WO2012121391A1 - 混練装置 - Google Patents

混練装置 Download PDF

Info

Publication number
WO2012121391A1
WO2012121391A1 PCT/JP2012/056180 JP2012056180W WO2012121391A1 WO 2012121391 A1 WO2012121391 A1 WO 2012121391A1 JP 2012056180 W JP2012056180 W JP 2012056180W WO 2012121391 A1 WO2012121391 A1 WO 2012121391A1
Authority
WO
WIPO (PCT)
Prior art keywords
kneading
oxygen concentration
purge
kneading chamber
unit
Prior art date
Application number
PCT/JP2012/056180
Other languages
English (en)
French (fr)
Inventor
赤井 康昭
和田 智宏
智之 羽路
Original Assignee
大陽日酸株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陽日酸株式会社 filed Critical 大陽日酸株式会社
Priority to JP2013503633A priority Critical patent/JP5453572B2/ja
Priority to CN2012800060694A priority patent/CN103328087A/zh
Priority to US14/003,875 priority patent/US20140016428A1/en
Publication of WO2012121391A1 publication Critical patent/WO2012121391A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/801Valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/22Component parts, details or accessories; Auxiliary operations
    • B29B7/28Component parts, details or accessories; Auxiliary operations for measuring, controlling or regulating, e.g. viscosity control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/22Component parts, details or accessories; Auxiliary operations
    • B29B7/24Component parts, details or accessories; Auxiliary operations for feeding
    • B29B7/242Component parts, details or accessories; Auxiliary operations for feeding in measured doses
    • B29B7/244Component parts, details or accessories; Auxiliary operations for feeding in measured doses of several materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/22Component parts, details or accessories; Auxiliary operations
    • B29B7/28Component parts, details or accessories; Auxiliary operations for measuring, controlling or regulating, e.g. viscosity control
    • B29B7/286Component parts, details or accessories; Auxiliary operations for measuring, controlling or regulating, e.g. viscosity control measuring properties of the mixture, e.g. temperature, density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/802Constructions or methods for cleaning the mixing or kneading device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/845Venting, degassing or removing evaporated components in devices with rotary stirrers

