WO2012120570A1 - 電流源制御回路 - Google Patents

電流源制御回路 Download PDF

Info

Publication number
WO2012120570A1
WO2012120570A1 PCT/JP2011/004288 JP2011004288W WO2012120570A1 WO 2012120570 A1 WO2012120570 A1 WO 2012120570A1 JP 2011004288 W JP2011004288 W JP 2011004288W WO 2012120570 A1 WO2012120570 A1 WO 2012120570A1
Authority
WO
WIPO (PCT)
Prior art keywords
current source
circuit
differential
current
voltage
Prior art date
Application number
PCT/JP2011/004288
Other languages
English (en)
French (fr)
Inventor
道正 志郎
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012120570A1 publication Critical patent/WO2012120570A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/301Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in MOSFET amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45562Indexing scheme relating to differential amplifiers the IC comprising a cross coupling circuit, e.g. comprising two cross-coupled transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45644Indexing scheme relating to differential amplifiers the LC comprising a cross coupling circuit, e.g. comprising two cross-coupled transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45674Indexing scheme relating to differential amplifiers the LC comprising one current mirror

Definitions

  • the present invention relates to a current source control circuit that generates a bias voltage of a current source, and more particularly to a current source control circuit that generates a bias voltage of a tail current source in a differential amplifier circuit.
  • Integral filter is mainly composed of operational amplifier, capacitive element, and resistive element. In order to improve the band of the integration filter, it is necessary to improve the GB product of the operational amplifier. Further, it is necessary to improve the GB product of the operational amplifier and stabilize the GB product performance.
  • the GB product of the operational amplifier is mainly determined by the transconductance value of the differential amplifier circuit.
  • biasing the tail current source of the differential amplifier circuit with a temperature-dependent current source such as a PTAT circuit has been widely performed.
  • an RC type primary filter that does not have a tail current source is controlled.
  • a gm adjustment circuit that adjusts the common mode of an input signal to improve the input signal band of the RC type primary filter to be controlled is known. (For example, see Patent Document 1).
  • an object of the present invention is to provide a circuit in which the transconductance value of a differential amplifier circuit used for an operational amplifier or the like is constant regardless of variations in temperature and transistor performance.
  • a current source control circuit includes a differential amplifier circuit having a tail current source that has one end connected to a common connection portion of a differential pair and serves as a current source of the differential pair, and the differential amplifier circuit A voltage application circuit for applying a differential voltage to the differential input pair, a bias current source for supplying a bias current to one of the differential output pair of the differential amplifier circuit, and an output voltage of the differential amplifier circuit A feedback circuit that generates a bias voltage of the tail current source, and outputs the bias voltage of the tail current source as a bias voltage of the current source to be controlled.
  • the tail current source of the differential amplifier circuit is feedback-controlled so that the differential voltage applied to the differential input pair of the differential amplifier circuit and the bias current supplied to one of the differential output pair are balanced. Is done. Therefore, the transconductance value of the external differential amplifier circuit can be made constant by using the bias voltage of the tail current source as the bias voltage of the current source to be controlled.
  • the feedback circuit includes a first current source controlled by an output voltage of the differential amplifier circuit, a current mirror circuit to which an input current is supplied from the first current source, and a current at an output of the current mirror circuit.
  • the voltage application circuit includes a current source that supplies a current having a predetermined ratio to the bias current, a bias circuit that generates a bias voltage of the current source, and a resistance element to which current is supplied from the current source.
  • the voltage across the resistor element can be applied to the differential input of the differential amplifier circuit as the differential voltage.
  • the current source control circuit includes: a first chopper circuit that repeatedly replaces a differential input pair of the differential amplifier circuit; and a second chopper circuit that repeatedly replaces a differential output pair of the differential amplifier circuit; And a capacitive element connected to the output of the differential amplifier circuit.
  • the input offset voltage of the differential amplifier circuit can be diffused to the high frequency region and sufficiently removed.
  • the transconductance value of the external differential amplifier circuit can be made constant with higher accuracy.
  • the current source control circuit includes: a voltage generation circuit that generates a plurality of voltages; and any two of the plurality of voltages are used as back gate voltages of the transistors that constitute the differential input pair of the differential amplifier circuit. May be further provided.
  • the current source control circuit switches a first switch for switching presence / absence of a short circuit of the differential input pair of the differential amplifier circuit, and a switch for presence / absence of connection between the output of the differential amplifier circuit and the bias current source.
  • the transconductance value of a differential amplifier circuit used in an operational amplifier or the like can be made constant regardless of temperature and transistor performance variation. As a result, it is not necessary to set a large tail current of the differential amplifier circuit in order to stabilize the GB product performance, so that the power consumption of the entire semiconductor integrated circuit can be reduced.
  • FIG. 1 is a configuration diagram of a current source control circuit according to the first embodiment.
  • FIG. 2 is a detailed configuration diagram of the current source control circuit according to the first embodiment.
  • FIG. 3 is a configuration diagram of a current source control circuit according to the second embodiment.
  • FIG. 4 is a configuration diagram of the chopper circuit.
