WO2012120918A1 - 酸化亜鉛系膜形成用組成物、酸化亜鉛系膜の製造方法、及び亜鉛化合物 - Google Patents

酸化亜鉛系膜形成用組成物、酸化亜鉛系膜の製造方法、及び亜鉛化合物 Download PDF

Info

Publication number
WO2012120918A1
WO2012120918A1 PCT/JP2012/050486 JP2012050486W WO2012120918A1 WO 2012120918 A1 WO2012120918 A1 WO 2012120918A1 JP 2012050486 W JP2012050486 W JP 2012050486W WO 2012120918 A1 WO2012120918 A1 WO 2012120918A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
zinc
oxide film
film
forming
Prior art date
Application number
PCT/JP2012/050486
Other languages
English (en)
French (fr)
Inventor
芳仲 篤也
阿部 徹司
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to KR1020137026603A priority Critical patent/KR101507673B1/ko
Priority to CN201280012284.5A priority patent/CN103415576B/zh
Priority to EP12755681.9A priority patent/EP2684917B1/en
Publication of WO2012120918A1 publication Critical patent/WO2012120918A1/ja
Priority to US13/961,124 priority patent/US9133349B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/65Metal complexes of amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/09Diamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/67Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
    • C07C69/716Esters of keto-carboxylic acids or aldehydo-carboxylic acids
    • C07C69/72Acetoacetic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/06Zinc compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • the present invention is suitably used for a composition for forming a zinc oxide film for forming a zinc oxide film on various substrates, a method for producing a zinc oxide film using the composition, and a composition for forming a zinc oxide film. It relates to a zinc compound.
  • Zinc oxide films have been studied for various applications as transparent conductive films, electrode materials, and semiconductor films.
  • a method of forming a zinc oxide film using a zinc oxide precursor compound a vapor phase process in which a gas obtained by vaporizing a precursor compound such as a CVD method or an ALD method is brought into contact with a substrate (substrate); MOD A liquid phase process in which a solution or a dispersion of a precursor compound such as a sol-gel method or a sol-gel method is brought into contact with a substrate has been reported.
  • Examples of zinc compounds that are precursor compounds of zinc oxide used in these processes include alkoxides, ⁇ -diketone complexes, organic acid metal salts, alkyl zinc, inorganic salts, and the like. These precursor compounds are converted to zinc oxide by heating and / or reaction with an oxidizing agent.
  • Patent Document 1 discloses a method for producing a zinc oxide thin film in which a suspension in which powder or fine particles of a zinc compound are dispersed is brought into contact with a substrate surface, and then the zinc compound is thermally decomposed and converted into zinc oxide.
  • zinc compounds zinc acetate, zinc acetylacetonate salt, zinc oxalate, and zinc lactate are disclosed.
  • Patent Document 2 discloses a method of forming a transparent conductive film by bringing an organometallic compound gas in a plasma state into contact with a substrate under atmospheric pressure or a pressure near atmospheric pressure.
  • zinc oxide is exemplified as a transparent conductive film
  • ethyl acetoacetate is exemplified as a ligand forming an organic metal.
  • zinc acetylacetonate is illustrated as a zinc compound.
  • the temperature required for conversion to a zinc oxide film of sufficient quality to exhibit the expected function is 350 ° C. or higher. It is said that.
  • the present invention has been made in view of such problems of the prior art, and the problem is that a high-quality zinc oxide film having transparency, homogeneity, and conductivity is formed at 300 ° C.
  • An object of the present invention is to provide a composition for forming a zinc oxide film that can be formed at the following low temperature, and a zinc compound used therefor.
  • the place made into the subject of this invention is the manufacturing method of the zinc oxide type film
  • the present inventors have found that the above problems can be achieved by using a zinc compound having a specific structure, and have completed the present invention. That is, according to this invention, the composition for zinc oxide type film
  • R 1 and R 2 independently represent an alkyl group having 1 to 4 carbon atoms
  • R 1 and R 2 in the general formula (1) are preferably methyl groups.
  • a step of applying the above-described zinc oxide film-forming composition on a substrate to form a coating layer and a step of treating the coating layer at 150 to 300 ° C. to convert it into a film
  • a method for producing a zinc oxide-based film a step of applying the above-described zinc oxide film-forming composition on a substrate to form a coating layer, and a step of treating the coating layer at 150 to 300 ° C. to convert it into a film.
  • composition for forming a zinc oxide film and the zinc compound of the present invention are used, a high-quality zinc oxide film having transparency, homogeneity, and conductivity can be formed at a low temperature of 300 ° C. or lower.
  • a high-quality zinc oxide-based film having transparency, homogeneity, and conductivity can be formed at a low temperature of 300 ° C. or lower.
  • 2 is a 1 H-NMR chart of a zinc compound represented by formula (2).
  • 3 is a TG-DTA chart of a zinc compound represented by formula (2).
  • the composition for forming a zinc oxide film of the present invention contains the zinc compound represented by the general formula (1) as an essential component.
  • This zinc compound is a component that can function as a zinc oxide precursor compound.
  • specific examples of the alkyl group having 1 to 4 carbon atoms represented by R 1 and R 2 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and a 2-butyl group. , Isobutyl group, t-butyl group and the like.
  • R 1 is preferably a methyl group because the raw material is inexpensive.
  • R 2 is preferably a methyl group or ethyl which has good solubility in various organic solvents and gives a stable composition, and more preferably a methyl group.
  • the zinc compound represented by the formula (2) is most preferable.
  • the zinc compound represented by the formula (2) is a novel compound.
  • the zinc compound contained as an essential component in the composition for forming a zinc oxide film of the present invention includes, for example, an acyl acetate ester zinc complex represented by the following general formula (3) or a hydrate thereof, and N, N , N ′, N′-tetramethylethylenediamine can be mixed.
  • the zinc compound represented by the formula (2) includes a methyl acetoacetate zinc complex (hydrate) and N, N, N ′, N′-tetramethylethylenediamine in an organic solvent at room temperature or Obtained by stirring under heating.
  • R 1 and R 2 each independently represents an alkyl group having 1 to 4 carbon atoms
  • the zinc oxide film forming composition of the present invention may contain an optional component other than the specific zinc compound that is an essential component.
  • an optional component other than the specific zinc compound that is an essential component As a typical example of the composition for forming a zinc oxide film of the present invention, a composition containing (a) a zinc compound represented by the general formula (1) and an organic solvent for dissolving or dispersing the compound. (B) a composition containing a zinc compound represented by the general formula (1), N, N, N ′, N′-tetramethylethylenediamine, and an organic solvent for dissolving or dispersing these components, etc. Can be mentioned.
  • the composition for use will contain water of hydration derived from the zinc raw material.
  • the hydrated water may or may not be removed from the obtained zinc oxide film forming composition.
  • the resulting zinc oxide film forming composition has an excess of N, N, N ′, N'-tetramethylethylenediamine will be included.