Definitions

  • the present invention relates to a kneading apparatus used when kneading a material to be kneaded such as rubber or sulfur, which is a raw material for tires, for example.
  • a kneading apparatus used when kneading a material to be kneaded such as rubber or sulfur, which is a raw material for tires, for example.
  • additives and compounding agents such as sulfur, carbon black, oil, anti-aging agents, vulcanization accelerators, etc. are added to the raw rubber and kneaded.
  • compounding agents such as sulfur, carbon black, oil, anti-aging agents, vulcanization accelerators, etc.
  • kneading is performed in a heated and / or pressurized state.
  • kneading machines such as Banbury mixers are widely used.
  • the Banbury mixer puts a material to be kneaded into a kneading chamber having a closed structure, and then puts the material to be plasticized into a plasticized state while heating and / or pressurizing, and a large shear force is applied by a pair of rotors that are reversed in this state. It is a closed mixer that is fed and kneaded. Further, in the kneading operation by this Banbury mixer, the temperature of the kneading chamber, the current value of the motor driving the rotor, etc. are measured and the state of the material to be kneaded in this kneading chamber is grasped and its operation is managed. .
  • inactive substances such as nitrogen and carbon dioxide are used so that dusts such as sulfur scattered in the kneading chamber during the kneading do not react with oxygen in the kneading chamber and ignite.
  • a gas is introduced into the kneading chamber, and the oxygen concentration in the kneading chamber is set to the ignition limit or less (see, for example, Patent Documents 1 and 2).
  • the oxygen concentration in the kneading chamber described above is constantly measured. Specifically, the atmospheric gas in the kneading chamber is always led to the oxygen concentration meter through a pipe connected to the kneading chamber. Further, in order to prevent the dust contained in the atmosphere gas in the kneading chamber from adversely affecting the oxygen concentration meter, the middle portion of the piping toward the oxygen concentration meter is included in the atmosphere gas flowing in the piping. A filter that collects dust and the like is generally provided.
  • the dust collected by the filter is highly viscous and the diameter of the pipe is small (about 6 mm), so the pipe and the filter are likely to be clogged. Therefore, when the oxygen concentration is constantly measured during the kneading operation as in the conventional kneader, it is necessary to frequently perform troublesome operations such as cleaning of the pipes and replacement of the filters.
  • a kneading step of the material to be kneaded that is, a combination of charging, kneading, and discharging of the material to be kneaded is set as one batch, For example, it may be repeated about 200 batches per production cycle. For this reason, it has become necessary to perform the above-described operations such as cleaning the pipe and replacing the filter once a day at the earliest.
  • An object of the present invention is to provide a kneading apparatus capable of stably maintaining a target oxygen concentration in a kneading chamber even if the number of cleanings and replacements is reduced or eliminated.
  • the apparatus is an apparatus represented by the following (1).
  • the apparatus of the first aspect of the present application preferably has the following conditions.
  • (2) The apparatus of (1) is a batch-type kneading apparatus that repeats the kneading process of the material to be kneaded twice or more batches, with the batch of the material to be kneaded, kneading and discharging as one batch.
  • the calculation unit repeats the calculation for maintaining the target oxygen concentration for each batch, Based on the calculation result, the control unit controls the purge flow rate and purge time of the inert gas introduced into the kneading chamber by the gas introduction unit.
  • control unit exposes the kneading chamber to the atmosphere before the start of each batch, seals the kneading chamber after the exposure to the atmosphere, and deactivates the kneading chamber by the gas introduction unit. Start introducing gas.
  • the apparatus of (2) or (3) is exposed to the atmosphere in the kneading chamber before the start of the first batch, and then sealed, After the gas introduction unit introduces the inert gas into the kneading chamber until the concentration measuring unit measures the oxygen concentration in the sealed kneading chamber until the kneading chamber reaches a target oxygen concentration, While the concentration measurement unit measures the oxygen concentration in the kneading chamber for a certain period, the calculation unit obtains a purge flow rate of the inert gas that cancels out the increase in oxygen concentration within the period, by the calculation, The calculated value is used as a reference value for the arithmetic unit to maintain the target oxygen concentration in the kneading chamber during kneading in the first batch.
  • the concentration measuring unit measures the oxygen concentration
  • the flow rate of the inert gas that cancels the difference is calculated, The calculated value is used as a correction value for maintaining the target oxygen concentration in the kneading chamber during kneading in the next batch performed after the batch in which the oxygen concentration actual measurement is performed.
  • the control unit controls the purge flow rate and purge time of the inert gas introduced into the kneading chamber during kneading by the gas introduction unit.
  • the device of (7) is Periodically measure the oxygen concentration in the kneading chamber by the concentration measuring unit, When the oxygen concentration in the kneading chamber is below the allowable range, This is notified and the measurement of the oxygen concentration in the kneading chamber by the concentration measuring unit is continued until the batch is completed.
  • the apparatus of (1) to (8) includes a pipe for guiding the atmospheric gas in the kneading chamber to the concentration measuring unit; A filter that collects dust contained in the atmospheric gas flowing in the pipe; A second gas introduction unit that introduces a reverse purge gas from the concentration measurement unit side of the pipe toward the filter.
  • the device of (9) is A first flow of the atmospheric gas in the kneading chamber through the pipe toward the concentration measuring unit; A second flow of reverse purge gas introduced from the second gas introduction part through the pipe toward the filter; A switching unit for switching between While the concentration measuring unit measures the oxygen concentration in the kneading chamber, the switching unit opens the first flow and cuts off the second flow, While the concentration measuring unit interrupts the measurement of the oxygen concentration in the kneading chamber, the switching unit interrupts the first flow and opens the second flow, whereby the concentration of the pipe is A reverse purge gas is introduced from the measurement unit side toward the filter.
  • the apparatus of (10) includes a third gas introduction unit that introduces zero gas into the concentration measurement unit, While the concentration measuring unit measures the oxygen concentration in the kneading chamber, the switching unit causes a third flow of zero gas introduced from the third gas introducing unit through the pipe toward the concentration measuring unit. While blocking While the concentration measuring unit interrupts the measurement of the oxygen concentration in the kneading chamber, the switching unit is opened and the third flow is directed to the concentration measuring unit. (12) In the apparatuses (9) to (12), the reverse purge gas is an inert gas. (13) In the devices of (11) and (12), the zero gas is an inert gas.
  • the kneading apparatus is the following apparatus (14).
  • a kneading chamber for kneading the material to be kneaded;
  • a first gas introduction part for introducing an inert gas into the kneading chamber;
  • a concentration measuring unit for measuring the oxygen concentration in the kneading chamber;
  • a pipe for guiding the atmospheric gas in the kneading chamber to the concentration measuring unit;
  • a filter that collects dust contained in the atmospheric gas flowing in the pipe;
  • a kneading apparatus comprising: a second gas introduction unit that introduces a reverse purge gas from the concentration measurement unit side of the pipe toward the filter.
  • the device (14) preferably has the following characteristics.
  • the device of (14) is A first flow of the atmospheric gas in the kneading chamber through the pipe toward the concentration measuring unit; A second flow of reverse purge gas introduced from the second gas introduction part through the pipe toward the filter; A switching unit for switching between While the concentration measuring unit measures the oxygen concentration in the kneading chamber, the switching unit opens the first flow and cuts off the second flow, While the concentration measuring unit interrupts the measurement of the oxygen concentration in the kneading chamber, the switching unit interrupts the first flow and opens the second flow, whereby the concentration of the pipe is A reverse purge gas is introduced from the measurement unit side toward the filter.
  • the device of (15) is A third gas introduction unit for introducing zero gas into the concentration measurement unit; While the concentration measuring unit is measuring the oxygen concentration in the kneading chamber, the switching unit causes a third flow in which the zero gas introduced from the third gas introducing unit through the pipe is directed to the concentration measuring unit. While blocking While the concentration measuring unit interrupts the measurement of the oxygen concentration in the kneading chamber, the switching unit is opened and the third flow is directed to the concentration measuring unit.
  • the devices of (14) to (16) are A dust collector for collecting dust in the kneading chamber; Piping connecting between the dust collector and the filter; An opening and closing valve for opening and closing the pipe, While the concentration measuring unit stops measuring the oxygen concentration, the on-off valve opens the pipe, and dust collected in the filter is removed through the pipe while being sucked by the dust collector.
  • the reverse purge gas is an inert gas.
  • the zero gas is an inert gas.
  • the third aspect of the present invention is the following kneading method. (20) A method in which a material to be kneaded is charged into a kneading chamber, kneaded and discharged using the kneading apparatus of (1), (A) The calculation unit performs a calculation for setting the target oxygen concentration in the kneading chamber while comparing the actually measured oxygen concentration measured by the concentration measurement unit during kneading with a preset target oxygen concentration.
  • the kneading method (20) preferably includes the following features.
  • the combination of step (a) and step (b) includes substeps represented by the following (1) to (5): (1) Obtain an initial purge time for setting the target oxygen concentration in the kneading chamber sealed after exposure to the atmosphere based on a preset initial purge flow rate value, Introducing an inert gas at the initial purge flow rate into the kneading chamber and stopping the introduction of the inert gas after the initial purge time has elapsed, An initial purge step for measuring a change in oxygen concentration in the kneading chamber over a period of time; (2) an initial batch process including the following steps (2a) to (2c) in this order; (2a) A purge step before kneading, in which an object to be kneaded is sealed after being put into the kneading chamber, and an inert gas is introduced into the kneading chamber at a predetermined purge flow
  • a purge step during kneading to measure the oxygen concentration change during the kneading (4c) A discharging step of discharging the material to be kneaded from the kneading chamber; (5) A batch process after operation stop, including the following steps (5a) to (5c) in this order: (5a) Purge step before kneading, in which the material to be kneaded is sealed in the kneading chamber after the batch of materials to be kneaded has been discharged, and an inert gas is introduced into the kneading chamber at a predetermined purge flow rate and purge time.
  • step (3) After the purge time elapses, the kneading of the material to be kneaded is started, and the inert gas is introduced into the kneading chamber at the same purge flow rate as the purge process during kneading in the previous batch process; (5c) A discharging step of discharging the material to be kneaded from the kneading chamber; In the sub-step, after (i) step (4) is performed, or (ii) step (5) is repeated a predetermined number of times, and subsequently, the change in oxygen concentration during kneading is measured in the purge step during kneading. After performing the batch process that is performed, after this batch process is performed, Returning to step (3), confirmation is performed.
  • the “part” may mean a member, an apparatus, a process, a means, a method, or the like.
  • a calculation for setting the target oxygen concentration in the kneading chamber to a target oxygen concentration is performed while comparing the preset target oxygen concentration and the measured actual oxygen concentration, and based on the calculation result.
  • the first aspect of the present invention it is not necessary to always measure the oxygen concentration in the kneading chamber. That is, the number of cleanings and replacements can be reduced or eliminated. For this reason, it is possible to suppress clogging of the piping and the filter described above.
  • dust accumulated in the filter and the pipe can be blown off to the kneading chamber side by introducing the reverse purge gas from the concentration measuring unit side of the pipe toward the filter.
  • clogging of piping and a filter is suppressed, and it becomes possible to stably measure the oxygen concentration in the kneading chamber without frequently performing operations such as piping cleaning and filter replacement.
  • FIG. 1 is a schematic diagram of a Banbury mixer showing an example of a kneading apparatus to which the first aspect of the present invention is applied.
  • FIG. 2 is a flowchart for explaining the operation control method of the kneading apparatus to which the present invention is applied.
  • FIG. 3 is a graph showing the initial purge, which was measured by an oxygen concentration meter and the change in the purge flow rate of the inert gas introduced into the closed kneading chamber without introducing the material to be kneaded after exposure to the atmosphere. It is a graph which shows the result of having measured the change of the oxygen concentration in a kneading chamber.
  • FIG. 1 is a schematic diagram of a Banbury mixer showing an example of a kneading apparatus to which the first aspect of the present invention is applied.
  • FIG. 2 is a flowchart for explaining the operation control method of the kneading apparatus to which the present invention is applied.
  • FIG. 4 is a graph showing an initial batch, in which the material to be kneaded is introduced after being exposed to the atmosphere and introduced into a sealed kneading chamber, and the change in the purge flow rate of the inert gas and the kneading measured by an oximeter It is a graph which shows the result of having measured indoor oxygen concentration change.
  • FIG. 5 shows that in the second batch and subsequent batches, the concentration change deviated from the allowable value in the previous batch, so the calculation was repeated and the inert gas introduced into the kneading chamber at the flow rate corrected by the calculation.
  • FIG. 6 is a graph showing the results of measuring the change in the purge flow rate of the inert gas introduced into the kneading chamber and the change in the oxygen concentration (zero gas measurement) using an oximeter in the batch after the operation was stopped.
  • FIG. 7 is a graph showing the results of measuring the change in the purge flow rate of the inert gas introduced into the kneading chamber and the change in the oxygen concentration with an oximeter in batch processing performed continuously in the example. .
  • FIG. 6 is a graph showing the results of measuring the change in the purge flow rate of the inert gas introduced into the kneading chamber and the change in the oxygen concentration (zero gas measurement) using an oximeter in the batch after the operation was stopped.
  • FIG. 7 is a graph showing the results of measuring the change in the purge flow rate of the inert gas introduced into the kneading chamber and the change in the oxygen concentration with an oximeter in batch processing performed continuously in the example. .
  • FIG. 8 is a schematic diagram of a Banbury mixer showing an example of a kneading apparatus to which the second aspect of the present invention is applied.
  • FIG. 9 is a schematic diagram showing a modification of the Banbury mixer shown in FIG. 8 and using a two-way valve instead of a four-way valve.
  • FIG. 10 shows a modification of the Banbury mixer shown in FIG. 8 and is a schematic diagram showing a case where a three-way valve is used instead of the four-way valve.
  • FIG. 11 is a schematic diagram illustrating a modification of the Banbury mixer illustrated in FIG. 8, in which a dust collector and a filter are connected to remove dust.
  • the kneading apparatus to which the first aspect of the present invention is applied is a Banbury mixer 1 that is suitably used when manufacturing rubber products such as tires as shown in FIG.
  • a material obtained by adding an additive or a compounding agent such as sulfur, carbon black, oil, an antioxidant, a vulcanization accelerator, or the like to a raw material rubber is heated and kneaded. Or kneaded under pressure.
  • the Banbury mixer 1 includes a kneading chamber 2 for kneading the material to be kneaded G, and a first gas introduction line for introducing an inert gas into the kneading chamber 2, that is, a first Gas introducing section (first gas introducing means) 3, an oxygen concentration meter for measuring the oxygen concentration in the kneading chamber 2, that is, a concentration measuring section (concentration measuring means) 4, and the atmosphere gas in the kneading chamber is changed to an oxygen concentration meter 4, pipes 5 a and 5 b leading to 4, a filter 6 that collects dust and the like contained in the atmospheric gas flowing in the inlet (one) pipe 5 a, and an oxygen concentration meter 4 in the outlet (other) pipe 5 b
  • a second gas introduction line (second gas introduction means) 7 for introducing a reverse purge gas from the side toward the filter 6, and a third gas introduction line for introducing zero gas containing no contaminants into the oximeter 4
  • the kneading chamber 2 has a hermetically sealed structure, and a kneading operation is performed by applying a large shearing force to the material to be kneaded G while rotating the pair of rotors 9a and 9b provided in the opposite directions to each other. ing.
  • a charging door 11a for charging the material to be kneaded G before being kneaded conveyed by the belt conveyor 10 or the like is provided in an openable and closable manner.
  • a discharge door 11b for discharging the kneaded material G after mixing to the outside is provided below the kneading chamber 2 so as to be openable and closable. Furthermore, a dust collector 12 for collecting dust and the like in the kneading chamber 2 is provided at the upper portion of the kneading chamber 2.
  • the first gas introduction line 3 is a line through which an inert gas such as nitrogen or carbon dioxide is introduced into the kneading chamber 2 through the first introduction pipe 13 connected to the kneading chamber 2.
  • This line is a pressure regulating valve (reduced pressure) for regulating the pressure of the inert gas flowing through the first introduction pipe 13 between the gas supply source (not shown) for supplying the inert gas and the kneading chamber 2.
  • Valve 14 a shut-off valve (electromagnetic valve) 15 for opening and closing the first introduction pipe 13, a flow meter (FT) 16 for measuring the flow rate of the inert gas flowing through the first introduction pipe 13, and a first
  • the flow rate adjustment valve (FCV) 17 that adjusts the flow rate of the inert gas flowing through the introduction pipe 13 and the flow rate adjustment valve 17 based on the measurement result of the flow meter 16 are used to adjust the flow rate of the first introduction pipe 13. It has a flow rate control device (FIC) 18 that controls the flow rate of the flowing inert gas, and a check valve 19 that prevents the atmosphere in the kneading chamber 2 from flowing into the first introduction pipe 13.
  • FIC flow rate control device
  • the oxygen concentration meter 4 measures the concentration of oxygen contained in the atmosphere gas while sucking the atmosphere gas in the kneading chamber 2 with the pump 4a through the pipes 5a and 5b connected to the kneading chamber 2.
  • the pipes 5 a and 5 b constitute a measurement line that guides the atmospheric gas from which dust and the like have been removed by the filter 6 to the oximeter 4.
  • the filter 6 is connected to these pipes 5a and 5b and is provided so as to be replaceable.
  • the filter 6 to be used if it can collect dust, such as sulfur contained in the atmospheric gas in the kneading chamber 2, it will not specifically limit, A conventionally well-known thing can be used. .
  • a four-way valve (switching means) 20 is arranged between the inlet side pipe 5a and the outlet side pipe 5b.
  • the four-way valve 20 includes a first flow F1 in which the atmospheric gas in the kneading chamber 2 is directed to the oximeter 4 through the inlet-side pipe 5a, and a reverse purge gas introduced from the second gas introduction line 7 on the inlet side.
  • the second gas introduction line 7 is a reverse purge line for introducing the reverse purge gas toward the inlet side pipe 5a through the second introduction pipe 21 connected to the four-way valve 20. Between the gas supply source (not shown) for supplying an inert gas such as nitrogen or carbon dioxide as the reverse purge gas and the four-way valve 20, the flow rate of the reverse purge gas flowing through the second introduction pipe 21 is adjusted.
  • the gas introduction line 7 has a flow rate adjusting valve 22.
  • the third gas introduction line 8 is a zero gas introduction line that introduces zero gas toward the outlet pipe 5b through the third introduction pipe 23 connected to the four-way valve 20.
  • the gas introduction line 8 has a flow rate adjusting valve 24 for adjusting the flow rate of the gas.
  • the material G to be kneaded conveyed on the belt conveyor 10 is put into the kneading chamber 2.
  • the charging door 11a is preferably opened immediately before the material to be kneaded G is charged into the kneading chamber 2 and immediately shut off after the charging.
  • an inert gas is introduced into the kneading chamber 2 through the first gas introduction line 3, and the oxygen concentration in the kneading chamber 2 is set to the ignition limit.
  • the material to be kneaded G may be fed into the kneading chamber 2 while continuing to introduce the inert gas next.
  • the material to be kneaded G is put into the kneading chamber 2, the material to be kneaded G is plasticized while being heated and / or pressurized, and a large shearing force is applied to the pair of rotors 9a and 9b that are reversed in this state. Knead.
  • the discharge door 11b is open
  • the temperature of the kneading chamber 2 and the current value of the motor that drives the rotors 9a and 9b are measured, and the state of the material G to be kneaded in the kneading chamber 2 is grasped. The operation of the mixer is managed.
  • an inert gas is introduced into the kneading chamber 2 through the first gas introduction line 3 with the input door 11 a and the discharge door 11 b of the kneading chamber 2 closed.
  • a target oxygen concentration is set.
  • the oxygen concentration in the kneading chamber 2 is preferably set to 10% by volume or less, which is below the ignition limit.
  • the lower limit value of the concentration is preferably set to a value that does not cause such a problem (for example, 4% by volume or more).
  • the atmospheric gas in the kneading chamber 2 is sucked by the pump 4 a through the pipe 5 a connected to the kneading chamber 2, and the atmospheric gas from which dust or the like has been removed by the filter 6 through the pipe 5 b is oxygenated.
  • the oxygen concentration in the introduced atmospheric gas is measured by the oxygen concentration meter 4. Based on the measured value, the introduction of the inert gas from the first gas introduction line 3 into the kneading chamber 2 is controlled so that the inside of the kneading chamber 2 has the target oxygen concentration.
  • the Banbury mixer 1 includes a calculation unit (calculation unit) 30 that performs a calculation for setting the inside of the kneading chamber 2 to a target oxygen concentration, and a first gas based on a calculation result by the calculation unit 30. And a control unit (control means) 31 for controlling the introduction line 3.
  • a calculation unit (calculation unit) 30 that performs a calculation for setting the inside of the kneading chamber 2 to a target oxygen concentration, and a first gas based on a calculation result by the calculation unit 30.
