JP2015073246A - 発振回路 - Google Patents
発振回路 Download PDFInfo
- Publication number
- JP2015073246A JP2015073246A JP2013209123A JP2013209123A JP2015073246A JP 2015073246 A JP2015073246 A JP 2015073246A JP 2013209123 A JP2013209123 A JP 2013209123A JP 2013209123 A JP2013209123 A JP 2013209123A JP 2015073246 A JP2015073246 A JP 2015073246A
- Authority
- JP
- Japan
- Prior art keywords
- current
- circuit
- duty ratio
- oscillation
- differential
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Oscillators With Electromechanical Resonators (AREA)
Abstract
【課題】高速起動と低消費電流の特性を兼ね備え、発振信号のデューティ比の劣化やパルスの欠損を防止しながら発振安定状態に遷移させる。【解決手段】ローパスフィルタ17は、クロックCLKのデューティ比を検出する。規定電流生成回路19は、発振安定状態での規定電流Irefを生成する。差分電流生成回路20は、基準デューティ比と検出デューティ比との差分に応じた差分電流を生成する。加算回路21は、規定電流Irefに差分電流Idifを加えて駆動電流Ioscを生成し、その駆動電流Ioscを反転回路14に流す。起動時において、基準デューティ比と検出デューティ比との差分が小さくなるほど反転回路14に流す駆動電流Ioscが連続的に減少する。駆動電流が滑らかに減少するので、デューティ比の急変や発振パルスの欠損を防止できる。【選択図】図1
Description
本発明は、振動子が接続されて用いられる発振回路に関する。
モバイルPCや携帯電話機などの携帯端末装置は、メインバッテリが外れた状態でも時間管理、レジスタの保持などを行う必要がある。そのため、携帯端末装置は、コイン電池、スーパーキャパシタなどの小型の補助バッテリを使用する場合がある。しかし、補助バッテリの容量は限られているので、携帯端末装置の消費電流を極力低減しなければならない。さらに、動作時間を短くするためシステムを高速に起動するには、携帯端末装置が備える発振回路が電源の供給を受けてから安定したクロックを出力するまでに要する発振安定時間を短縮する必要がある。
水晶振動子、セラミック振動子などの振動子が接続されて用いられる発振回路の発振安定時間は、振動子の等価定数、振動子に接続される外付け部品(キャパシタ、抵抗)、発振回路のゲインなどにより定まる。これらの要素のうち振動子の等価定数は、発振周波数および振動子の種類ごとに決まっており、外付け部品は、発振周波数の微調整や励振レベルの抑制のために予め決められている。従って、発振安定時間は、発振回路のゲインによってのみ制御可能となる。
発振回路のゲインは、発振回路に流す駆動電流が大きいほど高くなる。しかし、発振安定時間を短縮するために発振回路の駆動電流を大きくすると、消費電流も増大する。すなわち、発振安定時間の短縮と消費電流の低減とは相反する特性となる。これに対し、特許文献1には、電源線間に接続されたCMOS型発振ゲート、高電位側電源線とCMOS型発振ゲートの出力端子との間に接続されたPMOSトランジスタ、およびPMOSトランジスタのゲート電圧を制御するスイッチトキャパシタ回路を備えた発振回路が示されている。
この発振回路は、発振開始当初はPMOSトランジスタに十分なゲート電圧を与え、当該PMOSトランジスタのインピーダンスを下げた状態にする。その後、CMOS型発振ゲートから発振パルスが出力されるごとに、PMOSトランジスタのゲート電圧を段階的に下げてPMOSトランジスタのインピーダンスを高め、CMOS型発振ゲートを用いた発振安定状態に移行させる。
上述した発振回路のスイッチトキャパシタ回路は、PMOSトランジスタのゲート電圧を段階的すなわち離散的に変化させる。発振回路を高速に起動するため、スイッチトキャパシタ回路のキャパシタ容量値を変更し、発振パルスごとのゲート電圧のステップ幅を大きく設定すると、クロック信号のデューティ比の劣化やパルスの欠損が生じ易くなる。これを避けるためにゲート電圧のステップ幅を小さくすると、起動時間が遅くなる。
本発明は上記事情に鑑みてなされたもので、その目的は、高速起動と低消費電流の特性を兼ね備え、さらに発振信号のデューティ比の劣化やパルスの欠損を防止しながら発振安定状態に遷移させることが可能な発振回路を提供することにある。
請求項1に記載した発振回路は、入出力間に振動子が接続される反転回路と、この反転回路の入出力間に接続された帰還抵抗と、反転回路から出力される発振信号のデューティ比を検出するデューティ比検出回路と、起動時において基準デューティ比と検出デューティ比との差分が小さくなるほど反転回路に流す駆動電流を連続的に減少させる電流制御回路とを備えている。
この構成によれば、デューティ比つまり発振状態に基づくフィードバック制御が行われるので、反転回路に流す駆動電流を適正に制御でき、短時間で確実に発振を安定化することができる。発振の初期段階では発振信号のデューティ比が小さいので駆動電流が大きくなり、発振の安定段階では発振信号のデューティ比が基準デューティ比に等しくなるので駆動電流が減少する。これにより、高速起動と低消費電流の特性が得られる。このフィードバック制御において、電流制御回路は駆動電流を連続的に減少させるので、駆動電流が滑らかに変化する。その結果、デューティ比の急変などのデューティ比の劣化および発振パルスの欠損を防止しながら発振安定状態に遷移させることができる。
請求項2に記載した手段によれば、電流制御回路は、発振安定状態での規定電流を生成する規定電流生成回路と、基準デューティ比と検出デューティ比との差分に応じた差分電流を生成する差分電流生成回路と、規定電流に差分電流を加えて駆動電流を生成し、その駆動電流を反転回路に流す加算回路とを備えている。この構成によれば、発振の開始時に差分電流が大きくなって駆動電流が増大し、発振が成長するに従って差分電流が小さくなって駆動電流が減少する。そして、検出デューティ比が基準デューティ比に等しくなる発振安定状態に達すると、駆動電流は規定電流に等しくなる。従って、その規定電流を、発振安定状態を維持可能な電流範囲内で小さく設定することにより、消費電流を抑えながら安定した発振状態を維持できる。
請求項3に記載した手段によれば、差分電流生成回路は、基準デューティ比に対応した基準電圧および検出デューティ比に対応した検出電圧を入力とする差動対と、当該差動対に一定の電流を流す定電流源とを備えた差動増幅回路から構成されている。差動増幅回路は、検出デューティ比が基準デューティ比よりも大きくなるほど増大する第1差動電流と、検出デューティ比が基準デューティ比よりも小さくなるほど増大する第2差動電流を出力する。加算回路は、規定電流に対し、第2差動電流を加え、第1差動電流を減じることにより駆動電流を生成する。この構成によれば、(第2差動電流−第1差動電流)が上述した差分電流となる。
請求項4に記載した手段によれば、差分電流生成回路は、検出デューティ比に応じた大きさの第1電流を出力する第1電流出力回路と、一定の電流を出力する定電流源と、定電流から第1電流を減じることにより得られる第2電流を出力する第2電流出力回路とを備えている。加算回路は、規定電流に対し、第2電流を加え、第1電流を減じることにより駆動電流を生成する。この構成によれば、(第2差動電流−第1差動電流)が上述した差分電流となる。
請求項5に記載した手段によれば、反転回路は、Nチャネル型の第1MOSトランジスタから構成されている。電流制御回路は、電源線間に第1MOSトランジスタと直列に接続されたPチャネル型の第2MOSトランジスタのゲートに、駆動電流に対応したゲート電圧を与える。この構成によれば、反転回路に流れる駆動電流を制御できる。
請求項6に記載した手段によれば、反転回路は、Pチャネル型のMOSトランジスタとNチャネル型のMOSトランジスタとの直列回路から構成されたCMOS回路である。電流制御回路は、この直列回路に駆動電流を流す。この構成によれば、CMOS型の反転回路に流れる駆動電流を制御できる。
請求項7に記載した手段によれば、デューティ比検出回路は、発振信号を入力とするローパスフィルタから構成されている。この構成によれば、デューティ比検出回路は、発振信号のパルスを平均化処理して、発振信号のデューティ比に応じて連続的に変化するアナログ信号を出力する。その結果、駆動電流を連続的に滑らかに変化させることができる。
請求項8に記載した手段によれば、監視回路は、検出デューティ比が基準デューティ比以下に設定された所定のしきい値に達したことを検出すると、電流制御回路による駆動電流の減少制御を停止して当該減少した後の駆動電流に維持する。これにより、発振安定状態において駆動電流の減少制御に使われる消費電流を低減することができる。
各実施形態において実質的に同一部分には同一符号を付して説明を省略する。
(第1の実施形態)
第1の実施形態について図1から図4を参照しながら説明する。図1に示すIC11は、例えばモバイル機器や携帯電話機などの電池駆動が可能な携帯端末装置に用いられるもので、クロックCLK(発振信号)を生成する発振回路12を備えている。IC11の外部において端子XINと端子XOUTとの間には、水晶振動子13と抵抗R1が直列に接続されている。水晶振動子13の両端子とグランドとの間には、それぞれキャパシタC1、C2が接続されている。キャパシタC1、C2は発振周波数を調整するために用いられ、抵抗R1は励振レベルを抑制するために用いられる。
(第1の実施形態)
第1の実施形態について図1から図4を参照しながら説明する。図1に示すIC11は、例えばモバイル機器や携帯電話機などの電池駆動が可能な携帯端末装置に用いられるもので、クロックCLK(発振信号)を生成する発振回路12を備えている。IC11の外部において端子XINと端子XOUTとの間には、水晶振動子13と抵抗R1が直列に接続されている。水晶振動子13の両端子とグランドとの間には、それぞれキャパシタC1、C2が接続されている。キャパシタC1、C2は発振周波数を調整するために用いられ、抵抗R1は励振レベルを抑制するために用いられる。
IC11内の発振回路12は、端子XIN、XOUT間に接続された反転回路14、反転回路14の入出力端子間に接続された帰還抵抗R2、反転回路14の出力信号を入力してクロックCLKを出力する反転バッファ15、16、ローパスフィルタ17および電流制御回路18から構成されている。ローパスフィルタ17は、反転バッファ16から出力されるクロックCLKのデューティ比を検出するデューティ比検出回路である。
電流制御回路18は、発振回路12の起動時において、基準デューティ比と検出デューティ比との差分が小さくなるほど、反転回路14に流す駆動電流Ioscを連続的に減少させる。電流制御回路18は、規定電流Irefを生成する規定電流生成回路19、基準デューティ比と検出デューティ比との差分に応じた差分電流Idifを生成する差分電流生成回路20、および規定電流Irefと差分電流Idifとを加算した駆動電流Ioscを反転回路14に流す加算回路21から構成されている。
図2は、上述した発振回路12の具体的な回路構成を示している。簡単化のため、以下に述べる各カレントミラー回路のミラー比は1とする。発振回路12は、電源線22とグランドを通して供給される電源電圧VDDにより動作する。反転回路14は、Nチャネル型の第1MOSトランジスタQ1から構成されており、そのゲート、ドレインはそれぞれ端子XIN、端子XOUTに接続されている。帰還抵抗R2は、トランジスタQ1のゲート、ドレイン間に接続されている。
反転バッファ15は、電源線22とグランドとの間に直列に接続されたPチャネル型のMOSトランジスタQ2とNチャネル型のMOSトランジスタQ3とから構成されている。トランジスタQ2のゲートには後述するバイアス電圧が与えられる。反転バッファ16はシュミットトリガ入力を備えている。ローパスフィルタ17は、抵抗R3とキャパシタC3とからなる一次フィルタである。より高次のアナログフィルタを用いてもよい。
差分電流生成回路20は、Pチャネル型のMOSトランジスタQ4、Q5からなる差動対23、差動対23に定電流を流す定電流源24、トランジスタQ4に流れる第1差動電流I1を折り返してソース形式で出力する出力回路25、およびトランジスタQ5に流れる第2差動電流I2を折り返してシンク形式で出力する出力回路26から構成された差動増幅回路である。トランジスタQ4のゲートには基準デューティ比に対応した基準電圧Vrが入力されており、トランジスタQ5のゲートにはローパスフィルタ17から出力される検出電圧Vdが入力されている。基準デューティ比は50%に設定されており、基準電圧Vrは分圧抵抗R4、R5によってVDD/2に設定されている。
出力回路25は、Nチャネル型のMOSトランジスタQ6、Q7からなるカレントミラー回路およびPチャネル型のMOSトランジスタQ8、Q9からなるカレントミラー回路により構成されている。出力回路26は、Nチャネル型のMOSトランジスタQ10、Q11からなるカレントミラー回路により構成されている。
規定電流生成回路19は、Nチャネル型のMOSトランジスタQ12と抵抗R6との直列回路、オペアンプ27、Pチャネル型のMOSトランジスタQ13、Q14からなるカレントミラー回路、およびNチャネル型のMOSトランジスタQ15、Q16からなるカレントミラー回路から構成されている。オペアンプ27は、抵抗R6の電圧と規定電圧Vrefとが等しくなるようにトランジスタQ12のゲート電圧を制御して規定電流Irefを生成する。規定電流Irefは、2つのカレントミラーを通してシンク形式で出力される。
加算回路21は、Pチャネル型のMOSトランジスタQ17、Q18からなるカレントミラー回路により構成されている。トランジスタQ17のドレインとゲートが接続されたノードNaには、上述したトランジスタQ9、Q11、Q16の各ドレインが接続されている。トランジスタQ18は第2MOSトランジスタに相当し、そのドレインはトランジスタQ1のドレインに接続されている。
この接続構成により、反転回路14に流れる駆動電流Ioscは(1)式、(2)式により表すことができる。I2−I1が図1に示す差分電流Idifである。なお、トランジスタQ2のゲートにもノードNaのバイアス電圧が与えられている。
Iosc=Iref+(I2−I1)=Iref+Idif …(1)
I1+I2=一定(定電流源24の出力電流) …(2)
Iosc=Iref+(I2−I1)=Iref+Idif …(1)
I1+I2=一定(定電流源24の出力電流) …(2)
次に、図3および図4を参照しながら本実施形態の作用を説明する。IC11に電源電圧VDDが供給されると、発振停止状態にある発振回路12が起動する。起動開始時における水晶振動子13の端子XIN、XOUTの電圧はLレベル(0V)であり、トランジスタQ1はオフしている。そのため、クロックCLKおよびローパスフィルタ17から出力される検出電圧VdはLレベルである。
水晶振動子13にはキャパシタC1、C2が接続されている他、水晶振動子13の内部にはグランドに対する寄生容量、基板のパターンとグランドとの間の寄生容量、パッケージのグランドに対する寄生容量などが存在している。駆動電流Ioscは、帰還抵抗R2を通してキャパシタC1、C2および寄生容量を充電する。端子XINの電圧がトランジスタQ1のしきい値電圧まで上昇すると、パルスが出力され始めて発振が始まる。
この発振が始まるまでの期間、検出電圧Vdは0Vであり、基準電圧VrはVDD/2である。このため、差動対23に流れる第1差動電流I1はゼロであり、第2差動電流I2は定電流源24の出力電流に等しくなる。(1)式より、駆動電流Ioscは規定電流IrefよりもI2だけ大きくなる。従って、キャパシタC1、C2と寄生容量を充電する電流が大きくなり、パルスが出力され始めるまでの時間が短くなる。
図3(a)は、発振回路12の起動波形である。比較例として示す図3(b)は、ローパスフィルタ17および電流制御回路18を備えていない従来構成の発振回路の起動波形である。期間T1が、パルスが出力され始めるまでの時間である。本実施形態の発振回路12は、従来構成の発振回路と比較して、パルスが出力され始めるまでの時間が大幅に短縮されていることが分かる。
その後、発振パルスは継続して発生し、反転バッファ15、16により二値レベルを持つクロックCLKに波形整形される。ローパスフィルタ17は、クロックCLKの直流変換を行い、クロックCLKのデューティ比に応じた検出電圧Vdを出力する。検出デューティ比が50%のとき、検出電圧VdはVDD/2に等しくなる。
差分電流生成回路20は、基準デューティ比に対応した基準電圧Vrと検出デューティ比に応じた検出電圧Vdを入力とする差動増幅回路である。トランジスタQ4に流れる第1差動電流I1は、検出電圧Vdが基準電圧Vrよりも大きくなるほど、すなわち検出デューティ比が基準デューティ比よりも大きくなるほど増大する。一方、トランジスタQ5に流れる第2差動電流I2は、検出電圧Vdが基準電圧Vrよりも小さくなるほど、すなわち検出デューティ比が基準デューティ比よりも小さくなるほど増大する。
図3(a)の期間T2に示すように、発振が開始した直後は、クロックCLKの振幅およびデューティ比が小さい。その後、発振が成長するに従って、振幅およびデューティ比が大きくなりやがて安定する。すなわち、発振が開始した直後は、検出デューティ比<基準デューティ比(検出電圧Vd<基準電圧Vr)となり第2差動電流I2>第1差動電流I1となる。そのため、(1)式より差分電流Idif(=I2−I1)が大きくなり、駆動電流Ioscは規定電流Irefよりも大きくなる。その結果、反転回路14(トランジスタQ1)のゲインが高くなり、発振が成長する速度が速くなる。
発振が成長してクロックCLKのデューティ比が増えるに従い、クロックパルスを平均化した検出電圧Vdが連続的に増加する。すなわち、検出デューティ比が増えると、図4に示すように駆動電流Ioscが連続的に滑らかに減少する。その結果、反転回路14(トランジスタQ1)のゲインが低下し、発振が成長する速度および消費電流が抑えられる。やがて、発振が安定して検出デューティ比が基準デューティ比(50%)に達すると、検出電圧Vdが基準電圧Vrに等しくなり、第1差動電流I1と第2差動電流I2が等しくなるので、駆動電流Ioscは規定電流Irefに等しくなる。
規定電流Irefは、安定した発振状態を維持するために必要なゲインを確保できる電流であって且つ発振回路12の消費電流が低減する最適値に設定されている。検出デューティ比が基準デューティ比を超えると、第2差動電流I2<第1差動電流I1となるので、駆動電流Ioscは規定電流Irefよりも小さくなる。このようなフィードバック制御の結果、図3(a)に示す発振安定時間T1+T2が経過した後の発振安定状態において、検出デューティ比は基準デューティ比に等しく制御される。図3(b)に示す従来構成の発振安定時間T1+T2と比較して、大幅に短縮されていることが分かる。
以上説明したように、本実施形態の発振回路12は、クロックCLKのデューティ比つまり発振状態に基づく駆動電流Ioscのフィードバック制御を行うので、反転回路14に流す駆動電流Ioscを適正に制御でき、短時間で確実に発振を安定化させることができる。すなわち、発振の初期段階では、クロックCLKのデューティ比が小さいので駆動電流Ioscが大きくなり、反転回路14のゲインが高まって発振の成長が促進される。発振の安定段階では、クロックCLKのデューティ比が基準デューティ比に等しく制御されるので、駆動電流Ioscが減少する。これにより、高速起動特性と低消費電流特性の両立が図られ、モバイル機器や電池駆動システム機器に好適となる。
発振回路12は、ローパスフィルタ17を用いてクロックCLKのデューティ比を平均化(直流化)し、そのアナログ値によるフィードバック制御により駆動電流Ioscを連続的に滑らかに減少させる。その結果、駆動電流を段階的に変化させる従来構成と異なり、デューティ比の急変などのデューティ比の劣化および発振パルスの欠損を防止しながら発振安定状態に遷移させることができる。
クロックCLKのデューティ比が50%に保持されるようにフィードバック制御系が構成されているので、発振安定時のデューティ比を最適化できる。また、発振安定時の駆動電流Ioscは、安定した発振状態を維持でき且つ消費電流が低減するように設定されているので、最適な状態で発振を安定に維持できる。
(第2の実施形態)
第2の実施形態について図5を参照しながら説明する。発振回路28は、図2に示した発振回路12に監視回路29を加えた構成を備えている。監視回路29は、電源電圧VDDを分圧して監視電圧Vsを生成する分圧抵抗R7、R8、および検出電圧Vdと監視電圧Vsを比較するヒステリシスコンパレータ30などから構成されている。
第2の実施形態について図5を参照しながら説明する。発振回路28は、図2に示した発振回路12に監視回路29を加えた構成を備えている。監視回路29は、電源電圧VDDを分圧して監視電圧Vsを生成する分圧抵抗R7、R8、および検出電圧Vdと監視電圧Vsを比較するヒステリシスコンパレータ30などから構成されている。
監視電圧Vsは、基準デューティ比(50%)以下であって且つ基準デューティ比に近い監視デューティ比(所定のしきい値)に相当する電圧、すなわちVDD/2以下であって且つVDD/2に近い電圧に設定されている。例えば、監視デューティ比40%に対し監視電圧Vsが0.4×VDDに設定される。コンパレータ30は、Vd<VsHのときにLレベルの監視信号を出力し、Vd>VsLのときにHレベルの監視信号を出力する。VsH、VsLは、ヒステリシス特性を含む監視電圧である。
発振回路28の起動開始時には、監視信号はLレベルを出力する。このとき、電流制御回路18は第1の実施形態で説明したように動作する。クロックCLKのデューティ比が増加して監視デューティ比に達すると、Vd≧VsHとなり監視信号がHレベルに変化する。このとき、定電流源24の電流出力が停止し、トランジスタQ8、Q9のゲートが電源線22に接続され、トランジスタQ10、Q11のゲートがグランドに接続される。これにより、差分電流生成回路20の動作電流である第1差動電流I1と第2差動電流I2がゼロになる。その結果、フィードバックの系が切られ、駆動電流Ioscは規定電流Irefに等しくなる。
本実施形態によれば、発振安定状態において、電流制御回路18のうち差分電流生成回路20の動作を停止させるので、発振回路28の消費電流を、駆動電流Ioscの減少制御に用いる定電流源24の出力電流分だけ一層低減することができる。フィードバックの系は電流制御のループであるため、発振ループの系に及ぼす影響は殆どない。また、検出デューティ比が基準デューティ比に近づいた時にフィードバックの系を切るので、反転回路14のゲインが急変することもない。
(第3の実施形態)
第3の実施形態について図6および図7を参照しながら説明する。発振回路31は、図2に示した発振回路12の差分電流生成回路20を差分電流生成回路32に置き替えた構成を備えている。差分電流生成回路32は、第1電流I1を出力する第1電流出力回路33、第2電流I2を出力する第2電流出力回路34および定電流源35から構成されている。簡単化のため、以下に述べる各カレントミラー回路のミラー比は1とする。
第3の実施形態について図6および図7を参照しながら説明する。発振回路31は、図2に示した発振回路12の差分電流生成回路20を差分電流生成回路32に置き替えた構成を備えている。差分電流生成回路32は、第1電流I1を出力する第1電流出力回路33、第2電流I2を出力する第2電流出力回路34および定電流源35から構成されている。簡単化のため、以下に述べる各カレントミラー回路のミラー比は1とする。
第1電流出力回路33は、Nチャネル型のMOSトランジスタQ19、抵抗R9およびオペアンプ36からなる電圧−電流変換回路を備えている。トランジスタQ19と抵抗R9には、検出電圧Vdに応じた第1電流I1が流れる。この第1電流I1は、Pチャネル型のMOSトランジスタQ20、Q21からなるカレントミラー回路を介してソース形式で出力される。
第2電流出力回路34は、定電流源35の出力電流から第1電流I1を減じることにより得られる第2電流I2を出力する。第2電流出力回路34は、トランジスタQ20とともにカレントミラー回路を構成するトランジスタQ22、Nチャネル型のMOSトランジスタQ23、Q24からなるカレントミラー回路およびNチャネル型のMOSトランジスタQ25、Q26からなるカレントミラー回路を備えている。第1電流I1は、トランジスタQ22、Q23を介してトランジスタQ24に流れ、トランジスタQ25には第2電流I2が流れる。この第2電流I2は、トランジスタQ26を介してシンク形式で出力される。
検出デューティ比が基準デューティ比(50%)に等しいとき、すなわち検出電圧VdがVDD/2のときに、第1電流I1と第2電流I2が等しくなる。第1電流I1は、検出電圧VdがVDD/2よりも大きくなるほど、すなわち検出デューティ比が基準デューティ比よりも大きくなるほど増大する。第2電流I2は、検出電圧VdがVDD/2よりも小さくなるほど、すなわち検出デューティ比が基準デューティ比よりも小さくなるほど増大する。
起動時においてクロックCLKのデューティ比が増えるに従い、検出電圧Vdが連続的に増加する。これにより、差分電流Idif(=I2−I1)が減少し、図7に示すように駆動電流Ioscが連続的に滑らかに減少する。本実施形態では、検出デューティ比と駆動電流Ioscがリニアな関係になる。
本実施形態の発振回路31は、クロックCLKのデューティ比に基づく駆動電流Ioscのフィードバック制御を行うので、第1の実施形態と同様の作用により高速起動特性と低消費電流特性が得られる。また、発振回路31は、フィードバック制御により駆動電流Ioscを連続的に減少させるので、発振安定状態への遷移過程におけるデューティ比の劣化および発振パルスの欠損を防止することができる。
(第4の実施形態)
第4の実施形態について図8を参照しながら説明する。発振回路37が備える反転回路38は、Pチャネル型のMOSトランジスタQ27とNチャネル型のMOSトランジスタQ28との直列回路から構成されたCMOS型の回路である。帰還抵抗R2は、トランジスタQ27、Q28のゲート、ドレイン間に接続されている。電源線22とトランジスタQ27のソースとの間には、反転回路38に可変の駆動電流Ioscを流す電流源39が設けられている。電流源39は、上述した電流制御回路18をまとめて示したものである。本実施形態によっても、第1、第3の実施形態と同様の作用および効果が得られる。
第4の実施形態について図8を参照しながら説明する。発振回路37が備える反転回路38は、Pチャネル型のMOSトランジスタQ27とNチャネル型のMOSトランジスタQ28との直列回路から構成されたCMOS型の回路である。帰還抵抗R2は、トランジスタQ27、Q28のゲート、ドレイン間に接続されている。電源線22とトランジスタQ27のソースとの間には、反転回路38に可変の駆動電流Ioscを流す電流源39が設けられている。電流源39は、上述した電流制御回路18をまとめて示したものである。本実施形態によっても、第1、第3の実施形態と同様の作用および効果が得られる。
(その他の実施形態)
以上、本発明の好適な実施形態について説明したが、本発明は上述した実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲内で種々の変形、拡張を行うことができる。
以上、本発明の好適な実施形態について説明したが、本発明は上述した実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲内で種々の変形、拡張を行うことができる。
第3、第4の実施形態の発振回路31、37に対しても監視回路29を付加することができる。
振動子は水晶振動子に限られず、例えばセラミック振動子であってもよい。
振動子は水晶振動子に限られず、例えばセラミック振動子であってもよい。
IC11の端子XIN、XOUTに接続する抵抗R1とキャパシタC1、C2は、それぞれ必要に応じて設ければよい。
デューティ比検出回路は、クロックCLKのデューティ比を検出可能な回路であればローパスフィルタ17に限られない。
デューティ比検出回路は、クロックCLKのデューティ比を検出可能な回路であればローパスフィルタ17に限られない。
図面中、12、28、31、37は発振回路、13は水晶振動子(振動子)、14、38は反転回路、17はローパスフィルタ(デューティ比検出回路)、18は電流制御回路、19は規定電流生成回路、20、32は差分電流生成回路、21は加算回路、23は差動対、24、35は定電流源、29は監視回路、33は第1電流出力回路、34は第2電流出力回路、R2は帰還抵抗、Q1は第1MOSトランジスタ、Q18は第2MOSトランジスタである。
Claims (8)
- 入出力間に振動子(13)が接続される反転回路(14,38)と、
前記反転回路の入出力間に接続された帰還抵抗(R2)と、
前記反転回路から出力される発振信号のデューティ比を検出するデューティ比検出回路(17)と、
起動時において、基準デューティ比と前記検出デューティ比との差分が小さくなるほど前記反転回路に流す駆動電流を連続的に減少させる電流制御回路(18)と
を備えていることを特徴とする発振回路。 - 前記電流制御回路は、
発振安定状態での規定電流を生成する規定電流生成回路(19)と、
前記基準デューティ比と前記検出デューティ比との差分に応じた差分電流を生成する差分電流生成回路(20,32)と、
前記規定電流に前記差分電流を加えて前記駆動電流を生成し、その駆動電流を前記反転回路に流す加算回路(21)と
を備えていることを特徴とする請求項1記載の発振回路。 - 前記差分電流生成回路(20)は、前記基準デューティ比に対応した基準電圧と前記検出デューティ比に対応した検出電圧を入力とする差動対(23)および当該差動対に一定の電流を流す定電流源(24)を有し、前記検出デューティ比が前記基準デューティ比よりも大きくなるほど増大する第1差動電流と前記検出デューティ比が前記基準デューティ比よりも小さくなるほど増大する第2差動電流を出力する差動増幅回路により構成され、
前記加算回路は、前記規定電流に対し、前記第2差動電流を加え、前記第1差動電流を減じることにより前記駆動電流を生成することを特徴とする請求項2記載の発振回路。 - 前記差分電流生成回路(32)は、前記検出デューティ比に応じた大きさの第1電流を出力する第1電流出力回路(33)と、一定の電流を出力する定電流源(35)と、前記定電流から前記第1電流を減じることにより得られる第2電流を出力する第2電流出力回路(34)とを備え、
前記加算回路は、前記規定電流に対し、前記第2電流を加え、前記第1電流を減じることにより前記駆動電流を生成することを特徴とする請求項2記載の発振回路。 - 前記反転回路(14)は、Nチャネル型の第1MOSトランジスタ(Q1)から構成され、
前記電流制御回路は、電源線間に前記第1MOSトランジスタと直列に接続されたPチャネル型の第2MOSトランジスタ(Q18)のゲートに、前記駆動電流に対応したゲート電圧を与えることを特徴とする請求項1から4の何れか一項に記載の発振回路。 - 前記反転回路(38)は、Pチャネル型のMOSトランジスタ(Q27)とNチャネル型のMOSトランジスタ(Q28)との直列回路から構成され、
前記電流制御回路は、前記直列回路に前記駆動電流を流すことを特徴とする請求項1から4の何れか一項に記載の発振回路。 - 前記デューティ比検出回路は、前記発振信号を入力とするローパスフィルタから構成されていることを特徴とする請求項1から6の何れか一項に記載の発振回路。
- 前記検出デューティ比が前記基準デューティ比以下に設定された所定のしきい値に達したことを検出すると、前記電流制御回路による前記駆動電流の減少制御を停止して当該減少した後の駆動電流に維持する監視回路(29)を備えていることを特徴とする請求項1から7の何れか一項に記載の発振回路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013209123A JP2015073246A (ja) | 2013-10-04 | 2013-10-04 | 発振回路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013209123A JP2015073246A (ja) | 2013-10-04 | 2013-10-04 | 発振回路 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015073246A true JP2015073246A (ja) | 2015-04-16 |
Family
ID=53015316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013209123A Pending JP2015073246A (ja) | 2013-10-04 | 2013-10-04 | 発振回路 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015073246A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109962696A (zh) * | 2017-12-25 | 2019-07-02 | 北京同方微电子有限公司 | 一种占空比可控的振荡器电路 |
JP2021016126A (ja) * | 2019-07-16 | 2021-02-12 | Necプラットフォームズ株式会社 | 発振回路 |
CN114337654A (zh) * | 2021-11-30 | 2022-04-12 | 苏州领慧立芯科技有限公司 | 一种晶体振荡器电路 |
US11728771B2 (en) | 2021-04-30 | 2023-08-15 | Seiko Epson Corporation | Circuit apparatus and oscillator |
JP7559553B2 (ja) | 2020-12-28 | 2024-10-02 | セイコーエプソン株式会社 | 回路装置及び発振器 |
-
2013
- 2013-10-04 JP JP2013209123A patent/JP2015073246A/ja active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109962696A (zh) * | 2017-12-25 | 2019-07-02 | 北京同方微电子有限公司 | 一种占空比可控的振荡器电路 |
JP2021016126A (ja) * | 2019-07-16 | 2021-02-12 | Necプラットフォームズ株式会社 | 発振回路 |
JP7559553B2 (ja) | 2020-12-28 | 2024-10-02 | セイコーエプソン株式会社 | 回路装置及び発振器 |
US11728771B2 (en) | 2021-04-30 | 2023-08-15 | Seiko Epson Corporation | Circuit apparatus and oscillator |
CN114337654A (zh) * | 2021-11-30 | 2022-04-12 | 苏州领慧立芯科技有限公司 | 一种晶体振荡器电路 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102509824B1 (ko) | 발진기 | |
US8098057B2 (en) | Constant voltage circuit including supply unit having plural current sources | |
US8736391B2 (en) | Method to shorten crystal oscillator's startup time | |
JP2015073246A (ja) | 発振回路 | |
JP2007172222A (ja) | 電源回路 | |
JP2016025644A (ja) | 発振回路及び位相同期回路 | |
US8040168B2 (en) | Charge pump circuit | |
US9634608B2 (en) | Crystal oscillation circuit and electronic timepiece | |
US10680524B2 (en) | Fast-charging voltage generator | |
JPH10260741A (ja) | 定電圧発生回路 | |
TWI788574B (zh) | 比較器與振盪電路 | |
US8742788B2 (en) | Common mode voltage control | |
JP2007295180A (ja) | チャージポンプ回路、それを用いたpll回路及びdll回路 | |
JP2013214960A (ja) | 水晶発振回路及び水晶発振回路の制御方法 | |
JP2009182584A (ja) | Pll回路 | |
JPH088651A (ja) | 電圧制御発振器 | |
JP5975066B2 (ja) | チャージポンプ回路及びpll回路 | |
KR101538537B1 (ko) | 차지 펌프 및 이를 이용한 위상 동기 루프 회로 | |
WO2012120570A1 (ja) | 電流源制御回路 | |
KR101102973B1 (ko) | 위상 고정 루프 | |
KR100647385B1 (ko) | 전압 제어 발진기 및 이를 적용한 위상 고정 루프회로 | |
JP4683084B2 (ja) | 発振回路および電子機器 | |
JP2014155184A (ja) | 発振用集積回路 | |
JP2011035845A (ja) | 差動増幅装置 | |
JP2006121477A (ja) | 発振装置とそれを用いた電子装置 |