WO2012116537A1 - 塔式起重机的顶升结构及其液压系统和顶升方法 - Google Patents

塔式起重机的顶升结构及其液压系统和顶升方法 Download PDF

Info

Publication number
WO2012116537A1
WO2012116537A1 PCT/CN2011/078540 CN2011078540W WO2012116537A1 WO 2012116537 A1 WO2012116537 A1 WO 2012116537A1 CN 2011078540 W CN2011078540 W CN 2011078540W WO 2012116537 A1 WO2012116537 A1 WO 2012116537A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
cylinder
valve
jacking
cylinders
Prior art date
Application number
PCT/CN2011/078540
Other languages
English (en)
French (fr)
Inventor
张义亮
胡圣雷
梁莎
李柏
毛快
吴茂
李宇力
陈龙剑
周汉麟
Original Assignee
长沙中联重工科技发展股份有限公司
中铁大桥局股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙中联重工科技发展股份有限公司, 中铁大桥局股份有限公司 filed Critical 长沙中联重工科技发展股份有限公司
Priority to EP11859735.0A priority Critical patent/EP2620405B1/en
Publication of WO2012116537A1 publication Critical patent/WO2012116537A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • B66C23/26Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes for use on building sites; constructed, e.g. with separable parts, to facilitate rapid assembly or dismantling, for operation at successively higher levels, for transport by road or rail
    • B66C23/28Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes for use on building sites; constructed, e.g. with separable parts, to facilitate rapid assembly or dismantling, for operation at successively higher levels, for transport by road or rail constructed to operate at successively higher levels
    • B66C23/32Self-hoisting cranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • B66C23/26Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes for use on building sites; constructed, e.g. with separable parts, to facilitate rapid assembly or dismantling, for operation at successively higher levels, for transport by road or rail
    • B66C23/28Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes for use on building sites; constructed, e.g. with separable parts, to facilitate rapid assembly or dismantling, for operation at successively higher levels, for transport by road or rail constructed to operate at successively higher levels
    • B66C23/283Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes for use on building sites; constructed, e.g. with separable parts, to facilitate rapid assembly or dismantling, for operation at successively higher levels, for transport by road or rail constructed to operate at successively higher levels with frameworks composed of assembled elements