  • a control unit (control means) 31 for controlling the introduction line 3.
  • the arithmetic unit 30 is composed of a process computer such as a PLC (Programmable Logic Controller), and is electrically connected to the oxygen concentration meter 4.
  • the control unit 31 includes a mass flow controller such as FIC (Flow Indication Controller), and in the present embodiment, the flow rate control device (FIC) 18 is electrically connected to the calculation unit 30 as the control unit 31. ing.
  • the calculation unit 30 sets the kneading chamber 2 to the target oxygen concentration while comparing the actually measured oxygen concentration measured by the oximeter 4 with a preset target oxygen concentration.
  • the control unit 31 controls the purge flow rate and purge time of the inert gas introduced into the kneading chamber 2 through the first gas introduction line 3 based on the calculation result.
  • the Banbury mixer 1 employs a batch system in which the material to be kneaded G is charged, kneaded, and discharged as one batch and the kneading process of the material to be kneaded G is repeated a plurality of batches.
  • the plurality of batches is 2 batches or more, preferably 3 batches or more, and the upper limit is not particularly set and can be arbitrarily selected.
  • the calculation unit 30 repeats the calculation for each batch, and the control unit 31 controls the purge flow rate and purge time of the inert gas introduced into the kneading chamber 2 by the first gas introduction line 3 based on the calculation result. .
  • Step S1 In the Banbury mixer 1 to which the present invention is applied, first, the process proceeds to step S1 (initial purge step) shown in FIG.
  • the initial purge is performed to obtain a reference value for setting the inside of the kneading chamber 2 to the target oxygen concentration without performing the batch process. That is, in the initial purge, the material to be kneaded G is not charged. Specifically, for example, as shown in the graph of FIG. 3, before the material to be kneaded G is put into the kneading chamber 2, the charging door 11a is opened to expose the kneading chamber 2 to the atmosphere.
  • the oxygen concentration in the kneading chamber 2 is set to the oxygen concentration in the atmosphere (about 20.9%).
  • the oxygen concentration measurement is continuously performed except for the calculation stop step described later unless otherwise noted, but the measurement may be interrupted when it is not necessary to perform the oxygen concentration measurement if necessary.
  • . 3 indicates the purge flow rate of the inert gas introduced into the kneading chamber 2, and the broken line in FIG. 3 indicates the oxygen concentration in the kneading chamber 2 measured every second.
  • the inside of the kneading chamber 2 is hermetically sealed without introducing the material to be kneaded G, and the oxygen concentration meter 4 measures the oxygen concentration in the room.
  • the control unit 31 is introduced for a period of time until the oxygen concentration in the kneading chamber 2 reaches a target value (for example, the ignition limit or less) (referred to as an initial purge time; a value obtained from the equation (2) below).
  • the inert gas is introduced from the first gas introduction line 3 into the kneading chamber 2 while keeping the flow rate of the inert gas (referred to as initial purge flow rate) at a predetermined constant value.
  • initial purge flow rate the flow rate of the inert gas
  • the initial purge time Ta is obtained.
  • the target oxygen concentration in the kneading chamber 2 is assumed to be completely mixed with the atmosphere gas in the kneading chamber 2 after exposure to the atmosphere and the inert gas introduced into the kneading chamber 2, the following formula (1) Can be expressed as
  • Xa X0 * exp- (Qa / V0) * Ta (1)
  • Qa is the initial purge flow rate [NL / min]
  • Ta is the initial purge time [seconds]
  • Xa is the (target) oxygen after introducing the inert gas in the kneading chamber 2.
  • X0 represents the oxygen concentration [volume%] before introduction of the inert gas in the kneading chamber 2 (in the atmosphere)
  • V0 represents the internal volume [L] of the kneading chamber 2.
  • N described above for NL / min may represent Normal, and NL / min may simply be expressed as L / min.
  • the initial purge time Ta can be obtained by the following equation (2).
  • Ta ⁇ V0 / Qa * In (Xa / X0) (2)
  • Step S2 the Banbury mixer 1 proceeds to step S2 (initial purge measurement process) shown in FIG.
  • step S2 initial purge measurement process
  • the introduction of the inert gas into the kneading chamber 2 by the initial purge is stopped, and the change in oxygen concentration (referred to as initial purge measurement) by the oxygen concentration meter 4 is measured for a certain period (initial purge measurement time).
  • the oxygen concentration in the kneading chamber 2 gradually increases after the introduction of the inert gas is stopped, as shown in the graph of FIG.
  • the reason why the oxygen concentration increases is that a negative pressure is generated in the kneading chamber 2 by the operation of the dust collector 12, and outside air is introduced from the gap of the kneading chamber 2.
  • the calculation unit 30 determines the lowest point (actual value a in FIG. 3) and the highest point (actual measurement in FIG. 3) within the initial purge measurement time. A value b) is obtained, and an increase in oxygen concentration (ba or Xc-Xb) within the initial purge measurement time is obtained by calculation. In addition, the calculation unit 30 calculates the flow rate of the inert gas (referred to as an initial purge predicted flow rate Qc) that cancels out the increase in the oxygen concentration within the initial purge measurement time from the above data.
  • an initial purge predicted flow rate Qc the flow rate of the inert gas
  • the initial purge predicted flow rate Qc [NL / min] can be obtained by the following equation (3).
  • Qc V0 / Tc * In (Xc / Xb) (3)
  • ⁇ Xc Xb * exp ⁇ (Qc / V0) * Tc )
  • Tc is the initial purge measurement time [second]
  • Xb is the lowest point of the oxygen concentration [volume%] within the initial purge measurement time
  • Xc is within the initial purge measurement time. This represents the highest rise point [volume%] of the oxygen concentration.
  • initial purge flow rate Qa set to a constant value
  • initial purge time Ta initial purge time Ta
  • Estimated initial purge flow rate Qc the flow rate of the inert gas which is predicted by the measurement and calculation in the initial purge and offsets the increase in oxygen concentration
  • the initial purge measurement time Tc set to a constant value
  • Step S3 the Banbury mixer 1 proceeds to the initial batch shown in FIG. That is, the process proceeds to step S3 (pre-kneading purge step) shown in FIG.
  • a pre-kneading purge is performed to set the inside of the kneading chamber 2 to the target oxygen concentration Xa.
  • the inside of the kneading chamber 2 is exposed to the atmosphere by opening the charging door 11a.
  • the oxygen concentration in the kneading chamber 2 is set to the atmospheric oxygen concentration (about 20.9%).
  • the solid line in FIG. 4 indicates the purge flow rate of the inert gas introduced into the kneading chamber 2, and the broken line in FIG. 4 indicates the oxygen concentration in the kneading chamber 2.
  • the inside of the kneading chamber 2 before introducing the inert gas in each batch is always the same.
  • the reference oxygen concentration (the oxygen concentration in the atmosphere) can be set.
  • the material to be kneaded G is charged from the opened charging door 11a. After the material to be kneaded G is charged, the inside of the kneading chamber 2 is sealed. Thereafter, purging before kneading is performed by introducing an inert gas into the kneading chamber 2 through the first gas introduction line 3 while continuing to measure the oxygen concentration by the oxygen concentration meter 4.
  • the control unit 31 keeps the flow rate of the inert gas introduced (kneading) until the inside of the kneading chamber 2 reaches the target oxygen concentration Xa (set target value) (referred to as purge time Tb before kneading).
  • the inert gas is introduced into the kneading chamber 2 from the first gas introduction line 3 while keeping the pre-purge flow rate Qb) constant.
  • the purge time Tb before kneading can be determined by the following equation (5), and a constant value is selected as the purge flow rate Qb before kneading.
  • the flow rate Qb is preferably the same value as the flow rate Qa.
  • V [L] after charging the kneading chamber 2 into which the material to be kneaded G is charged can be expressed by the following formula (4).
  • V V0-kg * Vg (4)
  • Vg represents the volume [L] of the material to be kneaded G
  • kg represents the void coefficient of the material to be kneaded G.
  • Tb ⁇ V / Qb * In (Xa / X0) (5)
  • the calculation unit 30 performs a calculation for obtaining the purge time Tb before kneading before introducing the inert gas in the purge before kneading. Then, based on the calculation result, the control unit 31 controls the purge flow and purge time of the inert gas introduced into the kneading chamber 2 through the first gas introduction line 3 while purging before the kneading (inert gas). Introduction).
  • the control unit 31 performs the flow of the inert gas to be introduced (pre-kneading purge flow rate Qb) until the inside of the kneading chamber 2 reaches the target oxygen concentration Xa (pre-kneading purge time Tb).
  • the inert gas is introduced from the first gas introduction line 3 into the kneading chamber 2 while keeping the pressure constant. Thereby, before the kneading
  • Step S4 purge process during kneading
  • step S4 purge process during kneading
  • kneading of the material to be kneaded G is started, and an increase in oxygen concentration in the kneading chamber 2 is suppressed during kneading. Purge during kneading. Specifically, as shown in the graph of FIG.
  • the kneading chamber 2 is passed through the first gas introduction line 3.
  • An amount of inert gas determined by calculation is introduced.
  • the kneading time an arbitrary time can be selected, and this may be used for the calculation.
  • the controller 31 sets the time during which the material to be kneaded K is kneaded (referred to as purge time Tc ′ during kneading) and the flow rate of the introduced inert gas (referred to as purge flow Qc ′ during kneading).
  • the inert gas is introduced into the kneading chamber 2 from the first gas introduction line 3 while keeping it constant.
  • the volume ratio ⁇ of the kneading chamber 2 before and after feeding the material to be kneaded G can be expressed by the following formula (6).
  • V / V0 (6)
  • the purge flow rate Qc ′ [NL / min] during kneading is calculated from the initial purge predicted flow rate Qc obtained as a guide value from the above equation (3), the above equation (6), and the purge time Tc ′ during kneading. It can obtain
  • Qc ′ Qc * ⁇ (7)
  • Qc in the above formula (7) is a value obtained by converting Tc in the above formula (3) by Tc ′.
  • the calculation unit 30 performs a calculation to obtain the purge flow rate Qc ′ during kneading before introducing the inert gas in the purge step during kneading. Based on the calculation result, the control unit 31 controls the purge flow during the kneading (inactive) while controlling the purge flow rate and purge time of the inert gas introduced into the kneading chamber 2 by the first gas introduction line 3. Gas introduction).
  • control unit 31 controls the first gas introduction line 3 while keeping the flow rate of the inert gas (purge flow rate Qc ′ during kneading) constant during kneading (purge time Tc ′ during kneading).
  • An inert gas is introduced into the kneading chamber 2.
  • the Banbury mixer 1 performs step S5 (purge measurement process during kneading) shown in FIG. 2 during the purge during kneading. That is, as shown on the right side of FIG. 4, the purge is performed during the kneading, and from the time when the oxygen concentration meter 4 confirms that the oxygen concentration in the kneading chamber 2 has reached the lowest point during the kneading, step S5 is performed.
  • the oxygen concentration change measurement by the oxygen concentration meter 4 (referred to as purge measurement during kneading) is performed.
  • the time from when the oxygen concentration reaches the lowest point until it starts to rise again and reaches the highest point is defined as a purge measurement time Te during kneading.
  • Step S6 allowable range confirmation step
  • the actual oxygen concentration measured by the oximeter 4 in step S5 is compared with a predetermined concentration range (preset) including the target oxygen concentration Xa, and the predetermined concentration width is determined. It is determined whether or not the actually measured oxygen concentration falls within the range, that is, whether or not the actually measured oxygen concentration is within the allowable range.
  • An allowable range that is, a predetermined concentration range including the target oxygen concentration Xa can be arbitrarily set as necessary.
  • the computing unit 30 compares the highest and lowest points of the oxygen concentration within the purge time Tc ′ during kneading with a predetermined concentration range including the target oxygen concentration Xa, and calculates the oxygen concentration. It is determined whether or not the highest rising point and the lowest point are within a predetermined concentration range. If the highest and lowest points of the oxygen concentration are out of the predetermined concentration range, the process proceeds to step S7 (correction value calculation step) in FIG. 2, while if within the range, the process proceeds to FIG. Proceed to step S8 (the second batch or subsequent batches and the purge step before kneading after the calculation is stopped).
  • Step S7 correction value calculation step shown in FIG. 2, the actual oxygen concentration measured by the oxygen concentration meter 4 obtained in steps S5 and S6 and the preset target oxygen concentration obtained before starting the next batch. Based on the comparison, the flow rate of the inert gas that offsets the difference is obtained. The obtained value is used as a correction value for maintaining the target oxygen concentration Xa in the kneading chamber 2 during kneading in the next batch.
  • the calculation unit 30 determines the lowest point of the oxygen concentration within the kneading purge time (Tc ′) from the measurement result of the oxygen concentration of the first batch by the oxygen concentration meter 4 (see FIG. 4 and the highest rise point (actual value b in FIG. 4), and the oxygen concentration rise (ba) within the purge measurement time during kneading is obtained by calculation.
  • step S ⁇ b> 7 the calculation unit 30 calculates a flow rate of the inert gas (referred to as a purge correction flow rate q during kneading) that cancels out the increase in the oxygen concentration within the purge measurement time during kneading.
  • the purge correction flow rate q [NL / min] during kneading can be obtained by the following equation (8).
  • q ⁇ V / Te * In (Xe / Xd)
  • ⁇ Xe Xd * exp- (q / V) * Te
  • Te is the purge measurement time [seconds] during kneading
  • Xd is the lowest point of oxygen concentration (measured value a) [volume%] within the purge time Tc ′ during kneading
  • Xe represents the highest rise point (actual value b) [volume%] of the oxygen concentration within the purge time Tc ′ during kneading.
  • the batch after the first batch exceeds the allowable range, it is used as a correction value for maintaining the target oxygen concentration in the kneading chamber 2 during kneading in the next batch kneading purge.
  • the purge correction flow rate q during kneading can be obtained.
  • the calculation of the purge correction flow rate q during kneading (step S7) may be performed before the step of confirming whether the oxygen concentration is within the allowable range (step S6).
  • Step S9 the Banbury mixer 1 proceeds to the second and subsequent batches shown in FIG. That is, the process proceeds to step S9 (purging step before kneading after the change in oxygen concentration in the previous batch exceeds the allowable range) shown in FIG.
  • step S9 purging step before kneading after the change in oxygen concentration in the previous batch exceeds the allowable range
  • a purge before kneading is performed to set the above-described kneading chamber 2 to the target oxygen concentration Xa.
  • the charging door 11 a is used before the material to be kneaded G is newly charged into the kneading chamber 2, the charging door 11 a is used. Is opened, the inside of the kneading chamber 2 is exposed to the atmosphere, and the oxygen concentration in the kneading chamber 2 is made approximately the oxygen concentration in the atmosphere (about 20.9%).
  • 5 indicates the purge flow rate of the inert gas introduced into the kneading chamber 2
  • the broken line in FIG. 5 indicates the oxygen concentration in the kneading chamber 2.
  • the inside of the kneading chamber 2 is sealed. Then, while measuring the oxygen concentration with the oxygen concentration meter 4, an inert gas is introduced into the kneading chamber 2 through the first gas introduction line 3, and a purge before kneading is performed.
  • the control part 31 can perform the same control as step S3. Specifically, while maintaining the flow rate of the introduced inert gas (pre-kneading purge flow rate Qb) until the inside of the kneading chamber 2 reaches the target oxygen concentration Xa (pre-kneading purge time Tb), the first An inert gas is introduced from the gas introduction line 3 into the kneading chamber 2. That is, in the pre-kneading purge of the second and subsequent batches, the control unit 31 performs the first based on the calculation result for the pre-kneading purge performed by the calculation unit 30 for the initial batch in step S3.
  • Purge before kneading is performed in the same manner while controlling the purge flow rate and purge time of the inert gas introduced into the kneading chamber 2 by the gas introduction line 3. Thereby, before the kneading
  • Step S10 and Step S13 the Banbury mixer 1 of this aspect proceeds to step S10 shown in FIG. 2 (purge process during kneading of the batch after the oxygen concentration change of the previous batch exceeds the allowable range). While the kneading of the material to be kneaded G is started, purging during kneading is performed to suppress an increase in oxygen concentration in the kneading chamber 2 during kneading. Specifically, in the second batch and subsequent batches, after purging before kneading, for example, as shown in the center and right side of the graph of FIG.
  • the oxygen concentration in the kneading chamber 2 by the oxygen concentration meter 4 during kneading is introduced into the kneading chamber 2 through the first gas introduction line 3 while performing the measurement.
  • the control unit 31 refers to the flow rate of the introduced inert gas (referred to as purge flow rate Qe during the next batch kneading. Oxygen concentration in the previous batch.
  • the inert gas is introduced into the kneading chamber 2 from the first gas introduction line 3 while maintaining a constant purge flow rate during kneading of the batch after the change exceeds the allowable range.
  • the purge time Tc ′ during kneading is the same as the purge time Tc ′ during kneading in the previous batch.
  • the purge flow rate Qe [NL / min] during the next batch kneading can be obtained by the following equation (9) from the purge correction flow rate q during kneading obtained as the correction value and the above equation (7).
  • Qe Qc ′ (or Qe ′) ⁇ q (9)
  • Qe ′ shown in the above formula (9) represents a purge flow rate during kneading in the previous batch. That is, Qe ′ is used to obtain the purge flow Qe during kneading in the next batch as the purge flow of the previous batch after the third batch. That is, in the third batch and thereafter, the purge flow rate Qe ′ during the previous batch kneading is used to obtain the purge flow rate Qe during the next batch kneading.
  • the calculation unit 30 performs the above equation (2) before introducing the inert gas in the purge during kneading.
  • the calculation for obtaining the purge flow rate Qe during the next batch kneading shown in 9) is performed.
  • the control unit 31 performs purging during kneading while controlling the purge flow rate and purge time of the inert gas introduced into the kneading chamber 2 by the first gas introduction line 3. Do.
  • control unit 31 controls the first gas introduction line 3 while keeping the flow rate of the inert gas (purge flow rate Qe during the next batch kneading) constant during kneading (purge time Tc ′ during kneading).
  • An inert gas is introduced into the kneading chamber 2.
  • the inside of the kneading chamber 2 can be maintained at the target oxygen concentration Xa during kneading.
  • step S13 purge measurement process during kneading shown in FIG. 2 is performed during the purge during kneading.
  • step S13 The measurement of the highest and lowest points of the oxygen concentration by the oxygen concentration meter 4 in step S13 and the calculation of the purge measurement time Te during kneading can be performed in the same manner as in step S5 described above. Thereafter, the process returns to step S6 shown in FIG. That is, it is determined whether or not the oxygen concentration change in step S13 is within an allowable range.
  • Step S8 purge step before kneading after stopping the calculation
  • the oxygen concentration need not be measured.
  • purging before kneading is performed to set the inside of the kneading chamber 2 to the target oxygen concentration Xa before starting kneading of the batch under the conditions determined and used in the previous batch. .
  • the oxygen measurement in the kneading chamber by the oxygen concentration meter 4 is not performed.
  • the inside of the kneading chamber 2 is exposed to the atmosphere by opening the charging door 11a, so that the oxygen concentration in the atmosphere (about 20.9%) is obtained.
  • the solid line in FIG. 6 indicates the purge flow rate of the inert gas introduced into the kneading chamber 2
  • the broken line in FIG. 6 indicates the oxygen concentration in the atmospheric gas led to the oxygen concentration meter 4.
  • the four-way valve 20 can be switched so as to shut off the first flow F1 and open the third flow F3.
  • the zero gas introduced into the pipe 5 b from the third gas introduction line 8 (third introduction pipe 23) via the four-way valve 20 flows into the oximeter 4.
  • the oxygen concentration indicated by the broken line in FIG. 6 always indicates 0 [volume%].
  • the inside of the kneading chamber 2 is hermetically sealed, and the oxygen concentration meter 4 measures the oxygen concentration of the zero gas flowing from the third introduction pipe 23 while the first kneading chamber 2 is filled with the first kneading chamber G.
  • a pre-kneading purge in which an inert gas is introduced through the gas introduction line 3 is performed.
  • the pre-kneading purge is performed under the same conditions as the previous batch. Specifically, in the batch after the calculation is stopped, as shown in the graph of FIG. 6, for example, based on the calculation result used in the previous batch when the allowable range is reached, in other words, step S3 or step
  • the controller 31 performs the pre-kneading purge while controlling the flow rate and time of the inert gas introduced into the kneading chamber 2 by the first gas introduction line 3 using the values used in S9.
  • the control unit 31 performs the flow of the inert gas to be introduced (pre-kneading purge flow rate Qb) until the inside of the kneading chamber 2 reaches the target oxygen concentration Xa (pre-kneading purge time Tb).
  • the inert gas is introduced into the kneading chamber 2 from the first gas introduction line 3 while maintaining a constant value.
  • Step S11 Next, in the Banbury mixer 1, the process proceeds to step S11 (purge process during kneading after the calculation is stopped) shown in FIG.
  • step S11 purge process during kneading after the calculation is stopped
  • kneading of the material to be kneaded G is started and purge during kneading is performed to suppress an increase in oxygen concentration in the kneading chamber 2 during kneading.
  • the purge flow rate in the graph of FIG.
  • control unit 31 performs purge during kneading while controlling the flow rate and time of the inert gas introduced into the kneading chamber 2 by the first gas introduction line 3.
  • control unit 31 controls the flow rate of the inert gas to be introduced (purge flow rate Qc ′ during kneading or purge flow rate Qe during pre-batch kneading) while the material G is being kneaded (purge time Tc ′ during kneading).
  • the inert gas is introduced into the kneading chamber 2 from the first gas introduction line 3 while keeping ') constant. Thereby, the inside of the kneading chamber 2 can be maintained at the target oxygen concentration Xa during kneading.