  • FIG. 5 is a configuration diagram of a current source control circuit according to the third embodiment.
  • FIG. 1 shows a configuration of a current source control circuit according to the first embodiment.
  • the current source control circuit 100 includes a differential amplifier circuit 10, a voltage application circuit 20 that applies a differential voltage ⁇ V to a differential input pair of the differential amplifier circuit 10, and a differential output pair of the differential amplifier circuit 10. And a feedback circuit 40 that generates the bias voltage Vb of the tail current source 11 of the differential amplifier circuit 10 based on the output voltage Vout of the differential amplifier circuit 10. .
  • the tail current source 11 is a current source of the differential pair, one end of which is connected to the common connection portion of the differential pair in the differential amplifier circuit 10.
  • the differential amplifier circuit 10 can be composed of, for example, a current mirror circuit 12, differential input pair transistors 14 and 15, and a tail current source 11.
  • the current mirror circuit 12 can be composed of two PMOS transistors. Both of the differential input pair transistors 14 and 15 can be constituted by NMOS transistors.
  • the tail current source 11 can be configured by an NMOS transistor having a bias voltage Vb applied to the gate. Note that the circuit configuration is an example, and the polarity of the transistor may be reversed, for example. That is, a current mirror circuit may be configured with two NMOS transistors, a differential input pair transistor may be configured with two PMOS transistors, and a tail current source may be configured with PMOS transistors to configure a differential amplifier circuit. it can.
  • the differential amplifier circuit 10 since the differential voltage ⁇ V is forcibly applied to the differential input pair of the differential amplifier circuit 10, the differential amplifier circuit 10 tries to draw a current from the outside, and the current is the current source 30.
  • the differential amplifier circuit 10 is stabilized at a position equal to the bias current Ib supplied from. That is, the transconductance value of the differential amplifier circuit 10 is expressed by Ib / ⁇ V.
  • the tail current source 11 is stably controlled by the bias voltage Vb output from the feedback circuit 40.
  • the output voltage Vout decreases, and the feedback circuit 40 operates to decrease the bias voltage Vb.
  • the bias voltage Vb returns to the original value, and the tail current also returns to the steady value. That is, the transconductance value of the differential amplifier circuit 10 can be kept constant with respect to temperature fluctuations and the like.
  • the bias voltage Vb generated by the current source control circuit 100 is used as a bias voltage for the current source to be controlled, for example, the tail current source 211 of the operational amplifier 210 in the integrator 200 shown in the figure.
  • the tail current source 211 of the operational amplifier 210 is the bias voltage Vb generated by the current source control circuit 100.
  • the transconductance value of the operational amplifier 210 is also kept constant. Thereby, the GB product of the operational amplifier 210 can be stabilized with high accuracy.
  • FIG. 2 shows a detailed configuration example of the current source control circuit 100.
  • the voltage application circuit 20 can be composed of a current source 21, resistance elements 22 and 23, and a bias circuit 24.
  • the current source 21 is controlled by the bias voltage Vb1 generated by the bias circuit 24.
  • the current source 21 can be configured by a PMOS transistor in which the bias voltage Vb1 is applied to the gate.
  • the bias circuit 24 can be composed of a diode-connected PMOS transistor and a current source.
  • the resistance elements 22 and 23 are connected in series, and current is supplied from the current source 21.
  • the voltage across the resistance element 22 is applied to the differential input pair of the differential amplifier circuit 10 as a differential voltage ⁇ V.
  • the current source 30 can be composed of a PMOS transistor.
  • the current ratio between the current source 21 and the current source 30 is the aspect ratio of the PMOS transistor constituting each current source.
  • the ratio (W / L) is expressed as a ratio.
  • the transconductance value of the differential amplifier circuit 10 is expressed by Ib / Ib1 / R. Can do.
  • the ratio of the aspect ratios of the PMOS transistors is m
  • Ib / Ib1 m. Therefore, the transconductance value of the differential amplifier circuit 10 can be expressed by m / R. That is, the transconductance value of the differential amplifier circuit 10 can be easily set to a desired value by appropriately changing the resistance value of the resistance element 22 and the aspect ratio of each PMOS transistor constituting the current sources 21 and 30. .
  • the feedback circuit 40 includes a current source 41 controlled by the output voltage Vout of the differential amplifier circuit 10, a current mirror circuit 42 to which an input current is supplied from the current source 41, and a current source that supplies current to the output of the current mirror circuit 42. 43, and a bias circuit 44 that is connected to the output of the current mirror circuit 42 and generates a bias voltage Vb according to the difference current between the current supplied from the current source 43 and the output current of the current mirror circuit 42. .
  • the current source 41 can be composed of a PMOS transistor in which the output voltage Vout of the differential amplifier circuit 10 is applied to the gate.
  • the current mirror circuit 42 can be composed of two NMOS transistors.
  • the current source 43 can be composed of a PMOS transistor.
  • the transistor 44 can be composed of a diode-connected NMOS transistor.
  • the PMOS transistor constituting the current source 43 may also be controlled by the bias voltage Vb1 generated by the bias circuit 24.
  • the transconductance value of the differential amplifier circuit used in the operational amplifier or the like is made constant. Can keep. Thereby, the GB product of the operational amplifier can be improved and stabilized.
  • FIG. 3 shows a configuration of a current source control circuit according to the second embodiment.
  • chopper circuits 51 and 52 are respectively inserted into the differential input pair and the differential output pair of the differential amplifier circuit 10 in the current source control circuit 100 according to the first embodiment. Is.
  • the chopper circuit 51 switches the differential input pair of the differential amplifier circuit 10 with a certain amount of high-frequency clock, and repeatedly replaces the differential input pair with each other.