Definitions

  • the present invention relates to the field of cranes, and in particular to a jacking structure of a tower crane and a hydraulic system of a jacking structure and a roof of a tower crane Lit method.
  • BACKGROUND OF THE INVENTION At present, most jack-up tower cranes use a single-cylinder jack-up hydraulic system, and a few large-tonnage jack-up tower cranes use a two-cylinder jack-up hydraulic system that will balance the balance valve or hydraulic lock. It is connected to the cylinder block to achieve the purpose of explosion protection and safety.
  • the jacking cylinder will be large in size and inconvenient to install and maintain.
  • the balancing valve or hydraulic lock is rigidly connected to the cylinder block, the following problems exist:
  • each cylinder is synchronized, because even if synchronous control measures such as synchronous valves are used, it is not possible to ensure that the balance valves or hydraulic locks of the respective cylinders are simultaneously opened when the cylinder is started.
  • the synchronization accuracy of the cylinder when jacking up or the piston rod is extended depends on the control accuracy of the synchronous valve; however, when the cylinder is lowered or the piston rod is retracted, the synchronization accuracy is affected by the balancing valve in addition to the control accuracy of the synchronous valve. This problem exists in existing tower cranes that use twin-cylinder jacking operations.
  • the present invention is directed to a jacking structure of a tower crane, a hydraulic system of a jacking structure, and a jacking method of a tower crane to solve the problem that the tower crane in the prior art cannot be synchronized when using a multi-cylinder for jacking Running problems.
  • a hydraulic system for a jacking structure of a tower crane is provided, and a climbing frame for driving the tower crane rises or falls on a tower body of the tower crane, and the hydraulic system includes a plurality of cylinders, the hydraulic system includes a plurality of cylinders, and the cylinders are respectively connected to the jacking beam and the upper beam of the tower crane; wherein each of the plurality of cylinders has a positive working oil circuit and a reverse working oil working circuit, Every oil A positive speed regulating valve for adjusting the forward flow velocity of the hydraulic oil is provided on the positive working oil path of the cylinder, and a reverse speed regulating valve for adjusting the reverse flow velocity of the hydraulic oil is provided on the reverse working oil path of each cylinder.
  • the hydraulic system of the jacking structure further includes a balancing valve disposed on each of the positive working oil lines.
  • the balancing valve includes an oil inlet port, an oil outlet port and a control oil port, wherein the oil inlet port is in communication with the positive branch working oil passage, and the oil outlet port and the rodless cavity of the oil cylinder And communicating with one of the rod chambers, the control port being in communication with the reverse branch working oil passage and the other of the rodless chamber and the rod chamber.
  • the hydraulic system further includes a main oil passage respectively communicating with the positive branch working oil passage and the reverse branch working oil passage, and the main oil passage is further provided with a pressure guiding check valve, the pressure guiding check valve and the respective oil cylinders respectively
  • the positive branch working oil passage is connected, and the opening ratio of the pilot check valve is smaller than the opening ratio of each balancing valve.
  • a shut-off valve is provided on each of the positive branch working oil passage and the reverse branch working oil passage of each cylinder.
  • a plurality of oil cylinders are connected in parallel on a fuel tank, and the hydraulic system further comprises a main oil passage connected between the oil tank and the plurality of oil cylinders, wherein the main oil passage is connected to the positive branch working oil passage and the reverse branch working oil passage, A combined valve is also provided on the main oil passage, and the combined valve includes a combined directional control valve and a combined relief valve that communicate with each other.
  • a back pressure valve is connected in series with the oil tank on the main oil passage, and the back pressure valve is connected to the reverse branch working oil passage.
  • a relief valve is disposed on the main oil passage, and the overflow valve is in communication with the reverse branch working oil passage.
  • the number of the plurality of cylinders is six, and the tower body has two sides and a front surface and a back surface connected to the two sides, and each side and the back surface are respectively connected between the climbing frame and the jacking beam.
  • the invention also provides a jacking structure of a tower crane, comprising a tower body and a climbing frame disposed at the top of the tower body, the tower body is provided with a step, the bottom of the jacking beam is connected with the upper beam, and the jacking beam is supported step by step. Also included is a hydraulic system according to the aforementioned jacking structure.
  • the invention also provides a lifting method for a tower crane, which is provided with a plurality of oil cylinders connected between the upper beam and the lifting beam of the crane, and is controlled by a forward speed regulating valve and a reverse speed regulating valve on each cylinder
  • the advance and retreat speed of the hydraulic oil on the working oil line of each cylinder and the synchronization precision of each cylinder are realized by the equal advance and retreat speeds of the hydraulic oil on the working oil passages of the respective cylinders and the synchronized movement of the respective cylinders to realize the synchronous jacking of the respective cylinders.
  • two oil cylinders are respectively disposed on the two sides and the back side of the climbing frame of the tower crane, and each cylinder is connected between the upper beam and the jacking beam, and passes through the forward speed regulating valve and the opposite on each cylinder
  • the speed control valve controls the advance and retreat speeds of the hydraulic oil on the working oil lines of the respective cylinders and the synchronous operation of the respective cylinders.
  • the weight of the jacking beam is balanced by providing a back pressure valve in series with the fuel tank.
  • the climbing frame is prevented from falling due to the pressure loss of the cylinder by providing a balance valve for controlling the cylinder without the rod chamber on each cylinder.
  • a pilot pressure check valve is disposed on the main oil passage of the hydraulic system, and the opening ratio of the pilot check valve is smaller than the opening ratio of each balance valve.
  • FIG. 1 is a schematic view showing the working principle of a jacking structure of a tower crane according to an embodiment of the present invention
  • FIG. 2 is a view showing a hydraulic system of a jacking structure of a tower crane according to an embodiment of the present invention
  • Figure 3 shows the structure on the back plane of the jacking structure of the tower crane according to an embodiment of the present invention
  • Figure 4 shows the side plane of the jacking structure of the tower crane according to an embodiment of the present invention
  • Fig. 5 shows a structure on a front plane of a jacking structure of a tower crane according to an embodiment of the present invention
  • Fig. 1 is a schematic view showing the working principle of a jacking structure of a tower crane according to an embodiment of the present invention
  • FIG. 2 is a view showing a hydraulic system of a jacking structure of a tower crane according to an embodiment of the present invention
  • Figure 3 shows the structure on the back plane of the jacking structure of the tower crane according to an embodiment of the present invention
  • a tower crane according to an embodiment of the present invention drives a tower crane's climbing frame 31 to lift and lower on a tower body 39 of a tower crane by a hydraulic system of a jacking structure, for example, the climbing frame 31 is subjected to a hydraulic system. Support and drive are raised and lowered on the tower body 39 by the guide wheels 32 on the tower body 39.
  • the hydraulic system includes a plurality of cylinders 15, For example, it may include: two, three, four, six or eight cylinders. When the above number of cylinders 15 are used, the cylinders 15 are easily arranged. For example, when two cylinders 15 are included, the two cylinders 15 may be arranged on the climbing frame. One side or both sides of 31.
  • the piston rod and the cylinder barrel of each cylinder 15 are respectively connected to the jacking beam 35 and the upper beam 34 of the tower crane, wherein the upper beam 34 is fixed on the climbing frame 31, and the jacking beam 35 is detachably fixedly connected to each standard section. When the climbing frame 31 climbs, the jacking beam 35 is connected to the topmost standard section.
  • the jacking beam 35 is separated from the original standard section and connected to the newly added standard section.
  • the support of the climbing frame 31 and the positioning of the climbing frame 31 can be performed by the hanging plate 33, so that the position of the lifting beam 35 can be adjusted.
  • the tower body 39 of the tower crane is provided with a step 37. After the jacking is completed, the step 37 supports the jacking beam 35 and limits the jacking beam 35 to prevent the jacking beam 35 from moving to ensure the safety of the tower crane. . As shown in FIG.
  • the hydraulic system includes six oil cylinders 15, each of which may have the same model and structure, and each of the plurality of cylinders 15 has a positive branch working oil passage and a reverse
  • the working oil passages are respectively used to control the movement of the rodless chamber and the rod chamber of the corresponding oil cylinder 15.
  • the hydraulic system also includes a main oil passage 21 that is in communication with both the forward branch working oil passage and the reverse branch working oil passage.
  • the main oil passage 21 includes a first main oil passage that communicates with each of the forward branch working oil passages and a second main oil passage that communicates with each of the reverse branch working oil passages.
  • one end of the positive branch working oil passage communicates with the rodless cavity of the oil cylinder 15, and the other end communicates with the oil tank 1 of the hydraulic system through the first main oil passage, and one end of the reverse branch working oil passage and the oil cylinder 15 have The rod cavity is in communication, and the other end is in communication with the fuel tank 1 of the hydraulic system through the second main oil passage.
  • Each of the cylinder 15 has a speed regulating valve 14 on the forward working oil passage and the reverse supporting working oil passage, and the speed regulating valve 14 disposed on the positive branch working branch road is a forward speed regulating valve for positive direction
  • the speed control valve 14 has a relatively accurate scale to accurately control the speed and flow rate of the hydraulic oil in the working oil passage.
  • the hydraulic system further includes an oil pump 6 and a motor 7 for driving the oil pump 6.
  • the oil pump 6 is disposed on the main oil passage 21, and one end thereof is in communication with the oil tank 1, and the other end is simultaneously working with the positive branch oil passage and the opposite end. Connected to the working oil circuit. Specifically, as shown in FIG.
  • the forward speed regulating valves of the six cylinders 15 are All, A12, A13, A14, A15, A16, and the reverse speed regulating valves of the six cylinders 15 are Bll, B12, B13, respectively. , B14, B15, B16.
  • the positive branch working oil passage of each cylinder 15 intersects the first main oil passage of the main oil passage 21 to the junction point A, and the reverse branch working oil passage of each cylinder 15 intersects with the second main oil passage of the main oil passage 21 to Junction point B.
  • the speed regulating valve 14 Due to The speed regulating valve 14 has a good speed rigidity. Once the speed is set, it is less affected by the load and the pressure change of the pumping station itself, so the speed of the control is basically unchanged, so that the synchronization of the cylinders 15 can be better improved. Precision. Through the forward speed regulating valve and the reverse speed regulating valve on each cylinder 15, the advance and retreat speed of the hydraulic oil on the working oil line of each cylinder and the synchronization precision of each cylinder are controlled, and the hydraulic oil in the working oil passage of each cylinder is synchronized. The advancement and retreat realizes the synchronous jacking of the respective oil cylinders 15.
  • the hydraulic system of the present invention solves the problem that the tower crane is difficult to use the multi-cylinder for synchronous jacking in the prior art, and overcomes the problem that the prior art uses the synchronous valve to have a poor effect. . Since the speed at which the cylinder is raised and lowered is not the same, the bridge rectifier synchronous circuit composed of the speed regulating valve and the four check valves is not used, but each cylinder 15 is controlled by two speed regulating valves to respectively control the rise of the cylinder. Synchronization with the speed of the drop, that is, the six cylinders 15 use a total of 12 speed control valves to achieve speed regulation and synchronous control. The cumulative synchronizing error of each cylinder 15 in synchronous operation can be eliminated by the cylinder rod operating in position.
  • the hydraulic system further includes a balancing valve 13 disposed on each of the positive branch working oil passages.
  • the balance valve 13 includes an oil inlet port, an oil outlet port and a control oil port, and the oil inlet port is connected with the positive branch working oil passage, and the oil outlet port communicates with one of the rodless cavity and the rod cavity of the oil cylinder, and the control port is connected. It is in communication with the reverse branch working oil passage and the other of the rodless chamber and the rod chamber.
  • the oil inlet port is in communication with the positive branch working oil passage
  • the oil outlet port is in communication with the rodless chamber of the oil cylinder
  • the control oil port and the corresponding reverse branch working oil passage and the rod cavity are The rod control port is connected.
  • the rod control oil port is disposed on the rod cavity of the oil cylinder, and the pressure in the rodless chamber is controlled by the communication with the balance valve 13 to reduce the consumption of useless work.
  • the tower crane that is, the tower crane
  • the balancing valve 13 will be closed to hold the cylinder to ensure the safe operation of the tower crane.
  • the control port of the balance valve 13 communicates with the rod control port on the rod chamber, thereby adjusting the working pressure of the rod chamber to reduce energy consumption.
  • a plurality of cylinders 15 are connected in parallel to one of the oil tanks 1, so that space can be saved and the weight of the tower crane can be reduced.
  • the second main oil passage of the main oil passage 21 of the hydraulic system is provided with a back pressure valve 11 connected in series with the oil cylinder 15, and the back pressure valve 11 communicates with each of the reverse branch working oil passages and communicates with the oil pump 6.
  • the back pressure valve 11 is mainly used to balance the weight of the jacking beam 35 at the rod end of the cylinder rod. Since the jacking beam 35 is connected to the piston rod of the cylinder 15, when the piston rod descends to a certain position, the heavy lifting jack 35 has inertia, and also drives the piston rod to accelerate downward, thereby affecting the piston. Positional accuracy.
  • the back pressure valve 11 is provided to balance the weight of the system.
  • the hydraulic system further includes a main oil passage 21 respectively communicating with the positive branch working oil passage and the reverse branch working oil passage, and the main oil passage 21 is further provided with a combination valve 9, a combination valve
  • the interior 9 includes a combined reversing valve and a combined relief valve that are interconnected.
  • the oil inlet of the combination valve 9 is in communication with the oil pump 6, and the oil outlet is in communication with the positive branch working oil passage and the reverse branch working oil passage.
  • the hydraulic system further includes a return oil passage, and the oil outlet, the forward branch working oil passage and the reverse branch working oil passage of the combined valve 9 directly communicate with the oil tank 1 through the return oil passage.
  • the combination valve 9 is an integrated valve in which a plurality of valves are integrated.
  • the combination valve 9 is used to control the opening, commutation and overflow of the hydraulic oil on the main oil passage 21.
  • the combined reversing valve comprises a one-way valve, a reversing valve
  • the combined relief valve comprises a relief valve. It can be assembled as a combined valve sold as a finished product, or it can be assembled on site using a check valve, a reversing valve and a relief valve or other valve.
  • the assembled combination valve is used, which saves installation time and is easy to purchase.
  • the hydraulic system further includes a main oil passage 21 respectively communicating with the positive branch working oil passage and the reverse branch working oil passage, and the main oil passage 21 is further provided with a pressure guiding check valve 12
  • the pilot pressure check valve 12 is respectively connected to the positive branch working oil passage of each cylinder 15 , and the opening ratio of the pilot check valve 12 is smaller than the opening ratio of each balancing valve 13 .
  • a pressure-conducting check valve 12 is disposed on the first main oil passage of each cylinder 15 that communicates with the positive-branch working oil passage to ensure that the hydraulic oil can only flow into the positive-branch working oil passage when the tower crane is jacked up. It will not flow back.
  • the opening ratio of the pilot check valve 12 is smaller than the opening ratio of each balancing valve 13, that is, the balancing valve 13 is opened before the pilot check valve 12 to reduce the starting error of the cylinder 15.
  • the pilot check valve 12 is disposed between the combination valve 9 and the positive branch working oil passage.
  • the other function of the pilot check valve 12 and the balance valve 13 is to fill all the pipes from the pump station to the cylinder 15, that is, from the back pressure valve 11, the pilot check valve 12 to the cylinder 15, and not to allow oil.
  • the piping is emptied to avoid air ingress and ensure that the cylinders run smoothly and in sync.
  • a shut-off valve 16 is provided on each of the positive branch working oil passage and the reverse branch working oil passage of each cylinder.
  • a total of twelve shut-off valves 16 are provided on the oil passages of the six cylinders 15. In this way, it is possible to control the single movement of a single cylinder or the linkage of any one of the cylinders; at the same time, when the cylinder needs to be held for a long time, the shut-off valves 16 can be closed, so that the working pipeline has no leakage.
  • the main oil passage 21 is provided with a relief valve 10, and the relief valve 10 is in communication with the reverse branch working oil passage and communicates with the oil tank 1.
  • the relief valve 10 communicates with the rod cavity of the cylinder 15 through the reverse branch working oil passage, and is used for reducing the pressure in the rod chamber of the cylinder 15, reducing the useless work, and improving the energy efficiency of the entire system.
  • the number of cylinders is six.
  • the tower body has two sides and a front side and a back side connected to the two sides, that is, the tower body 39 has a left side surface 391 and a right side surface 392.
  • the front surface 393 and the back surface 394 are provided, and two sides connected between the climbing frame 31 and the lifting beam 35 are provided on each of the side surfaces and the back surface.
  • the cylinder 15 is provided with no oil cylinder 15 on the front surface of the tower body 393 to facilitate the introduction of the surface 393 on the front side of the tower body.
  • the front surface introduction surface 393 introduces some components required for the jacking operation.
  • This arrangement is the three-sided six-cylinder jacking structure of the tower crane. As shown in Fig. 2 to Fig. 6, the jacking structure consists of three jacking beams 35, six jacking cylinders 15, a hydraulic pumping station 50 and hydraulic pressure.
  • the hose 17 and the like are composed.
  • Each of the two jacking cylinders 15 is coupled to a jacking beam 35 and a climbing frame 31 via pin shafts, and each jacking cylinder 15 is connected to the hydraulic pump station 50 via a hydraulic hose 17.
  • Three jacking beams 35 are respectively arranged on the opposite side and side of the standard section introduction surface of the tower crane.
  • each of the two cylinders 15 shares a jacking beam 35, and the supporting force required for jacking is divided into six cylinders 15 and each jacking cylinder 15 requires a small jacking force, so that a smaller size can be used.
  • Commonly used jacking cylinders saving cost and space occupied, especially for large or very large tower cranes, for example, D5200-240 self-elevating extra large tower cranes, lifting weights up to 800 tons, jacking
  • the cross member 35 has a self-weight of more than 4 tons, and can be easily lifted by a three-sided six-cylinder jacking structure, and the prior art requires a complicated method, and the prior art is prone to the collapse phenomenon.
  • the present invention is not limited to the arrangement of the three-sided six-cylinder, and for example, it may be provided to provide two-sided two-cylinder and two-sided four-cylinder on both sides, and may also be provided as a three-sided three-cylinder.
  • the steps of the tower crane from the jacking up or down tower are as follows:
  • the lower support of the tower crane will be vacated with a standard section at the top of the standard section.
  • the upper swivel part will be all supported by the climbing frame 31, if at this time the top and bottom of the standard section A standard section is installed between the seats.
  • the upper part of the new standard section is connected to the lower support.
  • the lower part of the new standard section is connected to the original standard section, so that the tower crane completes the heightening process.
  • the reversing handle is driven to the left position, the cylinder rod is extended, and the jacking beam 35 is synchronously descended into the step groove.
  • the weight of the jacking beam 35 is balanced by adjusting the back pressure valve 11; the handle of the combination valve 9 continues to hit the left position, and the above steps are repeated to perform the second jacking operation.
  • the drive motor 7 is turned on, the hydraulic oil is filtered by the filter 2, and then sent to the combination valve 9 by the high pressure pump 6, the handle is turned to the left position, and the hydraulic oil is freely passed through the check valve.
  • the reversing handle is pulled to the right position of the combination valve 9, the hydraulic oil is freely passed through the back pressure valve 11, and the speed regulating valve 14 is synchronously adjusted to enter the respective rod cavity, and the control oil from the right side Open the check valve 12 on the left side, the oil cylinder is smoothly lowered against the moving climbing frame 31, and then the hanging plate is set, and the piston rod is synchronously pulled out with the jacking beam; when the piston rod of the cylinder is pulled out with the jacking beam, the steam cylinder is replaced. Hit the handle to the left position, the cylinder rod of the cylinder extends, and descends into the next step step with the jacking beam 35.
  • the above steps can be repeated for the second reduction.
  • Homework When the tower crane performs the jacking and adding operation, once a certain hose connected to the rodless chamber of the cylinder suddenly bursts, the rodless chamber causes the cylinder 15 to fall over the speeding frame 31 by the sudden loss of pressure, and the balancing valve 13 is closed. The cylinder 15 is held to ensure the safe operation of the tower crane.
  • the pressure at the outlet of the oil pump 50 is set by the combination valve 9, generally set at 1.15 times the actual jacking pressure, and the working pressure of the rod chamber having the rod chamber is set by the relief valve 10, and the pressure value is less than The pump outlet sets the pressure value to reduce energy consumption.
  • the present invention operates for a tower crane requiring multi-cylinder jacking operation of two or more cylinders during jacking and descending towers Smooth, safe and reliable, there will be no smashing phenomenon;
  • the invention can ensure the basic synchronization of the multi-cylinder well, and the synchronization precision of the multi-cylinder mainly depends on the control precision of the speed regulating valve, and is basically not affected by the balancing valve.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Description

