ratio: 3 ⁇ 4.
  • the method includes: a first substrate for forming a movable sensitive element of an inertial sensor, the first substrate is a single crystal semiconductor material, the first substrate includes a first surface and a second surface, the first lining One or more conductive layers are formed on the first surface of the bottom.
  • the first substrate includes a first region, a second region, and a third region, the second surface of the first substrate is a thinned surface, and the movable electrode of the inertial sensor is thinned A first substrate is formed.
  • the integrated MEMS device can also include a second substrate that is primarily used for mechanical support, the second substrate being bonded directly or bonded to a layer on the first substrate by a bonding layer Or The surface of the multilayer conductive layer.
  • the one or more conductive layers comprise a first electrical shielding layer of an inertial sensor (the first electrical shielding layer being a conductive layer furthest from the first surface of the first substrate), regardless of the layer Or whether the multilayer conductive layer comprises an interconnect layer of an inertial sensor, a pressure sensor and a microphone, the second substrate may be bonded directly or through a bonding layer to the surface of the first electrical shielding layer on the first substrate.
  • the second substrate is bonded to the first electrical shielding layer on the first substrate directly or via a conductive bonding layer, the second substrate and the first electrical shielding layer together An electrical shielding layer of the inertial sensor; if the second substrate is bonded to one or more conductive layers on the first substrate via a bonding layer, and the bonding layer comprises at least one insulating layer
  • the first electrical shielding layer can be used alone as an electrical shielding layer of the inertial sensor.
  • the integrated MEMS device may further include a third substrate coupled to one side of the movable electrode of the inertial sensor, the third substrate and the second substrate being respectively located at the Both sides of the movable electrode of the inertial sensor.
  • the third substrate is used to seal the movable electrode of the inertial sensor and the fixed electrode of the pressure sensor, respectively, while the third substrate may include circuits and/or leads.
  • the one or more conductive layers described in the embodiments of the present invention may include an inertial sensor, an interconnection layer of the pressure sensor and the microphone, a first electrical shielding layer of the inertial sensor, a support point of the fixed electrode of the inertial sensor, and an inertial sensor.
  • the one or more conductive layers further include a support point of the fixed electrode of the pressure sensor, a sensitive film of the pressure sensor and/or a support point of the movable electrode, a sensitive film support point of the microphone, and a back plate electrode support point of the microphone.
  • the one or more conductive layers of embodiments of the present invention may include an interconnect layer of an inertial sensor, a pressure sensor, and a microphone; the interconnect layer includes one or more layers of interconnect lines.
  • the one or more interconnecting wires are sensitive to the fixed electrode, the movable electrode and the detecting electrode (the corner) of the inertial sensor, the fixed electrode of the pressure sensor, the sensitive film or the movable electrode of the pressure sensor, and the microphone
  • the back plate electrodes of the film and the microphone are respectively electrically connected.
  • the layer of material can be shared with the interconnect layer of the microphone.
  • the structures required for these sensors can also be formed by sharing some conductive layer materials, such as forming a sensitive film of a pressure sensor using a first electrical shielding layer forming an inertial sensor, and using an interconnect layer forming an inertial sensor.
  • the material of the support point forms a fixed electrode of the pressure sensor; or the material of the different layers of the interconnect layer or the support point forming the inertial sensor respectively forms the sensitive film of the pressure sensor and the fixed electrode of the pressure sensor;
  • the material of the interconnect layer or the support point of the sensor forms a sensitive film of the pressure sensor, and the first substrate is used to form a fixed electrode of the pressure sensor; even the first electrical shielding layer, the interconnect layer or the support forming the inertial sensor can be used.
  • the material of the dot or the first substrate forms a sensitive film of the pressure sensor, and the conductive electrode of the third substrate is used to form a fixed electrode of the pressure sensor; and the first electrical shield forming the inertial sensor can also be used.
  • the layer of the interconnect layer or support point of the layer or inertial sensor One or more sensitive films forming a microphone, forming a microphone layer with a layer of material forming an interconnect layer of an inertial sensor or a different layer of a support point or a layer of conductive material on a first substrate or a third substrate Back plate electrode.
  • the sensitive film of the pressure sensor also functions as a movable electrode of the pressure sensor, and according to actual needs, the movable electrode of the pressure sensor may be additionally provided.
  • the movable electrode of the pressure sensor may be additionally provided in the case of forming a sensitive film of a pressure sensor using the material of the first electrical shielding layer, the interconnect layer or the support point forming the inertial sensor, different interconnect layers or support points forming the inertial sensor may also be used.
  • the material forms a movable electrode of the pressure sensor, and the movable electrode of the pressure sensor has a connecting arm connection with the sensitive film of the pressure sensor, and the connecting arm is mainly used for transmitting deformation of the sensitive film of the pressure sensor to the pressure
  • the movable electrode of the sensor is displaced to change the capacitance between the movable electrode and the fixed electrode of the pressure sensor. Also, in the above embodiment, if the movable electrode of the additional microphone sensor is not provided, The sensitive film of the microphone can also act as a movable electrode.
  • a movable electrode of the microphone for example, in the case of forming a sensitive film of the microphone by using a material layer of the first electrical shielding layer, the interconnection layer or the support point forming the inertial sensor.
  • Forming a movable electrode of the microphone with a material forming a different interconnect layer or support point of the microphone, and a connecting arm may be disposed between the movable electrode of the microphone and the sensitive film of the microphone, the connecting arm of the microphone.
  • the deformation of the sensitive film is transmitted to the movable electrode of the microphone to cause displacement, thereby changing the capacitance between the movable electrode of the microphone and the back plate electrode of the microphone.
  • the support point of the embodiment of the invention is used for fixing a fixed electrode supporting the inertial sensor, the pressure sensor and the microphone (the back plate electrode of the microphone is used as a fixed electrode), a movable electrode (a sensitive film of the microphone, a sensitive film of the pressure sensor)
  • the movable sensitive element of the inertial sensor, the support point generally includes a support arm electrically connecting the movable electrode, the fixed electrode, and a fixed end for fixing the movable electrode and the fixed electrode.
  • the one or more conductive layers simultaneously include a first electrical shielding layer of the inertial sensor, and an interconnection layer of the inertial sensor, the pressure sensor, and the microphone; the interconnection layer is closer to the first electrical shielding layer a first surface of the first substrate. If the one or more conductive layers include only the first electrical shielding layer of the inertial sensor, the interconnection layer on the third substrate may be utilized as an interconnection layer of the inertial sensor, the pressure sensor, and the microphone, so that the inertial sensor The pressure sensor and microphone are electrically connected to the outside. At this time, the first electrical shielding layer can also serve as a sensitive film of the microphone or a sensitive film of the pressure sensor.
  • the movable electrode and the fixed electrode of the X-axis sensor and the Y-axis sensor of the inertial sensor of the present invention are both fabricated using the thinned first substrate, and the Z-axis sensor has the following differences depending on its structure:
  • the Z-axis sensor uses a structure as shown in FIG. 2, and the fixed electrode of the Z-axis sensor is formed using the one or more conductive layers.
  • the Z-axis sensor is formed of a material forming the first electrical shielding layer.
  • the Z-axis sensor is fixed The electrode electrode is formed of a material forming the interconnect layer, and in still another embodiment of the present invention, the fixed electrode of the Z-axis sensor is electrically conductive in the interconnect layer closest to the first substrate A layer of material is formed. If the Z-axis sensor is configured as shown in FIG. 3, the fixed electrode of the Z-axis sensor is formed using the first substrate.
  • the fixed electrode or the movable electrode side of the Z-axis sensor of the acceleration sensor is further formed with an anti-blocking structure for preventing the movable sensitive element from contacting the fixed electrode.
  • the anti-blocking structure may be made of a conductive layer material or an insulating layer material.
  • one or more conductive layers may be used, or may be formed using a first substrate.
  • the anti-blocking structure is formed by using one or more conductive layers, as another embodiment of the present invention, The germanium is formed using a conductive layer closest to the first substrate.
  • the angler comprises an X-axis corner, a Y-axis corner, a Z-axis corner or any combination thereof, the X-axis corner, the Y-axis corner, and the Z-axis corner Refers to the corners used to detect the angular velocities in the X-axis, Y-axis, and Z-axis directions, respectively.
  • the corner further includes a detecting electrode and a fixed electrode.
  • the fixed electrode of the X-axis corner and the Y-axis corner is formed by the first substrate, the X-axis corner, the Y-axis
  • the detecting electrode of the corner device is formed by the one or more conductive layers, and the fixed electrode and the detecting electrode of the Z-axis corner are both formed by the first substrate.
  • the one or more conductive layers are the interconnect layers of the corners, the material forming the interconnect layer may be used to form the detecting electrodes of the X-axis or the Y-axis.
  • the detecting electrode forming the X-axis corner or the Y-axis corner can be formed by using the material forming the first electrical shielding layer.
  • Forming the fixed electrode of the corner device with the first substrate since the fixed electrode can be formed thicker, so that the stretching distance in use is relatively large, and the driving speed is relatively large, thereby detecting the spirit The sensitivity is relatively high.
  • the inertial sensor sensitive element is fabricated by using the single crystal semiconductor material, and the movable sensitive element of the thick inertial sensor can be prepared, that is, the movable electrode can be used, thereby increasing the mass of the mass and improving the inertial sensor. Sensitivity and reliability.
  • one or more conductive layers may be further formed on the first substrate, and the one or more conductive layers may be used to fabricate a first electrical shielding layer of the inertial sensor.
  • the first electrical shielding layer is electrically connected to the shield interconnection in the interconnect layer, thereby preventing interference of the inertial sensor by external electrical signals.
  • the one or more conductive layers of the embodiments of the present invention may further be a first electrical shielding layer including an inertial sensor, a support point of a fixed electrode of the inertial sensor, a support point of a movable sensitive element of the inertial sensor, or Arbitrarily combined, in this way, these materials can be fully utilized to form different structures of the pressure sensor and the microphone, such as sensitive films and/or movable sensitive elements of the pressure sensor, or fixed electrodes, or, for example, sensitive films of the microphone and/or
  • the fixed electrode reduces the size of the integrated MEMS device on the one hand; it also reduces the difficulty of the manufacturing process, increases the flexibility of fabricating the device, and makes layout easier, adding flexibility for integration with other devices.
  • the one or more conductive layers of the embodiment of the present invention may include an interconnection layer for fabricating an inertial sensor, a pressure sensor, and a microphone, in addition to the electrical shielding layer including the inertial sensor, such that the inertial sensor, the pressure sensor, and
  • the interconnect layer of the microphone can be fabricated with a common conductive layer, which further reduces the volume of the integrated MEMS device, reduces the volume of the integrated MEMS device, reduces the difficulty of the manufacturing process, and increases the flexibility of manufacturing the device. And easier to layout, adding flexibility to integrate with other devices.
  • the sensitive film of the pressure sensor of the embodiment of the invention may be a plurality of layers or a single layer, so that the pressure sensor formed by the embodiment of the invention can be applied to a case where the pressure is relatively large, and can be applied to a case where the pressure is relatively small and sensitive.
  • the film is more sensitive.
  • the corner device since the movable electrode is prepared by using a single crystal semiconductor substrate, the thickness and mass of the movable electrode formed are large, so that the angular velocity can be detected sensitively.
  • the microphone further includes: a microphone channel opening and a microphone cavity,
  • the microphone channel opening exposes a sensitive film of the microphone or a back plate electrode of a microphone, the microphone cavity being located on a side of the sensitive film of the microphone and the back plate electrode of the microphone away from the opening of the microphone channel;
  • the pressure sensor further includes: a pressure passage opening that exposes a sensitive membrane of the pressure sensor.
  • the microphone channel opening and the microphone cavity of the embodiment of the present invention are respectively located on opposite sides of the sensitive film of the microphone and the back plate electrode of the microphone.
  • the microphone channel opening can serve as a channel for the sound signal, and the sound signal reaches the sensitive film of the microphone from the microphone channel opening, and the pressure signal enters the sensitive film of the pressure sensor from the pressure channel opening; thus the pressure channel opening of the microphone channel opening and the pressure sensor Relatively independent; as a further embodiment, the microphone cavity can also be utilized as a common channel of the sound signal and the pressure signal.
  • the back plate electrode of the microphone and the sensitive film of the microphone are formed with connected holes.
  • the microphone channel opening and the pressure channel opening of the pressure sensor are located on the same side of the sensitive film of the microphone and the back plate electrode of the microphone, the microphone cavity being located away from the sensitive film of the microphone and the back plate electrode of the microphone a side of the microphone channel opening and the pressure channel opening of the pressure sensor, and the microphone cavity may extend through the material between the second substrate, the second substrate and the sensitive film of the microphone or the back plate electrode of the microphone Layer, or the microphone cavity runs through a material layer between the third substrate, the third substrate and the sensitive film of the microphone and the back plate electrode of the microphone, such that the microphone cavity can communicate with outside air such that the microphone cavity acts as a sound and
  • the channel of the pressure signal in this case, the person skilled in the art can select the microphone cavity as the channel of the sound and pressure signal, thereby avoiding the exposure of the pressure channel opening of the pressure sensor, and avoiding the interference and contamination of the pressure sensor by the external environment, thereby improving The life and reliability of the pressure sensor; likewise, the person skilled in the art can also select the microphone
  • the movable sensitive element of the inertial sensor is formed by using the first substrate, and the first substrate or one of the one or more conductive layers on the first substrate is used to form the sensitive film of the pressure sensor and The sensitive film of the microphone, the integrated MEMS device formed is small in size, low in cost, and highly reliable after packaging.
  • the inertial sensor sensitive element is fabricated by using a single crystal semiconductor material, and The movable sensitive element of the thick inertial sensor, that is, the movable electrode, is prepared, so that the quality of the mass can be increased, and the sensitivity and reliability of the inertial sensor can be improved.
  • the embodiment of the present invention further provides a method for forming the integrated MEMS device.
  • the method includes: performing step S101 to provide a second substrate and a third substrate; and performing step S102 Providing a first substrate, the first substrate includes a first surface and a second surface opposite thereto, the first substrate includes a first region, a second region, and a third region; performing step S103, Forming one or more conductive layers on the first surface of the first substrate; performing step S104, bonding the second substrate to the surface of the conductive layer on the first substrate; performing step S105, Forming a movable sensitive element of the inertial sensor with the first substrate of the first region; performing step S106 to form a sensitive film or a back plate electrode of the microphone, wherein the sensitive film or the back plate electrode of the microphone includes at least the third region a first substrate, or at least one of the conductive layers on the first substrate on the third region; performing step S107 to form a sensitive film or a fixed electrode of the pressure sensor, the pressure sensor
  • the sensing film is Providing a first substrate, the first substrate includes a first surface and a second
  • the first substrate includes only the first region and the third region, and step S107 need not be performed.
  • a first substrate 401 is provided.
  • the first substrate 401 is a single crystal semiconductor substrate, and the first substrate 401 includes a first surface and a second surface opposite thereto.
  • the first substrate includes a first region I for forming an inertial sensor, a second region II for forming a pressure sensor, and a third region III for Form a microphone.
  • the first substrate 401 may be a single crystal semiconductor material.
  • the first substrate 401 may be a single crystal semiconductor material such as single crystal silicon or single crystal germanium silicon.
  • the The first substrate 401 is single crystal silicon.
  • the material of the first substrate 401 may be other semiconductor materials such as amorphous silicon or polycrystalline silicon.
  • the interconnect layer of the inertial sensor is used to extract the fixed electrode and the movable electrode of the inertial sensor
  • the interconnect layer of the pressure sensor is used to The movable electrode of the pressure sensor and the fixed electrode of the pressure sensor are taken out, and the interconnection layer of the microphone is used to extract the sensitive film and the fixed electrode of the microphone, and the movable electrode layer of the pressure sensor is used for making the pressure sensor movable.
  • An electrode, the sensitive film layer of the microphone is used to make a sensitive film of the microphone, and in this embodiment, the movable electrode layer of the pressure sensor, the sensitive film layer of the microphone is shared with the interconnect layer of the inertial sensor Some material layers.
  • forming one or more conductive layers on the first surface of the first substrate 401 includes: forming a first insulating layer 402 on the first surface of the first substrate 401; etching the first Insulating layer 402, forming a first opening in the first insulating layer 402, the first opening is used to move the movable electrode of the inertial sensor, or the fixed electrode of the pressure sensor, or the microphone after the subsequent filling of the conductive material An interconnect and a second interconnect, or an electrical shield of the inertial sensor, are taken up.
  • the first insulating layer 402 may be a dielectric material such as silicon oxide, silicon nitride or silicon oxynitride.
  • the first insulating layer 402 is silicon oxide; and the first insulating layer 402 is formed on the first insulating layer 402. a conductive layer, the first conductive layer filling the first opening; etching the first conductive layer to form an interconnect layer of an inertial sensor and a movable electrode layer of a pressure sensor, the interconnection of the inertial sensor
  • the layer specifically includes discrete interconnects located in the first region I for different purposes.
  • the interconnect layer of the inertial sensor includes discrete interconnect lines: an inertial fixed electrode interconnect 403a for taking out the fixed electrode of the inertial sensor, for connecting the need of the inertial sensor to the electrical shield
  • a support point 403d of the fixed electrode of the inertial sensor is further formed, and the support point 403d of the fixed electrode of the inertial sensor further has an electrical connection function, and the inertial fixed electrode interconnection line 403a of the inertial sensor is electrically connected. connection.
  • the fixed electrode of the inertial sensor The fulcrum 403d is formed using a first conductive layer material that forms an interconnect layer of the inertial sensor.
  • the following structure is formed: a movable electrode 403e of the pressure sensor.
  • a first interconnect line 403g and a second interconnect line 403f for the microphone are formed in the third region III.
  • the first interconnecting line 403g and the second interconnecting line 403f can be flexibly and specifically set by a person skilled in the art as a sensitive film of the microphone and/or an interconnection line between the back electrode of the microphone and the outside according to design requirements. .
  • the second interconnect 403f may be used to electrically connect to a sensitive film of a microphone or a back electrode of a microphone according to a process requirement, or the second interconnect 403f may also be used to electrically shield a pressure sensor.
  • the first conductive layer may be formed of doped polysilicon or other conductive material.
  • the first conductive layer is polysilicon. If the first conductive layer is polysilicon, it is also necessary to dope the first conductive layer. In the actual fabrication process, it is also necessary to form an interconnection layer of the pressure sensor and the microphone, but since its structure is similar to that of the inertial sensor, it will not be described or illustrated in detail herein.
  • the interconnection layer of the microphone, the support point of the sensitive film of the microphone, the interconnection layer of the pressure sensor, the support point of the movable electrode of the pressure sensor and the interconnection layer of the inertial sensor can be made of different conductive layers, Some conductive layers can be shared by a reasonable layout. Those skilled in the art know how to form these structures through a reasonable layout.
  • the interconnection layers of the inertial sensor and the pressure sensor usually have more than one layer.
  • only one layer is taken as an example, and the method for forming the multilayer interconnection layer is similar to this, and it is specifically stated here that The scope of protection of the present invention is excessively limited.
  • a second insulating layer 404 is formed on the interconnect layer and the movable electrode layer, the second insulating layer 404 filling a gap between discrete interconnect lines of the interconnect layer of the inertial sensor and A hole in the movable electrode of the pressure sensor.
  • the second insulating layer 404 may be made of a dielectric material such as silicon oxide, silicon nitride or silicon oxynitride.
  • the second insulating layer 404 is the same material as the first insulating layer 402 and is oxidized. silicon. Referring to FIG.
  • a second conductive layer 405 is formed on the second insulating layer 404, and the second conductive layer 405 located in the first region I serves as a first electrical shielding layer of the inertial sensor of the first region I,
  • An electrical shielding layer is used as an electrical shielding layer, and the electrical shielding layer is used for accessing an electrical shielding signal, and the electrical shielding signal may be a grounding signal, a DC driving signal, or other driving signals, and the electrical shielding layer of the present invention is connected.
  • the electrical shielding signal can be planned by the designer, so it is more flexible in design.
  • the photosensitive film of the pressure sensor is formed by the second conductive layer 405 located in the second region II; and the sensitive film of the microphone is fabricated by using the second conductive layer 405 located in the third region III.
  • the material as the electrical shielding layer may not need to be patterned.
  • the pressure sensor, the inertial sensor and the microphone are integrated, and in order to further reduce the volume of the integrated device, the electrical shielding layer forming the inertial sensor is used.
  • the movable film of the pressure sensor and/or the movable electrode of the pressure sensor and the sensitive film of the microphone are fabricated, so that the second conductive layer 405 (ie, the electrical shielding layer forming the inertial sensor) needs to be photolithographically etched to form the desired Graphics and electrical structures, such as the sensitive film of the pressure sensor and/or the movable electrode of the pressure sensor and the sensitive film of the microphone.
  • the second conductive layer 405 ie, the electrical shielding layer forming the inertial sensor
  • the second conductive layer 405 may be doped polysilicon or other conductive material.
  • the second conductive layer 405 is made of polysilicon, and further includes a step of doping the polysilicon. It will not be described in detail here.
  • a third insulating layer (not shown) may also be formed on the second conductive layer 405, and the third insulating layer is used as a bonding process between the subsequent and the second substrate.
  • Bonding layer generally the third insulating layer is made of silicon oxide.
  • a second substrate 501 is provided, which is mainly used as a mechanical support.
  • the second substrate 501 may be a single crystal semiconductor material.
  • the second substrate 501 may be single crystal silicon or single crystal silicon germanium.
  • the second substrate 501 may also be, for example, polysilicon or non. Crystalline silicon or germanium silicon And other semiconductor materials.
  • the second substrate 501 may be a single crystal silicon having an insulating layer on its surface or no insulating layer.
  • the second substrate is single crystal silicon having an insulating layer on its surface, and as shown in Fig. 9, the insulating layer is a fourth insulating layer 502.
  • the fourth insulating layer 502 is used as a bonding layer during subsequent bonding with the first substrate to increase the bonding force of the two.
  • the fourth insulating layer 502 may also be etched prior to bonding with the first substrate as needed.
  • the fourth insulating layer 502 and the foregoing third insulating layer may be formed only one layer, of course, may or may not be formed; and, the bond between the first substrate and the second substrate 501
  • the layer may also be a conductive material, such as polysilicon, which is specifically described herein and should not unduly limit the scope of the invention.
  • the second substrate 501 is divided into a first region I, a second region II, and a third region III, and the first region I, the second region ⁇ , and the third region m are respectively associated with the first substrate
  • the first substrate includes a first region I, a second region ⁇ , and a third region m correspondingly disposed.
  • the second region II of the second substrate 502 will be the first The second region II of the substrate is bonded directly or through a bonding layer, and the third region III of the second substrate 502 will be bonded directly to the third region III of the first substrate or through the bonding layer.
  • the second substrate 501 is bonded to the surface of the first substrate 401 on which the first interconnect layer and the second interconnect layer are formed, and the first substrate 401 and the second liner are bonded.
  • the bottom 501 is synthesized into a microelectromechanical (MEMS) wafer, and the bonding of the second substrate 501 and the first substrate 401 is well known in the art and will not be described in detail herein.
  • MEMS microelectromechanical
  • the bonding layer comprises at least one electrical insulating layer, for example, a fourth insulating layer is formed on the second substrate 501 or a third insulating layer is formed on the first electrical shielding layer.
  • the first electrical shielding layer may be used alone as an electrical shielding layer of the inertial sensor, as specifically described herein.
  • the first substrate 401 and the second substrate 501 have a bonding layer therebetween, and the bonding layer is an insulating layer.
  • the two bonding surfaces such as the first electrical shielding layer on the first substrate 401 or the third.
  • An insulating layer (if a third insulating layer is formed on the first electrical shielding layer) is polished, and if a fourth insulating layer is formed on the second substrate 501, the fourth insulating layer may be polished as needed, and then performed. Bond.
  • the second surface of the first substrate 401 on which the interconnect layer is not formed is thinned, thinned to a thickness of 5 ⁇ m to ⁇ , and after the thinning step, the first substrate 401 is formed. Then, the thinned first substrate 401 is used to form the movable electrode of the inertial sensor of the present invention, the fixed electrode of the pressure sensor, and the back plate electrode of the microphone.
  • a first adhesive layer is formed on the first substrate 401, and the first adhesive layer is used to form a bonding pad bonded to the third substrate.
  • the first adhesive layer is made of a conductive material, such as a metal, an alloy or other conductive material, and further may be metal Al, metal Cu, silicon, germanium, gold, tin, or an alloy thereof.
  • the first adhesive layer is etched to remove the adhesive layer outside the bonding area of the third substrate, and the surface of the portion of the first substrate 401 is exposed to form the first bonding pad 601. .
  • the first mask layer 602 may be made of photoresist, silicon oxide, silicon nitride, or the like.
  • the first mask layer 602 is used as a mask for subsequently etching the first substrate 401.
  • the first mask layer 602 is patterned, and the pattern to be transferred is transferred to the first mask layer 602.
  • the first substrate 40 is etched by using the patterned first mask layer 602 as a mask until the first insulating layer 402 is exposed.
  • a preliminary structure of the movable electrode of the inertial sensor, the fixed electrode, the fixed electrode of the pressure sensor, and the back plate electrode of the microphone is formed.
  • the first region I is formed: an inertial sensor fixed electrode 406, an inertial sensor movable electrode 407, a first sealed sensor structure 408, and a first inertial sensor structure 409; the inertial sensor fixed electrode 406 and the inertial fixed electrode are mutually
  • the connection line 403a is electrically connected, and the inertial sensor movable electrode 407 is electrically connected to the inertial movable electrode interconnection line (not shown), and the inertial sensor fixed electrode 406 and the inertial sensor movable electrode 407 have a gap and are opposite to each other.
  • the sensor structure 408 is electrically coupled to the first shield interconnect 403b.
  • a pressure sensor fixed electrode 410 In the second region, a pressure sensor fixed electrode 410, a first pressure sensor structure 412, and a second pressure sensor structure 413 are formed; the pressure sensor fixed electrode 410 corresponds to the position of the movable electrode 403e of the pressure sensor.
  • the pressure sensor fixed electrode 410 is shown as a discrete structure, which is actually a unitary structure, in other The location also has a connected structure.
  • a back plate electrode 414 of the microphone is electrically coupled to a backplane electrode interconnect (not shown) of the microphone.
  • holes are also formed in the back plate electrode 414 of the microphone for subsequent release of the structure.
  • the back plate electrode 414 of the microphone is shown as a discrete structure, which is actually a unitary structure. There are also connected structures in other locations. It should be noted that, as an embodiment, the above etching process also removes a portion of the first substrate located in the first region I adjacent to the first sealing sensor structure 408. This step is for exposing the electrical structure (such as a bonding pad) on the third substrate in a subsequent step. In other embodiments, a portion of the first substrate adjacent the first sealed sensor structure 408 may also remain.
  • the fixed electrode of the inertial sensor and the movable electrode of the inertial sensor are both formed by thinning the first substrate; the fixed electrode 410 of the pressure sensor is thinned by the first substrate Forming; the back plate electrode 414 of the microphone is formed by using the thinned first substrate.
  • the fixed electrode 410 of the pressure sensor and the movable electrode 403e of the pressure sensor constitute two plates of the capacitor, and when the movable electrode of the pressure sensor is displaced, the distance between the two plates of the capacitor changes. Referring to FIG.
  • the movable electrode 407 of the inertial sensor moves (when moving left and right), the movable electrode 407 of the inertial sensor The distance between the fixed electrodes 406 of the inertial sensor is changed, and a fifth cavity is formed between the movable electrode 407 and the fixed electrode 406 of the inertial sensor and the inertial fixed electrode interconnection 403a, the fifth empty The cavity, the movable electrode 407 of the inertial sensor, and the gap between the fixed electrode 406 of the inertial sensor are in gas communication.
  • the second insulating layer 404 is the same material as the first insulating layer 402, the second insulating layer 404 is also Remove parts.
  • the pressure sensor fixed electrode 410 has a hole therein, the first insulating layer between the pressure sensor fixed electrode 410 and the movable electrode 403e of the pressure sensor is also completely removed, forming a second cavity, and due to the pressure sensor
  • the movable electrode 403e has a hole therein, and the movable electrode 403e of the pressure sensor and the second conductive layer 405 of the first electrical shielding layer forming the inertial sensor (the second conductive layer located in the second region serves as a sensitive film of the pressure sensor)
  • the second insulating layer 404 is also partially or completely removed to form a first cavity, of which the first insulating layer may not be completely removed, between the second conductive layer and the movable electrode 403e of the pressure sensor.
  • connection arms that connect each other are also formed.
  • the connecting arm is formed of an insulating material, and the connecting arm may be formed of a conductive material, as long as the conductive material is pre-arranged at a place where the connecting arm needs to be formed, and those skilled in the art know how to The formation is flexible and will not be described in detail here.
  • the first cavity, the hole in the movable electrode 403e of the pressure sensor, the second cavity, and the hole on the pressure sensor fixed electrode 410 are in gas communication, and the pressure sensor is movable
  • the electrode 403e and the pressure sensor fixed electrode 410 constitute two plates of the capacitor, and when the movable electrode 403e of the pressure sensor moves, the distance between the two plates of the capacitor changes.
  • the back plate electrode 414 of the microphone Since the back plate electrode 414 of the microphone is formed with a hole therein, the back plate electrode 414 of the microphone and the sensitive film of the microphone (the sensitive film of the microphone is located in the third region III using the first electrical shielding layer forming the inertial sensor)
  • the second conductive layer 405 is formed, and the second insulating layer 404 and the first insulating layer 402 between the second conductive layer 405 of the first region I forming the first electrical shielding layer of the inertial sensor are removed to form a fourth empty Cavity.
  • the back plate electrode 414 of the microphone serves as a fixed electrode of the microphone, and the sensitive film of the microphone serves as a movable electrode of the microphone.
  • the fixed electrode and the movable electrode constitute two plates of the capacitor.
  • the sensitive film of the microphone When the sensitive film of the microphone is deformed, The distance between the two plates of the capacitor changes. Through this step, the release of the movable electrode of the pressure sensor, the movable electrode of the inertial sensor, and the back plate electrode of the microphone is achieved.
  • the remaining first mask layer is also removed. Removing the portion of the first insulating layer and the second insulating layer requires selecting an etchant according to the material.
  • the first insulating layer and the second insulating layer are both silicon oxide, and the removing portion is The etchant of the first insulating layer and the second insulating layer may be selected from hydrofluoric acid.
  • a third substrate 701 is provided, and various types of interconnect structures (not labeled) are formed on the third substrate 701, and various CMOS circuits (not shown) and/or may be formed in the third substrate 701. Or lead (not labeled).
  • a surface of the third substrate 701 is further formed with a second bonding pad 703 and a bonding pad 702, and the second bonding pad 703 is used for subsequent movement with the fixed electrode forming the pressure sensor and the inertial sensor.
  • the electrode and the side of the back plate electrode of the microphone are correspondingly combined, and the bond plate 702 is used for electrical connection with an external circuit.
  • the third substrate 701 is bonded to one side of the movable electrode of the inertial sensor formed by the first substrate, the fixed electrode of the pressure sensor, and the back plate electrode of the microphone, and the third The substrate 701 and the second substrate are respectively located on opposite sides of the movable electrode of the inertial sensor.
  • the second bonding pad 703 of the third substrate 701 will be bonded to the first bonding pad 601 on the first substrate.
  • the first bonding pad 601 and the second bonding pad 703 also function as electrodes, and an interconnection structure in the first substrate that needs to be electrically connected to the third substrate and an electrode of the circuit pass through the first bonding pad 601. It is taken out and electrically connected to the interconnection structure on the third substrate and the circuit through the second bonding pad 703.
  • a pressure passage opening 505 is formed in the second region II of the second substrate opposite to the pressure sensor, the pressure passage opening 505 acting as an inlet for applying pressure to the pressure sensor.
  • the pressure channel opening 505 exposes the second conductive layer 405, the second conductive layer 405 located in the first region I forms a first electrical shielding layer of the inertial sensor, and the second conductive layer 405 located in the second region II serves as a pressure sensor
  • the sensitive film is such that external pressure can pass pressure through the sensitive film to the movable electrode of the pressure sensor.
  • a microphone channel opening 503 is also formed at a position of the second substrate opposite the third region III, the pair of the third substrate The location of the third zone III forms a microphone cavity 504.
  • the microphone channel opening 503 exposes a second conductive layer 405 located in the third region III (the second conductive layer 405 of the third region III acts as a sensitive film of the microphone), and the microphone cavity 504 exposes the microphone
  • the back plate electrode 414, the microphone channel opening 503 and the microphone cavity 504 can both serve as an entrance for a sensitive film that applies a sound signal to the microphone, and the sound signal transmits the sound signal through the microphone channel opening 503 or the microphone cavity 504.
  • the pressure channel opening 505 is formed, part of the second substrate is also removed, and the second substrate 50 is formed to expose the bonding pad 702 on the third substrate. Please refer to FIG. 16 for details. .
  • the bond plate 702 may also be in forming the microphone channel opening (when the microphone channel opening is located in the second substrate) or a microphone cavity (when the microphone is empty The cavity is exposed when it is in the second substrate.
  • the microphone channel opening 503 and the microphone cavity 504 are respectively formed by two etching processes.
  • the microphone channel opening 503 and the microphone cavity 504 can also be provided by the preferred setting of the etching process parameters, while ensuring that the sensitive film of the microphone and the back plate electrode of the microphone are not damaged.
  • CMOS circuit and a lead are formed in the third substrate, the third substrate is a third substrate, and those skilled in the art know how to form an inertial sensor according to the type of the third substrate. Sealing is performed, and those skilled in the art also know how to lay out one or more conductive layers formed on the first substrate according to the type of the third substrate, and details are not described herein again.
  • the one or more conductive layers include an inertial sensor, an interconnect layer of a pressure sensor and a microphone, and an electrical shielding layer of the inertial sensor.
  • the one The layer or layers of conductive layers only include the electrical shielding layer of the inertial sensor, and it is also required to form an inertial sensor, a pressure sensor on the surface of the third substrate which is the surface of the third substrate bonded to the second substrate.
  • the interconnect layer with the microphone At this time, the electric shielding layer located in the second area II can serve as a sensitive film of the pressure sensor, and the electric shielding layer located in the third area III can serve as a sensitive film of the microphone, so that these materials can be fully utilized to form a difference between the pressure sensor and the microphone.
  • the structure reduces the size of the integrated MEMS device on the one hand; it also reduces the difficulty of the fabrication process, increases the flexibility of fabricating the device, and makes layout easier, adding flexibility for integration with other devices.
  • the integrated MEMS device of the first embodiment of the present invention is formed.
  • the pressure sensor formed in the dashed box 10 is shown in Fig. 16, the broken line frame 20 indicates the formed inertial sensor, and the broken line frame 30 indicates the formed microphone.
  • the fixed electrode 410 and the back plate electrode 414 of the microphone are located between the second substrate 501 and the third substrate 701; the movable electrode 407 of the inertial sensor 20 is formed by the first substrate; the pressure The fixed electrode 410 of the sensor is formed by the same first substrate forming the movable electrode 407 of the inertial sensor; the back plate electrode 414 of the microphone is the same first lining of the movable electrode 407 forming the inertial sensor Forming a bottom; the first substrate is
  • the one or more conductive layers of the first surface of the first substrate comprise an interconnection layer of an inertial sensor first electrical shielding layer, an inertial sensor, a pressure sensor and a microphone, and the first electrical shielding The layer is further from the first substrate than the interconnect layer.
  • the pressure channel opening 505 exposes a first conductive layer for forming a first electrical shielding layer of the inertial sensor, and the exposed first conductive layer serves as a sensitive film of the pressure sensor 10;
  • the sensor 10 further includes a movable electrode 403e of the pressure sensor, and the movable electrode 403e of the pressure sensor is formed of a material forming a first interconnect layer of the inertial sensor.
  • the X-axis is formed by using the X-axis.
  • a fixed electrode interconnect material layer of the sensor or Y-axis sensor is formed.
  • the movable electrode 403e of the pressure sensor has a hole therein, and the pressure sensor movable electrode 403e forms a first cavity with the sensitive film of the pressure sensor and is connected by a connecting arm. Under the external force, the pressure sensor The sensitive film moves (perpendicular to the direction of the first electrical shielding layer), thereby causing displacement of the movable electrode 403e of the pressure sensor.
  • the pressure sensor further includes a fixed electrode 410 of a pressure sensor disposed opposite to the movable electrode 403e of the pressure sensor, wherein the pressure sensor fixed electrode 410 is formed with a hole, and the movable electrode 403e of the pressure sensor is fixed to the pressure sensor a gap is formed between the electrodes 410, and a second cavity is formed.
  • the first cavity, the hole in the movable electrode 403e of the pressure sensor, the second cavity, and the hole in the fixed electrode 410 of the pressure sensor are in gas communication.
  • the movable electrode 403e of the pressure sensor and the fixed electrode 410 of the pressure sensor constitute two plates of the capacitor. When the movable electrode 403e of the pressure sensor is deformed, the distance between the two plates of the capacitor changes.
  • the microphone cavity 504 exposes the back plate electrode 414 of the microphone, and the back plate electrode 414 of the microphone is formed with a hole therein, and the hole communicates with the microphone cavity 504; the microphone channel
  • the opening 503 exposes a first conductive layer for forming a first electrical shielding layer of the inertial sensor, the exposed first conductive layer acts as a sensitive film of the microphone 30; the microphone cavity 504 is a back plate electrode of the microphone 414 is a fixed electrode of the microphone 30.
  • the microphone channel opening 503 and the pressure channel opening 505 are located in the sensitive thin of the microphone.
  • the microphone cavity 504 is located on a side of the backing plate electrode 414 of the microphone that is remote from the microphone passage opening 503 and the pressure passage opening 505.
  • the sensitive film of the microphone and the back plate electrode 414 of the microphone are respectively formed with communicating holes; the microphone cavity 504 penetrates the third substrate 701, the third substrate 701 and the sensitive film of the microphone and a layer of material between the back plate electrodes 414 of the microphone; therefore, as an embodiment, the microphone cavity 504 acts as a common channel for the sound signal and the pressure signal, such that after subsequent encapsulation of the integrated MEMS device of the present invention, only The microphone cavity 504 is exposed, and a cavity is formed above the microphone channel opening 503 and the pressure channel opening 505, so that the pressure signal can pass through a hole in the back plate electrode 414 of the microphone, a hole in the sensitive film of the microphone, and a microphone channel opening.
  • the microphone channel opening 503 and the pressure channel opening 505 may be respectively used as channels for the sound signal and the pressure signal, respectively, and the microphone cavity 504 is sealed at the time of packaging, as those skilled in the art. Specific flexible options are available.
  • the present invention also provides an embodiment of the second integrated MEMS device. Referring specifically to FIG. 17, the difference from the structure of FIG.
  • the pressure channel opening 505 exposes the first substrate and the second substrate 501
  • the bonding layer (the bonding layer in the embodiment is the fourth insulating layer 502 on the second substrate 501), the bonding layer located in the second region II and the second conductive layer 405 are collectively used as a pressure sensor Sensitive film.
  • the bonding layer can function to protect the second conductive layer.
  • the sensitive film of the pressure sensor can also be prepared by using a combination of other conductive materials and insulating layers, and other variations can be made in the following embodiments.
  • the sensitive film of the pressure sensor may further include more material layers as long as the sensitive film of the pressure sensor satisfies a condition including a conductive layer and being deformable by an external force.
  • the method of forming the integrated MEMS device as described in FIG. 17 differs from the structure formed as shown in FIG. 16 in that the pressure channel opening 505 is formed to stop at the bonding layer, and those skilled in the art know how to form a distorted.
  • the present invention also provides an embodiment of the third integrated MEMS device. Referring to FIG. 9 for details, the difference from the structure of FIG. 16 is: the pressure channel opening 505 exposes the first electric screen forming the inertial sensor.
  • the exposed second conductive layer acts both as a sensitive film of the pressure sensor and as a movable electrode of the pressure sensor, at the pressure sensor All conductive layers between the sensitive film and the fixed electrode are removed to form a third cavity, the third cavity, the hole in the fixed electrode of the pressure sensor, and the seventh cavity are in gas communication; the sensitive film of the pressure sensor
  • the fixed electrode with the pressure sensor constitutes two plates of the capacitor, and when the sensitive film of the pressure sensor is deformed, the distance between the two plates of the capacitor changes.
  • the present invention also provides an embodiment of the fourth integrated MEMS device. Referring specifically to FIG. 19, the integrated inertial sensor and the pressure sensor of FIG.
  • the bonding layer is a fourth insulating layer 502 on the second substrate 501, and the bonding layer, the second conductive layer 405 and the second insulating layer located in the second region II together serve as a sensitive film of the pressure sensor.
  • the method for forming the integrated inertial sensor and the pressure sensor of the present embodiment can also be referred to the above method, and details are not described herein again. +
  • the present invention also provides an embodiment of a fifth integrated MEMS device.
  • the integrated inertial sensor and pressure sensor of FIG. 18 differ in that: the pressure channel opening formed in the second substrate 501 505 exposes a conductive layer 403e of a fixed electrode interconnection forming an X-axis sensor or a Y-axis sensor of the inertial sensor, and the material layer forms a sensitive film of the pressure sensor in the second region II, the pressure sensor movable electrode It can deform under the action of external pressure.
  • the specific method of forming the integrated MEMS device shown in FIG. 20 is similar to the method of forming the integrated inertial sensor and the pressure sensor shown in FIG.
  • the electrode corresponding position forms a conductive layer constituting the sensitive film of the pressure sensor, and no hole is formed in the second conductive layer of the second region II, and after forming the conductive layer as the first electrical shielding layer of the inertial sensor, according to The pressure of the pressure sensor to be formed
  • the conductive layer, as a sensitive film of the pressure sensor does not additionally form a movable electrode of the pressure sensor in this embodiment.
  • the present invention also provides an embodiment of the sixth integrated MEMS device.
  • the difference from the structure shown in FIG. 20 is that the second insulating layer located in the second region II and the mutual inertia sensor are formed.
  • the layered conductive layers collectively act as a sensitive film for the pressure sensor.
  • the specific method of forming the structure shown in FIG. 21 is similar to the formation of the foregoing structure, and details are not described herein again.
  • the present invention also provides an embodiment of the seventh integrated MEMS device. Referring specifically to FIG. 22, the difference from the structure shown in FIG. 20 is that the second conductive layer located in the second region II and the second region II are located.
  • the first conductive layer respectively forms a sensitive film of the pressure sensor and a fixed electrode of the pressure sensor, that is, in the embodiment, the sensitive film of the pressure sensor is formed by using the first electrical shielding layer forming the inertial sensor and the conductive material of the interconnect layer respectively.
  • the fixed electrode of the pressure sensor there is no movable electrode that additionally forms a pressure sensor.
  • the method of forming the structure shown in FIG. 22 is similar to the formation of the foregoing structure, and details are not described herein again.
  • the sensitive film and the fixed electrode of the pressure sensor can also be formed using conductive materials forming different interconnect layers of the inertial sensor.
  • the present invention also provides an eighth integrated MEMS device embodiment. Referring specifically to FIG.
  • the difference from all the foregoing embodiments is that the first substrate formed in the second region II forms the sensitive film 403A of the pressure sensor.
  • the conductive material layer on the third substrate corresponding to the position of the sensitive film of the pressure sensor forms a fixed electrode of the pressure sensor. In this embodiment, there is no movable electrode additionally forming the pressure sensor.
  • the specific method of forming the structure shown in FIG. 23 is similar to the formation of the foregoing structure, and details are not described herein again. It should be noted that if the thickness of the first substrate is relatively thin, and the sensitive film of the pressure sensor is fabricated by using the first substrate, the formed pressure sensor can be applied to a situation where the detection pressure is relatively large.
  • the sensitive film of the pressure sensor of the embodiment of the present invention if the thickness is relatively large or a thick sensitive film is formed by a plurality of layers of materials, the same can be applied to a case where a relatively large pressure is required to be detected, and therefore, the pressure is controlled.
  • the thickness of the sensor's sensitive film can be used to form Detect pressure sensors of different pressures.
  • the present invention also provides an embodiment of the ninth integrated MEMS device. Referring specifically to FIG. 24, the difference from all the foregoing embodiments is that the first conductive layer 403e located in the second region II forms a sensitive film of the pressure sensor.
  • the first substrate 403z corresponding to the position of the sensitive film of the pressure sensor forms a fixed electrode of the pressure sensor. In this embodiment, there is no movable electrode additionally forming the pressure sensor.
  • the specific method of forming the structure shown in FIG. 24 is similar to the formation of the foregoing structure, and details are not described herein again.
  • the present invention also provides an embodiment of the tenth integrated MEMS device.
  • the difference from all the foregoing embodiments is that the second conductive layer located in the second region II forms a sensitive film of the pressure sensor.
  • the fixed electrode of the pressure sensor is formed by a conductive material layer on the third substrate corresponding to the position of the sensitive film.
  • the specific method of forming the structure shown in FIG. 25 is similar to the formation of the foregoing structure, and details are not described herein again.
  • the integrated MEMS devices shown in FIGS. 17 to 25 are all described by taking the microphone structure of the first embodiment as an example, and the different structures of the pressure sensors are described.
  • the structure of the microphone can also have a variety of different configurations.
  • the different structures of the microphone will be separately described below taking the structure of the pressure sensor of the first embodiment as an example.
  • Figure 26 shows an embodiment of the eleventh integrated MEMS device of the present invention.
  • the bonding layer located in the third region III (the key)
  • the layered layer is located between the second substrate 501 and the first substrate) and the second conductive layer of the third region III serves as a sensitive film of the microphone, and the microphone channel opening 503 exposes the sensitive film of the microphone.
  • the manufacturing method of the integrated MEMS device of the present example is different from the manufacturing method of the integrated MEMS device of the first embodiment in that: when the microphone channel opening 503 is formed in the second substrate 501, it is required to remain at the A fourth insulating layer of the three regions III corresponding to the position of the microphone.
  • Figure 27 shows an embodiment of the twelfth integrated MEMS device of the present invention. Compared with the integrated MEMS device shown in Figure 16, the second insulating layer in the third region III and the third region III are located in the third region III.
  • the conductive layers collectively act as a sensitive film for the microphone, and the microphone channel opening 503 exposes the sensitive film of the microphone.
  • the difference between this embodiment and the first embodiment is that the fixed electrode of the inertial sensor, the fixed electrode of the pressure sensor, and the back of the microphone are released by continuing the etching process.
  • the second insulating layer is retained, and the second insulating layer may be retained by adjusting parameters of the etching process, and those skilled in the art know how to adjust the parameters of the etching process.
  • 28 shows an embodiment of the thirteenth integrated MEMS device of the present invention.
  • the present embodiment differs from the twelfth embodiment in that a second insulating layer and a bonding layer are located in the third region III.
  • FIG. 29 shows an embodiment of the fourteenth integrated MEMS device of the present invention, which differs from the first embodiment in that a layer of interconnects in the interconnect layer on the first substrate acts as a microphone Instead of using an electrically shielded layer that forms an inertial sensor, it acts as a sensitive film for the microphone.
  • the multilayer interconnection of the interconnection layer on the first substrate can also be utilized as a sensitive film of the microphone, and the interconnection lines of the respective interconnection layers can be electrically or insulated.
  • the connecting arms are connected.
  • the method of fabricating the integrated MEMS device of the present embodiment differs from the first embodiment in that at least one or more layers located in the third region III are retained when forming one or more interconnect layers on the first substrate.
  • the interconnecting wire serves as a sensitive film integrated with the inertial sensor, and at the same time, when the microphone channel opening 503 is formed, an etching process may be performed to sequentially remove the first electrical shielding layer and the second insulating layer located in the third region III, and located at the third A layer of interconnecting layers of the conductive layer of region III is exposed to form a sensitive film of the microphone.
  • Figure 30 shows an embodiment of the fifteenth integrated MEMS device of the present invention. The difference between this embodiment and the thirteenth embodiment is that the first layer of the interconnect layer on the first substrate is located at the third The second insulating layer of the region III acts as a sensitive film for the microphone, instead of using the electrical shielding layer forming the inertial sensor as the sensitive film of the microphone.
  • a plurality of layers of the interconnect layer on the first substrate may be utilized as the sensitive film of the microphone, and the interconnect layers may be connected by conductive or insulating connecting arms.
  • the manufacturing method of the integrated MEMS device of the present embodiment is different from the thirteenth embodiment in that at least one layer located in the third region III is retained when forming one or more interconnect layers on the first substrate or
  • the multilayer interconnection layer functions as a sensitive film integrated with the inertial sensor, and at the same time, when the microphone channel opening 503 is formed, an etching process can be performed to remove the first electricity located in the third region III The shielding layer; while releasing the movable electrode of the inertial sensor, the fixed electrode of the pressure sensor, and the back plate electrode of the microphone, the second insulating layer located in the third region III is retained.
  • Figure 31 shows an embodiment of the fifteenth integrated MEMS device of the present invention.
  • the first substrate located in the third region III serves as the back plate electrode 414 of the microphone, and a hole is formed in the back plate electrode 414 of the microphone;
  • a layer of the interconnection layer on the third substrate 701 of the third region III serves as a sensitive film of the microphone; correspondingly, the microphone channel opening 503 and the microphone of the microphone
  • the cavity 504 is positioned as shown in FIG. 31, and the microphone channel opening 503 exposes the back plate electrode 414 of the microphone; the microphone cavity 504 exposes the sensitive film of the microphone.
  • the manufacturing method of the integrated MEMS device of this embodiment is different from the manufacturing method of the first embodiment in that the second substrate 501 is etched to form the microphone channel opening 503, and the third region III needs to be a first electrical shielding layer, one or more interconnecting layers, a bonding layer and a first insulating layer, and a second insulating layer on a substrate are removed until the back plate electrode 414 of the microphone is exposed;
  • the third substrate 701 forms the microphone cavity 504
  • the interconnect layer acts as a sensitive film of the microphone, and is used by the microphone Cavity 504 is exposed.
  • Figure 32 shows an embodiment of the sixteenth integrated MEMS device of the present invention, which differs from the fifteenth embodiment in that two interconnect layers are located on the third substrate 701 of the third region III.
  • the insulating layer between the interconnect layer acts as a sensitive film for the microphone.
  • a hole (not shown) may be formed in the sensitive film of the microphone, and the hole communicates with a hole in the back plate electrode 414 of the microphone and a microphone cavity 504 and a channel opening 503 of the microphone.
  • the channel opening 503 of the microphone and the microphone cavity 504 can both enter the channel of the sensitive film of the microphone as a sound signal, and the microphone cavity 504 can also enter the channel of the pressure sensor as a pressure signal at the same time (this)
  • the passage opening 503 of the microphone needs to communicate with the pressure passage opening 505 of the pressure sensor, so that the pressure signal sequentially passes through the microphone cavity 504, the hole in the sensitive film of the microphone, and the hole in the back plate electrode 411 of the microphone.
  • the channel opening 503 of the microphone reaches the pressure channel opening 505 of the microphone.
  • the method for forming the integrated MEMS device of the present embodiment is different from the method for forming the MEMS device of the previous embodiment in that, when the third substrate 701 is etched to form the microphone cavity 504, two of the third regions III are retained. A layer of conductive layer and a layer of material between the two layers of conductive layer, the two layers of conductive layer and material layer together acting as a sensitive film for the microphone.
  • the sensitive film of the microphone can also be etched as needed to form holes in the sensitive film of the microphone.
  • Figure 33 shows an embodiment of the seventeenth MEMS device of the present invention. This embodiment differs from all of the foregoing embodiments in that the microphone cavity 504 is located between the second substrate 501 and the back plate electrode 414 of the microphone. The side of the microphone cavity 504 that is remote from the back plate electrode 414 of the microphone is sealed by the second substrate 50.
  • the microphone channel opening 503 is located on a side of the back plate electrode 414 of the microphone and the sensitive film of the microphone away from the microphone cavity 504, and the microphone channel opening 503 extends through the third substrate 701 and the third substrate.
  • the microphone channel opening 503 serves as a channel for the sound signal to enter the microphone.
  • the microphone channel opening 503 and the pressure channel opening 505 of the pressure sensor 505 are respectively located on both sides of the back plate electrode 414 of the microphone and the sensitive film of the microphone. It should be noted that, in this embodiment, in the second substrate 501, the microphone cavity 504 is sealed away from the side of the back plate electrode 414 of the microphone, and the microphone cavity 504 is further It may be partially formed in the second substrate 501.
  • the manufacturing method of the integrated MEMS device of this embodiment is different from the manufacturing method of the MEMS device of all the foregoing embodiments in that, when the pressure channel opening 505 is etched, the second substrate 501 corresponding to the microphone is retained. And after forming a hole in the back plate electrode 414 of the microphone, the material layer between the second substrate 501 and the back plate electrode 414 of the microphone is removed by using a hole in the back plate electrode of the microphone. To form a microphone cavity 504 between the back plate electrode 414 of the microphone and the second substrate 501. Of course, if the microphone cavity 504 needs to be partially formed in the second substrate 501, it is also necessary to partially etch the second substrate 501.
  • the etching may be performed before the second substrate 501 is bonded to the first substrate, and the second substrate 501 corresponding to the back plate electrode 414 of the microphone in the third region III is performed. , a groove is formed in the inside. Material between the second substrate 501 and the backing plate electrode 414 of the microphone is utilized in a hole in the backplate electrode of the microphone After the layer is removed, a microphone cavity is formed. Of course, it is also necessary to remove the material layer between the third substrate 701 corresponding to the sensitive film of the microphone and the third substrate 701 and the sensitive film of the microphone to form the microphone channel opening 503.
  • Fig. 34 is a view showing the configuration of an integrated MEMS device of an eighteenth embodiment of the present invention. The difference between this embodiment and the seventeenth embodiment is that the microphone channel opening 503 is located between the third substrate 701 and the back plate electrode 414 of the microphone, and the microphone channel opening 503 is away from the microphone. One side of the back plate electrode 414 and the sensitive film of the microphone is sealed by the third substrate 701.
  • the microphone cavity 504 is located on a side of the back plate electrode 414 of the microphone and the sensitive film of the microphone away from the microphone channel opening 503, and the microphone cavity 504 and the pressure channel opening 505 of the pressure sensor are located in the microphone The back plate electrode 414 and the same side of the sensitive film of the microphone.
  • the microphone cavity 504 and the pressure passage opening 505 serve as passages for the sound signal and the pressure signal, respectively.
  • the microphone passage opening 503 can also be partially formed in the third substrate 701.
  • the manufacturing method of the integrated MEMS device of the present embodiment is different from the integrated inertial sensor and the pressure sensor and the microphone manufacturing method of the previous embodiment in that before the third substrate 701 is bonded to the first substrate, Etching at a position corresponding to the microphone of the third substrate 701, removing part or all of the material layer of the third substrate surface at a position corresponding to the back plate electrode 414 of the microphone and the sensitive film of the microphone, or even Removing a portion of the third substrate to facilitate bonding the third substrate 701 to the first substrate, between the third substrate and the first substrate, corresponding to the back plate electrode 414 of the microphone and the microphone
  • the location of the sensitive film forms the channel opening 503 of the microphone.
  • the etching process is performed to form the pressure channel opening 505
  • the second substrate corresponding to the back plate electrode 414 of the microphone and the sensitive film of the microphone may be etched, and the second substrate and the back plate of the microphone may be The layer of material between the electrodes 414 is removed to form a microphone cavity 504.
  • the microphone cavity 504 acts as a sound signal into the channel of the microphone.
  • the structure of the back plate electrode 414 of the microphone and the sensitive film of the microphone is not limited to the embodiment, and those skilled in the art can combine the foregoing embodiments with the back plate of the microphone.
  • the structure of the sensitive film of the electrode 414 and the microphone is flexibly changed.
  • the back plate electrode of the microphone may be formed by using one of the conductive layers on the first substrate including at least the third region, and at this time, the sensitive film of the microphone may also use the third region.
  • a conductive material layer on the third substrate if a conductive material layer is formed on the third substrate
  • the sensitive film of the microphone may use one of the conductive layers on the first substrate of the third region
  • the layer or layers are formed; or, the sensitive film of the microphone may be formed by using a first electrical shielding layer or an interconnect layer on the first substrate of the third region.
  • 17 to FIG. 25 and FIG. 26 to FIG. 34 respectively illustrate different structures of the pressure sensor and the microphone. In practice, those skilled in the art can freely combine according to the needs of the process, and flexibly set the internal structure of the integrated MEMS device.
  • the different structures of the pressure sensor and the microphone in FIG. 17 to FIG. 25 and FIG. 26 to FIG. 34 can be freely and flexibly combined.
  • the above embodiments can also illustrate that the method of the present invention can flexibly be flexibly arranged according to actual device and design requirements to achieve different purposes, and can also reduce the volume of the MEMS device.
  • the inertial sensor is described by taking only the X-axis or Y-axis sensor of the acceleration sensor as an example, and in the structure of the X-axis or Y-axis sensor, in the above embodiment All structural diagrams and descriptions are not shown, only the fixed electrode of the X-axis or Y-axis sensor with typical significance, the movable electrode, the first sealed sensor structure, the second fixed electrode for sealing the pressure sensor, and the pressure sensor are selected.
  • the method for forming the movable electrode and/or the sensitive film is illustrated and described; for the microphone, the sensitive film of the back plate electrode of the microphone and the microphone and the method for forming the same are described; meanwhile, the foregoing embodiment also illustrates And a method for forming a first sub-interconnect line, a second sub-interconnect line, a first inertial sensor structure, and a first pressure sensor structure, the first sub-interconnect line, the second sub-interconnect line, and the first Inertial sensor structure, first pressure sensor structure, second pressure sensor structure, and microphone structure are used to represent possible in integrated MEMS devices.
  • Other structures used, illustrated and described herein, are shown to those skilled in the art that the method of fabricating an integrated MEMS device using embodiments of the present invention can form not only a movable electrode of a suspended movable inertial sensor and a pressure sensor.
  • the method of the embodiment of the invention can also form a pass An inertial sensor structure, a pressure sensor structure, and a microphone structure that are fixed over the interconnect layer by a first insulating layer, that is, all the structures required for the inertial sensor, the pressure sensor, and the microphone can be formed by the method of the embodiment of the present invention. . It is specifically described herein that the scope of protection of the embodiments of the present invention should not be unduly limited.
  • the X-axis or Y-axis sensor of the acceleration sensor is taken as an example for detailed description.
  • the method of the embodiment of the present invention can also be used, the only difference lies in the layout, Or the design is different. It is specifically stated herein that the scope of protection of the present invention should not be unduly limited.
  • the X-axis or Y-axis sensor of the acceleration sensor is taken as an example for detailed description.
  • the corner device it is structurally used to test the corner device in each direction (ie, the X-axis angle) , Y-axis angler, Z-turner) is a structure similar to the sensor of the three directions of the acceleration sensor (ie, the X-axis sensor, the Y-axis sensor, the Z-sensor), and can be formed by the method of the embodiment of the present invention.
  • the sensor of each direction of the acceleration sensor can also form a corner structure in various directions by using the method of the embodiment of the invention.
  • Embodiments of the present invention form a movable sensitive element of an inertial sensor by using a first substrate, and forming a sensitivity of the microphone by using one of the one or more conductive layers on the first substrate or the first substrate.
  • the thin film, the integrated MEMS device formed is small in size, low in cost, and highly reliable after packaging.
  • one of the one or more conductive layers on the first substrate or the first substrate may be used to form a sensitive film of the pressure sensor and a sensitive film of the microphone, thereby forming an integration.
  • the integrated MEMS device of the inertial sensor, the pressure sensor and the microphone further improves the integration degree of the integrated MEMS device of the present invention, and the formed integrated MEMS device is small in size and low in cost.
  • the microphone cavity of the embodiment of the present invention is located at a side of the sensitive film of the microphone and the back plate electrode of the microphone away from the opening of the microphone channel and the pressure channel opening of the pressure sensor; a second substrate, a second substrate, and a sensitive film or microphone of the microphone a layer of material between the back plate electrodes of the wind, or a layer of material between the third substrate, the third substrate and the sensitive film of the microphone and the back plate electrode of the microphone;
  • the microphone cavity acts as a common channel for the sound signal and the pressure signal, so that the pressure signal can reach the pressure channel opening through the cavity of the microphone, the hole in the back plate electrode of the microphone, and the hole in the sensitive film of the microphone, so that the pressure channel opening does not need to be Exposed to the outside, the pressure sensor is protected, and the pressure sensor is prevented from being disturbed and contaminated by the external environment, improving the life and reliability of the pressure sensor.
  • the present invention is disclosed in the above preferred embodiments, but it is not intended to limit the scope of the invention, and the present

Description

集成 MEMS器件及其形成方法
本申请要求于 2011 年 3 月 15 日提交中国专利局、 申请号为 201110061564.2、发明名称为"集成 MEMS器件及其形成方法"的中国专利申请 的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及半导体技术领域, 特别地, 本发明涉及集成 MEMS器件及其 形成方法。 背景技术
从 二 十 世 纪 八 十 年 代 末 开 始 , 随 着 微 机 电 系 统 ( Micro-Electro-Mechanical-System, MEMS )技术的发展, 各种传感器实现了 敖小型化。
目前各种传感器中应用较多的主要包括 MEMS压力传感器、 MEMS惯性传 感器和 MEMS麦克风。 所述 MEMS压力传感器是一种用于检测压力的装置, 目 前的 MEMS压力传感器有硅压阻式压力传感器和硅电容式压力传感器,两者都 是在硅片上生成的微机电传感器。 MEMS压力传感器广泛应用于汽车电子比如 TPMS (轮胎压力监测系统), 消费电子比如胎压计、 血压计, 工业电子比如数 字压力表、 数字流量表、 工业配料称重等领域。 MEMS麦克风是一种用于声音 信号转换的装置。 MEMS麦克风普遍应用在手机、 耳机、 笔记本电脑、 摄像机 和汽车上。
所述 MEMS惯性传感器是一种利用惯性进行测量的装置。在实际应用中, 所述 MEMS惯性传感器通常指的是加速度计或转角器(又称陀螺仪 )0根据传 感原理不同, 主要有压阻式、 电容式、 压电式、 隧道电流式、 谐振式、 热电耦 合式和电磁式等。 MEMS 惯性传感器在消费电子类领域主要应用在手机、 游 戏机等便携式设备中; 在汽车领域, 主要应用于汽车电子稳定系统(ESP或者 ESC ) 比如汽车安全气嚢、 车辆姿态测量等、 或 GPS辅助导航系统; 在军用 或者宇航领域, 主要应用于通讯卫星无线、 导弹导引头等。
如前所述,各种传感器在消费类电子、 汽车电子以及工业电子中均有广泛 的应用,但由于各种传感器的制作与封装方法之间的明显差异,迄今为止仍未 有集成化传感器产品进入市场。 目前 MEMS惯性传感器和 MEMS压力传感器 已经在汽车轮胎的 TPMS (轮胎压力监控系统)中有所应用, 然而现在的加速 度传感器、 压力传感器芯片是分开设计制作, 然后封装在一起的。 由于各种传 感器分别设计制作并封装在一起, 这使得现有的集成多种传感器的 MEMS器 件的工艺复杂、 体积较大、 成本较高。 专利号为 US7,518,493 B2的美国专利 就介绍了这样一种方法。
发明内容
本发明解决的问题是提供一种集成 MEMS器件及其形成方法, 克服了现 有技术的工艺复杂、 体积大、 成本较高的缺陷。 为解决上述问题, 本发明实施例提供一种集成 MEMS器件, 包括: 第一衬底, 包括第一表面和与之相对的第二表面, 所述第一衬底包括第 一区域和第三区域; 至少一层或多层导电层, 形成于所述第一衬底的第一表面; 惯性传感器的可移动敏感元素, 釆用第一区域的第一衬底形成; 第二衬底和第三衬底, 所述第二衬底与所述第一衬底上的导电层的表面 结合 ,所述第三衬底与所述第一衬底形成的惯性传感器的可移动敏感元素一侧 结合,且所述第三衬底和所述第二衬底分别位于惯性传感器的可移动敏感元素 的相^两侧; 麦克风的敏感薄膜或背板电极, 至少包括第三区域的第一衬底, 或者至 少包括第三区域的第一衬底上的导电层中的一层。 可选地, 所述第一衬底为单晶半导体材料。 可选地, 所述导电层包括惯性传感器的第一电屏蔽层。 可选地, 所述麦克风的敏感薄膜为多层, 所述麦克风的敏感薄膜包括所述导电层中的一层、 及位于该层导电层之 上或者之下的材料层; 或者, 所述麦克风的敏感薄膜包括第一衬底、 及位于所 述第一衬底之上或之下的材料层。
可选地, 所述第三衬底上形成有与所述第一衬底结合的导电材料层; 麦克风的敏感薄膜或麦克风的背板电极包括位于所述第三区域的第一衬 底上的导电层中的一层, 或者所述第三区域的第一衬底, 或者所述第三衬底上 的导电材料层。
可选地, 所述第一衬底还包括第二区域, 所述集成 MEMS器件还包括: 压力传感器的敏感薄膜或固定电极, 至少包括第二区域的第一衬底, 或 者至少包括第二区域的第一衬底上的导电层中的一层。 可选地, 所述导电层包括惯性传感器、 压力传感器和麦克风的互连层、 惯性传感器的第一电屏蔽层、惯性传感器的固定电极的支撑点、惯性传感器的 可移动敏感元素的支撑点或者其任意组合。
可选地, 所述导电层包括包括惯性传感器的第一电屏蔽层、 惯性传感器、 压力传感器和麦克风的互连层,所述互连层比所述第一电屏蔽层更为靠近所述 第一衬底的第一表面。 可选地, 所述第三衬底上形成有与所述第一衬底结合的导电材料层; 所述压力传感器的敏感薄膜或固定电极釆用第二区域的第一衬底上的导 电层中的一层形成、或者釆用第二区域的第一衬底形成、或者釆用第三衬底上 的导电材料层形成。 可选地, 所述压力传感器的敏感薄膜包括形成所述惯性传感器的第一电 屏蔽层的材料层或者包括形成所述惯性传感器的互连层的材料层; 所述麦克风的敏感薄膜包括形成所述惯性传感器的第一电屏蔽层的材料 层或包括形成所述惯性传感器的互连层的材料层。 可选地, 所述压力传感器的固定电极釆用第二区域的第一衬底形成, 所 述压力传感器的固定电极内形成有孔洞; 所述麦克风的背板电极釆用所述第三区域的第一衬底形成, 所述麦克风 的背板电极内形成有孔洞。 可选地, 所述压力传感器的敏感薄膜与压力传感器的固定电极之间还形 成有压力传感器的可移动敏感元素,所述压力传感器的可移动敏感元素与所述 敏感薄膜之间通过连接臂连接,所述压力传感器的可移动敏感元素内形成有孔 洞; 所述麦克风的敏感薄膜与麦克风的背板电极之间还形成有麦克风的可移 动敏感元素,所述麦克风的可移动敏感元素与所述麦克风的敏感薄膜之间通过 连接臂连接, 所述麦克风的可移动敏感元素内形成有孔洞。
可选地, 所述压力传感器的敏感薄膜为多层; 所述敏感薄膜包括导电层中的一层、 及位于该层导电层之上或者之下的 材料层; 或者, 所述压力传感器的敏感薄膜包括第一衬底, 及位于所述第一衬底之上或 者之下的材料层。
可选地, 还包括: 麦克风通道开口, 暴露出所述麦克风的敏感薄膜或麦克风的背板电极; 麦克风空腔, 位于所述麦克风的敏感薄膜和麦克风的背板电极的远离所 述麦克风通道开口的一侧; 压力通道开口, 暴露出所述压力传感器的敏感薄膜; 所述麦克风的敏感薄膜内形成有孔洞, 所述麦克风的背板电极内形成有 孔洞,所述麦克风的敏感薄膜内的孔洞与所述麦克风的背板电极内的孔洞以及 麦克风空腔和麦克风通道开口相连通; 所述麦克风通道开口与所述压力传感器的压力通道开口位于所述麦克风 的敏感薄膜和麦克风的背板电极的相同一侧; 所述麦克风空腔位于所述麦克风的敏感薄膜和麦克风的背板电极的远离 所述麦克风通道开口和压力传感器的压力通道开口的一侧;所述麦克风空腔贯 穿所述第二衬底、第二衬底与所述麦克风的敏感薄膜或麦克风的背板电极之间 的材料层,或所述麦克风空腔贯穿所述第三衬底、第三衬底与所述麦克风的敏 感薄膜和麦克风的背板电极之间的材料层;所述麦克风空腔作为声音信号和压 力信号的共同通道。
相应地, 本发明还提供一种集成 MEMS器件的形成方法, 包括: 提供第二衬底和第三衬底; 提供第一衬底, 所述第一衬底包括第一表面和与之相对的第二表面, 所 述第一衬底包括第一区域和第三区域;
在所述第一衬底的第一表面形成一层或者多层导电层; 将所述第二衬底结合至所述第一衬底上的导电层的表面; 釆用第一区域的第一衬底形成惯性传感器的可移动敏感元素; 形成麦克风的敏感薄膜或背板电极, 所述麦克风的敏感薄膜或背板电极 至少包括所述第三区域的第一衬底、或者至少包括第三区域上的第一衬底上的 导电层中的一层; 将所述第三衬底结合至第一衬底形成的惯性传感器的可移动敏感元素的 一侧,且所述第三衬底和所述第二衬底分别位于所述惯性传感器的可移动敏感 元素的相对两侧。
可选地, 所述第一衬底釆用单晶半导体材料。 可选地, 所述导电层包括惯性传感器的第一电屏蔽层。 可选地, 形成所述导电层包括形成惯性传感器和麦克风的互连层、 惯性 传感器的第一电屏蔽层、惯性传感器的固定电极的支撑点、惯性传感器的可移 动敏感元素的支撑点或者其任意组合。
可选地, 形成所述导电层包括形成惯性传感器的第一电屏蔽层、 惯性传 感器和麦克风的互连层,所述互连层比所述第一电屏蔽层更为靠近所述第一衬 底的第一表面。 可选地, 所述麦克风的敏感薄膜釆用形成所述惯性传感器的第一电屏蔽 层的材料层形成,或所述麦克风的敏感薄膜釆用形成所述惯性传感器的第一电 屏蔽层和第一电屏蔽层之上和 /或之下的材料层形成, 或所述麦克风的敏感薄 膜釆用形成所述惯性传感器的互连层的材料层形成 ,或所述麦克风的敏感薄膜 釆用形成所述惯性传感器的互连层的材料层和该层互连层之上和 /或之下的材 料层形成。
可选地, 所述麦克风的背板电极釆用所述第三区域的第一衬底形成, 所 述集成 MEMS器件的形成方法还包括在所述麦克风的背板电极内形成孔洞的 步骤。
可选地, 还包括: 在所述麦克风的敏感薄膜与麦克风的背板电极之间形 成麦克风的可移动敏感元素;
在所述麦克风的可移动敏感元素与所述麦克风的敏感薄膜之间形成连接 臂, 所述连接臂将所述麦克风的可移动敏感元素与所述麦克风的敏感薄膜连 接;
在所述麦克风的可移动敏感元素内形成孔洞。
可选地, 所述麦克风的敏感薄膜为多层, 所述麦克风的敏感薄膜包括导电层中的一层、 及位于该层导电层之上或 者之下的材料层; 或者 所述麦克风的敏感薄膜包括第一衬底及位于所述第一衬底之上或之下的 材料层。
可选地, 还包括: 在所述第三衬底上形成与所述第一衬底结合的导电材 料层;所述麦克风的敏感电极或背板电极釆用第三区域的第一衬底上的导电层 中的一层、 或者所述第三区域的第一衬底或所述第三衬底上的导电材料层形 成。
可选地, 所述第一衬底还包括第二区域, 所述集成 MEMS器件的形成方 法还包括:
形成压力传感器的敏感薄膜或固定电极, 所述压力传感器的敏感薄膜或 固定电极至少包括所述第二区域的第一衬底、或者至少包括第二区域的第一衬 底上的导电层中的一层。 可选地, 所述导电层包括惯性传感器、 压力传感器和麦克风的互连层、 惯性传感器的第一电屏蔽层、惯性传感器的固定电极的支撑点、惯性传感器的 可移动敏感元素的支撑点或者其任意组合。
可选地, 所述导电层包括惯性传感器的第一电屏蔽层、 惯性传感器、 压 力传感器和麦克风的互连层,所述互连层比所述第一电屏蔽层更为靠近所述第 一村底的第一表面。
可选地, 所述压力传感器的敏感薄膜釆用形成所述惯性传感器的第一电 屏蔽层的材料层形成,或所述压力传感器的敏感薄膜釆用形成所述惯性传感器 的第一电屏蔽层和所述第一电屏蔽层之上和 /或之下的材料层形成, 或所述压 力传感器的敏感薄膜釆用形成所述惯性传感器的互连层的材料层形成,或所述 压力传感器的敏感薄膜釆用形成所述惯性传感器的互连层和所述互连层之上 和 /或之下的材料层形成。 可选地, 还包括: 在所述第三衬底上形成与所述第一衬底结合的导电材 料层;
所述压力传感器的敏感薄膜或固定电极釆用第二区域的第一衬底上的导 电层中的一层、或者釆用第二区域的第一衬底、或者釆用第三衬底上的导电材 料层形成。
可选地, 所述压力传感器的敏感薄膜釆用所述第一衬底形成; 所述压力 传感器的固定电极釆用第三衬底上的导电材料层形成。 可选地, 所述压力传感器的固定电极釆用第二区域的第一衬底形成, 所 述集成 MEMS器件的形成方法还包括在所述压力传感器的固定电极内形成孔 洞的步骤。
可选地, 还包括: 在所述压力传感器的敏感薄膜与压力传感器的固定电极之间形成压力传 感器的可移动敏感元素; 在所述压力传感器的可移动敏感元素与所述敏感薄膜之间形成连接彼此 的连接臂; 在所述压力传感器的可移动敏感元素内形成孔洞。
可选地, 所述压力传感器的敏感薄膜为多层; 所述压力传感器的敏感薄膜包括导电层中的一层、 及位于导电层中之上 或者之下的材料层; 或者 所述压力传感器的敏感薄膜包括第一衬底、 及位于第一衬底之上或者之 下的材料层。
可选地, 还包括: 形成麦克风通道开口, 暴露出麦克风的敏感薄膜或麦克风的背板电极; 形成麦克风空腔, 所述麦克风空腔位于所述麦克风的敏感薄膜和麦克风 的背板电极的远离所述麦克风通道开口的一侧; 形成压力通道开口, 暴露出所述压力传感器的敏感薄膜; 在所述麦克风的敏感薄膜内形成孔洞, 在所述麦克风的背板电极形成孔 洞,所述麦克风的敏感薄膜内的孔洞与所述麦克风的背板电极内的孔洞以及麦 克风空腔和麦克风通道开口相连通; 所述麦克风通道开口与所述压力传感器的压力通道开口位于所述麦克风 的敏感薄膜和麦克风的背板电极的相同一侧; 所述麦克风空腔位于所述麦克风的敏感薄膜和麦克风的背板电极的远离 所述麦克风通道开口和压力传感器的压力通道开口的一侧;所述麦克风空腔贯 穿所述第二衬底、第二衬底与所述麦克风的敏感薄膜或麦克风的背板电极之间 的材料层,或所述麦克风空腔贯穿所述第三衬底、第三衬底与所述麦克风的敏 感薄膜和麦克风的背板电极之间的材料层;所述麦克风空腔作为声音信号和压 力信号的共同通道。
可选地, 所述第三衬底上还形成有压焊版片, 所述集成 MEMS器件的形 成方法还包括: 形成麦克风通道开口, 暴露出麦克风的敏感薄膜或麦克风的背板电极; 形成麦克风空腔, 所述麦克风空腔位于所述麦克风的敏感薄膜和麦克风 的背板电极的远离所述麦克风通道开口的一侧; 形成压力通道开口, 暴露出所述压力传感器的敏感薄膜;
在形成所述麦克风通道开口或麦克风空腔或压力通道开口的同时暴露出 所述压焊版片。 与现有技术相比, 本发明实施例具有以下优点: 通过釆用第一衬底形成 惯性传感器的可移动敏感元素,并且釆用第一衬底或者第一衬底上的导电层中 的一层形成麦克风的敏感薄膜, 形成的集成 MEMS器件的体积较小, 成本低, 而且封装后可靠性高。 在本发明的实施例中, 还可以釆用第一衬底或者第一衬底上的导电层中 的一层形成压力传感器的敏感薄膜和麦克风的敏感薄膜,从而可以形成集成了 惯性传感器、压力传感器和麦克风的集成 MEMS器件, 进一步提高了本发明的 集成 MEMS器件的集成度, 并且, 形成的集成 MEMS器件的体积小, 成本低。 而且本发明实施例釆用单晶的半导体材料制作惯性传感器的可移动敏感 元素, 可以制备出较厚的惯性传感器的可移动敏感元素, 即可动电极, 从而可 以加大质量块的质量, 提高所述惯性传感器的灵敏度和可靠性。 再者, 本发明实施例通过在所述第一衬底上还形成导电层, 所述导电层 可以用于制作惯性传感器的第一电屏蔽层,所述第一电屏蔽层与互连层中的屏 蔽互连线电连接, 从而可以防止惯性传感器的受到外界电信号的干扰。
再进一步地, 本发明实施例的导电层还可以为包括惯性传感器的第一电 屏蔽层、惯性传感器的固定电极的支撑点、惯性传感器的可移动敏感元素的支 撑点或者其任意组合, 这样, 可以充分利用这些材料形成压力传感器和麦克风 的不同的结构, 比如压力传感器的敏感薄膜和 /或可移动敏感元素、 或者固定 电极, 或者又比如所述麦克风的敏感薄膜和 /或固定电极, 一方面减小了集成 MEMS器件的体积; 而且降低了制作工艺的难度, 增加了制作器件的灵活性以 及更易于进行布局, 增加了与其他器件进行集成的灵活性。
再进一步地, 本发明实施例的导电层除了包括惯性传感器的电屏蔽层, 还可以包括制作惯性传感器、压力传感器和麦克风的互连层, 这样所述惯性传 感器、压力传感器和麦克风的互连层可以釆用共同的导电层制作, 进一步减小 了集成 MEMS器件的体积, 一方面减小了集成 MEMS器件的体积; 而且降低了 制作工艺的难度,增加了制作器件的灵活性以及更易于进行布局,增加了与其 他器件进行集成的灵活性。 本发明实施例的所述压力传感器的敏感薄膜可以为多层也可以为单层, 这样本发明实施例形成的集成 MEMS器件既可以适用于压力比较大的场合,也 可以适用于压力比较小需要敏感薄膜比较灵敏的场合。 本发明的实施例所述的麦克风空腔位于所述麦克风的敏感薄膜和麦克风 的背板电极的远离所述麦克风通道开口和压力传感器的压力通道开口的一侧; 所述麦克风空腔贯穿所述第二衬底、第二衬底与所述麦克风敏的感薄膜或麦克 风的背板电极之间的材料层, 或所述麦克风空腔贯穿所述第三衬底、第三衬底 与所述麦克风的敏感薄膜和麦克风的背板电极之间的材料层;所述麦克风空腔 作为声音信号和压力信号的共同通道,从而压力信号可以经过麦克风空腔、 麦 克风的背板电极内的孔洞、 麦克风的敏感薄膜内的孔洞到达所述压力通道开 口, 从而压力通道开口无需暴露在外部, 保护了压力传感器, 避免压力传感器 受到外部环境的干扰和污染, 提高了压力传感器的寿命和可靠性。 附图说明 图 1是本发明的一个实施例的 X轴、 Y轴的加速度传感器结构示意图; 图 2是本发明的一个实施例的 Z轴的及麦克风传感器立体结构示意图; 图 3是本发明的另一个实施例的 Z轴的及麦克风传感器立体结构示意图; 图 4是本发明的一个实施例的转角器的结构示意图; 图 5是本发明的一个实施例的转角器的剖面结构示意图; 图 6是本发明的一个实施例的形成集成 MEMS器件的方法的流程示意图; 图 7 ~ 16是本发明的一个实施例的形成集成 MEMS器件的方法的剖面结 构示意图;
图 17至图 34本发明的第二至第十七实施例的集成 MEMS器件的剖面结 构示意图。 具体实施方式 本发明实施例通过釆用第一衬底形成惯性传感器的可移动敏感元素,并且 釆用第一衬底或者第一衬底上的导电层中的一层形成麦克风的敏感薄膜,形成 的集成 MEMS器件的体积较小, 成本低, 而且封装后可靠性高。 在本发明的实施例中,还可以釆用第一衬底或者第一衬底上的导电层中的 一层形成压力传感器的敏感薄膜和麦克风的敏感薄膜,从而可以形成集成了惯 性传感器、 压力传感器和麦克风的集成 MEMS器件, 进一步提高了本发明的 集成 MEMS器件的集成度,并且,形成的集成 MEMS器件的体积小,成本低。
而且本发明实施例釆用单晶的半导体材料制作惯性传感器的可移动敏感 元素, 可以制备出较厚的惯性传感器的可移动敏感元素, 即可动电极, 从而可 以加大质量块的质量, 提高所述惯性传感器的灵敏度和可靠性。 再者, 本发明实施例通过在所述第一衬底上还形成导电层, 所述导电层可 以用于制作惯性传感器的第一电屏蔽层,所述第一电屏蔽层与互连层中的屏蔽 互连线电连接, 从而可以防止惯性传感器的受到外界电信号的干扰。
再进一步地,本发明实施例的导电层还可以为包括惯性传感器的第一电屏 蔽层、惯性传感器的固定电极的支撑点、惯性传感器的可移动敏感元素的支撑 点或者其任意组合, 这样, 可以充分利用这些材料形成压力传感器和麦克风的 不同的结构, 比如压力传感器的敏感薄膜和 /或可移动敏感元素、 或者固定电 极, 或者又比如所述麦克风的敏感薄膜和 /或固定电极, 一方面减小了集成 MEMS 器件的体积; 而且降低了制作工艺的难度, 增加了制作器件的灵活性 以及更易于进行布局, 增加了与其他器件进行集成的灵活性。 再进一步地, 本发明实施例的导电层除了包括惯性传感器的电屏蔽层,还 可以包括制作惯性传感器、压力传感器和麦克风的互连层, 这样所述惯性传感 器、压力传感器和麦克风的互连层可以釆用共同的导电层制作, 进一步减小了 集成 MEMS器件的体积, 一方面减小了集成 MEMS器件的体积; 而且降低了 制作工艺的难度,增加了制作器件的灵活性以及更易于进行布局,增加了与其 他器件进行集成的灵活性。 本发明实施例的所述压力传感器的敏感薄膜可以为多层也可以为单层,这 样本发明实施例形成的集成 MEMS器件既可以适用于压力比较大的场合, 也 可以适用于压力比较 d、需要敏感薄膜比较灵敏的场合。
本发明的实施例所述的麦克风空腔位于所述麦克风的敏感薄膜和麦克风 的背板电极的远离所述麦克风通道开口和压力传感器的压力通道开口的一侧; 所述麦克风空腔贯穿所述第二衬底、第二衬底与所述麦克风敏感薄膜或麦克风 的背板电极之间的材料层, 或所述麦克风空腔贯穿所述第三衬底、第三衬底与 所述麦克风的敏感薄膜和麦克风的背板电极之间的材料层;所述麦克风空腔作 为声音信号和压力信号的共同通道,从而压力信号可以经过麦克风空腔、麦克 风的背板电极内的孔洞、 麦克风的敏感薄膜内的孔洞到达所述压力通道开口, 从而压力通道开口无需暴露在外部,保护了压力传感器,避免压力传感器受到 外部环境的干扰和污染, 提高了压力传感器的寿命和可靠性。 为了达到上述发明目的, 本发明实施例提供了如下了技术方案: 本发明实施例首先提供一种集成 MEMS器件,所述集成 MEMS器件集成了
MEMS惯性传感器和 MEMS麦克风, 包括: 第一衬底, 包括第一表面和与之相对的第二表面, 所述第一衬底包括第 一区域和第三区域; 至少一层或多层导电层, 形成于所述第一衬底的第一表面; 惯性传感器的可移动敏感元素, 釆用第一区域的第一衬底形成; 第二衬底和第三衬底, 所述第二衬底与所述第一衬底上的导电层的表面 结合 ,所述第三衬底与所述第一衬底形成的惯性传感器的可移动敏感元素一侧 结合,且所述第三衬底和所述第二衬底分别位于惯性传感器的可移动敏感元素 的相对两侧; 麦克风的敏感薄膜或背板电极, 至少包括第三区域的第一衬底, 或者至 少包括第三区域的第一衬底上的导电层中的一层。 上述实施例的集成 MEMS器件集成了 MEMS惯性传感器和 MEMS麦克风, 其中所述麦克风的敏感薄膜至少包括第三区域的第一衬底、或者至少包括第三 区域的第一衬底上的导电层中的一层,从而提高了所述集成 MEMS器件的集成 度, 将 MEMS惯性传感器和 MEMS麦克风集成在同一器件内, 提高了器件的集 成度和可靠度。
在上述实施例中, 所述第一衬底的材质应为半导体材质, 例如所述第一衬 底的材质可以为非晶硅、多晶硅、锗硅、单晶硅等。作为本发明的一个实施例, 所述第一衬底为单晶半导体材料,利用单晶半导体材料制作的惯性传感器的可 移动敏感元素的质量大,从而可以加大质量块的质量,提高所述惯性传感器的 灵敏度和可靠性。
并且, 在本发明的一个实施例中, 所述导电层包括惯性传感器的第一电 屏蔽层, 所述第一电屏蔽层能够与惯性传感器的互连层中的屏蔽互连线电连 接, 从而可以防止惯性传感器的受到外界电信号的干扰。 在本发明的又一实施例中, 所述麦克风的敏感薄膜为多层, 所述麦克风的 敏感薄膜包括所述导电层中的一层、 及位于该层导电层之上或者之下的材料 层; 或者, 所述麦克风的敏感薄膜包括第一衬底、 及位于所述第一衬底之上或 之下的材料层, 从而本发明实施例形成的集成 MEMS器件既可以适用于压力 比较大的场合, 也可以适用于压力比较小需要敏感薄膜比较灵敏的场合。 在本发明的再一实施例中, 所述第三衬底上形成有与所述第一衬底结合 的导电材料层;