  • Step S12 When the batch processing by the combination of step S8 and step S11 is completed, the Banbury mixer 1 proceeds to step S12 (batch number confirmation step) in FIG. 2, and the number of batches after the computation stops reaches a predetermined number. Confirm whether or not. If the number of batches after the calculation has not stopped has reached the predetermined number, the process returns to step S8 again, and a new batch process is repeated a predetermined number of times. On the other hand, when the number of batches after the calculation stops reaches a predetermined number, the oxygen concentration is measured in the next batch, and it is determined whether or not it is within the allowable range.
  • the pre-kneading purge S9 and the in-kneading purge S10 are performed using the values used in the previous batch, and the process proceeds to the step S6 again, where the kneading chamber 2 It is confirmed whether or not the oxygen concentration is within the allowable range. If the measured oxygen concentration is within the allowable range, the process proceeds to step S8 again. On the other hand, if the measured oxygen concentration is outside the allowable range, the process proceeds to step S7, and the calculation by the calculation unit 30 is resumed. If it is confirmed in step S12 that the predetermined number of final batches has been reached, the operation of the Banbury mixer 1 is stopped after the end of the final batch.
  • step S6 if the oxygen concentration in the kneading chamber 2 does not fall within the allowable range, the fact may be notified, for example, by issuing an alarm or the like with light or sound. In that case, the oxygen concentration in the kneading chamber 2 is forcibly continuously measured by the oxygen concentration meter 4 until the batch is completed. This is in order to maintain the quality of the product. By switching to constantly measuring the oxygen concentration in the kneading chamber 2, the oxygen concentration in the kneading chamber 2 does not exceed the allowable range. The amount of inert gas introduced into the is adjusted.
  • the operation control of the Banbury mixer 1 is performed according to the flowchart shown in FIG. 2, so that the inside of the kneading chamber 2 is within an allowable range value centered on the target oxygen concentration Xa for each batch. In addition, it is possible to keep it stable.
  • the measurement of the oxygen concentration in the kneading chamber 2 by the oximeter 4 can be stopped after the calculation by the calculation unit 30 is stopped. Therefore, in the Banbury mixer 1, when the calculation is stopped, for example, the oxygen concentration in the kneading chamber 2 is not measured by the oxygen concentration meter 4 during the kneading (purge measurement during kneading), and the purge during the kneading is performed. Is possible. In this case, since it is not necessary to always measure the oxygen concentration in the kneading chamber 2, it is possible to suppress the clogging of the pipe 5a and the filter 6 described above.
  • the four-way valve 20 opens the first flow F1.
  • the second flow F2 is cut off and the third flow F3 is cut off.
  • the atmospheric gas in the kneading chamber 2 is purified by the filter 6 through the pipes 5 a and 5 b and then flows into the oximeter 4.
  • the oxygen concentration meter 4 interrupts the measurement of the oxygen concentration in the kneading chamber 2 in step S8 and step S11
  • the first flow F1 is interrupted by switching the four-way valve 20, and the third flow Open F3.
  • the zero gas introduced into the pipe 5 b from the third gas introduction line 8 (third introduction pipe 23) via the four-way valve 20 flows into the oximeter 4.
  • the measurable state (standby state) of the oximeter 4 can be maintained while the oximeter 4 is interrupting the measurement of the oxygen concentration in the kneading chamber 2. Therefore, it is possible to immediately start measuring the oxygen concentration in the kneading chamber 2 by the oximeter 4 by switching the four-way valve 20 without recalibrating the oximeter 4 at the time of re-measurement. is there.
  • the oxygen concentration meter 4 interrupts the measurement of the oxygen concentration in the kneading chamber 2, that is, during steps S8 and S11, by switching the four-way valve 20, Two streams F2 can be opened.
  • the reverse purge gas introduced into the pipe 5 a from the second gas introduction line 7 (second introduction pipe 21) via the four-way valve 20 flows toward the filter 6.
  • the second introduction pipe is configured so that dust or the like accumulated in the pipe 5 a or the filter 6 is blown off to the kneading chamber 2 side by the momentum of the reverse purge gas introduced into the pipe 5 a.
  • the pressure and flow rate of the reverse purge gas flowing through 21 are adjusted in advance. Then, reverse purge is performed by switching the four-way valve 20 to remove dust and the like accumulated in the pipe 5a and the filter 6.
  • a method of introducing the reverse purge gas a method of continuously introducing the reverse purge gas (referred to as continuous purge) can be used. In this case, after the reverse purge gas is introduced for a certain period, the second flow F2 is shut off by switching the four-way valve 20.
  • a method of intermittently introducing a reverse purge gas intermittent purge
  • the oxygen concentration meter 4 interrupts the measurement of the oxygen concentration in the kneading chamber 2 while switching the four-way valve 20 a plurality of times.
  • the reverse purge gas can be introduced at a high pressure.
  • the reverse purge gas used for the reverse purge is introduced into the kneading chamber 2 through the pipe 5a. Therefore, it is preferable to use an inert gas, but in some cases, air or the like can be used.
  • the Banbury mixer 1 shown in FIG. 8 showing a preferred example of the second aspect of the present invention unlike the first aspect, does not include the arithmetic unit 30, and the arithmetic unit 30, the flow rate control device and the flow rate adjustment valve. Are not connected, and the flow rate control by the calculation unit 30 is not performed. Except for these conditions, it is almost the same as the Banbury mixer 1 described with reference to FIG. Therefore, the same members as those in the Banbury mixer 1 shown in FIG.
  • the oxygen concentration can be measured at an arbitrary stage and timing, and the measurement of the oxygen concentration can be interrupted at an arbitrary stage and timing.
  • reverse purge is performed in which reverse purge gas is introduced from the second gas introduction line 7 toward the filter 6.
  • reverse purge gas is introduced from the second gas introduction line 7 toward the filter 6.
  • the four-way valve 20 opens the first flow F1, and the second flow The flow F2 is cut off and the third flow F3 is cut off.
  • the atmospheric gas in the kneading chamber 2 is purified by the filter 6 through the pipes 5a and 5b, and then flows into the oxygen concentration meter 4.
  • the four-way valve 20 is switched to block the first flow F1 and open the third flow F3.
  • the zero gas introduced into the pipe 5 b from the third gas introduction line 8 (third introduction pipe 23) via the four-way valve 20 flows into the oximeter 4.
  • the oxygen concentration meter 4 can be maintained in a measurable state (standby state). It is possible to immediately start the measurement of the oxygen concentration in the kneading chamber 2 by the oximeter 4 by switching the four-way valve 20 without re-calibrating.
  • the second flow F2 can be opened by switching the four-way valve 20 while the oxygen concentration meter 4 is interrupting the measurement of the oxygen concentration in the kneading chamber 2.
  • the reverse purge gas introduced into the pipe 5 a from the second gas introduction line 7 (second introduction pipe 21) via the four-way valve 20 flows toward the filter 6.
  • the second purge gas is introduced into the pipe 5 a so that the dust accumulated in the pipe 5 a and the filter 6 can be blown off to the kneading chamber 2 side by the momentum of the reverse purge gas.
  • the pressure and flow rate of the reverse purge gas flowing through the inlet pipe 21 are adjusted in advance. Then, reverse purge is performed by switching the four-way valve 20 to remove dust and the like accumulated in the pipe 5a and the filter 6.
  • a method of introducing the reverse purge gas a method of continuously introducing the reverse purge gas (referred to as continuous purge) can be used. In this case, after the reverse purge gas is introduced for a certain period, the second flow F2 is shut off by switching the four-way valve 20.
  • a method of intermittently introducing a reverse purge gas intermittent purge
  • the oxygen concentration meter 4 interrupts the measurement of the oxygen concentration in the kneading chamber 2 while switching the four-way valve 20 a plurality of times.
  • the reverse purge gas can be introduced at a high pressure.
  • the reverse purge gas used for the reverse purge is introduced into the kneading chamber 2 through the pipe 5a. Therefore, it is preferable to use an inert gas, but in some cases, air or the like can be used.
  • the kneading apparatus according to the second aspect of the present invention is not necessarily limited to the embodiment described above, and various modifications can be made without departing from the spirit of the present invention.
  • the four-way valve 20 as shown in FIG. 8 is used as the switching means for switching between the first flow F1 and the second flow F2 described above.
  • the present invention is not necessarily limited to such a configuration using a four-way valve, and a configuration using a two-way valve 20A as shown in FIG. 9 or a three-way valve 20B as shown in FIG. A configuration is also possible.
  • the first two-way valve 20 ⁇ / b> A is disposed between the inlet-side pipe 5 a and the outlet-side pipe 5 b.
  • the second gas introduction line 7 (second introduction pipe 21) is connected to the inlet side pipe 5a
  • the third gas introduction line 8 (third introduction pipe 23) is connected to the outlet side pipe 5b. It is connected to the.
  • a second two-way valve 20B is disposed between the flow rate adjusting valve 22 and the inlet side pipe 5a, and a third two-way is provided between the flow rate adjusting valve 24 and the outlet side pipe 5b.
  • a valve 2C is arranged.
  • the first two-way valve 20A opens the first flow F1, and the second two-way valve.
  • the valve 20B shuts off the second flow F2
  • the third two-way valve 20C shuts off the third flow F3.
  • the atmospheric gas in the kneading chamber 2 is purified by the filter 6 through the pipes 5 a and 5 b and then flows into the oximeter 4.
  • the oxygen concentration meter 4 interrupts the measurement of the oxygen concentration in the kneading chamber 2
  • the first two-way valve 20A shuts off the first flow F1
  • the third two-way valve 20C 3 flow F3 is released.
  • the zero gas introduced from the third gas introduction line 8 (third introduction pipe 23) to the outlet side pipe 5 b flows toward the oximeter 4.
  • the second two-way valve 20B opens the second flow F2, whereby the reverse purge can be performed.
  • the reverse purge gas introduced from the second gas introduction line 7 (second introduction pipe 21) into the inlet side pipe 5a flows toward the filter 6, and dust and the like accumulated in the pipe 5a and the filter 6 are removed. It is possible to remove.
  • a three-way valve 20D is disposed between the inlet side pipe 5a and the outlet side pipe 5b, and the second gas introduction line 7 (second introduction pipe 21) is connected to the three-way valve 20D. It is connected. Note that the third gas introduction line 8 (the third introduction pipe 23 and the flow rate adjusting valve 24) is not included because zero gas does not flow into the oximeter 4.
  • the three-way valve 20D opens the first flow F1 and shuts off the second flow F2. To do. Thereby, after the atmospheric gas in the kneading chamber 2 is purified by the filter 6 through the pipes 5a and 5b, it flows into the oxygen concentration meter 4 and the oxygen concentration is measured.
  • the three-way valve 20D blocks the first flow F1.
  • the oximeter 4 is brought into a stopped state by stopping the pump 4a.
  • the flow rate adjustment valve 22 is opened to perform reverse purging.
  • the reverse purge gas introduced from the second gas introduction line 7 (second introduction pipe 21) into the inlet side pipe 5 a through the three-way valve 20 ⁇ / b> D flows toward the filter 6. Therefore, it is possible to remove dust and the like accumulated in the pipe 5a and the filter 6.
  • dust removal using suction by the dust collector 12 will be described.
  • dust such as dust P accumulated in the filter 6 as shown in FIG. 11 is removed while being suctioned by a dust collector 12 (not shown in FIG. 11) as shown in FIG. A configuration is also possible.
  • the dust collector 12 and the filter 6 are connected by a pipe 25.
  • An opening / closing valve 26 for opening and closing the pipe 25 is provided between the dust collector 12 and the filter 6.
  • the filter 6 generally has a structure in which an element 6a that collects dust P is disposed in a collection container 6b.
  • the open / close valve 26 opens the pipe 25 while the oxygen concentration meter 4 interrupts the measurement of the oxygen concentration in the kneading chamber 2, so that the gas flows from the pipe 5 a side into the collection container 6 b.
  • the dust P accumulated in the element 6a in the collection container 6b can be desorbed and removed while being sucked by the dust collector 12. Therefore, when this configuration is adopted, the replacement life of the filter 6 can be further extended.
  • the timing for opening the on-off valve 26 is not limited to the time when the reverse purge is performed even before the reverse purge using the four-way valve 20, the two-way valve 20A, the three-way valve 20D, or the like. Or after reverse purging.
  • this invention is not necessarily limited to the thing of the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
  • the kneading apparatus to which the present invention is applied is not necessarily limited to the Banbury mixer 1 shown in FIGS. 1 and 8, and may be a kneader mixer, for example.
  • the kneading is performed by, for example, a method of measuring the concentration of the inert gas introduced into the kneading chamber 2. It is also possible to indirectly measure the oxygen concentration in the chamber 2.
  • Steps S1 and S2 In the Banbury mixer 1, first, the calculation unit 30 performed a calculation for obtaining the initial purge time Ta.
  • the conditions used for obtaining the initial purge time Ta are as follows.
  • Target oxygen concentration Xa 5.0 [volume%]
  • Initial purge flow rate Qa 4000 [NL / min]
  • Internal volume of kneading chamber V0: 1000 [L] Therefore, the initial purge time Ta is 21.45 seconds based on the calculation result of the equation (2).
  • an initial purge was performed. That is, first, before the material to be kneaded G is put into the kneading chamber 2, the kneading chamber 2 is exposed to the atmosphere by opening the charging door 11a without introducing an inert gas.
  • the oxygen concentration in the chamber 2 was defined as the oxygen concentration in the atmosphere.
  • the inside of the kneading chamber 2 is hermetically sealed, and the oxygen concentration is measured by the oxygen concentration meter 4, and is 21.45 seconds (initial purge flow rate Qa) at 4000 NL / min.
  • an inert gas was introduced into the kneading chamber 2 through the first gas introduction line 3.
  • initial purge measurement was performed. That is, after stopping the introduction of the inert gas into the kneading chamber 2 and confirming that the oxygen concentration in the kneading chamber 2 has reached the lowest point, the introduction of the inert gas is stopped while the oxygen gas is stopped. Measurement of the oxygen concentration (initial purge measurement) by the densitometer 4 was performed for a certain period (initial purge measurement time Tc).
  • the calculation unit 30 performs a calculation for obtaining an initial purge predicted flow rate Qc that is a flow rate of the inert gas that cancels out the increase in the oxygen concentration.
  • the conditions used for obtaining the initial purge predicted flow rate Qc are as follows.
  • the calculation unit 30 performed a calculation for obtaining the purge time Tb before kneading.
  • the conditions used for obtaining the purge time Tb before kneading are as follows.
  • the calculation part 30 performed the calculation for calculating
  • the conditions used for obtaining the purge flow rate Qc ′ during kneading are as follows. Internal volume of kneading chamber V0: 1000 [L] Internal volume V after charging: 592.6 [L] Purge time Tc ′ during kneading: 90 [seconds] Therefore, from the calculation results of the above formulas (6) and (7), the volume ratio ⁇ was 0.5926, and the purge flow rate Qc ′ during kneading was 622 NL / min.
  • Step S3 the first batch (first batch) was started and purged before kneading. That is, when the material to be kneaded G is put into the kneading chamber 2, the charging door 11a is opened to expose the kneading chamber 2 to the atmosphere, and the oxygen concentration in the kneading chamber 2 is determined as the oxygen concentration in the atmosphere. did. After the material to be kneaded G is charged, the inside of the kneading chamber 2 is hermetically sealed, and the oxygen concentration is measured by the oxygen concentration meter 4, and is 12.71 seconds (kneading at 4000 NL / min (purge flow rate Qb before kneading)). During the pre-purging time Tb), an inert gas was introduced into the kneading chamber 2 through the first gas introduction line 3.
  • Steps S4 and S5 Next, the introduction of the inert gas into the kneading chamber 2 by the purge before kneading was stopped, the kneading of the material to be kneaded G was started, and the purge during the kneading was performed. That is, an inert gas was introduced into the kneading chamber 2 through the first gas introduction line 3 for 90 seconds (purge time Tc ′ during kneading) at 622 NL / min (purge flow rate Qc ′ during kneading).
  • the purge measuring time Te during the kneading was obtained. That is, the introduction of the inert gas into the kneading chamber 2 by the purge before kneading is stopped, and the oxygen concentration meter 4 confirms that the oxygen concentration in the kneading chamber 2 has reached the lowest point. The time required to reach this was determined, and this was taken as the purge measurement time Te during kneading.
  • Steps S6 and S7 As a result of measuring the oxygen concentration with the oxygen concentration meter 4, the lowest point of the oxygen concentration within the purge time Tc ′ during kneading was out of the allowable range (5.0 ⁇ 0.1% by volume). Since it was out of the allowable range, the calculation for determining the purge correction flow rate q during the kneading was performed.
  • the conditions used for obtaining the purge correction flow rate q during kneading are as follows. Internal volume V after charging: 592.6 [L] Purge measurement time Te during kneading (actual value): 62 [seconds] The lowest point of oxygen concentration within the purge time Tc ′ during kneading (actual measured value) Xd: 5.0 [volume%] Maximum rising point of oxygen concentration within purge time Tc ′ during kneading (actual value) Xe: 5.2 [volume%] Therefore, from the calculation result of the above formula (8), the purge correction flow rate q during kneading was ⁇ 23 NL / min.
  • the calculation unit 30 performed calculation for obtaining the purge flow rate Qe during the next batch kneading.
  • the purge flow rate Qe during the next batch kneading was 645 NL / min.
  • Step S9 the second batch was started, and the purge before kneading was performed. That is, when the material to be kneaded G is put into the kneading chamber 2, the introduction of the inert gas is stopped and the charging door 11a is opened to expose the inside of the kneading chamber 2 to the atmosphere.
  • the oxygen concentration was defined as the oxygen concentration in the atmosphere.
  • the inside of the kneading chamber 2 is hermetically sealed, and the oxygen concentration is measured by the oxygen concentration meter 4 for 12.71 seconds (kneading at 4000 NL / min (purge flow rate Qb before kneading)).
  • an inert gas was introduced into the kneading chamber 2 through the first gas introduction line 3.
  • Step S10 Next, after introducing the inert gas into the kneading chamber 2 by the purge before kneading, the kneading of the material to be kneaded G was started and the purge during the kneading was performed. Inactive through the first gas introduction line 3 in the kneading chamber 2 for the value obtained in step S6, that is, 645 NL / min (purge flow rate Qe during the next batch kneading) for 90 seconds (purge time Tc ′ during kneading). Gas was introduced.
  • Step S13 the purge measuring time Te during the kneading was obtained. That is, the purge during the kneading is performed, and after the oxygen concentration meter 4 confirms that the oxygen concentration in the kneading chamber 2 has reached the lowest point during the kneading, the time to reach the highest point is obtained.
  • the purge measurement time Te during kneading was obtained.
  • Step S6 of the second batch And the oxygen concentration measurement result by the oxygen concentration meter 4 within the purge time Tc ′ during kneading was within the allowable range (5.0 ⁇ 0.1 vol%). From this result, the calculation for obtaining the purge correction flow rate q during kneading was stopped. The measurement of oxygen concentration was also stopped.
  • Step S8 the third batch was started and purge before kneading was performed. That is, when the material to be kneaded G is put into the kneading chamber 2, the introduction of the inert gas is stopped and the charging door 11a is opened to expose the inside of the kneading chamber 2 to the atmosphere.
  • the oxygen concentration was defined as the oxygen concentration in the atmosphere. After the material to be kneaded G is charged, the inside of the kneading chamber 2 is closed, and the oxygen concentration in the kneading chamber 2 is not measured, but the oxygen concentration of the zero gas is measured by the oxygen concentration meter 4 and 4000 NL / min.
  • the inert gas was introduced into the kneading chamber 2 through the first gas introduction line 3 for 12.71 seconds (pre-kneading purge flow rate Qb) (pre-kneading purge time Tb).
  • the four-way valve 20 is switched so as to shut off the first flow F1 and open the third flow F3.
  • the zero gas (oxygen concentration [0% by volume]) introduced from the third gas introduction line 8 (third introduction pipe 23) into the pipe 5b through the four-way valve 20 flows into the oximeter 4. .
  • the oxygen concentration indicated by the broken line in FIG. 7 always indicates 0 [volume%].
  • Step S11 Next, the introduction of the inert gas into the kneading chamber 2 by the purge before kneading was stopped, the kneading of the material to be kneaded G was started, and the purge during the kneading was performed. That is, the inert gas was introduced into the kneading chamber 2 through the first gas introduction line 3 for 90 seconds (purging time Tc ′ during kneading) at 645 NL / min (purge flow rate Qe during the next batch kneading).
  • Step S12 Then, after the calculation is stopped, step S8 and step S11 are repeated until the predetermined number of times is reached.
  • Step S6 In the next batch that has reached the 20th batch (the 22nd batch from the start of kneading) after stopping the calculation and measuring the oxygen concentration in the kneading chamber 2, a purge before kneading (step S9), a purge during kneading (step S10), and Purge measurement during kneading (step S13) was performed to check whether the oxygen concentration was within the allowable range.
  • the purge flow rate Qe during kneading in the batch is the same as the purge flow rate Qe during kneading in the previous batch. If the measurement result is within the allowable range, the process proceeds to step S8 for the second time, and if it is out of the range, the process proceeds to step S7 for the second time. In this experiment, these steps were repeated up to 200 batches. However, it was not out of tolerance until the last measurement. That is, after stopping the calculation, it was confirmed whether or not the oxygen concentration in the kneading chamber 2 was within the allowable range every 20 batches. As a result, the oxygen concentration in the kneading chamber 2 was within the allowable range up to the final batch (200th batch), and no extreme increase or decrease in the oxygen concentration was observed.
  • the inside of the kneading chamber 2 can be stably maintained at the target oxygen concentration Xa for each batch. Further, in the process after the stop of the calculation, the measurement of the oxygen concentration in the kneading chamber 2 by the oximeter 4 is stopped, and by switching the four-way valve 20, the flow is reversed toward the filter 6 in the pipe 5 a through the introduction pipe 21. A reverse purge was performed by flowing a purge gas. As a result, it was confirmed that dust and the like accumulated in the filter 6 and the pipe 5a can be removed.
  • the present invention can provide a kneading apparatus capable of stably maintaining a kneading chamber at a target oxygen concentration. Also, a kneading device that can stably measure the oxygen concentration in the atmosphere of the kneading chamber, without clogging the piping and filter, and without frequently performing operations such as piping cleaning and filter replacement Can provide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Accessories For Mixers (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

 被混練物(G)を混練する混練室(2)と、混練室(2)に不活性ガスを導入するガス導入部(3)と、混練室(2)内の酸素濃度を測定する濃度測定部(4)と、混練室(2)内を目標の酸素濃度とするための演算を行う演算部(30)と、演算部(30)による演算結果に基づいてガス導入部(3)を制御する制御部(31)とを備え、濃度測定部(4)が混練時に測定した実測の酸素濃度と、予め設定した目標酸素濃度と、を比較しながら、演算部(30)が混練室(2)内を目標の酸素濃度とするための演算を行い、前記演算を行った後の混練において、得られた演算結果に基づき制御部(31)がガス導入部(3)により混練室(2)内に導入される不活性ガスのパージ流量及びパージ時間を制御する。

Description

混練装置
 本発明は、例えばタイヤなどの原料となるゴムや硫黄等の被混練物を混練する際に用いられる混練装置に関する。
 本願は、2011年3月10日に日本に出願された、特願2011-052887号、及び、特願2011-052888号に基づき優先権を主張し、その内容をここに援用する。
 例えば、タイヤなどのゴム製品を製造する際は、その原料となるゴムに、硫黄や、カーボンブラック、オイル、老化防止剤、加硫促進剤などの添加剤や配合剤を加え、これを被混練物として、加熱及び/または加圧状態で混練することが行われている。そして、この混練には、バンバリーミキサなどの混練機(混練装置)が広く用いられている。
 バンバリーミキサは、密閉構造の混練室に被混練物を投入した後、この被混練物を加熱及び/又は加圧しながら可塑化状態とし、この状態のまま互いに反転する一対のロータにより大きな剪断力を与えて混練する、密閉式の混合機である。また、このバンバリーミキサによる混練作業では、混練室内の温度と、ロータを駆動するモータの電流値等を測定しながら、この混練室内の被混練物の状態を把握し、その運転管理を行っている。
 ところで、このような密閉式の混練機では、混練中に混練室内に飛散した硫黄等の粉塵が混練室内の酸素と反応して発火することがないように、例えば窒素や二酸化炭素などの不活性ガスを混練室内に導入し、この混練室内の酸素濃度を発火限界以下とすることが行われている(例えば、特許文献1,2を参照。)。
また、従来の密閉式の混練機では、上述した混練室内の酸素濃度の測定が常時行われている。具体的には、混練室に接続された配管を通して、この混練室内の雰囲気ガスを酸素濃度計へと常時導いている。また、上述した混練室内の雰囲気ガス中に含まれる粉塵等が酸素濃度計に悪影響を与えないように、酸素濃度計に向かう配管の中途部には、この配管内を流れる雰囲気ガス中に含まれる粉塵等を捕集するフィルタが一般的に設けられている。
 しかしながら、前記フィルタによって捕集される粉塵等は、高粘度であり、また、前記配管の径は小さい(φ6mm程度)ために、配管やフィルタが目詰まりを起こし易い。よって、従来の混練機のように、混練作業中に酸素濃度の測定を常時行っていると、これら配管の清掃やフィルタの交換等といった煩わしい作業を高頻度で行う必要があった。
 特に、被混練物の混練工程、すなわち被混練物の投入、混練、及び排出の組み合わせ、を1バッチとして、この被混練物の混練工程を複数バッチ繰り返すバッチ式の混練機では、上記混練工程を例えば1生産サイクル当たり200バッチ程度繰り返すことがある。このため、早ければ1日に1回、上述した配管の清掃やフィルタの交換等の作業を行う必要が生じていた。
 したがって、上述した配管やフィルタの目詰まりを抑制し、配管の清掃やフィルタの交換等の作業を頻繁に行うことなく、混練室内の酸素濃度を安定して測定することが望まれている。
特開2006-327052号公報 特開2009-90252号公報
 本発明は、このような従来の事情に鑑みて提案されたものであり、上述した配管やフィルタの目詰まりを抑制し、配管の清掃やフィルタの交換等の作業を頻繁に行うことなく、すなわち清掃や交換の回数を減らし又は無くしても、混練室内を目標の酸素濃度に安定して保つことを可能とした混練装置を提供することを目的とする。
 本発明の発明者は、混練室内の酸素濃度の測定について常時行うことを不要とすることで、すなわち清掃や交換の回数を減らす又は無くすことで、上述した配管やフィルタの目詰まりを抑制できるかどうかを検討した。そして、配管やフィルタに対して特定の処置を行う事で、それらが可能であることを見出した。
 また、酸素濃度の測定を常時行う必要が無いようにする為には、バッチ毎に混練室内を目標とする酸素濃度(例えば、発火限界以下)に安定して保つ必要があること、そのためには、混練室内の酸素濃度を安定させるのに必要な、混練室内に導入される不活性ガスの流量等をバッチ開始前に予め正確に予測しておく必要があること、を見出した。
 本願の第一の態様の装置は、以下の(1)で示される装置である。
(1)被混練物を混練する混練室と、
 前記混練室に不活性ガスを導入するガス導入部と、
 前記混練室内の酸素濃度を測定する濃度測定部と、
 前記混練室内を目標の酸素濃度とするための演算を行う演算部と、
 前記演算部による演算結果に基づいて前記ガス導入部を制御する制御部とを備え、
 前記濃度測定部が混練時に測定した実測の酸素濃度と、予め設定した目標酸素濃度と、を比較しながら、前記演算部が前記混練室内を目標の酸素濃度とするための演算を行い、
前記演算を行った後の混練において、得られた演算結果に基づき、前記制御部が前記ガス導入部により混練室内に導入される不活性ガスのパージ流量及びパージ時間を制御することを特徴とする、混練装置である。
 本願の第一の態様の装置は以下の条件を有する事が好ましい。
(2) (1)の装置が、前記被混練物の投入、混練、及び排出を1バッチとして、前記被混練物の混練工程を2回バッチ以上繰り返すバッチ式の混練装置であって、
前記演算部が、バッチ毎に目標の酸素濃度を維持する為の演算を繰り返し、
この演算結果に基づいて、前記制御部が、前記ガス導入部により混練室内に導入される不活性ガスのパージ流量及びパージ時間を制御する。
(3) (2)の装置が、前記制御部が、各バッチの開始前に前記混練室内を大気暴露し、前記大気曝露後に混練室を密閉し、前記ガス導入部による混練室内への不活性ガスの導入を開始する。
(4) (2)又は(3)の装置が、初回バッチの開始前に、混練室内を大気曝露しその後密閉し、
前記濃度測定部が前記密閉した混練室内の酸素濃度を測定しながら、前記混練室内が目標の酸素濃度となるまで、前記ガス導入部が混練室内に不活性ガスを導入した後、
前記濃度測定部が混練室内の酸素濃度を一定の期間測定しながら、その期間内での酸素濃度の上昇分を相殺する不活性ガスのパージ流量を、前記演算部が演算により求め、
この求めた値を、前記演算部が、初回バッチにおいて混練中に前記混練室内を目標の酸素濃度のまま維持するための、目安値として用いる。
(5) (2)~(4)の装置が、初回バッチ又はそれ以降のバッチにおいて、前記濃度測定部が酸素濃度を実測し、
 前記演算部が前記濃度測定部が測定した実測の酸素濃度と、あらかじめ設定した目標酸素濃度との比較により、その差を相殺する不活性ガスの流量を演算により求め、
この求めた値を、前記演算部が、前記酸素濃度実測が行われたバッチの後に行われる、次回バッチにおいて、混練中に前記混練室内を目標の酸素濃度のまま維持するための、補正値として用いる。
(6) (5)の装置が、目標酸素濃度を含んだ所定の許容範囲に、前記濃度測定部が測定した実測の酸素濃度が収まった場合において、
 次回バッチ及びそれ以降のバッチでの前記演算部による演算を停止し、
前記許容範囲となったときの演算結果に基づいて、
次回バッチ及びそれ以降のバッチで、前記制御部が前記ガス導入部により混練中に前記混練室内に導入される不活性ガスのパージ流量及びパージ時間を制御する。
(7) (6)の装置が、前記演算部による演算を停止した後は、
 定期的に前記濃度測定部による混練室内の酸素濃度の測定を行い、
 この測定した酸素濃度が前記許容範囲を超えた場合には、
 前記演算部による演算を再開し、この演算結果に基づいて、前記制御部が前記ガス導入部により混練室内に導入される不活性ガスのパージ流量及びパージ時間を制御する。
 (8) (7)の装置が、
 定期的に前記濃度測定部による混練室内の酸素濃度の測定を行い、
 前記混練室内の酸素濃度が前記許容範囲を下回った場合には、
 その旨を告知して、当該バッチが終了するまで、前記濃度測定部による混練室内の酸素濃度の測定を継続する。
(9) (1)~(8)の装置が、前記混練室内の雰囲気ガスを前記濃度測定部へと導く配管と、
 前記配管内を流れる雰囲気ガス中に含まれる粉塵を捕集するフィルタと、
 前記配管の前記濃度測定部側から前記フィルタに向かって逆パージガスを導入する第2のガス導入部とを備える。
(10) (9)の装置が、
前記配管を通して前記混練室内の雰囲気ガスが前記濃度測定部に向かう第1の流れと、
前記配管を通して前記第2のガス導入部から導入された逆パージガスが前記フィルタに向かう第2の流れと、
を切り替える切替部を備え、
 前記濃度測定部が前記混練室内の酸素濃度を測定している間は、前記切替部が前記第1の流れを開放し、前記第2の流れを遮断する一方、
 前記濃度測定部が前記混練室内の酸素濃度の測定を中断している間は、前記切替部が前記第1の流れを遮断し、前記第2の流れを開放することによって、前記配管の前記濃度測定部側から前記フィルタに向かって逆パージガスを導入する。
(11) (10)の装置が、前記濃度測定部にゼロガスを導入する第3のガス導入部を備え、
 前記濃度測定部が前記混練室内の酸素濃度を測定している間は、前記配管を通して前記第3のガス導入部から導入されたゼロガスが前記濃度測定部に向かう第3の流れを前記切替部が遮断する一方、
前記濃度測定部が前記混練室内の酸素濃度の測定を中断している間は、前記切替部が開放され、第3の流れが濃度測定部に向かう。
(12) (9)~(12)の装置において、逆パージガスが、不活性ガスである。
(13) (11)及び(12)の装置において、前記ゼロガスが、不活性ガスである。
 本発明の第二の態様の混練装置は、以下の(14)の装置である。
 (14)被混練物を混練する混練室と、
 前記混練室に不活性ガスを導入する第1のガス導入部と、
 前記混練室内の酸素濃度を測定する濃度測定部と、
 前記混練室内の雰囲気ガスを前記濃度測定部へと導く配管と、
 前記配管内を流れる雰囲気ガス中に含まれる粉塵を捕集するフィルタと、
 前記配管の前記濃度測定部側から前記フィルタに向かって逆パージガスを導入する第2のガス導入部とを備える混練装置。
 上記(14)の装置は以下の特徴を有することが好ましい。
(15) (14)の装置が、
 前記配管を通して前記混練室内の雰囲気ガスが前記濃度測定部に向かう第1の流れと、
 前記配管を通して前記第2のガス導入部から導入された逆パージガスが前記フィルタに向う第2の流れと、
を切り替える切替部を備え、
 前記濃度測定部が前記混練室内の酸素濃度を測定している間は、前記切替部が前記第1の流れを開放し、前記第2の流れを遮断する一方、
 前記濃度測定部が前記混練室内の酸素濃度の測定を中断している間は、前記切替部が前記第1の流れを遮断し、前記第2の流れを開放することによって、前記配管の前記濃度測定部側から前記フィルタに向かって逆パージガスを導入する。
 (16) (15)の装置が、
 前記濃度測定部にゼロガスを導入する第3のガス導入部を備え、
 前記濃度測定部が前記混練室内の酸素濃度を測定している間は、前記配管を通して前記第3のガス導入部から導入されたゼロガスが前記濃度測定部に向う第3の流れを前記切替部が遮断する一方、
 前記濃度測定部が前記混練室内の酸素濃度の測定を中断している間は、前記切替部が開放され、第3の流れが濃度測定部に向かう。
(17) (14)~(16)の装置が、
 前記混練室内の粉塵を捕集する集塵機と、
 前記集塵機と前記フィルタとの間を接続する配管と、
 前記配管を開閉する開閉弁とを備え、
 前記濃度測定部が酸素濃度の測定を休止している間に、前記開閉弁が前記配管を開放し、この配管を通して前記フィルタ内に溜まった粉塵を前記集塵機により吸引しながら除去する。
(18) (14)~(17)の装置において、逆パージガスが、不活性ガスである。
(19) (16)~(18)の装置において、ゼロガスが、不活性ガスである。
 本発明の第三の態様は、以下の混練方法である。
(20)(1)の混練装置を用いて、混練室に被混練物を投入し混練し排出する、方法であって、
(a)前記濃度測定部が混練時に測定した実測の酸素濃度と、予め設定した目標酸素濃度と、を比較しながら、前記演算部が前記混練室内を目標の酸素濃度とするための演算を行う工程と、
(b)前記演算を行った後の混練において、得られた演算結果に基づき、前記制御部が前記ガス導入部により混練室内に導入される不活性ガスのパージ流量及びパージ時間を制御する工程、を含む、混練方法。
 上記混練方法(20)は以下の特徴を好ましく含む。
 (21) 工程(a)と工程(b)の組み合わせが、以下の(1)~(5)で表されるサブ工程を含み、
(1) 大気曝露後密閉された混練室内を目標の酸素濃度とするための初期パージ時間を、予め設定した初期パージ流量の値に基づいて求め、
前記初期パージ流量で不活性ガスを前記混練室に導入するとともに前記初期パージ時間経過後に不活性ガスの導入を停止し、
一定期間における混練室内での酸素濃度変化の測定を行う初期パージ工程;、
(2)以下の工程(2a)~工程(2c)をこの順で含む、初回のバッチ工程、
 (2a) 被混練物を前記混練室に投入した後密閉し、所定のパージ流量及びパージ時間で不活性ガスを前記混練室に導入する混練前パージ工程、
 (2b) 前記パージ時間経過後、被混練物の混練を開始するとともに、工程(1)での酸素濃度変化に基づいて求めたパージ流量で不活性ガスを前記混練室に導入しながら、当該混練中の酸素濃度変化の測定を行う混練中パージ工程、
 (2c) 混練後、被混練物を混練室から排出する排出工程;
(3) 前回のバッチ工程における混練中パージでの酸素濃度変化が設定された許容範囲に収まっているかどうかの確認を行い、許容範囲を外れたと判断された場合工程(4)に進み、許容範囲に収まったと判断された場合工程(5)に進む工程;
(4)以下の工程(4a)~工程(4c)をこの順で含む、2回目以降のバッチ工程、
 (4a) 被混練物を、前回バッチの被混練物が排出された前記混練室に投入した後密閉し、所定のパージ流量及びパージ時間で不活性ガスを前記混練室に導入する混練前パージ工程、
 (4b) 前記パージ時間経過後、被混練物の混練を開始するとともに、前回のバッチ工程での混練中パージ工程の酸素濃度変化を相殺するパージ流量で不活性ガスを前記混練室に導入しながら、当該混練中の酸素濃度変化の測定を行う混練中パージ工程、
 (4c) 被混練物を混練室から排出する排出工程;
(5)以下の工程(5a)~工程(5c)をこの順で含む、演算停止以降のバッチ工程、
 (5a) 被混練物を、前回バッチの被混練物が排出された前記混練室に投入した後密閉し、所定のパージ流量及びパージ時間で不活性ガスを前記混練室に導入する混練前パージ工程、
 (5b) 前記パージ時間経過後、被混練物の混練を開始するとともに、前回のバッチ工程における混練中パージ工程と同じパージ流量で不活性ガスを前記混練室に導入する混練中パージ工程;
 (5c) 被混練物を混練室から排出する排出工程;
 上記サブ工程において、(i)工程(4)を行った後に、又は、(ii)工程(5)を所定の回数繰り返し、更に続いて、混練中パージ工程において混練中の酸素濃度変化の測定が行われるバッチ工程を行い、このバッチ工程が行われた後に、
工程(3)へ戻り確認が行われる。
 なお本発明において、上記“部”は部材、装置、工程、手段、及び方法などを意味してよい。
 本発明の第一の態様では、予め設定した目標酸素濃度と、測定した実測の酸素濃度とを比較しながら、混練室内を目標の酸素濃度とするための演算を行い、この演算結果に基づいて、混練室内に導入される不活性ガスのパージ流量及びパージ時間を制御することで、混練室内を目標の酸素濃度に安定して保つことが可能である。
 また、本発明の第一の態様によれば、混練室内の酸素濃度の測定を常時行うことが不要となる。すなわち、清掃や交換の回数を減らす又は無くすことができる。このために、上述した配管やフィルタの目詰まりを抑制することが可能である。
 本発明の第二の態様によれば、配管の濃度測定部側からフィルタに向かって逆パージガスを導入することで、フィルタや配管に溜まった粉塵を混練室側へと吹き飛ばすことができる。これにより、配管やフィルタの目詰まりを抑制し、配管の清掃やフィルタの交換等の作業を頻繁に行うことなく、混練室内の酸素濃度を安定して測定することが可能となる。
図1は、本発明の第一の態様を適用した混練装置の一例を示すバンバリーミキサの模式図である。 図2は、本発明を適用した混練装置の運転制御方法を説明するためのフローチャートである。 図3は、初期パージを示すグラフであって、大気露出後に被混練物を投入せずに密閉した混練室内に導入される、不活性ガスのパージ流量の変化と、酸素濃度計により測定された混練室内の酸素濃度の変化とを測定した結果を示すグラフである。 図4は、初回バッチを示すグラフであって、大気露出後に被混練物が投入され密閉された混練室内に導入された、不活性ガスのパージ流量の変化と、酸素濃度計によって測定された混練室内の酸素濃度変化とを測定した結果を示すグラフである。 図5は、2バッチ目及びそれ以降のバッチにおいて、その前のバッチで濃度変化が許容値を外れた為に、演算がやり直され、演算により補正した流量で混練室内に導入された不活性ガスのパージ流量の変化と、酸素濃度計により測定された混練室内の酸素濃度の変化を測定した結果を示すグラフである。 図6は、演算停止後のバッチにおいて、混練室内に導入される不活性ガスのパージ流量の変化と、酸素濃度計による酸素濃度の変化(ゼロガス測定)を測定した結果を示すグラフである。 図7は、実施例で連続して行われたバッチ処理における、混練室内に導入される不活性ガスのパージ流量の変化と、酸素濃度計による酸素濃度の変化を測定した結果を示すグラフである。 図8は、本発明の第二の態様を適用した混練装置の一例を示すバンバリーミキサの模式図である。 図9は、図8に示すバンバリーミキサの変形例を示し、四方弁のかわりに二方弁を用いた場合を示す模式図である。 図10は、図8に示すバンバリーミキサの変形例を示し、四方弁のかわりに三方弁を用いた場合を示す模式図である。 図11は、図8に示すバンバリーミキサの変形例を示し、集塵機とフィルタを接続し、粉塵を除去する場合を示す模式図である。
 以下、本発明を適用した混練装置について、図面を参照して詳細に説明する。
 なお、以下の記載は、発明の趣旨をより良く理解させるために具体的に例を説明するものであり、特に指定のない限り、本発明を限定するものではない。本発明は趣旨を逸脱しない範囲において、位置や数や形状などについて、付加、省略、置換、およびその他の変更が可能である。本発明は後述する説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。また2つの態様間では、好ましい例や条件などを共有あるいは交換して良い。
(第一の態様の混練装置)
 本発明の第一の態様を適用した混練装置は、例えば図1に示すような、タイヤなどのゴム製品を製造する際に好適に用いられるバンバリーミキサ1である。このようなミキサーでは、その原料となるゴムに、硫黄や、カーボンブラック、オイル、老化防止剤、加硫促進剤などの添加剤や配合剤を加えたものが、被混練物Gとして、加熱及び/または加圧状態で混練される。
 具体的には、このバンバリーミキサ1は、図1に示すように、被混練物Gを混練する混練室2と、混練室2に不活性ガスを導入する第1のガス導入ライン、すなわち第1のガス導入部(第1のガス導入手段)3と、混練室2内の酸素濃度を測定する酸素濃度計、すなわち濃度測定部(濃度測定手段)4と、混練室内の雰囲気ガスを酸素濃度計4へと導く配管5a,5bと、入側(一方)の配管5a内を流れる雰囲気ガス中に含まれる粉塵等を捕集するフィルタ6と、出側(他方)の配管5bの酸素濃度計4側からフィルタ6に向かって逆パージガスを導入する第2のガス導入ライン(第2のガス導入手段)7と、酸素濃度計4に汚染物質を含まないゼロガスを導入する第3のガス導入ライン(第3のガス導入手段)8とを備えている。
 混練室2は、密閉構造を有しており、その内部に設けられた一対のロータ9a,9bを互いに逆向きに回転させながら、被混練物Gに大きな剪断力を与えて混練する仕組みとなっている。また、混練室2の上部側面には、ベルトコンベア10等で搬送された混練前の被混練物Gを内部に投入するための投入扉11aが開閉自在に設けられている。一方、混練室2の下方には、混練後の被混練物Gを外部に排出するための排出扉11bが、開閉自在に設けられている。さらに、混練室2の上部には、この混練室2内の粉塵等を捕集するための集塵機12が設けられている。
 第1のガス導入ライン3は、混練室2に接続された第1の導入管13を通して、例えば窒素や二酸化炭素などの不活性ガスを、混練室2に導入するラインである。このラインは、この不活性ガスを供給するガス供給源(図示せず。)と混練室2との間に、第1の導入管13を流れる不活性ガスの圧力を調整する圧力調整弁(減圧弁)14と、第1の導入管13を開閉する遮断弁(電磁弁)15と、第1の導入管13を流れる不活性ガスの流量を測定する流量計(FT)16と、第1の導入管13を流れる不活性ガスの流量を調整する流量調整弁(FCV)17と、流量計16の測定結果に基づいて流量調整弁17による流量の調整を行いながら、第1の導入管13を流れる不活性ガスの流量を制御する流量制御装置(FIC)18と、混練室2内の雰囲気が第1の導入管13に流れ込むのを防止する逆止弁19とを有している。
 酸素濃度計4は、混練室2に接続された配管5a,5bを通して、混練室2内の雰囲気ガスをポンプ4aにより吸引しながら、この雰囲気ガス中に含まれる酸素の濃度を測定する。配管5a,5bは、フィルタ6により粉塵等が除去された雰囲気ガスを酸素濃度計4へと導く測定ラインを構成している。フィルタ6は、これら配管5a,5bに接続されており、交換可能に設けられている。なお、使用するフィルタ6については、混練室2内の雰囲気ガス中に含まれる硫黄等の粉塵を捕集できるものであれば特に限定されるものではなく、従来公知のものを使用することができる。
 また、入側の配管5aと出側の配管5bとの間には、四方弁(切替手段)20が配置されている。この四方弁20は、入側の配管5aを通して混練室2内の雰囲気ガスが酸素濃度計4に向かう第1の流れF1と、第2のガス導入ライン7から導入された逆パージガスが入側の配管5aを通ってフィルタ6に向かう第2の流れF2と、第3のガス導入ライン8から導入されたゼロガスが出側の配管5bを通って酸素濃度計4に向かう第3の流れF3と、を切り替える。
 第2のガス導入ライン7は、四方弁20に接続された第2の導入管21を通して、逆パージガスを入側の配管5aに向かって導入する、逆パージラインである。逆パージガスとして例えば窒素や二酸化炭素などの不活性ガスを供給するガス供給源(図示せず。)と四方弁20との間には、第2の導入管21を流れる逆パージガスの流量を調整する流量調整弁22を、ガス導入ライン7は有している。
 第3のガス導入ライン8は、四方弁20に接続された第3の導入管23を通して、ゼロガスを出側の配管5bに向かって導入する、ゼロガス導入ラインである。ゼロガスとして例えば窒素や二酸化炭素などの不活性ガスがあり、この不活性ガスを供給するガス供給源(図示せず。)と四方弁20との間には、第3の導入管23を流れるゼロガスの流量を調整する流量調整弁24をガス導入ライン8は有している。
 ベルトコンベア10で搬送された被混練物Gは、混練室2へと投入される。このとき、投入扉11aは、大気曝露による混練室2内の酸素濃度の上昇を抑えるために、被混練物Gを混練室2に投入する直前に開放し、投入後に直ちに遮断することが好ましい。
 また、混練室2の投入扉11aと排出扉11bを閉じた状態で、この混練室2内に第1のガス導入ライン3を通じて不活性ガスを導入し、混練室2内の酸素濃度を発火限界以下としてから、次に不活性ガスを導入し続けながら、被混練物Gを混練室2へと投入しても良い。
 混練室2に被混練物Gを投入した後は、この被混練物Gを加熱及び/又は加圧しながら可塑化状態とし、この状態で互いに反転する一対のロータ9a,9bにより大きな剪断力を与えて混練する。
 そして、混練後は、排出扉11bを開放し、被混練物Gを外部へと排出する。なお、このバンバリーミキサ1による混練作業では、混練室2内の温度と、ロータ9a,9bを駆動するモータの電流値等を測定しながら、この混練室2内の被混練物Gの状態を把握し、ミキサの運転管理を行っている。
 このバンバリーミキサ1では、第1のガス導入ライン3を通じて、混練室2の投入扉11aと排出扉11bを閉じた状態で、混練室2内に不活性ガスを導入し、この混練室2内を目標の酸素濃度とすることが行われている。具体的な、この混練室2内の目標の酸素濃度としては、混練室2内の酸素濃度を、発火限界以下となる10体積%以下とすることが好ましい。一方、不活性ガスの導入量の増加により混練室2内の酸素濃度が低くなり過ぎると、被混練物(ゴム等)Gの劣化等の問題を招くことになる為、混練室2内の酸素濃度の下限値については、このような問題が生じない値(例えば4体積%以上)に設定することが好ましい。
 また、バンバリーミキサ1では、混練室2に接続された配管5aを通して、混練室2内の雰囲気ガスをポンプ4aにより吸引しながら、配管5bを通してフィルタ6により粉塵等が除去された雰囲気ガスを、酸素濃度計4へと導く。導かれた雰囲気ガス中の酸素濃度は、酸素濃度計4により測定される。そして、測定された値を基に、混練室2内が上記目標の酸素濃度となるように、第1のガス導入ライン3から混練室2内への不活性ガスの導入が制御される。