塔式起重机的顶升结构及其液压系统和顶升方法 技术领域 本发明涉及起重机领域, 具体而言, 涉及一种塔式起重机的顶升结构及顶升结构 的液压系统和塔式起重机的顶升方法。 背景技术 目前大多数自升式塔式起重机都采用的是单缸顶升液压系统, 少数较大吨位的自 升式塔式起重机采用的是双缸顶升液压系统,将平衡阀或液压锁刚性连接在油缸体上, 达到防爆抗衡的目的, 保证安全。 而对于特大吨位的自升式塔式起重机如果采用上述 方式, 会使得顶升油缸尺寸巨大, 且安装维护不方便。 对于两缸以上的多缸顶升作业的大吨位自升式塔机, 如果还只是简单的采用将平 衡阀或液压锁刚性连接在油缸体上, 就会存在以下几个问题:
1.不能保证各油缸的运行同步, 因为即使采用了同步阀等同步控制措施, 但在油 缸启动时不能保证各油缸的平衡阀或液压锁同时开启的情况下, 也会造成不同步。 油 缸在顶升或活塞杆伸出时的同步精度取决于同步阀的控制精度; 但在油缸下降或活塞 杆缩回时, 同步精度除了同步阀的控制精度外, 还会受到平衡阀的影响, 现有的采用 双缸顶升作业的塔机即存在此问题。
2.采用液压锁的顶升油缸, 由于各油缸的无杆腔由各自的液压锁锁闭, 一旦某一 个液压锁未能及时打开, 则整个爬升架的重量再加上其它油缸的回拉力同时作用在这 一个油缸上, 超压憋缸会对此油缸造成破坏性的损害, 构成严重的安全隐患。 发明内容 本发明旨在提供一种塔式起重机的顶升结构、 顶升结构的液压系统和塔式起重机 的顶升方法, 以解决现有技术中塔式起重机使用多油缸进行顶升时不能同步运行的问 题。 为了实现上述目的, 根据本发明的一个方面, 提供了一种塔式起重机的顶升结构 的液压系统, 用于驱动塔式起重机的爬升架在塔式起重机的塔身上升或下降, 液压系 统包括多个油缸, 液压系统包括多个油缸, 油缸分别连接塔式起重机的顶升横梁和上 横梁; 其中, 多个油缸中的每个油缸具有正向支工作油路和反向支工作油路, 每个油 缸的正向支工作油路上设有调整液压油正向流速的正向调速阀, 每个油缸的反向支工 作油路上设有调整液压油反向流速的反向调速阀。 进一步地, 顶升结构的液压系统还包括设置在各正向支工作油路上的平衡阀。 进一步地, 所述平衡阀包括进油口、 出油口和控制油口, 所述进油口与所述正向 支工作油路相连通, 所述出油口与所述油缸的无杆腔和有杆腔之一相连通, 所述控制 油口与所述反向支工作油路以及无杆腔和有杆腔中的另一个相连通。 进一步地, 液压系统还包括分别与正向支工作油路及反向支工作油路相连通的主 油路, 主油路上还设有导压单向阀, 导压单向阀分别与各油缸的正向支工作油路相连 通, 导压单向阀的开启比小于每个平衡阀的开启比。 进一步地, 每个油缸的正向支工作油路和反向支工作油路上均设有截止阀。 进一步地, 多个油缸并联在一个油箱上, 液压系统还包括连接在油箱与多个油缸 之间的主油路, 主油路与正向支工作油路及反向支工作油路均连通, 主油路上还设有 组合阀, 组合阀内部包括相互连通的组合换向阀和组合溢流阀。 进一步地, 主油路上设有与油箱串联的背压阀, 背压阀与反向支工作油路相连通。 进一步地, 主油路上设有溢流阀, 溢流阀与反向支工作油路相连通。 进一步地, 多个油缸的数目为六个, 塔身具有两个侧面和与两个侧面相连的正面 以及背面, 在每个侧面以及背面上各设有连接在爬升架与顶升横梁之间的两个油缸。 本发明还提供了一种塔式起重机的顶升结构, 包括塔身和设置在塔身顶部的爬升 架, 塔身上设有踏步, 顶升横梁的底部与上横梁连接, 踏步支撑顶升横梁, 还包括根 据前述的顶升结构的液压系统。 本发明还提供了一种塔式起重机的顶升方法, 设置多个油缸连接在起重机的上横 梁与顶升横梁之间, 通过每个油缸上的正向调速阀和反向调速阀控制各个油缸支工作 油路上的液压油的进退速度和各油缸的同步精度, 通过各个油缸支工作油路上的液压 油的进退速度相等和各油缸的同步动作实现各个油缸的同步顶升。 进一步地, 在塔式起重机的爬升架的两个侧面和背面上各设置两个油缸, 每个油 缸连接在上横梁与顶升横梁之间, 通过每个油缸上的正向调速阀和反向调速阀控制各 个油缸支工作油路上的液压油的进退速度相等和各油缸的同步动作。 进一步地, 通过设置与油箱串联的背压阀来平衡顶升横梁的重量。 进一步地, 通过在每个油缸上设置控制油缸的无杆腔的平衡阀来防止爬升架因油 缸的失压而下坠。 进一步地, 在液压系统的主油路上设置导压单向阀, 导压单向阀的开启比小于每 个平衡阀的开启比。 根据本发明的技术方案, 可以通过每个油缸上的正向调速阀和反向调速阀控制各 个油缸支工作油路上的液压油的进退速度和各油缸的同步精度, 通过各个油缸支工作 油路上的流速相等实现各个油缸的同步顶升, 因而解决了现有技术中塔式起重机使用 多油缸进行顶升时不能同步的问题, 克服了现有技术使用同步阀的效果不好的问题。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性实 施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1示出了根据本发明实施例的塔式起重机的顶升结构的工作原理示意图; 图 2示出了根据本发明实施例的塔式起重机的顶升结构的液压系统的结构; 图 3示出了根据本发明实施例的塔式起重机的顶升结构的背面平面上的结构; 图 4示出了根据本发明实施例的塔式起重机的顶升结构的侧面平面上的结构; 图 5示出了根据本发明实施例的塔式起重机的顶升结构的正面平面上的结构; 以 及 图 6示出了根据本发明实施例的塔式起重机的顶升横梁的结构。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 如图 1所示, 根据本发明实施例的塔式起重机通过顶升结构的液压系统驱动塔式 起重机的爬升架 31在塔式起重机的塔身 39上升降,例如,爬升架 31受液压系统的支 撑和驱动, 通过塔身 39上的导轮 32在塔身 39上升降。 液压系统包括多个油缸 15, 例如可以包括: 两个、 三个、 四个、 六个或八个油缸, 采用上述数量的油缸 15时, 油 缸 15容易布置, 例如包括两个油缸 15时, 两个油缸 15可以布置在爬升架 31的一侧 或者两侧。 每个油缸 15的活塞杆和缸筒分别连接塔式起重机的顶升横梁 35和上横梁 34,其中,上横梁 34固定在爬升架 31上,顶升横梁 35可拆卸地与各标准节固定连接, 即爬升架 31爬升时, 顶升横梁 35和最顶端的标准节连接, 当增加了新的标准节后, 顶升横梁 35与原标准节分离并与新增的标准节连接。 在爬升架 31顶升的过程中, 可 以利用挂板 33进行爬升架 31的支撑和爬升架 31的定位, 从而可以调整顶升横梁 35 的位置。 塔式起重机的塔身 39上设置有踏步 37, 在顶升结束后, 踏步 37支撑住顶升 横梁 35并对顶升横梁 35限位, 防止顶升横梁 35移动, 以保证塔式起重机的安全。 如图 2所示, 根据本发明的一个实施例, 液压系统中包括六个油缸 15, 各油缸型 号和结构可以相同,该多个油缸 15中的每个油缸具有正向支工作油路和反向支工作油 路, 分别用于控制相应油缸 15的无杆腔和有杆腔的运动。该液压系统还包括与正向支 工作油路及反向支工作油路均相连通的主油路 21。 在本实施例中, 主油路 21包括与 各正向支工作油路相连通的第一主油路和与各反向支工作油路相连通的第二主油路。 其中, 正向支工作油路的一端与油缸 15的无杆腔相连通, 另一端通过第一主油路与液 压系统的油箱 1相连通, 反向支工作油路的一端与油缸 15的有杆腔相连通, 另一端通 过第二主油路与液压系统的油箱 1相连通。每个油缸 15的正向支工作油路和反向支工 作油路上分别设有调速阀 14, 设置在正向支工作支路上的调速阀 14为正向调速阀, 用于正向支工作油路中的流速的调整;设置在反向支工作支路上的调速阀 14为反向调 速阀, 用于反向支工作油路中的流速的调整。调速阀 14上具有较为精确的刻度, 可以 对工作油路中的液压油的速度和流量进行精确的控制。可以理解, 当油缸 15的活塞杆 连接到上横梁 34, 而缸筒连接到顶升横梁 35时, 正向支工作油路应与有杆腔连通, 而反向支工作油路与无杆腔连通。 