麦克风的敏感薄膜或麦克风的背板电极包括位于所述第三区域的第一衬 底上的导电层中的一层, 或者所述第三区域的第一衬底, 或者所述第三衬底上 的导电材料层。 具体地, 本发明所述的麦克风可以包括: 麦克风的敏感薄膜和 麦克风的背板电极, 其中, 所述麦克风的敏感薄膜包括位于所述第三区域的第一衬底上的导电层中 的一层;麦克风的背板电极或敏感薄膜釆用第三区域的第一衬底上的导电层中 的另一层、或者所述第三区域的第一衬底形成或者釆用第三衬底上的导电材料 层形成; 或者, 所述麦克风的敏感薄膜包括第三区域的第一衬底, 麦克风的背板电极釆 用第三区域的第一衬底上的导电层中的一层、或者釆用第三衬底上的导电材料 层形成; 或者, 所述麦克风的敏感薄膜包括所述第三衬底上的导电材料层, 麦克风的背 板电极釆用第三区域的第一衬底上的导电层中的一层、或者釆用所述第三区域 的第一衬底形成。 上述各个实施例示出了集成了 MEMS惯性传感器和 MEMS麦克风的集成 MEMS器件的各种结构, 本领域技术人员可以根据需要进行具体的选择和组 合, 在此不应限制本发明实施例的保护范围。 作为可选的实施例, 本发明所述的集成 MEMS器件还可以为集成了惯性 传感器、压力传感器和麦克风的器件,在此情况下,所述集成 MEMS器件包括: 第一衬底, 包括第一表面和与之相对的第二表面, 所述第一衬底包括第 一区域、 第二区域和第三区域; 至少一层或多层导电层, 形成于所述第一衬底的第一表面; 惯性传感器的可移动敏感元素, 釆用第一区域的第一衬底形成; 第二衬底和第三衬底, 所述第二衬底与所述第一衬底上的导电层的表面 结合 ,所述第三衬底与所述第一衬底形成的惯性传感器的可移动敏感元素一侧 结合,且所述第三衬底和所述第二衬底分别位于惯性传感器的可移动敏感元素 的相对两侧; 麦克风的敏感薄膜或背板电极, 至少包括第三区域的第一衬底, 或者至 少包括第三区域的第一衬底上的导电层中的一层; 压力传感器的敏感薄膜或固定电极, 至少包括第二区域的第一衬底, 或 者至少包括第二区域的第一衬底上的导电层中的一层。 所述集成 MEMS器件同时集成了 MEMS惯性传感器、 压力传感器和麦克 风,通过釆用第一衬底形成惯性传感器的可移动敏感元素, 并且釆用第一衬底 或者第一衬底上的导电层中的一层形成压力传感器的敏感薄膜和麦克风的敏 感薄膜, 形成的集成 MEMS的体积较小, 成本低, 而且封装后可靠性高。 后续将以集成了 MEMS惯性传感器、 MEMS压力传感器和 MEMS麦克风的 集成 MEMS器件为例, 对本发明实施例的技术方案进行说明。 在本实施例中, 所述第一衬底的材质为单晶半导体材质, 从而形成的 MEMS惯性传感器的可动电极的质量大, 从而加大了质量块的质量, 提高了 MEMS器件的可靠性。 在其他的实施例中, 所述第一衬底的材质还可以为多晶 硅、 非晶硅、 锗硅等其他半导体材质。 本发明实施例的集成 MEMS器件包括 MEMS惯性传感器,所述 MEMS惯性 传感器可以是加速度传感器或者转角器(又称陀螺仪), 无论是转角器还是加 速度传感器, 均包括用于信号转换(比如将加速度或者转动的角速度转换为电 信号)的传感器单元, 所述传感器单元包括可移动敏感元素(又称可动电极)、 固定电极、 以及将可动电极和固定电极进行对应引出的互连层、用于支撑可动 电极和固定电极的支撑点,所述传感器单元为所述 MEMS惯性传感器的核心结 构, 本发明实施例的 MEMS惯性传感器的可动电极的材质为单晶半导体材料。 所述第三衬底上形成有与所述第一衬底结合的导电材料层。 通常, 所述加速度传感器包括 X轴传感器、 Y轴传感器、 Z轴传感器或其 结合, 图 1给出本发明的一个实施例的加速度传感器的 X轴传感器的俯视结 构示意图, 包括: 固定电极以及可动电极。 所述固定电极包括两个相邻的固定 电极指, 分别为第一固定电极指 101和第二固定电极指 102。 所述可动电极包 括平行排列的可动电极指,分别为第一可动电极指 103和第二可动电极指 104, 所有可动电极指的两端分别连接至平行的两条可动连接臂上(未标记)。 每两 个相邻的固定电极指中间交错排列一个可动电极指, 这样, 所述第一固定电极 指 101与第一可动电极指 103组成第一电容器,所述第二固定电极指 102与第 二可动电极指 104组成第二电容器。 当可动电极沿 X轴运动的时候, 所述电 容器的两个极板之间距离会发生改变, 而且两个电容器的变化情况相反,通过 侦测改变的电容量, 可以获得所述加速度传感器的沿 X轴方向的加速度。 所述加速度传感器的还可以包括 Y轴传感器, 本领域技术人员知晓, 所 述 Y轴传感器的结构与所述 X轴传感器的结构类似, 在此不再详述。 所述加速度传感器的还包括 Z轴传感器, 通常 Z轴传感器的结构具有两 种结构, 具体请参照图 2和图 3 , 首先请参照图 2, 包括: 固定电极和可动电 极, 所述固定电极包括第一固定电极 201、 第二固定电极 202, 所述可动电极 包括第一可动电极 203和第二可动电极 204,所述固定电极固定在基板 200上。 所述可动电极可以围绕扭转轴 206进行运动 ,所述可动电极上还设置有加重梁 ( Seismic mass ), 本实施例中, 在所述第二可动电极 204的外侧设置了加重梁 205 , 故所述可动电极相对于所述扭转轴 206为非对称结构。 所述固定电极和 可动电极构成电容器的两个极板, 当所述加速度传感器运动的时候, 所述固定 电极与所述可动电极之间的电容量会发生改变,通过侦测电容量的改变,可以 获得所述加速度传感器沿 Z轴方向的加速度信息。 另一种 Z轴传感器请参照图 3 , 包括: 可动电极和固定电极, 所述可动电 极包括多个可动电极指 301 , 所述多个可动电极指 301的中部通过横梁进行连 接形成一体结构并且可以上下移动, 所述固定电极包括第一固定电极指 302 和第二固定电极指 303 , 所述第一固定电极指 302和第二固定电极指 303与所 述可动电极指 301 之间相对放置, 形成两个电容器, 当所述可动电极指 301 上下运动时, 所述可动电极指 301 与第一固定电极指 302和第二固定电极指 303之间形成的电容器的电容量发生改变,从而可以获得 Z轴方向的加速度信
上述两种 Z轴传感器的结构不同,其传感原理类似,均是根据可动电极与 固定电极之间形成的电容器的电容量的改变感知 Z轴方向加速度信息,但是二 者之间不同的是,图 2所示的结构是根据改变电容器的两个极板之间的距离改 变电容量,而图 3所示的结构是根据改变电容器的两个极板之间的面积改变电 谷里。
图 4给出转角器的俯视结构示意图,图 5给出沿图 4中 AA'的剖面结构示 意图, 所述转角器包括: 可动电极、 固定电极、 探测电极, 具体地, 所述可动 电极包括第一可动电极 901、 第二可动电极 902; 所述固定电极包括第一固定 电极 903、 第二固定电极 904、 第三固定电极 905 , 所述第三固定电极 905位 于第一固定电极 903和第二固定电极 904之间;所述第一可动电极 901位于第 一固定电极 903和第三固定电极 905之间,所述第二可动电极 902位于所述第 二固定电极 904与第三固定电极 905之间,所述第一可动电极 901与第一固定 电极 903和第三固定电极 905之间分别形成两个叉指电容器 ,所述第二可动电 极 902与第二固定电极 904和第三固定电极 905之间分别形成两个叉指电容 器, 当第一固定电极 903与第一可动电极 901之间具有电位差时, 所述第一可 动电极 901 会向所述第一固定电极 903 方向进行运动, 当第三固定电极 905 与第一可动电极 901之间具有电位差时,所述第一可动电极 901会向所述第三 固定电极 905方向进行运动, 对于所述第二可动电极 902与第二固定电极 904 和第三固定电极 905之间具有同样的情况 ,故所述第一可动电极 901和第二可 动电极 902在交流的电信号作用下会分别向靠近第一固定电极 903或者第二固 定电极 904方向运动、 或者向靠近第三固定电极 905方向运动。 所述转角器还包括探测电极, 所述探测电极包括第一探测电极 906和第二 探测电极 907, 所述第一探测电极 906和第二探测电极 907分别与第一可动电极 901和第二可动电极 902之间具有交叠面积,而且所述探测电极与可动电极之间 具有空腔或者介质, 具体请参照图 5 , 所述探测电极与可动电极之间形成电 容 器, 当所述第一可动电极 901和第二可动电极 902沿 X轴方向运动时候, 同时, 器件具有绕 Y轴的转动时, 所述第一可动电极 901和第二可动电极 902会产生沿 Z轴方向的位移, 所述探测电极与可动电极之间形成的电容器的电容量发生改 变, 从而可以感知角速度信息。 本发明实施例的集成 MEMS器件还包括 MEMS压力传感器, 所述 MEMS 压力传感器通常包括压力传感器的敏感薄膜和压力传感器的固定电极,所述压 力传感器的敏感薄膜和压力传感器的固定电极组成电容器,所述压力传感器的 敏感薄膜用于感知外界的压力, 并且在外界压力作用下会变形,从而改变所述 电容器的电容量, 获知压力信息, 此时, 所述压力传感器的敏感薄膜即作为感 知外界压力的部件又作为可移动敏感元素(即可动电极)。 通常地, 还可以在 压力传感器的敏感薄膜和固定电极之间额外设置可动电极,而且可动电极与所 述压力传感器的敏感薄膜之间具有连接臂,当所述压力传感器的敏感薄膜具有 形变的时候, 所述压力传感器的可动电极会发生位移,从而压力传感的器可动 电极和压力传感器的固定电极之间的电容量会发生改变,通过测量压力传感器 的可动电极和压力传感器的固定电极之间的电容量, 可以获知压力信息。 本发明实施例所述的集成 MEMS器件还包括麦克风, 所述麦克风包括麦 克风的敏感薄膜和麦克风的背板电极。所述麦克风的敏感薄膜和麦克风的背板 电极组成电容器, 所述麦克风的敏感薄膜用于感知外部的声音信号, 并且在声 音信号的作用下会变形,从而改变所述电容器的电容量, 获得与所述声音信号 对应的声音信息, 此时所述麦克风的敏感薄膜作为可移动敏感元素(即可动电 极)。 所述麦克风的敏感薄膜上方或下方还可以有一层或多层导电层中部分绝 缘层(所述绝缘层用于所述一层或多层导电层中的互连线的相互绝缘); 或所 述麦克风的敏感薄膜与所述麦克风的背板电极之间可以额外设置麦克风的可 动电极, 而且所述麦克风的可动电极与所述麦克风的敏感薄膜之间具有连接 臂, 当所述麦克风的敏感薄膜发生形变的时候, 所述可动电极会发生移动, 使 得所述麦克风的可动电极与麦克风的背板电极之间的距离发生变化,从而所述 麦克风的可动电极和麦克风的背板电极之间的电容量会发生改变,通过测量所 述麦克风可动电极和麦克风的背板电极之间的电容量, 可以获得声音信息。 所述第一衬底的第一表面形成有一层或者多层导电层; 所述第二衬底直 接结合或者通过键合层结合至所述第一衬底上的一层或者多层导电层的表面; 惯性传感器的可移动敏感元素釆用第一区域的第一衬底形成 ,所述第三衬底结 合至第一衬底的形成惯性传感器的可移动敏感元素的一侧 ,所述第三衬底和所 述第二衬底分别位于所述惯性传感器的可移动敏感元素的相对两侧;所述麦克 风的敏感薄膜至少包括第三区域的第一衬底、或者至少包括第三区域的第一衬 底上的一层或多层导电层中的一层。本发明实施例的 MEMS器件还包括其他结 构, 比: ¾。包括: 用于形成惯性传感器的可移动敏感元素的第一衬底, 所述第一衬底为单 晶半导体材料, 所述第一衬底包括第一表面和第二表面, 所述第一衬底的第一 表面上形成有一层或者多层导电层。所述第一衬底包括第一区域、第二区域和 第三区域, 所述第一衬底的第二表面为经过减薄的表面, 所述惯性传感器的可 动电极釆用减薄后的第一衬底形成。 所述集成 MEMS器件还可以包括第二衬底, 所述第二衬底主要用于机械 支撑,所述第二衬底直接结合或通过键合层结合至所述第一衬底上的一层或者 多层导电层的表面。若所述一层或者多层导电层包括惯性传感器的第一电屏蔽 层(所述第一电屏蔽层为最远离所述第一衬底的第一表面的导电层), 无论所 述一层或者多层导电层是否包括惯性传感器、 压力传感器和麦克风的互连层, 所述第二衬底可以直接结合或者通过键合层结合至第一衬底上的第一电屏蔽 层的表面。 而且, 若所述第二衬底直接或者经过导电的键合层结合至所述第一 衬底上的第一电屏蔽层上,所述第二衬底与所述第一电屏蔽层共同作为惯性传 感器的电学屏蔽层;若所述第二衬底经由键合层键合至所述第一衬底上的一层 或者多层导电层上,且所述键合层至少包括一层绝缘层的话, 所述第一电屏蔽 层可以单独作为惯性传感器的电学屏蔽层。 所述集成 MEMS器件还可以包括第三衬底, 所述第三衬底结合至所述惯 性传感器的可动电极的一侧 ,所述第三衬底与所述第二衬底分别位于所述惯性 传感器的可动电极的两侧。所述第三衬底用于将所述惯性传感器的可动电极和 压力传感器的固定电极分别进行密封, 同时所述第三衬底可以包含电路和 /或 引线。
本发明实施例所述的一层或者多层导电层可以包括惯性传感器、 压力传 感器和麦克风的互连层、惯性传感器的第一电屏蔽层、惯性传感器的固定电极 的支撑点、惯性传感器的可动电极的支撑点或者其任意组合。 所述一层或者多 层导电层还包括压力传感器的固定电极的支撑点、 压力传感器的敏感薄膜和 / 或可动电极的支撑点、 麦克风的敏感薄膜支撑点、 麦克风的背板电极支撑点, 所述三种传感器(惯性传感器、 压力传感器和麦克风)的这些结构可以釆用不 同的一层或者多层导电层形成。这样,可以充分利用这些材料形成压力传感器 和麦克风的不同的结构, 一方面减小了集成 MEMS器件的体积; 而且降低了制 作工艺的难度,增加了制作器件的灵活性以及更易于进行布局,增加了与其他 器件进行集成的灵活性。 本发明实施例的一层或者多层导电层可以包括惯性传感器、 压力传感器 和麦克风的互连层; 所述互连层包括一层或者多层互连线。 所述一层或者多层 互连线与所述惯性传感器的固定电极、 可动电极以及探测电极(转角器)以及 压力传感器的固定电极、压力传感器的敏感薄膜或可动电极以及麦克风的敏感 薄膜、 麦克风的背板电极分别对应电连接。 而且, 为了减小集成 MEMS器件的 体积,还可以釆用形成所述惯性传感器的互连层的材料制备所述压力传感器和 麦克风的互连层, 即所述惯性传感器的互连层、压力传感器和麦克风的互连层 可以共用一些材料层。甚至还可以釆用形成惯性传感器的互连层制作压力传感 器的敏感薄膜和 /或可动电极、 或固定电极和麦克风的敏感薄膜。 进一步优化地,也可以通过共用一些导电层材料共同形成这些传感器所需 的结构,比如可以釆用形成惯性传感器的第一电屏蔽层形成压力传感器的敏感 薄膜,釆用形成惯性传感器的互连层或者支撑点的材料形成压力传感器的固定 电极;或者釆用形成惯性传感器的互连层或者支撑点的不同层的材料分别形成 压力传感器的敏感薄膜和压力传感器的固定电极;还可以釆用形成惯性传感器 的互连层或者支撑点的材料形成压力传感器的敏感薄膜,釆用第一衬底形成压 力传感器的固定电极; 甚至还可以釆用形成惯性传感器的第一电屏蔽层、互连 层或者支撑点的材料或者第一衬底形成压力传感器的敏感薄膜,釆用第三衬底 上的用于形成引线的导电材料层形成压力传感器的固定电极;还可以釆用形成 惯性传感器的第一电屏蔽层或惯性传感器的互连层或者支撑点的材料中的一 种或多种形成麦克风的敏感薄膜 ,釆用形成惯性传感器的互连层或者支撑点的 不同层的材料层或第一衬底或第三衬底上的导电材料层形成麦克风的背板电 极。
而且在上述实施例中, 若不额外设置压力传感器的可动电极, 所述压力传 感器的敏感薄膜也充当压力传感器的可动电极,根据实际的需要, 当然也可以 额外设置压力传感器的可动电极, 比如在釆用形成惯性传感器的第一电屏蔽 层、互连层或者支撑点的材料形成压力传感器的敏感薄膜的情况下,还可以釆 用形成惯性传感器的不同的互连层或者支撑点的材料形成压力传感器的可动 电极,所述压力传感器的可动电极与压力传感器的敏感薄膜之间具有连接臂连 接,所述连接臂主要用于将压力传感器的敏感薄膜的形变传递给所述压力传感 器的可动电极,使其产生位移,从而改变压力传感器的可动电极和固定电极之 间的电容量。 同样, 在上述的实施例中, 若不设置额外的麦克风传感器的可动电极, 所 述麦克风的敏感薄膜也可以充当可动电极。根据实际的需要, 当然也可以额外 设置麦克风的可动电极, 比如在釆用形成惯性传感器的第一电屏蔽层、互连层 或支撑点的材料层形成麦克风的敏感薄膜的情况下,还可以釆用形成麦克风的 不同的互连层或者支撑点的材料形成麦克风的可动电极,所述麦克风的可动电 极与麦克风的敏感薄膜之间可以设置连接臂,所述连接臂将所述麦克风的敏感 薄膜的形变传递给所述麦克风的可动电极,使其产生位移,从而改变所述麦克 风的可动电极与麦克风的背板电极之间的电容量。 以上技术方案仅仅是举例,本领域技术人员基于本发明的思想可以根据实 际器件以及设计的需要进行灵活布局, 在此不应过分限制本发明的保护范围。 本发明实施例的所述支撑点用于固定支撑所述惯性传感器、 压力传感器 和麦克风的固定电极 (麦克风的背板电极作为固定电极)、 可动电极(麦克风的 敏感薄膜、 压力传感器的敏感薄膜、 惯性传感器的可移动敏感元素) , 所述支 撑点通常包括电连接所述可动电极、固定电极的支撑臂以及用于固定所述可动 电极、 固定电极的固定端。 若所述一层或者多层导电层同时包括惯性传感器的第一电屏蔽层、 以及 惯性传感器、压力传感器和麦克风的互连层; 所述互连层比所述第一电屏蔽层 更为靠近所述第一衬底的第一表面。若所述一层或多层导电层仅包括惯性传感 器的第一电屏蔽层, 则可以利用第三衬底上的互连层作为惯性传感器、压力传 感器和麦克风的互连层, 以便将惯性传感器、压力传感器和麦克风与外部电连 接。此时, 所述第一电屏蔽层还可以作为麦克风的敏感薄膜或压力传感器的敏 感薄膜。这样 ,可以充分利用这些材料形成压力传感器和麦克风的不同的结构 , 一方面减小了集成 MEMS器件的体积; 而且降低了制作工艺的难度, 增加了制 作器件的灵活性以及更易于进行布局, 增加了与其他器件进行集成的灵活性。 本发明的惯性传感器的 X轴传感器和 Y轴传感器的可动电极和固定电极 均釆用减薄后的第一衬底制作, 而对于 Z轴传感器根据其结构的不同, 具有如 下区别: 若所述 Z轴传感器釆用如图 2所示的结构,所述 Z轴传感器的固定电极釆用 所述一层或者多层导电层形成。在本发明的一个实施例中, 若所述一层或者多 层导电层仅包括第一电屏蔽层, 所述 Z轴传感器的固定电极釆用形成所述第一 电屏蔽层的材料形成。在本发明的又一实施例中, 若所述一层或者多层导电层 包括互连层, 无论所述一层或者多层导电层是否包括第一电屏蔽层, 所述 Z轴 传感器的固定电极釆用形成所述互连层的材料形成, 而且,在本发明的再一实 施例中, 所述 Z轴传感器的固定电极釆用最靠近所述第一衬底的互连层中的导 电材料层形成。 若所述 Z轴传感器釆用如图 3所示的结构,所述 Z轴传感器的固定电极釆用 所述第一衬底形成。 作为本发明的一个可选的实施例, 所述加速度传感器的 Z轴传感器的固定 电极或者可动电极侧还形成有抗粘连结构,用于防止所述可动敏感元素与所述 固定电极相接触时造成粘连,所述抗粘连结构可以导电层材料或者绝缘层材料 制作, 作为本发明的一个可选实施例, 釆用一层或者多层导电层形成, 或者釆 用第一衬底形成。 不管釆用如图 2所示的结构, 还是如图 3所示的结构, 作为一 个实施例, 所述抗粘连结构釆用一层或者多层导电层形成,作为本发明的又一 实施例, 釆用最靠近所述第一衬底的导电层形成。 若所述惯性传感器为转角器, 所述转角器包括 X轴转角器、 Y轴转角器、 Z轴转角器或其任意组合, 所述 X轴转角器、 Y轴转角器、 以及 Z轴转角器是指 分别用于探测 X轴、 Y轴、 Z轴方向的角速度的转角器。 所述转角器还包括探测 电极和固定电极, 作为一个实施例, 所述 X轴转角器、 Y轴转角器的固定电极 釆用所述第一衬底形成, 所述 X轴转角器、 Y轴转角器的探测电极釆用所述一 层或者多层导电层形成, 所述 Z轴转角器的固定电极和探测电极均釆用第一衬 底形成。 可选地, 若所述一层或者多层导电层为所述转角器的互连层, 可以釆用 形成所述互连层的材料形成 X轴转角器或者 Y轴转角器的探测电极。 可选地, 若所述一层或者多层导电层仅包括第一电屏蔽层, 可以釆用形 成所述第一电屏蔽层的材料形成 X轴转角器或者 Y轴转角器的探测电极。 釆用所述第一衬底形成所述转角器的固定电极, 由于固定电极可以形成 的比较厚, 这样在使用中拉伸的距离比较大, 驱动的速度比较大, 从而探测灵 敏度比较高。 本发明实施例釆用单晶的半导体材料制作惯性传感器敏感元素,可以制备 出较厚的惯性传感器的可移动敏感元素, 即可动电极,从而可以加大质量块的 质量, 提高所述惯性传感器的灵敏度和可靠性。 再者, 本发明实施例通过在所述第一衬底上还形成一层或者多层导电层, 所述一层或者多层导电层可以用于制作惯性传感器的第一电屏蔽层,所述第一 电屏蔽层与互连层中的屏蔽互连线电连接,从而可以防止惯性传感器的受到外 界电信号的干扰。 再进一步地,本发明实施例的一层或多层导电层还可以为包括惯性传感器 的第一电屏蔽层、惯性传感器的固定电极的支撑点、惯性传感器的可移动敏感 元素的支撑点或者其任意组合, 这样,可以充分利用这些材料形成压力传感器 和麦克风的不同的结构, 比如压力传感器的敏感薄膜和 /或可移动敏感元素、 或者固定电极, 或者又比如所述麦克风的敏感薄膜和 /或固定电极, 一方面减 小了集成 MEMS器件的体积; 而且降低了制作工艺的难度, 增加了制作器件 的灵活性以及更易于进行布局, 增加了与其他器件进行集成的灵活性。 再进一步地,本发明实施例的一层或多层导电层除了包括惯性传感器的电 屏蔽层, 还可以包括制作惯性传感器、 压力传感器和麦克风的互连层, 这样所 述惯性传感器、压力传感器和麦克风的互连层可以釆用共同的导电层制作, 进 一步减小了集成 MEMS器件的体积, 一方面减小了集成 MEMS器件的体积; 而且降低了制作工艺的难度, 增加了制作器件的灵活性以及更易于进行布局, 增加了与其他器件进行集成的灵活性。 本发明实施例的所述压力传感器的敏感薄膜可以为多层也可以为单层, 这样本发明实施例形成的压力传感器既可以适用于压力比较大的场合,也可以 适用于压力比较小需要敏感薄膜比较灵敏的场合。 同样, 对于转角器来说, 由于釆用单晶的半导体衬底制备可动电极, 形 成的可动电极的厚度和质量较大, 这样也可以灵敏地探测角速度。
作为一个实施例, 所述麦克风还包括: 麦克风通道开口和麦克风空腔, 所述麦克风通道开口暴露出所述麦克风的敏感薄膜或麦克风的背板电极,所述 麦克风空腔位于所述麦克风的敏感薄膜和麦克风的背板电极的远离所述麦克 风通道开口的一侧; 所述的压力传感器还包括: 压力通道开口, 所述压力通道 开口暴露出所述压力传感器的敏感薄膜。 具体地, 对于麦克风来说, 本发明实施例的麦克风通道开口和麦克风空 腔分别位于麦克风的敏感薄膜和麦克风的背板电极相对的两侧。所述麦克风通 道开口可以作为声音信号的通道,声音信号自麦克风通道开口到达所述麦克风 的敏感薄膜,压力信号自压力通道开口进入压力传感器的敏感薄膜; 从而麦克 风通道开口与压力传感器的压力通道开口相对独立; 作为又一实施例,还可以 利用所述麦克风空腔作为声音信号和压力信号的共同通道, 此时, 麦克风的背 板电极和麦克风的敏感薄膜内均形成有相连通的孔洞,所述麦克风通道开口和 压力传感器的压力通道开口位于麦克风的敏感薄膜和麦克风的背板电极的相 同的一侧,所述麦克风空腔位于所述麦克风的敏感薄膜和麦克风的背板电极的 远离所述麦克风通道开口和压力传感器的压力通道开口的一侧,且所述麦克风 空腔可以贯穿所述第二衬底、第二衬底与所述麦克风的敏感薄膜或麦克风的背 板电极之间的材料层, 或所述麦克风空腔贯穿所述第三衬底、第三衬底与所述 麦克风的敏感薄膜和麦克风的背板电极之间的材料层,从而所述麦克风空腔可 以与外部空气连通,使得所述麦克风空腔作为声音和压力信号的通道,在此种 情况下, 本领域技术人员可以选择麦克风空腔作为声音和压力信号的通道,从 而避免压力传感器的压力通道开口暴露,避免压力传感器受到外部环境的干扰 和污染, 提高了压力传感器的寿命和可靠性; 同样, 本领域技术人员还可以分 别选择麦克风声压通道和压力通道开口分别作为声音和压力信号的通道,使得 集成 MEMS器件的结构更加灵活。 总之,通过釆用第一衬底形成惯性传感器的可移动敏感元素, 并且釆用第 一衬底或者第一衬底上的一层或者多层导电层中的一层形成压力传感器的敏 感薄膜和麦克风的敏感薄膜, 形成的集成 MEMS器件的体积较小, 成本低, 而且封装后可靠性高。 而且本发明实施例釆用单晶的半导体材料制作惯性传感器敏感元素,可以 制备出较厚的惯性传感器的可移动敏感元素, 即可动电极,从而可以加大质量 块的质量, 提高所述惯性传感器的灵敏度和可靠性。 本发明实施例还给出一种形成上述集成 MEMS器件的方法, 形成方法流 程示意图具体请参照图 6, 所述方法包括: 执行步骤 S101 , 提供第二衬底和第 三衬底; 执行步骤 S102, 提供第一衬底, 所述第一衬底包括第一表面和与之相 对的第二表面, 所述第一衬底包括第一区域、 第二区域和第三区域; 执行步骤 S103 , 在所述第一衬底的第一表面形成一层或者多层导电层; 执行步骤 S104, 将所述第二衬底结合至所述第一衬底上的导电层的表面;执行步骤 S105,釆用 第一区域的第一衬底形成惯性传感器的可移动敏感元素;执行步骤 S106,形成 麦克风的敏感薄膜或背板电极,所述麦克风的敏感薄膜或背板电极至少包括所 述第三区域的第一衬底、或者至少包括第三区域上的第一衬底上的导电层中的 一层; 执行步骤 S107, 形成压力传感器的敏感薄膜或固定电极, 所述压力传感 器的敏感薄膜或固定电极至少包括所述第二区域的第一衬底、或者至少包括第 二区域的第一衬底上的导电层中的一层;执行步骤 S108,将所述第三衬底结合 至第一衬底形成的惯性传感器的可移动敏感元素的一侧 ,且所述第三衬底和所 述第二衬底分别位于所述惯性传感器的可移动敏感元素的相对两侧。 需要说明的是, 本发明实施例中, 若仅需要形成集成了 MEMS惯性传感 器和 MEMS麦克风的集成 MEMS器件,则所述第一衬底仅包括第一区域和第三 区域, 且无需执行步骤 S107。
下面结合具体实施对本发明的技术方案进行详细的说明。 具体地, 请参照图 7至 16给出本发明的一个实施例的形成 MEMES器件 的方法的剖面结构示意图, 下面分别进行详细说明。 首先请参照图 7, 提供第一衬底 401 , 所述第一衬底 401为单晶的半导体衬 底, 所述第一衬底 401包括第一表面和与之相对的第二表面, 所述第一衬底包 括第一区域 I、 第二区域 II和第三区域 III, 所述第一区域 I用于形成惯性传感器, 第二区域 II用于形成压力传感器, 所述第三区域 III用于形成麦克风。 所述第一衬底 401可以为单晶的半导体材料, 比如所述第一衬底 401可以 为单晶硅或者单晶锗硅等单晶的半导体材料。作为本发明的一个实施例, 所述 第一衬底 401为单晶硅。在本发明的其他实施例中, 所述第一衬底 401的材质还 可以为非晶硅、 多晶硅等其他半导体材质。 在所述第一衬底 401的第一表面上形成一层或多层导电层, 本实施例中, 所述一层或者多层导电层作为惯性传感器、压力传感器和麦克风的互连层、压 力传感器的可动电极层、 以及麦克风的敏感薄膜层, 所述惯性传感器的互连层 用于将惯性传感器的固定电极和可动电极进行引出,所述压力传感器的互连层 用于将所述压力传感器的可动电极、压力传感器的固定电极引出, 所述麦克风 的互连层用于将麦克风的敏感薄膜、 固定电极引出, 所述压力传感器的可动电 极层用于制作压力传感器的可动电极,所述麦克风的敏感薄膜层用于制作麦克 风的敏感薄膜, 而且本实施例中, 所述压力传感器的可动电极层、 所述麦克风 的敏感薄膜层与所述惯性传感器的互连层共用一些材料层。
具体地, 在第一衬底 401的第一表面上形成一层或多层导电层包括: 在所 述第一衬底 401的第一表面上形成第一绝缘层 402; 刻蚀所述第一绝缘层 402 , 在所述第一绝缘层 402内形成第一开口, 所述第一开口用于在后续填充导电材 料后将惯性传感器的可动电极、或者压力传感器的固定电极、或麦克风的第一 互连线和第二互连线、 或惯性传感器的电学屏蔽层进行引出。
所述第一绝缘层 402可以为氧化硅、 氮化硅、 氮氧化硅等介质材料, 作为 一个实施例, 所述第一绝缘层 402为氧化硅; 在所述第一绝缘层 402上形成第一 导电层, 所述第一导电层填充满所述第一开口; 刻蚀所述第一导电层, 形成惯 性传感器的互连层和压力传感器的可动电极层,所述惯性传感器的互连层具体 包括位于第一区域 I的分立的作为不同用途的互连线。 本实施例中, 所述惯性传感器的互连层包括如下分立的互连线: 用于将 惯性传感器的固定电极引出的惯性固定电极互连线 403a、用于将惯性传感器的 需要连接至电学屏蔽层的第一屏蔽互连线 403b、 第一子互连线 403c、 用于将惯 性传感器的可动电极引出的惯性可动电极互连线(未图示) 。 本实施例中, 还形成了惯性传感器的固定电极的支撑点 403d, 所述惯性 传感器的固定电极的支撑点 403d还具有电连接的作用,与所述惯性传感器的惯 性固定电极互连线 403a电连接。 本实施例中, 所述惯性传感器的固定电极的支 撑点 403d釆用形成所述惯性传感器的互连层的第一导电层材料形成。 在第二区域 II形成了如下结构: 压力传感器的可动电极 403e。
还包括在所述压力传感器的可动电极 403e中形成孔洞, 以便后续进行结 构的释放, 图中所述可动电极 403e显示为分立的结构, 实际上在其他位置还具 有相连的结构。 在所述第三区域 III形成了用于麦克风的第一互连线 403g、 第二互连线 403f。 所述第一互连线 403g和第二互连线 403f 以根据设计需要, 作为麦克风 的敏感薄膜和 /或麦克风的背板电极与外部的互连线, 本领域技术人员可以进 行灵活具体的设置。 例如, 所述第二互连线 403f根据工艺需要, 可以用于与麦 克风的敏感薄膜或麦克风的背板电极电连接,或者所述第二互连线 403f还可以 用于将压力传感器的电学屏蔽层电连接。 所述第一导电层可以釆用掺杂多晶硅或者其它导电材料形成, 作为本发 明的一个实施例, 所述第一导电层为多晶硅。 若所述第一导电层为多晶硅, 还 需要对所述第一导电层进行掺杂。 在实际制作工艺中, 还需要形成压力传感器和麦克风的互连层, 但是由 于其结构与所述惯性传感器的相类似,在此不再详细说明和图示。 而且所述麦 克风的互连层、 麦克风的敏感薄膜的支撑点、 压力传感器的互连层、 压力传感 器的可动电极的支撑点与惯性传感器的互连层可以釆用不同的导电层制作,也 可以通过合理布局共用一些导电层。本领域技术人员知晓如何通过合理的布局 形成这些结构。 同时, 在实际制作工艺中, 还需要形成压力传感器的可动电极和固定电 极的支撑点、惯性传感器的可动电极的支撑点, 关于其结构和形成方法在此也 没有——列举说明和图示,本领域技术人员基于本领域的普通技术知识和本发 明知晓如何形成。 此外, 通常所述惯性传感器和压力传感器的互连层通常各不止一层, 此 处仅以一层为例加以说明, 形成多层互连层的方法与此类似, 在此特别说明, 不应过分限制本发明的保护范围。 接着, 在所述互连层和可动电极层上形成第二绝缘层 404, 所述第二绝缘 层 404填充满所述惯性传感器的互连层的分立的互连线之间的间隙以及所述压 力传感器的可动电极中的孔洞。 所述第二绝缘层 404可以釆用氧化硅、 氮化硅、 氮氧化硅等介质材料, 作为本发明一个实施例, 所述第二绝缘层 404与第一绝 缘层 402材料相同, 均为氧化硅。 参考图 8,在第二绝缘层 404上形成第二导电层 405,位于第一区域 I的所述 第二导电层 405用做第一区域 I的惯性传感器的第一电屏蔽层, 所述第一电屏蔽 层作为电学屏蔽层, 所述电学屏蔽层用于接入电学屏蔽信号, 所述电学屏蔽信 号可以是接地信号、 直流驱动信号、 或者其他驱动信号, 本发明的电学屏蔽层 所接入的电学屏蔽信号可以由设计者进行规划, 故在设计上比较灵活。
同时本实施例釆用位于第二区域 II的第二导电层 405制作压力传感器的敏 感薄膜; 釆用位于所述第三区域 III的第二导电层 405制作麦克风的敏感薄膜。 通常作为电学屏蔽层的材料可能不需要形成图案, 本发明实施例中,将压力传 感器、惯性传感器和麦克风进行了集成,并且为了进一步减小集成器件的体积, 釆用形成惯性传感器的电学屏蔽层制作了压力传感器的敏感薄膜和 /或压力传 感器的可动电极以及麦克风的敏感薄膜, 因此需要将第二导电层 405 (即形成 惯性传感器的电学屏蔽层)进行光刻、 刻蚀以形成需要的图形和电结构, 比如 所需要的压力传感器的敏感薄膜和 /或压力传感器的可动电极以及麦克风的敏 感薄膜。
所述第二导电层 405可以为掺杂的多晶硅或者其它导电材料, 作为本发明 的一个实施例, 所述第二导电层 405釆用多晶硅, 故还包括对所述多晶硅进行 掺杂的步骤, 在此不再详述。
形成第二导电层 405之后, 还可以在所述第二导电层 405上形成第三绝缘 层(未图示),所述第三绝缘层用于在后续与第二衬底键合过程中作为键合层, 通常所述第三绝缘层釆用氧化硅。
请参照图 9, 提供第二衬底 501 , 所述第二衬底 501主要作为机械支撑。 所 述第二衬底 501可以为单晶的半导体材料, 比如所述第二衬底 501可以为单晶 硅、 单晶锗硅, 当然, 所述第二衬底 501也可以为例如多晶硅、 非晶硅或锗硅 等半导体材料。 作为本发明的一个实施例, 所述第二衬底 501可以为表面具有 绝缘层或不具有绝缘层的单晶硅。
作为一个实施例, 所述第二衬底为表面上具有绝缘层的单晶硅, 如图 9所 示, 所述绝缘层为第四绝缘层 502。 所述第四绝缘层 502用于后续与第一衬底键 合过程中作为键合层, 增加两者的结合力。
根据所述集成 MEMS器件的布局, 还可以根据需要在与第一衬底结合之 前对所述第四绝缘层 502进行刻蚀。所述第四绝缘层 502和前述的第三绝缘层仅 形成一层就可以, 当然也可以都形成, 或者都不形成; 而且, 所述第一衬底和 第二衬底 501之间的键合层还可以为导电材料, 比如釆用多晶硅, 在此特意说 明, 不应过分限制本发明的保护范围。
所述第二衬底 501分为第一区域 I、 第二区域 II和第三区域 III, 所述第一区 域 I、第二区域 Π和第三区域 m分别与第一衬底上的所述第一衬底包括第一区域 I、 第二区域 Π和第三区域 m对应设置。 在后续所述第二衬底 501的第一区域 I 将与第一衬底的第一区域 I直接结合或通过键合层结合,所述第二衬底 502的第 二区域 II将与第一衬底的第二区域 II直接结合或通过键合层结合, 所述第二衬 底 502的第三区域 III将与第一衬底的第三区域 III直接结合或通过键合层结合。 接着, 请参照图 10, 将第二衬底 501键合至第一衬底 401的形成有第一 互连层和第二互连层的表面,将所述第一衬底 401和第二衬底 501合成为微机 电(MEMS )晶圆, 所述将第二衬底 501与第一衬底 401进行键合技术为本领 域公知技术, 在此不再详述。 如前所述, 若第二衬底 501 直接或者通过导电的键合层结合至第一衬底 401的第一电屏蔽层上, 即二者之间没有其他材料层或者二者之间仅存在导电 的键合层,所述第一电屏蔽层和所述第二衬底 501将共同作为所述惯性传感器 的电学屏蔽层;若第二衬底 501经由键合层结合至第一衬底 401的第一电屏蔽 层上, 所述键合层包含至少一层电学绝缘层, 比如所述第二衬底 501上形成有 第四绝缘层或者第一电屏蔽层上形成有第三绝缘层,所述第一电屏蔽层可以单 独作为所述惯性传感器的电学屏蔽层,在此特意说明。本实施例中所述第一衬 底 401和第二衬底 501之间具有键合层, 而且所述键合层为绝缘层。 同时需要说明的是,在将第二衬底 501与第一衬底 401结合之前, 需要对 两个结合面进行抛光,比如对所述第一衬底 401上的第一电屏蔽层或者第三绝 缘层(若所述第一电屏蔽层上形成有第三绝缘层)进行抛光, 若第二衬底 501 上形成有第四绝缘层,也可能根据需要对第四绝缘层进行抛光,然后进行键合。
然后, 沿所述第一衬底 401的未形成互连层的第二表面进行减薄, 减薄至 厚度为 5μηι至 ΙΟΟμηι, 经过减薄步骤后, 形成第一衬底 401,。 然后要釆用减 薄后的第一衬底 401,形成本发明的惯性传感器的可动电极、压力传感器的固定 电极和麦克风的背板电极。
参照图 11 , 在所述第一衬底 401,上形成第一粘合层, 所述第一粘合层用 于制作与第三衬底结合的粘合垫。
所述第一粘合层釆用导电材料制作, 比如可以为金属、合金或者其他导电 材料, 进一步地, 可以为金属 Al、 金属 Cu, 硅, 锗, 金, 锡, 或其合金。
然后对所述第一粘合层进行刻蚀,去除与所述第三衬底粘合区域之外的粘 合层, 暴露出部分第一衬底 401,的表面, 形成第一粘合垫 601。
在所述第一粘合垫 601 上以及暴露出的第一衬底 401,上形成第一掩膜层
602, 所述第一掩膜层 602可以釆用光刻胶、 氧化硅、 氮化硅等, 所述第一掩 膜层 602用作后续刻蚀第一衬底 401,过程中的掩膜。
请参照图 12, 对所述第一掩膜层 602进行图形化, 将待转移的图形转移 至所述第一掩膜层 602中。
接着, 以图形化后的第一掩膜层 602为掩膜刻蚀第一衬底 40Γ ,直至暴露 出第一绝缘层 402。 经过此步骤, 形成惯性传感器的可动电极、 固定电极、 压 力传感器的固定电极、 麦克风的背板电极的初步结构。
具体在第一区域 I形成了: 惯性传感器固定电极 406、 惯性传感器可动电 极 407、 第一密封传感器结构 408、 第一惯性传感器结构 409; 所述惯性传感 器固定电极 406与所述惯性固定电极互连线 403a电连接, 所述惯性传感器可 动电极 407与惯性可动电极互连线电连接(未示出), 所述惯性传感器固定电 极 406、 惯性传感器可动电极 407之间具有间隙且相对设置, 所述第一密封传 感器结构 408与第一屏蔽互连线 403b对应电连接。 具体在第二区域 Π形成了: 压力传感器固定电极 410、 第一压力传感器结 构 412、 第二压力传感器结构 413; 所述压力传感器固定电极 410与所述压力 传感器的可动电极 403e位置相对应。
在此步骤中,还在所述压力传感器固定电极 410中形成了孔洞, 以便后续 进行结构的释放, 图中所述压力传感器固定电极 410显示为分立的结构, 实际 上其为整体结构, 在其他位置还具有相连的结构。
具体地, 在所述第三区域 III形成了: 麦克风的背板电极 414、 第二密封传 感器结构 411、 第三麦克风结构 413。 所述麦克风的背板电极 414与麦克风的背 板电极互连线(未图示) 电连接。
在此步骤中, 还在所述麦克风的背板电极 414中形成了孔洞, 以便后续进 行结构的释放, 图中所述麦克风的背板电极 414显示为分立的结构, 实际上其 为整体结构, 在其他位置还具有相连的结构。 需要说明的是, 作为一个实施例, 上述刻蚀工艺还将位于第一区域 I的与 第一密封传感器结构 408相邻的部分第一衬底去除掉。 此步骤是为了在后续步 骤中将所述第三衬底上的电结构(比如压焊片 )暴露。 在其他的实施例中, 所 述与第一密封传感器结构 408相邻的部分第一衬底也可以保留。 由上文可以看出,所述惯性传感器的固定电极与惯性传感器的可动电极均 釆用减薄后第一衬底形成;所述压力传感器的固定电极 410釆用减薄后第一衬 底形成; 所述麦克风的背板电极 414釆用减薄后的第一衬底形成。 所述压力传感器的固定电极 410和压力传感器的可动电极 403e构成电容 器的两个极板, 所述压力传感器的可动电极产生位移时, 所述电容器的两个极 板之间距离改变。 请参照图 13 , 去除部分第一绝缘层以及部分第二绝缘层, 对所述压力传 感器的可动电极、对惯性传感器的可动电极、麦克风的背板电极进行结构释放。 由于惯性传感器的可动电极 407与所述惯性传感器的固定电极 406之间具有间 隙, 所述惯性传感器可动电极 407下方的第一绝缘层 402被完全去除,从而释放 惯性传感器的可动电极 407, 形成可移动的惯性传感器的可动电极 407, 所述惯 性传感器的可动电极 407发生移动时候(左右移动的时候) , 所述惯性传感器 的可动电极 407与所述惯性传感器的固定电极 406之间的距离发生改变,所述惯 性传感器的可动电极 407、固定电极 406与所述惯性固定电极互连线 403a之间形 成第五空腔, 所述第五空腔、 所述惯性传感器的可动电极 407与所述惯性传感 器的固定电极 406之间的间隙气体连通。 同时由于惯性传感器的互连层的互连线之间分立, 而且本实施例中, 所述 第二绝缘层 404与所述第一绝缘层 402材料相同,故所述第二绝缘层 404也被 去除部分。 此外, 由于压力传感器固定电极 410内具有孔洞, 所述压力传感器固定电 极 410与压力传感器的可动电极 403e之间的第一绝缘层也被完全去除, 形成 了第二空腔, 而且由于压力传感器的可动电极 403e内具有孔洞, 所述压力传 感器的可动电极 403e与形成惯性传感器的第一电屏蔽层的第二导电层 405(位 于第二区域的第二导电层作为压力传感器的敏感薄膜)之间的第二绝缘层 404 也被部分或完全去除, 形成第一空腔, 当然此处第一绝缘层可以没有被完全去 除, 在第二导电层与压力传感器的可动电极 403e之间还形成了连接彼此的连 接臂。 本实施例中, 所述连接臂釆用绝缘材料形成, 所述连接臂还可以釆用导 电的材料形成, 只要在需要形成连接臂的地方预先布局形成导电材料即可, 本 领域技术人员知晓如何变通形成, 在此不再详述。 所述第一空腔、 所述压力传感器的可动电极 403e上的孔洞、 所述第二空 腔、 以及所述压力传感器固定电极 410上的孔洞之间气体连通, 所述压力传感 器的可动电极 403e与压力传感器固定电极 410构成电容器的两个极板, 压力传 感器的可动电极 403e移动时, 所述电容器的两个极板之间距离改变。 由于所述麦克风的背板电极 414 内形成有孔洞, 所述麦克风的背板电极 414与麦克风的敏感薄膜(所述麦克风的敏感薄膜利用形成惯性传感器的第一 电屏蔽层的位于第三区域 III的第二导电层 405形成, 位于第一区域 I的第二 导电层 405形成惯性传感器的第一电屏蔽层)之间的第二绝缘层 404和第一绝 缘层 402被去除, 形成第四空腔。 所述麦克风的背板电极 414作为麦克风的固定电极,所述麦克风的敏感薄 膜作为麦克风的可动电极, 所述固定电极与可动电极构成电容器的两个极板, 麦克风的敏感薄膜变形时, 所述电容器的两个极板之间的距离改变。 经过该步骤,从而实现了压力传感器的可动电极、惯性传感器的可动电极 和麦克风的背板电极的释放。 在去除所述部分第一绝缘层以及部分第二绝缘层过程中,同时余留的第一 掩膜层也被去除。 去除所述部分第一绝缘层、第二绝缘层需要根据材料进行选择刻蚀剂,作 为本发明的一个实施例, 所述第一绝缘层、 第二绝缘层均为氧化硅, 去除部分 所述第一绝缘层、第二绝缘层的刻蚀剂可以选择氢氟酸。通过控制刻蚀时间以 及刻蚀溶液的浓度 , 可以控制需要保留的第一绝缘层以及第二绝缘层的量。 经过上述工艺, 形成了本发明的集成 MEMS器件的核心部分, 后续还需 要在所述集成 MEMS器件上覆盖第三衬底, 以便对所述惯性传感器进行密封, 并且还需要形成麦克风通道开口和压力传感器的压力通道开口。 具体请参照图 14。 提供第三衬底 701 , 所述第三衬底 701上形成有各类互 连结构 (未标记) , 而且所述第三衬底 701中可以形成有各种 CMOS电路(未 图示)和 /或引线(未标记) 。 同时所述第三衬底 701的表面上还形成有第二粘 合垫 703和压焊版片 702, 所述第二粘合垫 703用于后续与形成压力传感器的固 定电极、惯性传感器可动电极和麦克风的背板电极的一侧进行对应结合, 所述 压焊版片 702用于与外界电路进行电连接。 请参照图 15 , 将所述第三衬底 701键合至釆用第一衬底形成的惯性传感器 的可动电极、压力传感器的固定电极和麦克风的背板电极的一侧, 所述第三衬 底 701和所述第二衬底分别位于惯性传感器的可动电极的相对两侧。 在此步骤 中, 所述第三衬底 701的第二粘合垫 703将与所述第一衬底上的第一粘合垫 601 对应粘合。 所述第一粘合垫 601和第二粘合垫 703也充当电极的作用, 第一衬底 中的需要电连接至第三衬底的互连结构以及电路的电极通过第一粘合垫 601引 出, 并且通过第二粘合垫 703电连接至第三衬底上的互连结构以及电路中。 然后, 请参照图 16, 在所述第二衬底的对着形成压力传感器的第二区域 II形成压力通道开口 505, 所述压力通道开口 505作为将压力施加至压力传感 器的入口。 所述压力通道开口 505暴露出第二导电层 405, 位于第一区域 I的 第二导电层 405形成惯性传感器的第一电屏蔽层, 位于第二区域 II的第二导 电层 405作为压力传感器的敏感薄膜,从而外界压力能够通过敏感薄膜进而将 压力传递至所述压力传感器的可动电极上。 作为可选的实施例,在形成所述压力通道开口 505的同时,还在所述第二 衬底的对着第三区域 III的位置形成麦克风通道开口 503 , 在所述第三衬底的 对着第三区域 III的位置形成麦克风空腔 504。 所述麦克风通道开口 503暴露 出位于第三区域 III的第二导电层 405 (所述第三区域 III的第二导电层 405作 为麦克风的敏感薄膜), 所述麦克风空腔 504暴露出所述麦克风的背板电极 414, 所述麦克风通道开口 503和麦克风空腔 504均可以作为将声音信号施加 至麦克风的敏感薄膜的入口,声音信号通过所述麦克风通道开口 503或麦克风 空腔 504将声音信号传递至所述麦克风的敏感薄膜上。 在形成压力通道开口 505的同时,部分的所述第二衬底也被去除, 形成了 第二衬底 50Γ, 以暴露出位于第三衬底上的压焊版片 702, 具体请参照图 16。 在其他的实施例中, 所述压焊版片 702还可以在形成所述麦克风通道开口(当 所述麦克风通道开口位于所述第二衬底内时)或麦克风空腔(当所述麦克风空 腔位于所述第二衬底内时)的时候暴露出来。 作为一个实施例, 为了防止刻蚀 工艺损伤麦克风的敏感薄膜和麦克风的背板电极, 所述麦克风通道开口 503 和麦克风空腔 504通过两次刻蚀工艺分别形成。在其他的实施例中, 若能够通 过对刻蚀工艺参数的优选设置,在保证不损伤麦克风的敏感薄膜和麦克风的背 板电极的前提下,所述麦克风通道开口 503和麦克风空腔 504还可以在同一次 刻蚀工艺中形成, 以提高本发明的集成 MEMS器件的制作工艺的集成度, 降 低工艺成本。 本实施例中, 所述第三衬底中形成有 CMOS 电路和引线, 所述第三衬底 第三衬底,本领域技术人员知晓根据第三衬底的类型如何对形成的惯性传感器 进行密封,而且本领域技术人员还知晓如何根据第三衬底的类型对第一衬底上 形成的一层或者多层导电层进行布局, 在此不再赘述。 需要说明的是, 本实施例中, 所述一层或多层导电层包括惯性传感器、 压力传感器和麦克风的互连层以及惯性传感器的电屏蔽层, 在其他的实施例 中, 若所述一层或多层导电层仅包括惯性传感器的电屏蔽层, 则还需要在第三 衬底的表面 (该表面为第三衬底的与第二衬底键合的表面)形成惯性传感器、 压力传感器和麦克风的互连层。 此时, 位于第二区域 II的电屏蔽层可以作为压 力传感器的敏感薄膜, 位于第三区域 III的电屏蔽层可以作为麦克风的敏感薄 膜, 这样, 可以充分利用这些材料形成压力传感器和麦克风的不同的结构, 一 方面减小了集成 MEMS器件的体积; 而且降低了制作工艺的难度, 增加了制作 器件的灵活性以及更易于进行布局, 增加了与其他器件进行集成的灵活性。
经过上述工艺, 形成了本发明的第一个实施例的集成 MEMS器件。 图 16 中虚线框 10内表示形成的压力传感器,虚线框 20表示形成的惯性传感器,虚线 框 30表示形成的麦克风。 具体包括: 惯性传感器的可动电极 407、 压力传感器 的固定电极 410和麦克风的背板电极 414; 第二衬底 501,和第三衬底 701 , 所述 惯性传感器的可动电极 407、 压力传感器的固定电极 410和麦克风的背板电极 414位于所述第二衬底 501,和第三衬底 701之间; 所述惯性传感器 20的可动电极 407釆用第一衬底形成;所述压力传感器的固定电极 410釆用形成所述惯性传感 器的可动电极 407的同一第一衬底形成;所述麦克风的背板电极 414釆用形成所 述惯性传感器的可动电极 407的同一第一衬底形成; 所述第一衬底为单晶半导 体材料, 所述第一衬底包括第一表面和第二表面, 所述第一衬底包括第一区域 和第二区域;所述第一衬底的第一表面的第一区域和第二区域形成有一层或者 多层导电层;所述第二衬底直接结合或者通过键合层结合至所述第一衬底上的 一层或者多层导电层的表面,所述第三衬底结合至所述惯性传感器的可动电极 407、 压力传感器的固定电极 410和麦克风的背板电极 414的一侧; 所述第三衬 底 701与所述惯性传感器可动电极 407之间、 与所述压力传感器的固定电极 410 之间、 以及与所述麦克风的背板电极 414之间分别形成第六空腔、 第七空腔和 第八空腔。 本实施例中, 所述第一衬底的第一表面的一层或者多层导电层包括惯性 传感器第一电屏蔽层、 惯性传感器、 压力传感器和麦克风的互连层, 所述第一 电屏蔽层比所述互连层更为远离所述第一衬底。
本实施例中, 所述压力通道开口 505暴露出用于形成惯性传感器的第一电 屏蔽层的第一导电层, 所述暴露出的第一导电层作为压力传感器 10的敏感薄 膜; 所述压力传感器 10还包括压力传感器的可动电极 403e, 所述压力传感器的 可动电极 403e釆用形成惯性传感器的第一互连层的材料形成, 具体来说, 本实 施例中, 釆用形成 X轴传感器或 Y轴传感器的固定电极互连线材料层形成。 所 述压力传感器的可动电极 403e内具有孔洞,所述压力传感器可动电极 403e与压 力传感器的敏感薄膜之间形成了第一空腔并通过连接臂连接, 在外力作用下, 所述压力传感器的敏感薄膜会移动 (垂直于所述第一电屏蔽层的方向移动) , 从而带动所述压力传感器的可动电极 403e产生位移。
所述压力传感器还包括与压力传感器的可动电极 403e相对设置的压力传 感器的固定电极 410, 所述压力传感器固定电极 410中形成有孔洞, 所述压力传 感器的可动电极 403e与压力传感器的固定电极 410之间具有间隙, 形成了第二 空腔, 所述第一空腔、 压力传感器的可动电极 403e上的孔洞、 第二空腔、 压力 传感器的固定电极 410上的孔洞气体连通, 所述压力传感器的可动电极 403e与 压力传感器的固定电极 410构成电容器的两个极板, 压力传感器的可动电极 403e变形时, 所述电容器的两个极板之间距离改变。
本实施例中, 所述麦克风空腔 504暴露出麦克风的背板电极 414, 所述麦 克风的背板电极 414内形成有孔洞, 所述孔洞与所述麦克风空腔 504相连通; 所 述麦克风通道开口 503暴露出用于形成惯性传感器的第一电屏蔽层的第一导电 层, 所述暴露出的第一导电层作为麦克风 30的敏感薄膜; 所述麦克风空腔 504 所述麦克风的背板电极 414作为麦克风 30的固定电极, 声音信号的作用下, 所 述麦克风的敏感薄膜会移动,使得所述麦克风 30的敏感薄膜与麦克风 30的背板 电极 414之间的距离发生改变, 从而所述麦克风 30的敏感薄膜与麦克风的背板 电极 414之间的电容的电容值发生改变, 从而将声音信号转换为电信号。 本实 施例中 ,所述麦克风通道开口 503和压力通道开口 505位于所述麦克风的敏感薄 膜和压力敏感薄膜的一侧,所述麦克风空腔 504位于所述麦克风的背板电极 414 的远离所述麦克风通道开口 503和压力通道开口 505的一侧。所述麦克风的敏感 薄膜和麦克风的背板电极 414内均形成有相连通的孔洞; 所述麦克风空腔 504 贯穿所述第三衬底 701、第三衬底 701与所述麦克风的敏感薄膜和麦克风的背板 电极 414之间的材料层; 因此, 作为一个实施例, 所述麦克风空腔 504作为声音 信号和压力信号的共同通道,这样,在后续将本发明的集成 MEMS器件封装后, 仅露出麦克风空腔 504, 并且在所述麦克风通道开口 503和压力通道开口 505上 方形成空腔, 从而压力信号可以经过麦克风的背板电极 414内的孔洞、 麦克风 的敏感薄膜内的孔洞、 麦克风通道开口 503、 所述空腔、 进入压力传感器的压 力通道开口 505, 所述压力通道开口 505无需暴露在外部,这样可以保护压力传 感器, 防止压力传感器受到外部的污染和干扰,提高压力传感器的抗干扰能力 和寿命。 当然, 作为其他的实施例, 也可以分别釆用麦克风通道开口 503和压 力通道开口 505分别作为声音信号和压力信号的通道, 在封装时, 将所述麦克 风空腔 504密封起来, 本领域技术人员可以进行具体灵活的选择。 本发明还提供了第二个集成 MEMS器件的实施例, 具体请参照图 17, 与 图 16结构的区别是: 所述压力通道开口 505暴露出第一衬底和第二衬底 501,之 间的键合层(本实施例中所述键合层为位于第二衬底 501,上的第四绝缘层 502 ) , 位于第二区域 II的键合层和第二导电层 405共同作为压力传感器的敏感 薄膜。 本实施例中, 所述键合层可以起到保护第二导电层的作用。 当然, 所述压力传感器的敏感薄膜也可以釆用其它导电材料和绝缘层组 合制备, 在下文的实施例中还可以有所其它变形。 甚至, 所述压力传感器的敏 感薄膜还可以包括更多的材料层,只要所述压力传感器的敏感薄膜满足包含一 层导电层、 而且能够在外力作用下产生变形的条件即可。 形成如图 17所述的集成 MEMS器件的形成方法与形成如图 16所述的结构 的区别在于形成压力通道开口 505的时候停止于键合层, 本领域技术人员知晓 如何变通形成。 本发明还提供了第三个集成 MEMS器件的实施例, 具体请参照图 i8 , 与 图 16结构的区别是: 所述压力通道开口 505暴露出形成惯性传感器的第一电屏 蔽层的第二导电层 405, 但是没有额外形成压力传感器的可动电极, 即暴露出 的第二导电层既作为压力传感器的敏感薄膜又作为压力传感器的可动电极,在 所述压力传感器的敏感薄膜与固定电极之间的所有导电层被去除,形成第三空 腔, 所述第三空腔、 压力传感器的固定电极中的孔洞、 第七空腔气体连通; 所 述压力传感器的敏感薄膜与压力传感器的固定电极构成电容器的两个极板,压 力传感器的敏感薄膜变形时, 所述电容器的两个极板之间距离改变。 具体的如图 18的集成 MEMS器件的形成方法可以为: 在形成所述惯性传 感器的互连层时候,在压力传感器的固定电极对应位置釆用刻蚀的办法去除这 些构成惯性传感器的互连层的导电层,从而当所述压力传感器的敏感薄膜与压 力传感器的固定电极之间的绝缘层在结构释放的时候被除去,在所述压力传感 器的敏感薄膜与固定电极之间形成第三空腔。 本发明还提供了第四个集成 MEMS器件的实施例, 具体请参照图 19, 与 图 18的所述集成惯性传感器与压力传感器的区别在于:压力通道开口暴露出键 合层(本实施例中所述键合层为位于第二衬底 501,上的第四绝缘层 502 ) , 位 于第二区域 II的键合层、 第二导电层 405、 第二绝缘层共同作为压力传感器的 敏感薄膜。同样形成本实施例的集成惯性传感器与压力传感器方法也可以参照 上述方法, 在此不再赘述。 +
本发明还提供了第五个集成 MEMS器件的实施例, 具体请参照图 20, 与 图 18的所述集成惯性传感器与压力传感器的区别在于: 在第二衬底 501,中形成 的压力通道开口 505暴露出形成惯性传感器的 X轴传感器或 Y轴传感器的固定 电极互连线的导电层 403e, 在第二区域 II釆用此材料层形成了压力传感器的敏 感薄膜, 所述压力传感器可动电极能够在外加压力作用下产生变形。 具体的形成图 20所示的集成 MEMS器件的方法类似形成前述图 18所示的 集成惯性传感器与压力传感器的方法, 区别在于: 在形成所述惯性传感器的互 连层时候,在压力传感器的固定电极对应位置形成构成压力传感器的敏感薄膜 的导电层, 且在第二区域 II的第二导电层内不形成孔洞, 并且在形成作为所述 惯性传感器的第一电屏蔽层的导电层之后,根据所要形成的压力传感器的压力 通道开口的大小和位置, 去除与所述压力通道开口位置相对应的第二导电层, 或者在形成压力通道开口的时候去除该位置的第二导电层,暴露出形成惯性传 感器的互连层的导电层, 作为压力传感器的敏感薄膜, 本实施例中, 也没有额 外形成压力传感器的可动电极。 本发明还提供了第六个集成 MEMS器件的实施例, 具体请参照图 21 , 与 前述图 20所示结构的区别在于, 位于第二区域 II的第二绝缘层和用于形成惯性 传感器的互连层的导电层共同作为压力传感器的敏感薄膜, 本实施例中, 没有 额外形成压力传感器的可动电极。具体的形成如图 21所示结构的方法与形成前 述结构类似, 在此不再赘述。 本发明还提供了第七个集成 MEMS器件的实施例, 具体请参照图 22, 与 前述图 20所示结构的区别在于, 釆用位于第二区域 II的第二导电层和位于第二 区域 II的第一导电层分别形成压力传感器的敏感薄膜和压力传感器的固定电 极, 即本实施例中, 分别釆用形成惯性传感器的第一电屏蔽层和互连层的导电 材料形成压力传感器的敏感薄膜和压力传感器的固定电极,没有额外形成压力 传感器的可动电极。形成如图 22所示结构的方法与形成前述结构类似,在此不 再赘述。 当然作为本实施例的变形,也可以釆用形成惯性传感器的不同互连层 的导电材料形成压力传感器的敏感薄膜和固定电极。 本发明还提供了第八个集成 MEMS器件的实施例, 具体请参照图 23 , 与 前述所有实施例的区别在于, 釆用位于第二区域 II的第一衬底形成压力传感器 的敏感薄膜 403ζ ,釆用与所述压力传感器的敏感薄膜位置对应的第三衬底上的 导电材料层形成压力传感器的固定电极, 本实施例中,也没有额外形成压力传 感器的可动电极。具体的形成如图 23所示结构的方法与形成前述结构类似,在 此不再赘述。 需要说明的是, 若所述第一衬底减薄后的厚度比较厚, 且釆用第一衬底 制作压力传感器的敏感薄膜,形成的压力传感器可以适用于需要检测压力比较 大的场合。 同样, 对于本发明的实施例的压力传感器的敏感薄膜, 若其厚度选 择比较大或者由多层材料构成较厚的敏感薄膜,同样可以适用于需要检测压力 比较大的场合, 因此, 通过控制压力传感器的敏感薄膜的厚度, 可以形成用于 检测不同压力大小的压力传感器。 本发明还提供了第九个集成 MEMS器件的实施例, 具体请参照图 24, 与 前述所有实施例的区别在于, 釆用位于第二区域 II的第一导电层 403 e形成压力 传感器的敏感薄膜, 釆用与所述压力传感器的敏感薄膜位置对应的第一衬底 403z形成压力传感器的固定电极, 本实施例中, 也没有额外形成压力传感器的 可动电极。具体的形成如图 24所示结构的方法与形成前述结构类似,在此不再 赘述。
本发明还提供了第十个集成 MEMS器件的实施例, 具体请参照图 25 , 与 前述所有实施例的区别在于, 釆用位于第二区域 II的第二导电层形成压力传感 器的敏感薄膜,釆用与所述敏感薄膜位置对应的第三衬底上的导电材料层形成 压力传感器的固定电极,本实施例中,也没有额外形成压力传感器的可动电极。 具体的形成如图 25所示结构的方法与形成前述结构类似, 在此不再赘述。 需要说明的是, 图 17〜图 25所示的集成 MEMS器件均是以第一实施例的麦 克风结构为例加以说明, 而对压力传感器的不同结构进行了说明。 在实际中, 麦克风的结构也可以有多种不同的结构。下面将以第一实施例的压力传感器的 结构为例, 对麦克风的不同结构进行分别描述。 图 26给出本发明第十一个集成 MEMS器件的实施例, 本实施例与第一实 施例(如图 16所示) MEMS器件相比, 位于第三区域 III的键合层(所述键合层 位于第二衬底 501,和第一衬底之间)和位于第三区域 III的第二导电层共同作为 麦克风的敏感薄膜, 所述麦克风通道开口 503暴露出所述麦克风的敏感薄膜。 本实例的集成 MEMS器件的制作方法与第一实施例的集成 MEMS器件的制作 方法的区别在于: 在所述第二衬底 501,内形成所述麦克风通道开口 503时, 需 要保留位于所述第三区域 III的与所述麦克风的位置对应的第四绝缘层。 图 27给出本发明的第十二个集成 MEMS器件的实施例, 本实施例与图 16 所示的集成 MEMS器件相比,位于第三区域 III的第二绝缘层和位于第三区域 III 的导电层共同作为麦克风的敏感薄膜, 所述麦克风通道开口 503暴露出所述麦 克风的敏感薄膜。本实施例与第一实施例的区别在于,在继续刻蚀工艺释放所 述第一衬底形成惯性传感器的固定电极、压力传感器的固定电极和麦克风的背 板电极时,保留所述第二绝缘层,通过调整所述刻蚀工艺的参数可以保留所述 第二绝缘层, 本领域技术人员知晓如何调整所述刻蚀工艺的参数。 图 28给出本发明的第十三个集成 MEMS器件的实施例, 本实施例与第十 二个实施例的区别在于, 位于第三区域 III的第二绝缘层、键合层(位于所述第 二衬底和第一衬底之间)和位于第三区域 III的导电层共同作为麦克风的敏感薄 膜; 本实施例的制作方法与图 27的实施例的区别在于,在形成所述麦克风通道 开口 503时, 保留位于所述第三区域 III的键合层。 图 29给出本发明的第十四个集成 MEMS器件的实施例, 本实施例与第一 实施例的区别在于,所述第一衬底上的互连层中的一层互连线作为麦克风的敏 感薄膜, 而不是利用形成惯性传感器的电屏蔽层作为麦克风的敏感薄膜。 需要说明的是, 根据实际需要, 还可以利用所述第一衬底上的互连层的 多层互连线作为麦克风的敏感薄膜,各个互连层的互连线之间可以通过导电或 绝缘的连接臂相连接。 本实施例的集成 MEMS器件的制作方法与第一实施例的区别在于, 在形 成第一衬底上的一层或多层互连层时,保留位于第三区域 III的至少一层或多层 互连线作为集成惯性传感器的敏感薄膜, 同时在形成所述麦克风通道开口 503 时, 可以进行刻蚀工艺,依次去除位于第三区域 III的第一电屏蔽层和第二绝缘 层,位于第三区域 III的导电层的一层互连线层被暴露出, 形成麦克风的敏感薄 膜。 图 30给出本发明的第十五个集成 MEMS器件的实施例, 本实施例与第十 三个实施例的区别在于, 所述第一衬底上的互连层的一层和位于第三区域 III 的第二绝缘层作为麦克风的敏感薄膜 ,而不是利用形成惯性传感器的电屏蔽层 作为麦克风的敏感薄膜。 需要说明的是, 根据实际需要, 还可以利用所述第一 衬底上的互连层的多层作为麦克风的敏感薄膜,各个互连层之间可以通过导电 或绝缘的连接臂相连接。本实施例的集成 MEMS器件的制作方法与第十三个实 施例的区别在于,在形成第一衬底上的一层或多层互连层时,保留位于第三区 域 III的至少一层或多层互连层作为集成惯性传感器的敏感薄膜,同时在形成所 述麦克风通道开口 503时, 可以进行刻蚀工艺, 去除位于第三区域 III的第一电 屏蔽层; 同时在释放所述惯性传感器的可动电极、压力传感器的固定电极和麦 克风的背板电极时, 保留位于所述第三区域 III的第二绝缘层。 图 31给出本发明的第十五个集成 MEMS器件的实施例, 本实施例与第一 实施例的区别在于, 位于第三区域 III的第一衬底作为麦克风的背板电极 414, 且所述麦克风的背板电极 414内形成有孔洞; 位于第三区域 III的第三衬底 701 上的互连层的一层作为麦克风的敏感薄膜; 对应地, 所述麦克风的麦克风通道 开口 503和麦克风空腔 504位置如图 31所示, 所述麦克风通道开口 503露出所述 麦克风的背板电极 414; 所述麦克风空腔 504露出所述麦克风的敏感薄膜。 本实施例的集成 MEMS器件的制作方法与第一实施例的制作方法的区别 在于, 刻蚀所述第二衬底 501,形成所述麦克风通道开口 503 , 并且需要将位于 第三区域 III的第一衬底上的第一电屏蔽层、一层或多层互连层、键合层和第一 绝缘层、 第二绝缘层去除, 直至露出所述麦克风的背板电极 414; 刻蚀所述第 三衬底 701形成所述麦克风空腔 504时, 保留位于第三区域 III的第三衬底 701上 的至少一层互连层,所述互连层作为麦克风的敏感薄膜,被所述麦克风空腔 504 暴露。 图 32给出本发明的第十六个集成 MEMS器件的实施例, 本实施例与第十 五个实施例的区别在于, 位于第三区域 III的第三衬底 701上的两层互连层和互 连层之间的绝缘层作为麦克风的敏感薄膜。本实施例中, 所述麦克风的敏感薄 膜内可以形成孔洞 (图中未示出) , 所述孔洞与麦克风的背板电极 414内的孔 洞以及麦克风空腔 504和麦克风的通道开口 503相连通,从而所述麦克风的通道 开口 503和所述麦克风空腔 504均可以作为声音信号进入麦克风的敏感薄膜的 通道, 并且所述麦克风空腔 504还可以同时作为压力信号进入所述压力传感器 的通道(此时, 所述麦克风的通道开口 503需要与压力传感器的压力通道开口 505相连通,从而压力信号依次经过所述麦克风空腔 504、 麦克风的敏感薄膜内 的孔洞、 麦克风的背板电极 411内的孔洞、 麦克风的通道开口 503到达麦克风的 压力通道开口 505 ) 。 当然, 所述麦克风的敏感薄膜内也可以没有空洞, 从而仅利用所述麦克 风空腔 504作为声音信号进入麦克风的敏感薄膜的通道, 压力信号自压力传感 器的压力通道开口 505进入压力传感器。 本实施例的集成 MEMS器件的形成方法与前一实施例的 MEMS器件的形 成方法的区别在于,在刻蚀所述第三衬底 701形成麦克风空腔 504时,保留位于 第三区域 III的两层导电层和位于两层导电层之间的材料层,所述两层导电层和 材料层共同作为麦克风的敏感薄膜。根据需要,还可以对所述麦克风的敏感薄 膜进行刻蚀, 以在所述麦克风的敏感薄膜内形成孔洞。 图 33给出本发明的第十七个 MEMS器件实施例, 本实施例与前述所有实 施例的区别在于, 麦克风空腔 504位于第二衬底 501,与麦克风的背板电极 414之 间,所述麦克风空腔 504的远离所述麦克风的背板电极 414的一侧被所述第二衬 底 50Γ密封。麦克风通道开口 503位于所述麦克风的背板电极 414与麦克风的敏 感薄膜的远离所述麦克风空腔 504的一侧,且所述麦克风通道开口 503贯穿所述 第三衬底 701、第三衬底 701与所述麦克风的敏感薄膜之间的材料层, 所述麦克 风通道开口 503作为声音信号进入麦克风的通道。麦克风通道开口 503与压力传 感器 505的压力通道开口 505分别位于麦克风的背板电极 414和麦克风的敏感薄 膜的两侧。 需要说明的是, 本实施例中, 在所述第二衬底 501,将所述麦克风空腔 504 远离所述麦克风的背板电极 414的一侧密封的前提下,所述麦克风空腔 504还可 以部分地形成于所述第二衬底 501,内。 本实施例集成 MEMS器件的制作方法与前述所有实施例的 MEMS器件的 制作方法的区别在于, 刻蚀所述压力通道开口 505时, 与所述麦克风对应的第 二衬底 501,被保留。 并且在所述麦克风的背板电极 414内形成孔洞后, 利用所 述麦克风的背板电极内的孔洞将所述第二衬底 501,与所述麦克风的背板电极 414之间的材料层去除, 以在所述麦克风的背板电极 414与第二衬底 501,之间形 成麦克风空腔 504。 当然, 若所述麦克风空腔 504需要部分地形成在所述第二衬 底 501,内, 则还需要对所述第二衬底 501,进行部分刻蚀。 所述刻蚀可以为将所 述第二衬底 501,与第一衬底键合之前进行,在所述位于第三区域 III的与所述麦 克风的背板电极 414对应的第二衬底 501,内形成凹槽。 在利用所述麦克风的背 板电极内的孔洞将所述第二衬底 501,与所述麦克风的背板电极 414之间的材料 层去除后, 形成麦克风空腔。 当然, 还需要将所述麦克风的敏感薄膜对应位置 的第三衬底 701以及第三衬底 701与麦克风的敏感薄膜之间的材料层去除,以形 成麦克风通道开口 503。
需要说明的是, 所述麦克风的背板电极 414和麦克风的敏感薄膜的结构不 限于本实施例所示,本领域技术人员可以结合前述各个实施例对麦克风的背板 电极 414和麦克风的敏感薄膜的结构进行灵活变化。 图 34示出了本发明第十八个实施例的集成 MEMS器件的结构示意图。 本 实施例与第十七实施例的区别在于, 所述麦克风通道开口 503位于所述第三衬 底 701与所述麦克风的背板电极 414之间, 所述麦克风通道开口 503的远离所述 麦克风的背板电极 414和麦克风的敏感薄膜的一侧被所述第三衬底 701密封。所 述麦克风空腔 504位于所述麦克风的背板电极 414和麦克风的敏感薄膜的远离 所述麦克风通道开口 503的一侧,所述麦克风空腔 504与压力传感器的压力通道 开口 505位于所述麦克风的背板电极 414和麦克风的敏感薄膜的相同的一侧。所 述麦克风空腔 504和压力通道开口 505分别作为声音信号和压力信号的通道。当 然, 所述麦克风通道开口 503还可以部分地形成于第三衬底 701内。 本实施例的集成 MEMS器件的制作方法与前一实施例的集成惯性传感器 和压力传感器和麦克风的制作方法的区别在于, 在将所述第三衬底 701与第一 衬底键合前, 可以在第三衬底 701的对应于麦克风的位置进行刻蚀, 去除与所 述麦克风的背板电极 414和麦克风的敏感薄膜对应的位置的第三衬底表面的部 分或全部材料层, 甚至还可以将部分第三衬底去除, 以便于将第三衬底 701与 第一衬底键合后, 在所述第三衬底与第一衬底之间对应于麦克风的背板电极 414和麦克风的敏感薄膜的位置形成麦克风的通道开口 503。在进行刻蚀工艺形 成压力通道开口 505的同时,可以对与麦克风的背板电极 414和麦克风的敏感薄 膜对应的第二衬底进行刻蚀, 并且将所述第二衬底与麦克风的背板电极 414之 间的材料层去除, 以形成麦克风空腔 504。所述麦克风空腔 504作为声音信号进 入麦克风的通道。
需要说明的是, 所述麦克风的背板电极 414和麦克风的敏感薄膜的结构不 限于本实施例所示,本领域技术人员可以结合前述各个实施例对麦克风的背板 电极 414和麦克风的敏感薄膜的结构进行灵活变化。 比如, 所述麦克风的背板 电极还可以釆用至少包括第三区域的第一衬底上的导电层中的一层形成, 此 时, 所述麦克风的敏感薄膜还可以釆用第三区域的第三衬底上的导电材料层 (若第三衬底上形成有导电材料层)形成, 或者, 所述麦克风的敏感薄膜可以 釆用第三区域的第一衬底上的导电层中的一层或多层形成; 或者, 所述麦克风 的敏感薄膜可以釆用第三区域的第一衬底上的第一电屏蔽层或互连层形成。 图 17〜图 25和图 26〜图 34分别针对压力传感器和麦克风的不同结构进行了 说明, 在实际中, 本领域技术人员可以根据工艺的需要进行自由组合, 灵活地 设置集成 MEMS器件的内部结构,可以将图 17〜图 25与图 26〜图 34中的压力传感 器和麦克风的不同结构进行自由灵活的组合,在此不再——列举,基于上述实 施例本领域技术人员知晓如何变通形成, 而且上述实施例也可以说明, 釆用本 发明的方法可以灵活地根据实际器件以及设计的需要进行灵活布局,以达到不 同的目的, 而且还可以减小 MEMS器件的体积的目的。 再者, 上述的形成集成 MEMS器件的方法中, 所述惯性传感器仅以加速 度传感器的 X轴或者 Y轴传感器为例加以说明, 而且在 X轴或者 Y轴传感器的结 构中, 上述实施例中也未将所有结构图示和说明,仅选取了比较有典型意义的 X轴或者 Y轴传感器的固定电极、 可动电极、 第一密封传感器结构、 第二密封 了压力传感器的固定电极、 压力传感器的可动电极和 /或敏感薄膜的形成方法 进行了图示和说明; 对于麦克风,选取了麦克风的背板电极和麦克风的敏感薄 膜及其形成方法进行了说明; 同时, 前述实施例中还图示和说明了第一子互连 线、 第二子互连线、 第一惯性传感器结构、 第一压力传感器结构的形成方法, 所述第一子互连线、 第二子互连线、 第一惯性传感器结构、 第一压力传感器结 构、第二压力传感器结构和麦克风结构用于表示集成 MEMS器件中可能应用到 的其他结构,在此图示和说明用于向本领域技术人员显示, 釆用本发明实施例 的制备集成 MEMS器件的方法不但可以形成悬浮可动的惯性传感器和压力传 感器的可动电极、 惯性传感器和压力传感器的固定电极、 麦克风的背板电极、 麦克风的敏感薄膜以及固定在所述第一屏蔽电极和第二屏蔽电极上的第一密 封传感器结构和第二密封传感器结构,釆用本发明实施例的方法还可以形成通 过第一绝缘层固定在所述互连层上方的惯性传感器结构、压力传感器结构和麦 克风结构, 即釆用本发明实施例的方法可以形成所述惯性传感器、压力传感器 和麦克风所需要的所有结构。在此特别加以说明, 不应过分限制本发明实施例 的保护范围。 同时, 在上述实施例中, 以加速度传感器的 X轴或 Y轴传感器为例加以详 细说明, 对于加速度传感器 Z轴传感器来说, 也可以釆用本发明实施例的方法 形成, 区别仅仅在于布局、 或者设计不同。 在此特别加以说明, 不应过分限制 本发明的保护范围。 同时, 在上述实施例中, 以加速度传感器的 X轴或 Y轴传感器为例加以详 细说明, 对于转角器来说, 从结构上来说, 其用于测试每个方向的转角器(即 X轴转角器、 Y轴转角器、 Z转角器)结构类似于加速传感器的三个方向的传感 器(即 X轴传感器、 Y轴传感器、 Z传感器)的综合体, 若釆用本发明实施例的 方法可以形成加速度传感器的每个方向的传感器,釆用本发明实施例的方法也 可以形成各个方向的转角器结构, 区别仅在于布局、 或者设计的不同, 故关于 转角器的形成方法不再详述, 基于本领域的普通技术知识以及本发明的实施 例, 本领域技术人员知晓如何变更、 修改或者增补。 本发明的实施例通过釆用第一衬底形成惯性传感器的可移动敏感元素,并 且釆用第一衬底或者第一衬底上的一层或者多层导电层中的一层形成麦克风 的敏感薄膜, 形成的集成 MEMS器件的体积较小, 成本低, 而且封装后可靠 性高。 在本发明的实施例中,还可以釆用第一衬底或者第一衬底上的一层或者多 层导电层中的一层形成压力传感器的敏感薄膜和麦克风的敏感薄膜,从而可以 形成集成了惯性传感器、 压力传感器和麦克风的集成 MEMS器件, 进一步提 高了本发明的集成 MEMS器件的集成度, 并且, 形成的集成 MEMS器件的体 积小, 成本低。 本发明的实施例所述的麦克风空腔位于所述麦克风的敏感薄膜和麦克风 的背板电极的远离所述麦克风通道开口和压力传感器的压力通道开口的一侧; 所述麦克风空腔贯穿所述第二衬底、第二衬底与所述麦克风的敏感薄膜或麦克 风的背板电极之间的材料层, 或所述麦克风空腔贯穿所述第三衬底、第三衬底 与所述麦克风的敏感薄膜和麦克风的背板电极之间的材料层;所述麦克风空腔 作为声音信号和压力信号的共同通道,从而压力信号可以经过麦克风空腔、 麦 克风的背板电极内的孔洞、 麦克风的敏感薄膜内的孔洞到达所述压力通道开 口, 从而压力通道开口无需暴露在外部, 保护了压力传感器, 避免压力传感器 受到外部环境的干扰和污染, 提高了压力传感器的寿命和可靠性。 本发明虽然以较佳实施例公开如上,但其并不是用来限定权利要求, 任何 本领域技术人员在不脱离本发明的精神和范围内,都可以做出可能的变动和修 改, 因此本发明的保护范围应当以本发明权利要求所界定的范围为准。

Claims

权 利 要 求
1、 一种集成 MEMS器件, 其特征在于, 包括: 第一衬底, 包括第一表面和与之相对的第二表面, 所述第一衬底包括第 一区域和第三区域; 至少一层或多层导电层, 形成于所述第一衬底的第一表面; 惯性传感器的可移动敏感元素, 釆用第一区域的第一衬底形成; 第二衬底和第三衬底, 所述第二衬底与所述第一衬底上的导电层的表面 结合 ,所述第三衬底与所述第一衬底形成的惯性传感器的可移动敏感元素一侧 结合,且所述第三衬底和所述第二衬底分别位于惯性传感器的可移动敏感元素 的相 ^两侧; 麦克风的敏感薄膜或背板电极, 至少包括第三区域的第一衬底, 或者至 少包括第三区域的第一衬底上的导电层中的一层。
2、 如权利要求 1所述的集成 MEMS器件, 其特征在于, 所述第一衬底为 单晶半导体材料。
3、 如权利要求 1所述的集成 MEMS器件, 其特征在于, 所述导电层包括 惯性传感器的第一电屏蔽层。
4、 如权利要求 1所述的集成 MEMS器件, 其特征在于, 所述麦克风的敏 感薄膜为多层, 所述麦克风的敏感薄膜包括所述导电层中的一层、 及位于该层导电层之 上或者之下的材料层; 或者, 所述麦克风的敏感薄膜包括第一衬底、 及位于所 述第一衬底之上或之下的材料层。
5、 如权利要求 1所述的集成 MEMS器件, 其特征在于, 所述第三衬底上 形成有与所述第一衬底结合的导电材料层; 麦克风的敏感薄膜或麦克风的背板电极包括位于所述第三区域的第一衬 底上的导电层中的一层, 或者所述第三区域的第一衬底, 或者所述第三衬底上 的导电材料层。
6、 如权利要求 1所述的集成 MEMS器件, 其特征在于, 所述第一衬底还 包括第二区域, 所述集成 MEMS器件还包括: 压力传感器的敏感薄膜或固定电极, 至少包括第二区域的第一衬底, 或 者至少包括第二区域的第一衬底上的导电层中的一层。
7、 如权利要求 6所述的集成 MEMS器件, 其特征在于, 所述导电层包括 惯性传感器、 压力传感器和麦克风的互连层、 惯性传感器的第一电屏蔽层、 惯 性传感器的固定电极的支撑点、惯性传感器的可移动敏感元素的支撑点或者其 任意组合。
8、 如权利要求 6所述的集成 MEMS器件, 其特征在于, 所述导电层包括 惯性传感器的第一电屏蔽层、 惯性传感器、 压力传感器和麦克风的互连层, 所 述互连层比所述第一电屏蔽层更为靠近所述第一衬底的第一表面。
9、 如权利要求 6所述的集成 MEMS器件, 其特征在于, 所述第三衬底上 形成有与所述第一衬底结合的导电材料层; 所述压力传感器的敏感薄膜或固定电极釆用第二区域的第一衬底上的导 电层中的一层形成、或者釆用第二区域的第一衬底形成、或者釆用第三衬底上 的导电材料层形成。
10、 如权利要求 6所述的集成 MEMS器件, 其特征在于, 所述压力传感器 的敏感薄膜包括形成所述惯性传感器的第一电屏蔽层的材料层或者包括形成 所述惯性传感器的互连层的材料层; 所述麦克风的敏感薄膜包括形成所述惯性传感器的第一电屏蔽层的材料 层或包括形成所述惯性传感器的互连层的材料层。
11、 如权利要求 6所述的集成 MEMS器件, 其特征在于, 所述压力传感器 的固定电极釆用第二区域的第一衬底形成,所述压力传感器的固定电极内形成 有孔洞;
所述麦克风的背板电极釆用所述第三区域的第一衬底形成, 所述麦克风 的背板电极内形成有孔洞。
12、 如权利要求 6所述的集成 MEMS器件, 其特征在于, 所述压力传感器 的敏感薄膜与压力传感器的固定电极之间还形成有压力传感器的可移动敏感 元素, 所述压力传感器的可移动敏感元素与所述敏感薄膜之间通过连接臂连 接, 所述压力传感器的可移动敏感元素内形成有孔洞; 所述麦克风的敏感薄膜与麦克风的背板电极之间还形成有麦克风的可移 动敏感元素,所述麦克风的可移动敏感元素与所述麦克风的敏感薄膜之间通过 连接臂连接, 所述麦克风的可移动敏感元素内形成有孔洞。
13、 如权利要求 6所述的集成 MEMS器件, 其特征在于, 所述压力传感器 的敏感薄膜为多层; 所述敏感薄膜包括导电层中的一层、 及位于该层导电层之上或者之下的 材料层; 或者, 所述压力传感器的敏感薄膜包括第一衬底, 及位于所述第一衬底之上或 者之下的材料层。
14、 如权利要求 6所述的集成 MEMS器件, 其特征在于, 还包括: 麦克风通道开口, 暴露出所述麦克风的敏感薄膜或麦克风的背板电极; 麦克风空腔, 位于所述麦克风的敏感薄膜和麦克风的背板电极的远离所 述麦克风通道开口的一侧; 压力通道开口, 暴露出所述压力传感器的敏感薄膜; 所述麦克风的敏感薄膜内形成有孔洞, 所述麦克风的背板电极内形成有 孔洞,所述麦克风的敏感薄膜内的孔洞与所述麦克风的背板电极内的孔洞以及 麦克风空腔和麦克风通道开口相连通; 所述麦克风通道开口与所述压力传感器的压力通道开口位于所述麦克风 的敏感薄膜和麦克风的背板电极的相同一侧; 所述麦克风空腔位于所述麦克风的敏感薄膜和麦克风的背板电极的远离 所述麦克风通道开口和压力传感器的压力通道开口的一侧;所述麦克风空腔贯 穿所述第二衬底、第二衬底与所述麦克风的敏感薄膜或麦克风的背板电极之间 的材料层,或所述麦克风空腔贯穿所述第三衬底、第三衬底与所述麦克风的敏 感薄膜和麦克风的背板电极之间的材料层;所述麦克风空腔作为声音信号和压 力信号的共同通道。
15、 一种集成 MEMS器件的形成方法, 其特征在于, 包括: 提供第二衬底和第三衬底;
提供第一衬底, 所述第一衬底包括第一表面和与之相对的第二表面, 所 述第一衬底包括第一区域和第三区域;
在所述第一衬底的第一表面形成一层或者多层导电层; 将所述第二衬底结合至所述第一衬底上的导电层的表面;
釆用第一区域的第一衬底形成惯性传感器的可移动敏感元素; 形成麦克风的敏感薄膜或背板电极, 所述麦克风的敏感薄膜或背板电极 至少包括所述第三区域的第一衬底、或者至少包括第三区域上的第一衬底上的 导电层中的一层; 将所述第三衬底结合至第一衬底形成的惯性传感器的可移动敏感元素的 一侧,且所述第三衬底和所述第二衬底分别位于所述惯性传感器的可移动敏感 元素的相对两侧。
16、 如权利要求 15所述的集成 MEMS器件的形成方法, 其特征在于, 所 述第一衬底釆用单晶半导体材料。
17、 如权利要求 15所述的集成 MEMS器件的形成方法, 其特征在于, 所 述导电层包括惯性传感器的第一电屏蔽层。
18、 如权利要求 15所述的集成 MEMS器件的形成方法, 其特征在于, 形 成所述导电层包括形成惯性传感器和麦克风的互连层、惯性传感器的第一电屏 蔽层、惯性传感器的固定电极的支撑点、惯性传感器的可移动敏感元素的支撑 点或者其任意组合。
19、 如权利要求 15所述的集成 MEMS器件的形成方法, 其特征在于, 形 成所述导电层包括形成惯性传感器的第一电屏蔽层、惯性传感器和麦克风的互 连层, 所述互连层比所述第一电屏蔽层更为靠近所述第一衬底的第一表面。
20、 如权利要求 19所述的集成 MEMS器件的形成方法, 其特征在于, 所 述麦克风的敏感薄膜釆用形成所述惯性传感器的第一电屏蔽层的材料层形成 , 或所述麦克风的敏感薄膜釆用形成所述惯性传感器的第一电屏蔽层和第一电 屏蔽层之上和 /或之下的材料层形成, 或所述麦克风的敏感薄膜釆用形成所述 惯性传感器的互连层的材料层形成,或所述麦克风的敏感薄膜釆用形成所述惯 性传感器的互连层的材料层和该层互连层之上和 /或之下的材料层形成。
21、 如权利要求 15所述的集成 MEMS器件的形成方法, 其特征在于, 所 述麦克风的背板电极釆用所述第三区域的第一衬底形成,所述集成 MEMS器件 的形成方法还包括在所述麦克风的背板电极内形成孔洞的步骤。
22、 如权利要求 15所述的集成 MEMS器件的形成方法, 其特征在于, 还 包括:在所述麦克风的敏感薄膜与麦克风的背板电极之间形成麦克风的可移动 敏感元素; 在所述麦克风的可移动敏感元素与所述麦克风的敏感薄膜之间形成连接 臂, 所述连接臂将所述麦克风的可移动敏感元素与所述麦克风的敏感薄膜连 接; 在所述麦克风的可移动敏感元素内形成孔洞。
23、 如权利要求 15所述的集成 MEMS器件的形成方法, 其特征在于, 所 述麦克风的敏感薄膜为多层, 所述麦克风的敏感薄膜包括导电层中的一层、 及位于该层导电层之上或 者之下的材料层; 或者 所述麦克风的敏感薄膜包括第一衬底及位于所述第一衬底之上或之下的 材料层。
24、 如权利要求 15所述的集成 MEMS器件的形成方法, 其特征在于, 还 包括: 在所述第三衬底上形成与所述第一衬底结合的导电材料层; 所述麦克风 的敏感电极或背板电极釆用第三区域的第一衬底上的导电层中的一层、或者所 述第三区域的第一衬底或所述第三衬底上的导电材料层形成。
25、 如权利要求 15所述的集成 MEMS器件的形成方法, 其特征在于, 所 述第一衬底还包括第二区域, 所述集成 MEMS器件的形成方法还包括: 形成压力传感器的敏感薄膜或固定电极, 所述压力传感器的敏感薄膜或 固定电极至少包括所述第二区域的第一衬底、或者至少包括第二区域的第一衬 底上的导电层中的一层。
26、 如权利要求 25所述的集成 MEMS器件的形成方法, 其特征在于, 所 述导电层包括惯性传感器、压力传感器和麦克风的互连层、惯性传感器的第一 电屏蔽层、惯性传感器的固定电极的支撑点、惯性传感器的可移动敏感元素的 支撑点或者其任意组合。
27、 如权利要求 25所述的集成 MEMS器件的形成方法, 其特征在于, 所 述导电层包括惯性传感器的第一电屏蔽层、惯性传感器、压力传感器和麦克风 的互连层, 所述互连层比所述第一电屏蔽层更为靠近所述第一衬底的第一表 面。
28、 如权利要求 25所述的集成 MEMS器件的形成方法, 其特征在于, 所 述压力传感器的敏感薄膜釆用形成所述惯性传感器的第一电屏蔽层的材料层 形成,或所述压力传感器的敏感薄膜釆用形成所述惯性传感器的第一电屏蔽层 和所述第一电屏蔽层之上和 /或之下的材料层形成, 或所述压力传感器的敏感 薄膜釆用形成所述惯性传感器的互连层的材料层形成,或所述压力传感器的敏 感薄膜釆用形成所述惯性传感器的互连层和所述互连层之上和 /或之下的材料 层形成。
29、 如权利要求 25所述的集成 MEMS器件的形成方法, 其特征在于, 还 包括: 在所述第三衬底上形成与所述第一衬底结合的导电材料层; 所述压力传感器的敏感薄膜或固定电极釆用第二区域的第一衬底上的导 电层中的一层、或者釆用第二区域的第一衬底、或者釆用第三衬底上的导电材 料层形成。
30、 如权利要求 25所述的集成 MEMS器件的形成方法, 其特征在于, 所 述压力传感器的敏感薄膜釆用所述第一衬底形成;所述压力传感器的固定电极 釆用第三衬底上的导电材料层形成。
31、 如权利要求 25所述的集成 MEMS器件的形成方法, 其特征在于, 所 述压力传感器的固定电极釆用第二区域的第一衬底形成,所述集成 MEMS器件 的形成方法还包括在所述压力传感器的固定电极内形成孔洞的步骤。
32、 如权利要求 25所述的集成 MEMS器件的形成方法, 其特征在于, 还 包括: 在所述压力传感器的敏感薄膜与压力传感器的固定电极之间形成压力传 感器的可移动敏感元素; 在所述压力传感器的可移动敏感元素与所述敏感薄膜之间形成连接彼此 的连接臂;
在所述压力传感器的可移动敏感元素内形成孔洞。
33、 如权利要求 25所述的集成 MEMS器件的形成方法, 其特征在于, 所 述压力传感器的敏感薄膜为多层;
所述压力传感器的敏感薄膜包括导电层中的一层、 及位于导电层中之上 或者之下的材料层; 或者 所述压力传感器的敏感薄膜包括第一衬底、 及位于第一衬底之上或者之 下的材料层。
34、 如权利要求 25所述的集成 MEMS器件的形成方法, 其特征在于, 还 包括: 形成麦克风通道开口, 暴露出麦克风的敏感薄膜或麦克风的背板电极; 形成麦克风空腔, 所述麦克风空腔位于所述麦克风的敏感薄膜和麦克风 的背板电极的远离所述麦克风通道开口的一侧; 形成压力通道开口, 暴露出所述压力传感器的敏感薄膜; 在所述麦克风的敏感薄膜内形成孔洞, 在所述麦克风的背板电极形成孔 洞,所述麦克风的敏感薄膜内的孔洞与所述麦克风的背板电极内的孔洞以及麦 克风空腔和麦克风通道开口相连通; 所述麦克风通道开口与所述压力传感器的压力通道开口位于所述麦克风 的敏感薄膜和麦克风的背板电极的相同一侧; 所述麦克风空腔位于所述麦克风的敏感薄膜和麦克风的背板电极的远离 所述麦克风通道开口和压力传感器的压力通道开口的一侧;所述麦克风空腔贯 穿所述第二衬底、第二衬底与所述麦克风的敏感薄膜或麦克风的背板电极之间 的材料层, 或所述麦克风空腔贯穿所述第三衬底、第三衬底与所述麦克风的敏 感薄膜和麦克风的背板电极之间的材料层;所述麦克风空腔作为声音信号和压 力信号的共同通道。
35、 如权利要求 25所述的集成 MEMS器件的形成方法, 其特征在于, 所 述第三衬底上还形成有压焊版片, 所述集成 MEMS器件的形成方法还包括: 形成麦克风通道开口, 暴露出麦克风的敏感薄膜或麦克风的背板电极; 形成麦克风空腔,所述麦克风空腔位于所述麦克风的敏感薄膜和麦克风的 背板电极的远离所述麦克风通道开口的一侧;
形成压力通道开口, 暴露出所述压力传感器的敏感薄膜; 在形成所述麦克风通道开口或麦克风空腔或压力通道开口的同时暴露出 所述压焊版片。
PCT/CN2012/071491 2011-03-15 2012-02-23 集成mems器件及其形成方法 WO2012122876A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110061564.2 2011-03-15
CN 201110061564 CN102180435B (zh) 2011-03-15 2011-03-15 集成mems器件及其形成方法

Publications (1)

Publication Number Publication Date
WO2012122876A1 true WO2012122876A1 (zh) 2012-09-20

Family

ID=44566765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071491 WO2012122876A1 (zh) 2011-03-15 2012-02-23 集成mems器件及其形成方法

Country Status (2)

Country Link
CN (1) CN102180435B (zh)
WO (1) WO2012122876A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104891418A (zh) * 2015-05-29 2015-09-09 歌尔声学股份有限公司 Mems压力传感器、mems惯性传感器集成结构
DE102019202794B3 (de) * 2019-03-01 2019-11-07 Robert Bosch Gmbh Mikromechanische Sensorvorrichtung und entsprechendes Herstellungsverfahren

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102180435B (zh) * 2011-03-15 2012-10-10 迈尔森电子(天津)有限公司 集成mems器件及其形成方法
CN102183677B (zh) * 2011-03-15 2012-08-08 迈尔森电子(天津)有限公司 集成惯性传感器与压力传感器及其形成方法
US9139420B2 (en) * 2012-04-18 2015-09-22 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS device structure and methods of forming same
CN103373698B (zh) * 2012-04-26 2015-09-16 张家港丽恒光微电子科技有限公司 制作mems惯性传感器的方法及mems惯性传感器
US9194882B2 (en) * 2013-08-05 2015-11-24 Robert Bosch Gmbh Inertial and pressure sensors on single chip
US20150102437A1 (en) * 2013-10-14 2015-04-16 Freescale Semiconductor, Inc. Mems sensor device with multi-stimulus sensing and method of fabrication
DE102014200512B4 (de) * 2014-01-14 2017-06-08 Robert Bosch Gmbh Mikromechanische Drucksensorvorrichtung und entsprechendes Herstellungsverfahren
DE102014200507A1 (de) * 2014-01-14 2015-07-16 Robert Bosch Gmbh Mikromechanische Drucksensorvorrichtung und entsprechendes Herstellungsverfahren
CN104944359B (zh) * 2014-03-25 2017-02-22 中芯国际集成电路制造(上海)有限公司 Mems器件及其形成方法
CN105428208B (zh) * 2014-09-18 2018-03-09 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法、半导体结构的处理方法
CN104796832B (zh) * 2015-02-16 2018-10-16 迈尔森电子(天津)有限公司 Mems麦克风及其形成方法
CN104883652B (zh) * 2015-05-29 2019-04-12 歌尔股份有限公司 Mems麦克风、压力传感器集成结构及其制造方法
CN104891419B (zh) * 2015-06-29 2016-11-09 歌尔股份有限公司 一种mems惯性传感器及其制造方法
CN111204703B (zh) * 2016-05-19 2023-02-28 苏州明皜传感科技有限公司 微机电系统装置的制造方法
CN107548001B (zh) * 2017-09-18 2020-04-24 联想(北京)有限公司 传感器组及电子设备
DE102018221108A1 (de) * 2018-12-06 2020-06-10 Robert Bosch Gmbh Verfahren zum Einstellen eines Drucks in einer mithilfe eines Substrats und einer Substratkappe ausgebildeten Kaverne, Halbleitersystem, insbesondere Wafersystem
CN111107473B (zh) * 2019-12-13 2022-02-25 潍坊歌尔微电子有限公司 Mic和压力传感器的集成结构与方法
US20220289556A1 (en) * 2021-03-12 2022-09-15 Taiwan Semiconductor Manufacturing Co., Ltd. Mems microphone and mems accelerometer on a single substrate
CN114620671B (zh) * 2022-05-16 2022-08-30 苏州敏芯微电子技术股份有限公司 一种微机电系统传感器及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1675125A (zh) * 2002-06-21 2005-09-28 东京毅力科创株式会社 Mems阵列、其制造方法以及mems器件制造方法
CN1715838A (zh) * 2005-06-30 2006-01-04 西安交通大学 一种多传感器集成芯片
CN1813192A (zh) * 2003-04-28 2006-08-02 模拟器件公司 六自由度微机械多传感器
US20060185429A1 (en) * 2005-02-21 2006-08-24 Finemems Inc. An Intelligent Integrated Sensor Of Tire Pressure Monitoring System (TPMS)
CN1910428A (zh) * 2003-12-05 2007-02-07 霍尼韦尔国际公司 在深度集成的导航系统中使用多个辅助传感器的系统和方法
US20070125161A1 (en) * 2005-12-01 2007-06-07 Janusz Bryzek Integrated tire pressure sensor system
CN1980854A (zh) * 2004-06-30 2007-06-13 英特尔公司 集成mems和无源元件的组件
CN102158787A (zh) * 2011-03-15 2011-08-17 迈尔森电子(天津)有限公司 Mems麦克风与压力集成传感器及其制作方法
CN102156203A (zh) * 2011-03-15 2011-08-17 迈尔森电子(天津)有限公司 Mems惯性传感器及其形成方法
CN102183677A (zh) * 2011-03-15 2011-09-14 迈尔森电子(天津)有限公司 集成惯性传感器与压力传感器及其形成方法
CN102180435A (zh) * 2011-03-15 2011-09-14 迈尔森电子(天津)有限公司 集成mems器件及其形成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100375234C (zh) * 2003-04-28 2008-03-12 模拟器件公司 具有同轴和离轴方位的微机械设备结构
CN1272604C (zh) * 2005-03-17 2006-08-30 西安交通大学 基于soi技术集成多传感器芯片

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1675125A (zh) * 2002-06-21 2005-09-28 东京毅力科创株式会社 Mems阵列、其制造方法以及mems器件制造方法
CN1813192A (zh) * 2003-04-28 2006-08-02 模拟器件公司 六自由度微机械多传感器
CN1910428A (zh) * 2003-12-05 2007-02-07 霍尼韦尔国际公司 在深度集成的导航系统中使用多个辅助传感器的系统和方法
CN1980854A (zh) * 2004-06-30 2007-06-13 英特尔公司 集成mems和无源元件的组件
US20060185429A1 (en) * 2005-02-21 2006-08-24 Finemems Inc. An Intelligent Integrated Sensor Of Tire Pressure Monitoring System (TPMS)
CN1715838A (zh) * 2005-06-30 2006-01-04 西安交通大学 一种多传感器集成芯片
US20070125161A1 (en) * 2005-12-01 2007-06-07 Janusz Bryzek Integrated tire pressure sensor system
CN102158787A (zh) * 2011-03-15 2011-08-17 迈尔森电子(天津)有限公司 Mems麦克风与压力集成传感器及其制作方法
CN102156203A (zh) * 2011-03-15 2011-08-17 迈尔森电子(天津)有限公司 Mems惯性传感器及其形成方法
CN102183677A (zh) * 2011-03-15 2011-09-14 迈尔森电子(天津)有限公司 集成惯性传感器与压力传感器及其形成方法
CN102180435A (zh) * 2011-03-15 2011-09-14 迈尔森电子(天津)有限公司 集成mems器件及其形成方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104891418A (zh) * 2015-05-29 2015-09-09 歌尔声学股份有限公司 Mems压力传感器、mems惯性传感器集成结构
US10407300B2 (en) 2015-05-29 2019-09-10 Goertek.Inc Integrated structure of mems pressure sensor and mems inertia sensor
DE102019202794B3 (de) * 2019-03-01 2019-11-07 Robert Bosch Gmbh Mikromechanische Sensorvorrichtung und entsprechendes Herstellungsverfahren

Also Published As

Publication number Publication date
CN102180435B (zh) 2012-10-10
CN102180435A (zh) 2011-09-14

Similar Documents

Publication Publication Date Title
WO2012122876A1 (zh) 集成mems器件及其形成方法
US9448251B2 (en) Integrated inertial sensor and pressure sensor, and forming method therefor
US10591508B2 (en) MEMS inertial sensor and forming method therefor
US9046546B2 (en) Sensor device and related fabrication methods
US7327003B2 (en) Sensor system
CN104773705B (zh) 微机械压力传感器装置以及相应的制造方法
JP5541306B2 (ja) 力学量センサ装置およびその製造方法
US8522613B2 (en) Acceleration sensor
US10371714B2 (en) Teeter-totter type MEMS accelerometer with electrodes on circuit wafer
US9452920B2 (en) Microelectromechanical system device with internal direct electric coupling
US10155655B2 (en) MEMS devices and fabrication methods thereof
TWI665434B (zh) 微機械壓力感測器裝置及相關製造方法(二)
US20110031565A1 (en) Micromachined devices and fabricating the same
US20150061049A1 (en) Micromechanical component for a capacitive sensor device, and manufacturing method for a micromechanical component for a capacitive sensor device
TW201538945A (zh) 微機械壓力感測器裝置及相關製造方法(一)
JP2006263902A (ja) 集積化マイクロエレクトロメカニカルシステムおよびその製造方法
US8685776B2 (en) Wafer level packaged MEMS device
US20170115322A1 (en) Mems sensor device having integrated multiple stimulus sensing
TW201425205A (zh) 具多重電極的微機電裝置及其製作方法
US9714165B1 (en) MEMS sensor
CN104793015A (zh) 加速度计内嵌压力传感器的单硅片复合传感器结构及方法
US20210380403A1 (en) Stress-isolated mems device comprising substrate having cavity and method of manufacture
JP2018021935A (ja) 可動z軸検知素子を備えるMEMSセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12757116

Country of ref document: EP

Kind code of ref document: A1