  • the chopper circuit 52 switches the differential output pair of the differential amplifier circuit 10 with a certain amount of high-frequency clock, and repeatedly replaces the differential output pair with each other.
  • FIG. 4 shows a configuration example of the chopper circuits 51 and 52.
  • the chopper circuits 51 and 52 cross or straightly connect the four switches SW1, SW2, SW3, and SW4, and alternately switch the cross-connected switch and the straight-connected switch with the clock signal CK so that there is no overlap period. It can be realized as a circuit that turns on and off.
  • the switches SW1 to SW4 can be configured by connecting NMOS transistors or PMOS and NMOS transistors in parallel.
  • the capacitive element 53 is connected to the output of the differential amplifier circuit 10, and the output voltage Vout Need to be smoothed.
  • the input offset component of the differential amplifier circuit 10 can be diffused to the high frequency region and sufficiently removed. Thereby, the transconductance value of the differential amplifier circuit used for the operational amplifier or the like can be kept constant with higher accuracy.
  • FIG. 5 shows a configuration of a current source control circuit according to the third embodiment.
  • the current source control circuit 100 according to the present embodiment can adjust the back gate voltages of the differential input pair transistors 14 and 15 of the differential amplifier circuit 10 in the current source control circuit 100 according to the first embodiment. It is.
  • the voltage generation circuit 61 generates a plurality of voltages.
  • the voltage generation circuit 61 can be configured by, for example, a resistance ladder circuit, and is connected in series to the resistance element 22 in the voltage application circuit 20.
  • the multiplexer 62 outputs any two of the plurality of voltages generated by the voltage generation circuit 61 as the back gate voltages of the differential input pair transistors 14 and 15 of the differential amplifier circuit 10.
  • the current source control circuit 100 includes switches 63, 64, 65 and a control circuit 70 as a mechanism for determining the back gate voltage.
  • the switch 63 switches whether or not the differential input pair of the differential amplifier circuit 10 is short-circuited.
  • the switch 64 switches whether the output of the differential amplifier circuit 10 is connected to the current source 30.
  • the switch 65 switches the presence or absence of feedback control of the feedback circuit 40. Specifically, the switch 65 interchanges the input and output of the current mirror circuit 42 in the feedback circuit 40.
  • the control circuit 70 controls the switches 63 to 65 and the multiplexer 62 to determine the back gate voltage to be applied to the differential input pair transistors 14 and 15.
  • the control circuit 70 controls the switches 63 to 65 to the adjustment mode. That is, the control circuit 70 controls the switch 63 to a switching state in which the differential input pair is short-circuited, controls the switch 64 to a switching state in which the current source 30 is disconnected, and switches 65 to the feedback loop of the feedback circuit 40. Is switched to a state where the current source 41 is connected to the output of the current mirror circuit 42 and the current source 43 is connected to the input of the current mirror circuit 42.
  • FIG. 5 shows the state of each switch in the adjustment mode. In the adjustment mode, a constant voltage is applied as the bias voltage Vb to the tail current source 11 of the differential amplifier circuit 10, and the output voltage Vout of the differential amplifier circuit 10 reflects the input offset voltage. .
  • the control circuit 70 determines the polarity of the voltage at the output terminal of the current source 41 in the feedback circuit 40. That is, when the voltage is at the H level, the driving capability of the differential input pair transistor 15 in the differential amplifier circuit 10 is high, so the back gate voltage of the transistor is used as the back gate voltage of the differential input pair transistor 14. Set one step lower than the voltage. On the contrary, when the voltage is at L level, the driving capability of the differential input pair transistor 14 is high, so that the back gate voltage of the transistor is one step higher than the back gate voltage of the differential input pair transistor 15. Set low.
  • the control circuit 70 repeats the above operation until the polarity of the voltage at the output terminal of the current source 41 is inverted, and corresponds to the back gate voltage applied to the differential input pair transistors 14 and 15 when the polarity is inverted. Store the control value.
  • control circuit 70 controls the switches 63 to 65 in the switching state opposite to the above. Then, the control circuit 70 controls the multiplexer 62 so that the back gate voltage corresponding to the stored control value is applied to the differential input pair transistors 14 and 15.
  • the input offset voltage of the differential amplifier circuit 10 can be canceled by adjusting the back gate voltage of the differential input pair transistors 14 and 15 of the differential amplifier circuit 10.
  • the transconductance value of the differential amplifier circuit used for the operational amplifier or the like can be kept constant with higher accuracy.
  • control circuit 70 may directly control the multiplexer 62 based on the output voltage Vout of the differential amplifier circuit 10 instead of the voltage at the output terminal of the current source 41.
  • the control circuit 70 does not need to be provided in the current source control circuit 100, and may be realized by an external PLC (Programmable Logic Controller) or the like.
  • the current source control circuit according to the present invention can keep the transconductance value of the differential amplifier circuit constant, it is useful for a communication LSI including an oversampling AD converter that requires a wide input signal band.
  • Tail current source 20 Voltage application circuit 21 Current source 22 Resistive element 24 Bias circuit 30 Current source (bias current source) 40 Feedback circuit 41 Current source (first current source) 42 Current mirror circuit 43 Current source (second current source) 44 Bias circuit 51 Chopper circuit (first chopper circuit) 52 Chopper circuit (second chopper circuit) 53 Capacitor Element 61 Voltage Generation Circuit 62 Multiplexer 63 Switch (First Switch) 64 switches (second switch) 65 switches (third switch) 70 Control circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

 電流源制御回路は、差動対の共通接続部に一端を接続して前記差動対の電流源としたテール電流源(11)を有する差動増幅回路(10)と、差動増幅回路の差動入力対に差電圧を印加する電圧印加回路(20)と、差動増幅回路の差動出力対の一方にバイアス電流を供給するバイアス電流源(30)と、差動増幅回路の出力電圧に基づいてテール電流源のバイアス電圧を生成するフィードバック回路(40)とを備え、テール電流源のバイアス電圧を、制御対象の電流源のバイアス電圧として出力する。

Description

電流源制御回路
 本発明は、電流源のバイアス電圧を生成する電流源制御回路に関し、特に差動増幅回路におけるテール電流源のバイアス電圧を生成する電流源制御回路に関する。
 近年、携帯機器用の通信LSIの信号処理速度の向上には目覚しいものがある。そのため、通信LSIで用いられるオーバーサンプリング型AD変換器の処理速度、すなわち、入力信号帯域を向上させる必要がある。オーバーサンプリング型AD変換器の帯域を向上させるためには、その中で用いられている積分フィルタの帯域を向上させる必要がある。
 積分フィルタは主としてオペアンプ、容量素子、および抵抗素子から構成される。積分フィルタの帯域を向上させるにはオペアンプのGB積を向上させる必要がある。また、オペアンプのGB積を向上させた上にそのGB積性能を安定化する必要もある。
 オペアンプのGB積は主に差動増幅回路のトランスコンダクタンス値によって決定される。従来、差動増幅回路のトランスコンダクタンス値を一定化するために、PTAT回路などの温度依存性のある電流源で差動増幅回路のテール電流源をバイアスすることが広く行われている。また、テール電流源を有しないRC型1次フィルタを制御するものであるが、入力信号のコモンモードを調整して制御対象のRC型1次フィルタの入力信号帯域を向上させるgm調整回路が公知である(例えば、特許文献1参照)。
特開2005-94091号公報
 従来のPTAT回路などでは、差動増幅回路を構成するトランジスタの性能ばらつき(例えば、閾値ばらつき)まで補償することが困難である。そのため、従来は、トランジスタ性能が低い場合を想定して、差動増幅回路のテール電流を大きめに設定することによりGB積を補償している。このため、通常の性能を持つトランジスタでオペアンプを設計した場合に無駄な消費電力が発生してしまう。
 上記問題に鑑み、本発明は、オペアンプなどに用いられる差動増幅回路のトランスコンダクタンス値を、温度およびトランジスタの性能ばらつきにかかわらず一定とする回路を提供することを目的とする。
 本発明の一例に係る電流源制御回路は、差動対の共通接続部に一端を接続して前記差動対の電流源としたテール電流源を有する差動増幅回路と、前記差動増幅回路の差動入力対に差電圧を印加する電圧印加回路と、前記差動増幅回路の差動出力対の一方にバイアス電流を供給するバイアス電流源と、前記差動増幅回路の出力電圧に基づいて前記テール電流源のバイアス電圧を生成するフィードバック回路とを備え、前記テール電流源のバイアス電圧を、制御対象の電流源のバイアス電圧として出力する。
 これによると、差動増幅回路の差動入力対に印加された差電圧と差動出力対のいずれか一方に供給されるバイアス電流とが釣り合うように差動増幅回路のテール電流源がフィードバック制御される。したがって、当該テール電流源のバイアス電圧を制御対象の電流源のバイアス電圧として用いることにより、外部の差動増幅回路のトランスコンダクタンス値を一定化することができる。
 前記フィードバック回路は、前記差動増幅回路の出力電圧で制御される第1の電流源と、前記第1の電流源から入力電流が供給されるカレントミラー回路と、前記カレントミラー回路の出力に電流を供給する第2の電流源と、前記カレントミラー回路の出力に接続され、前記第2の電流源が供給する電流と前記カレントミラー回路の出力電流との差電流に応じて前記バイアス電圧を生成するバイアス回路と有するものとして構成することができる。
 前記電圧印加回路は、前記バイアス電流に対して所定比の電流を供給する電流源と、前記電流源のバイアス電圧を生成するバイアス回路と、前記電流源から電流が供給される抵抗素子とを有し、前記抵抗素子の両端電圧を前記差電圧として前記差動増幅回路の差動入力に印加するものとして構成することができる。
 上記電流源制御回路は、前記差動増幅回路の差動入力対を繰り返し相互に入れ替える第1のチョッパ回路と、前記差動増幅回路の差動出力対を繰り返し相互に入れ替える第2のチョッパ回路と、前記差動増幅回路の出力に接続された容量素子とをさらに備えていてもよい。
 これによると、差動増幅回路の入力オフセット電圧を高周波領域に拡散して十分に除去することができる。これにより、外部の差動増幅回路のトランスコンダクタンス値をより高精度に一定化することができる。
 あるいは、上記電流源制御回路は、複数の電圧を生成する電圧生成回路と、前記複数の電圧のいずれか2つを、前記差動増幅回路の差動入力対を構成する各トランジスタのバックゲート電圧として出力するマルチプレクサとをさらに備えていてもよい。
 これによると、差動増幅回路の差動入力対を構成する各トランジスタのバックゲート電圧を調整して、差動増幅回路の入力オフセット電圧をキャンセルすることができる。これにより、外部の差動増幅回路のトランスコンダクタンス値をより高精度に一定化することができる。
 さらに、上記電流源制御回路は、前記差動増幅回路の差動入力対の短絡の有無を切り替える第1のスイッチと、前記差動増幅回路の出力と前記バイアス電流源との接続の有無を切り替える第2のスイッチと、前記フィードバック回路のフィードバック制御の有無を切り替える第3のスイッチと、前記差動増幅回路の出力電圧に応じて前記マルチプレクサを制御する制御回路とを備えていてもよい。
 本発明によると、オペアンプなどに用いられる差動増幅回路のトランスコンダクタンス値を、温度およびトランジスタの性能ばらつきにかかわらず一定にすることができる。これにより、GB積性能を安定化するために差動増幅回路のテール電流を大きめに設定する必要がなくなるため、半導体集積回路全体としての低消費電力化が図れる。
図1は、第1の実施形態に係る電流源制御回路の構成図である。 図2は、第1の実施形態に係る電流源制御回路の詳細構成図である。 図3は、第2の実施形態に係る電流源制御回路の構成図である。 図4は、チョッパ回路の構成図である。 図5は、第3の実施形態に係る電流源制御回路の構成図である。
 (第1の実施形態)
 図1は、第1の実施形態に係る電流源制御回路の構成を示す。本実施形態に係る電流源制御回路100は、差動増幅回路10、差動増幅回路10の差動入力対に差電圧ΔVを印加する電圧印加回路20、差動増幅回路10の差動出力対の一方にバイアス電流Ibを供給する電流源30、および差動増幅回路10の出力電圧Voutに基づいて差動増幅回路10のテール電流源11のバイアス電圧Vbを生成するフィードバック回路40を備えている。なお、テール電流源11は、差動増幅回路10における差動対の共通接続部に一端が接続された、当該差動対の電流源である。
 差動増幅回路10は、例えば、カレントミラー回路12、差動入力対トランジスタ14,15、およびテール電流源11で構成することができる。カレントミラー回路12は、2個のPMOSトランジスタで構成することができる。差動入力対トランジスタ14,15は、いずれもNMOSトランジスタで構成することができる。テール電流源11は、バイアス電圧Vbがゲートに印加されたNMOSトランジスタで構成することができる。なお、当該回路構成は一例であり、例えば上記トランジスタの極性を逆にしてもよい。すなわち、2個のNMOSトランジスタでカレントミラー回路を構成し、2個のPMOSトランジスタで差動入力対トランジスタを構成し、PMOSトランジスタでテール電流源を構成して、差動増幅回路を構成することもできる。
 電流源制御回路100では、差動増幅回路10の差動入力対に差電圧ΔVが強制的に印加されているため、差動増幅回路10は外部から電流を引き込もうとし、その電流が電流源30から供給されるバイアス電流Ibと等しくなるところで差動増幅回路10が安定する。すなわち、差動増幅回路10のトランスコンダクタンス値はIb/ΔVで表される。
 さらに、電流源制御回路100では、フィードバック回路40から出力されるバイアス電圧Vbによってテール電流源11が安定制御される。例えば、バイアス電圧Vbが増大してテール電流が増加すると、出力電圧Voutが低下し、フィードバック回路40はバイアス電圧Vbを下げるように動作する。これにより、バイアス電圧Vbが元の値に戻り、テール電流も定常値に戻る。すなわち、温度変動などに対して、差動増幅回路10のトランスコンダクタンス値を一定に保つことができる。
 電流源制御回路100が生成するバイアス電圧Vbは、制御対象となる電流源、例えば、図示した積分器200におけるオペアンプ210のテール電流源211のバイアス電圧として用いられる。上述したように、バイアス電圧Vbは差動増幅回路10のトランスコンダクタンス値を一定に保つように自動調整されるため、オペアンプ210のテール電流源211を電流源制御回路100が生成するバイアス電圧Vbで制御することにより、オペアンプ210のトランスコンダクタンス値も一定に保たれる。これにより、オペアンプ210のGB積を高精度に安定化することができる。
 図2は、電流源制御回路100の詳細な構成例を示す。電圧印加回路20は、電流源21、抵抗素子22,23、およびバイアス回路24で構成することができる。電流源21は、バイアス回路24が生成するバイアス電圧Vb1によって制御され、具体的にはバイアス電圧Vb1がゲートに印加されたPMOSトランジスタで構成することができる。バイアス回路24は、ダイオード接続されたPMOSトランジスタと電流源とで構成することができる。抵抗素子22,23は直列接続されており、電流源21から電流が供給される。抵抗素子22の両端電圧が差電圧ΔVとして差動増幅回路10の差動入力対に印加される。
 電流源30は、PMOSトランジスタで構成することができる。特に、電流源30をバイアス回路24が生成するバイアス電圧Vb1がゲートに印加されたPMOSトランジスタで構成すると、電流源21と電流源30との電流比が、各電流源を構成するPMOSトランジスタのアスペクト比(W/L)どうしの比で表される。
 いま、抵抗素子22の抵抗値をR、電流源21が供給する電流をI1とすると、ΔV=I1×Rであるから、差動増幅回路10のトランスコンダクタンス値はIb/Ib1/Rで表すことができる。ここで、上述したPMOSトランジスタのアスペクト比どうしの比をmとすると、Ib/Ib1=mであることから、差動増幅回路10のトランスコンダクタンス値はm/Rで表すことができる。すなわち、抵抗素子22の抵抗値と、電流源21,30を構成する各PMOSトランジスタのアスペクト比を適宜変えることで、差動増幅回路10のトランスコンダクタンス値を所望値に容易に設定することができる。
 フィードバック回路40は、差動増幅回路10の出力電圧Voutで制御される電流源41、電流源41から入力電流が供給されるカレントミラー回路42、カレントミラー回路42の出力に電流を供給する電流源43、およびカレントミラー回路42の出力に接続され、電流源43が供給する電流とカレントミラー回路42の出力電流との差電流に応じてバイアス電圧Vbを生成するバイアス回路44で構成することができる。
 電流源41は、差動増幅回路10の出力電圧Voutがゲートに印加されたPMOSトランジスタで構成することができる。カレントミラー回路42は、2個のNMOSトランジスタで構成することができる。電流源43は、PMOSトランジスタで構成することができる。トランジスタ44は、ダイオード接続されたNMOSトランジスタで構成することができる。
 なお、電流源43を構成するPMOSトランジスタもまたバイアス回路24が生成するバイアス電圧Vb1によって制御されるようにしてもよい。
 以上のように、本実施形態によると、電流源制御回路100が生成するバイアス電圧Vbで制御対象の電流源を制御することにより、オペアンプなどに用いられる差動増幅回路のトランスコンダクタンス値を一定に保つことができる。これにより、オペアンプのGB積を向上させ、かつ、安定化することができる。
 ところで、差動増幅回路10に入力オフセット電圧がある場合には、それをキャンセルする必要がある。そこで、以下では、電流源制御回路100に、入力オフセット電圧をキャンセルするための機構を追加した例について説明する。
 (第2の実施形態)
 図3は、第2の実施形態に係る電流源制御回路の構成を示す。本実施形態に係る電流源制御回路100は、第1の実施形態に係る電流源制御回路100における差動増幅回路10の差動入力対および差動出力対にそれぞれチョッパ回路51,52を挿入したものである。