请再参阅图 2, 液压系统还包括油泵 6和驱动油泵 6的马达 7, 油泵 6设置于主油 路 21上, 且其一端与油箱 1连通, 另一端同时与正向支工作油路和反向支工作油路连 通。 具体的, 如图 2所示, 六个油缸 15的正向调速阀分别为 All , A12, A13 , A14, A15, A16, 六个油缸 15的反向调速阀分别为 Bll, B12, B13 , B14, B15, B16。 通 过使每个支路上的调速阀 14的旋开刻度相同,可以分别控制每个油缸的进退速度和各 油缸的同步精度。 各油缸 15的正向支工作油路与主油路 21的第一主油路相交到交汇 点 A, 各油缸 15的反向支工作油路与主油路 21的第二主油路相交到交汇点 B。 由于 调速阀 14具有很好的速度刚性,一旦速度调定后其受负载和泵站本身压力变化的影响 较小, 因而其控制的速度基本不变, 从而能较好的提高各油缸 15的同步精度。 通过每个油缸 15 上的正向调速阀和反向调速阀控制各个油缸支工作油路上的液 压油的进退速度和各油缸的同步精度, 通过各个油缸支工作油路上的液压油的同步进 退实现各个油缸 15的同步顶升,因而本发明的液压系统解决了现有技术中塔式起重机 难以使用多油缸进行同步顶升的问题,克服了现有技术使用同步阀的效果不好的问题。 由于油缸顶升、 下降的速度并不相同, 因而没有采用由调速阀和四个单向阀组成的桥 式整流同步回路,而是每个油缸 15用两个调速阀分别控制油缸的上升和下降的速度来 实现同步, 即六个油缸 15共采用 12个调速阀来实现调速和同步控制。各油缸 15同步 运行时的累积同步误差可通过油缸活塞杆运行到位而得到消除。 优选地, 如图 2所示, 液压系统还包括设置在各正向支工作油路上的平衡阀 13。 平衡阀 13包括进油口、 出油口和控制油口, 进油口与正向支工作油路相连通, 出油口 与油缸的无杆腔和有杆腔之一相连通, 控制油口与反向支工作油路以及无杆腔和有杆 腔中的另一个相连通。 根据本发明的一个实施例, 进油口与正向支工作油路相连通, 出油口与油缸的无 杆腔相连通,控制油口与相应的反向支工作油路以及有杆腔上的有杆控制油口相连通。 其中, 有杆控制油口设置在油缸的有杆腔上, 通过与平衡阀 13的连通, 控制无杆腔内 的压力, 以减少无用功的消耗。 具有六个油缸 15 的液压系统中上共设有六个平衡阀 13, 在塔机即塔式起重机进行顶升加节作业时, 一旦连接油缸无杆腔的某一根胶管突 然爆裂时, 无杆腔因突然失压使油缸托着位于塔式起重机上部的爬升架 31超速下坠, 此情形下, 平衡阀 13将会关闭, 将油缸保持住, 保证塔机的安全作业。 另外, 如图 2 所示,平衡阀 13的控制油口与有杆腔上的有杆控制油口相连通, 从而调节有杆腔的工 作压力, 以减小能耗。 优选地, 如图 2所示, 多个油缸 15并联在一个油箱 1上, 这样, 可以节省空间, 减少塔机的重量。 液压系统的主油路 21的第二主油路上设有与油缸 15串联的背压阀 11, 背压阀 11与各反向支工作油路相连通, 且和油泵 6相连通。 背压阀 11主要用于平衡油缸活塞杆端的顶升横梁 35的重量。由于油缸 15的活塞 杆上连接有顶升横梁 35, 因此, 当活塞杆下行到某一位置停止时, 重量很大的顶升横 梁 35具有惯性, 还会带动活塞杆加速下行, 从而影响活塞的位置精度。 此种情形下, 设置的背压阀 11, 可以使得系统重量达到平衡。 优选地, 如图 2所示, 液压系统还包括分别与正向支工作油路及反向支工作油路 相连通的主油路 21, 主油路 21上还设有组合阀 9, 组合阀 9内部包括相互连通的组合 换向阀和组合溢流阀。 组合阀 9的进油口和油泵 6连通, 出油口和正向支工作油路及 反向支工作油路连通。 该液压系统还包括回油油路, 该组合阀 9的出油口、 正向支工 作油路及反向支工作油路通过该回油油路直接与油箱 1连通。 组合阀 9是一个集成了多个阀的综合阀, 在本实施例中, 组合阀 9用于控制主油 路 21上的液压油的打开、 换向和溢流。 其中, 组合换向阀包括单向阀、 换向阀, 组合 溢流阀包括溢流阀。 可以采用组装好的作为成品出售的组合阀, 也可以采用单向阀、 换向阀和溢流阀或其他阀现场组装。 优选地, 采用组装好的组合阀, 这样节省安装时 间, 而且便于购买。 优选地, 如图 2所示, 液压系统还包括分别与正向支工作油路及反向支工作油路 相连通的主油路 21, 主油路 21上还设有导压单向阀 12, 导压单向阀 12分别与各油缸 15的正向支工作油路相连通, 导压单向阀 12的开启比小于每个平衡阀 13的开启比。 在各油缸 15的与正向支工作油路相连通的第一主油路上设置导压单向阀 12, 保证在 塔式起重机顶升时液压油仅能单向流入正向支工作油路中而不会回流。导压单向阀 12 的开启比小于每个平衡阀 13的开启比, 即平衡阀 13先于导压单向阀 12开启, 以减小 油缸 15的启动误差。 进一步地, 导压单向阀 12设置于组合阀 9和正向支工作油路之 间。 此外, 导压单向阀 12和平衡阀 13的另一作用是让从泵站到油缸 15即从背压阀 11、 导压单向阀 12到油缸 15的所有管路中充满油, 不让管路放空, 以避免进入空气, 确保油缸运行平稳和同步。 优选地, 如图 2所示, 每个油缸的正向支工作油路和反向支工作油路上均设有截 止阀 16。 六个油缸 15的油路上共设有十二个截止阀 16。 这样, 可以控制单个油缸的 单动或其中任意几个油缸的联动; 同时在油缸需长时间保持时, 可关闭各截止阀 16, 使工作管路无泄漏。 优选地, 主油路 21上设有溢流阀 10, 溢流阀 10与反向支工作油路相连通, 并和 油箱 1相连通。 溢流阀 10通过反向支工作油路与油缸 15的有杆腔相连通, 用于降低 油缸 15的有杆腔内的压力, 减少无用功, 提高整个系统的能效。 油缸的数目为六个, 优选地, 如图 3至图 5所示, 塔身具有两个侧面和与两个侧 面相连的正面以及背面, 即塔身 39具有左侧面 391、 右侧面 392、 正面引进面 393和 背面 394, 在每个侧面以及背面上各设有连接在爬升架 31与顶升横梁 35之间的两个 油缸 15,在塔身正面引进面 393上不设置油缸 15, 以便于在塔身正面引进面 393进行 顶升的准备工作, 例如从正面引进面 393引进一些顶升工作所需要的部件。 这种设置即为塔式起重机的三面六油缸顶升结构, 如图 2至图 6所示, 该顶升结 构由三件顶升横梁 35、 六根顶升油缸 15、 一个液压泵站 50以及液压胶管 17等组成。 每两根顶升油缸 15通过销轴分别联接到一件顶升横梁 35和爬升架 31上,每根顶升油 缸 15均通过液压胶管 17与液压泵站 50连接。 三件顶升横梁 35分别布置在塔机的标 准节引进面的对面和侧面。 通过顶升液压系统的控制, 使塔机在自顶升时, 每根油缸 15运行同步, 且承受的压力一致, 在塔机顶升加节和降塔减节时, 运行平稳、 安全可 靠, 而且, 每两油缸 15共用一个顶升横梁 35, 顶升所需要的支撑力分为六个油缸 15 支撑,每根顶升油缸 15只需较小的顶升力,这样就可以采用尺寸较小的常用顶升油缸, 节省成本和所占用的空间, 尤其对于大型或超大型的塔式起重机, 例如, D5200-240 自升式特大型塔式起重机, 顶升重量大, 达 800多吨, 顶升横梁 35自重达 4吨以上, 通过三面六油缸顶升结构可以很容易地进行顶升, 而现有技术则需要通过复杂的方法 才能实现, 而且现有技术容易存在憋缸现象。 此外, 本发明不限于三面六油缸的设置方式, 例如可以设置为在两个侧面上设置 两面两油缸和两面四油缸, 还可以设置为三面三油缸。 使用三面六油缸顶升结构, 塔机自顶升加节或降塔减节的步骤如下:
1、 开动液压泵站 50, 伸出油缸 15将三个顶升横梁 35挂在距离最近的一组踏步 内, 插入安全销; 2、 确认无误后, 开动液压系统, 使活塞杆伸出, 将爬升架 31及其以上部分顶起。 在顶升过程中, 通过液压系统的控制, 使六根油缸 15同步上升, 且承受的压力一 致。 使用三面六油缸顶升结构主要工作过程简述: 当进行塔机顶升作业时, 开启驱动电机 7, 液压油经过滤器 2过滤后, 由高压泵 6 输送至组合阀 9, 扳动手柄至换向左位, 液压油自由通过导压单向阀 12和平衡阀 13, 进入油缸 15的无杆腔, 首先将连接在油缸活塞杆端的顶升横梁 35落入塔身踏步, 让 六油缸同步顶升, 同步精度预先通过调速阀 14调整好。 当同步顶升到位后,扳动换向手柄至组合阀 9的右位,液压油自由通过背压阀 11, 并经调速阀 14同步调速后进入各自的有杆腔,同时来自第二主油路的控制油开启设置 于第一主油路上的导压单向阀 12, 油缸顶着爬升架 31下降, 整个塔机上部的重量通 过调整平衡阀 13来获得平衡, 使爬升架 31回落运行平稳; 套好挂板 33, 此时整个塔 机上部的重量由挂板 33支撑,然后油缸 15的活塞杆收缩带着顶升横梁 35同步脱出塔 身踏步, 顶升横梁 35上升。 顶升完成后, 塔式起重机的下支座将与标准节顶部会空出一个标准节的空位, 此 时, 上回转部分将全部由爬升架 31支撑, 如果此时在标准节顶部和下支座之间再装上 一节标准节, 新装标准节的上部与下支座连接, 新标准节的下部与原有标准节相连, 这样塔式起重机就完成了加高的过程。塔式起重机要降低高度时, 上面过程相反即可。 当油缸活塞杆带着顶升横梁 35回缩到上一级标准节踏步上方时,换向手柄打到左 位, 油缸活塞杆伸出, 带着顶升横梁 35同步下行落入到踏步沟内, 顶升横梁 35的重 量通过调整背压阀 11来获得平衡; 组合阀 9手柄继续打到左位, 则重复上述步骤可进 行第二次的顶升作业。 当进行塔机降塔减节作业时, 开启驱动马达 7, 液压油经过滤器 2过滤后, 由高 压泵 6输送至组合阀 9,扳动手柄至换向左位,液压油自由通过单向阀 12和平衡阀 13, 进入油缸 15的无杆腔, 油缸活塞杆伸出,将连接在油缸活塞杆端的顶升横梁同步落入 塔身下一节的踏步内, 当继续同步顶升到位并完成减标准节后, 扳动换向手柄至组合 阀 9的右位, 液压油自由通过背压阀 11, 并经调速阀 14同步调速后进入各自的有杆 腔, 同时来自右路的控制油开启左路的单向阀 12, 油缸顶着移动爬升架 31平稳回落, 然后套好挂板, 活塞杆带着顶升横梁同步脱出踏步; 当油缸活塞杆带着顶升横梁脱出 踏步后, 换向手柄打到左位, 油缸活塞杆伸出, 带着顶升横梁 35下行落入到下一节踏 步沟内, 组合阀 9手柄打到左位, 则重复上述步骤可进行第二次的减节作业。 在塔机进行顶升加节作业时, 一旦连接油缸无杆腔的某一根胶管突然爆裂时, 无 杆腔因突然失压使油缸 15托着爬升架 31超速下坠, 平衡阀 13关闭, 将油缸 15保持 住, 保证塔机的安全作业。 在液压系统中, 油泵 50出口的压力由组合阀 9调定,一般按实际顶升压力的 1.15 倍来设定, 油缸有杆腔的工作压力由溢流阀 10来调定,其压力值小于泵出口设定压力 值, 以减小能耗。 从以上的描述中, 可以看出, 本发明上述的实施例实现了如下技术效果: 本发明对于需两缸以上的多缸顶升作业的塔机在顶升加节和降塔减节时运行平 稳、 安全可靠, 不会存在憋缸现象; 本发明能很好的保证多油缸的基本同步, 多油缸的同步精度主要取决于调速阀的 控制精度, 基本不受平衡阀的影响。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种塔式起重机的顶升结构的液压系统, 用于驱动塔式起重机的爬升架在塔式 起重机的塔身上升或下降, 其特征在于:
所述液压系统包括多个油缸, 所述油缸分别连接所述塔式起重机的顶升横 梁和上横梁;
其中, 所述多个油缸中的每个所述油缸具有正向支工作油路和反向支工作 油路, 每个所述油缸的所述正向支工作油路上设有调整液压油正向流速的正向 调速阀, 每个所述油缸的所述反向支工作油路上设有调整液压油反向流速的反 向调速阀。
2. 根据权利要求 1所述的顶升结构的液压系统, 其特征在于, 还包括设置在各所 述正向支工作油路上的平衡阀。
3. 根据权利要求 2所述的顶升结构的液压系统, 其特征在于, 所述平衡阀包括进 油口、 出油口和控制油口, 所述进油口与所述正向支工作油路相连通, 所述出 油口与所述油缸的无杆腔和有杆腔之一相连通, 所述控制油口与所述反向支工 作油路以及无杆腔和有杆腔中的另一个相连通。
4. 根据权利要求 3所述的顶升结构的液压系统, 其特征在于, 所述液压系统还包 括分别与所述正向支工作油路及所述反向支工作油路相连通的主油路, 所述主 油路上还设有导压单向阀, 所述导压单向阀分别与各所述油缸的正向支工作油 路相连通, 所述导压单向阀的开启比小于每个所述平衡阀的开启比。
5. 根据权利要求 4所述的顶升结构的液压系统, 其特征在于, 每个所述油缸的正 向支工作油路和反向支工作油路上均设有截止阀。
6. 根据权利要求 1所述的顶升结构的液压系统, 其特征在于, 所述多个油缸并联 在一个油箱上, 所述液压系统还包括连接在所述油箱与所述多个油缸之间的主 油路, 所述主油路与正向支工作油路及反向支工作油路均连通, 所述主油路上 还设有组合阀, 所述组合阀内部包括相互连通的组合换向阀和组合溢流阀。
7. 根据权利要求 6所述的顶升结构的液压系统, 其特征在于, 所述主油路上设有 与所述油箱串联的背压阀, 所述背压阀与所述反向支工作油路相连通。
8. 根据权利要求 6所述的顶升结构的液压系统, 其特征在于, 所述主油路上设有 溢流阀, 所述溢流阀与所述反向支工作油路相连通。
9. 根据权利要求 1至 8中任一项所述的顶升结构的液压系统, 其特征在于, 所述 多个油缸的数目为六个, 所述塔身具有两个侧面和与所述两个侧面相连的正面 以及背面, 在每个所述侧面以及所述背面上各设有连接在所述爬升架与所述顶 升横梁之间的两个油缸。
10. 一种塔式起重机的顶升结构, 包括塔身和设置在所述塔身顶部的爬升架, 所述 塔身上设有踏步,顶升横梁的底部与上横梁连接,所述踏步支撑所述顶升横梁, 其特征在于:还包括根据权利要求 1至 9中任一项所述的顶升结构的液压系统。
11. 一种塔式起重机的顶升方法, 其特征在于: 设置多个油缸连接在起重机的上横 梁与顶升横梁之间, 通过每个油缸上的正向调速阀和反向调速阀控制各个油缸 支工作油路上的液压油的进退速度和各油缸的同步精度, 通过各个油缸支工作 油路上的液压油的进退速度相等和各油缸的同步动作实现各个油缸的同步顶 升。
12. 根据权利要求 11所述的顶升方法,其特征在于:在塔式起重机的爬升架的两个 侧面和背面上各设置两个油缸, 每个油缸连接在所述上横梁与顶升横梁之间, 通过每个油缸上的正向调速阀和反向调速阀控制各个油缸支工作油路上的液压 油的进退速度相等和各油缸的同步动作。
13. 根据权利要求 12所述的顶升方法,其特征在于:通过设置与所述油箱串联的背 压阀来平衡顶升横梁的重量。
14. 根据权利要求 11所述的顶升方法,其特征在于:通过在每个所述油缸上设置控 制所述油缸的无杆腔的平衡阀来防止爬升架因所述油缸的失压而下坠。
15. 根据权利要求 14所述的顶升方法,其特征在于:在液压系统的主油路上设置导 压单向阀, 所述导压单向阀的开启比小于每个所述平衡阀的开启比。
PCT/CN2011/078540 2011-03-02 2011-08-17 塔式起重机的顶升结构及其液压系统和顶升方法 WO2012116537A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11859735.0A EP2620405B1 (en) 2011-03-02 2011-08-17 Lifting structure of tower crane, hydraulic system of lifting structure, and lifting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110050632.5 2011-03-02
CN 201110050632 CN102173363B (zh) 2011-03-02 2011-03-02 塔式起重机的顶升结构及其液压系统和顶升方法

Publications (1)

Publication Number Publication Date
WO2012116537A1 true WO2012116537A1 (zh) 2012-09-07

Family

ID=44516674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078540 WO2012116537A1 (zh) 2011-03-02 2011-08-17 塔式起重机的顶升结构及其液压系统和顶升方法

Country Status (3)

Country Link
EP (1) EP2620405B1 (zh)
CN (1) CN102173363B (zh)
WO (1) WO2012116537A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105438989A (zh) * 2014-12-19 2016-03-30 徐州重型机械有限公司 起重机上下车供油系统
CN113264459A (zh) * 2021-05-31 2021-08-17 湖南三一塔式起重机械有限公司 塔式起重机及其顶升配平方法
CN113955653A (zh) * 2021-10-11 2022-01-21 中联重科建筑机械(江苏)有限责任公司 自爬升式塔机及其多缸顶升系统

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502434B (zh) * 2011-10-21 2013-12-11 四川宏华石油设备有限公司 一种关节吊变幅液压控制系统
CN102505630A (zh) * 2011-11-17 2012-06-20 廊坊凯博建设机械科技有限公司 桥梁检测作业车双油缸同步系统
CN102491186A (zh) * 2011-12-19 2012-06-13 中联重科股份有限公司 塔式起重机
CN103303811A (zh) * 2013-06-13 2013-09-18 山东丰汇设备技术有限公司 内爬塔机自动顶升系统
CN103626047A (zh) * 2013-09-09 2014-03-12 胡江 船用伸缩起重机
CN103663183A (zh) * 2013-11-29 2014-03-26 江苏大通重工有限公司 快速自安装塔式起重机
CN104528582A (zh) * 2014-12-26 2015-04-22 柳州欧维姆机械股份有限公司 智能分控式液压同步顶升系统及其用于桥梁支座更换的方法
CN105129608A (zh) * 2015-06-12 2015-12-09 焦作大学 一种集装箱起重机加高装置
CN105271014A (zh) * 2015-09-30 2016-01-27 徐州建机工程机械有限公司 一种塔机可拆式套架结构
CN105174062B (zh) * 2015-10-19 2017-04-19 中联重科股份有限公司 一种多油缸顶升同步控制系统、方法、装置及塔式起重机
CN105417429A (zh) * 2015-12-22 2016-03-23 中联重科股份有限公司 配重提升装置及具有其的起重机
CN105480876A (zh) * 2016-01-04 2016-04-13 徐州建机工程机械有限公司 一种塔式起重机内顶升机构
CN106762883B (zh) * 2016-12-30 2018-07-13 中联重科股份有限公司 液压系统及塔机
CN109368498B (zh) * 2018-08-09 2020-06-09 青岛理工大学 一种基于bim智能装配式节点构造与建造的自动化系统
CN110206155B (zh) * 2019-05-31 2021-06-15 浙江精工钢结构集团有限公司 一种底部加节液压顶升系统及施工方法
CN115490164A (zh) * 2022-09-22 2022-12-20 徐州建机工程机械有限公司 一种塔机爬升过程防脱结构、防脱方法及塔机

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2253201A1 (de) * 1972-10-30 1974-05-09 Jul Wolff & Co Gmbh Vorrichtung zum hochheben des oberteils eines turmkranes oder dergleichen kranes von seinem unterteil
JPH0286597A (ja) * 1988-05-09 1990-03-27 Etsuhara Yoshitada 建設用タワークレーンのジブ起伏速度制御装置
JPH08245176A (ja) * 1995-03-13 1996-09-24 Ishikawajima Harima Heavy Ind Co Ltd タワークレーン
CN2333687Y (zh) * 1998-06-03 1999-08-18 胡建锋 内爬塔式起重机爬升机构
CN2466125Y (zh) * 2001-02-28 2001-12-19 长沙中联重工科技发展股份有限公司 自升式内爬顶升系统
CN2488893Y (zh) * 2001-08-10 2002-05-01 王震山 塔机液压顶升装置
CN2658453Y (zh) * 2003-11-21 2004-11-24 谢彬 新型塔式起重机液压顶升泵站
CN201225344Y (zh) * 2008-05-20 2009-04-22 上海建工(集团)总公司 建筑施工爬模顶升同步控制系统
CN201495049U (zh) * 2009-09-29 2010-06-02 四川建设机械(集团)股份有限公司 塔式起重机顶升动力机构
CN202016806U (zh) * 2011-03-02 2011-10-26 长沙中联重工科技发展股份有限公司 塔式起重机的顶升结构及其液压系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4274542A (en) * 1979-02-26 1981-06-23 Fmc Corporation Method for transfer of crane from tower
DE4135961A1 (de) * 1991-06-04 1992-12-10 Liebherr Werk Biberach Gmbh Klettereinrichtung zum klettern grosser klettergewichte bei turmdrehkranen, arbeitsbuehnen o. dgl.
CN2679123Y (zh) * 2002-12-19 2005-02-16 胡建锋 新型内爬塔式起重机
DE202005009236U1 (de) * 2005-05-09 2006-09-21 Liebherr-Werk Biberach Gmbh Kletteinrichtung für einen Turmdrehkran
CN201288033Y (zh) * 2008-08-28 2009-08-12 中国二十冶建设有限公司 八点液压同步顶升设备的控制装置
CN201334318Y (zh) * 2008-12-25 2009-10-28 张恕铭 一种塔机升降装置
CN101759106B (zh) * 2009-12-29 2012-07-25 中联重科股份有限公司 塔式起重机顶升油缸和上横梁的连接结构及连接方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2253201A1 (de) * 1972-10-30 1974-05-09 Jul Wolff & Co Gmbh Vorrichtung zum hochheben des oberteils eines turmkranes oder dergleichen kranes von seinem unterteil
JPH0286597A (ja) * 1988-05-09 1990-03-27 Etsuhara Yoshitada 建設用タワークレーンのジブ起伏速度制御装置
JPH08245176A (ja) * 1995-03-13 1996-09-24 Ishikawajima Harima Heavy Ind Co Ltd タワークレーン
CN2333687Y (zh) * 1998-06-03 1999-08-18 胡建锋 内爬塔式起重机爬升机构
CN2466125Y (zh) * 2001-02-28 2001-12-19 长沙中联重工科技发展股份有限公司 自升式内爬顶升系统
CN2488893Y (zh) * 2001-08-10 2002-05-01 王震山 塔机液压顶升装置
CN2658453Y (zh) * 2003-11-21 2004-11-24 谢彬 新型塔式起重机液压顶升泵站
CN201225344Y (zh) * 2008-05-20 2009-04-22 上海建工(集团)总公司 建筑施工爬模顶升同步控制系统
CN201495049U (zh) * 2009-09-29 2010-06-02 四川建设机械(集团)股份有限公司 塔式起重机顶升动力机构
CN202016806U (zh) * 2011-03-02 2011-10-26 长沙中联重工科技发展股份有限公司 塔式起重机的顶升结构及其液压系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105438989A (zh) * 2014-12-19 2016-03-30 徐州重型机械有限公司 起重机上下车供油系统
CN113264459A (zh) * 2021-05-31 2021-08-17 湖南三一塔式起重机械有限公司 塔式起重机及其顶升配平方法
CN113955653A (zh) * 2021-10-11 2022-01-21 中联重科建筑机械(江苏)有限责任公司 自爬升式塔机及其多缸顶升系统

Also Published As

Publication number Publication date
CN102173363B (zh) 2013-09-18
EP2620405A1 (en) 2013-07-31
EP2620405A4 (en) 2014-04-16
EP2620405B1 (en) 2015-10-14
CN102173363A (zh) 2011-09-07

Similar Documents

Publication Publication Date Title
WO2012116537A1 (zh) 塔式起重机的顶升结构及其液压系统和顶升方法
CN105502234B (zh) 可调速大推力液压升降台
CN105257614A (zh) 一种超大重型设备的液压油缸高精度同步控制成套装置
WO2011063589A1 (zh) 一种液压传动平衡一体化四柱举升机
CN201512396U (zh) 一种液压升降机
CN103708376A (zh) 大型甲板片大位移同步顶升控制结构
CN101670996A (zh) 一种液压升降机
CN207061745U (zh) 一种三维调整机的液压泵站
CN202016806U (zh) 塔式起重机的顶升结构及其液压系统
CN204961455U (zh) 一种油缸、使用该油缸的全闭式液压系统
CN201250085Y (zh) 可倾式液压升降机
CN205112085U (zh) 一种液压内模施工系统
CN207033867U (zh) 一种超薄剪式举升机的双独立液压系统
CN205190393U (zh) 超大重型设备的液压驱动装置
CN206352387U (zh) 一种自动爬升式可变形电梯井操作钢平台
CN102182188B (zh) 地下连续墙接头管全液压静力拔管机械及拔管方法
CN105114392A (zh) 一种油缸、使用该油缸的全闭式液压系统及控制方法
CN205190395U (zh) 超大重型设备的液压油缸高精度同步控制成套装置
CN201649047U (zh) 用于闸阀式工作闸门的液压启闭机
CN204893934U (zh) 一种液压浇注机械手
CN111792545A (zh) 一种顶升加节机构下置的平头塔机
CN102963850A (zh) 升降式作业平台及其底座
CN205527547U (zh) 一种汽车举升机同步平衡系统
CN203321943U (zh) 一种平面工作闸门液压启闭装置
CN207348829U (zh) 液压双臂平衡式抽油机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859735

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011859735

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE