WO2012115263A1 - 非水電解液二次電池 - Google Patents

非水電解液二次電池 Download PDF

Info

Publication number
WO2012115263A1
WO2012115263A1 PCT/JP2012/054714 JP2012054714W WO2012115263A1 WO 2012115263 A1 WO2012115263 A1 WO 2012115263A1 JP 2012054714 W JP2012054714 W JP 2012054714W WO 2012115263 A1 WO2012115263 A1 WO 2012115263A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
battery
aqueous electrolyte
compound
active material
Prior art date
Application number
PCT/JP2012/054714
Other languages
English (en)
French (fr)
Inventor
峻 野村
長谷川 和弘
毅 小笠原
藤本 洋行
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US13/983,952 priority Critical patent/US20130316227A1/en
Priority to CN2012800100884A priority patent/CN103392256A/zh
Priority to JP2013501157A priority patent/JP6124303B2/ja
Publication of WO2012115263A1 publication Critical patent/WO2012115263A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • Lithium ion batteries that charge and discharge by moving lithium ions between positive and negative electrodes have high energy density and high capacity, and are therefore widely used as drive power sources for such mobile information terminals. .
  • the mobile information terminal has a tendency to further increase power consumption with enhancement of functions such as a video playback function and a game function, and further increase in capacity is strongly desired.
  • measures to increase the capacity of the non-aqueous electrolyte secondary battery other than measures such as using an active material with a high capacity per unit mass or increasing the filling amount of the active material per unit volume, charging the battery There is a way to increase the voltage. When the charging voltage of the battery is increased, an oxidative decomposition reaction between the positive electrode active material and the nonaqueous electrolytic solution is likely to occur.
  • a non-aqueous electrolyte contains a chain isocyanate compound (see Patent Document 1).
  • JP 2006-164759 A JP2007-242411 JP2010-2445016 Japanese Patent No. 2855877 JP 2005-85635 A
  • Patent Document 3 describes that lithium cobaltate is mainly used as a positive electrode active material, and the main purpose is to suppress the reaction between the positive electrode active material and the non-aqueous electrolyte when the charging voltage is increased. Yes. However, there remains room for improving discharge characteristics and storage characteristics after high-temperature continuous charging.
  • Patent Documents 4 and 5 describe that zirconium is added to lithium cobalt oxide in order to improve high capacity and cycle characteristics, but there is a problem that the voltage drop after high-temperature continuous charging becomes large. .
  • the non-aqueous electrolyte secondary battery of the present invention includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a non-aqueous electrolyte, and a separator provided between the positive electrode and the negative electrode.
  • the positive electrode active material comprises a lithium transition metal composite oxide and a compound containing a rare earth element fixed to at least a part of the surface of the lithium transition metal composite oxide, and in the non-aqueous electrolyte. Is characterized in that it contains a compound containing two or more isocyanate groups.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1.
  • Explanatory drawing which shows the surface state of the lithium cobalt oxide of this invention.
  • Explanatory drawing which shows the surface state of the lithium cobaltate of a reference example.
  • the graph which shows voltage drop amount (DELTA) Vmax at the time of the discharge capacity measurement before and after high temperature continuous charge.
  • DELTA voltage drop amount
  • the non-aqueous electrolyte secondary battery of the present invention includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a non-aqueous electrolyte, and a separator provided between the positive electrode and the negative electrode.
  • the positive electrode active material comprises a lithium transition metal composite oxide and a compound containing a rare earth element fixed to at least a part of the surface of the lithium transition metal composite oxide, and in the non-aqueous electrolyte. Is characterized in that it contains a compound containing two or more isocyanate groups.
  • the nonaqueous electrolyte secondary battery which was excellent in the discharge characteristic after high-temperature continuous charge, and suppressed the fall of the residual capacity after high-temperature continuous charge can be provided.
  • the compound containing a rare earth element fixed to at least a part of the surface of the lithium transition metal composite oxide effectively decomposes the compound containing two or more isocyanate groups on the surface of the positive electrode active material.
  • a high-quality film is formed on the surface of the active material. This is because the positive electrode active material is protected by the formed film, and as a result, the oxidative decomposition reaction of the non-aqueous electrolyte is suppressed.
  • a state in which a compound containing a rare earth element such as erbium (hereinafter sometimes abbreviated as a rare earth compound) is fixed to a part of the surface of the lithium transition metal composite oxide such as lithium cobaltate particles As shown in FIG. 3, the rare earth compound particles 22 are fixed to the surfaces of the lithium transition metal composite oxide particles 21. That is, in this state, as shown in FIG. 4, lithium transition metal composite oxide particles 21 and rare earth compound particles 22 are simply mixed, and a part of the rare earth compound particles 22 is lithium transition metal composite oxide. It does not include a state where it happens to be in contact with the particle 21 of the object.
  • the compound containing the rare earth element is a hydroxide or an oxyhydroxide. This is because the decomposition reaction of the non-aqueous electrolyte on the surface of the positive electrode active material can be suppressed in the high temperature charged state when the hydroxide or oxyhydroxide is used.
  • the average particle size of the compound containing the rare earth element is preferably 100 nm or less. This is because when the average particle size of the compound exceeds 100 nm, the fixing site is partially biased, and thus the above-described effects are not sufficiently exhibited.
  • the lower limit of the average particle diameter is desirably 1 nm or more, and particularly preferably 10 nm or more. This is because when the average particle size is less than 1 nm, the compound is too small, and even a slight amount covers the surface of the positive electrode active material excessively.
  • the number of carbon atoms of the compound containing two or more isocyanate groups is preferably 4 or more and 12 or less. This is because when the number of carbon atoms is 3 or less, the compound is unstable and easily decomposes, and the decomposition reaction is difficult to control. Further, when the number of carbon atoms is 13 or more, the compound is stable and hardly decomposed, and a good protective film is hardly formed on the surface of the positive electrode active material.
  • the above-mentioned compound containing an isocyanate group used in the present invention may be cyclic, chain-like, or cyclic with a side chain.
  • the ring shape is particularly preferable. Since the compound containing an isocyanate group is generally commercially available, it can be easily obtained.
  • the chain structure include hexamethylene diisocyanate (hereinafter abbreviated as HMDI), tetramethylene diisocyanate, pentamethylene diisocyanate, heptamethylene diisocyanate.
  • Nato, octamethylene diisocyanate, nonamethylene diisocyanate, decamethylene diisocyanate, undecamethylene diisocyanate, dodecamethylene diisocyanate and the like, and those having a cyclic structure include 1,3-bis (isocyanate). Natemethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, 1,3-cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexanedii Cyanate and the like.
  • the compound containing two or more isocyanate groups is contained in an amount of 0.1% by mass or more and 5.0% by mass or less based on the total mass of the nonaqueous electrolytic solution.
  • the amount is less than 0.1% by mass, the film formation on the positive electrode derived from the compound containing an isocyanate group becomes insufficient.
  • the amount exceeds 5.0% by mass, an excessive film is formed. This is to inhibit the lithium insertion / extraction reaction.
  • the ratio of the compound containing the rare earth element to the total amount of the positive electrode active material is preferably 0.005% by mass or more and 0.8% by mass or less. If the ratio is less than 0.005% by mass, the amount of the compound adhering to the surface of the lithium transition metal composite oxide becomes too small, and the above effect may not be sufficiently obtained. On the other hand, when the ratio exceeds 0.8% by mass, it is excessively covered with a substance having low electron conductivity, so that the lithium insertion / extraction reaction of the positive electrode is inhibited.
  • a space between the isocyanates of the compound containing two or more isocyanate groups is cyclic.
  • the portion between the isocyanate groups is cyclic rather than chain-like, the structure of the compound is more steric. For this reason, since a three-dimensional and favorable film can be formed on the surface of a positive electrode active material, reaction with electrolyte solution can be suppressed more.
  • lithium transition metal composite oxide for example, lithium cobaltate
  • these lithium transition metal composite oxides It can be obtained by a method of mixing a solution in which a rare earth compound is dissolved in a solution in which powder is dispersed, a method of spraying a solution containing a rare earth compound while mixing a powder of a lithium transition metal composite oxide, and the like.
  • the rare earth hydroxide can be fixed to a part of the surface of the lithium transition metal composite oxide. Further, when the lithium transition metal composite oxide to which the rare earth hydroxide is fixed is heat-treated, the rare earth hydroxide fixed to a part of the surface is changed to a rare earth oxyhydroxide.
  • a rare earth compound dissolved in the solution used for fixing the rare earth hydroxide a rare earth acetate, a rare earth nitrate, a rare earth sulfate, a rare earth oxide, a rare earth chloride, or the like is used. Can do.
  • the temperature of the heat treatment is generally preferably in the range of 80 to 600 ° C, particularly preferably in the range of 80 to 400 ° C.
  • the temperature of the heat treatment exceeds 600 ° C.
  • some of the fine particles of the rare earth compound adhering to the surface diffuse into the positive electrode active material, and the initial charge / discharge efficiency decreases.
  • the heat treatment temperature exceeds 600 ° C.
  • most of the rare earth hydroxide and / or rare earth oxyhydroxide fixed to a part of the surface becomes a rare earth oxide.
  • the compound containing two or more isocyanate groups is difficult to be effectively decomposed, and a good film is hardly formed on the surface of the positive electrode active material.
  • the temperature of the heat treatment is less than 80 ° C., it takes a long time for the heat treatment, which increases the manufacturing cost.
  • nickel cobalt lithium manganate can be used as the positive electrode active material.
  • the nickel cobalt lithium manganate those having a composition in which the molar ratio of nickel, cobalt, and manganese is 1: 1: 1 or 5: 3: 2 can be used. It is preferable to use a material in which the proportion of nickel is greater than the proportion of cobalt or manganese.
  • nickel manganese aluminum lithium acid, nickel cobalt lithium aluminum acid lithium, lithium iron phosphate, manganese phosphate lithium etc. are illustrated. These may be used alone or in combination.
  • the solvent of the non-aqueous electrolyte used in the present invention is not limited, and solvents conventionally used in non-aqueous electrolyte secondary batteries can be used.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, propionic acid
  • esters such as ethyl and ⁇ -butyrolactone
  • compounds containing sulfone groups such as propane sultone, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,2-dioxane, 1,4 -Compounds containing ethers such as dioxane and 2-methyltetrahydrofuran, butyronitrile, valeronit
  • solutes can be used as the solute of the nonaqueous electrolytic solution.
  • the concentration of the solute is not particularly limited, but is preferably 0.8 to 1.7 mol per liter of the electrolyte.
  • a carbon material capable of occluding and releasing lithium a metal capable of forming an alloy with lithium, an alloy containing the metal, a compound of the alloy, and the like are exemplified. Furthermore, a mixture thereof may be used.
  • the carbon material natural graphite, non-graphitizable carbon, graphite such as artificial graphite, coke, and the like can be used, and the alloy compound includes at least one metal that can be alloyed with lithium.
  • silicon or tin is preferable as an element capable of forming an alloy with lithium, and silicon oxide, tin oxide, or the like in which these are combined with oxygen can also be used.
  • a mixture of the carbon material and the silicon or tin compound may be used.
  • a negative electrode material having a higher charge / discharge potential than lithium carbon such as lithium titanate can be used.
  • a layer made of an inorganic filler that has been conventionally used can be formed.
  • the filler it is possible to use oxides or phosphate compounds using titanium, aluminum, silicon, magnesium, etc., which have been used conventionally, or those whose surfaces are treated with hydroxide or the like.
  • the filler layer may be formed by directly applying a filler-containing slurry to the positive electrode, negative electrode, or separator, or by attaching a filler-formed sheet to the positive electrode, negative electrode, or separator. Can do.
  • the separator conventionally used can be used. Specifically, not only a separator made of polyethylene, but also a material in which a layer made of polypropylene is formed on the surface of a polyethylene layer, or a material in which a resin such as an aramid resin is applied to the surface of a polyethylene separator is used. Also good.
  • rare earth element hydroxides or oxyhydroxides of erbium and lanthanum were described as rare earth element hydroxides or oxyhydroxides.
  • the present invention is not limited to these compounds, and it can be considered that the same effect can be obtained with praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, thulium, ytterbium, and lutetium.
  • the non-aqueous electrolyte secondary battery according to the present invention is not limited to the one shown in the following embodiment, and can be implemented with appropriate modifications within a range not changing the gist thereof.
  • Example 1 [Production of positive electrode] 1000 g of lithium cobaltate particles were prepared, and the particles were added to 3.0 L of pure water and stirred to prepare a suspension in which lithium cobaltate was dispersed. Next, to this suspension, a solution in which 1.81 g of erbium nitrate pentahydrate [Er (NO 3 ) 3 .5H 2 O] is dissolved in 200 mL of pure water is added in one hour. It was. At this time, in order to adjust the pH of the solution in which lithium cobaltate was dispersed to 9, 10% by mass of nitric acid aqueous solution or 10% by mass of sodium hydroxide aqueous solution was appropriately added.
  • the obtained powder was dried at 120 ° C., and erbium hydroxide was partially applied to the surface of the lithium cobalt oxide. A compound fixed was obtained. Thereafter, the obtained powder was heat-treated in air at 300 ° C. for 5 hours. When heat treatment is performed at 300 ° C. in this way, all or most of the erbium hydroxide is changed to erbium oxyhydroxide, so that the erbium oxyhydroxide is fixed to a part of the surface of the lithium cobalt oxide particles.
  • erbium hydroxide may be fixed to a part of the surface of the lithium cobaltate particles (erbium oxyhydroxide and erbium hydroxide). Are sometimes collectively referred to as erbium compounds).
  • the erbium compound adhering to the surface was 0.068 mass% with respect to lithium cobaltate in conversion of the erbium element.
  • the erbium compound was uniformly dispersed and fixed on the surface of the lithium cobalt oxide particles, and the particle diameter was 100 nm or less.
  • the positive electrode active material thus obtained, acetylene black as a positive electrode conductive agent, and polyvinylidene fluoride (PVdF) as a binder are kneaded in N-methyl-2-pyrrolidone as a dispersion medium.
  • a positive electrode slurry was prepared. At this time, the mass ratio of the positive electrode active material, the positive electrode conductive agent, and the binder was set to 95: 2.5: 2.5.
  • the packing density of the positive electrode was 3.60 g / cm 3 .
  • Lithium hexafluorophosphate (LiPF 6 ) has a concentration of 1.0 mol / liter with respect to a mixed solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 2: 8.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • HMDI hexamethylene diisocyanate
  • the positive electrode and the negative electrode obtained as described above were wound so as to face each other with a separator made of a polyethylene microporous film having a thickness of 22 ⁇ m, to prepare a wound body.
  • a glow box under an argon atmosphere the winding body is enclosed in an aluminum laminate together with the non-aqueous electrolyte solution, so that the non-water having a thickness of 3.6 mm, a width of 3.5 cm, and a length of 6.2 cm is obtained.
  • An electrolyte secondary battery was obtained.
  • the battery thus produced is hereinafter referred to as battery A1.
  • the specific structure of the non-aqueous electrolyte secondary battery 11 is such that a positive electrode 1 and a negative electrode 2 are arranged to face each other with a separator 3 therebetween.
  • a flat electrode body composed of 1 and 2 and the separator 3 is impregnated with a non-aqueous electrolyte.
  • the positive electrode 1 and the negative electrode 2 have a structure in which a positive electrode current collecting tab 4 and a negative electrode current collecting tab 5 are connected to each other and can be charged and discharged as a secondary battery.
  • the electrode body is arrange
  • Example 2 A battery was prepared in the same manner as in Example 1 except that 1,3-bis (isocyanatomethyl) cyclohexane was used in place of hexamethylene diisocyanate (HMDI) as an additive for the non-aqueous electrolyte. did.
  • the battery thus produced is hereinafter referred to as battery A2.
  • Example 3 A battery was fabricated in the same manner as in Example 2 except that a positive electrode active material was used in which a lanthanum compound was fixed to a part of the surface of lithium cobalt oxide instead of the erbium compound.
  • the lanthanum nitrate pentahydrate was used instead of lanthanum nitrate hexahydrate, except that lanthanum nitrate hexahydrate was used.
  • a modified positive electrode active material was prepared. The battery thus produced is hereinafter referred to as battery A3.
  • the lanthanum compound was 0.057% by mass in terms of lanthanum element with respect to lithium cobaltate (if this mass ratio, the molar amount of lanthanum relative to lithium cobaltate is This is the same as the molar amount of erbium with respect to lithium cobaltate of the battery A1).
  • particles of a lanthanum compound of 100 nm or less were uniformly dispersed and fixed on the surface of lithium cobaltate.
  • Example 4 A battery was fabricated in the same manner as in Example 3 except that dodecamethylene diisocyanate was used in place of hexamethylene diisocyanate (HMDI) as an additive for the non-aqueous electrolyte.
  • HMDI hexamethylene diisocyanate
  • Example 1 A battery was fabricated in the same manner as in Example 1 except that hexamethylene diisocyanate (HMDI) was not added during the preparation of the nonaqueous electrolytic solution.
  • HMDI hexamethylene diisocyanate
  • Example 2 A battery was fabricated in the same manner as in Example 1 above, except that a part of the surface of lithium cobaltate fixed with a zirconium compound was used as the positive electrode active material. In addition, it replaced with the erbium nitrate pentahydrate, and the method similar to the method of producing the positive electrode active material surface-modified with the said erbium compound except having used the zirconium oxynitrate dihydrate, A surface-modified positive electrode active material was prepared. The battery thus produced is hereinafter referred to as battery Z2.
  • the zirconium compound was 0.037 mass% with respect to lithium cobaltate in terms of zirconium element. (In this mass ratio, the molar amount of zirconium with respect to lithium cobaltate is the same as the molar amount of erbium with respect to lithium cobaltate of the battery A1). Further, as a result of SEM observation, the zirconium compound was uniformly dispersed and fixed on the surface of lithium cobalt oxide.
  • Comparative Example 3 A battery was fabricated in the same manner as in Comparative Example 2 except that hexamethylene diisocyanate (HMDI) was not added during the preparation of the nonaqueous electrolytic solution.
  • HMDI hexamethylene diisocyanate
  • Example 4 A battery was fabricated in the same manner as in Example 3 except that 1,3-bis (isocyanatomethyl) cyclohexane was not added during the preparation of the nonaqueous electrolytic solution.
  • the battery thus produced is hereinafter referred to as battery Z4.
  • Example 6 Li 2 CO 3 (lithium salt), Co 3 O 4 (tricobalt tetroxide), and ZrO 2 (zirconium oxide) are adjusted so that the molar ratio of Li: Co: Zr is 1: 0.995: 0.005.
  • a battery was prepared in the same manner as in Example 1 except that the positive electrode active material was prepared by mixing in an Ishikawa-style mortar and then pulverizing after heat treatment at 850 ° C. for 20 hours in an air atmosphere. did. When the positive electrode active material was observed with a TEM, it was confirmed that zirconium was present at the interface between the lithium cobalt oxide particles. The battery thus produced is hereinafter referred to as battery Z6.
  • Comparative Example 7 A battery was fabricated in the same manner as in Comparative Example 6 except that hexamethylene diisocyanate (HMDI) was not added during the preparation of the non-aqueous electrolyte.
  • HMDI hexamethylene diisocyanate
  • Residual capacity ratio (%) [discharge capacity after continuous charge test (Q 1 ) / discharge capacity before continuous charge test (Q 0 )] ⁇ 100
  • the maximum value of the difference between the voltage at the time of discharge capacity measurement after high temperature continuous charge and the voltage at the time of discharge capacity measurement before high temperature continuous charge until the time of 100 mAh discharge after the start of discharge is the voltage. This was defined as the amount of decrease ⁇ Vmax.
  • a positive electrode active material in which an erbium compound or a lanthanum compound is fixed to a part of the surface of lithium cobaltate is used, and two or more isocyanates are used in the non-aqueous electrolyte.
  • Batteries A1 to A4 containing a group-containing compound use a positive electrode active material in which a rare earth compound is not fixed to a part of the surface of lithium cobaltate, and / or two or more in a non-aqueous electrolyte It can be seen that the battery characteristics when continuously charged at a high temperature of 60 ° C. are superior to the comparative batteries Z1 to Z7 which do not contain a compound containing an isocyanate group. Specific consideration is given below.
  • a compound containing two or more isocyanate groups (hexamethylene diisocyanate) is obtained.
  • the battery A1 contained in the nonaqueous electrolytic solution has a significantly improved residual capacity ratio and a high temperature compared to the battery Z1 in which the compound containing two or more isocyanate groups is not contained in the nonaqueous electrolytic solution. It can be seen that the voltage drop amount ⁇ Vmax at the time of discharging after continuous charging is also significantly suppressed.
  • the battery A2 using bis (isocyanatomethyl) cyclohexane can achieve the same effect as the battery A1. Therefore, the effect of the present invention can be obtained even if the portion between the isocyanate groups is cyclic, chain-shaped, or a structure having a cyclic side chain.
  • the battery A2 to which 1,3-bis (isocyanatomethyl) cyclohexane in which the portion between the isocyanate groups is cyclic is added is more between the isocyanate groups.
  • the voltage drop amount ⁇ Vmax at the time of discharge is further suppressed as compared with the battery A1 to which hexamethylene diisocyanate (HMDI) having a chain portion is added.
  • HMDI hexamethylene diisocyanate
  • the portion between the isocyanate groups is cyclic rather than chain-like, the structure of the compound is more steric, so that a good three-dimensional film can be formed on the surface of the positive electrode active material. This is considered to suppress the reaction with the electrolytic solution.
  • the portion between the isocyanate groups is preferably cyclic rather than chain-like.
  • the compound having only one isocyanate group (hexyl isocyanate) is not.
  • the battery Z5 contained in the aqueous electrolyte has a larger voltage drop ⁇ Vmax at the time of discharge and a lower remaining capacity ratio than the battery Z1 in which no compound containing an isocyanate group is contained in the non-aqueous electrolyte.
  • the effect of the present invention is that when a positive electrode active material in which a compound containing a rare earth element is fixed to at least a part of the surface is used, a compound containing two or more isocyanate groups is non-aqueous electrolysis. It can be seen that it is necessary to be contained in the liquid. That is, even if a positive electrode active material in which a compound containing a rare earth element is fixed to at least a part of the surface is used, if the compound contained in the non-aqueous electrolyte does not contain only one isocyanate group, It turns out that the effect of invention is not exhibited.
  • the battery A3, the battery A4, and the battery Z4 using a positive electrode active material in which a lanthanum compound that is a rare earth element other than an erbium compound is fixed to a part of the surface of the lithium cobalt oxide two or more isocyanes are compared.
  • the battery A3 and the battery A4 in which the compound containing a nate group is contained in the non-aqueous electrolyte are compared with the battery Z4 in which the compound containing two or more isocyanate groups are not contained in the non-aqueous electrolyte. It can be seen that the voltage drop amount ⁇ Vmax at the time of discharging after high-temperature continuous charging is significantly suppressed.
  • 1,3-bis (isocyanatomethyl) cyclohexane is a non-aqueous electrolyte.
  • the battery A2 contained in the battery has an improved voltage drop ⁇ Vmax of 80 mV (130 mV-50 mV) compared to the battery Z1 in which 1,3-bis (isocyanatomethyl) cyclohexane is not contained in the non-aqueous electrolyte. .
  • the voltage drop amount ⁇ Vmax is improved when the erbium compound is fixed than when the lanthanum compound is fixed.
  • the width increases. Therefore, the compound to be fixed to at least a part of the surface of the lithium cobaltate is preferably an erbium compound rather than a lanthanum compound.
  • HMDI hexamethylene diisocyanate
  • a positive electrode active material in which a compound containing a rare earth element is fixed to at least a part of the surface of lithium cobalt oxide.
  • HMDI hexamethylene diisocyanate
  • the battery Z6 in which hexamethylene diisocyanate (HMDI) is contained in the non-aqueous electrolyte is hexagonal. It can be seen that although the remaining capacity ratio is improved as compared to the battery Z7 in which methylene diisocyanate (HMDI) is not contained in the nonaqueous electrolyte, the voltage drop amount ⁇ Vmax is increased.
  • the effect of the present invention is that a positive electrode active material in which a compound containing a rare earth element is fixed to at least a part of the surface of a lithium transition metal composite oxide such as lithium cobaltate is used, and non-aqueous It is obtained specifically when the electrolyte solution contains a compound containing two or more isocyanate groups.
  • the present invention is also applied to a drive power source for mobile information terminals such as mobile phones, notebook computers, and PDAs, a drive power source for high output such as HEV and electric tools, and a storage battery device combined with a solar cell or a power system. Can be expected.
  • Negative electrode current collector tab 6 Aluminum laminate outer package 21: Particles of lithium transition metal composite oxide 22: Particles of compound containing rare earth element

Abstract

本発明は、高温充電保存後の放電性能の低下と残存容量の低下を共に抑制できる非水電解液二次電池を提供することを目的としている。 正極活物質を含む正極と、負極活物質を含む負極と、非水電解液と、上記正極及び上記負極の間に設けられたセパレータと、を備え、上記正極活物質は、コバルト酸リチウムと、このコバルト酸リチウム21の表面の少なくとも一部に固着されたエルビウム化合物22と、から成り、且つ、上記非水電解液中には、1,3-ビス(イソシアナートメチル)シクロヘキサンが含有されていることを特徴とする。

Description

非水電解液二次電池
 本発明は、非水電解液二次電池に関するものである。
 近年、携帯電話、ノートパソコン、PDA等の移動情報端末の小型・軽量化が急速に進展しており、その駆動電源としての電池にはさらなる高容量化が要求されている。リチウムイオンが正、負極間を移動することにより充放電を行うリチウムイオン電池は、高いエネルギー密度を有し、高容量であるので、上記のような移動情報端末の駆動電源として広く利用されている。
 上記移動情報端末は、動画再生機能、ゲーム機能といった機能の充実に伴って、更に消費電力が高まる傾向にあり、更なる高容量化が強く望まれるところである。上記非水電解液二次電池を高容量化する方策としては、単位質量当りの容量が高い活物質を使用したり、単位体積当りの活物質の充填量を増やすといった方策の他、電池の充電電圧を高くするという方策がある。電池の充電電圧を高くした場合、正極活物質と非水電解液との酸化分解反応が生じやすくなる。
 ここで、非水電解液電池の充放電サイクルを向上するために、非水電解液中に鎖状イソシアネート化合物を含有されることが示されている(特許文献1参照)。
 また、非水電解液の溶媒の分解及び電池の変形を抑制するために、非水電解液中に脂肪族炭素鎖を有するジイソシアネート化合物を含有させることが示されている(特許文献2参照)。
 更に、正極活物質の表面に希土類元素を含む化合物で分散・付着することにより、充電電圧を高くした場合等において、正極活物質と非水電解液との反応を抑制できることが示されている(特許文献3参照)。
 また、コバルト酸リチウムに適量のジルコニウムを添加することにより、充放電サイクル特性および高温保存特性に優れた非水電解液二次電池を得ることができることが示されている(特許文献4参照)。
 更に、コバルト酸リチウムの粒子表面にジルコニウム化合物を付着させることにより、充放電サイクル特性の低下を伴うことなく、充電終止電圧を4.3V以上にすることができ、これによって充放電容量を高めることができることが示されている。(特許文献5参照)
特開2006-164759 特開2007-242411 特開2010-245016 特許第2855877 特開2005-85635
 本発明者らは、上記特許文献1及び2を検討した結果、これらのイソシアネート化合物を非水電解液に添加した場合には、高温連続充電後の電圧降下が大きくなり、高温連続充電後の放電特性の低下が大きいことがわかった。
 また、上記特許文献3には、コバルト酸リチウムを主たる正極活物質として、充電電圧を高くした場合等において、正極活物質と非水電解液との反応抑制を主目的としていることが記載されている。しかし、高温連続充電後の放電特性や保存特性を改良する余地が残されている。
 更に、特許文献4及び5には高容量及びサイクル特性を向上させるために、コバルト酸リチウムにジルコニウムを添加することが記載されているが、高温連続充電後の電圧低下が大きくなるという問題がある。
 本発明の非水電解液二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、非水電解液と、上記正極及び上記負極の間に設けられたセパレータとを備え、上記正極活物質は、リチウム遷移金属複合酸化物と、このリチウム遷移金属複合酸化物における表面の少なくとも一部に固着され希土類元素を含有する化合物と、から成り、且つ、上記非水電解液中には、2つ以上のイソシアナート基を含む化合物が含有されていることを特徴とする。
 本発明によれば、高温連続充電後の放電特性に優れ、かつ、高温連続充電後の残存容量の低下を抑制した非水電解液二次電池を提供することができるという優れた効果を奏する。
本発明の実施の形態に係る非水電解液二次電池の正面図。 図1のA-A線矢視断面図。 本発明のコバルト酸リチウムの表面状態を示す説明図。 参考例のコバルト酸リチウムの表面状態を示す説明図。 高温連続充電前後での放電容量測定時の電圧低下量ΔVmaxを示すグラフ。
 本発明の非水電解液二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、非水電解液と、上記正極及び上記負極の間に設けられたセパレータとを備え、上記正極活物質は、リチウム遷移金属複合酸化物と、このリチウム遷移金属複合酸化物における表面の少なくとも一部に固着され希土類元素を含有する化合物と、から成り、且つ、上記非水電解液中には、2つ以上のイソシアナート基を含む化合物が含有されていることを特徴とする。
 上記構成であれば、高温連続充電後の放電特性に優れ、かつ、高温連続充電後の残存容量の低下を抑制した非水電解液二次電池を提供することができる。これは、リチウム遷移金属複合酸化物の表面の少なくとも一部に固着した希土類元素を含有する化合物によって、正極活物質の表面で2つ以上のイソシアナート基を含む化合物が効果的に分解し、正極活物質の表面に良質な被膜が形成される。この形成された被膜によって正極活物質が保護され、この結果、非水電解液の酸化分解反応が抑制されるからである。
 ここで、コバルト酸リチウム粒子等のリチウム遷移金属複合酸化物の表面の一部に、エルビウム等の希土類元素を含有する化合物(以下、希土類化合物と略すことがある)が固着された状態とは、図3に示すように、リチウム遷移金属複合酸化物の粒子21の表面に、希土類化合物の粒子22が固着された状態をいうものである。即ち、当該状態には、図4に示すように、リチウム遷移金属複合酸化物の粒子21と希土類化合物の粒子22とを単に混合して、希土類化合物の粒子22の一部がリチウム遷移金属複合酸化物の粒子21とたまたま接している状態を含まない。
 上記希土類元素を含有する化合物が水酸化物もしくはオキシ水酸化物であることが好ましい。これは、水酸化物もしくはオキシ水酸化物であると、高温充電状態で、正極活物質表面における非水電解液の分解反応を抑制することができるためである。
 上記希土類元素を含む化合物の平均粒径が100nm以下であることが好ましい。これは、当該化合物の平均粒径が100nmを超えると、固着部位が一部に偏ってしまうため、前述の効果が十分に発揮されないためである。
 なお、平均粒径の下限は1nm以上であることが望ましく、特に10nm以上であることが好ましい。平均粒径が1nm未満となると、当該化合物が小さ過ぎて、わずかな量でも正極活物質表面を過剰に覆うことになるからである。
 上記2つ以上のイソシアナート基を含む化合物の炭素数が4以上12以下であることが好ましい。これは、炭素数が3以下であると、該化合物が不安定で分解し易く、分解反応が制御し難いためである。また、炭素数が13以上であると、該化合物が安定で分解し難く、正極活物質の表面上に良好な保護被膜が形成され難いためである。
 また、本発明において用いる上記イソシアナート基を含む化合物は、環状でも、鎖状でも、環状にさらに側鎖がついてもよい。その中でも、特に環状の方がより好ましい。上記イソシアナート基を含む化合物は、一般に市販されているので、容易に入手することができる。上記の鎖状構造のものとしては、例えば、ヘキサメチレンジイソシアナート(Hexamethylene diisocyanate:以下略してHMDIと記載することがある。)、テトラメチレンジイソシアナート、ペンタメチレンジイソシアナート、ヘプタメチレンジイソシアナート、オクタメチレンジイソシアナート、ノナメチレンジイソシアナート、デカメチレンジイソシアナート、ウンデカメチレンジイソシアナート、ドデカメチレンジイソシアナートなどが挙げられ、環状構造のものとしては、1,3-ビス(イソシアナートメチル)シクロヘキサン、1,4-ビス(イソシアナートメチル)シクロヘキサン、1,3-シクロペンタンジイソシアナート、1,3-シクロヘキサンジイソシアナート、1,4-シクロヘキサンジイソシアナートなどが挙げられる。
 上記2つ以上のイソシアナート基を含む化合物が非水電解液全体の質量に対して、0.1質量%以上5.0質量%以下含まれていることが特に好ましい。これは、0.1質量%未満であるとイソシアナート基を含む化合物由来の正極に形成される被膜形成が不十分となる一方、5.0質量%を超えると過剰に被膜が形成され、正極のリチウム挿入、脱離反応を阻害するためである。
 上記正極活物質の総量に対する上記希土類元素を含有する化合物の割合が、0.005質量%以上0.8質量%以下であることが望ましい。
 当該割合が0.005質量%未満ではリチウム遷移金属複合酸化物の表面に付着している化合物の量が過小となって、上記効果を十分に得ることができないことがある。一方、当該割合が0.8質量%を超えると、電子伝導性が低い物質で過剰に覆いすぎるために、正極のリチウム挿入、脱離反応を阻害するためである。
 上記2つ以上のイソシアナート基を含む化合物のイソシアナート間が環状であることが望ましい。
 イソシアナート基の間の部分が鎖状よりも環状である方が、化合物の構造がより立体的である。このため、正極活物質の表面に立体的で良好な被膜を形成することができるので、電解液との反応をより抑えることができる。
(その他の事項)
(1)正極活物質として用いられるリチウム遷移金属複合酸化物(例えば、コバルト酸リチウム)の表面の一部に、上記希土類化合物を固着する方法としては、例えば、これらのリチウム遷移金属複合酸化物の粉末を分散した溶液に、希土類化合物を溶解した溶液を混合する方法や、リチウム遷移金属複合酸化物の粉末を混合しながら、希土類化合物を含む溶液を噴霧する方法等によって得ることができる。
 このような方法を用いることにより、上記リチウム遷移金属複合酸化物の表面の一部に、上記希土類の水酸化物を固着することができる。また、希土類の水酸化物が固着したリチウム遷移金属複合酸化物を熱処理すると、表面の一部に固着した希土類の水酸化物は、希土類のオキシ水酸化物に変化する。
 上記希土類の水酸化物を固着させる際に用いる溶液に溶解させる希土類化合物としては、希土類の酢酸塩、希土類の硝酸塩、希土類の硫酸塩、希土類の酸化物、又は、希土類の塩化物等を用いることができる。
 熱処理の温度としては、一般に80~600℃の範囲であることが好ましく、特に、80~400℃の範囲にあることが特に好ましい。熱処理の温度が600℃を超えると、表面に付着した希土類化合物の微粒子の一部が正極活物質の内部に拡散し、初期の充放電効率が低下する。また、熱処理の温度が600℃を超えると、表面の一部に固着した希土類の水酸化物及び/又は希土類のオキシ水酸化物の大部分が希土類の酸化物になる。このため、上記2つ以上のイソシアナート基を含む化合物が効果的に分解し難くなって、正極活物質の表面上に良好な被膜が形成され難くなるためである。一方、熱処理の温度が80℃未満になると、熱処理に長時間を要するので、製造コストが上昇するからである。
 また、正極活物質として、コバルト酸リチウム以外にニッケルコバルトマンガン酸リチウムを用いることができる。ニッケルコバルトマンガン酸リチウムとしては、ニッケルとコバルトとマンガンのモル比が、1:1:1であったり、5:3:2である等の組成のものを用いることができるが、特に、正極容量を増大させうるように、ニッケルの割合がコバルトやマンガンの割合より多いものを用いることが好ましい。
 また、ニッケルマンガンアルミニウム酸リチウム、ニッケルコバルトアルミニウム酸リチウム、リン酸鉄リチウム、リン酸マンガンリチウム等も例示される。また、これらを単独で用いても良いし、混合して用いても良い。
(2)本発明に用いる非水電解液の溶媒は限定するものではなく、非水電解液二次電池に従来から用いられてきた溶媒を使用することができる。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネートや、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の鎖状カーボネートや、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン等のエステルを含む化合物や、プロパンスルトン等のスルホン基を含む化合物や、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、1,2-ジオキサン、1,4-ジオキサン、2-メチルテトラヒドロフラン等のエーテルを含む化合物や、ブチロニトリル、バレロニトリル、n-ヘプタンニトリル、スクシノニトリル、グルタルニトリル、アジポニトリル、ピメロニトリル、1,2,3-プロパントリカルボニトリル、1,3,5-ペンタントリカルボニトリル等のニトリルを含む化合物や、ジメチルホルムアミド等のアミドを含む化合物等を用いることができる。特に、これらのHの一部がFにより置換されている溶媒が好ましく用いられる。
 また、これらを単独又は複数組み合わせて使用することができ、特に環状カーボネートと鎖状カーボネートとを組み合わせた溶媒や、さらにこれらに少量のニトリルを含む化合物やエーテルを含む化合物が組み合わされた溶媒が好ましい。
 一方、非水電解液の溶質としては、従来から用いられてきた溶質を用いることができる。例えば、LiPF、LiBF、LiN(SOCF、LiN(SO、LiPF6-x(C2n-1[但し、1<x<6、n=1又は2]等が例示でき、更に、これらの1種もしくは2種以上を混合して用いても良い。溶質の濃度は特に限定されないが、電解液1リットル当り0.8~1.7モルであることが望ましい。
(3)本発明に用いる負極には、従来から用いられてきた材料を用いることができる。例えば、リチウムを吸蔵放出可能な炭素材料、リチウムと合金を形成可能な金属、その金属を含む合金、又は、その合金の化合物等が例示される。更に、それらの混合物であっても良い。
 上記炭素材料としては、天然黒鉛や難黒鉛化性炭素、人造黒鉛等のグラファイト類、コークス類等を用いることができ、上記合金化合物としては、リチウムと合金可能な金属を少なくとも1種類含むものが挙げられる。特に、リチウムと合金形成可能な元素としてはケイ素やスズであることが好ましく、これらが酸素と結合した、酸化ケイ素や酸化スズ等も用いることもできる。また、上記炭素材料と上記ケイ素やスズの化合物とを混合したものを用いることができる。
 上記の他、エネルギー密度は低下するものの、負極材料としてはチタン酸リチウム等の金属リチウムに対する充放電の電位が、炭素材料等より高いものも用いることができる。
(4)正極とセパレータとの界面、又は、負極とセパレータとの界面には、従来から用いられてきた無機物のフィラーからなる層を形成することができる。フィラーとしても、従来から用いられてきたチタン、アルミニウム、ケイ素、マグネシウム等を単独もしくは複数用いた酸化物やリン酸化合物、またその表面が水酸化物等で処理されているものを用いることができる。
 上記フィラー層の形成方法は、正極、負極、或いはセパレータに、フィラー含有スラリーを直接塗布して形成する方法や、フィラーで形成したシートを、正極、負極、或いはセパレータに貼り付ける方法等を用いることができる。
(5)本発明に用いるセパレータとしては、従来から用いられてきたセパレータを用いることができる。具体的には、ポリエチレンからなるセパレータのみならず、ポリエチレン層の表面にポリプロピレンからなる層が形成されたものや、ポリエチレンのセパレータの表面にアラミド系の樹脂等の樹脂が塗布されたものを用いても良い。
(6)後述の如く、希土類元素の水酸化物又はオキシ水酸化物として、エルビウム及びランタンの2種の希土類元素の水酸化物又はオキシ水酸化物についての実験データを記載した。しかしながら、本発明はこれらの化合物に限定するものではなく、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、ツリウム、イッテルビウム、ルテチウムでも同様の効果が得られるとみなせる。これは、これらの希土類元素の水酸化物やオキシ水酸化物においても、正極活物質の表面上で2つ以上のイソシアナート基を含む化合物が効果的に分解し、良好な被膜を正極活物質の表面上に形成することができると考えられるためである。
 本発明に係る非水電解液二次電池は、下記の形態に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。
(実施例1)
[正極の作製]
 コバルト酸リチウム粒子1000gを用意し、この粒子を3.0Lの純水に添加し攪拌して、コバルト酸リチウムが分散した懸濁液を調製した。次に、この懸濁液に、硝酸エルビウム5水和物[Er(NO・5HO]1.81gが200mLの純水に溶解された溶液を1時間で全量投入するように加えた。この際、コバルト酸リチウムを分散した溶液のpHを9に調整するために、10質量%の硝酸水溶液、或いは、10質量%の水酸化ナトリウム水溶液を適宜加えた。
 次いで、上記硝酸エルビウム5水和物溶液の添加終了後に、吸引濾過し、更に水洗を行った後、得られた粉末を120℃で乾燥し、上記コバルト酸リチウムの表面の一部に水酸化エルビウム化合物が固着したものを得た。その後、得られた粉末を300℃で5時間空気中にて熱処理した。このように300℃で熱処理すると、全部或いは大部分の水酸化エルビウムがオキシ水酸化エルビウムに変化するので、コバルト酸リチウム粒子の表面の一部にオキシ水酸化エルビウムが固着した状態となる。但し、一部は水酸化エルビウムの状態で残存する場合があるので、コバルト酸リチウム粒子の表面の一部には水酸化エルビウムが固着されている場合もある(オキシ水酸化エルビウムと水酸化エルビウムとを総称して、エルビウム化合物と称することがある)。
 なお、表面に固着したエルビウム化合物は、エルビウム元素換算でコバルト酸リチウムに対して0.068質量%であった。また、SEMによる観察の結果、コバルト酸リチウム粒子の表面に、均一に分散してエルビウム化合物が固着しており、その粒子径は100nm以下であった。
 このようにして得られた正極活物質と、正極導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)とを、分散媒としてのN-メチル-2-ピロリドン中で混練して正極スラリーを調製した。この際、正極活物質と正極導電剤と結着剤との質量比を95:2.5:2.5とした。次に、上記正極スラリーを、アルミニウム箔から成る正極集電体の両面に塗布、乾燥した後、圧延ローラにより圧延し、正極集電タブを取り付けることで、正極を作製した。なお、正極の充填密度は3.60g/cmとした。
〔負極の作製〕
 増粘剤であるCMC(カルボキシメチルセルロースナトリウム)を純水に溶かした水溶液中に、負極活物質として人造黒鉛と、結着剤としてのSBR(スチレン-ブタジエンゴム)とを加えた後に混練して、負極スラリーを調製した。この際、負極活物質と結着剤と増粘剤との質量比を98:1:1とした。次に、上記負極スラリーを銅箔から成る負極集電体の両面に均一に塗布、乾燥した後、圧延ローラにより圧延し、負極集電タブを取り付けることで、負極を作製した。なお、負極の充填密度は1.60g/cmとした。
〔非水電解液の調製〕
 エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを、2:8の体積比で混合した混合溶媒に対し、六フッ化リン酸リチウム(LiPF)を1.0モル/リットルの濃度になるように溶解させると共に、上記混合溶媒に対して、ビニレンカーボネート(VC)を1.0質量%、ヘキサメチレンジイソシアナート(HMDI)を1.0質量%の割合でそれぞれ添加して、非水電解液を調製した。
〔電池の作製〕
 上記のようにして得た正極および負極を、厚み22μmでポリエチレンの微多孔膜からなるセパレータを介して対向するように巻取って巻取り体を作製した。次に、アルゴン雰囲気下のグローボックス中にて、上記巻取り体を上記非水電解液と共にアルミニウムラミネートに封入することにより、厚み3.6mm、幅3.5cm、長さ6.2cmの非水電解液二次電池を得た。
 このようにして作製した電池を、以下、電池A1と称する。
 ここで、図1及び図2に示すように、上記非水電解液二次電池11の具体的な構造は、正極1と負極2とがセパレータ3を介して対向配置されており、これら正負両極1、2とセパレータ3とから成る扁平型の電極体には非水電解液が含浸されている。上記正極1と負極2は、それぞれ、正極集電タブ4と負極集電タブ5とが接続され、二次電池としての充放電が可能な構造となっている。なお、電極体は、周縁同士がヒートシールされた閉口部7を備えるアルミラミネート外装体6の収納空間内に配置されている。
(実施例2)
 非水電解液の添加剤として、ヘキサメチレンジイソシアナート(HMDI)に代えて、1,3-ビス(イソシアナートメチル)シクロヘキサンを用いたこと以外は、上記実施例1と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池A2と称する。
(実施例3)
 正極活物質として、コバルト酸リチウムの表面の一部に、エルビウム化合物に代えてランタン化合物を固着させたものを用いたこと以外は、上記実施例2と同様にして、電池を作製した。
 なお、硝酸エルビウム5水和物に代えて、硝酸ランタン6水和物を用いたこと以外は、上記エルビウム化合物で表面改質した正極活物質を作製する方法と同様の方法で、ランタン化合物で表面改質した正極活物質を作製した。
 このようにして作製した電池を、以下、電池A3と称する。
 なお、ランタン化合物は、ICPによる分析の結果、ランタン元素換算で、コバルト酸リチウムに対して、0.057質量%であった(この質量割合であれば、コバルト酸リチウムに対するランタンのモル量は、上記電池A1のコバルト酸リチウムに対するエルビウムのモル量と同一となる)。また、SEMによる観察の結果、100nm以下のランタン化合物の粒子が、コバルト酸リチウムの表面に均一に分散して固着していた。
(実施例4)
 非水電解液の添加剤として、ヘキサメチレンジイソシアナート(HMDI)に代えて、ドデカメチレンジイソシアナートを用いたこと以外は、上記実施例3と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池A4と称する。
(比較例1)
 非水電解液の調製時に、ヘキサメチレンジイソシアナート(HMDI)を添加しなかったこと以外は、上記実施例1と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池Z1と称する。
(比較例2)
 正極活物質として、コバルト酸リチウムの表面の一部をジルコニウムの化合物で固着したものを用いた以外は、上記実施例1と同様にして電池を作製した。
 なお、硝酸エルビウム5水和物に代えて、オキシ硝酸ジルコニウム2水和物を用いたこと以外は、上記エルビウム化合物で表面改質した正極活物質を作製する方法と同様の方法で、ジルコニウム化合物で表面改質した正極活物質を作製した。
 このようにして作製した電池を、以下、電池Z2と称する。
 なお、ジルコニウム化合物は、ジルコニウム元素換算でコバルト酸リチウムに対して0.037質量%であった。(この質量割合であれば、コバルト酸リチウムに対するジルコニウムのモル量は、上記電池A1のコバルト酸リチウムに対するエルビウムのモル量と同一となる)。また、SEM観察の結果、ジルコニウム化合物は、均一に分散してコバルト酸リチウムの表面に固着していた。
(比較例3)
 非水電解液の調製時に、ヘキサメチレンジイソシアナート(HMDI)を添加しなかったこと以外は、上記比較例2と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池Z3と称する。
(比較例4)
 非水電解液の調製時に、1,3-ビス(イソシアナートメチル)シクロヘキサンを添加しなかったこと以外は、上記実施例3と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池Z4と称する。
(比較例5)
 非水電解液の調製時に、ヘキサメチレンジイソシアナート(HMDI)に代えて、ヘキシルイソシアナート(イソシアナート基が1つしかない含まれない化合物)を添加した以外は、上記実施例1と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池Z5と称する。
(比較例6)
 LiCO(リチウム塩)とCo(四酸化三コバルト)とZrO(酸化ジルコニウム)を、Li:Co:Zrのモル比が1:0.995:0.005となるようにして石川式らいかい乳鉢にて混合した後、空気雰囲気中にて850℃で20時間熱処理後に粉砕することにより、正極活物質を作製したこと以外は、上記実施例1と同様にして電池を作製した。尚、該正極活物質をTEM観察したところ、コバルト酸リチウムの粒子同士の界面にジルコニウムが存在することを確認した。
 このようにして作製した電池を、以下、電池Z6と称する。
(比較例7)
 非水電解液の調製時に、ヘキサメチレンジイソシアナート(HMDI)を添加しなかったこと以外は、上記比較例6と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池Z7と称する。
[実験]
 上記の電池A1~A4、Z1~Z7について下記手順で充放電等を行い、電圧低下量ΔVmaxと残存容量率とを求めたので、それらの結果を表1に示す。
(1)下記充放電条件で充放電サイクル試験を1回行い、初期放電容量(Q)を測定した。なお、充放電時の温度は室温とした。
・充電条件
 1.0It(750mA)の電流で電池電圧が4.40Vとなるまで定電流充電を行い、その後、4.40Vの定電圧で電流値が[1/20]It(37.5mA)となるまで定電圧充電を行った。
・放電条件
 1.0It(750mA)の定電流で電池電圧が2.75Vとなるまで定電流放電を行った。
・休止
 上記充電と放電との間の休止間隔は10分間とした。
(2)初期放電容量(Q)を測定後、60℃の恒温槽に入れて1時間放置した。その後、60℃の環境のまま、750mAの定電流で4.40Vまで充電し、さらに4.40Vの定電圧で、充電のトータル時間が80時間となるまで充電した。
 しかる後、恒温槽から電池を取り出して室温まで冷却し、室温にて、連続充電試験後の放電容量(Q)測定し、以下の式から、残存容量率を求めた。
 残存容量率(%)=[連続充電試験後の放電容量(Q)/連続充電試験前の放電容量(Q)]×100
 また、図5に示すように、放電開始後100mAh放電時までで、高温連続充電後の放電容量測定時の電圧と、高温連続充電前の放電容量測定時の電圧との差の最大値を電圧低下量ΔVmaxと定義し、これを求めた。
 なお、この電圧低下量ΔVmaxが大きい場合、電解液の量が少ないような電池の設計では、放電電圧低下がより顕著となって、放電初期に放電終止電圧としている電圧に達する結果、電池容量が著しく低下することがある。したがって、電池の充放電特性を向上するには、放電電圧量ΔVmaxを小さくする必要がある。
Figure JPOXMLDOC01-appb-T000001
 上記表1の結果より明らかなように、コバルト酸リチウムの表面の一部にエルビウム化合物、又はランタン化合物が固着された正極活物質を用い、且つ、非水電解液中に2つ以上のイソシアナート基を含む化合物が含有された電池A1~A4は、コバルト酸リチウムの表面の一部に希土類化合物を固着していない正極活物質を用い、及び/又は、非水電解液中に2つ以上のイソシアナート基を含む化合物が含有されていない比較電池Z1~Z7よりも、60℃という高温下で連続充電した際の電池特性に優れることがわかる。以下、具体的に考察する。
 コバルト酸リチウムの表面の一部にエルビウム化合物が固着された正極活物質を用いた電池A1と電池Z1とを比較した場合、2つ以上のイソシアナート基を含む化合物(ヘキサメチレンジイソシアナート)が非水電解液に含有された電池A1は、非水電解液中に2つ以上のイソシアナート基を含む化合物が含有されていない電池Z1に比べて、残存容量率が顕著に向上すると共に、高温連続充電後における放電時の電圧低下量ΔVmaxも顕著に抑制されていることがわかる。これは、電池A1では、2つ以上のイソシアナート基を含む化合物が効果的に分解し、正極活物質の表面上に良好な被膜が形成されたのに対して、電池Z1では、2つ以上のイソシアナート基を含む化合物が添加されていないので、正極活物質の表面上に良好な被膜が形成されないからであると考えられる。
 また、2つ以上のイソシアナート基を含む化合物として、イソシアナート基の間の部分が鎖状のヘキサメチレンジイソシアナートに代えて、イソシアナート基の間の部分が環状になった1,3-ビス(イソシアナートメチル)シクロヘキサンを用いた電池A2も、電池A1と同様の効果が得られることがわかる。したがって、イソシアナート基の間の部分は、環状でも、鎖状でも、環状にさらに側鎖がついた構造であっても本発明の効果が得られる。
 但し、電池A1と電池A2とを比較した場合、イソシアナート基の間の部分が環状になった1,3-ビス(イソシアナートメチル)シクロヘキサンを添加した電池A2の方が、イソシアナート基の間の部分が鎖状であるヘキサメチレンジイソシアナアート(HMDI)を添加した電池A1よりも、放電時の電圧低下量ΔVmaxが更に抑制されていることがわかる。これは、イソシアナート基の間の部分が鎖状よりも環状である方が、化合物の構造がより立体的であるため、正極活物質の表面に立体的で良好な被膜を形成することができ、これによって、電解液との反応をより抑えるためと考えられる。以上のことから、イソシアナート基の間の部分は、鎖状よりも環状である方が好ましいことがわかる。
 また、コバルト酸リチウムの表面の一部にエルビウム化合物が固着された正極活物質を用いた電池Z1と電池Z5とを比較した場合、イソシアナート基が1つしかない化合物(ヘキシルイソシアナート)が非水電解液に含有された電池Z5は、イソシアナート基を含む化合物が全く非水電解液に含有されていない電池Z1に比べて、放電時の電圧低下量ΔVmaxが大きく、残存容量率も低下していることがわかる。この結果より、本発明の効果は、表面の少なくとも一部に希土類元素を含有する化合物が固着している正極活物質を用いた場合に、2つ以上のイソシアナート基を含む化合物が非水電解液に含有されていることが必要となることがわかる。即ち、表面の少なくとも一部に希土類元素を含有する化合物が固着している正極活物質を用いたとしても、非水電解液に含有された化合物がイソシアナート基を1つしか含まなければ、本発明の効果は発揮されないことがわかる。
 これは、イソシアナート基が1つしかない化合物(ヘキシルイソシアナート)は、希土類元素を含有する化合物との反応性が良くないので、正極活物質の表面上に良好な被膜が形成されないからと考えられる。
 更に、コバルト酸リチウムの表面の一部にエルビウム化合物以外の希土類元素であるランタン化合物が固着された正極活物質を用いた電池A3と電池A4と電池Z4とを比較した場合、2つ以上のイソシアナート基を含む化合物が非水電解液に含有された電池A3及び電池A4は、2つ以上のイソシアナート基を含む化合物が非水電解液に含有されていない電池Z4に比べて、残存容量率が顕著に向上すると共に、高温連続充電後における放電時の電圧低下量ΔVmaxも顕著に抑制されていることがわかる。
 但し、コバルト酸リチウムの表面の一部にエルビウム化合物が固着された正極活物質を用いた電池A2と電池Z1とを比較した場合、1,3-ビス(イソシアナートメチル)シクロヘキサンが非水電解液に含有された電池A2は、1,3-ビス(イソシアナートメチル)シクロヘキサンが非水電解液に含有されていない電池Z1に比べて、電圧低下量ΔVmaxが80mV(130mV-50mV)改善している。これに対して、コバルト酸リチウムの表面の一部にランタン化合物が固着された正極活物質を用いた電池A3と電池Z4とを比較した場合、1,3-ビス(イソシアナートメチル)シクロヘキサンが非水電解液に含有された電池A3は、1,3-ビス(イソシアナートメチル)シクロヘキサンが非水電解液に含有されていない電池Z4に比べて、電圧低下量ΔVmaxが25mV(190mV-165mV)しか改善していない。
 このように、同じ、1,3-ビス(イソシアナートメチル)シクロヘキサンを非水電解液に含有させた場合でも、エルビウム化合物を固着させた方が、ランタン化合物を固着させるより電圧低下量ΔVmaxの改善幅が大きくなる。したがって、コバルト酸リチウムの表面の少なくとも一部に固着させる化合物としては、ランタン化合物よりもエルビウム化合物であることが好ましい。
 次に、コバルト酸リチウムの表面の一部にジルコニウム化合物が固着された正極活物質を用いた電池Z2と電池Z3とを比較した場合、ヘキサメチレンジイソシアナアート(HMDI)が非水電解液に含有された電池Z2は、ヘキサメチレンジイソシアナアート(HMDI)が非水電解液に含有されていない電池Z3に比べて、残存容量率は改善するものの、電圧低下量ΔVmaxが大きくなっていることがわかる。このことから、正極活物質の表面上に良好な被膜を形成するには、コバルト酸リチウムの表面の少なくとも一部に希土類元素を含有する化合物が固着している正極活物質を用いる必要があることがわかる。詳細は不明であるが、コバルト酸リチウムの表面の一部にジルコニウム化合物が固着されている場合には、ヘキサメチレンジイソシアナアート(HMDI)が効果的に分解せず、正極活物質の表面上に良好な被膜が形成されないためと考えられる。
 また、正極活物質の粒子同士の界面にジルコニウムが存在する電池Z6と電池Z7とを比較した場合も、ヘキサメチレンジイソシアナアート(HMDI)が非水電解液に含有された電池Z6は、ヘキサメチレンジイソシアナアート(HMDI)が非水電解液に含有されていない電池Z7に比べて、残存容量率は改善するものの、電圧低下量ΔVmaxが大きくなっていることがわかる。
 以上のことから、本発明の効果は、コバルト酸リチウム等のリチウム遷移金属複合酸化物の表面の少なくとも一部に希土類元素を含有する化合物が固着している正極活物質を用い、且つ、非水電解液に2つ以上のイソシアナート基を含む化合物を含有させた場合に特異的に得られる。
 本発明は、例えば携帯電話、ノートパソコン、PDA等の移動情報端末の駆動電源や、HEVや電動工具といった高出力向けの駆動電源、さらには、太陽電池や電力系統と組み合わせた蓄電池装置にも展開が期待できる。
   1:正極
   2:負極
   3:セパレータ
   4:正極集電タブ
   5:負極集電タブ
   6:アルミラミネート外装体
  21:リチウム遷移金属複合酸化物の粒子
  22:希土類元素を含有する化合物の粒子

Claims (9)

  1.  正極活物質を含む正極と、
     負極活物質を含む負極と、
     非水電解液と、
     上記正極及び上記負極の間に設けられたセパレータと、
     を備え、
     上記正極活物質は、リチウム遷移金属複合酸化物と、このリチウム遷移金属複合酸化物における表面の少なくとも一部に固着され希土類元素を含有する化合物と、から成り、且つ、上記非水電解液中には、2つ以上のイソシアナート基を含む化合物が含有されていることを特徴とする非水電解液二次電池。
  2.  上記希土類元素を含有する化合物が水酸化物もしくはオキシ水酸化物である、請求項1に記載の非水電解液二次電池。
  3.  上記希土類元素を含む化合物の平均粒径が100nm以下である、請求項1又は2に記載の非水電解液二次電池。
  4.  上記2つ以上のイソシアナート基を含む化合物の炭素数が4以上12以下である、請求項1~請求項3の何れか1項に記載の非水電解液二次電池。
  5.  上記2つ以上のイソシアナート基を含む化合物が非水電解液全体の質量に対して、0.1質量%以上5.0質量%以下含まれている、請求項1~請求項4の何れか1項に記載の非水電解液二次電池。
  6.  上記希土類元素がエルビウムである、請求項1~請求項5の何れか1項に記載の非水電解液二次電池。
  7.  上記正極活物質の総量に対する上記希土類元素を含有する化合物の割合が、0.005質量%以上0.8質量%以下である、請求項1~請求項6の何れか1項に記載の非水電解液二次電池。
  8.  上記2つ以上のイソシアナート基を含む化合物のイソシアナート間が環状である、請求項1~請求項7の何れか1項に記載の非水電解液二次電池。
  9.  上記2つ以上のイソシアナート基を含む化合物が1,3-シクロヘキサンジイソシアナートである、請求項8に記載の非水電解液二次電池。
PCT/JP2012/054714 2011-02-25 2012-02-27 非水電解液二次電池 WO2012115263A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/983,952 US20130316227A1 (en) 2011-02-25 2012-02-27 Non-aqueous electrolyte secondary battery
CN2012800100884A CN103392256A (zh) 2011-02-25 2012-02-27 非水电解液二次电池
JP2013501157A JP6124303B2 (ja) 2011-02-25 2012-02-27 非水電解液二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-039602 2011-02-25
JP2011039602 2011-02-25

Publications (1)

Publication Number Publication Date
WO2012115263A1 true WO2012115263A1 (ja) 2012-08-30

Family

ID=46721030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054714 WO2012115263A1 (ja) 2011-02-25 2012-02-27 非水電解液二次電池

Country Status (4)

Country Link
US (1) US20130316227A1 (ja)
JP (1) JP6124303B2 (ja)
CN (1) CN103392256A (ja)
WO (1) WO2012115263A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013051198A (ja) * 2011-07-29 2013-03-14 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液電池
WO2014050115A1 (ja) * 2012-09-28 2014-04-03 三洋電機株式会社 非水電解質二次電池
WO2014068831A1 (ja) * 2012-10-31 2014-05-08 三洋電機株式会社 非水電解質二次電池
WO2014156094A1 (ja) * 2013-03-29 2014-10-02 三洋電機株式会社 非水電解質二次電池
CN105103343A (zh) * 2013-01-31 2015-11-25 三洋电机株式会社 非水电解质二次电池用正极和非水电解质二次电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003500318A (ja) * 1999-05-15 2003-01-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 金属酸化物で被覆されたリチウム混合酸化物粒子
JP2006164759A (ja) * 2004-12-07 2006-06-22 Tomiyama Pure Chemical Industries Ltd 電気化学デバイス用非水電解液
JP2007242411A (ja) * 2006-03-08 2007-09-20 Sony Corp 電池及び電解液組成物
JP2010245016A (ja) * 2008-12-03 2010-10-28 Sanyo Electric Co Ltd 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極及び非水電解質二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100773247B1 (ko) * 2005-04-20 2007-11-05 주식회사 엘지화학 향상된 과충전 안전성의 리튬 이차전지
JP5319899B2 (ja) * 2007-08-23 2013-10-16 株式会社東芝 非水電解液電池
JP2009245923A (ja) * 2008-03-10 2009-10-22 Sony Corp 二次電池
CN102077396A (zh) * 2008-07-09 2011-05-25 三洋电机株式会社 非水电解质二次电池用正极活性物质、非水电解质二次电池用正极活性物质的制造方法、非水电解质二次电池用正极及非水电解质二次电池
JP4989683B2 (ja) * 2008-07-09 2012-08-01 三洋電機株式会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極及び非水電解質二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003500318A (ja) * 1999-05-15 2003-01-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 金属酸化物で被覆されたリチウム混合酸化物粒子
JP2006164759A (ja) * 2004-12-07 2006-06-22 Tomiyama Pure Chemical Industries Ltd 電気化学デバイス用非水電解液
JP2007242411A (ja) * 2006-03-08 2007-09-20 Sony Corp 電池及び電解液組成物
JP2010245016A (ja) * 2008-12-03 2010-10-28 Sanyo Electric Co Ltd 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極及び非水電解質二次電池

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013051198A (ja) * 2011-07-29 2013-03-14 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液電池
WO2014050115A1 (ja) * 2012-09-28 2014-04-03 三洋電機株式会社 非水電解質二次電池
WO2014068831A1 (ja) * 2012-10-31 2014-05-08 三洋電機株式会社 非水電解質二次電池
JPWO2014068831A1 (ja) * 2012-10-31 2016-09-08 三洋電機株式会社 非水電解質二次電池
US9876222B2 (en) 2012-10-31 2018-01-23 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
CN105103343A (zh) * 2013-01-31 2015-11-25 三洋电机株式会社 非水电解质二次电池用正极和非水电解质二次电池
CN105103343B (zh) * 2013-01-31 2017-05-17 三洋电机株式会社 非水电解质二次电池用正极和非水电解质二次电池
WO2014156094A1 (ja) * 2013-03-29 2014-10-02 三洋電機株式会社 非水電解質二次電池
JPWO2014156094A1 (ja) * 2013-03-29 2017-02-16 三洋電機株式会社 非水電解質二次電池

Also Published As

Publication number Publication date
US20130316227A1 (en) 2013-11-28
JPWO2012115263A1 (ja) 2014-07-07
CN103392256A (zh) 2013-11-13
JP6124303B2 (ja) 2017-05-10

Similar Documents

Publication Publication Date Title
US10128495B2 (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery that uses the positive electrode
WO2012099265A1 (ja) 非水電解質二次電池用正極活物質、その正極活物質を用いた非水電解質二次電池用正極及びその正極を用いた非水電解質二次電池
JP5931750B2 (ja) 非水電解液二次電池用正極活物質、その製造方法、当該正極活物質を用いた非水電解液二次電池用正極、及び、当該正極を用いた非水電解液二次電池
JP2006127932A (ja) 非水電解質二次電池及びその製造方法
WO2012086277A1 (ja) 非水電解質二次電池用正極及びその正極を用いた非水電解質二次電池
US20130309567A1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, mehtod for producing the same, positive electrode for nonaqueous electolyte secondary battery using the positive electrode active material, and nonaqueous electrolyte secondary battery using the positive electrode
JP5036121B2 (ja) 非水電解質二次電池
CN105794023A (zh) 非水电解质二次电池用正极
JP6124303B2 (ja) 非水電解液二次電池
JP4989670B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極及び非水電解質二次電池
JP4297704B2 (ja) 非水電解質二次電池
JP2014049287A (ja) 非水電解質二次電池及び非水電解質二次電池スタック
JP6522661B2 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
CN107112527B (zh) 正极活性物质和非水电解质二次电池
JP2004296098A (ja) 非水電解質二次電池
WO2014034078A1 (ja) 非水電解質二次電池用負極、その製造方法及び非水電解質二次電池
JP5911951B2 (ja) 非水電解液二次電池用正極活物質及び当該正極活物質を用いた非水電解液二次電池
WO2012101950A1 (ja) 非水電解質二次電池用正極、当該正極の製造方法、及び当該正極を用いた非水電解液二次電池
JP2014072072A (ja) 非水電解質二次電池用正極活物質、その製造方法及び当該正極活物質を用いた非水電解質二次電池用正極
WO2014156116A1 (ja) 非水電解質二次電池用正極、非水電解質二次電池用正極の製造方法および非水電解質二次電池
JP2010177207A (ja) 非水電解質二次電池
CN105849951A (zh) 非水电解质二次电池
JP2014029782A (ja) 非水電解質二次電池用正極活物質、その正極活物質を用いた非水電解質二次電池用正極、及びその正極を用いた非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749275

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13983952

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013501157

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749275

Country of ref document: EP

Kind code of ref document: A1