 チョッパ回路51は、差動増幅回路10の差動入力対をある程度の高周波クロックでスイッチングし、差動入力対を繰り返し相互に入れ替える。チョッパ回路52は、差動増幅回路10の差動出力対をある程度の高周波クロックでスイッチングし、差動出力対を繰り返し相互に入れ替える。
 図4は、チョッパ回路51,52の一構成例を示す。チョッパ回路51,52は、4つのスイッチSW1,SW2,SW3,およびSW4をクロスあるいはストレート接続し、クロス接続されたスイッチとストレート接続されたスイッチとをオーバーラップ区間がないようにクロック信号CKで交互にオンオフする回路として実現することができる。スイッチSW1~SW4は、NMOSトランジスタや、PMOSとNMOSトランジスタを並列接続して構成することができる。
 なお、チョッパ回路51,52を挿入したことによって差動増幅回路10の出力電圧Voutに高周波リプル成分が重畳されるため、差動増幅回路10の出力に容量素子53を接続して、出力電圧Voutを平滑化する必要がある。
 以上のように、本実施形態によると、差動増幅回路10の入力オフセット成分を高周波領域に拡散して十分に除去することができる。これにより、オペアンプなどに用いられる差動増幅回路のトランスコンダクタンス値をより高精度に一定に保つことができる。
 (第3の実施形態)
 図5は、第3の実施形態に係る電流源制御回路の構成を示す。本実施形態に係る電流源制御回路100は、第1の実施形態に係る電流源制御回路100における差動増幅回路10の差動入力対トランジスタ14,15のバックゲート電圧を調整できるようにしたものである。
 電圧生成回路61は、複数の電圧を生成する。電圧生成回路61は、例えば、抵抗ラダー回路で構成することができ、電圧印加回路20における抵抗素子22に直列接続される。マルチプレクサ62は、電圧生成回路61が生成する複数の電圧のいずれか2つを、差動増幅回路10の差動入力対トランジスタ14,15のバックゲート電圧として出力する。
 さらに、本実施形態に係る電流源制御回路100は、バックゲート電圧を決定するための機構として、スイッチ63,64,65、および制御回路70を備えている。スイッチ63は、差動増幅回路10の差動入力対の短絡の有無を切り替える。スイッチ64は、差動増幅回路10の出力と電流源30との接続の有無を切り替える。スイッチ65は、フィードバック回路40のフィードバック制御の有無を切り替える。具体的には、スイッチ65は、フィードバック回路40におけるカレントミラー回路42の入力と出力を入れ替える。そして、制御回路70は、スイッチ63~65およびマルチプレクサ62を制御して差動入力対トランジスタ14,15に印加すべきバックゲート電圧を決定する。
 まず、制御回路70は、スイッチ63~65を調整モードに制御する。すなわち、制御回路70は、スイッチ63を、差動入力対を短絡するスイッチング状態に制御し、スイッチ64を、電流源30を切断するスイッチング状態に制御し、スイッチ65を、フィードバック回路40のフィードバックループを切断するスイッチング状態、すなわち、電流源41がカレントミラー回路42の出力に接続され、電流源43がカレントミラー回路42の入力に接続される状態に制御する。なお、図5は調整モードにおける各スイッチの状態を表している。調整モードでは、差動増幅回路10のテール電流源11にはバイアス電圧Vbとして一定の電圧が印加され、また、差動増幅回路10の出力電圧Voutは入力オフセット電圧を反映したものとなっている。
 調整モードにおいて、制御回路70は、フィードバック回路40における電流源41の出力端の電圧の極性を判別する。すなわち、当該電圧がHレベルの場合には、差動増幅回路10における差動入力対トランジスタ15の駆動能力が高くなっているから、当該トランジスタのバックゲート電圧を差動入力対トランジスタ14のバックゲート電圧よりも1段階低く設定する。逆に、当該電圧がLレベルの場合には、差動入力対トランジスタ14の駆動能力が高くなっているから、当該トランジスタのバックゲート電圧を差動入力対トランジスタ15のバックゲート電圧よりも1段階低く設定する。制御回路70は、電流源41の出力端の電圧の極性が反転するまで上記操作を繰り返し、当該極性が反転したときに差動入力対トランジスタ14,15に印加しているバックゲート電圧に対応する制御値を記憶する。
 通常モードにおいて、制御回路70は、スイッチ63~65を上記とは逆のスイッチング状態に制御する。そして、制御回路70は、記憶している制御値に対応するバックゲート電圧が差動入力対トランジスタ14,15に印加されるように、マルチプレクサ62を制御する。
 以上、本実施形態によると、差動増幅回路10の差動入力対トランジスタ14,15のバックゲート電圧を調整して、差動増幅回路10の入力オフセット電圧をキャンセルすることができる。これにより、オペアンプなどに用いられる差動増幅回路のトランスコンダクタンス値をより高精度に一定に保つことができる。
 なお、制御回路70は、電流源41の出力端の電圧ではなく、直接、差動増幅回路10の出力電圧Voutに基づいてマルチプレクサ62を制御するようにしてもよい。また、制御回路70は、電流源制御回路100に備える必要はなく、外部のPLC(Programmable Logic Controller)などで実現してもよい。
 本発明に係る電流源制御回路は、差動増幅回路のトランスコンダクタンス値を一定に保つことができるため、広い入力信号帯域が求められるオーバーサンプリング型AD変換器を含む通信LSIなどに有用である。
 10 差動増幅回路
 11 テール電流源
 20 電圧印加回路
 21 電流源
 22 抵抗素子
 24 バイアス回路
 30 電流源(バイアス電流源)
 40 フィードバック回路
 41 電流源(第1の電流源)
 42 カレントミラー回路
 43 電流源(第2の電流源)
 44 バイアス回路
 51 チョッパ回路(第1のチョッパ回路)
 52 チョッパ回路(第2のチョッパ回路)
 53 容量素子
 61 電圧生成回路
 62 マルチプレクサ
 63 スイッチ(第1のスイッチ)
 64 スイッチ(第2のスイッチ)
 65 スイッチ(第3のスイッチ)
 70 制御回路