  • the excess N, N, N ′, N′-tetramethylethylenediamine may or may not be removed from the obtained zinc oxide film forming composition.
  • composition for forming a zinc oxide film of the present invention contains an appropriate amount of N, N, N ′, N′-tetramethylethylenediamine, the composition has good stability and the quality of the resulting film ( In the case of a zinc oxide film, transparency and conductivity are improved, which is preferable.
  • the composition for forming a zinc oxide film of the present invention usually contains an organic solvent as a solvent or a dispersion medium.
  • This organic solvent may be a single solvent or a mixed solvent.
  • organic solvents alcohol solvents, diol solvents, ketone solvents, ester solvents, ether solvents, aliphatic or alicyclic hydrocarbon solvents, aromatic hydrocarbon solvents, hydrocarbon solvents having a cyano group
  • examples of the solvent include other solvents.
  • alcohol solvents include methanol, ethanol, propanol, isopropanol, 1-butanol, isobutanol, 2-butanol, tertiary butanol, pentanol, isopentanol, 2-pentanol, neopentanol, third Pentanol, hexanol, 2-hexanol, heptanol, 2-heptanol, octanol, 2-ethylhexanol, 2-octanol, cyclopentanol, cyclohexanol, cycloheptanol, methylcyclopentanol, methylcyclohexanol, methylcycloheptanol Benzyl alcohol, 2-methoxyethyl alcohol, 2-butoxyethyl alcohol, 2- (2-methoxyethoxy) ethanol, 1-methoxy-2-propanol, 2- (N, N-(N
  • diol solvents examples include ethylene glycol, propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, isoprene glycol (3-methyl 1,3-butanediol), 1,2-hexanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,2-octanediol, octanediol (2-ethyl-1, 3-hexanediol), 2-butyl-2-ethyl-1,3-propanediol, 2,5-dimethyl-2,5-hexanediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1, 4-cyclohexanedimethanol and the like can be
  • ketone solvent examples include acetone, ethyl methyl ketone, methyl butyl ketone, methyl isobutyl ketone, ethyl butyl ketone, dipropyl ketone, diisobutyl ketone, methyl amyl ketone, cyclohexanone, methylcyclohexanone, and the like.
  • ester solvents include methyl formate, ethyl formate, methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, 2 butyl acetate, 3 butyl acetate, amyl acetate, isoamyl acetate, 3 amyl acetate, and phenyl acetate , Methyl propionate, ethyl propionate, isopropyl propionate, butyl propionate, isobutyl propionate, 2 butyl propionate, 3 butyl propionate, amyl propionate, isoamyl propionate, 3 amyl propionate, phenyl propionate , Methyl 2-ethylhexanoate, ethyl 2-ethylhexanoate, propyl 2-ethylhexanoate, isopropyl 2-ethyl
  • ether solvents include tetrahydrofuran, tetrahydropyran, morpholine, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, dibutyl ether, diethyl ether, dioxane and the like.
  • Examples of the aliphatic or alicyclic hydrocarbon solvent include pentane, hexane, cyclohexane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane, heptane, octane, decalin, and solvent naphtha.
  • aromatic hydrocarbon solvents examples include benzene, toluene, ethylbenzene, xylene, mesitylene, diethylbenzene, cumene, isobutylbenzene, cymene, tetralin and the like.
  • hydrocarbon solvents having a cyano group examples include 1-cyanopropane, 1-cyanobutane, 1-cyanohexane, cyanocyclohexane, cyanobenzene, 1,3-dicyanopropane, 1,4-dicyanobutane, 1,6-dicyano.
  • hydrocarbon solvents having a cyano group examples include 1-cyanopropane, 1-cyanobutane, 1-cyanohexane, cyanocyclohexane, cyanobenzene, 1,3-dicyanopropane, 1,4-dicyanobutane, 1,6-dicyano.
  • examples include hexane, 1,4-dicyanocyclohexane, 1,4-dicyanobenzene and the like.
  • organic solvents include N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylformamide and the like.
  • alcohol-based solvents and ester-based solvents are inexpensive and exhibit sufficient solubility in zinc compounds, and various types such as silicon substrates, metal substrates, ceramic substrates, glass substrates, resin substrates, etc. It is preferable because it exhibits good coatability as a coating solvent for a simple substrate. Moreover, also when using a mixed solvent, what contains 50 mass% or more of at least any one of alcohol solvent and ester solvent is more preferable. Further, an organic solvent having a boiling point lower than the conversion temperature to the film is preferable, and an organic solvent having a boiling point of 150 ° C. or lower is more preferable.
  • a preferred embodiment of the composition for forming a zinc oxide film of the present invention comprises a zinc compound represented by the general formula (1), N, N, N ′, N′-tetramethylethylenediamine, and an organic solvent as essential components.
  • the concentration of the zinc compound in the composition for forming a zinc oxide film is preferably such a concentration that makes a stable solution.
  • the ratio of the zinc compound contained in the composition for forming a zinc oxide film is preferably 0.01 to 0.1 mol / L.
  • the amount of N, N, N ′, N′-tetramethylethylenediamine contained in the composition for forming a zinc oxide film is preferably 2 to 20 times mol (mol) with respect to the zinc compound.
  • the organic solvent is preferably an ester solvent and / or an alcohol solvent having a boiling point of 150 ° C. or lower.
  • composition for forming a zinc oxide film of the present invention may contain “other components” other than the above-described components as long as the effects of the present invention are not impaired.
  • “Other ingredients” include additives that improve the stability and coating properties of compositions such as anti-gelling agents, solubilizers, antifoaming agents, thickeners, thixotropic agents, and leveling agents; And film forming aids such as reaction aids and crosslinking aids.
  • the ratio of “other components” contained in the composition for forming a zinc oxide film is preferably 10% by mass or less, and more preferably 5% by mass or less.
  • the solubilizer for the zinc compound represented by the general formula (1) the same acyl acetate as the ligand of the zinc compound is preferable.
  • the ratio of acyl acetate contained in the composition for forming a zinc oxide film is preferably 0.05 to 5% by mass.
  • the content of the acyl acetate is less than 0.05% by mass, the effect as a solubilizer may not be obtained.
  • the content ratio of acylacetic acid ester exceeds 5% by mass, the effect as a solubilizer is not improved so much, and it may be uneconomical.
  • the composition for forming a zinc oxide film preferably contains an oxidizing agent capable of converting a zinc compound as a precursor compound into zinc oxide.
  • Water is preferred as the oxidizing agent. Water acts when the zinc compound is converted into zinc oxide, and contributes to improving the quality of the formed zinc oxide film.
  • the proportion of water contained in the composition for forming a zinc oxide film is preferably 1 to 10% by mass. If the water content is less than 1% by mass, the effect of using water may not be obtained. On the other hand, when the water content exceeds 10% by mass, the zinc compound is likely to be decomposed, which may cause deterioration of the composition such as gelation or solid formation.
  • a necessary amount of water may be added in advance to the composition for forming a zinc oxide film, or may be added immediately before producing the zinc oxide film.
  • the method for producing a zinc oxide-based film of the present invention is a method in which the characteristics of the above-described composition for forming a zinc oxide-based film are effectively exhibited.
  • the method for producing a zinc oxide-based film of the present invention includes (1) a step of applying the above-described composition for forming a zinc oxide-based film on a substrate to form a coating layer (hereinafter referred to as “coating step”). And (2) a process of treating the formed coating layer at 150 to 300 ° C. to convert it into a film (hereinafter, also referred to as “film conversion process”).
  • the coating method of the composition for forming a zinc oxide film in the coating process includes spin coating, dip coating, spray coating, mist coating, flow coating, curtain coating, roll coating, knife coating, and bar coating. Method, screen printing method, brush coating, and the like.
  • the type of substrate to which the composition for forming a zinc oxide film is applied is not particularly limited, and examples thereof include inorganic substrates such as glass and silicon, resin substrates such as polyimide, polycarbonate, polyethylene terephthalate, and polyethylene naphthalate. Can do.
  • the coating layer formed on the substrate is treated at 150 to 300 ° C., preferably 200 to 300 ° C., and the zinc compound is oxidized to form a zinc oxide film.
  • the treatment may be performed at 150 to 300 ° C. after the application of the zinc oxide film forming composition, or may be performed at 150 to 300 ° C. at the same time as the application of the zinc oxide film formation composition. That is, the coating process and the film converting process may be performed substantially simultaneously.
  • the substrate may be set to a desired conversion temperature and the composition for forming a zinc oxide film may be applied to the substrate. Such a method can be applied to a spray coating method or a mist coating method.
  • the atmosphere of the film conversion step is preferably an oxidizing atmosphere in which an oxidizing substance such as oxygen, ozone, nitrogen dioxide, nitric oxide, water vapor, hydrogen peroxide, formic acid, acetic acid, and acetic anhydride is present.
  • An inert gas may be used as a diluent gas to adjust the oxidizing atmosphere.
  • annealing treatment may be performed in an inert atmosphere, an oxidizing atmosphere, or a reducing atmosphere.
  • the temperature of the annealing treatment is usually 150 to 400 ° C., preferably 150 to 300 ° C.
  • the coating process and the film converting process may be repeated a plurality of times.
  • the process from the coating process to the film conversion process may be repeated a plurality of times, and the coating process and the drying process may be repeated a plurality of times.
  • energy other than heat such as plasma and various radiations, may be applied or irradiated.
  • the zinc oxide-based film forming composition contains a precursor of another component, the conditions of each step are appropriately selected, or a reactive gas is used in each step, etc.
  • a zinc oxide-based film (thin film) exhibiting desired characteristics, such as a composite oxide of zinc oxide and another element, a composite film of zinc oxide and another element, or the like can be formed.
  • the types of zinc oxide films (thin films) produced include, for example, zinc oxide, zinc-indium composite oxide, lead-zinc composite oxide, lead-zinc-niobium composite oxide, and bismuth-zinc-niobium composite oxide. And barium-zinc-tantalum composite oxide, tin-zinc composite oxide, lithium-added zinc oxide, and zinc-added ferrite.
  • Examples of applications of these zinc oxide-based films (thin films) include, for example, semiconductors, transparent conductors, light emitters, phosphors, photocatalysts, magnetic bodies, conductors, electrodes, high dielectric bodies, ferroelectric bodies, and piezoelectric bodies. , Microwave dielectrics, optical waveguides, optical amplifiers, optical switches, electromagnetic wave shields, solar cells, and the like.
  • Example 1 A reaction solution obtained by mixing 1 mol part of zinc chloride, 2 mol parts of sodium methylate and 8 times mass of methanol with respect to zinc chloride was stirred at room temperature for 30 minutes. Precipitated sodium chloride was filtered off. The obtained filtrate was added to a solution containing 2 mol parts of methyl acetoacetate and 3 times the mass of methanol of methyl acetoacetate and stirred at room temperature for 30 minutes. The precipitated crystals were collected by filtration, washed with methanol and dried to obtain an intermediate zinc acetoacetate complex of zinc in a yield of 95%.
  • Measuring device Product name “Nicolet 6700” (manufactured by Thermo Fisher Scientific) ⁇ 1 H-NMR measurement> Measuring apparatus: Trade name “JNM-ECA 400” (manufactured by JEOL Ltd.), frequency: 400 MHz, solvent: heavy benzene ⁇ TG-DTA> Measuring apparatus: Trade name “EXSTRA6000” (manufactured by SII Nano Technology), sample amount: 6 mg, air: 300 mL / mL, temperature rising rate: 10 ° C./min, reference: alumina
  • Example 2 Preparation of a composition for forming a zinc oxide film [Example 2]
  • the zinc compound represented by the formula (2) obtained in Example 1 was dissolved in methyl acetate to prepare a composition for forming a zinc oxide film (Example 2).
  • concentration of the zinc compound represented by Formula (2) was 0.05 mol / L.
  • Examples 3 to 9, Comparative Examples 1 to 10 The components shown in Table 1 were mixed to prepare a composition for forming a zinc oxide film (Examples 3 to 9, Comparative Examples 1 to 10).
  • the zinc component represented by Formula (4) and the zinc component represented by Formula (5) are shown below.
  • Examples 10 to 17, Comparative Examples 11 to 20 Using the respective compositions for forming a zinc oxide film obtained in Examples 2 to 9 and Comparative Examples 1 to 10, a zinc oxide film was formed under the following conditions. Each composition for forming a zinc oxide film was sprayed onto a 4 cm square glass substrate heated to 200 ° C. with a hot plate by spraying. The spray amount per spray was 0.1 mL, and sprayed 200 times repeatedly to spray a total of 20 mL. After spraying, the glass substrate was held at 200 ° C. for 30 minutes to form a film to obtain a glass substrate with a film.
  • the obtained glass substrate with a film was visually observed to evaluate the homogeneity of the formed film.
  • the evaluation results are shown in Tables 2 and 3.
  • the evaluation criteria were “unevenness” for those with coating film unevenness, “with agglomerates” for those with agglomerates, and “homogeneous” for homogeneous ones. In the case where no film was obtained, “no film” was defined.
  • Transparency was evaluated by measuring the total light transmittance with a D65 light source using a turbidimeter (trade name “NDH2000” (manufactured by Nippon Denshoku Industries Co., Ltd.)).
  • Conductivity was evaluated by measuring the volume resistivity by a four-probe method using a trade name “Loresta-EP MCP-T360” (manufactured by Mitsubishi Chemical Corporation). The volume resistivity was measured at an arbitrary number of measurement points and expressed as an average value. A measurement value exceeding 10 7 ⁇ ⁇ cm, which is the measurement limit, was expressed as “ ⁇ ”.
  • Tables 2 and 3 show the measurement results of transmittance and resistivity.
  • the haze and film thickness of the formed film were measured.
  • the haze was measured using a turbidimeter (trade name “NDH2000” (manufactured by Nippon Denshoku Industries Co., Ltd.)). Further, the thickness of the central portion of the film was measured using FE-SEM. Tables 2 and 3 show the measurement results of haze and film thickness.
  • composition for forming a zinc oxide film of the present invention for example, a semiconductor, a transparent conductor, a light emitter, a phosphor, a photocatalyst, a magnetic body, a conductor, an electrode, a high dielectric, a ferroelectric, a piezoelectric,
  • a zinc oxide film used for a microwave dielectric, an optical waveguide, an optical amplifier, an optical switch, an electromagnetic wave shield, a solar cell, or the like can be easily formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Paints Or Removers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

 本発明は、必須成分として、下記一般式(1)(一般式(1)中、R1及びR2は、相互に独立に炭素数1~4のアルキル基を表す)で表される亜鉛化合物を含有する酸化亜鉛系膜形成用組成物、酸化亜鉛系膜の製造方法、及び亜鉛化合物である。 上記本発明によれば、透明性、均質性、及び導電性を有する高品質な酸化亜鉛系膜を300℃以下の低温で成膜することが可能な酸化亜鉛系膜形成用組成物が提供される。

Description

酸化亜鉛系膜形成用組成物、酸化亜鉛系膜の製造方法、及び亜鉛化合物
 本発明は、種々の基体上に酸化亜鉛系膜を形成するための酸化亜鉛系膜形成用組成物、それを用いる酸化亜鉛系膜の製造方法、及び酸化亜鉛膜形成用組成物に好適に用いられる亜鉛化合物に関する。
 酸化亜鉛系膜は、透明導電膜、電極材料、半導体膜として種々の応用が検討されている。酸化亜鉛の前駆体化合物を使用して酸化亜鉛系膜を形成する方法としては、CVD法、ALD法等の前駆体化合物を気化させたガスを基体(基材)に接触させる気相プロセス;MOD法、ゾル-ゲル法等の前駆体化合物の溶液や分散液を基体に接触させる液相プロセスが報告されている。
 これらのプロセスに使用される酸化亜鉛の前駆体化合物である亜鉛化合物としては、アルコキシド、β-ジケトン錯体、有機酸金属塩、アルキル亜鉛、無機塩等がある。これらの前駆体化合物は、加熱及び/又は酸化剤による反応によって酸化亜鉛に転化される。
 例えば、特許文献1には、亜鉛化合物の粉末又は微粒子を分散させたサスペンジョンを基体表面に接触させた後、亜鉛化合物を熱分解させて酸化亜鉛に転化する酸化亜鉛薄膜の製造方法が開示されている。なお、亜鉛化合物としては、酢酸亜鉛、亜鉛のアセチルアセトナート塩、蓚酸亜鉛、乳酸亜鉛が開示されている。
 また、特許文献2には、大気圧又は大気圧近傍の圧力下においてプラズマ状態とした有機金属化合物ガスを基体に接触させて、透明導電膜を形成する方法が開示されている。特許文献2には、透明導電膜として酸化亜鉛が例示されており、有機金属を形成する配位子としてアセト酢酸エチルが例示されている。また、亜鉛化合物としてジンクアセチルアセトナートが例示されている。
 一般的に、前駆体化合物を使用して酸化亜鉛系膜を形成する場合、期待される機能を発現するのに十分な品質の酸化亜鉛系膜へと転化させるのに必要な温度は350℃以上であるとされている。しかしながら、樹脂基体への適応性や、基体に対するダメージ低減等の理由で、より低温で酸化亜鉛系膜へと転化させうることが望ましい。このため、従来に比して低温の成膜温度で酸化亜鉛系膜を製造する方法を開発することが要望されている。
特開平7-180060号公報 特開2004-22268号公報
 本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、透明性、均質性、及び導電性を有する高品質な酸化亜鉛系膜を300℃以下の低温で成膜することが可能な酸化亜鉛系膜形成用組成物、及びそれに用いられる亜鉛化合物を提供することにある。また、本発明の課題とするところは、透明性、均質性、及び導電性を有する高品質な酸化亜鉛系膜を300℃以下の低温で成膜することが可能な酸化亜鉛系膜の製造方法を提供することにある。
 本発明者らは鋭意検討した結果、特定の構造を有する亜鉛化合物を用いることで、上記課題を達成可能であることを見出し、本発明を完成するに至った。すなわち、本発明によれば、必須成分として、下記一般式(1)で表される亜鉛化合物を含有する酸化亜鉛系膜形成用組成物が提供される。
Figure JPOXMLDOC01-appb-I000003
(前記一般式(1)中、R1及びR2は、相互に独立に炭素数1~4のアルキル基を表す)
 本発明においては、前記一般式(1)中のR1及びR2がメチル基であることが好ましい。
 また、本発明によれば、上述の酸化亜鉛系膜形成用組成物を基体上に塗布して塗布層を形成する工程と、前記塗布層を150~300℃で処理して膜に転化する工程と、を含む酸化亜鉛系膜の製造方法が提供される。
 更に、本発明によれば、下記式(2)で表される亜鉛化合物が提供される。
Figure JPOXMLDOC01-appb-I000004
 本発明の酸化亜鉛系膜形成用組成物及び亜鉛化合物を用いれば、透明性、均質性、及び導電性を有する高品質な酸化亜鉛系膜を300℃以下の低温で成膜することができる。また、本発明の酸化亜鉛系膜の製造方法によれば、透明性、均質性、及び導電性を有する高品質な酸化亜鉛系膜を300℃以下の低温で成膜することができる。
式(2)で表される亜鉛化合物のIRチャートである。 式(2)で表される亜鉛化合物の1H-NMRチャートである。 式(2)で表される亜鉛化合物のTG-DTAチャートである。
 以下、本発明の酸化亜鉛系膜形成用組成物について説明する。本発明の酸化亜鉛系膜形成用組成物は、前記一般式(1)で表される亜鉛化合物を必須成分として含有する。この亜鉛化合物は、酸化亜鉛前駆体化合物として機能しうる成分である。前記一般式(1)中、R1及びR2で表される炭素数1~4のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、2-ブチル基、イソブチル基、t-ブチル基等を挙げることができる。R1としては、原料が安価であることからメチル基であることが好ましい。また、R2としては、種々の有機溶剤に対する溶解性が良好で、安定な組成物を与えるメチル基又はエチルが好ましく、メチル基がさらに好ましい。
 前記一般式(1)で表される亜鉛化合物の中で最も好ましいのは、前記式(2)で表される亜鉛化合物である。なお、前記式(2)で表される亜鉛化合物は新規化合物である。
 本発明の酸化亜鉛系膜形成用組成物に必須成分として含有される亜鉛化合物は、例えば、下記一般式(3)で表されるアシル酢酸エステルの亜鉛錯体又はその水和物と、N,N,N’,N’-テトラメチルエチレンジアミンとを混合することで調製することができる。例えば、前記式(2)で表される亜鉛化合物は、アセト酢酸メチルの亜鉛錯体(水和物)と、N,N,N’,N’-テトラメチルエチレンジアミンとを、有機溶剤中で室温又は加熱下で撹拌することによって得られる。
Figure JPOXMLDOC01-appb-I000005
(前記一般式(3)中、R1及びR2は、相互に独立に炭素数1~4のアルキル基を表す)
 本発明の酸化亜鉛系膜形成用組成物には、必須成分である特定の亜鉛化合物以外の任意成分が含有されていてもよい。本発明の酸化亜鉛系膜形成用組成物の典型的な例としては、(a)前記一般式(1)で表される亜鉛化合物と、これを溶解又は分散させる有機溶剤とを含有する組成物、(b)前記一般式(1)で表される亜鉛化合物と、N,N,N’,N’-テトラメチルエチレンジアミンと、これらの成分を溶解又は分散させる有機溶剤とを含有する組成物等を挙げることができる。
 アセト酢酸エステルの亜鉛錯体の水和物(亜鉛原料)と、N,N,N’,N’-テトラメチルエチレンジアミンとを、所望の有機溶剤中で反応させた場合、得られる酸化亜鉛系膜形成用組成物には、亜鉛原料に由来する水和水が含まれることになる。得られた酸化亜鉛系膜形成用組成物から、この水和水を除去してもよいし、除去しなくてもよい。また、亜鉛原料に対して、N,N,N’,N’-テトラメチルエチレンジアミンを過剰に反応させると、得られる酸化亜鉛系膜形成用組成物には過剰分のN,N,N’,N’-テトラメチルエチレンジアミンが含まれることになる。得られた酸化亜鉛系膜形成用組成物から、この過剰分のN,N,N’,N’-テトラメチルエチレンジアミンを除去してもよいし、除去しなくてもよい。
 本発明の酸化亜鉛系膜形成用組成物には、適量のN,N,N’,N’-テトラメチルエチレンジアミンが含有されていると、組成物の安定性がよく、得られる膜の品質(酸化亜鉛膜の場合は、透明性と導電性)が向上するので好ましい。
 本発明の酸化亜鉛系膜形成用組成物には、通常、溶媒又は分散媒としての有機溶剤が含有される。この有機溶剤は、単一溶剤でも混合溶剤でもよい。有機溶剤としては、アルコール系溶剤、ジオール系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤、脂肪族又は脂環族炭化水素系溶剤、芳香族炭化水素系溶剤、シアノ基を有する炭化水素系溶剤、及びその他の溶剤等を挙げることができる。
 アルコール系溶剤の具体例としては、メタノール、エタノール、プロパノール、イソプロパノール、1-ブタノール、イソブタノール、2-ブタノール、第3ブタノール、ペンタノール、イソペンタノール、2-ペンタノール、ネオペンタノール、第3ペンタノール、ヘキサノール、2-ヘキサノール、ヘプタノール、2-ヘプタノール、オクタノール、2-エチルヘキサノール、2-オクタノール、シクロペンタノール、シクロヘキサノール、シクロヘプタノール、メチルシクロペンタノール、メチルシクロヘキサノール、メチルシクロヘプタノール、ベンジルアルコール、2-メトキシエチルアルコール、2-ブトキシエチルアルコール、2-(2-メトキシエトキシ)エタノール、1-メトキシ-2-プロパノール、2-(N,N-ジメチルアミノ)エタノール、3-(N,N-ジメチルアミノ)プロパノール等を挙げることができる。
 ジオール系溶剤としては、エチレングリコール、プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、イソプレングリコール(3-メチル-1,3-ブタンジオール)、1,2-ヘキサンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,2-オクタンジオール、オクタンジオール(2-エチル-1,3-ヘキサンジオール)、2-ブチル-2-エチル-1,3-プロパンジオール、2,5-ジメチル-2,5-ヘキサンジオール、1,2-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール等を挙げることができる。
 ケトン系溶剤としては、アセトン、エチルメチルケトン、メチルブチルケトン、メチルイソブチルケトン、エチルブチルケトン、ジプロピルケトン、ジイソブチルケトン、メチルアミルケトン、シクロヘキサノン、メチルシクロヘキサノン等を挙げることができる。
 エステル系溶剤としては、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸第2ブチル、酢酸第3ブチル、酢酸アミル、酢酸イソアミル、酢酸第3アミル、酢酸フェニル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸イソプロピル、プロピオン酸ブチル、プロピオン酸イソブチル、プロピオン酸第2ブチル、プロピオン酸第3ブチル、プロピオン酸アミル、プロピオン酸イソアミル、プロピオン酸第3アミル、プロピオン酸フェニル、2-エチルヘキサン酸メチル、2-エチルヘキサン酸エチル、2-エチルヘキサン酸プロピル、2-エチルヘキサン酸イソプロピル、2-エチルヘキサン酸ブチル、乳酸メチル、乳酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸メチル、メトキシプロピオン酸エチル、エトキシプロピオン酸エチル、エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、エチレングリコールモノイソプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノ第2ブチルエーテルアセテート、エチレングリコールモノイソブチルエーテルアセテート、エチレングリコールモノ第3ブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノイソプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、プロピレングリコールモノ第2ブチルエーテルアセテート、プロピレングリコールモノイソブチルエーテルアセテート、プロピレングリコールモノ第3ブチルエーテルアセテート、ブチレングリコールモノメチルエーテルアセテート、ブチレングリコールモノエチルエーテルアセテート、ブチレングリコールモノプロピルエーテルアセテート、ブチレングリコールモノイソプロピルエーテルアセテート、ブチレングリコールモノブチルエーテルアセテート、ブチレングリコールモノ第2ブチルエーテルアセテート、ブチレングリコールモノイソブチルエーテルアセテート、ブチレングリコールモノ第3ブチルエーテルアセテート、アセト酢酸メチル、アセト酢酸エチル、オキソブタン酸メチル、オキソブタン酸エチル、γ-ブチロラクトン、δ-バレロラクトン等を挙げることができる。
 エーテル系溶剤としては、テトラヒドロフラン、テトラヒドロピラン、モルホリン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジブチルエーテル、ジエチルエーテル、ジオキサン等を挙げることができる。
 脂肪族又は脂環族炭化水素系溶剤としては、ペンタン、ヘキサン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、オクタン、デカリン、ソルベントナフサ等を挙げることができる。
 芳香族炭化水素系溶剤としては、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン、ジエチルベンゼン、クメン、イソブチルベンゼン、シメン、テトラリン等を挙げることができる。
 シアノ基を有する炭化水素系溶剤としては、1-シアノプロパン、1-シアノブタン、1-シアノヘキサン、シアノシクロヘキサン、シアノベンゼン、1,3-ジシアノプロパン、1,4-ジシアノブタン、1,6-ジシアノヘキサン、1,4-ジシアノシクロヘキサン、1,4-ジシアノベンゼン等を挙げることができる。
 その他の有機溶剤としては、N-メチル-2-ピロリドン、ジメチルスルホキシド、ジメチルホルムアミド等を挙げることができる。
 上記の有機溶剤の中でも、アルコール系溶剤及びエステル系溶剤は、安価であるとともに、亜鉛化合物に対する十分な溶解性を示し、かつ、シリコン基体、金属基体、セラミックス基体、ガラス基体、樹脂基体等の様々な基体に対する塗布溶媒として良好な塗布性を示すので好ましい。また、混合溶剤を用いる場合も、アルコール系溶剤とエステル系溶剤の少なくともいずれかを50質量%以上含有するものがより好ましい。また、膜への転化温度よりも沸点の低い有機溶剤が好ましく、沸点が150℃以下の有機溶剤がより好ましい。
 本発明の酸化亜鉛系膜形成用組成物の好ましい形態は、前記一般式(1)で表される亜鉛化合物、N,N,N’,N’-テトラメチルエチレンジアミン、及び有機溶剤を必須成分とし、亜鉛化合物が溶解されている溶液である。酸化亜鉛系膜形成用組成物中の亜鉛化合物の濃度は、安定な溶液となる濃度であることが好ましい。具体的には、酸化亜鉛系膜形成用組成物に含まれる亜鉛化合物の割合は、0.01~0.1mol/Lであることが好ましい。また、酸化亜鉛系膜形成用組成物に含まれるN,N,N’,N’-テトラメチルエチレンジアミンの量は、亜鉛化合物に対して2~20倍モル(mol)であることが好ましい。なお、有機溶剤は沸点150℃以下のエステル系溶剤及び/又はアルコール系溶剤が好ましい。
 本発明の酸化亜鉛系膜形成用組成物には、必要に応じて、本発明の効果を阻害しない範囲で、前述の成分以外の「その他の成分」が含有されていてもよい。「その他の成分」としては、ゲル化防止剤、可溶化剤、消泡剤、増粘剤、揺変剤、及びレベリング剤等の組成物の安定性や塗布性を改善する添加剤;反応剤、反応助剤、架橋助剤等の成膜助剤を挙げることができる。酸化亜鉛系膜形成用組成物に含有される「その他の成分」の割合は、それぞれ10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
 例えば、前記一般式(1)で表される亜鉛化合物の可溶化剤としては、亜鉛化合物の配位子と同一のアシル酢酸エステルが好ましい。酸化亜鉛系膜形成用組成物に含有されるアシル酢酸エステルの割合は0.05~5質量%であることが好ましい。アシル酢酸エステルの含有割合が0.05質量%未満であると、可溶化剤としての効果が得られない場合がある。一方、アシル酢酸エステルの含有割合を5質量%超としても、可溶化剤としての効果はさほど向上せず、むしろ不経済になる場合がある。
 また、酸化亜鉛系膜形成用組成物には、前駆体化合物としての亜鉛化合物を酸化亜鉛に転化しうる酸化剤が含有されることが好ましい。酸化剤としては水が好適である。水は、亜鉛化合物が酸化亜鉛へと転化する際に作用し、形成される酸化亜鉛系膜の高品質化に寄与する。酸化亜鉛系膜形成用組成物に含有される水の割合は1~10質量%であることが好ましい。水の含有割合が1質量%未満であると、水を使用した効果が得られない場合がある。一方、水の含有割合が10質量%を超えると、亜鉛化合物が分解しやすくなり、ゲル化や固体生成などの組成物の変質の要因となる場合がある。水は、酸化亜鉛系膜形成用組成物に必要量をあらかじめ添加しておいてもよく、酸化亜鉛系膜を製造する直前に添加してもよい。
 次に、本発明の酸化亜鉛系膜の製造方法について説明する。本発明の酸化亜鉛系膜の製造法は、前述の酸化亜鉛系膜形成用組成物の特徴が効果的に発揮される方法である。具体的には、本発明の酸化亜鉛系膜の製造方法は、(1)前述の酸化亜鉛系膜形成用組成物を基体上に塗布して塗布層を形成する工程(以下、「塗布工程」とも記す)と、(2)形成された塗布層を150~300℃で処理して膜に転化する工程(以下、「膜転化工程」とも記す)と、を含む。
 塗布工程における酸化亜鉛系膜形成用組成物の塗布方法としては、スピンコート法、ディップ法、スプレーコート法、ミストコート法、フローコート法、カーテンコート法、ロールコート法、ナイフコート法、バーコート法、スクリーン印刷法、刷毛塗り等を挙げることができる。また、酸化亜鉛系膜形成用組成物が塗布される基体の種類は、特に限定されないが、ガラス、シリコン等の無機基体、ポリイミド、ポリカーボネート、ポリエチレンテレフタレート、ポリエチレンナフタレート等の樹脂基体等を挙げることができる。
 基体上に形成された塗布層を150~300℃、好ましくは200~300℃で処理し、亜鉛化合物を酸化させて酸化亜鉛系膜を形成する。なお、酸化亜鉛系膜形成用組成物の塗布後に150~300℃で処理してもよく、酸化亜鉛系膜形成用組成物の塗布と同時に150~300℃で処理してもよい。すなわち、塗布工程と膜転化工程は、概ね同時に行ってもよい。酸化亜鉛系膜形成用組成物の塗布と同時に150~300℃で処理するには、例えば、基体を所望の転化温度としておき、この基体に酸化亜鉛系膜形成用組成物を塗布すればよい。このような方法は、スプレーコート法やミストコート法に適応することができる。
 膜転化工程の雰囲気は、酸素、オゾン、二酸化窒素、一酸化窒素、水蒸気、過酸化水素、ギ酸、酢酸、無水酢酸等の酸化性物質が存在する酸化性雰囲気が好ましい。酸化性雰囲気を調整するために、不活性ガスを希釈ガスとして使用してもよい。
 酸化亜鉛系膜形成用組成物を塗布した後に、有機溶剤等の低沸点成分を気化させるために乾燥工程を設けることも好ましい。また、良好な品質の酸化亜鉛系膜を形成するために、膜転化した後、不活性雰囲気下、酸化性雰囲気下、又は還元性雰囲気下でアニール処理を行ってもよい。アニール処理の温度は、通常150~400℃、好ましくは150~300℃である。
 また、形成される酸化亜鉛系膜を必要な膜厚とするために、塗布工程と膜転化工程を複数回繰り返してもよい。例えば、塗布工程から膜転化工程までを複数回繰り返してもよく、塗布工程と乾燥工程をそれぞれ複数回繰り返してもよい。さらに、それぞれの工程において、プラズマや各種放射線等の熱以外のエネルギーを印加又は照射してもよい。
 本発明においては、酸化亜鉛系膜形成用組成物に他の成分のプレカーサを含有させる、各工程の条件を適宜選択する、或いは各工程で反応性ガスを使用すること等により、酸化亜鉛セラミックス、酸化亜鉛と他の元素との複合酸化物、酸化亜鉛と他の元素との複合膜等、所望の特性を示す酸化亜鉛系膜(薄膜)を形成することができる。
 製造される酸化亜鉛系膜(薄膜)の種類としては、例えば、酸化亜鉛、亜鉛-インジウム複合酸化物、鉛-亜鉛複合酸化物、鉛-亜鉛-ニオブ複合酸化物、ビスマス-亜鉛-ニオブ複合酸化物、バリウム-亜鉛-タンタル複合酸化物、錫-亜鉛複合酸化物、リチウム添加酸化亜鉛、亜鉛添加フェライト等を挙げることができる。また、これらの酸化亜鉛系膜(薄膜)の用途としては、例えば、半導体、透明導電体、発光体、蛍光体、光触媒、磁性体、導電体、電極、高誘電体、強誘電体、圧電体、マイクロ波誘電体、光導波路、光増幅器、光スイッチ、電磁波シールド、ソーラセル等を挙げることができる。
 以下、実施例をもって本発明を更に詳細に説明する。但し、本発明は以下の実施例等によって何ら制限を受けるものではない。
(1)式(2)で表される亜鉛化合物の製造
[実施例1]
 塩化亜鉛1モル部、ナトリウムメチラート2モル部、及び塩化亜鉛に対して8倍質量のメタノールを混合して得られた反応液を室温で30分間撹拌した。析出した塩化ナトリウムをろ別した。得られたろ液を、アセト酢酸メチル2モル部と、アセト酢酸メチルの3倍質量のメタノールとを含む溶液に加えて、室温で30分撹拌した。析出した結晶をろ取した後、メタノールで洗浄及び乾燥させて、中間体である亜鉛のアセト酢酸メチル錯体を収率95%で得た。この中間体1モル部、及びN,N,N’,N’-テトラメチルエチレンジアミン1モル部を、中間体に対して1倍質量のヘキサンに加え、加熱還流下で1時間撹拌した。得られた溶液をろ別し、-30℃で再結晶処理を行って、目的物の式(2)で表される亜鉛化合物(白色結晶)を収率97%で得た。得られた白色結晶についてIR、1H-NMR、及びTG-DTAを測定した。得られたIRチャートを図1、1H-NMRチャートを図2、及びTG-DTAチャートを図3に示す。なお、測定条件は以下に示す通りである。
<IR測定>
 測定装置:商品名「Nicolet 6700」(サーモフィッシャーサイエンティフィック社製)
1H-NMR測定>
 測定装置:商品名「JNM-ECA 400」(日本電子社製)、周波数:400MHz、溶媒:重ベンゼン
 <TG-DTA>
 測定装置:商品名「EXSTRA6000」(エス・アイアイ・ナノテクノロジー社製)、サンプル量:6mg、空気:300mL/mL、昇温速度:10℃/分、レファレンス:アルミナ
(2)酸化亜鉛系膜形成用組成物の調製
[実施例2]
 実施例1で得た式(2)で表される亜鉛化合物を酢酸メチルに溶解させて、酸化亜鉛系膜形成用組成物(実施例2)を調製した。なお、式(2)で表される亜鉛化合物の濃度は0.05mol/Lとした。
[実施例3~9、比較例1~10]
 表1に示す各成分を混合し、酸化亜鉛系膜形成用組成物(実施例3~9、比較例1~10)を調製した。なお、式(4)で表される亜鉛成分及び式(5)で表される亜鉛成分を以下に示す。
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
(3)酸化亜鉛系膜の製造
[実施例10~17、比較例11~20]
 実施例2~9及び比較例1~10で得られたそれぞれの酸化亜鉛系膜形成用組成物を使用し、以下の条件で亜鉛系酸化膜を形成した。ホットプレートで200℃に加熱した4cm四方のガラス基板に、それぞれの酸化亜鉛系膜形成用組成物をスプレーによって噴きつけた。スプレーの1回の噴霧量を0.1mLとし、200回繰り返し噴霧して合計20mLを噴霧した。スプレー後、ガラス基板を200℃で30分保持して膜を形成して膜付ガラス基板を得た。
 得られた膜付ガラス基板を目視観察し、形成された膜の均質性を評価した。評価結果を表2及び3に示す。評価基準は、塗膜ムラのあるものを「ムラ」、凝集物のあるものを「凝集物あり」、均質なものを「均質」とした。なお、膜が得られなかったものは「膜なし」とした。
 また、形成された膜の透明性及び導電性を評価した。透明性は、濁度計(商品名「NDH2000」(日本電色工業社製))を使用し、D65光源による全光線透過率を測定することにより評価した。また、導電性は、商品名「Loresta-EP MCP-T360」(三菱化学社製)を使用し、四探針法による体積抵抗率を測定することにより評価した。なお、体積抵抗率は、任意の数箇所の測定点で測定し、平均値で表した。なお、測定値が測定限界である107Ω・cmを超えたものを「∞」と表した。透過率及び抵抗率の測定結果を表2及び3に示す。
 さらに、形成された膜のヘイズ及び膜厚を測定した。ヘイズは、濁度計(商品名「NDH2000」(日本電色工業社製))を使用して測定した。また、FE-SEMを使用して膜の中央部の厚さを測定した。ヘイズ及び膜厚の測定結果を表2及び3に示す。
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
 表2及び3に示すように、実施例2~9で得た酸化亜鉛系膜形成用組成物を用いた場合には、200℃で処理した場合であっても均質で透明な酸化亜鉛系膜を形成可能であることが確認できた。これに対して、比較例1~10で得た酸化亜鉛系膜形成用組成物を用いた場合には、良好な膜が形成されなかった。また、形成された膜の抵抗率についても、測定不可能であるほど高いものであった。
 本発明の酸化亜鉛系膜形成用組成物を用いれば、例えば、半導体、透明導電体、発光体、蛍光体、光触媒、磁性体、導電体、電極、高誘電体、強誘電体、圧電体、マイクロ波誘電体、光導波路、光増幅器、光スイッチ、電磁波シールド、ソーラセル等に用いられる酸化亜鉛系膜を容易に形成することができる。

Claims (4)

  1.  必須成分として、下記一般式(1)で表される亜鉛化合物を含有する酸化亜鉛系膜形成用組成物。
    Figure JPOXMLDOC01-appb-I000001
    (前記一般式(1)中、R1及びR2は、相互に独立に炭素数1~4のアルキル基を表す)
  2.  前記一般式(1)中のR1及びR2がメチル基である請求項1に記載の酸化亜鉛系膜形成用組成物。
  3.  請求項1又は2に記載の酸化亜鉛系膜形成用組成物を基体上に塗布して塗布層を形成する工程と、
     前記塗布層を150~300℃で処理して膜に転化する工程と、を含む酸化亜鉛系膜の製造方法。
  4.  下記式(2)で表される亜鉛化合物。
    Figure JPOXMLDOC01-appb-I000002
PCT/JP2012/050486 2011-03-09 2012-01-12 酸化亜鉛系膜形成用組成物、酸化亜鉛系膜の製造方法、及び亜鉛化合物 WO2012120918A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137026603A KR101507673B1 (ko) 2011-03-09 2012-01-12 산화 아연계 막 형성용 조성물, 산화 아연계 막의 제조방법 및 아연 화합물
CN201280012284.5A CN103415576B (zh) 2011-03-09 2012-01-12 氧化锌系膜形成用组合物、氧化锌系膜的制造方法及锌化合物
EP12755681.9A EP2684917B1 (en) 2011-03-09 2012-01-12 Zinc oxide film-forming composition, zinc oxide film production method, and zinc compound
US13/961,124 US9133349B2 (en) 2011-03-09 2013-08-07 Zinc oxide film-forming composition, zinc oxide film production method, and zinc compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011052024A JP5823141B2 (ja) 2011-03-09 2011-03-09 酸化亜鉛系膜の製造方法
JP2011-052024 2011-03-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/961,124 Continuation US9133349B2 (en) 2011-03-09 2013-08-07 Zinc oxide film-forming composition, zinc oxide film production method, and zinc compound

Publications (1)

Publication Number Publication Date
WO2012120918A1 true WO2012120918A1 (ja) 2012-09-13

Family

ID=46797889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050486 WO2012120918A1 (ja) 2011-03-09 2012-01-12 酸化亜鉛系膜形成用組成物、酸化亜鉛系膜の製造方法、及び亜鉛化合物

Country Status (7)

Country Link
US (1) US9133349B2 (ja)
EP (1) EP2684917B1 (ja)
JP (1) JP5823141B2 (ja)
KR (1) KR101507673B1 (ja)
CN (1) CN103415576B (ja)
TW (1) TWI548640B (ja)
WO (1) WO2012120918A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123095A (ja) * 2017-02-02 2018-08-09 東ソー・ファインケム株式会社 ジアルキル亜鉛およびジアルキル亜鉛部分加水分解物含有溶液、並びにこれらの溶液を用いる酸化亜鉛薄膜の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11075318B2 (en) * 2014-05-22 2021-07-27 Toshiba Mitsubishi-Electric Industrial Systems Corporation Buffer layer film-forming method and buffer layer
US10241409B2 (en) * 2015-12-22 2019-03-26 AZ Electronic Materials (Luxembourg) S.à.r.l. Materials containing metal oxides, processes for making same, and processes for using same
JP7060406B2 (ja) * 2018-02-28 2022-04-26 東ソー・ファインケム株式会社 酸化亜鉛薄膜形成用組成物及び酸化亜鉛薄膜の製造方法
CN108787732B (zh) * 2018-05-07 2020-06-30 沈阳理工大学 一种可分解土壤有机污染物的珍珠岩颗粒的制备方法
KR102453620B1 (ko) * 2020-04-17 2022-10-12 광주과학기술원 항균성을 갖는 미세먼지 집진 필터 구조체, 및 그 제조방법
CN113832507B (zh) * 2021-10-28 2023-03-21 重庆立道新材料科技有限公司 一种高硅铸铝合金环保浸锌固膜剂及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180060A (ja) 1993-12-22 1995-07-18 Nippon Sheet Glass Co Ltd 酸化亜鉛薄膜の付着方法
JP2004022268A (ja) 2002-06-14 2004-01-22 Konica Minolta Holdings Inc 透明導電膜、透明導電膜の形成方法及び透明導電膜を有する物品
KR20090131015A (ko) * 2008-06-17 2009-12-28 중앙대학교 산학협력단 ZnO 박막 제조용 전구체 및 이를 이용한화학기상증착법에 의한 ZnO 박막의 제조 방법
WO2010001949A1 (ja) * 2008-07-02 2010-01-07 出光興産株式会社 コーティング液、硬化膜及び樹脂積層体並びに該硬化膜及び樹脂積層体の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5820664A (en) * 1990-07-06 1998-10-13 Advanced Technology Materials, Inc. Precursor compositions for chemical vapor deposition, and ligand exchange resistant metal-organic precursor solutions comprising same
CN101061062B (zh) * 2004-11-10 2011-03-02 大日本印刷株式会社 金属氧化物膜的制造方法
US20080286907A1 (en) * 2007-05-16 2008-11-20 Xerox Corporation Semiconductor layer for thin film transistors
CN101696492B (zh) * 2009-10-23 2011-10-26 北京航空航天大学 一种制备掺铝氧化锌透明导电薄膜的装置及方法
TWI417081B (zh) * 2010-09-20 2013-12-01 Chang Jung Christian University Electronic ticket device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180060A (ja) 1993-12-22 1995-07-18 Nippon Sheet Glass Co Ltd 酸化亜鉛薄膜の付着方法
JP2004022268A (ja) 2002-06-14 2004-01-22 Konica Minolta Holdings Inc 透明導電膜、透明導電膜の形成方法及び透明導電膜を有する物品
KR20090131015A (ko) * 2008-06-17 2009-12-28 중앙대학교 산학협력단 ZnO 박막 제조용 전구체 및 이를 이용한화학기상증착법에 의한 ZnO 박막의 제조 방법
WO2010001949A1 (ja) * 2008-07-02 2010-01-07 出光興産株式会社 コーティング液、硬化膜及び樹脂積層体並びに該硬化膜及び樹脂積層体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2684917A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123095A (ja) * 2017-02-02 2018-08-09 東ソー・ファインケム株式会社 ジアルキル亜鉛およびジアルキル亜鉛部分加水分解物含有溶液、並びにこれらの溶液を用いる酸化亜鉛薄膜の製造方法
JP7015112B2 (ja) 2017-02-02 2022-02-15 東ソー・ファインケム株式会社 ジアルキル亜鉛およびジアルキル亜鉛部分加水分解物含有溶液、並びにこれらの溶液を用いる酸化亜鉛薄膜の製造方法
US11453786B2 (en) 2017-02-02 2022-09-27 Tosoh Finechem Corporation Dialkylzinc- and dialkylzinc partial hydrolysate-containing solution, and method for producing zinc oxide thin film using solution

Also Published As

Publication number Publication date
TW201242972A (en) 2012-11-01
US20130323413A1 (en) 2013-12-05
US9133349B2 (en) 2015-09-15
KR20130143648A (ko) 2013-12-31
CN103415576B (zh) 2016-03-30
KR101507673B1 (ko) 2015-03-31
EP2684917B1 (en) 2016-07-06
EP2684917A1 (en) 2014-01-15
JP2012188510A (ja) 2012-10-04
JP5823141B2 (ja) 2015-11-25
EP2684917A4 (en) 2015-04-29
TWI548640B (zh) 2016-09-11
CN103415576A (zh) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5823141B2 (ja) 酸化亜鉛系膜の製造方法
EP2513355B1 (de) Verfahren zur herstellung von indiumoxid-haltigen schichten, nach dem verfahren hergestellte indiumoxid-haltige schichten und ihre verwendung
KR101605650B1 (ko) 구리막 형성용 조성물 및 상기 조성물을 이용한 구리막의 제조방법
JP5620795B2 (ja) 銅膜形成用組成物及び該組成物を用いた銅膜の製造方法
US7819965B2 (en) Coating formulation and process for the production of titanate-based ceramic film with the coating formulation
JP2010242118A (ja) 銅薄膜形成用組成物および該組成物を用いた銅薄膜の製造方法
KR101734789B1 (ko) 구리막 형성용 조성물 및 이를 이용한 구리막의 제조방법
KR20110131179A (ko) 인듐 알콕시드를 함유하는 조성물, 그의 제조 방법 및 그의 용도
DE102010043668A1 (de) Verfahren zur Herstellung von Indiumoxid-haltigen Schichten, nach dem Verfahren hergestellte Indiumoxid-haltige Schichten und ihre Verwendung
KR20080018260A (ko) 니오브 2-에틸헥사노에이트 유도체, 그 유도체의 제조방법, 그 유도체를 함유하는 유기산 금속염 조성물, 및 그조성물을 이용한 박막의 제조 방법
WO2013129701A1 (ja) 導電性膜の形成方法
KR101415089B1 (ko) 금속산화물 반도체 잉크 조성물 및 이를 이용한 박막 트랜지스터의 제조방법
JP2005075714A (ja) ペロブスカイト型結晶粒子の製造方法
TWI476202B (zh) Silver-containing compositions and substrates
JP2008174392A (ja) セラミックス膜の製造方法
KR20170063929A (ko) 구리막 형성용 조성물 및 그것을 이용한 구리막의 제조방법
DE102008058365A1 (de) Leitfähige Beschichtungen auf ITO-Basis

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280012284.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12755681

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012755681

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012755681

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137026603

Country of ref document: KR

Kind code of ref document: A