 上記制御を行うため、バンバリーミキサ1は、混練室2内を目標の酸素濃度とするための演算を行う演算部(演算手段)30と、この演算部30による演算結果に基づいて第1のガス導入ライン3を制御する制御部(制御手段)31とを備えている。
 このうち、演算部30は、例えばPLC(Programmable Logic Controller)などのプロセスコンピュータからなり、上記酸素濃度計4と電気的に接続されている。一方、制御部31は、例えば、FIC(Flow Indication Controller)などのマスフローコントローラからなり、本実施形態では、制御部31として上記流量制御装置(FIC)18が上記演算部30と電気的に接続されている。
 そして、このバンバリーミキサ1では、上記酸素濃度計4が測定した実測の酸素濃度と、予め設定した目標酸素濃度とを比較しながら、演算部30が混練室2内を目標の酸素濃度とするための演算を行い、この演算結果に基づいて、制御部31が第1のガス導入ライン3により混練室2内に導入される不活性ガスのパージ流量及びパージ時間を制御する。
 また、このバンバリーミキサ1は、被混練物Gの投入、混練、排出を1バッチとして、被混練物Gの混練工程を複数バッチ繰り返す、バッチ方式を採用している。なお上記複数バッチとは、2バッチ以上、好ましくは3バッチ以上であり、上限は特に設定されず任意に選択できる。演算部30はバッチ毎に演算を繰り返し、この演算結果に基づいて、制御部31が第1のガス導入ライン3により混練室2内に導入される不活性ガスのパージ流量及びパージ時間を制御する。
 以下、本発明を適用したバンバリーミキサ1において、混練室2内を目標の酸素濃度に安定して保つための具体的な運転制御方法の例について、図2に示すフローチャートに従って説明する。
 なお図2においては、混練中パージ工程とそれに続く混練中パージ測定工程は順番に記載されているが、混練中パージ工程において混練中パージ測定も同時に行われていることが好ましい。
(ステップS1)
 本発明を適用したバンバリーミキサ1では、先ず、図2に示すステップS1(初期パージ工程)に進む。このステップでは、バッチ処理を行う初期パージの開始前に、バッチ処理を行わずに、混練室2内を目標の酸素濃度にするための目安値を求めるための、初期パージを行う。すなわち初期パージでは、被混練物Gは投入しない。具体的には、例えば図3のグラフに示すように、混練室2内に被混練物Gを投入する前に、上記投入扉11aを開放し、混練室2内を大気曝露することによって、この混練室2内の酸素濃度を大気中の酸素濃度(約20.9%)とする。なお本例では、酸素濃度測定は、断りのない限り後述する演算停止工程を除き、継続して行われるが、必要に応じて酸素濃度測定を行う必要がない時点で測定を中断してもよい。
 なお、図3中の実線は、混練室2内に導入される不活性ガスのパージ流量を示し、図3中の破線は、1秒毎に測定した混練室2内の酸素濃度を示す。
 大気曝露の後、被混練物Gを投入しないまま、混練室2内を密閉状態とし、酸素濃度計4による室内の酸素濃度の測定を行いながら、混練室2内に第1のガス導入ライン3を通じて不活性ガスを導入する。このとき、制御部31は、混練室2内の酸素濃度が目標値(例えば、発火限界以下)となるまでの期間(初期パージ時間という。下記(2)の式から得た値)、導入される不活性ガスの流量(初期パージ流量という。)を所定の一定値に保ちながら、第1のガス導入ライン3から混練室2内への、不活性ガスの導入を行う。これにより、混練室2内の酸素濃度が不活性ガスの導入量(初期パージ流量×初期パージ時間)に応じて低下することになる。
 ここでまず、初期パージ時間Taを求める。混練室2内の目標の酸素濃度は、上記大気曝露後における混練室2内の雰囲気ガスと混練室2内に導入される不活性ガスとが完全に混合すると仮定した場合、下記式(1)で表すことができる。
 Xa=X0*exp-(Qa/V0)*Ta …(1)
 上記式(1)中において、Qaは、初期パージ流量[NL/分]を、Taは、初期パージ時間[秒]を、Xaは、混練室2内の不活性ガス導入後の(目標)酸素濃度[体積%]を、X0は、混練室2内の不活性ガス導入前(大気中)の酸素濃度[体積%]を、V0は、混練室2の内容積[L]を表す。
 なお本発明において上記NL/分のNは、Normalを表し、NL/分は単にL/分と表しても良い。
 したがって上記式(1)から、初期パージ時間Taは、下記式(2)によって求めることができる。
 Ta=-V0/Qa*In(Xa/X0)…(2)
(ステップS2)
 次に、バンバリーミキサ1では、図2に示すステップS2(初期パージ測定工程)に進む。このステップでは、上記初期パージによる混練室2内への不活性ガスの導入を停止し、酸素濃度計4による酸素濃度の変化の測定(初期パージ測定という。)を一定の期間(初期パージ測定時間という。)行う。ここで、混練室2内の酸素濃度は、図3のグラフに示すように、不活性ガスの導入を停止した後に、徐々に上昇することになる。
 酸素濃度が上昇する原因は、集塵機12の作動により混練室2内に負圧が発生し、この混練室2の隙間から外気が導入されるからである。
 演算部30は、酸素濃度計4による酸素濃度の上記測定結果から、初期パージ測定時間内での酸素濃度の最下点(図3中の実測値a)と最上昇点(図3中の実測値b)を求め、この初期パージ測定時間内における酸素濃度の上昇分(b-a、又は、Xc-Xb)を演算により求める。
 また、演算部30は、上記データから、この初期パージ測定時間内での酸素濃度の上昇分を相殺する不活性ガスの流量(初期パージ予測流量Qcという。)を演算により求める。
 ここで、初期パージ予測流量Qc[NL/分]は、下記式(3)により求めることができる。
 Qc=V0/Tc*In(Xc/Xb) …(3)
(∵ Xc=Xb*exp-(Qc/V0)*Tc
 なお、上記式(3)中において、Tcは、初期パージ測定時間[秒]、Xbは、初期パージ測定時間内での酸素濃度の最下点[体積%]、Xcは、初期パージ測定時間内での酸素濃度の最上昇点[体積%]を表す。
 以上により、初期パージにおいて、混練室2内を目標の酸素濃度Xaとするための目安値となる、4つの値を得る又は設定することができる。すなわち、(i)初期パージ流量Qa(一定値に設定)、(ii)初期パージ時間Ta、(iii)混練中に混練室2内を目標の酸素濃度Xaのまま維持するための目安値となる初期パージ予測流量Qc(初期パージでの測定及び演算によって予測された、酸素濃度の上昇を相殺する不活性ガスの流量)、及び(iv)初期パージ測定時間Tc(一定値に設定)とを得ることができる。
(ステップS3)
 次に、バンバリーミキサ1では、図2に示す初回バッチに進む。すなわち、図2に示すステップS3(混練前パージ工程)に進む。この工程では、初回バッチの混練を開始する前に、混練室2内を目標の酸素濃度Xaとする混練前パージを行う。具体的には、例えば図4に示すグラフの左部に示されるように、混練室2内に被混練物Gを投入する時に、上記投入扉11aを開放することで混練室2内を大気曝露し、この混練室2内の酸素濃度を大気中の酸素濃度(約20.9%)とする。
 なお、図4中の実線は、混練室2内に導入される不活性ガスのパージ流量を示し、図4中の破線は、混練室2内の酸素濃度を示す。
 本発明では、大気曝露後に第1のガス導入ライン3による混練室2内への不活性ガスの導入を開始することで、各バッチにおいて不活性ガスを導入する前の混練室2内を常に同一基準となる酸素濃度(大気中の酸素濃度)にすることが可能である。
 開放された投入扉11aからは、被混練物Gが投入される。そして、被混練物Gの投入後は、混練室2内を密閉状態とする。その後、酸素濃度計4による酸素濃度の測定を継続しながら、この混練室2内に第1のガス導入ライン3を通じて不活性ガスを導入する、混練前パージを行う。
 このとき、制御部31は、混練室2内が目標の酸素濃度Xa(設定された目標値)となるまでの間(混練前パージ時間Tbという。)、導入される不活性ガスの流量(混練前パージ流量Qbという。)を一定としながら、第1のガス導入ライン3から混練室2内への不活性ガスの導入を行う。
 混練前パージ時間Tbは以下の式(5)によって決定でき、混練前パージ流量Qbとしては一定値が選択される。流量Qbは流量Qaと同じ値を用いることが好ましい。
 被混練物Gを投入した混練室2の投入後の内容積V[L]は、下記式(4)によって表すことができる。
 V=V0-kg*Vg …(4)
 なお、上記式(4)中において、Vgは、被混練物Gの体積[L]を、kgは、被混練物Gの空隙係数を表す。
 したがって、混練前パージ時間Tb[秒]は、上記式(1),(4)から、下記式(5)によって求めることができる。
 Tb=-V/Qb*In(Xa/X0) …(5)
 本発明を適用したバンバリーミキサ1では、混練前パージでの不活性ガス導入を行う前に、演算部30が上記混練前パージ時間Tbを求める演算を行う。そして、この演算結果に基づいて、制御部31が第1のガス導入ライン3により混練室2内に導入される不活性ガスのパージ流量及びパージ時間を制御しながら、混練前パージ(不活性ガス導入)を行う。すなわち、この制御部31は、上述したように混練室2内が目標の酸素濃度Xaとなるまでの間(混練前パージ時間Tb)、導入される不活性ガスの流量(混練前パージ流量Qb)を一定としながら、第1のガス導入ライン3から混練室2内への、不活性ガスの導入を行う。これにより、被混練物Gの混練を開始する前に混練室2内を目標の酸素濃度Xaとすることができる。
(ステップS4及びS5)
 次に、バンバリーミキサ1では、図2に示すステップS4(混練中パージ工程)に進む。この工程では、上記混練前パージによる混練室2内への不活性ガスの導入を行った後、被混練物Gの混練を開始すると共に、混練中に混練室2内の酸素濃度の上昇を抑える混練中パージを行う。具体的には、図4に示すグラフのように、混練中に酸素濃度計4による混練室2内の酸素濃度の測定を行いながら、この混練室2内に第1のガス導入ライン3を通じて、演算で決定された量の不活性ガスを導入する。混練時間としては、任意の時間を選択でき、これを演算に使用して良い。
 このとき、制御部31は、被混練物Gを混練している間の時間(混練中パージ時間Tc’という。)、導入される不活性ガスの流量(混練中パージ流量Qc’という。)を一定としながら、第1のガス導入ライン3から混練室2内への不活性ガスの導入を行う。
 被混練物Gを投入する前後の混練室2の容積比λは、下記式(6)によって表すことができる。
 λ=V/V0 …(6)
 したがって、混練中パージ流量Qc’[NL/分]は、上記式(3)より目安値として求めた初期パージ予測流量Qcと、上記式(6)と、及び混練中パージ時間Tc’とから、下記式(7)によって求めることができる。
 Qc’=Qc*λ …(7) 
但し、上記式(7)中のQcは、上記式(3)中のTcをTc’で換算した値とする。
 本態様のバンバリーミキサ1では、混練中パージ工程において不活性ガス導入を行う前に、演算部30が上記混練中パージ流量Qc’を求める演算を行う。そして、この演算結果に基づいて、制御部31が、第1のガス導入ライン3により混練室2内に導入される不活性ガスのパージ流量及びパージ時間を制御しながら、混練中パージ(不活性ガス導入)を行う。すなわち、この制御部31は、上述したように、混練中の間(混練中パージ時間Tc’)、不活性ガスの流量(混練中パージ流量Qc’)を一定としながら、第1のガス導入ライン3から混練室2内への不活性ガスの導入を行う。この方法により、混練中に混練室2内を目標の酸素濃度Xa(設定された目標値)のまま維持することができる。
 なお、バンバリーミキサ1では、混練中パージの間に、図2に示すステップS5(混練中パージ測定工程)を行う。すなわち図4の右側に示されるように、上記混練中パージを行い、混練中に混練室2内の酸素濃度が最下点に到達したこと
を酸素濃度計4により確認された時間から、ステップS5をスタートし、酸素濃度計4による酸素濃度の変化測定(混練中パージ測定という。)を行う。酸素濃度が最下点に到達してから再び上昇を始め最上昇点に到達するまでの時間を、混練中パージ測定時間Teとする。
(ステップS6)
 そして、図2に示すステップS6(許容範囲の確認工程)に進む。このステップでは、ステップS5において酸素濃度計4が測定した実測の酸素濃度と、目標酸素濃度Xaを含んだ所定の濃度範囲(予め設定しておく)との比較を行い、前記所定の濃度幅の範囲内に実測の酸素濃度が入るか否か、すなわち実測酸素濃度が許容範囲に収まっているか否かを判断する。許容範囲すなわち目標酸素濃度Xaを含んだ所定の濃度範囲は必要に応じて任意で設定できる。
 具体的には、演算部30は、混練中パージ時間Tc’内での酸素濃度の最上昇点及び最下点と、目標酸素濃度Xaを含んだ所定の濃度範囲とを比較し、酸素濃度の最上昇点及び最下点がそれぞれ所定の濃度範囲内に収まっているか否かを判断する。そして、酸素濃度の最上昇点及び最下点が所定の濃度範囲を外れた場合には、上記図2のステップS7(補正値演算工程)に進む一方、範囲以内の場合には、図2のステップS8(2バッチ目又はそれ以降のバッチかつ演算停止後の、混練前パージ工程)に進む。
(ステップS7)
 図2に示すステップS7(補正値演算工程)では、次回バッチの開始前に、ステップS5及び6で得られた、上記酸素濃度計4が測定した実測の酸素濃度と、予め設定した目標酸素濃度との比較に基づき、その差を相殺する不活性ガスの流量を求める。求めた値は、次回バッチにおいて、混練中に混練室2内を目標の酸素濃度Xaのまま維持するための補正値として用いられる。
 具体的には、演算部30はそれまでのステップにおいて、酸素濃度計4による初回バッチの酸素濃度の測定結果から、上記混練中パージ時間(Tc’)内での酸素濃度の最下点(図4中の実測値a)と最上昇点(図4中の実測値b)を求め、更に、この混練中パージ測定時間内における酸素濃度の上昇分(b-a)を演算により求めている。ステップS7では、演算部30は、この混練中パージ測定時間内での酸素濃度の上昇分を相殺する不活性ガスの流量(混練中パージ補正流量qという。)を演算により求める。
 ここで、混練中パージ補正流量q[NL/分]は、下記式(8)により求めることができる。
 q=-V/Te*In(Xe/Xd) …(8)
(∵ Xe=Xd*exp-(q/V)*Te
 なお、上記式(8)中において、Teは、混練中パージ測定時間[秒]を、Xdは、混練中パージ時間Tc’内での酸素濃度の最下点(実測値a)[体積%]を、Xeは、混練中パージ時間Tc’内での酸素濃度の最上昇点(実測値b)[体積%]を表す。
 以上により、初回バッチ以降のバッチにおいて、許容範囲を超えていた場合に、次回バッチの混練中パージにおいて、混練中に混練室2内を目標の酸素濃度のまま維持するための補正値として使用される、混練中パージ補正流量qを得ることができる。
 なお、混練中パージ補正流量qの算出(ステップS7)は、酸素濃度が許容範囲内に収まっているか確認する工程(ステップS6)の前に行ってもよい。
(ステップS9)
 次に、バンバリーミキサ1では、図2に示す2回目以降のバッチに進む。すなわち、図2に示すステップS9(前回バッチの酸素濃度変化が許容範囲を超えた後の、混練前パージ工程)に進む。このステップでは、2バッチ目及びそれ以降のバッチにおいて、各バッチの混練開始前に、上述した混練室2内を、目標の酸素濃度Xaとする混練前パージを行う。
 具体的には、2バッチ目又はそれ以降のバッチにおいて、例えば図5のグラフに示すように、まず最初に、混練室2内に被混練物Gを新たに投入する前に、上記投入扉11aを開放することで、混練室2内を大気曝露し、この混練室2内の酸素濃度をおよそ大気中の酸素濃度(約20.9%)とする。
 なお、図5中の実線は、混練室2内に導入される不活性ガスのパージ流量を示し、図5中の破線は、混練室2内の酸素濃度を示す。
 被混練物Gの投入後は、混練室2内を密閉状態とする。そして、酸素濃度計4による酸素濃度の測定を行いながら、この混練室2内に第1のガス導入ライン3を通じて不活性ガスを導入して、混練前パージを行う。
 このとき、制御部31は、ステップS3と同じ制御を行うことができる。具体的には、混練室2内が目標の酸素濃度Xaとなるまでの間(混練前パージ時間Tb)、導入される不活性ガスの流量(混練前パージ流量Qb)を一定としながら、第1のガス導入ライン3から混練室2内への不活性ガスの導入を行う。すなわち、2バッチ目及びそれ以降でのバッチの混練前パージでは、上記ステップS3の初回バッチの為に演算部30が行った混練前パージ用の演算結果に基づいて、制御部31が第1のガス導入ライン3により混練室2内に導入される不活性ガスのパージ流量及びパージ時間を制御しながら、同じように混練前パージを行う。
これにより、2バッチ目及びそれ以降のバッチで、被混練物Gの混練を開始する前に、混練室2内を目標の酸素濃度Xaとすることができる。
(ステップS10及びステップS13)
 次に、本態様のバンバリーミキサ1は、図2に示すステップS10(前回バッチの酸素濃度変化が許容範囲を超えた後のバッチの、混練中パージ工程)に進む。被混練物Gの混練を開始すると共に、混練中に混練室2内の酸素濃度の上昇を抑える混練中パージを行う。
 具体的には、2バッチ目及びそれ以降のバッチでは、混練前パージの後に、例えば図5のグラフの中央及び右側に示すように、混練中に酸素濃度計4による混練室2内の酸素濃度の測定を行いながら、この混練室2内に第1のガス導入ライン3を通じて、ステップS7での演算に基づいて決定された量の不活性ガスを導入する。
 このとき、制御部31は、被混練物Gを混練している間(混練中パージ時間Tc’)、導入される不活性ガスの流量(次バッチ混練中パージ流量Qeという。前バッチの酸素濃度変化が許容範囲を超えた後のバッチの、混練中のパージ流量といってもよい。)を一定としながら、第1のガス導入ライン3から混練室2内への不活性ガスの導入を行う。なお本例において、混練中パージ時間Tc’は前バッチでの混練中パージ時間Tc’と同じである。
 ここで、次バッチ混練中パージ流量Qe[NL/分]は、上記補正値として求めた混練中パージ補正流量qと上記式(7)から、下記式(9)によって求めることができる。
 Qe=Qc’(or Qe’)-q …(9)
 なお、上記式(9)中に示すQe’は、前回バッチでの混練中パージ流量を表す。すなわちQe’は、3バッチ目以降において、前回バッチのパージ流量として、次回バッチでの混練中パージ流量Qeを得る為に使用される。すなわち、3バッチ目以降は、次バッチ混練中パージ流量Qeを得る為に、前バッチ混練中パージ流量Qe’を用いるものとする。
 バンバリーミキサ1では、前バッチで酸素濃度の最下点又は再上昇点のいずれかが許容範囲を外れた場合、混練中パージにおいて不活性ガスの導入を行う前に、演算部30が上記式(9)に示す次バッチ混練中パージ流量Qeを求める演算を行う。そして、この演算結果に基づいて、ステップS10において、制御部31が第1のガス導入ライン3により混練室2内に導入される不活性ガスのパージ流量及びパージ時間を制御しながら混練中パージを行う。すなわち、この制御部31は、上述したように混練中の間(混練中パージ時間Tc’)、不活性ガスの流量(次バッチ混練中パージ流量Qe)を一定としながら、第1のガス導入ライン3から混練室2内への不活性ガスの導入を行う。これにより、混練中に混練室2内を目標の酸素濃度Xaのまま維持することができる。
 また、バンバリーミキサ1では、混練中パージの間に、図2に示すステップS13(混練中パージ測定工程)を行う。ステップS13における酸素濃度計4による酸素濃度の最上昇点及び最下点の測定、及び、混練中パージ測定時間Te算出は、上述のステップS5と同様に行うことができる。
 その後、図2に示すステップS6へ再び戻る。すなわち、ステップS13での酸素濃度変化が許容範囲に収まっているか否かを判断する。
(ステップS8)
 一方、ステップS6において酸素濃度が許容範囲となった場合、図2のステップS8に進む。ステップS8(演算停止後の混練前パージ工程)では、次回バッチ(2回目のバッチ)及びそれ以降のバッチについて、すなわち本工程で処理されるバッチ等について、上記混練中パージ補正流量qを求める演算を停止する。前記補正流量を求める演算を停止する間は、酸素濃度の測定を行わなくても良い。そして、演算停止した後のバッチにおいては、以前のバッチで決定され使用されていた条件で、バッチの混練開始前に、上述した混練室2内を目標の酸素濃度Xaとする混練前パージを行う。
 具体的には、演算停止後のバッチにおいては、例えば図6のグラフに示すように、酸素濃度計4による混練室内の酸素測定は行われない。しかしながら、混練室2内に被混練物Gを投入する前に、上記投入扉11aを開放することで、混練室2内を大気曝露し、およそ大気中の酸素濃度(約20.9%)としている。
 なお、図6中の実線は、混練室2内に導入される不活性ガスのパージ流量を示し、図6中の破線は、酸素濃度計4へ導かれた雰囲気ガス中の酸素濃度を示す。
 上記演算停止中のバッチ処理では、ステップS12に述べる特定の場合を除き、酸素濃度計4による混練室2内の測定を行う必要がない。このため、演算が停止されたバッチの処理中には、第1の流れF1を遮断し、第3の流れF3を開放するように四方弁20を切り替えることができる。これにより、第3のガス導入ライン8(第3の導入管23)から四方弁20を介して配管5bに導入されたゼロガスが酸素濃度計4に向かって流れ込む。このため、図6中の破線で示す酸素濃度は、常時0[体積%]を示している。
 被混練物Gの投入後は、混練室2内を密閉状態とし、酸素濃度計4では第3の導入管23から流れ込むゼロガスの酸素濃度の測定を行いながら、この混練室2内に第1のガス導入ライン3を通じて不活性ガスを導入する混練前パージを行う。
 混練前パージは前回バッチと同じ条件で行われる。具体的には、演算停止後のバッチでは、例えば図6のグラフに示すように、上記許容範囲となったときの一つ前のバッチで使用した演算結果に基づいて、言い換えればステップS3又はステップS9で使用した値を用いて、制御部31が第1のガス導入ライン3により混練室2内に導入される不活性ガスの流量及び時間を制御しながら、混練前パージを行う。すなわち、この制御部31は、上述したように混練室2内が目標の酸素濃度Xaとなるまでの間(混練前パージ時間Tb)、導入される不活性ガスの流量(混練前パージ流量Qb)を一定としながら、第1のガス導入ライン3から混練室2内への不活性ガスの導入を行う。これにより、被混練物Gの混練を開始する前に混練室2内を目標の酸素濃度Xaとすることができる。
(ステップS11)
 次に、バンバリーミキサ1では、図2に示すステップS11(演算停止後の混練中パージ工程)に進む。このステップでは、被混練物Gの混練を開始すると共に、混練中に混練室2内の酸素濃度の上昇を抑える混練中パージを行う。
具体的には、演算停止後のバッチでは、例えば図6のグラフのパージ流量で示されるように、上記許容範囲となったときの前回のバッチの演算結果に基づいて、言い換えればステップS4又はステップS10で使用した値を用いて、制御部31が第1のガス導入ライン3により混練室2内に導入される不活性ガスの流量及び時間を制御しながら混練中パージを行う。
 すなわち、この制御部31は、被混練物Gを混練している間(混練中パージ時間Tc’)、導入される不活性ガスの流量(混練中パージ流量Qc’又は前バッチ混練中パージ流量Qe’)を一定としながら、第1のガス導入ライン3から混練室2内への不活性ガスの導入を行う。これにより、混練中に混練室2内を目標の酸素濃度Xaのまま維持することができる。
(ステップS12)
 ステップS8とステップS11の組み合わせによるバッチ処理が終了すると、次に、バンバリーミキサ1では、図2のステップS12(バッチ数の確認工程)へと進み、演算停止後のバッチ数が所定の数に到達したか否かの確認を行う。そして、演算停止後のバッチ数が所定数に到達していない場合には、再びステップS8に戻り、新たなバッチ処理を所定の回数まで繰り返す。
 一方、演算停止後のバッチ数が所定数に到達した場合には、次バッチにおいて、酸素濃度測定を行い、許容範囲内か否かの判断を行う。すなわち、上記ステップS9に戻り、前バッチで使用した値を使用して混練前パージS9、混練中パージS10(混練中パージ測定S13を含む。)を行い、再び上記ステップS6に進み、混練室2内の酸素濃度が上記許容範囲にあるか否かの確認を行う。そして、この測定した酸素濃度が上記許容範囲にある場合は、再び上記ステップS8に進む。一方、この測定した酸素濃度が上記許容範囲を外れた場合には、上記ステップS7に進み、演算部30による演算を再開する。なおステップS12で所定の最終バッチの数まで達した事が確認された場合は、最終バッチの終了後に、上記バンバリーミキサ1の運転を停止する。
 なお、上記ステップS6において、混練室2内の酸素濃度が上記許容範囲に入らなかった場合には、その旨を例えば光や音等で警報等を発することにより、告知してもよい。その場合、当該バッチが終了するまで、強制的に酸素濃度計4による混練室2内の酸素濃度の測定を継続して行う。これは、製品の品質を維持するためであり、混練室2内の酸素濃度を常時測定する事に切り替えて、混練室2内の酸素濃度が上記許容範囲を超えないように、混練室2内に導入される不活性ガスの導入量を調整する。
 以上のように、本発明では、上記図2に示すフローチャートに従って、上記バンバリーミキサ1の運転制御を行うことで、バッチ毎に混練室2内を目標の酸素濃度Xaを中心とする許容範囲値内に、安定して保つことが可能である。
 また、本発明の上記バンバリーミキサ1では、上記演算部30による演算を停止した後に、酸素濃度計4による混練室2内の酸素濃度の測定を停止することが可能である。したがって、このバンバリーミキサ1では、演算停止中などの時に、例えば、混練中に酸素濃度計4による混練室2内の酸素濃度の測定(混練中パージ測定)を行わずに、上記混練中パージを行うことが可能である。そして、この場合は、混練室2内の酸素濃度の測定について常時行うことが不要となるために、上述した配管5aやフィルタ6の目詰まりを抑制することが可能である。
(酸素濃度測定の停止、及び逆パージについて)
 ところで、一般的なバンバリーミキサでは、混練中に混練室2内の酸素濃度の測定を常時行うと、上述した入側の配管5aの清掃やフィルタ6に溜まった粉塵等が目詰まりを起こす頻度が高くなる。これら問題を避けるために行われる配管5aの清掃やフィルタ6の交換等といった煩わしい作業を回避するために、逆パージを行っても良い。すなわち、本発明の第一の態様を適用したバンバリーミキサ1では、本願の第二の態様で採用されるような、第2のガス導入ライン7からフィルタ6に向かって逆パージガスを導入する、いわゆる逆パージを行うことで、これら配管5aやフィルタ6に溜まった粉塵等を除去することも可能である。
 具体的には、このバンバリーミキサ1では、図1に示すように、酸素濃度計4が混練室2内の酸素濃度を測定している間は、四方弁20が第1の流れF1を開放し、第2の流れF2を遮断し、第3の流れF3を遮断する。これにより、配管5a,5bを通して混練室2内の雰囲気ガスがフィルタ6で浄化された後、酸素濃度計4に流れ込むことになる。
 一方、ステップS8やステップS11において酸素濃度計4が混練室2内の酸素濃度の測定を中断している間は、四方弁20の切り替えによって、第1の流れF1を遮断し、第3の流れF3を開放する。この場合、第3のガス導入ライン8(第3の導入管23)から四方弁20を介して配管5bに導入されたゼロガスが酸素濃度計4に向かって流れ込むことになる。この方法により、酸素濃度計4が混練室2内の酸素濃度の測定を中断している間も、酸素濃度計4の測定可能な状態(スタンバイ状態)を維持できる。このため、再測定時に酸素濃度計4の校正をやり直すといったことを行わずに、四方弁20の切り替えによって、直ちに酸素濃度計4による混練室2内の酸素濃度の測定を開始することが可能である。
 また、本発明の第一の態様では、酸素濃度計4が混練室2内の酸素濃度の測定を中断している間に、すなわちステップS8及びS11の間に、四方弁20の切り替えによって、第2の流れF2を開放することができる。この場合、第2のガス導入ライン7(第2の導入管21)から四方弁20を介して配管5aに導入された逆パージガスがフィルタ6に向かって流れ込むことになる。
 ここで、第2のガス導入ライン7では、配管5aに導入される逆パージガスの勢いによって、配管5aやフィルタ6に溜まった粉塵等を混練室2側へと吹き飛ばすように、第2の導入管21を流れる逆パージガスの圧力と流量を予め調整しておく。そして、四方弁20の切り替えによって、逆パージを行い、配管5aやフィルタ6に溜まった粉塵等を除去する。
 また、逆パージガスの導入方法としては、逆パージガスを連続的に導入する方法(連続パージという。)を用いることが可能である。この場合、逆パージガスを一定の期間導入した後に、四方弁20の切り替えによって、第2の流れF2を遮断する。一方、酸素濃度計4が混練室2内の酸素濃度の測定を中断している間に、四方弁20の切り替えを複数回に亘って繰り返しながら、逆パージガスを間欠的に導入する方法(間欠パージという。)を用いることも可能である。例えば、1分おきに四方弁20を切り替えて逆パージガスを間欠的に導入した場合には、この逆パージガスを高い圧力で導入することが可能である。
 なお、この逆パージに用いる逆パージガスについては、配管5aを通して混練室2内に導入されることから、不活性ガスを用いることが好ましいものの、場合によっては空気等を用いることも可能である。
 以上のように、本発明の第一の態様を適用したバンバリーミキサ1では、上述した逆パージを行うことによって、配管5aやフィルタ6に溜まった粉塵等を除去することができ、これら配管5aやフィルタ6に溜まった粉塵等が目詰まりを起こすことを未然に防ぐことが可能である。したがって、このバンバリーミキサ1では、配管5aの清掃やフィルタ6の交換等の作業を頻繁に行うことなく、混練室2内の酸素濃度を酸素濃度計4により安定した状態で測定することが可能である。
(第二の態様の混練装置)
 次に、本発明の第二の態様の混練装置の好ましい例について、図8を用いて説明する。
 図8に示される、本発明の第二の態様の好ましい例を示すバンバリーミキサ1では、第一の態様とは異なり、演算部30が含まれず、また演算部30と流量制御装置や流量調整弁を結ぶラインが無く、演算部30による流量制御が行われない。これらの条件以外は、上記の図1を用いて説明されたバンバリーミキサ1とほぼ同じである。よって図1に示すバンバリーミキサ1と同じ部材については、同じ符号を付し、その説明を省略する。
 本態様の混練装置では、任意の段階やタイミングで酸素濃度の測定ができ、また任意の段階やタイミングで酸素濃度の測定を中断できる。
 ところで、一般的なバンバリーミキサでは、混練中に混練室2内の酸素濃度の測定を常時行うと、入側の配管5aやフィルタ6に溜まった粉塵等が目詰まりを起こす頻度が高くなるために、これら配管5aの清掃やフィルタ6の交換等を頻繁に行う必要が生じてしまう。
 そこで、本発明の第二の態様の混練装置では、このような煩わしい作業を回避するために、第2のガス導入ライン7からフィルタ6に向かって逆パージガスを導入する、いわゆる逆パージを行うことで、配管5aやフィルタ6に溜まった粉塵等を除去することが行われる。
 具体的に、第二の態様のバンバリーミキサ1では、酸素濃度計4が混練室2内の酸素濃度を測定している間は、四方弁20が第1の流れF1を開放し、第2の流れF2を遮断し、第3の流れF3を遮断する。この構成により、配管5a,5bを通して混練室2内の雰囲気ガスがフィルタ6で浄化された後、酸素濃度計4に流れ込むことになる。
 一方、酸素濃度計4が混練室2内の酸素濃度の測定を中断している間は、四方弁20の切り替えによって、第1の流れF1を遮断し、第3の流れF3を開放する。この場合、第3のガス導入ライン8(第3の導入管23)から四方弁20を介して配管5bに導入されたゼロガスが酸素濃度計4に向かって流れ込むことになる。これにより、酸素濃度計4が混練室2内の酸素濃度の測定を中断している間も、酸素濃度計4の測定可能な状態(スタンバイ状態)を維持できるため、再測定時に酸素濃度計4の校正をやり直すといったことを行わずに、四方弁20の切り替えによって、直ちに酸素濃度計4による混練室2内の酸素濃度の測定を開始することが可能である。
 また、本発明では、酸素濃度計4が混練室2内の酸素濃度の測定を中断している間に、四方弁20の切り替えによって、第2の流れF2を開放することができる。この場合、第2のガス導入ライン7(第2の導入管21)から四方弁20を介して配管5aに導入された逆パージガスがフィルタ6に向かって流れ込むことになる。
 ここで、第2のガス導入ライン7では、配管5aに導入される逆パージガスの勢いによって、配管5aやフィルタ6に溜まった粉塵等を混練室2側へと吹き飛ばすことができるように、第2の導入管21を流れる逆パージガスの圧力と流量を予め調整しておく。そして、四方弁20の切り替えによって、逆パージを行い、配管5aやフィルタ6に溜まった粉塵等を除去する。
 また、逆パージガスの導入方法としては、逆パージガスを連続的に導入する方法(連続パージという。)を用いることが可能である。この場合、逆パージガスを一定の期間導入した後に、四方弁20の切り替えによって、第2の流れF2を遮断する。一方、酸素濃度計4が混練室2内の酸素濃度の測定を中断している間に、四方弁20の切り替えを複数回に亘って繰り返しながら、逆パージガスを間欠的に導入する方法(間欠パージという。)を用いることも可能である。例えば、1分おきに四方弁20を切り替えて逆パージガスを間欠的に導入した場合には、この逆パージガスを高い圧力で導入することが可能である。
 なお、この逆パージに用いる逆パージガスについては、配管5aを通して混練室2内に導入されることから、不活性ガスを用いることが好ましいものの、場合によっては空気等を用いることも可能である。
 以上のように、本発明の第二の態様を適用したバンバリーミキサ1では、上述した逆パージを行うことによって、配管5aやフィルタ6に溜まった粉塵等を除去することができ、これら配管5aやフィルタ6に溜まった粉塵等が目詰まりを起こすことを未然に防ぐことが可能である。したがって、このバンバリーミキサ1では、配管5aの清掃やフィルタ6の交換等の作業を頻繁に行うことなく、混練室2内の酸素濃度を酸素濃度計4により安定した状態で測定することが可能である。
 なお、本発明の第二の態様の混練装置は、上記実施形態の形態に必ずしも限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、上記実施形態では、上述した第1の流れF1と第2の流れF2とを切り替える切替手段として、上記図8に示すような四方弁20を用いた構成となっている。しかしながら、本発明はこのような四方弁を用いる構成に必ずしも限定されるものではなく、図9に示すような二方弁20Aを用いた構成や、図10に示すような三方弁20Bを用いた構成とすることも可能である。
(二方弁を使用した逆パージ)
 二方弁を用いた構成の例について説明する。
 具体的には、図9に示す構成では、入側の配管5aと出側の配管5bとの間に第1の二方弁20Aが配置される。上記第2のガス導入ライン7(第2の導入管21)が入側の配管5aに接続されると共に、上記第3のガス導入ライン8(第3の導入管23)が出側の配管5bに接続されている。また、上記流量調整弁22と入側の配管5aとの間に第2の二方弁20Bが配置され、また、上記流量調整弁24と出側の配管5bとの間に第3の二方弁2Cが配置されている。
 この図9に示す構成では、酸素濃度計4が混練室2内の酸素濃度を測定している間は、第1の二方弁20Aが第1の流れF1を開放し、第2の二方弁20Bが第2の流れF2を遮断し、第3の二方弁20Cが第3の流れF3を遮断する。これにより、配管5a,5bを通して混練室2内の雰囲気ガスがフィルタ6で浄化された後、酸素濃度計4に流れ込むことになる。
 一方、酸素濃度計4が混練室2内の酸素濃度の測定を中断している間は、第1の二方弁20Aが第1の流れF1を遮断し、第3の二方弁20Cが第3の流れF3を開放する。このとき、第3のガス導入ライン8(第3の導入管23)から出側の配管5bに導入されたゼロガスが酸素濃度計4に向かって流れ込む。これにより、酸素濃度計4が混練室2内の酸素濃度の測定を中断している間、酸素濃度計4の測定可能な状態(スタンバイ状態)が維持される。
 そして、酸素濃度計4が混練室2内の酸素濃度の測定を中断している間に、第2の二方弁20Bが第2の流れF2を開放することによって、逆パージを行うことができる。これにより、第2のガス導入ライン7(第2の導入管21)から入側の配管5aに導入された逆パージガスがフィルタ6に向かって流れ込み、これら配管5aやフィルタ6に溜まった粉塵等を除去することが可能である。
(三方弁を使用した逆パージ)
 三方弁を用いた構成の例について説明する。
 図10に示す構成では、入側の配管5aと出側の配管5bとの間に三方弁20Dが配置され、上記第2のガス導入ライン7(第2の導入管21)が三方弁20Dに接続されている。なお、酸素濃度計4へのゼロガスの流れ込みを行わないため、上記第3のガス導入ライン8(第3の導入管23及び流量調整弁24)は含まれない。
 そして、この図10に示す構成では、酸素濃度計4が混練室2内の酸素濃度を測定している間は、三方弁20Dが第1の流れF1を開放し、第2の流れF2を遮断する。これにより、配管5a,5bを通して混練室2内の雰囲気ガスがフィルタ6で浄化された後、酸素濃度計4に流れ込み酸素濃度が測定される。
 一方、酸素濃度計4が混練室2内の酸素濃度の測定を中断している間は、三方弁20Dは第1の流れF1を遮断する。このとき、上記ポンプ4aを停止することで、酸素濃度計4を停止状態にする。そして、酸素濃度計4が酸素濃度の測定を停止している間に、流量調整弁22を開き、逆パージを行う。これにより、第2のガス導入ライン7(第2の導入管21)から三方弁20Dを介して入側の配管5aに導入された逆パージガスがフィルタ6に向かって流れ込む。したがって、これら配管5aやフィルタ6に溜まった粉塵等を除去することが可能である。
(集塵機を利用した粉塵除去)
 次に、集塵機12による吸引を用いた粉塵除去を説明する。
 本発明では、図11に示すようなフィルタ6内に溜まった粉塵Pなどの粉塵等を、図8に示されるような集塵機12(図11において図示せず。)により吸引を行いながら、除去する構成とすることも可能である。
 図11を具体的に説明すると、上記集塵機12と上記フィルタ6との間は、配管25により接続されている。また、上記集塵機12と上記フィルタ6との間には、この配管25を開閉する開閉弁26が設けられている。フィルタ6は、一般に、粉塵Pを捕集するエレメント6aが捕集容器6b内に配置された構造を有している。
 この場合、酸素濃度計4が混練室2内の酸素濃度の測定を中断している間に、開閉弁26が配管25を開放することによって、ガスを配管5a側から捕集容器6b内へと流れさせ、捕集容器6b内のエレメント6aに溜まった粉塵Pを脱離させて、集塵機12により吸引しながら、除去することが可能である。したがって、この構成を採用した場合、フィルタ6の交換寿命を更に延ばすことが可能である。なお、この開閉弁26を開放するタイミングについては、前記四方弁20、二方弁20A、及び三方弁20Dなどを用いた前記逆パージを行う前であっても、逆パージを行っている間であっても、逆パージを行った後であってもよい。
 なお、本発明は、上記実施形態のものに必ずしも限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば本発明を適用した混練装置は、上記図1や8に示すバンバリーミキサ1に必ずしも限定されるものではなく、例えばニーダーミキサなどであってもよい。
 また、本発明では、混練室2内の酸素濃度を酸素濃度計4を用いて直接測定する方法以外にも、例えば混練室2内に導入された不活性ガスの濃度を測定する方法によって、混練室2内の酸素濃度を間接的に測定するといったことも可能である。
 以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。
 本実施例では、実際に図1に示すバンバリーミキサ1を用いて、練りゴム(被混練物G)の混練工程を1生産当たりとして、200バッチ繰り返した。その際に、図2に示すフローチャートに従って、上記バンバリーミキサ1の運転制御を行った。その際に、混練室2内に導入される窒素ガス(不活性ガス)のパージ流量と、混練室2内の酸素濃度を測定した。初期パージを行ってから3バッチの処理までの測定結果を示すグラフを図7に示す。なお、図7中の実線は、混練室2内に導入される不活性ガスのパージ流量を示し、図7中の破線は、酸素濃度計4に導かれた雰囲気ガス中の酸素濃度を示す。
(ステップS1及びS2)
 上記バンバリーミキサ1では、先ず、演算部30が初期パージ時間Taを求めるための演算を行った。
 ここで、初期パージ時間Taを求めるために使用する条件は、以下のとおりである。
目標の酸素濃度Xa:5.0[体積%] 
大気中の酸素濃度X0:20.9[体積%] 
初期パージ流量Qa:4000[NL/分] 
混練室の内容積V0:1000[L] 
 したがって、上記式(2)の演算結果から、上記初期パージ時間Taは21.45秒となった。
 次に、初期パージを行った。すなわち、まず最初に、混練室2内に被混練物Gを投入する前に、不活性ガスの導入をしないまま、投入扉11aを開放し、混練室2内を大気曝露することによって、この混練室2内の酸素濃度を大気中の酸素濃度とした。その後、被混練物Gを投入しない状態で、混練室2内を密閉状態とし、酸素濃度計4による酸素濃度の測定を行いながら、4000NL/分(初期パージ流量Qa)で21.45秒(初期パージ時間Ta)の間、混練室2内に第1のガス導入ライン3を通じて不活性ガスを導入した。
 次に、初期パージ測定を行った。すなわち、混練室2内への不活性ガスの導入を停止し、混練室2内の酸素濃度が最下点に到達したことを確認した後、更に、不活性ガスの導入を中止したまま、酸素濃度計4による酸素濃度の測定(初期パージ測定)を一定の期間(初期パージ測定時間Tc)行った。
 そして、この酸素濃度計4による酸素濃度の測定結果から、演算部30が、酸素濃度の上昇分を相殺する不活性ガスの流量である、初期パージ予測流量Qcを求めるための演算を行った。
 ここで、上記初期パージ予測流量Qcを求めるために使用する条件は、以下のとおりである。
混練室の内容積V0:1000[L] 
投入後の内容積V:[L]
初期パージ測定時間Tc:15[秒] 
初期パージ測定時間(Tc)内での酸素濃度の最下点(実測値)Xb:5.0[体積%] 
初期パージ測定時間(Tc)内での酸素濃度の最上昇点(実測値)Xc:6.5[体積%]
 したがって、上記式(3)の演算結果から、初期パージ予測流量Qcは1050NL/分となった。
 次に、初回バッチの混練を開始する前に、演算部30が混練前パージ時間Tbを求めるための演算を行った。
 ここで、上記混練前パージ時間Tbを求めるために使用する条件は、以下のとおりである。
混練室の内容積V0:1000[L] 
被混練物Gの体積Vg:420[L] 
被混練物Gの空隙係数kg:0.97 
混練前パージ流量Qb:4000NL/分
 したがって、上記式(4),(5)の演算結果から、上記投入後の内容積Vは592.6L、上記混練前パージ時間Tbは12.71秒となった。
 また、演算部30が上記混練中パージ流量Qc’を求めるための演算を行った。
 ここで、上記混練中パージ流量Qc’を求めるために使用する条件は、以下のとおりである。
混練室の内容積V0:1000[L] 
投入後の内容積V:592.6[L] 
混練中パージ時間Tc’:90[秒] 
 したがって、上記式(6),(7)の演算結果から、上記容積比λは0.5926、上記混練中パージ流量Qc’は622NL/分となった。
(ステップS3)
 次に、初回バッチ(1バッチ目)の処理を開始し、混練前パージを行った。すなわち、混練室2内に被混練物Gを投入する際に上記投入扉11aを開放することで、混練室2内を大気曝露し、この混練室2内の酸素濃度を大気中の酸素濃度とした。そして、被混練物Gの投入後は、混練室2内を密閉状態とし、酸素濃度計4による酸素濃度の測定を行いながら、4000NL/分(混練前パージ流量Qb)で12.71秒(混練前パージ時間Tb)の間、混練室2内に第1のガス導入ライン3を通じて不活性ガスを導入した。
(ステップS4及びS5)
 次に、上記混練前パージによる混練室2内への不活性ガスの導入を停止し、被混練物Gの混練を開始すると共に、上記混練中パージを行った。すなわち、622NL/分(混練中パージ流量Qc’)で90秒(混練中パージ時間Tc’)の間、混練室2内に第1のガス導入ライン3を通じて不活性ガスを導入した。
 また、混練中に、上記混練中パージ測定時間Teを求めた。すなわち、混練前パージによる混練室2内への不活性ガスの導入を停止し、混練室2内の酸素濃度が最下点に到達したことを酸素濃度計4で確認した後、最上昇点に到達するまでの時間を求め、これを混練中パージ測定時間Teとした。
(ステップS6及びS7)
 そして、酸素濃度計4による酸素濃度測定の結果、混練中パージ時間Tc’内での酸素濃度の最下点が許容範囲(5.0±0.1体積%)を外れた。許容範囲を外れたことから、上記混練中パージ補正流量qを求めるための演算を行った。
 ここで、上記混練中パージ補正流量qを求めるために使用する条件は、以下のとおりである。
投入後の内容積V:592.6[L] 
混練中パージ測定時間Te(実測値):62[秒]
混練中パージ時間Tc’内での酸素濃度の最下点(実測値)Xd:5.0[体積%]
 混練中パージ時間Tc’内での酸素濃度の最上昇点(実測値)Xe:5.2[体積%]
 したがって、上記式(8)の演算結果から、上記混練中パージ補正流量qは、-23NL/分となった。
 また、上記式(9)から、演算部30が上記次バッチ混練中パージ流量Qeを求めるための演算を行った。その結果、上記次バッチ混練中パージ流量Qeは645NL/分となった。
(ステップS9)
 次に、2バッチ目を開始し、上記混練前パージを行った。すなわち、混練室2内に被混練物Gを投入する際に、不活性ガスの導入を止め、上記投入扉11aを開放することで、混練室2内を大気曝露し、この混練室2内の酸素濃度を大気中の酸素濃度とした。そして、被混練物Gの投入後は、混練室2内を密閉状態とし、酸素濃度計4による酸素濃度の測定を行いながら、4000NL/分(混練前パージ流量Qb)で12.71秒(混練前パージ時間Tb)の間、混練室2内に第1のガス導入ライン3を通じて不活性ガスを導入した。
(ステップS10)
 次に、上記混練前パージによる混練室2内への不活性ガスの導入を行った後、被混練物Gの混練を開始すると共に、上記混練中パージを行った。ステップS6で求めた値、すなわち、645NL/分(次バッチ混練中パージ流量Qe)で90秒(混練中パージ時間Tc’)の間、混練室2内に第1のガス導入ライン3を通じて不活性ガスを導入した。
(ステップS13)
 また、混練中に、上記混練中パージ測定時間Teを求めた。すなわち、上記混練中パージを行い、混練中に混練室2内の酸素濃度が最下点に到達したことを酸素濃度計4で確認した後、最上昇点に到達するまでの時間を求め、これを混練中パージ測定時間Teとした。
(2バッチ目のステップS6)
 そして、混練中パージ時間Tc’内での酸素濃度計4による酸素濃度測定結果が許容範囲内(5.0±0.1体積%)となった。この結果から、上記混練中パージ補正流量qを求めるための演算を停止した。また酸素濃度の測定もあわせて停止した。
(ステップS8)
 次に、3バッチ目を開始し、混練前パージを行った。すなわち、混練室2内に被混練物Gを投入する際に、不活性ガスの導入を止め、上記投入扉11aを開放することで、混練室2内を大気曝露し、この混練室2内の酸素濃度を大気中の酸素濃度とした。そして、被混練物Gの投入後は、混練室2内を密閉状態とし、混練室2内の酸素濃度測定は行わず、酸素濃度計4によるゼロガスの酸素濃度の測定を行いながら、4000NL/分(混練前パージ流量Qb)で12.71秒(混練前パージ時間Tb)の間、混練室2内に第1のガス導入ライン3を通じて不活性ガスを導入した。
 なお、演算停止後は、酸素濃度計4による混練室2内の測定が不要となるため、第1の流れF1を遮断し、第3の流れF3を開放するように四方弁20を切り替える。これにより、第3のガス導入ライン8(第3の導入管23)から四方弁20を介して配管5bに導入されたゼロガス(酸素濃度[0体積%])が酸素濃度計4に向かって流れ込む。このため、図7中の破線で示す酸素濃度は、常時0[体積%]を示している。
(ステップS11)
 次に、上記混練前パージによる混練室2内への不活性ガスの導入を停止し、被混練物Gの混練を開始すると共に、上記混練中パージを行った。すなわち、645NL/分(次バッチ混練中パージ流量Qe)で90秒(混練中パージ時間Tc’)の間、混練室2内に第1のガス導入ライン3を通じて不活性ガスを導入した。
(ステップS12)
 そして、演算停止後は、上記ステップS8とステップS11を所定の回数になるまで繰り返し行った。
(ステップS6)
 演算停止及び混練室2内の酸素濃度測定を止めてから20バッチ目(混練スタートから22バッチ目)になった次のバッチにおいて、混練前パージ(ステップS9)、混練中パージ(ステップS10)及び混練中パージ測定(ステップS13)を行い、酸素濃度が許容範囲に入っているかの確認を行った。当該バッチでの混練中パージ流量Qeは、その前のバッチでの混練中パージ流量Qeと同じである。
 なお上記測定の結果が許容範囲であれば2回目のステップS8に進み、範囲外であれば、2回目のステップS7に進む設定を行っていたが、本実験ではこれらステップを200バッチまで繰り返したが、最後の測定まで許容範囲を外れなかった。
 すなわち、演算停止後、20バッチ毎に混練室2内の酸素濃度が上記許容範囲にあるか否かの確認を行った。その結果、最終バッチ(200バッチ目)まで混練室2内の酸素濃度は上記許容範囲となり、極端な酸素濃度の増加や低下は見られなかった。
 以上のことから、本発明によるバンバリーミキサ1の運転制御を行うことで、バッチ毎に混練室2内を目標の酸素濃度Xaに安定して保つことが可能となった。
 また、演算停止後の工程で、酸素濃度計4による混練室2内の酸素濃度の測定を停止すると共に、上記四方弁20の切り替えによって、導入管21を通して配管5aにあるフィルタ6に向かって逆パージガスを流す、逆パージを行った。その結果、上記フィルタ6や配管5aに溜まった粉塵等が除去できることを確認した。
本発明は、混練室内を目標の酸素濃度に安定して保つことを可能とした混練装置を提供できる。また、配管やフィルタの目詰まりを抑制し、配管の清掃やフィルタの交換等の作業を頻繁に行うことなく、混練室内の雰囲気中の酸素濃度を安定して測定することを可能とした混練装置を提供できる。
 1 バンバリーミキサ 
 2 混練室 
 3 第1のガス導入ライン(第1のガス導入手段) 
 4 酸素濃度計(濃度測定手段) 
 4a ポンプ
 5a 入側の配管 
 5b 出側の配管 
 6 フィルタ 
 6a エレメント 
 6b 捕集容器
 7 第2のガス導入ライン(第2のガス導入手段)
 8 第3のガス導入ライン(第3のガス導入手段) 
 9a,9b ロータ 
 10 ベルトコンベア 
 11a 投入扉 
 11b 排出扉 
 12 集塵機 
 13 第1の導入管 
 14 圧力調整弁 
 15 遮断弁 
 16 流量計 
 17 流量調整計 
 18 流量制御装置 
 19 逆止弁 
 20 四方弁(切替手段) 
 20A 第1の二方弁 
 20B 第2の二方弁 
 20C 第3の二方弁 
 20D 三方弁
 21 第2の導入管 
 22 流量調整弁 
 23 第3の導入管 
 24 流量調整弁 
 25 配管 
 26 開閉弁
 30 演算部(演算手段) 
 31 制御部(制御手段) 
 G 被混練物 
 F1 第1の流れ 
 F2 第2の流れ 
 F3 第3の流れ

Claims (21)

  1.  被混練物を混練する混練室と、
     前記混練室に不活性ガスを導入するガス導入部と、
     前記混練室内の酸素濃度を測定する濃度測定部と、
     前記混練室内を目標の酸素濃度とするための演算を行う演算部と、
     前記演算部による演算結果に基づいて前記ガス導入部を制御する制御部とを備え、
     前記濃度測定部が混練時に測定した実測の酸素濃度と、予め設定した目標酸素濃度と、を比較しながら、前記演算部が前記混練室内を目標の酸素濃度とするための演算を行い、
    前記演算を行った後の混練において、得られた演算結果に基づき、前記制御部が前記ガス導入部により混練室内に導入される不活性ガスのパージ流量及びパージ時間を制御することを特徴とする、混練装置。
  2.  前記被混練物の投入、混練、及び排出を1バッチとして、前記被混練物の混練工程を2回バッチ以上繰り返すバッチ式の混練装置であって、
    前記演算部が、バッチ毎に目標の酸素濃度を維持する為の演算を繰り返し、
    この演算結果に基づいて、前記制御部が、前記ガス導入部により混練室内に導入される不活性ガスのパージ流量及びパージ時間を制御することを特徴とする請求項1に記載の混練装置。
  3. 前記制御部が、各バッチの開始前に前記混練室内を大気暴露し、前記大気曝露後に混練室を密閉し、前記ガス導入部による混練室内への不活性ガスの導入を開始することを特徴とする請求項2に記載の混練装置。
  4.  初回バッチの開始前に、混練室内を大気曝露しその後密閉し、
    前記濃度測定部が前記密閉した混練室内の酸素濃度を測定しながら、前記混練室内が目標の酸素濃度となるまで、前記ガス導入部が混練室内に不活性ガスを導入した後、
    前記濃度測定部が混練室内の酸素濃度を一定の期間測定しながら、その期間内での酸素濃度の上昇分を相殺する不活性ガスのパージ流量を、前記演算部が演算により求め、
    この求めた値を、前記演算部が、初回バッチにおいて混練中に前記混練室内を目標の酸素濃度のまま維持するための、目安値として用いることを特徴とする請求項2に記載の混練装置。
  5.  初回バッチ又はそれ以降のバッチにおいて、前記濃度測定部が酸素濃度を実測し、
     前記演算部が前記濃度測定部が測定した実測の酸素濃度と、あらかじめ設定した目標酸素濃度との比較により、その差を相殺する不活性ガスの流量を演算により求め、
    この求めた値を、前記演算部が、前記酸素濃度実測が行われたバッチの後に行われる、次回バッチにおいて、混練中に前記混練室内を目標の酸素濃度のまま維持するための、補正値として用いることを特徴とする請求項2に記載の混練装置。
  6.  目標酸素濃度を含んだ所定の許容範囲に、前記濃度測定部が測定した実測の酸素濃度が収まった場合において、
     次回バッチ及びそれ以降のバッチでの前記演算部による演算を停止し、
    前記許容範囲となったときの演算結果に基づいて、
    次回バッチ及びそれ以降のバッチで、前記制御部が前記ガス導入部により混練中に前記混練室内に導入される不活性ガスのパージ流量及びパージ時間を制御することを特徴とする請求項5に記載の混練装置。
  7.  前記演算部による演算を停止した後は、
     定期的に前記濃度測定部による混練室内の酸素濃度の測定を行い、
     この測定した酸素濃度が前記許容範囲を超えた場合には、
     前記演算部による演算を再開し、この演算結果に基づいて、前記制御部が前記ガス導入部により混練室内に導入される不活性ガスのパージ流量及びパージ時間を制御することを特徴とする請求項6に記載の混練装置。
  8.  定期的に前記濃度測定部による混練室内の酸素濃度の測定を行い、
     前記混練室内の酸素濃度が前記許容範囲を下回った場合には、
     その旨を告知して、当該バッチが終了するまで、前記濃度測定部による混練室内の酸素濃度の測定を継続することを特徴とする請求項7に記載の混練装置。
  9.  前記混練室内の雰囲気ガスを前記濃度測定部へと導く配管と、
     前記配管内を流れる雰囲気ガス中に含まれる粉塵を捕集するフィルタと、
     前記配管の前記濃度測定部側から前記フィルタに向かって逆パージガスを導入する第2のガス導入部とを備える請求項1に記載の混練装置。
  10.  前記配管を通して前記混練室内の雰囲気ガスが前記濃度測定部に向かう第1の流れと、
    前記配管を通して前記第2のガス導入部から導入された逆パージガスが前記フィルタに向かう第2の流れと、
    を切り替える切替部を備え、
     前記濃度測定部が前記混練室内の酸素濃度を測定している間は、前記切替部が前記第1の流れを開放し、前記第2の流れを遮断する一方、
     前記濃度測定部が前記混練室内の酸素濃度の測定を中断している間は、前記切替部が前記第1の流れを遮断し、前記第2の流れを開放することによって、前記配管の前記濃度測定部側から前記フィルタに向かって逆パージガスを導入することを特徴とする請求項9に記載の混練装置。
  11.  前記濃度測定部にゼロガスを導入する第3のガス導入部を備え、
     前記濃度測定部が前記混練室内の酸素濃度を測定している間は、前記配管を通して前記第3のガス導入部から導入されたゼロガスが前記濃度測定部に向かう第3の流れを前記切替部が遮断する一方、
    前記濃度測定部が前記混練室内の酸素濃度の測定を中断している間は、前記切替部が開放され、第3の流れが濃度測定部に向かうことを特徴とする請求項10に記載の混練装置。
  12.  前記逆パージガスが、不活性ガスであることを特徴とする請求項9に記載の混練装置。
  13.  前記ゼロガスが、不活性ガスであることを特徴とする請求項11に記載の混練装置。
  14.  被混練物を混練する混練室と、
     前記混練室に不活性ガスを導入する第1のガス導入部と、
     前記混練室内の酸素濃度を測定する濃度測定部と、
     前記混練室内の雰囲気ガスを前記濃度測定部へと導く配管と、
     前記配管内を流れる雰囲気ガス中に含まれる粉塵を捕集するフィルタと、
     前記配管の前記濃度測定部側から前記フィルタに向かって逆パージガスを導入する第2のガス導入部とを備える混練装置。
  15.  前記配管を通して前記混練室内の雰囲気ガスが前記濃度測定部に向かう第1の流れと、
     前記配管を通して前記第2のガス導入部から導入された逆パージガスが前記フィルタに向う第2の流れと、
    を切り替える切替部を備え、
     前記濃度測定部が前記混練室内の酸素濃度を測定している間は、前記切替部が前記第1の流れを開放し、前記第2の流れを遮断する一方、
     前記濃度測定部が前記混練室内の酸素濃度の測定を中断している間は、前記切替部が前記第1の流れを遮断し、前記第2の流れを開放することによって、前記配管の前記濃度測定部側から前記フィルタに向かって逆パージガスを導入することを特徴とする請求項14に記載の混練装置。
  16.  前記濃度測定部にゼロガスを導入する第3のガス導入部を備え、
     前記濃度測定部が前記混練室内の酸素濃度を測定している間は、前記配管を通して前記第3のガス導入部から導入されたゼロガスが前記濃度測定部に向う第3の流れを前記切替部が遮断する一方、
     前記濃度測定部が前記混練室内の酸素濃度の測定を中断している間は、前記切替部が開放され、第3の流れが濃度測定部に向かうこと、を特徴とする請求項15に記載の混練装置。
  17.  前記混練室内の粉塵を捕集する集塵機と、
     前記集塵機と前記フィルタとの間を接続する配管と、
     前記配管を開閉する開閉弁とを備え、
     前記濃度測定部が酸素濃度の測定を休止している間に、前記開閉弁が前記配管を開放し、この配管を通して前記フィルタ内に溜まった粉塵を前記集塵機により吸引しながら除去することを特徴とする請求項14に記載の混練装置。
  18.  前記逆パージガスが、不活性ガスであることを特徴とする請求項14に記載の混練装置。
  19.  前記ゼロガスが、不活性ガスであることを特徴とする請求項14に記載の混練装置。
  20.  被混練物を混練する混練室と、
     前記混練室に不活性ガスを導入するガス導入部と、
     前記混練室内の酸素濃度を測定する濃度測定部と、
     前記混練室内を目標の酸素濃度とするための演算を行う演算部と、
     前記演算部による演算結果に基づいて前記ガス導入部を制御する制御部とを備える混練装置を用いて、混練室に被混練物を投入し混練し排出する、方法であって、
    (a)前記濃度測定部が混練時に測定した実測の酸素濃度と、予め設定した目標酸素濃度と、を比較しながら、前記演算部が前記混練室内を目標の酸素濃度とするための演算を行う工程と、
    (b)前記演算を行った後の混練において、得られた演算結果に基づき、前記制御部が前記ガス導入部により混練室内に導入される不活性ガスのパージ流量及びパージ時間を制御する工程、を含む、混練方法。
  21. 工程(a)と工程(b)の組み合わせが、以下の(1)~(5)で表されるサブ工程を含み、
    (1) 大気曝露後密閉された混練室内を目標の酸素濃度とするための初期パージ時間を、予め設定した初期パージ流量の値に基づいて求め、
    前記初期パージ流量で不活性ガスを前記混練室に導入するとともに前記初期パージ時間経過後に不活性ガスの導入を停止し、
    一定期間における混練室内での酸素濃度変化の測定を行う初期パージ工程;
    (2) 以下の工程(2a)~工程(2c)をこの順で含む初回のバッチ工程、
     (2a) 被混練物を前記混練室に投入した後密閉し、所定のパージ流量及びパージ時間で不活性ガスを前記混練室に導入する混練前パージ工程、
     (2b) 前記パージ時間経過後、被混練物の混練を開始するとともに、工程(1)での酸素濃度変化に基づいて求めたパージ流量で不活性ガスを前記混練室に導入しながら、当該混練中の酸素濃度変化の測定を行う混練中パージ工程、
     (2c) 混練後、被混練物を混練室から排出する排出工程;
    (3) 前回のバッチ工程における混練中パージでの酸素濃度変化が設定された許容範囲に収まっているかどうかの確認を行い、許容範囲を外れたと判断された場合工程(4)に進み、許容範囲に収まったと判断された場合工程(5)に進む工程;
    (4) 以下の工程(4a)~工程(4c)をこの順で含む2回目以降のバッチ工程、
     (4a) 被混練物を、前回バッチの被混練物が排出された前記混練室に投入した後密閉し、所定のパージ流量及びパージ時間で不活性ガスを前記混練室に導入する混練前パージ工程、
     (4b) 前記パージ時間経過後、被混練物の混練を開始するとともに、前回のバッチ工程での混練中パージ工程での酸素濃度変化を相殺するパージ流量で不活性ガスを前記混練室に導入しながら、当該混練中の酸素濃度変化の測定を行う混練中パージ工程、
     (4c) 混練後、被混練物を混練室から排出する排出工程;及び
    (5) 以下の工程(5a)~工程(5c)をこの順で含む演算停止以降のバッチ工程、
     (5a) 被混練物を、前回バッチの被混練物が排出された前記混練室に投入した後密閉し、所定のパージ流量及びパージ時間で不活性ガスを前記混練室に導入する混練前パージ工程、
     (5b) 前記パージ時間経過後、被混練物の混練を開始するとともに、前回のバッチ工程における混練中パージ工程と同じパージ流量で不活性ガスを前記混練室に導入する混練中パージ工程、
     (5c) 混練後、被混練物を混練室から排出する排出工程;
     上記サブ工程において、
    (i)工程(4)を行った後に、又は、(ii)工程(5)を所定の回数繰り返し、更に続いて、混練中パージ工程において混練中の酸素濃度変化の測定が行われるバッチ工程を行い、このバッチ工程が行われた後に、
    工程(3)へ戻り確認が行われる、請求項20に記載の混練方法。
PCT/JP2012/056180 2011-03-10 2012-03-09 混練装置 WO2012121391A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013503633A JP5453572B2 (ja) 2011-03-10 2012-03-09 混練装置
CN2012800060694A CN103328087A (zh) 2011-03-10 2012-03-09 混炼装置
US14/003,875 US20140016428A1 (en) 2011-03-10 2012-03-09 Kneading apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011052887 2011-03-10
JP2011-052887 2011-03-10
JP2011-052888 2011-03-10
JP2011052888 2011-03-10

Publications (1)

Publication Number Publication Date
WO2012121391A1 true WO2012121391A1 (ja) 2012-09-13

Family

ID=46798342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056180 WO2012121391A1 (ja) 2011-03-10 2012-03-09 混練装置

Country Status (4)

Country Link
US (1) US20140016428A1 (ja)
JP (1) JP5453572B2 (ja)
CN (1) CN103328087A (ja)
WO (1) WO2012121391A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214051A (ja) * 2013-04-25 2014-11-17 三菱マテリアルテクノ株式会社 粉塵除去装置及び粉塵除去方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9259856B2 (en) * 2011-07-12 2016-02-16 Toyo Tire & Rubber Co., Ltd. Methods for controlling the mixing process of processing rubber
CN107079276B (zh) * 2014-10-21 2021-06-22 Lg电子株式会社 在无线通信系统中发送/接收d2d信号的方法及其设备
CN106256421B (zh) * 2016-08-24 2019-02-22 佛山慧谷科技股份有限公司 一种制造板片或块体形式的产品的生产设备及其方法
DE102017212387A1 (de) * 2017-07-19 2019-01-24 Continental Reifen Deutschland Gmbh Verfahren zur Herstellung einer Kautschukmischung
CN108828154B (zh) * 2018-06-25 2024-02-23 山东恒量测试科技有限公司 一种氧气检测仪检定装置与方法
CN111702978A (zh) * 2020-06-28 2020-09-25 安徽立信橡胶科技有限公司 啮合型密闭式炼胶机及其工作方法
JP7487729B2 (ja) 2021-12-22 2024-05-21 カシオ計算機株式会社 電子機器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192811A (ja) * 1984-10-12 1986-05-10 Tokan Kogyo Co Ltd 含気固形物のガス置換装置
JP2004230308A (ja) * 2003-01-31 2004-08-19 Sony Corp ロール混練装置
JP2006327052A (ja) * 2005-05-26 2006-12-07 Bridgestone Corp ゴム混練機及びゴム混練方法
JP2007118387A (ja) * 2005-10-27 2007-05-17 Bridgestone Corp ゴム混練機及びゴム混練方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2867658B1 (fr) * 2004-03-19 2008-06-27 Green Technologies Sarl Utilisation de l'ozone pour l'amelioration du petrissage
US7736565B2 (en) * 2005-05-11 2010-06-15 Asahi Kasei Chemicals Corporation Process for producing PPE resin composition
JP5026218B2 (ja) * 2007-10-11 2012-09-12 大陽日酸株式会社 混合機
CN101786300A (zh) * 2008-12-01 2010-07-28 滁州君越高分子新材料有限公司 气相法硅橡胶一种新型开放式热炼工艺方法的发明与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192811A (ja) * 1984-10-12 1986-05-10 Tokan Kogyo Co Ltd 含気固形物のガス置換装置
JP2004230308A (ja) * 2003-01-31 2004-08-19 Sony Corp ロール混練装置
JP2006327052A (ja) * 2005-05-26 2006-12-07 Bridgestone Corp ゴム混練機及びゴム混練方法
JP2007118387A (ja) * 2005-10-27 2007-05-17 Bridgestone Corp ゴム混練機及びゴム混練方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214051A (ja) * 2013-04-25 2014-11-17 三菱マテリアルテクノ株式会社 粉塵除去装置及び粉塵除去方法

Also Published As

Publication number Publication date
US20140016428A1 (en) 2014-01-16
JPWO2012121391A1 (ja) 2014-07-17
JP5453572B2 (ja) 2014-03-26
CN103328087A (zh) 2013-09-25

Similar Documents

Publication Publication Date Title
JP5453572B2 (ja) 混練装置
JP6826437B2 (ja) 供給液体製造装置および供給液体製造方法
JP5410074B2 (ja) オゾンガス濃度測定方法、オゾンガス濃度測定システム及び基板処理装置
JP4743252B2 (ja) ゴム材料の混練制御方法
EP1512457A1 (en) Continuous dissolving device, continuous dissolving method, and gas-dissolved water supply
KR20170058928A (ko) 가스 용해수 제조 장치 및 제조 방법
WO2005039824A1 (ja) マルチワイヤソー
JP2020117795A (ja) 濃度制御装置、及び、ゼロ点調整方法、濃度制御装置用プログラム
JP5103023B2 (ja) 液体と粉体の混合装置、金属回収システム、液体と粉体の混合方法、及び、金属回収方法
RU2720333C2 (ru) Способ изготовления вспененного песка и производственное оборудование для изготовления вспененного песка
WO2011105533A1 (ja) 空気浄化機能を有する空気清浄装置及びその運転制御方法
JP5026218B2 (ja) 混合機
US8083857B2 (en) Substrate cleaning method and substrate cleaning apparatus
TWI697976B (zh) 處理液供給裝置、基板處理裝置以及處理液供給方法
JP6395138B2 (ja) 粒子計測装置および粒子計測方法
JP6790779B2 (ja) 紫外線処理装置
US20190193036A1 (en) Rubber extruding device and rubber extruding method
KR20160073648A (ko) 로타리 킬른
KR101701113B1 (ko) 반도체 제조시 발생가스의 배출가스 정밀압력제어용 슬라이드 오토 댐퍼의 제어장치 및 발생가스 희석장치
JP2006142802A (ja) ゴム材料の混練制御方法
JP7180478B2 (ja) 排ガス処理装置及び排ガス処理方法
JP7110898B2 (ja) 排ガス処理装置及び排ガス処理方法
WO2022168715A1 (ja) レーザ加工装置及びレーザ加工方法
CN115108240B (zh) 贮叶柜输送底带自动控制方法
CN217719517U (zh) 一种料盘清洁装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12755658

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013503633

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14003875

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12755658

Country of ref document: EP

Kind code of ref document: A1