Claims (6)

  1.  差動対の共通接続部に一端を接続して前記差動対の電流源としたテール電流源を有する差動増幅回路と、
     前記差動増幅回路の差動入力対に差電圧を印加する電圧印加回路と、
     前記差動増幅回路の差動出力対の一方にバイアス電流を供給するバイアス電流源と、
     前記差動増幅回路の出力電圧に基づいて前記テール電流源のバイアス電圧を生成するフィードバック回路とを備え、
     前記テール電流源のバイアス電圧を、制御対象の電流源のバイアス電圧として出力する
    ことを特徴とする電流源制御回路。
  2. 請求項1の電流源制御回路において、
     前記フィードバック回路は、
      前記差動増幅回路の出力電圧で制御される第1の電流源と、
      前記第1の電流源から入力電流が供給されるカレントミラー回路と、
      前記カレントミラー回路の出力に電流を供給する第2の電流源と、
      前記カレントミラー回路の出力に接続され、前記第2の電流源が供給する電流と前記カレントミラー回路の出力電流との差電流に応じて前記バイアス電圧を生成するバイアス回路とを有する
    ことを特徴とする電流源制御回路。
  3. 請求項1および2のいずれか一つの電流源制御回路において、
     前記電圧印加回路は、
      前記バイアス電流に対して所定比の電流を供給する電流源と、
      前記電流源のバイアス電圧を生成するバイアス回路と、
      前記電流源から電流が供給される抵抗素子とを有し、
      前記抵抗素子の両端電圧を前記差電圧として前記差動増幅回路の差動入力に印加する
    ことを特徴とする電流源制御回路。
  4. 請求項1から3のいずれか一つの電流源制御回路において、
     前記差動増幅回路の差動入力対を繰り返し相互に入れ替える第1のチョッパ回路と、
     前記差動増幅回路の差動出力対を繰り返し相互に入れ替える第2のチョッパ回路と、
     前記差動増幅回路の出力に接続された容量素子とを備えている
    ことを特徴とする電流源制御回路。
  5. 請求項1から3のいずれか一つの電流源制御回路において、
     複数の電圧を生成する電圧生成回路と、
     前記複数の電圧のいずれか2つを、前記差動増幅回路の差動入力対を構成する各トランジスタのバックゲート電圧として出力するマルチプレクサとを備えている
    ことを特徴とする電流源制御回路。
  6. 請求項5の電流源制御回路において、
     前記差動増幅回路の差動入力対の短絡の有無を切り替える第1のスイッチと、
     前記差動増幅回路の出力と前記バイアス電流源との接続の有無を切り替える第2のスイッチと、
     前記フィードバック回路のフィードバック制御の有無を切り替える第3のスイッチと、
     前記差動増幅回路の出力電圧に応じて前記マルチプレクサを制御する制御回路とを備えている
    ことを特徴とする電流源制御回路。
PCT/JP2011/004288 2011-03-10 2011-07-28 電流源制御回路 WO2012120570A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011052583 2011-03-10
JP2011-052583 2011-03-10

Publications (1)

Publication Number Publication Date
WO2012120570A1 true WO2012120570A1 (ja) 2012-09-13

Family

ID=46797582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004288 WO2012120570A1 (ja) 2011-03-10 2011-07-28 電流源制御回路

Country Status (1)

Country Link
WO (1) WO2012120570A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016000844A1 (de) * 2014-07-02 2016-01-07 Robert Bosch Gmbh Regelungseinrichtung für einen transkonduktanzverstärker
CN115733447A (zh) * 2022-11-16 2023-03-03 北京无线电测量研究所 一种具有温度补偿的轨到轨运算放大器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349573A (ja) * 1999-06-01 2000-12-15 Fujitsu Ltd 利得安定化差動増幅器
JP2001211029A (ja) * 2000-01-26 2001-08-03 Nec Ic Microcomput Syst Ltd 発振回路
JP2004343277A (ja) * 2003-05-14 2004-12-02 Mitsubishi Electric Corp 入力バッファ回路
WO2006118184A1 (ja) * 2005-04-28 2006-11-09 Nec Corporation 半導体装置
JP2007184688A (ja) * 2006-01-04 2007-07-19 Fujitsu Ltd バイアス回路
JP2007202049A (ja) * 2006-01-30 2007-08-09 Asahi Kasei Electronics Co Ltd 増幅率可変増幅器
JP2010170470A (ja) * 2009-01-26 2010-08-05 Fujitsu Semiconductor Ltd 定電圧発生回路およびレギュレータ回路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349573A (ja) * 1999-06-01 2000-12-15 Fujitsu Ltd 利得安定化差動増幅器
JP2001211029A (ja) * 2000-01-26 2001-08-03 Nec Ic Microcomput Syst Ltd 発振回路
JP2004343277A (ja) * 2003-05-14 2004-12-02 Mitsubishi Electric Corp 入力バッファ回路
WO2006118184A1 (ja) * 2005-04-28 2006-11-09 Nec Corporation 半導体装置
JP2007184688A (ja) * 2006-01-04 2007-07-19 Fujitsu Ltd バイアス回路
JP2007202049A (ja) * 2006-01-30 2007-08-09 Asahi Kasei Electronics Co Ltd 増幅率可変増幅器
JP2010170470A (ja) * 2009-01-26 2010-08-05 Fujitsu Semiconductor Ltd 定電圧発生回路およびレギュレータ回路

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016000844A1 (de) * 2014-07-02 2016-01-07 Robert Bosch Gmbh Regelungseinrichtung für einen transkonduktanzverstärker
CN107078704A (zh) * 2014-07-02 2017-08-18 罗伯特·博世有限公司 用于跨导放大器的调节装置
CN107078704B (zh) * 2014-07-02 2020-06-16 罗伯特·博世有限公司 用于跨导放大器的调节装置
CN115733447A (zh) * 2022-11-16 2023-03-03 北京无线电测量研究所 一种具有温度补偿的轨到轨运算放大器
CN115733447B (zh) * 2022-11-16 2024-05-03 北京无线电测量研究所 一种具有温度补偿的轨到轨运算放大器

Similar Documents

Publication Publication Date Title
TWI413881B (zh) 線性穩壓器及其電流感測電路
JP5779490B2 (ja) 線形増幅回路
JP6298671B2 (ja) ボルテージレギュレータ
JP5666098B2 (ja) 発振器の発振を安定化させるバイアス回路、発振器、および、発振器の発振の安定化方法
JP6048289B2 (ja) バイアス回路
JP2009211667A (ja) 定電圧回路
JP2008165763A (ja) ボルテージレギュレータ
JP2017126259A (ja) 電源装置
JP2009134698A (ja) ボルテージレギュレータ
JP3953009B2 (ja) トランスコンダクタンス調整回路
US20090121690A1 (en) Voltage regulator
US9634608B2 (en) Crystal oscillation circuit and electronic timepiece
JP2007128457A (ja) リップルフィルタ回路
JP2015073246A (ja) 発振回路
WO2012120570A1 (ja) 電流源制御回路
US6720836B2 (en) CMOS relaxation oscillator circuit with improved speed and reduced process/temperature variations
JP2017079431A (ja) 電圧比較回路
JP7109648B2 (ja) 電源回路
JP2007233657A (ja) 増幅器とそれを用いた降圧レギュレータ及び演算増幅器
US10008931B2 (en) Semiconductor integrated circuit
US20060279353A1 (en) Chopper stabilized amplifier without DC output ripple
JP2004015423A (ja) 定電流発生回路
TW201715326A (zh) 具有經調節偏壓電流放大器的穩壓器
JP3308393B2 (ja) 電圧制御発振器
JP2015216691A (ja) 電圧可変利得増幅回路及び差動入力電圧の増幅方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP