WO2012114895A1 - 光反射板、光反射板形成用樹脂組成物及び光反射板の製造方法 - Google Patents

光反射板、光反射板形成用樹脂組成物及び光反射板の製造方法 Download PDF

Info

Publication number
WO2012114895A1
WO2012114895A1 PCT/JP2012/053044 JP2012053044W WO2012114895A1 WO 2012114895 A1 WO2012114895 A1 WO 2012114895A1 JP 2012053044 W JP2012053044 W JP 2012053044W WO 2012114895 A1 WO2012114895 A1 WO 2012114895A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
titanium oxide
reflecting plate
light reflecting
coated titanium
Prior art date
Application number
PCT/JP2012/053044
Other languages
English (en)
French (fr)
Inventor
一迅 人見
健悟 鈴木
友彦 水谷
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Publication of WO2012114895A1 publication Critical patent/WO2012114895A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/085Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
    • G02B5/0858Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising a single metallic layer with one or more dielectric layers
    • G02B5/0866Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising a single metallic layer with one or more dielectric layers incorporating one or more organic, e.g. polymeric layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0083Array of reflectors for a cluster of light sources, e.g. arrangement of multiple light sources in one plane
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • the present invention relates to a light reflecting plate having excellent light reflecting performance, a resin composition used for forming the light reflecting plate, and a method for manufacturing the light reflecting plate.
  • liquid crystal display devices have been used for various purposes as display devices.
  • a backlight unit is disposed on the back surface of the liquid crystal cell.
  • the backlight unit includes a light-emitting light source such as a cold cathode tube or an LED, a lamp reflector, a light guide plate, and a light reflection plate disposed on the rear surface side of the light guide plate.
  • This light reflecting plate plays a role of reflecting light leaking to the rear surface side of the light guide plate toward the liquid crystal cell side.
  • the light reflecting plate a metal thin plate made of aluminum, stainless steel or the like, a film obtained by vapor-depositing silver on a polyethylene terephthalate film, a metal foil laminated with an aluminum foil, a porous resin sheet, or the like is used.
  • a highly productive light reflecting plate a light reflecting plate in which an inorganic filler such as barium sulfate, calcium carbonate, titanium oxide or the like is contained in a polypropylene resin is also used.
  • Patent Document 1 includes a resin composition containing an aliphatic polyester resin or polyolefin resin and a fine powder filler, and the content ratio of the fine powder filler in the resin composition is 0.00.
  • a reflective film comprising a layer that is greater than 1% by mass and less than 5% by mass as the outermost layer on the reflective surface is disclosed.
  • titanium oxide is used as a fine powder filler, and the surface of the titanium oxide is coated with a coating layer containing an inert inorganic oxide such as alumina, silica and zirconia, thereby obtaining titanium oxide. It is disclosed that the light resistance of the film can be improved without impairing the high reflection performance.
  • Titanium oxide formed on the surface of a coating layer containing an inert inorganic oxide used in the light reflecting plate of Patent Document 2 is very difficult to finely disperse in the light reflecting plate, and is therefore sufficient. There was a problem of not having a good light reflection performance.
  • an object of the present invention is to provide a light reflecting plate having excellent light reflecting performance, a resin composition for forming a light reflecting plate, and a method for producing the light reflecting plate.
  • the light reflecting plate of the present invention comprises 100 parts by weight of a polyolefin resin, the surface of titanium oxide is coated with a coating layer containing aluminum oxide and silicon oxide, and has a water content of 0.5% by weight or less. It contains 20 to 120 parts by weight of coated titanium oxide.
  • the resin composition for forming a light reflecting plate of the present invention comprises 100 parts by weight of a polyolefin-based resin, the surface of titanium oxide is coated with a coating layer containing aluminum oxide and silicon oxide, and has a water content of 0. And 20 to 120 parts by weight of coated titanium oxide that is 5% by weight or less.
  • the method for producing a light reflector of the present invention 100 parts by weight of polyolefin resin, the surface of titanium oxide is coated with a coating layer containing aluminum oxide and silicon oxide, and the water content is 0.5. It is characterized by having a step of supplying a resin composition for forming a light reflecting plate containing 20 to 120 parts by weight of coated titanium oxide of not more than% by weight to an extruder, melt kneading and extruding from the extruder.
  • the coated titanium oxide having a moisture content of 0.5% by weight or less has a very low water content in the coated titanium oxide, and has excellent dispersibility by suppressing aggregation of the coated titanium oxide. Further, when the light reflecting plate-forming resin composition is melt-kneaded to produce the light reflecting plate by extrusion molding or the like, the coated titanium oxide having a water content of 0.5% by weight or less is melt-kneaded. It is possible to suppress the formation of bubbles due to vaporization of moisture contained in the coated titanium oxide in the resin composition, and to suppress a decrease in the dispersibility of the coated titanium oxide due to the formation of bubbles. Become.
  • the coated titanium oxide having a water content of 0.5% by weight or less it is possible to provide a light reflecting plate in which the formation of bubbles is highly suppressed and the coated titanium oxide is finely dispersed. Such a light reflecting plate can uniformly exhibit excellent light reflecting performance.
  • the light reflecting plate of the present invention in which the formation of bubbles is highly suppressed is included in the light reflecting plate by heating the light reflecting plate when it is subjected to a secondary process having a heating step such as thermoforming. It is also possible to suppress the formation of large convex portions irregularly on the surface of the light reflecting plate due to the expanded bubbles. Therefore, the light reflecting plate of the present invention can maintain an excellent surface form before the secondary process even after the secondary process including the heating process is performed on the light reflecting plate. It can suppress that the light reflection performance of a reflecting plate falls or becomes non-uniform
  • the schematic diagram of the backlight unit of the liquid crystal display device with which the light reflecting plate of this invention is used suitably. It is a perspective view of the light reflection board of the present invention thermoformed. It is a longitudinal cross-sectional view of the light reflecting plate of the present invention that is thermoformed. It is a longitudinal cross-sectional view of the illuminating device using the light-reflecting plate of this invention thermoformed. It is the top view which showed the measurement point of the diffuse reflectance.
  • the light reflecting plate of the present invention is a coated titanium oxide in which the surface of titanium oxide is coated with a polyolefin resin and a coating layer containing aluminum oxide and silicon oxide, and the water content is 0.5% by weight or less. Containing.
  • the coated titanium oxide is dispersed and contained in the polyolefin resin.
  • the present inventors have found that the silicon oxide and aluminum oxide contained in the coated layer of the coated titanium oxide are easily added with moisture to form a hydrate. Therefore, it has been found that the coated titanium oxide contains a relatively large amount of water. Coated titanium oxide containing a large amount of moisture in this way has a large cohesive force between the coated titanium oxides, and is likely to cause aggregation, making it very difficult to finely disperse in the light reflecting plate.
  • the resin composition is heated when melt-kneading and extruding the resin composition for forming a light reflecting plate containing coated titanium oxide containing a large amount of moisture.
  • the moisture contained in the coated titanium oxide is vaporized to generate bubbles in the melt-kneaded resin composition.
  • bubbles are generated in the melt-kneaded resin composition, the coated titanium oxide present in the resin composition is moved to other parts in the resin composition due to the presence of the bubbles, and as a result, The coated titanium oxide aggregates.
  • a large crater-like recess is formed on the surface of the obtained light reflecting plate. .
  • Such a crater-shaped recess causes a decrease in light reflection performance and unevenness of the light reflection plate.
  • the bubbles are also included in the light reflector obtained by using the bubbles. Since the bubbles contained in the light reflecting plate have low light reflectivity, the light incident on the light reflecting plate is transmitted through the light reflecting plate and led out from the back surface of the light reflecting plate. Therefore, the light reflecting plate containing bubbles not only has an excellent light reflecting performance, but also has a non-uniform light reflectivity in the surface direction of the light reflecting plate.
  • the coated titanium oxide having a moisture content of 0.5% by weight or less is not only excellent in dispersibility, but also has a resin composition that is melt-kneaded at the time of extrusion molding because the amount of water contained therein is very small.
  • the formation of bubbles due to the vaporization of moisture contained in the coated titanium oxide in the product can be suppressed to a high level, and the excellent dispersibility of the coated titanium oxide can be maintained in the resin composition.
  • by suppressing the formation of bubbles it is possible to suppress the formation of a large crater-shaped recess on the light reflecting plate surface.
  • the light reflecting plate containing the coated titanium oxide having a moisture content of 0.5% by weight or less is finely dispersed in the light reflecting plate with almost no aggregation of the coated titanium oxide. It is possible to suppress the formation of bubbles therein, and it is possible to uniformly exhibit excellent light reflecting performance over the entire surface of the light reflecting plate.
  • the moisture content of the coated titanium oxide contained in the light reflecting plate of the present invention is limited to 0.5% by weight or less based on the total amount of the coated titanium oxide, but is 0.01 to 0.5%. % By weight is preferable, and 0.01 to 0.45% by weight is more preferable.
  • the water content of the coated titanium oxide contained in the light reflecting plate can be measured as follows. Components other than coated titanium oxide such as polyolefin resin, antioxidant, ultraviolet absorber and light stabilizer used for the light reflecting plate are not water-absorbing and cannot contain water, and are contained in the light reflecting plate. Only the coating layer of the coated titanium oxide can contain water. Therefore, it can be considered that all the water contained in the light reflecting plate is contained in the coating layer of the coated titanium oxide. In addition, since the coated titanium oxide contained in the light reflecting plate is dispersed in the polyolefin resin, the surface of the coated titanium oxide contained in the light reflecting plate is exposed without being coated with the polyolefin resin. There is almost nothing, and the surface of the coated titanium oxide is coated with a polyolefin resin having no water absorption. Therefore, even if the light reflecting plate is left for a long time, the water content of the coated titanium oxide is kept constant without substantially changing.
  • Components other than coated titanium oxide such as polyolefin resin, antioxidant, ultraviolet absorber and light
  • the light reflector is cut into a predetermined size to obtain a test piece having a weight of 5 g, and the moisture content (W 1 [g]) of the test piece is measured according to the following procedure.
  • the water content of the test piece is regarded as the water content of the coated titanium oxide in the test piece.
  • the weight (W 2 [g]) of the coated titanium oxide contained in the test piece is measured according to the following procedure, and the value calculated by the formula: 100 ⁇ W 1 / (W 1 + W 2 ) is used as the test piece.
  • at least 30 test pieces are prepared from the light reflecting plate, the water content of the coated titanium oxide is measured for each test piece, and the arithmetic average value is included in the water content of the coated titanium oxide contained in the light reflecting plate. Rate.
  • the moisture content of the test piece is measured by allowing the test piece to stand in an environment of a temperature of 25 ° C. and a relative humidity of 30% for one hour, and then evaporating the moisture contained in the test piece with a moisture vaporizer under the following conditions.
  • the measured moisture content [g] is measured by a Karl Fischer moisture meter conforming to the chemical product moisture measurement method described in JIS K0068.
  • Apparatus Moisture vaporizer (ADP-511, manufactured by Kyoto Electronics Industry Co., Ltd.) MKC-510N manufactured by Kyoto Electronics Industry Co., Ltd. Vaporization temperature: 230 ° C
  • Carrier gas N 2 200 ml / min
  • Moisture measurement time 30 minutes
  • the weight of the coated titanium oxide contained in the test piece is determined by baking the test piece at 550 ° C. for 1 hour using an electric furnace (for example, muffle furnace STR-15K manufactured by Isuzu Co., Ltd.). Ash is obtained by ashing, and the weight [g] of the ash is measured with a measuring instrument (for example, A & D Co., Ltd., high-precision analytical top plate electronic balance HA-202M). Is regarded as the weight of the coated titanium oxide contained in the test piece.
  • an electric furnace for example, muffle furnace STR-15K manufactured by Isuzu Co., Ltd.
  • Ash is obtained by ashing
  • the weight [g] of the ash is measured with a measuring instrument (for example, A & D Co., Ltd., high-precision analytical top plate electronic balance HA-202M). Is regarded as the weight of the coated titanium oxide contained in the test piece.
  • the average particle diameter of the coated titanium oxide is preferably 0.10 to 0.35 ⁇ m, more preferably 0.15 to 0.35 ⁇ m, particularly preferably 0.15 to 0.30 ⁇ m, most preferably 0.20 to 0.30 ⁇ m. preferable.
  • the coated titanium oxide having an average particle diameter within the above range it is possible to provide a light reflecting plate capable of exhibiting excellent light reflecting performance uniformly in the surface direction of the light reflecting plate.
  • the conventional coated titanium oxide having an average particle diameter within the above range it is very fine, so that it is easy to form agglomerated particles due to aggregation. By using it, it becomes possible to suppress the aggregation of the coated titanium oxide highly and finely disperse the coated titanium oxide in the light reflecting plate.
  • the number of coated titanium oxide particles having a particle diameter of 0.10 to 0.39 ⁇ m and not aggregated in the light reflecting plate is 150 to 550 in the cross section along the thickness direction of the light reflecting plate. / 900 ⁇ m 2 , particularly 200 to 500/900 ⁇ m 2 .
  • the average particle diameter and the particle diameter of the coated titanium oxide contained in the light reflecting plate are 0.10 to 0.39 ⁇ m, and the number of coated titanium oxides that are not aggregated is measured as follows. it can.
  • the average particle diameter of the coated titanium oxide can be measured as follows. First, for example, the light reflecting plate is cut over its entire length along the thickness direction, that is, the direction orthogonal to the surface. Next, from the SEM photograph obtained by photographing the cross section of the light reflecting plate with a scanning electron microscope (SEM) at a magnification of 10,000 times, the particle diameter of 100 or more coated titanium oxides was measured, The average particle diameter of the coated titanium oxide can be calculated by arithmetically averaging the obtained values.
  • SEM scanning electron microscope
  • the particle diameter of the coated titanium oxide means the diameter of the smallest perfect circle that can surround the coated titanium oxide.
  • the number of coated titanium oxide particles having a particle diameter of 0.10 to 0.39 ⁇ m contained in the light reflection plate and not aggregated can be measured as follows. First, for example, the light reflecting plate is cut over its entire length along the thickness direction, that is, the direction orthogonal to the surface. Next, a cross section in the thickness direction of the light reflector is photographed with a scanning electron microscope (SEM) at a magnification of 2500 times or more, and a square-shaped measurement region with a side of 30 ⁇ m on the light reflector is selected from the SEM photograph. To do.
  • SEM scanning electron microscope
  • the above measurement is performed.
  • the coated titanium oxide contained in the region the coated titanium oxide having a particle diameter of 0.10 to 0.39 ⁇ m and not agglomerated is selected, and the number of coated titanium oxides (pieces / 900 ⁇ m 2 ) is measured.
  • the above measurement is performed in the same manner for at least 10 measurement regions selected so as not to overlap in the cross section of the light reflector, and the particle diameter included in each measurement region is 0.10 to 0.39 ⁇ m and agglomerates.
  • the number of uncoated titanium oxides (pieces / 900 ⁇ m 2 ) was measured, and the arithmetic average value was determined as a coating in which the particle diameter contained in the light reflecting plate was 0.10 to 0.39 ⁇ m and there was no aggregation.
  • the number of titanium oxides (pieces / 900 ⁇ m 2 ).
  • the coated titanium oxide is formed by coating the surface of titanium oxide (TiO 2 ) with a coating layer containing aluminum oxide and silicon oxide. Titanium oxide is represented by the chemical formula TiO 2 . Such titanium oxide includes rutile type, anatase type, and ilmenite type, but rutile type titanium oxide is preferable because of its excellent weather resistance.
  • titanium oxide is a substance also known as a catalyst having a strong redox power.
  • the moisture is radicalized into H ⁇ (H radical) and OH ⁇ (OH radical) by the strong reducing power of titanium oxide.
  • the OH radical has a very strong oxidizing power, when the light reflector is used for a long time, the polyolefin resin existing around the coated titanium oxide is oxidatively decomposed or a phenolic antioxidant is used. There is a risk of coloring due to deterioration of other additives.
  • the temperature inside the device becomes as high as 40 to 60 ° C., which may promote the oxidative decomposition of the polyolefin resin and the discoloration of other additives described above. There is.
  • the coated titanium oxide having a water content of 0.5% by weight or less used in the present invention has a very small amount of water contained therein, so that the oxidative degradation of the polyolefin-based resin described above and other additives It becomes possible to suppress discoloration highly. Therefore, the light reflecting plate of the present invention containing the coated titanium oxide having a moisture content of 0.5% by weight or less has excellent light reflecting performance even when used for a long time in a high temperature environment. Can be maintained.
  • titanium oxide by covering the surface of titanium oxide with a coating layer containing aluminum oxide and silicon oxide, it is possible to prevent direct contact between the titanium oxide and the polyolefin-based resin, and the polyolefin based on the photocatalytic action of titanium oxide. Deterioration of the resin can be suppressed.
  • the coating layer of titanium oxide generally prevents ultraviolet light from entering the titanium oxide, and can prevent discoloration to dark gray due to oxygen defects due to photochemical changes in the titanium oxide crystal. The reflector hardly causes coloration associated with the discoloration of titanium oxide during its use, and the light reflector has an excellent light reflection performance ability during its use.
  • the amount of aluminum oxide converted to Al 2 O 3 determined by fluorescent X-ray analysis is preferably 1 to 6% by weight with respect to the total weight of titanium dioxide in the coated titanium oxide. It is more preferably ⁇ 5% by weight, and particularly preferably 1 to 4% by weight.
  • the amount of aluminum oxide quantified by fluorescent X-ray analysis converted to Al 2 O 3 is when the total weight of titanium dioxide in the coated titanium oxide is 100% by weight. It is preferably 1 to 6% by weight, more preferably 1 to 5% by weight, and particularly preferably 1 to 4% by weight.
  • the amount of aluminum oxide in the coating layer of the coated titanium oxide is too small, the suppression of the photocatalytic action of the titanium oxide is insufficient, and coloring due to deterioration of the polyolefin-based resin may occur, thereby reducing the light reflecting performance ability of the light reflecting plate. There is.
  • the amount of aluminum oxide in the coating layer of the coated titanium oxide is too large, the coating layer absorbs visible light and the light reflection by the titanium oxide is reduced. As a result, the light reflectance of the light reflecting plate is reduced. May decrease.
  • the amount of silicon oxide quantified by fluorescent X-ray analysis converted to SiO 2 is preferably 0.1 to 7% by weight with respect to the total weight of titanium dioxide in the coated titanium oxide. 0.1 to 6% by weight is more preferable, and 0.1 to 5% by weight is particularly preferable.
  • the amount of silicon oxide quantified by fluorescent X-ray analysis converted to SiO 2 is 0 when the total weight of titanium dioxide in the coated titanium oxide is 100% by weight. 0.1 to 7% by weight is preferable, 0.1 to 6% by weight is more preferable, and 0.1 to 5% by weight is particularly preferable.
  • the amount of silicon oxide in the coating layer of the coated titanium oxide is too small, the suppression of the photocatalytic action of the titanium oxide is insufficient, and coloring due to deterioration of the polyolefin resin may occur, which may reduce the light reflecting performance of the light reflecting plate. There is. Further, if the amount of silicon oxide in the coating layer of the coated titanium oxide is too large, the coating layer absorbs visible light, and the light reflection by the titanium oxide is reduced. As a result, the light reflecting performance of the light reflecting plate is reduced. May decrease.
  • the amount converted to Al 2 O 3 of the aluminum oxide quantified by fluorescent X-ray analysis, and converted to SiO 2 of the silicon oxide quantified by fluorescent X-ray analysis is measured using a fluorescent X-ray analyzer.
  • an X-ray tube (vertical Rh / Cr tube (3 / 2.4 kW)) using a fluorescent X-ray analyzer commercially available from Rigaku Corporation under the trade name “RIX-2100”, Analysis diameter (10 mm ⁇ ), slit (standard), spectral crystal (TAP (F to Mg) PET (Al, Si) Ge (P to Cl) LiF (K to U)), detector (F-PC (F to Ca) ) SC (Ti to U)) and measurement mode (bulk method, 10 m-Cr, no balance component).
  • a carbon double-sided adhesive tape is stuck on a carbon base, and a coated titanium oxide is stuck on the carbon double-sided adhesive tape.
  • the amount of the coated titanium oxide is not particularly limited, but as a guideline, it is about 0.1 g, and the coated titanium oxide is evenly distributed in a virtual square frame with a side of 12 mm defined on the carbon double-sided adhesive tape. It is preferable that the carbon double-sided pressure-sensitive adhesive tape is covered with titanium oxide so that the carbon double-sided pressure-sensitive adhesive tape in the virtual frame portion is not visible.
  • a polypropylene film is entirely covered with a carbon table to form a sample for X-ray measurement, and the above-mentioned X-ray measurement sample is used to measure the above-mentioned by a fluorescent X-ray analyzer.
  • the amount of aluminum oxide in the coating layer of the coated titanium oxide converted to Al 2 O 3 and the amount of silicon oxide converted to SiO 2 can be measured.
  • the carbon base is made of carbon and may be a cylindrical shape having a diameter of 26 mm and a height of 7 mm.
  • the carbon double-sided pressure-sensitive adhesive tape for example, a conductive carbon double-sided tape for SEM (12 mm width, 20 m roll) commercially available from Oken Shoji Co., Ltd. can be used.
  • As the polypropylene film for example, a polypropylene film having a thickness of 6 ⁇ m commercially available from Rigaku Denki Kogyo under the trade name “Cell Sheet Cat No. 3377P3” can be used.
  • untreated titanium oxide is dispersed in water or a medium containing water as a main component to produce an aqueous slurry.
  • the titanium oxide may be preliminarily pulverized using a wet pulverizer such as a vertical sand mill, a horizontal sand mill, or a ball mill in accordance with the degree of aggregation of the titanium oxide.
  • a dispersant may be added to the aqueous slurry.
  • a dispersant include phosphoric acid compounds such as sodium hexametaphosphate and sodium pyrophosphate, and silicate compounds such as sodium silicate and potassium silicate.
  • a coating layer containing aluminum oxide and silicon oxide is formed on the surface of titanium oxide.
  • a water-soluble aluminum salt and a water-soluble silicate are added to the aqueous slurry.
  • the water-soluble aluminum salt include sodium aluminate, aluminum sulfate, aluminum nitrate, and aluminum chloride.
  • the water-soluble silicate include sodium silicate and potassium silicate.
  • a neutralizing agent is added after or simultaneously with the addition of one or both of the water-soluble aluminum salt and the water-soluble silicate into the aqueous slurry.
  • the neutralizing agent is not particularly limited, and examples thereof include acidic compounds such as inorganic acids such as sulfuric acid and hydrochloric acid, acetic acid and organic acids such as formic acid, hydroxides or carbonates of alkali metals or alkaline earth metals, and ammonium compounds. And basic compounds.
  • titanium oxide is entirely covered with one or both of aluminum oxide and silicon oxide, and then oxidized from the aqueous slurry using a known filtration device such as a rotary press or a filer press. Titanium is filtered and separated, and if necessary, the titanium oxide is washed to remove soluble salts.
  • the coated titanium oxide whose surface is coated with a coating layer containing aluminum oxide and silicon oxide is added as described above. Obtainable.
  • the titanium oxide coated with either the water-soluble aluminum salt or the water-soluble silicate is not used.
  • the aqueous slurry is prepared in the same manner as described above, and the other salt of the water-soluble aluminum salt or the water-soluble silicate is added to the aqueous slurry in the same manner as described above. Is coated with a water-soluble aluminum salt or the other salt of a water-soluble silicate, and a coated titanium oxide in which the surface of titanium oxide is coated with a coating layer containing aluminum oxide and silicon oxide can be obtained. .
  • hammer mill In addition, depending on the degree of aggregation of titanium oxide coated with either water-soluble aluminum salt or water-soluble silicate, hammer mill, impact mill such as pin mill, grinding mill such as crusher, It is preferable to pulverize using an airflow pulverizer such as a jet mill, a spray dryer such as a spray dryer, a wet pulverizer such as a vertical sand mill, a horizontal sand mill, and a ball mill, and an impact pulverizer and an attrition pulverizer are preferable. .
  • an airflow pulverizer such as a jet mill
  • a spray dryer such as a spray dryer
  • a wet pulverizer such as a vertical sand mill, a horizontal sand mill, and a ball mill
  • an impact pulverizer and an attrition pulverizer are preferable. .
  • the content of the coated titanium oxide in the light reflecting plate is limited to 20 to 120 parts by weight, preferably 30 to 120 parts by weight, and more preferably 30 to 100 parts by weight with respect to 100 parts by weight of the polyolefin resin.
  • the light reflecting plate of the present invention contains a polyolefin resin in addition to the above-mentioned coated titanium oxide.
  • the polyolefin resin is not particularly limited, and examples thereof include a polyethylene resin and a polypropylene resin, and a polypropylene resin is preferable.
  • polyolefin resin may be used independently or 2 or more types may be used together.
  • polyethylene resin examples include low density polyethylene, linear low density polyethylene, high density polyethylene, and medium density polyethylene.
  • the polypropylene resin examples include homopolypropylene, ethylene-propylene copolymer, propylene- ⁇ -olefin copolymer, and the like. Furthermore, when the light reflecting plate is foamed, the polypropylene resin is preferably a high melt tension polypropylene resin disclosed in Japanese Patent No. 2521388 or Japanese Patent Laid-Open No. 2001-226510. .
  • the ethylene-propylene copolymer and the propylene- ⁇ -olefin copolymer may be either a random copolymer or a block copolymer.
  • the ethylene component content in the ethylene-propylene copolymer is preferably 0.5 to 30% by weight, more preferably 1 to 10% by weight.
  • the content of the ⁇ -olefin component in the propylene- ⁇ -olefin copolymer is preferably 0.5 to 30% by weight, and more preferably 1 to 10% by weight.
  • ⁇ -olefins examples include ⁇ -olefins having 4 to 10 carbon atoms, such as 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene and the like. Is mentioned.
  • the polyolefin resin a polypropylene resin is preferable, and homopolypropylene is particularly preferable.
  • the coated titanium oxide can be particularly finely dispersed in the polypropylene resin.
  • the surface of the coated titanium oxide is one or more coupling agents selected from the group consisting of a titanium coupling agent and a silane coupling agent, and a siloxane compound. It is preferable to treat with a polyhydric alcohol, and it is more preferred to treat with a silane coupling agent.
  • silane coupling agents include alkoxysilanes having an alkyl group, alkenyl group, amino group, aryl group, epoxy group, chlorosilanes, polyalkoxyalkylsiloxanes, and the like.
  • examples of the silane coupling agent include n- ⁇ (aminoethyl) ⁇ -aminopropylmethyldimethoxysilane, n- ⁇ (aminoethyl) ⁇ -aminopropylmethyltrimethoxysilane, n- ⁇ (amino Ethyl) aminosilane coupling agents such as ⁇ -aminopropylmethyltriethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, n-phenyl- ⁇ -aminopropyltrimethoxysilane, dimethyldimethoxysilane, methyl Trimethoxysilane,
  • siloxane compound examples include dimethyl silicone, methyl hydrogen silicone, and alkyl-modified silicone.
  • examples of the polyhydric alcohol include trimethylol ethane, trimethylol propane, tripropanol ethane, pentaerythritol, pentaerythritol and the like, and trimethylol ethane and trimethylol propane are preferable.
  • a siloxane compound and a polyhydric alcohol may be used independently, or 2 or more types may be used together.
  • the above-mentioned coated titanium oxide is EIDupontuponde Nemours & Co., SCM Corporation, Kerr-McGee Co., CanadeanTitanium Pigments Ltd., Tioxide of Canada Ltd. , SCM Corp., Kronos Titan GmbH, NL Chemical SA / NV, Tioxide, TDF Tiofine BV, Ishihara Sangyo, Teika, Sakai Chemical, Furukawa Machine Metal, Tochem Products, Titanium, Fuji Titanium , Korea Titanium Co., China Metal Processing Co., ISK Taiwan Co., Ltd. and others.
  • the light reflection plate may contain a primary antioxidant.
  • This primary antioxidant is a stabilizer that traps radicals generated by heat or light and stops the radical reaction, and as such a primary antioxidant, it suppresses a decrease in light reflectance of the light reflector.
  • a phenolic antioxidant is preferred because of its high effect.
  • phenolic antioxidant examples include 2,6-di-t-butyl-4-methylphenol and n-octadecyl-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl).
  • the content of the primary antioxidant in the light reflecting plate is small, it may not be possible to suppress a decrease in the light reflectivity of the light reflecting plate, while at most, the light reflectivity of the light reflecting plate. There is no change in the effect of suppressing the decrease in light, and the light reflectance of the light reflecting plate may be decreased by coloring the primary antioxidant itself, so that 0.01 to 0.5 weight with respect to 100 parts by weight of the polyolefin resin Part is preferable, 0.01 to 0.3 part by weight is more preferable, and 0.01 to 0.2 part by weight is particularly preferable.
  • the light reflecting plate contains a coated titanium oxide having a water content exceeding 0.5% by weight
  • the light reflecting plate is heated at the time of thermoforming the light reflecting plate, so that the titanium oxide is strong. Reducing power is generated and a large amount of water contained in the coated titanium oxide is radicalized into H. and OH.
  • the coated titanium oxide having a moisture content of 0.5% by weight or less even if the light reflecting plate contains a phenolic antioxidant, the amount of water in the light reflecting plate is small.
  • the coloring substance hardly occurs by the attack of the phenolic antioxidant due to the OH radical, and the discoloration of the light reflecting plate can be suppressed to a high level.
  • the light reflection plate may contain a secondary antioxidant.
  • This secondary antioxidant inhibits auto-oxidation by ionic decomposition of hydroperoxide (ROOH), which is an intermediate of auto-oxidation degradation of polyolefin resin caused by heat and light.
  • ROOH hydroperoxide
  • Phosphorous antioxidants and sulfur-based antioxidants are preferable, and phosphorus-based antioxidants are more preferable because they have a high effect of suppressing a decrease in light reflectance of the light reflecting plate.
  • Examples of the phosphorus antioxidant include tris (nonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite, distearylpentaerythritol diphosphite, bis (2,4-diphenyl). -T-butylphenyl) pentaerythritol phosphite, 2,2-methylenebis (4,6-di-t-butylphenyl) -4,4'-biphenylenedi-phosphonite, and the like. Two or more kinds may be used in combination.
  • sulfur antioxidant examples include dilauryl-3,3′-thio-dipropionate, dimyristyl-3,3′-thio-dipropionate, distearyl-3,3′-thio-dipropionate, pentaerythritol tetrakis (3-laurylthio-propionate) and the like may be used alone or in combination of two or more.
  • the content of the secondary antioxidant in the light reflecting plate is preferably 0.01 to 0.5 parts by weight, more preferably 0.01 to 0.3 parts by weight with respect to 100 parts by weight of the polyolefin resin. 0.01 to 0.2 parts by weight is particularly preferable.
  • the light reflector may contain an ultraviolet absorber.
  • ultraviolet absorbers include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- [2′-hydroxy-3 ′, 5′-bis ( ⁇ , ⁇ -dimethylbenzyl).
  • Phenyl] -benzotriazole 2- (2′-hydroxy-3 ′, 5-di-t-butylphenyl) -benzotriazole, 2- (2′-hydroxy-3′-t-butyl-5′-methyl) Phenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′, 5 ′ -Di-t-amyl) benzotriazole, 2- (2'-hydroxy-5'-t-octylphenyl) benzotriazole, 2,2'-methylenebis [4- (1,1,3,3-tetramethylbutyl -6 -(2N-benzotriazol-2-yl) phenol] and the like, 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-methoxybenzophenone-5
  • Benzoate ultraviolet absorbers 2- [4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5-hydroxyphenol, 2- (2,4-dihydroxy) Phenyl) -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2,4-bis (2-hydroxy-4-but) Triazine-based UV absorbers such as (Ciphenyl) -6- (2,4-dibutoxyphenyl) -1,3-5-triazine, etc. are mentioned, and the reduction of the light reflectance of the light reflector is effectively suppressed. Therefore, a benzotriazole-based ultraviolet absorber is preferable. In addition, an ultraviolet absorber may be used independently or 2 or more types may be used together.
  • the molecular weight of the ultraviolet absorber is preferably 250 or more, more preferably 300 to 500, and particularly preferably 400 to 500.
  • the ultraviolet absorber having a molecular weight of less than 250 is easily volatilized from the surface of the light reflecting plate-forming resin composition.
  • the volatilization of the ultraviolet absorber may cause defects such as uneven gloss, roughness, and tearing on the surface of the obtained light reflector.
  • the molded product of the light reflecting plate in which these defects are generated cannot exhibit excellent light reflecting performance uniformly.
  • the content of the ultraviolet absorber in the light reflecting plate is preferably 0.01 to 0.5 parts by weight, more preferably 0.01 to 0.3 parts by weight, based on 100 parts by weight of the polyolefin resin. 0.01 to 0.2 parts by weight is particularly preferable.
  • a hindered amine light reflection stabilizer may be contained in the light reflection plate.
  • a hindered amine light stabilizer is not particularly limited, and examples thereof include bis (2,2,6,6-tetramethyl-4-piperidinyl) sebacate and bis (N-methyl-2,2,6,6).
  • the content of the hindered amine light stabilizer in the light reflecting plate is preferably 0.01 to 0.5 parts by weight, more preferably 0.01 to 0.3 parts by weight with respect to 100 parts by weight of the polyolefin resin. 0.01 to 0.2 parts by weight is particularly preferable.
  • the deterioration of the polyolefin-based resin is caused by cutting of the polymer main chain. Specifically, radicals are generated by heat, light, and the like, and the generated radicals react with oxygen to turn into peroxy radicals, drawing hydrogen from the main chain into hydroperoxides. Thereafter, hydroperoxide is decomposed by the action of heat, light, and the like, becomes an alkoxy radical, cuts the polymer main chain, and a radical is generated as the polymer main chain is cut. By repeating this reaction cycle, the polymer main chain is cleaved and the molecular weight is lowered, and the polyolefin resin deteriorates. The deterioration of the polyolefin resin causes yellowing of the polyolefin resin, and as a result, the light reflectance of the light reflecting plate is lowered.
  • the coated titanium oxide formed by coating the surface of titanium oxide with a coating layer containing aluminum oxide and silicon oxide is used, and titanium oxide and polyolefin resin are used.
  • UV light incident on titanium oxide is blocked by the coating layer as much as possible to prevent oxidative degradation of polyolefin resin due to the photocatalytic action of titanium oxide, and photochemistry in titanium oxide crystals. Discoloration to dark gray due to an increase in oxygen defects due to the change is prevented.
  • the ultraviolet absorber and the hindered amine light stabilizer have the ability to suppress the oxidative decomposition of the polyolefin resin by titanium oxide, but the inhibitory power is not sufficient, and the ultraviolet absorber.
  • the hindered amine light stabilizer itself may be oxidized and decomposed by titanium oxide.
  • primary antioxidants and secondary antioxidants are added to light-stabilize polyolefin resins by trapping radical reactions and ionic decomposition of hydroperoxides.
  • the oxidative decomposition of the UV absorber and the hindered amine light stabilizer by titanium oxide is more reliably prevented.
  • the decomposition of the UV absorber and the hindered amine light stabilizer by titanium oxide is more reliably prevented,
  • This protected UV absorber and hindered amine light stabilizer further prevent oxidative degradation of polyolefin resin by titanium oxide and suppress photochemical change, and the initial light reflectivity is short. As a result, it is possible to more reliably prevent a situation in which the light beam is reduced, and to maintain an excellent light reflectance even over a long period of time.
  • the light reflecting plate may contain a copper damage prevention agent (metal deactivator).
  • a copper damage prevention agent metal deactivator
  • Addition of copper damage prevention agent in the light reflector makes it easier to deteriorate even when the light reflector comes into contact with metals such as copper or when heavy metal ions such as copper ions act on the light reflector.
  • Copper ions which are factors, can be captured as a chelate compound, and when the light reflector is incorporated in various liquid crystal display devices and lighting devices, the polyolefin is used even if the light reflector comes into contact with a metal such as copper. It is possible to prevent the system resin from being deteriorated and yellowing.
  • copper damage inhibitor metal deactivator
  • hydrazine compounds such as N, N-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine, 3 -(3,5-di-tetra-butyl-4-hydroxyphenyl) propionyl dihydride and the like.
  • the content of the copper damage inhibitor (metal deactivator) in the light reflector is preferably 0.1 to 1.0 part by weight with respect to 100 parts by weight of the polyolefin resin.
  • an antistatic agent may be added to the light reflecting plate.
  • the light reflecting plate can be prevented from being charged, dust and dirt can be prevented from adhering to the light reflecting plate, and the light reflectance of the light reflecting plate can be lowered. Can be prevented.
  • an antistatic agent examples include polyethylene oxide, polypropylene oxide, polyethylene glycol, polyester amide, polyether ester amide, ionomers such as ethylene-methacrylic acid copolymer, and fourth polymers such as polyethylene glycol methacrylate copolymer.
  • the content of the antistatic agent excluding the polymer antistatic agent in the light reflecting plate is preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the polyolefin resin.
  • the content of the polymer type antistatic agent in the light reflecting plate is preferably 5 to 50 parts by weight with respect to 100 parts by weight of the polyolefin resin for the same reason as described above.
  • the light reflecting plate includes dispersants such as metal stearates, quenchers, lactone processing stabilizers, fluorescent brighteners, A crystal nucleating agent or the like may be added.
  • the thickness of the light reflecting plate is too thin, the rigidity of the light reflecting plate may be reduced, and the light reflecting plate may be bent.
  • the light reflecting plate may be thinly formed by thermoforming the light reflecting plate into an arbitrary shape. There is a possibility that the portion is likely to be generated.
  • the thickness of the light reflecting plate is preferably 0.1 to 1.5 mm, more preferably 0.1 to 0.8 mm, and particularly preferably 0.1 to 0.6 mm.
  • the shape of the light reflecting plate is not particularly limited, but a sheet shape is preferable.
  • the light reflecting plate of the present invention For the production of the light reflector of the present invention, 100 parts by weight of a polyolefin resin, the surface of titanium oxide is coated with a coating layer containing aluminum oxide and silicon oxide, and the water content is 0.5% by weight. A resin composition for forming a light reflecting plate containing 20 to 120 parts by weight of the following coated titanium oxide is used.
  • the coated titanium oxide used for manufacturing the light reflecting plate is heated and the hydrated water contained in the coated titanium oxide is evaporated. be able to.
  • the hydrated water is evaporated by heating the coated titanium oxide preferably at 50 to 140 ° C., more preferably 90 to 120 ° C. Is preferably removed or reduced.
  • the heating time is preferably 2 to 8 hours, and more preferably 3 to 5 hours.
  • the resin composition for forming a light reflecting plate is optionally composed of a primary antioxidant, a secondary antioxidant, and an ultraviolet absorber. It is preferable to include other additives such as an agent and a hindered amine light stabilizer. Description of other additives such as polyolefin resin, coated titanium oxide, primary antioxidant, secondary antioxidant, ultraviolet absorber and hindered amine light stabilizer used in the light reflecting plate forming resin composition Is as described above.
  • the light reflecting plate forming resin composition is prepared in advance as a master batch containing a polyolefin resin and a coated titanium oxide, and the master batch, the polyolefin resin, and, if necessary, a primary antioxidant, a secondary It preferably contains other additives such as antioxidants, UV absorbers and hindered amine light stabilizers.
  • the dispersibility of the coated titanium oxide in the light reflecting plate forming resin composition can be improved by using the master batch containing the coated titanium oxide.
  • the coated titanium oxide with a water content of 0.5% by weight or less is completely coated with the polyolefin resin, and there is almost no coated titanium oxide exposed without being coated with the polyolefin resin. do not do. Therefore, even if the masterbatch is left for a long time, the moisture content of the coated titanium oxide contained in the masterbatch is kept constant without substantially changing.
  • the production of the masterbatch is not particularly limited, but after supplying the coated titanium oxide and the polyolefin resin to the extruder at a predetermined weight ratio and melt-kneading to obtain a melt-kneaded product, the melt-kneaded product is then extruded into the extruder. Is preferably carried out by an extrusion method. Moreover, also when using a masterbatch, it is preferable to produce a masterbatch using the covering titanium oxide which made it heat-dry previously as mentioned above and made the moisture content 0.5 weight% or less.
  • an extruder having a volatile content removing means is used, and the volatile matter generated from the melt-kneaded product during the melt-kneading is removed from the extruder. It is preferable to discharge to the outside. By such a method, the water of hydration contained in the coating layer of the coated titanium oxide can be removed more highly.
  • an extruder having a devolatilizing means for example, a vent type provided with a vent port for discharging gas inside the cylinder to the outside at the middle part of the cylinder of the extruder for melting and kneading the coated titanium oxide and polyolefin resin.
  • An extruder or the like is preferably used. According to the vent type extruder, the gas inside the cylinder can be sucked from the vent port and discharged to the outside using a vacuum pump or the like.
  • the pressure in the cylinder is preferably 7.5 to 225 mmHg (1 to 30 kPa), more preferably 22.5 to 150 mmHg (3 to 20 kPa).
  • the pressure in the cylinder is preferably from 180 to 290 ° C, more preferably from 180 to 270 ° C.
  • the resin composition for forming a light reflecting plate includes a polyolefin-based resin, a coated titanium oxide having a water content of 0.5% by weight or less, and, if necessary, a primary antioxidant, a secondary antioxidant, an ultraviolet absorber, It is manufactured by supplying other additives such as hindered amine light stabilizers to an extruder and melt-kneading so that each component is contained in a desired weight ratio in the finally obtained light reflector. It is preferable.
  • the resin composition for forming a light reflecting plate includes a polyolefin resin and a masterbatch containing a coated titanium oxide having a water content of 0.5% by weight or less, a polyolefin resin, and, if necessary.
  • a masterbatch and a polyolefin resin are melt-kneaded in an extruder to obtain a resin composition for forming a light reflector.
  • an extruder having a volatile component removing means such as a vent type extruder and discharge the volatile component generated from the resin composition to the outside of the extruder when the resin composition is melt-kneaded.
  • the pressure in the cylinder is preferably 7.5 to 225 mmHg (1 to 30 kPa), more preferably 22.5 to 150 mmHg (3 to 20 kPa). preferable.
  • the pressure in the cylinder is preferably 180 to 290 ° C., and more preferably 180 to 270 ° C.
  • the resin composition for forming a light reflecting plate is preferably manufactured by supplying a polyolefin-based resin and coated titanium oxide to a general-purpose kneading apparatus such as an extruder and melt-kneading.
  • the resin composition for use may be molded into a predetermined shape such as a pellet.
  • the coated titanium oxide having a water content of 0.5% by weight or less is completely covered with the polyolefin resin, and is not covered with the polyolefin resin. There is little exposed titanium oxide. Accordingly, even when the molded resin composition for forming a light reflecting plate is left for a long time, the moisture content of the coated titanium oxide contained in the resin composition for forming a light reflecting plate is substantially unchanged and remains constant. To be kept.
  • the coated titanium oxide and the polyolefin resin are supplied to an extruder and melt kneaded to obtain a light reflecting plate forming resin composition.
  • the reflecting plate-forming resin composition By extruding the reflecting plate-forming resin composition into a strand form from an extruder and cutting it at predetermined intervals, it can be formed into a pellet form.
  • the masterbatch and polyolefin resin are supplied to an extruder and melt kneaded to obtain a resin composition for forming a light reflector, and the resin composition for forming a light reflector is an extruder.
  • the moisture content of the coated titanium oxide contained in the resin composition for forming the light reflecting plate is measured by the above-described measuring method for the moisture content of the coated titanium oxide contained in the light reflecting plate. It can measure similarly except having used the sample obtained by measuring 5 g of resin compositions for light-reflecting board formation instead of the test piece of the weight obtained by cutting 5g.
  • the light reflection plate of the present invention which consists of a non-foaming sheet can be manufactured by shape
  • the light reflecting plate forming resin composition may be formed into a sheet shape by a known method such as an inflation method, a T-die method, or a calendar method. The die method is preferred.
  • a light reflecting plate-forming resin obtained by attaching a T die to the tip of an extruder and melt-kneading the T die in the extruder. What is necessary is just to carry out by extruding a composition in a sheet form.
  • a resin composition for forming a light reflector When a resin composition for forming a light reflector is obtained by supplying polyolefin resin and coated titanium oxide to an extruder and melt-kneading in the extruder, the resin composition for forming a light reflector is removed from the extruder.
  • a light reflector can be produced by direct extrusion.
  • a light reflecting plate forming resin composition molded into a predetermined shape such as a pellet
  • a light reflector can be produced by extrusion from an extruder.
  • an extruder having a volatile component removing means such as a vent-type extruder is used to form a light reflector. It is preferable to discharge the volatile matter generated from the light reflecting plate forming resin composition to the outside of the extruder during melt kneading of the resin composition.
  • the vent type extruder is the same as that described above in the master batch.
  • the pressure in the cylinder is preferably 7.5 to 225 mmHg (1 to 30 kPa), more preferably 22.5 to 150 mmHg (3 to 20 kPa). preferable.
  • the pressure in the cylinder is preferably from 180 to 290 ° C., more preferably from 180 to 270 ° C.
  • the sheet-like extrudate after obtaining a sheet-like extrudate by extruding the light reflecting plate-forming resin composition from an extruder, before it is cooled and solidified to become a light reflecting plate, at least one of the sheet-like extrudates.
  • the surface is preferably subjected to mirror finishing. According to the mirror finish processing, it is possible to improve the surface smoothness of the sheet-like extrudate and provide a light reflecting plate having excellent light reflecting performance.
  • a sheet-like extrudate is supplied between a pair of rolls including a mirror roll whose outer peripheral surface is formed into a mirror surface and a support roll disposed to face the mirror roll.
  • a method of pressing a mirror roll on the surface of the extruded product is preferably used.
  • a laminated body can be formed by laminating and integrating a sheet-like support on one surface of the light reflecting plate of the present invention.
  • a support examples include a biaxially stretched polypropylene resin film, a biaxially stretched polyester resin film, a polyamide resin film, and paper.
  • the polypropylene resin is preferably polypropylene.
  • Preferred examples of the polyester resin include polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and polylactic acid.
  • Preferred examples of the polyamide resin include nylon-6 and nylon-6,6.
  • a metal foil can be laminated and integrated on one surface of the light reflecting plate of the present invention to form a laminated body.
  • the metal foil is preferably an aluminum foil.
  • the laminated body which has the outstanding light reflectivity is obtained by laminating
  • the lamination or integration of the support or metal foil on the light reflecting plate is not particularly limited, and may be performed using a known method such as a heat laminating method, a dry laminating method, and an extrusion laminating method.
  • the light reflecting plate of the present invention does not require a stretching step in its production, has excellent thermoformability, and may be thermoformed into a desired shape depending on the application.
  • the method for forming the light reflecting plate include vacuum forming and pressure forming.
  • vacuum molding and pressure molding include plug molding, free drawing molding, plug and ridge molding, matched molding, straight molding, drape molding, reverse draw molding, air slip molding, plug assist molding, plug assist reverse. Examples include draw molding. In the molding method, it is preferable to use a mold whose temperature can be adjusted.
  • the light reflector of the present invention is preferably used in a backlight unit of a liquid crystal display device such as a word processor, personal computer, mobile phone, navigation system, television, and portable television.
  • a liquid crystal display device such as a word processor, personal computer, mobile phone, navigation system, television, and portable television.
  • the light reflecting plate of the present invention has excellent light reflecting performance, the use of such a light reflecting plate for a backlight unit of a liquid crystal display device suppresses reduction in luminance and occurrence of unevenness.
  • a liquid crystal display device can be provided.
  • the light reflecting plate of the present invention When the light reflecting plate of the present invention is used for a backlight unit of a liquid crystal display device, the light reflecting plate is incorporated in a direct light type backlight, a side light type backlight or a planar light source type backlight constituting the liquid crystal display device. Can be used.
  • FIG. 1 shows a schematic diagram of a sidelight type backlight unit of a liquid crystal display device in which the light reflecting plate of the present invention is used.
  • a liquid crystal display device shown in FIG. 1 includes a light reflecting plate 10, a light diffusion layer 20 laminated and integrated on the light reflecting plate 10, a light guide plate 30 disposed on the light diffusion layer 20, and a light guide plate 30. And a lamp reflector 50 for reflecting the light radiated from the light emitting light source 40 to the light guide plate 30.
  • Examples of the light source 40 include a cooling cathode and an LED.
  • the light diffusion layer 20 is formed by dispersing translucent particles 21 made of a styrene resin or an acrylic resin in a binder resin such as a thermoplastic resin. Further, the surface of the light diffusion layer 20 has an uneven shape formed by the translucent particles 21, and light can be diffused by the uneven shape.
  • the light diffusing layer 20 can be formed by applying a coating material containing translucent particles in a binder resin to the surface of the light reflecting plate and drying it.
  • the liquid crystal display device In the liquid crystal display device, light incident on the light guide plate 30 by the light emitting light source 40 is repeatedly reflected between the front surface and the back surface of the light guide plate 30 to be led out of the light guide plate 30 from the surface of the light guide plate 30. Further, the light derived from the back surface of the light guide plate 30 is diffused so as to be uniform toward the front surface side of the light guide plate 30 by the uneven shape formed by the translucent particles 21 on the surface of the light diffusion layer 20. Reflected. Further, when light derived from the back surface of the light guide plate 30 passes through the light diffusion layer 20, the light is reflected by the light reflecting plate 10 toward the front surface side of the light guide plate 30. Thus, by combining the light guide plate 30, the light diffusion layer 20, and the light reflection plate 10 with the light emitting light source, the luminance of the liquid crystal display device can be improved.
  • the light reflecting plate of the present invention is preferably used not only for the above-described backlight unit of the liquid crystal display device but also for an illumination device for advertisement or signboard.
  • an example of the illuminating device using the light reflection plate of this invention is demonstrated, referring drawings.
  • the thermoformed light reflector has a plurality of inverted quadrangular pyramid-shaped recesses 12, 12... Continuously formed vertically and horizontally.
  • a through hole 13a is formed in the inner bottom surface 13 of the recesses 12, 12...
  • the illuminating device is configured such that an illuminating body C including a light reflecting plate 10 and a light emitting diode L is disposed in a housing 60.
  • the casing 60 is a flat rectangular bottom surface 61 having a size slightly larger than the light reflecting plate 10, and a rectangular frame-shaped peripheral wall portion extending upward from the four-side outer periphery of the bottom surface 61. 62.
  • the upper end of the inner peripheral surface of the peripheral wall portion 62 is formed with a step portion 62a over the entire circumference, and the frosted glass or the optical sheet 80 is detachably disposed on the step portion 62a.
  • the light source of the illuminator C may be a general-purpose light source in addition to the light emitting diode.
  • a light source body 70 is prepared in which a large number of light emitting diodes L, L... Are arranged on a planar square substrate 71 having a size that can be laid on the bottom surface portion 61 of the housing 60.
  • the positions of the through holes 13a of the concave portions 12 and the positions of the light emitting diodes L of the light source body 70 are matched.
  • the light source body 70 is laid on the bottom surface 61 of the housing 60 with the light emitting diode L facing upward (in the opening direction of the housing 60). And the light emitting diode L of the light source body 70 is disposed through the through hole 13a of the recess 12 of the light reflecting plate 10 to constitute the illuminating body C.
  • a frosted glass or optical sheet 80 is detachably disposed on the stepped portion 62a of the peripheral wall portion 62 of the housing 60, and then the light emitting diode L is caused to emit light (FIG. 4). reference). Then, the light emitted radially from the light emitting diode L and incident on the inner peripheral surface of the concave portion 12 of the light reflecting plate 10 is reflected once or a plurality of times on the inner peripheral surface, and the traveling direction is frosted glass or It is directed toward the optical sheet 80 and enters the frosted glass or the optical sheet 80. It is preferable that the light reflecting plate 10 of the illuminator C and the frosted glass or the optical sheet 80 are not in close contact with each other.
  • the optical sheet 80 contains a light diffusing agent such as titanium oxide that diffuses light therein, and the light incident in the optical sheet 80 is irregularly reflected by the light diffusing agent in the optical sheet 80, Alternatively, the light incident on the frosted glass is diffused by the frosted glass and further diffused and then emitted outward from the frosted glass or the optical sheet 80. Therefore, it is in a state of shining substantially uniformly.
  • a light diffusing agent such as titanium oxide that diffuses light therein
  • the light that has entered the frosted glass or the optical sheet 80 is irregularly reflected by the frosted glass or the optical sheet 80, and a part of the light is reflected in the direction of the light reflecting plate A and is incident again in the direction of the light reflecting plate A.
  • the light incident on the light reflecting plate 10 again is reflected on the inner peripheral surface of the recess 12 and is incident on the frosted glass or the optical sheet 80 again.
  • the light emitted from the light emitting diode L is reflected toward the frosted glass or the optical sheet 80 while being diffused by being reflected on the inner peripheral surface of the concave portion 12, and thus the frosted glass or the optical sheet. Since 80 is irradiated with light with a substantially uniform light beam over the entire surface, the position of the light emitting diode is hardly seen through the frosted glass or the optical sheet 80.
  • the design or characters drawn directly on the frosted glass or optical sheet 80, or the design or characters drawn on the decorative sheet disposed on the frosted glass or optical sheet 80, is the frosted glass or optical sheet 80.
  • the light is uniformly and uniformly emerged from the light emitted uniformly from the whole. Therefore, the lighting device described above can be suitably used as a lighting device for advertisements and billboards.
  • the light diffusing layer is formed on the surface of the light reflecting plate and the light is diffused by the light diffusing layer.
  • one or both surfaces of the light reflecting plate are formed on the concavo-convex surface. You may make it diffuse the light which injects into a reflecting plate.
  • the method for forming the surface of the light reflecting plate on the uneven surface is not particularly limited.
  • a resin composition for forming a light reflecting plate is used by a known method such as an inflation method, a T-die method, or a calendar method.
  • the sheet-like extrudate is manufactured, the sheet-like extrudate is supplied between a pair of rolls, and the unevenness formed on the surface of one or both rolls is transferred to the surface of the sheet-like extrudate.
  • the method of forming the surface of the light reflecting plate on the uneven surface is preferable. According to the method of (1) above, by continuously forming irregularities on the surface of a sheet-like extrudate produced by extrusion from an extruder, a light reflecting plate having a surface having an irregular surface is continuously formed. Can be manufactured in one step.
  • the surface roughness Ra of the uneven surface of the light reflecting plate is small, the light diffusibility of the light reflecting plate may be lowered. If the surface roughness Ra is large, the diffusibility of the light reflected from the light reflecting plate becomes non-uniform. Since the diffuse reflectance of the light reflected from the reflecting plate may decrease, it is preferably 1 to 20 ⁇ m, and more preferably 1 to 15 ⁇ m.
  • the average spacing Sm between the concave and convex surfaces of the light reflecting plate may reduce the light diffusibility of the light reflecting plate. If the average spacing Sm is large, the diffusibility of the light reflected from the light reflecting plate becomes non-uniform. 5 to 300 ⁇ m is preferable, and 10 to 130 ⁇ m is more preferable.
  • the maximum height (Ry) of the uneven surface of the light reflector is small, the light diffusibility of the light reflector may be reduced. If it is large, the diffusibility of the light reflected from the light reflector will be uneven. Since the diffuse reflectance of the light reflected from the light reflecting plate may decrease, it is preferably 5 to 80 ⁇ m, more preferably 10 to 50 ⁇ m, and particularly preferably 10 to 30 ⁇ m.
  • the surface roughness Ra of the concavo-convex surface of the light reflecting plate is a value measured at a reference length of 2.5 mm and an evaluation length of 12.5 mm in accordance with JIS B0601.
  • the average interval Sm of the unevenness on the uneven surface of the light reflecting plate is a value measured at a reference length of 2.5 mm and an evaluation length of 12.5 mm in accordance with JIS B0601.
  • the maximum height (Ry) of the concavo-convex surface of the light reflecting plate is a value measured at a reference length of 2.5 mm and an evaluation length of 12.5 mm in accordance with JIS B0601.
  • the surface roughness Ra and the average interval Sm are commercially available from Keyence Corporation under the trade names “Double Scan High Precision Laser Measuring Instrument LT-9500” and “Double Scan High Precision Laser Measuring Instrument LT-9010M”.
  • the measurement can be performed in combination with a measuring instrument and a measuring instrument commercially available from COMMS under the trade name “Non-contact contour shape / roughness measuring system MAP-2DS”.
  • the sheet-like extrudate is supplied between a pair of rolls, and the unevenness formed on the outer peripheral surface of one or both rolls is transferred to the surface of the sheet-like extrudate, thereby reflecting light.
  • the unevenness formed on the outer peripheral surface of the roll can be accurately transferred and formed on the surface of the light reflecting plate. Desired irregularities can be formed uniformly to provide an irregular surface, and the light reflector has a uniform light diffusibility.
  • the surface of the light reflecting plate is pressed on the surface of the sheet-like extrudate by pressing the uneven surface such as the unevenness formed on the outer peripheral surface of the shibo roll. Therefore, regardless of the thickness of the light reflector, at least one surface of the light reflector can be formed on the concavo-convex surface, and a light reflector having a large thickness and excellent light diffusibility can be easily formed. Can be manufactured.
  • the light reflecting plate having at least one surface formed with an uneven surface does not require a stretching process in its production, has excellent thermoformability, and has a desired shape depending on the application. It may be thermoformed. Since the molding method is the same as described above, the description thereof is omitted.
  • At least one surface of the light reflecting plate is formed as an uneven surface, if the uneven surface of the light reflecting plate contacts the mold during thermoforming, the uneven surface of the light reflecting plate and the mold An air gap is formed between the surface and the air, and the air existing between the opposing surfaces of the light reflecting plate and the mold can be smoothly eliminated through the air gap, and the light reflecting plate can be accurately heated to a desired shape. Can be molded.
  • the uneven surface of the light reflecting plate is pressed against the mold during thermoforming, and the unevenness of the uneven surface is slightly reduced.
  • the surface roughness Ra of the concavo-convex surface, the average interval Sm of the concavo-convex surface and the maximum height (Ry) of the concavo-convex surface may be reduced after the light reflecting plate is thermoformed. Therefore, when the light reflecting plate is thermoformed in a state where the uneven surface of the light reflecting plate is in contact with the mold, the surface roughness Ra of the uneven surface, the average of the uneven surface of the uneven surface in the light reflecting plate after thermoforming.
  • the surface roughness Ra of the concavo-convex surface, the average interval Sm of the concavo-convex surface and the uneven surface of the concavo-convex surface are set so that the interval Sm and the maximum height (Ry) of the concavo-convex surface take desired values.
  • Each maximum height (Ry) is preferably adjusted to be larger than a desired value after thermoforming.
  • coated titanium oxide A (trade name “CR-93” manufactured by Ishihara Sangyo Co., Ltd., average particle size: 0.28 ⁇ m) was prepared.
  • the surface of rutile type titanium oxide was coated with a coating layer containing aluminum oxide and silicon oxide.
  • the coated titanium oxide A when the amount of aluminum oxide was quantified by fluorescent X-ray analysis, it was 3.1% by weight in terms of Al 2 O 3 with respect to the total weight of titanium dioxide.
  • the amount of silicon oxide in the coated titanium oxide A was quantified by fluorescent X-ray analysis, it was 4.2% by weight in terms of SiO 2 with respect to the total weight of titanium dioxide.
  • the hydrated water contained in the coated titanium oxide was reduced by heating and drying the coated titanium oxide A at 100 ° C. for 5 hours.
  • a master batch of coated titanium oxide A was prepared by melting and kneading the parts by weight with a bent twin screw extruder having a diameter of 120 mm at 230 ° C. and pelletizing.
  • the pressure in the cylinder is 60 mmHg (8 kPa) and the gas in the cylinder is vented from the vent port by a vacuum pump. Was discharged to the outside.
  • BASF brand name TINUVIN registered trademark
  • BASF brand name TINUVIN registered trademark 111
  • BASF brand name TINUVIN registered trademark 111
  • this sheet-like extrudate is supplied between a pair of rolls consisting of a mirror roll whose outer peripheral surface is formed into a mirror surface and a support roll disposed opposite to the mirror roll, and the mirror roll is supplied to the sheet.
  • a non-foamed light reflector having a thickness of 0.2 mm and a density of 1.3 g / cm 3 was obtained.
  • Example 2 A light reflecting plate was produced in the same manner as in Example 1 except that coated titanium oxide B (trade name “CR-90” manufactured by Ishihara Sangyo Co., Ltd., average particle diameter of 0.25 ⁇ m) was used instead of coated titanium oxide A. .
  • coated titanium oxide B trade name “CR-90” manufactured by Ishihara Sangyo Co., Ltd., average particle diameter of 0.25 ⁇ m
  • the surface of the rutile titanium oxide was covered with a coating layer containing aluminum oxide and silicon oxide in the coated titanium oxide B.
  • aluminum oxide in the coated titanium oxide B was quantified by fluorescent X-ray analysis, it was 2.7% by weight in terms of Al 2 O 3 with respect to the total weight of titanium dioxide.
  • silicon oxide in the coated titanium oxide B was quantified by fluorescent X-ray analysis, it was 3.6% by weight with respect to the total weight of titanium dioxide in terms of SiO 2 .
  • Example 3 A light reflecting plate was produced in the same manner as in Example 1 except that coated titanium oxide C (trade name “CR-80” manufactured by Ishihara Sangyo Co., Ltd., average particle diameter of 0.25 ⁇ m) was used instead of coated titanium oxide A. .
  • coated titanium oxide C trade name “CR-80” manufactured by Ishihara Sangyo Co., Ltd., average particle diameter of 0.25 ⁇ m
  • the coated titanium oxide C the surface of rutile type titanium oxide was coated with a coating layer containing aluminum oxide and silicon oxide.
  • aluminum oxide in the coated titanium oxide C was quantified by fluorescent X-ray analysis, it was 3.3% by weight in terms of Al 2 O 3 with respect to the total weight of titanium dioxide.
  • silicon oxide in the coated titanium oxide C was quantified by fluorescent X-ray analysis, it was 1.8% by weight in terms of SiO 2 with respect to the total weight of titanium dioxide.
  • Example 4 A light reflecting plate was produced in the same manner as in Example 1 except that coated titanium oxide D (trade name “CR-63” manufactured by Ishihara Sangyo Co., Ltd., average particle size 0.21 ⁇ m) was used instead of coated titanium oxide A. .
  • coated titanium oxide D trade name “CR-63” manufactured by Ishihara Sangyo Co., Ltd., average particle size 0.21 ⁇ m
  • the covering titanium oxide D the surface of rutile type titanium oxide was coat
  • the amount of aluminum oxide in the coated titanium oxide D was quantified by fluorescent X-ray analysis, it was 1.4% by weight with respect to the total weight of titanium dioxide in terms of Al 2 O 3 .
  • the amount of silicon oxide in the coated titanium oxide D was quantified by fluorescent X-ray analysis, it was 0.7% by weight with respect to the total weight of titanium dioxide in terms of SiO 2 .
  • Example 5 A light reflecting plate was produced in the same manner as in Example 1 except that coated titanium oxide E (trade name “CR-50” manufactured by Ishihara Sangyo Co., Ltd., average particle diameter of 0.25 ⁇ m) was used instead of coated titanium oxide A. .
  • coated titanium oxide E trade name “CR-50” manufactured by Ishihara Sangyo Co., Ltd., average particle diameter of 0.25 ⁇ m
  • the covering titanium oxide E the surface of rutile type titanium oxide was coat
  • the amount of aluminum oxide in the coated titanium oxide E was quantified by fluorescent X-ray analysis, it was 2.3% by weight in terms of Al 2 O 3 with respect to the total weight of titanium dioxide.
  • the amount of silicon oxide in the coated titanium oxide E was quantified by fluorescent X-ray analysis, it was 0.1% by weight in terms of SiO 2 with respect to the total weight of titanium dioxide.
  • Example 6 As shown in Table 1, the type of coated titanium oxide was changed, and in place of the benzotriazole ultraviolet absorber 1, a benzotriazole ultraviolet absorber 2 (molecular weight 447.6, trade name TINUVIN (registered trademark) manufactured by BASF) A light reflector was manufactured in the same manner as in Example 1 except that 234) was used.
  • a benzotriazole ultraviolet absorber 2 molecular weight 447.6, trade name TINUVIN (registered trademark) manufactured by BASF
  • Example 11 and 12 As shown in Table 1, the compounding amount of the coated titanium oxide was changed, and the benzotriazole ultraviolet absorber 2 (molecular weight 447.6, trade name TINUVIN (registered trademark) manufactured by BASF) was used instead of the benzotriazole ultraviolet absorber 1 )) was used in the same manner as in Example 1 except that 234) was used.
  • the benzotriazole ultraviolet absorber 2 molecular weight 447.6, trade name TINUVIN (registered trademark) manufactured by BASF
  • coated titanium oxide A (trade name “CR-93” manufactured by Ishihara Sangyo Co., Ltd., average particle size: 0.28 ⁇ m) was prepared.
  • the surface of rutile type titanium oxide was coated with a coating layer containing aluminum oxide and silicon oxide.
  • the coated titanium oxide A when the amount of aluminum oxide was quantified by fluorescent X-ray analysis, it was 3.1% by weight in terms of Al 2 O 3 with respect to the total weight of titanium dioxide.
  • the amount of silicon oxide in the coated titanium oxide A was quantified by fluorescent X-ray analysis, it was 4.2% by weight in terms of SiO 2 with respect to the total weight of titanium dioxide.
  • the hydrated water contained in the coated titanium oxide was reduced by heating and drying the coated titanium oxide A at 100 ° C. for 5 hours.
  • a master batch of coated titanium oxide A was prepared by melting and kneading the parts by weight with a bent twin screw extruder having a diameter of 120 mm at 230 ° C. and pelletizing.
  • the pressure in the cylinder is 60 mmHg (8 kPa) and the gas in the cylinder is vented from the vent port by a vacuum pump. Was discharged to the outside.
  • This resin composition is extruded in a strand form from a nozzle die attached to the tip of a vent type single screw extruder, and this strand is cut every 2.5 mm in length to form a cylinder having a diameter of 2.5 mm.
  • a pelletized resin composition for forming a light reflecting plate was obtained.
  • the pressure in the cylinder is set to 60 mmHg (8 kPa), and a vacuum pump is used to bring the inside of the cylinder into the cylinder. The gas was discharged to the outside.
  • the pelletized resin composition for forming a light reflector is supplied to a vent type single screw extruder having a diameter of 120 mm, melt-kneaded at 220 ° C., and then attached to a tip of the extruder (sheet width) : 1000 mm, slit interval: 0.2 mm, temperature 200 ° C.) to obtain a sheet-like extrudate.
  • sheet width 1000 mm
  • slit interval 0.2 mm
  • temperature 200 ° C. temperature 200 ° C.
  • Example 14 A light reflecting plate was produced in the same manner as in Example 13, except that coated titanium oxide B (trade name “CR-90” manufactured by Ishihara Sangyo Co., Ltd., average particle diameter of 0.25 ⁇ m) was used instead of coated titanium oxide A. .
  • coated titanium oxide B trade name “CR-90” manufactured by Ishihara Sangyo Co., Ltd., average particle diameter of 0.25 ⁇ m
  • the surface of the rutile titanium oxide was covered with a coating layer containing aluminum oxide and silicon oxide in the coated titanium oxide B.
  • aluminum oxide in the coated titanium oxide B was quantified by fluorescent X-ray analysis, it was 2.7% by weight in terms of Al 2 O 3 with respect to the total weight of titanium dioxide.
  • silicon oxide in the coated titanium oxide B was quantified by fluorescent X-ray analysis, it was 3.6% by weight with respect to the total weight of titanium dioxide in terms of SiO 2 .
  • Example 15 A light reflecting plate was produced in the same manner as in Example 13 except that the coated titanium oxide C (trade name “CR-80” manufactured by Ishihara Sangyo Co., Ltd., average particle diameter of 0.25 ⁇ m) was used instead of the coated titanium oxide A. .
  • the coated titanium oxide C trade name “CR-80” manufactured by Ishihara Sangyo Co., Ltd., average particle diameter of 0.25 ⁇ m
  • the coated titanium oxide C the surface of rutile type titanium oxide was coated with a coating layer containing aluminum oxide and silicon oxide.
  • aluminum oxide in the coated titanium oxide C was quantified by fluorescent X-ray analysis, it was 3.3% by weight in terms of Al 2 O 3 with respect to the total weight of titanium dioxide.
  • silicon oxide in the coated titanium oxide C was quantified by fluorescent X-ray analysis, it was 1.8% by weight in terms of SiO 2 with respect to the total weight of titanium dioxide.
  • Example 16 A light reflecting plate was produced in the same manner as in Example 13 except that coated titanium oxide D (trade name “CR-63” manufactured by Ishihara Sangyo Co., Ltd., average particle size 0.21 ⁇ m) was used instead of coated titanium oxide A. .
  • coated titanium oxide D trade name “CR-63” manufactured by Ishihara Sangyo Co., Ltd., average particle size 0.21 ⁇ m
  • the covering titanium oxide D the surface of rutile type titanium oxide was coat
  • the amount of aluminum oxide in the coated titanium oxide D was quantified by fluorescent X-ray analysis, it was 1.4% by weight with respect to the total weight of titanium dioxide in terms of Al 2 O 3 .
  • the amount of silicon oxide in the coated titanium oxide D was quantified by fluorescent X-ray analysis, it was 0.7% by weight with respect to the total weight of titanium dioxide in terms of SiO 2 .
  • Example 17 A light reflecting plate was produced in the same manner as in Example 13 except that coated titanium oxide E (trade name “CR-50” manufactured by Ishihara Sangyo Co., Ltd., average particle diameter of 0.25 ⁇ m) was used instead of coated titanium oxide A. .
  • coated titanium oxide E trade name “CR-50” manufactured by Ishihara Sangyo Co., Ltd., average particle diameter of 0.25 ⁇ m
  • the covering titanium oxide E the surface of rutile type titanium oxide was coat
  • the amount of aluminum oxide in the coated titanium oxide E was quantified by fluorescent X-ray analysis, it was 2.3% by weight in terms of Al 2 O 3 with respect to the total weight of titanium dioxide.
  • the amount of silicon oxide in the coated titanium oxide E was quantified by fluorescent X-ray analysis, it was 0.1% by weight in terms of SiO 2 with respect to the total weight of titanium dioxide.
  • Example 18 As shown in Table 1, the type of coated titanium oxide was changed, and in place of the benzotriazole ultraviolet absorber 1, a benzotriazole ultraviolet absorber 2 (molecular weight 447.6, trade name TINUVIN (registered trademark) manufactured by BASF) A light reflector was manufactured in the same manner as in Example 13 except that 234) was used.
  • a benzotriazole ultraviolet absorber 2 molecular weight 447.6, trade name TINUVIN (registered trademark) manufactured by BASF
  • Example 23 As shown in Table 1, the compounding amount of the coated titanium oxide was changed, and the benzotriazole ultraviolet absorber 2 (molecular weight 447.6, trade name TINUVIN (registered trademark) manufactured by BASF) was used instead of the benzotriazole ultraviolet absorber 1 )) was used in the same manner as in Example 13 except that 234) was used.
  • the benzotriazole ultraviolet absorber 2 molecular weight 447.6, trade name TINUVIN (registered trademark) manufactured by BASF
  • Example 25 A light reflecting plate was used in the same manner as in Example 1 except that a textured roll having irregularities formed on the outer peripheral surface was used instead of the mirror roll, and the irregularities on the outer peripheral surface of the textured roll were pressed against the surface of the sheet-like extrudate. Obtained. In the obtained light reflecting plate, the surface on which the embossing roll was pressed was formed as an uneven surface.
  • Example 26 A light reflecting plate was produced in the same manner as in Example 25 except that the coated titanium oxide B (trade name “CR-90” manufactured by Ishihara Sangyo Co., Ltd., average particle diameter of 0.25 ⁇ m) was used instead of the coated titanium oxide A. .
  • the coated titanium oxide B trade name “CR-90” manufactured by Ishihara Sangyo Co., Ltd., average particle diameter of 0.25 ⁇ m
  • Example 27 A light reflecting plate was produced in the same manner as in Example 25 except that coated titanium oxide C (trade name “CR-80” manufactured by Ishihara Sangyo Co., Ltd., average particle diameter of 0.25 ⁇ m) was used instead of coated titanium oxide A. .
  • coated titanium oxide C trade name “CR-80” manufactured by Ishihara Sangyo Co., Ltd., average particle diameter of 0.25 ⁇ m
  • Example 28 A light reflecting plate was produced in the same manner as in Example 25 except that coated titanium oxide D (trade name “CR-63” manufactured by Ishihara Sangyo Co., Ltd., average particle size 0.21 ⁇ m) was used instead of coated titanium oxide A. .
  • coated titanium oxide D trade name “CR-63” manufactured by Ishihara Sangyo Co., Ltd., average particle size 0.21 ⁇ m
  • Example 29 A light reflecting plate was produced in the same manner as in Example 25 except that coated titanium oxide E (trade name “CR-50” manufactured by Ishihara Sangyo Co., Ltd., average particle diameter of 0.25 ⁇ m) was used instead of coated titanium oxide A. .
  • coated titanium oxide E trade name “CR-50” manufactured by Ishihara Sangyo Co., Ltd., average particle diameter of 0.25 ⁇ m
  • Example 30 to 34 As shown in Table 1, the type of coated titanium oxide was changed, and in place of the benzotriazole ultraviolet absorber 1, a benzotriazole ultraviolet absorber 2 (molecular weight 447.6, trade name TINUVIN (registered trademark) manufactured by BASF) A light reflection plate was manufactured in the same manner as in Example 25 except that 234) was used.
  • a benzotriazole ultraviolet absorber 2 molecular weight 447.6, trade name TINUVIN (registered trademark) manufactured by BASF
  • Example 35 and 36 As shown in Table 1, the compounding amount of the coated titanium oxide was changed, and the benzotriazole ultraviolet absorber 2 (molecular weight 447.6, trade name TINUVIN (registered trademark) manufactured by BASF) was used instead of the benzotriazole ultraviolet absorber 1 )) was used in the same manner as in Example 25 except that 234) was used.
  • the benzotriazole ultraviolet absorber 2 molecular weight 447.6, trade name TINUVIN (registered trademark) manufactured by BASF
  • the average particle diameter of the coated titanium oxide contained in the light reflecting plate was measured by the method described above. The results are shown in Tables 1 to 3. Further, in the cross section along the thickness direction of the light reflecting plate, the number of coated titanium oxides having a particle diameter of 0.10 to 0.39 ⁇ m and not aggregated was measured by the method described above. The number of the coated titanium oxides was measured in 10 measurement regions arbitrarily selected from the cross section along the thickness direction of the light reflecting plate (the size of each measurement region is a square shape with a side of 30 ⁇ m). The arithmetic average values are shown in Tables 1 to 3.
  • the moisture content of the coated titanium oxide contained in the light reflecting plate was also measured by the method described above.
  • the light reflecting plate was cut to prepare 30 test pieces, and the moisture content of the coated titanium oxide was measured for each test piece according to the above method, and the arithmetic average value thereof was covered with the light reflecting plate. It was set as the water content of titanium oxide.
  • Tables 1 to 3 The results are shown in Tables 1 to 3.
  • the moisture content of the coated titanium oxide contained in the pelletized resin compositions for forming a light reflector produced in Examples 13 to 24 and Comparative Examples 7 to 12 was also measured by the method described above.
  • 30 samples were prepared from the pelletized resin composition for forming a light reflecting plate, the moisture content of the coated titanium oxide was measured for each sample according to the above method, and the arithmetic average value was pelletized light.
  • the moisture content of the coated titanium oxide contained in the reflecting plate-forming resin composition was used.
  • the moisture content of the coated titanium oxide contained in the pelletized resin composition for forming a light reflecting plate and the moisture content of the coated titanium oxide contained in the light reflecting plate was the same.
  • the moldability of the light reflector, the light reflectance before the weather resistance test, and the light reflectance after the weather resistance test were evaluated according to the following procedures.
  • the results are shown in Tables 1 to 3.
  • the surface smoothness of the light reflector was evaluated according to the following procedure.
  • the results are shown in Tables 1 and 2.
  • the surface uniformity of the light reflector was evaluated according to the following procedure.
  • the results are shown in Table 3.
  • About the uneven surface of the light reflecting plate before and after thermoforming, the surface roughness Ra, the average interval Sm of unevenness, the maximum height (Ry) of the uneven surface, the light reflectance and the diffuse reflectance were measured as described above. The results are shown in Table 3.
  • the convex part currently formed in the light reflection plate bulges 0.01 mm or more from the mirror-finished surface of the light reflection plate due to foaming caused by moisture or the like existing inside the light reflection plate. It means a convex part.
  • the concave portion 12 of the obtained light reflecting plate 10 is extended in a state in which the side surface is a flat square shape having a side of 0.6 cm, and the bottom surface portion 13 gradually expands from the four-side outer periphery toward the surface side.
  • the inner peripheral surface of the peripheral wall portion 14 was entirely formed as a light reflecting surface.
  • the open end of the peripheral wall portion 14 was formed in a planar rectangular shape having a length of 3.2 cm and a width of 3.5 cm, and the height from the inner surface of the bottom surface portion 13 to the top of the connecting portion 15 was 1.6 cm. Further, a planar square through-hole 13a having a side of 0.54 cm was provided through the bottom surface 13 of the recess 12 so as to extend between the front and back surfaces.
  • test piece having a length of 50 mm and a width of 150 mm was cut out from the light reflection plate, and an accelerated exposure test was performed on the test piece in accordance with JIS A1415 (accelerated exposure test method for plastic building materials) under the following conditions.
  • Irradiation equipment Suga Test Instruments Co., Ltd. Trade name “Sunshine Super Long Life Weather Meter WEL-SUN-HC / B” Irradiation conditions: Back panel temperature: 60 to 70 ° C, spray spraying: none Test tank temperature: 45 to 55 ° C, relative humidity: 10 to 30%
  • Light reflectance In the light reflectors of Examples 1 to 24 and Comparative Examples 1 to 12, before performing the accelerated exposure test, after performing the accelerated exposure test for 500 hours, and after performing the accelerated exposure test for 1000 hours The light reflectance of the piece was measured as follows. In addition, 30 test pieces were prepared and the arithmetic mean value of the light reflectivity of each test piece was made into the light reflectivity. The light reflectance was measured on the mirror-finished surface of the test piece.
  • the light reflectance of the test pieces before the accelerated exposure test and after the accelerated exposure test for 1000 hours was measured as follows.
  • 30 test pieces were prepared and the arithmetic mean value of the light reflectivity of each test piece was made into the light reflectivity. The light reflectance was measured on the uneven surface of the test piece.
  • the light reflectance of the test piece refers to the light reflectance at a wavelength of 550 nm when the total reflection light measurement is performed under an incident condition of 8 ° in accordance with the measurement method B described in JIS K7105.
  • the absolute value when the light reflectance when using a barium sulfate plate is 100 is shown.
  • the light reflectance of the test piece is measured with an ultraviolet-visible spectrophotometer commercially available from Shimadzu Corporation under the trade name “UV-2450”, and under the trade name “ISR-2200” from Shimadzu Corporation. It can be measured in combination with a commercially available integrating sphere attachment device (inner diameter: ⁇ 60 mm).
  • a measurement unit D having a square planar shape with a side of 64 cm was specified at an arbitrary portion of the uneven surface of the light reflecting plate.
  • measurement points E are defined at intervals of 8 cm on a straight line connecting the intermediate points of opposite sides in the measurement unit D, and the diffuse reflectance at each measurement point E is described in JIS K7105.
  • the measurement was performed under an incident condition of 0 °.
  • the convex portion formed on the light reflecting plate is 0.03 mm or more from the apex of the largest convex portion of the concave and convex surface of the light reflecting plate due to foaming caused by moisture etc. existing inside the light reflecting plate. It means a protruding part that bulges.
  • the difference between the maximum value and the minimum value among the diffuse reflectances at all measurement points is that the uneven surface of the light reflecting plate is not evenly formed, the unevenness of the light reflecting plate or both sides It means that a through-hole penetrating therethrough is formed.
  • the light reflecting plates of Examples 25 to 36 and Comparative Examples 13 to 19 were cut into a flat square shape having a side of 64 cm, heated in a heating furnace at 350 ° C. so that the surface thereof became 170 ° C., and then matched mold forming. Are formed by bulging and molding the inverted quadrangular frustum-shaped recesses 12, 12,... From the concavo-convex surface (front surface) to the surface (back surface) facing the surface.
  • the light reflecting plate was thermoformed by cutting from the location.
  • the light-reflecting plate thus thermoformed has 96 concave portions 12, 12... Formed continuously on the entire surface in the vertical and horizontal directions, and has a flat rectangular shape (A3 size of 42 cm in length and 29.7 cm in width). ).
  • twelve concave portions 12, 12,... Were formed in the long side direction and eight in the short side direction.
  • the concave portion 12 of the obtained light reflecting plate 10 is extended in a state in which the side surface is a flat square shape having a side of 0.6 cm, and the bottom surface portion 13 gradually expands from the four-side outer periphery toward the surface side.
  • the inner peripheral surface of the peripheral wall portion 14 was entirely formed as a light reflecting surface.
  • the recesses 12 and 12 adjacent to each other are integrally formed at the opening edges thereof via the connecting portions 15 formed in a lattice shape.
  • the open end of the peripheral wall portion 14 was formed in a planar rectangular shape having a length of 3.2 cm and a width of 3.5 cm, and the height from the inner surface of the bottom surface portion 13 to the top of the connecting portion 15 was 1.6 cm.
  • a planar square through-hole 13a having a side of 0.54 cm was provided through the bottom surface 13 of the recess 12 so as to extend between the front and back surfaces.
  • the surface of the light reflecting plate after thermoforming bulges by 0.03 mm or more from the apex of the largest convex portion of the concavo-convex surface of the light reflecting plate due to foaming due to moisture or the like existing inside the light reflecting plate. It was evaluated that “roughness” was generated on the surface of the light reflecting plate when a convex portion was generated, a concave portion was locally generated, or a crack was generated.
  • a trapezoidal test piece was obtained by arbitrarily cutting out three peripheral wall portions 14 of the recess 12 in the light reflecting plate obtained by thermoforming the light reflecting plates of Examples 25 to 36 and Comparative Examples 13 to 19 in the manner described above. Three were produced.
  • the surface roughness Ra of the uneven surface of each test piece was measured, and the arithmetic average value of the surface roughness Ra of the test piece was defined as the surface roughness Ra of the light reflecting plate.
  • the average interval Sm of the unevenness of the uneven surface of each test piece was measured, and the arithmetic average value of the average interval Sm of the unevenness of the test piece was defined as the average interval Sm of the unevenness of the light reflecting plate.
  • the maximum height (Ry) of the uneven surface of each test piece is measured, and the arithmetic average value of the maximum height (Ry) of the uneven surface of the test piece is calculated as the maximum height (Ry) of the light reflecting plate. ).
  • the light reflectivity of each test piece was measured, and the arithmetic average value of the light reflectivities of the test pieces was used as the light reflectivity of the light reflecting plate.
  • the surface roughness Ra, the average interval Sm of the unevenness, and the maximum height (Ry) of the uneven surface are measured as described above. did.
  • the surface roughness Ra was 0.4 ⁇ m
  • the average interval Sm of the unevenness was 1 ⁇ m
  • the maximum height (Ry) of the uneven surface was 1 ⁇ m. .
  • the average luminance was measured in the following manner on the uneven surface of the light reflecting plate before thermoforming in the above manner. Specifically, the luminance of the liquid crystal screen when the light reflecting plates of Examples 25 to 36 and Comparative Examples 13 to 19 were used as a light reflecting plate in a liquid crystal display device was evaluated.
  • a notebook personal computer (trade name “Latitude LS H400ST”) having a 12.1 inch liquid crystal screen commercially available from DELL was prepared. The reflection film of the backlight of the personal computer was removed, and the light reflection plate obtained in Example or Comparative Example was used in place of this reflection film.
  • luminance was measured from a position 500 mm away from the intersection of diagonal lines of the liquid crystal screen in a direction perpendicular to the liquid crystal screen.
  • the uneven surface of the light reflecting plate before and after thermoforming in the above-described manner is incident at 0 ° in accordance with the measuring method B described in JIS K7105. Measured under conditions. The diffuse reflectance after thermoforming was measured on the uneven surface of the peripheral wall portion 14 of the recess 12 in the light reflecting plate.
  • the light reflecting plate of the present invention has a light reflectivity improved by 0.3 to 0.4% as compared with the light reflecting plate of the comparative example, and has excellent light reflecting performance.
  • the light reflection plate of the present invention when used for a backlight of a liquid crystal display device, light incident on the light guide plate is repeatedly reflected between the front and back surfaces of the light guide plate and the light reflection plate, and then the light guide plate. Although it is led out to the front surface side, that is, the liquid crystal panel side, the reflection of light between the front and back surfaces of the light guide plate and the light reflection plate is actually repeated tens of thousands of times.
  • the light reflection plate of the present invention has a light reflectivity of about 0.3 to 0.4% higher than that of the comparative example, but as described above, the reflection of light is repeatedly performed tens of thousands of times.
  • a difference of 0.3 to 0.4% in the light reflectance of the light reflecting plate appears as a very large difference in the luminance of the liquid crystal panel. Therefore, the brightness of the liquid crystal display device can be greatly improved by using the light reflecting plate of the present invention for the backlight unit.
  • the light reflecting plate of the present invention is, for example, a backlight unit of a liquid crystal display device such as a word processor, a personal computer, a mobile phone, a navigation system, a television, and a portable television, and a backlight of a surface emitting system such as an illumination box. It can be used by being incorporated in an illuminating device constituting a light, a slot illuminator, a copying machine, a projector-type display, a facsimile, an electronic blackboard, or the like.
  • a backlight unit of a liquid crystal display device such as a word processor, a personal computer, a mobile phone, a navigation system, a television, and a portable television
  • a backlight of a surface emitting system such as an illumination box. It can be used by being incorporated in an illuminating device constituting a light, a slot illuminator, a copying machine, a projector-type display, a facsimile, an electronic blackboard

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明は、優れた光反射性能を有する光反射板を提供する。 ポリオレフィン系樹脂100重量部と、酸化チタンの表面がアルミニウム酸化物及びケイ素酸化物を含有する被覆層で被覆されてなり且つ含水率が0.5重量%以下である被覆酸化チタン20~120重量部とを含むことを特徴とする光反射板。含水率が0.5重量%以下である被覆酸化チタンは凝集が抑制されて優れた分散性を有する。したがって、上記被覆酸化チタンを用いてなる光反射板は、ポリオレフィン系樹脂中に被覆酸化チタンが微分散されており、優れた光反射性能を発揮することができる。

Description

光反射板、光反射板形成用樹脂組成物及び光反射板の製造方法
 本発明は、優れた光反射性能を有する光反射板及びこの光反射板を形成するために用いられる樹脂組成物、並びに、光反射板の製造方法に関する。
 近年、表示装置として液晶表示装置が様々な用途に用いられている。この液晶表示装置は、液晶セルの背面にバックライトユニットが配設される。バックライトユニットは、冷陰極管やLEDなどの発光光源、ランプリフレクタ、導光板、及び上記導光板の後面側に配設された光反射板からなる。この光反射板は、導光板の後面側に漏れた光を液晶セル側に向かって反射させる役割を果たしている。
 上記光反射板としては、アルミニウム、ステンレスなどからなる金属薄板、ポリエチレンテレフタレートフィルムに銀を蒸着させてなるフィルム、アルミニウム箔を積層した金属箔、多孔性樹脂シートなどが用いられている。
 また、生産性の高い光反射板として、硫酸バリウム、炭酸カルシウム、酸化チタンなどの無機充填剤をポリプロピレン系樹脂中に含有させてなる光反射板も用いられている。
 光反射板として、特許文献1には、脂肪族ポリエステル系樹脂或いはポリオレフィン系樹脂及び微粉状充填剤を含有してなる樹脂組成物を含み、樹脂組成物における微粉状充填剤の含有割合が0.1質量%より大きく且つ5質量%未満である層を反射使用面側の最外層として備えた反射フィルムが開示されている。
 また、特許文献2では、微粉末状充填剤として酸化チタンを用い、この酸化チタンの表面をアルミナ、シリカ及びジルコニアなどの不活性無機酸化物を含む被覆層によって被覆することにより、酸化チタンによって得られる高い反射性能を損なうことなくフィルムの耐光性を高められることが開示されている。
特許第4041160号公報 特開2010-66512号公報
 しかしながら、液晶表示装置のさらなる高輝度化が望まれており、このため光反射板にも光反射性能のさらなる向上が望まれている。特許文献2の光反射板に用いられている不活性無機酸化物を含む被覆層が表面に形成されてなる酸化チタンは、光反射板中で微分散させるのが非常に困難であり、したがって十分な光反射性能を有していない問題があった。
 したがって、本発明は、優れた光反射性能を有する光反射板、光反射板形成用樹脂組成物、及び、光反射板の製造方法を提供することを目的とする。
 本発明の光反射板は、ポリオレフィン系樹脂100重量部と、酸化チタンの表面がアルミニウム酸化物及びケイ素酸化物を含有する被覆層で被覆されてなり且つ含水率が0.5重量%以下である被覆酸化チタン20~120重量部とを含むことを特徴とする。
 また、本発明の光反射板形成用樹脂組成物は、ポリオレフィン系樹脂100重量部と、酸化チタンの表面がアルミニウム酸化物及びケイ素酸化物を含有する被覆層で被覆されてなり且つ含水率が0.5重量%以下である被覆酸化チタン20~120重量部とを含むことを特徴とする。
 さらに、本発明の光反射板の製造方法は、ポリオレフィン系樹脂100重量部と、酸化チタンの表面がアルミニウム酸化物及びケイ素酸化物を含有する被覆層で被覆されてなり且つ含水率が0.5重量%以下である被覆酸化チタン20~120重量部とを含む光反射板形成用樹脂組成物を押出機に供給して溶融混練して押出機から押出す工程を有することを特徴とする。
 含水率が0.5重量%以下である被覆酸化チタンは、この被覆酸化チタンに含まれる水分が非常に少なく、被覆酸化チタンの凝集が抑制されて優れた分散性を有する。さらに、光反射板を押出成形などにより製造するために光反射板形成用樹脂組成物を溶融混練する際に、含水率が0.5重量%以下である被覆酸化チタンによれば、溶融混練している樹脂組成物中の被覆酸化チタンに含まれている水分が気化することによって気泡が形成されるのを抑制し、気泡の形成による被覆酸化チタンの分散性の低下を抑制することが可能となる。したがって、含水率が0.5重量%以下である被覆酸化チタンを用いることにより、気泡の形成が高く抑制され且つ被覆酸化チタンが微分散されている光反射板を提供することができ、このような光反射板は優れた光反射性能を均一に発揮することが可能となる。
 また、気泡の形成が高く抑制された本発明の光反射板は、これを熱成形などの加熱工程を有する二次工程に供する際に、光反射板が加熱されることにより光反射板に含まれる気泡が膨張して光反射板表面に大きな凸部が不規則に形成されるのを抑制することも可能となる。したがって、本発明の光反射板は、これに加熱工程を有する二次工程が行われた後であっても、二次工程前の優れた表面形態を保つことができ、凸部の形成によって光反射板の光反射性能が低下したり不均一化したりするのを抑制することができる。
本発明の光反射板が好適に用いられる液晶表示装置のバックライトユニットの模式図。 熱成形された本発明の光反射板の斜視図である。 熱成形された本発明の光反射板の縦断面図である。 熱成形された本発明の光反射板を用いた照明装置の縦断面図である。 拡散反射率の測定点を示した平面図である。
 本発明の光反射板は、ポリオレフィン系樹脂と、酸化チタンの表面がアルミニウム酸化物及びケイ素酸化物を含有する被覆層で被覆されてなり且つ含水率が0.5重量%以下である被覆酸化チタンとを含有している。このような光反射板では、ポリオレフィン系樹脂中に被覆酸化チタンが分散されて含まれている。
 本発明者等は被覆酸化チタンの凝集性に鑑み種々の検討を行った結果、被覆酸化チタンの被覆層に含まれるケイ素酸化物及びアルミニウム酸化物は水分と付加して水和物を形成し易く、このため比較的多くの水分を被覆酸化チタンが含んでいることが判明した。このように水分を多く含んでいる被覆酸化チタンは、被覆酸化チタン同士の凝集力が大きくなり凝集を招き易く、光反射板中に微分散させるのは非常に困難となる。
 また、光反射板を製造するために、水分を多く含有している被覆酸化チタンを含む光反射板形成用樹脂組成物を溶融混練して押出成形する際に、樹脂組成物が加熱されることにより被覆酸化チタンに含まれている水分が気化して、溶融混練している樹脂組成物中に気泡を生じる場合がある。溶融混練している樹脂組成物中に気泡が生じると、この樹脂組成物中に存在している被覆酸化チタンは、気泡の存在によって樹脂組成物中の他の部位へ移動させられ、その結果、被覆酸化チタンが凝集する。また、溶融混練している樹脂組成物を押出す際などにこの樹脂組成物中の気泡が外部に放散されると、得られる光反射板の表面に大きなクレーター状の凹部を形成する原因ともなる。このようなクレーター状の凹部は、光反射板の光反射性能の低下やムラを招く原因となる。
 さらに、溶融混練している樹脂組成物中に気泡が生じるとこれを用いて得られる光反射板中にも気泡が含まれることとなる。光反射板中に含まれる気泡は、光反射性が低いため、光反射板に入射した光が光反射板を透過して光反射板裏面から導出する原因となる。したがって、気泡を含む光反射板は、優れた光反射性能が得られないだけでなく、光反射板の面方向における光の反射性が不均一となる。
 そこで、含水率が0.5重量%以下である被覆酸化チタンは、これに含まれる水分の量が非常に少ないことから、分散性に優れるだけでなく、押出成形時に溶融混練している樹脂組成物中に被覆酸化チタンに含まれている水分が気化することによる気泡の形成も高く抑制することも可能となり樹脂組成物中でも被覆酸化チタンの優れた分散性を維持することができる。また、気泡の形成が抑制されることによって、光反射板表面に大きなクレーター状の凹部が形成されるのも抑制することが可能となる。
 したがって、含水率が0.5重量%以下である被覆酸化チタンを含有している光反射板は、被覆酸化チタンが光反射板中で殆ど凝集せずに微分散していると共に、光反射板中に気泡が形成されるのを抑制することが可能となり、優れた光反射性能を光反射板の全面において均一に発揮することが可能となる。
 このように本発明の光反射板に含有されている被覆酸化チタンの含水率は、被覆酸化チタンの全量に対して、0.5重量%以下に限定されるが、0.01~0.5重量%が好ましく、0.01~0.45重量%がより好ましい。
 なお、光反射板に含まれる被覆酸化チタンの含水率の測定は、次の通りにして行うことができる。光反射板に用いられるポリオレフィン系樹脂、酸化防止剤、紫外線吸収剤及び光安定剤などの被覆酸化チタン以外の成分は吸水性がなく水を含むことはできず、光反射板に含まれている被覆酸化チタンの被覆層のみが水を含むことができる。したがって、光反射板に含まれている水は全て被覆酸化チタンの被覆層に含まれているとみなすことができる。また、光反射板中に含まれている被覆酸化チタンはポリオレフィン系樹脂中に分散されていることから、光反射板に含まれている被覆酸化チタンの表面がポリオレフィン系樹脂に被覆されずに露出しているものは殆どなく、被覆酸化チタン表面は吸水性のないポリオレフィン系樹脂で被覆されている。したがって、光反射板を長時間放置したとしても、被覆酸化チタンの含水率は概ね変化することなく一定に保たれる。
 以上から、本発明では、まず光反射板を所定の大きさに切断することにより重量が5gである試験片とし、下記手順に従って試験片の水分量(W1[g])を測定し、この試験片の水分量を試験片中の被覆酸化チタンの水分量とみなす。そして、下記手順に従って試験片中に含まれている被覆酸化チタンの重量(W2[g])を測定し、式:100×W1/(W1+W2)により算出された値を試験片に含まれる被覆酸化チタンの含水率[重量%]とする。そして、光反射板から少なくとも30枚の試験片を作製し、各試験片について被覆酸化チタンの含水率を測定し、その相加平均値を光反射板中に含まれている被覆酸化チタンの含水率とする。
 試験片の水分量の測定は、試験片を温度25℃、相対湿度30%の環境下に一時間放置した後、下記条件にて水分気化装置により試験片中に含まれる水分を気化させ、気化させた水分量[g]をJIS K0068に記載されている化学製品の水分測定方法に準拠したカールフィッシャー水分計によって測定することにより行われる。
  装置  :水分気化装置(京都電子工業(株)製 ADP-511)
       京都電子工業(株)製 MKC-510N
  気化温度:230℃
  キャリアーガス:N2 200ml/分
  水分量測定時間:30分間
 また、試験片中に含まれている被覆酸化チタンの重量は、試験片を、電気炉(例えば、株式会社いすず製 マッフル炉STR-15Kなど)を用いて、550℃にて1時間焼成して灰化することにより灰分を得、この灰分の重量[g]を計量器(例えば、株式会社エー・アンド・デイ製 高精度分析用上皿電子天秤 HA-202M)により測定し、得られた値を試験片に含まれている被覆酸化チタンの重量とみなすことにより行われる。
 被覆酸化チタンの平均粒子径は、0.10~0.35μmが好ましく、0.15~0.35μmがより好ましく、0.15~0.30μmが特に好ましく、0.20~0.30μmが最も好ましい。平均粒子径が上記範囲内である被覆酸化チタンを用いることにより、優れた光反射性能を光反射板の面方向において均一に発揮することが可能な光反射板を提供することができる。
 また、平均粒子径が上記範囲内である従来の被覆酸化チタンでは、非常に微細であることから凝集を招いて粗大な凝集粒子を形成し易いが、本発明では含水率が少ない被覆酸化チタンを用いることにより、被覆酸化チタンの凝集を高く抑制して光反射板中に被覆酸化チタンを微分散することが可能となる。具体的には、光反射板中の粒子径が0.10~0.39μmであり且つ凝集していない被覆酸化チタンの個数を、光反射板の厚み方向に沿った断面において、150~550個/900μm2、特に200~500個/900μm2とすることが可能となる。
 光反射板中に含まれる被覆酸化チタンの平均粒子径及び粒子径が0.10~0.39μmであり且つ凝集をしていない被覆酸化チタンの個数の測定は、次の通りにして行うことができる。
 被覆酸化チタンの平均粒子径の測定は、次の通りにして行うことができる。先ず、例えば、光反射板をその厚み方向、即ち、表面に対して直交する方向に沿って全長に亘って切断する。次に、光反射板の断面を、走査型電子顕微鏡(SEM)により、10,000倍の倍率で撮影し得られたSEM写真より、100個以上の被覆酸化チタンの粒子径を測定して、得られた値を相加平均することに被覆酸化チタンの平均粒子径を算出することができる。
 なお、本発明において、被覆酸化チタンの粒子径とは、被覆酸化チタンを包囲し得る最小径の真円の直径を意味する
 また、光反射板中に含まれる粒子径が0.10~0.39μmであり且つ凝集をしていない被覆酸化チタンの個数の測定は、次の通りにして行うことができる。先ず、例えば、光反射板をその厚み方向、即ち、表面に対して直交する方向に沿って全長に亘って切断する。次に、光反射板の厚み方向の断面を、走査型電子顕微鏡(SEM)により2500倍以上の倍率で撮影し、SEM写真から光反射板の断面における一辺が30μmの正方形状の測定領域を選定する。次に、この測定領域に含まれる被覆酸化チタンのそれぞれについてSEMによりさらに10,000倍以上の倍率で拡大して観察することにより、被覆酸化チタンの粒子径(μm)を測定した後、上記測定領域に含まれる被覆酸化チタンのうち粒子径が0.10~0.39μmであり且つ凝集していない被覆酸化チタンを選別し、この被覆酸化チタンの個数(個/900μm2)を測定する。
 そして、上記測定を光反射板の断面において重複しないように選定した少なくとも10箇所の測定領域について同様にして行い、それぞれの測定領域に含まれる粒子径が0.10~0.39μmであり且つ凝集していない被覆酸化チタンの個数(個/900μm2)を測定し、その相加平均値を、光反射板に含まれる粒子径が0.10~0.39μmであり且つ凝集をしていない被覆酸化チタンの個数(個/900μm2)とする。
 被覆酸化チタンは、酸化チタン(TiO)の表面がアルミニウム酸化物及びケイ素酸化物を含有する被覆層で被覆されてなる。酸化チタンは、化学式TiOで示される。このような酸化チタンには、ルチル型、アナターゼ型、イルメナイト型があるが、ルチル型酸化チタンは耐候性に優れているので好ましい。
 ここで、酸化チタンは酸化還元力が強い触媒としても知られている物質である。水分を多く含有している被覆酸化チタンでは、酸化チタンの強い還元力によって上記水分がH・(Hラジカル)とOH・(OHラジカル)にラジカル化される。OHラジカルは非常に強い酸化力を有するため、光反射板が長期間に亘って使用された際に、被覆酸化チタンの周囲に存在するポリオレフィン系樹脂を酸化分解させたりフェノール系酸化防止剤などの他の添加剤の劣化による着色を招く虞れがある。被覆酸化チタンの周囲に存在するポリオレフィン系樹脂が酸化分解すると、被覆酸化チタンとポリオレフィン系樹脂との間に間隙が生じて、光反射板表面に存在する被覆酸化チタンが脱離し、光反射板表面にクレーター状の凹部が生じたり、光反射性能の低下を招く虞れがある。また、他の添加剤の劣化による着色も光反射板の光反射性能の低下を招く。特に、液晶テレビなどの液晶表示装置ではこれを使用する際に装置内部の温度が40~60℃と高温になるため、上述したポリオレフィン系樹脂の酸化分解や他の添加剤の変色を促進させる虞れがある。
 しかしながら、本発明に用いられる含水率が0.5重量%以下である被覆酸化チタンは、これに含まれる水分量が非常に少ないことから、上述したポリオレフィン系樹脂の酸化分解や他の添加剤の変色を高く抑制することが可能となる。したがって、含水率が0.5重量%以下である被覆酸化チタンを含んでいる本発明の光反射板は、これを高温環境下で長期間に亘って使用したとしても、優れた光反射性能を維持することができる。
 また、酸化チタンの表面をアルミニウム酸化物及びケイ素酸化物を含有する被覆層によって被覆することにより、酸化チタンとポリオレフィン系樹脂とが直接接触するのを防止して、酸化チタンの光触媒作用によるポリオレフィン系樹脂の劣化を抑制することができる。また、被覆酸化チタンは、その被覆層によって酸化チタンへの紫外線の入射が概ね防止されており、酸化チタンの結晶中における光化学変化による酸素欠陥による暗灰色への変色を防止することができ、光反射板がその使用中に酸化チタンの変色に伴う着色を生じることは殆どなく、光反射板はその使用中において優れた光反射性能能を有する。
 上記被覆酸化チタンにおいて、蛍光X線分析によって定量されたアルミニウム酸化物のAl23に換算した量は、被覆酸化チタン中の二酸化チタンの全重量に対して1~6重量%が好ましく、1~5重量%がより好ましく、1~4重量%が特に好ましい。
 換言すれば、上記被覆酸化チタンにおいて、蛍光X線分析によって定量されたアルミニウム酸化物のAl23に換算した量は、被覆酸化チタン中の二酸化チタンの全重量を100重量%としたときに、1~6重量%が好ましく、1~5重量%がより好ましく、1~4重量%が特に好ましい。
 被覆酸化チタンの被覆層においてアルミニウム酸化物の量が少な過ぎると、酸化チタンの光触媒作用の抑制が不充分となりポリオレフィン系樹脂の劣化による着色を生じて光反射板の光反射性能能が低下する虞れがある。また、被覆酸化チタンの被覆層において、アルミニウム酸化物の量が多過ぎると、被覆層が可視光線を吸収してしまい、酸化チタンによる光反射が低下し、その結果、光反射板の光線反射率が低下する虞れがある。
 また、上記被覆酸化チタンにおいて、蛍光X線分析によって定量されたケイ素酸化物のSiO2に換算した量は、被覆酸化チタン中の二酸化チタンの全重量に対して0.1~7重量%が好ましく、0.1~6重量%がより好ましく、0.1~5重量%が特に好ましい。
 換言すれば、上記被覆酸化チタンにおいて、蛍光X線分析によって定量されたケイ素酸化物のSiO2に換算した量は、被覆酸化チタン中の二酸化チタンの全重量を100重量%としたときに、0.1~7重量%が好ましく、0.1~6重量%がより好ましく、0.1~5重量%が特に好ましい。
 被覆酸化チタンの被覆層においてケイ素酸化物の量が少な過ぎると、酸化チタンの光触媒作用の抑制が不充分となりポリオレフィン系樹脂の劣化による着色を生じて光反射板の光反射性能能が低下する虞れがある。また、被覆酸化チタンの被覆層においてケイ素酸化物の量が多過ぎると、被覆層が可視光線を吸収してしまい、酸化チタンによる光反射が低下し、その結果、光反射板の光反射性能能が低下する虞れがある。
 なお、被覆酸化チタンの被覆層において、蛍光X線分析によって定量されたアルミニウム酸化物のAl23に換算した量、及び、蛍光X線分析によって定量されたケイ素酸化物のSiO2に換算した量は、蛍光X線分析装置を用いて測定される。
 具体的には、例えば、リガク社から商品名「RIX-2100」にて市販されている蛍光X線分析装置を用い、X線管(縦型Rh/Cr管(3/2.4kW))、分析径(10mmφ)、スリット(標準)、分光結晶(TAP(F~Mg)PET(Al,Si)Ge(P~Cl)LiF(K~U))、検出器(F-PC(F~Ca)SC(Ti~U))、測定モード(バルク法、10m-Cr、バランス成分なし)の条件下にて測定することができる。
 詳細には、カーボン台上にカーボン両面粘着テープを貼着し、このカーボン両面粘着テープ上に被覆酸化チタンを貼着させる。被覆酸化チタンの貼着量は特に限定されないが、その目安としては0.1g程度であり、カーボン両面粘着テープ上に定めた一辺が12mmの平面正方形状の仮想枠部内に被覆酸化チタンを均一に貼着させ、被覆酸化チタンによってカーボン両面粘着テープを覆い、仮想枠部内のカーボン両面粘着テープが見えないようにすることが好ましい。
 次に、被覆酸化チタンが飛散するのを防止するために、ポリプロピレンフィルムをカーボン台に全面的に被せてX線測定用試料とし、このX線測定用試料を用いて蛍光X線分析装置により上記測定条件下にて、被覆酸化チタンの被覆層中のアルミニウム酸化物のAl23に換算した量、及び、ケイ素酸化物のSiO2に換算した量を測定することができる。
 なお、カーボン台としては、カーボンから形成されており、直径26mmで高さが7mmの円柱状であればよく、例えば、応研商事社から商品名「カーボン試料台」、コード番号#15・1046で市販されている。カーボン両面粘着テープとしては、例えば、応研商事社から市販されているSEM用導電性カーボン両面テープ(12mm幅、20m巻)を用いることができる。ポリプロピレンフィルムとしては、例えば、理学電機工業社から商品名「セルシート CatNo.3377P3」にて市販されている厚みが6μmのポリプロピレンフィルムを用いることができる。
 次に、上記被覆酸化チタンの製造方法について説明する。被覆酸化チタンを製造するには、未処理の酸化チタンを水又は水を主成分とする媒体中に分散させて水性スラリーを作製する。なお、酸化チタンの凝集度合いに応じて、酸化チタンを縦型サンドミル、横型サンドミル、ボールミルなどの湿式粉砕機を用いて予備粉砕してもよい。
 この際、水性スラリーのpHを9以上とすると、水性スラリー中に酸化チタンを安定的に分散させることができるので好ましい。更に、水性スラリー中に分散剤を添加してもよい。このような分散剤としては、例えば、ヘキサメタリン酸ナトリウム、ピロリン酸ナトリウムなどのリン酸化合物、ケイ酸ナトリウム、ケイ酸カリウムなどのケイ酸化合物などが挙げられる。
 次に、酸化チタンの表面に、アルミニウム酸化物及びケイ素酸化物を含有する被覆層を形成させる。具体的には、水性スラリー中に、水溶性アルミニウム塩又は水溶性ケイ酸塩の何れか一方或いは双方を添加する。上記水溶性アルミニウム塩としては、例えば、アルミン酸ナトリウム、硫酸アルミニウム、硝酸アルミニウム、塩化アルミニウムなどが挙げられる。又、上記水溶性ケイ酸塩としては、例えば、ケイ酸ナトリウム、ケイ酸カリウムなどが挙げられる。
 更に、水性スラリー中への水溶性アルミニウム塩又は水溶性ケイ酸塩の何れか一方或いは双方を添加した後に或いは添加と同時に中和剤を添加する。中和剤としては、特に限定されず、例えば、硫酸、塩酸などの無機酸、酢酸、ギ酸などの有機酸などの酸性化合物、アルカリ金属若しくはアルカリ土類金属の水酸化物又は炭酸塩、アンモニウム化合物などの塩基性化合物などが挙げられる。
 なお、酸化チタンの表面に、ケイ素酸化物を含有する被覆層を形成する要領としては、特開昭53-33228号公報、特開昭58-84863号公報などに記載の方法を用いることができる。
 上述の要領で、酸化チタンの表面をアルミニウム酸化物又はケイ素酸化物の何れか一方或いは双方で全面的に被覆した後、ロータリープレス、ファイルタープレスなどの公知の濾過装置を用いて水性スラリーから酸化チタンを濾過、分離し、必要に応じて、酸化チタンを洗浄し可溶性塩類を除去する。
 水性スラリーに水溶性アルミニウム塩及び水溶性ケイ酸塩を添加した場合には、上述の要領によって、酸化チタンの表面がアルミニウム酸化物及びケイ素酸化物を含有する被覆層で被覆された被覆酸化チタンを得ることができる。
 一方、水性スラリーに水溶性アルミニウム塩又は水溶性ケイ酸塩の何れか一方だけを添加した場合には、水溶性アルミニウム塩又は水溶性ケイ酸塩のうちの何れか一方で被覆された酸化チタンを用いて上述と同様の要領で水性スラリーを作製し、この水性スラリーに、水溶性アルミニウム塩又は水溶性ケイ酸塩のうちの他方の塩を上述と同様の要領で添加して、酸化チタンの表面を水溶性アルミニウム塩又は水溶性ケイ酸塩のうちの他方の塩で被覆し、酸化チタンの表面がアルミニウム酸化物及びケイ素酸化物を含有する被覆層で被覆された被覆酸化チタンを得ることができる。
 なお、水溶性アルミニウム塩又は水溶性ケイ酸塩のうちの何れか一方で被覆された酸化チタンの凝集度合いに応じて、ハンマーミル、ピンミルなどの衝撃粉砕機、解砕機などの摩砕粉砕機、ジェットミルなどの気流粉砕機、スプレードライヤーなどの噴霧乾燥機、縦型サンドミル、横型サンドミル、ボールミルなどの湿式粉砕機などを用いて粉砕しておくこと好ましく、衝撃粉砕機、摩砕粉砕機が好ましい。
 光反射板における被覆酸化チタンの含有量が少な過ぎると、光反射板の光反射性能が低下する虞れがある。一方、光反射板における被覆酸化チタンの含有量が多過ぎると、被覆酸化チタンの含有量の増加分に見合った光反射板の光反射性能の向上が見込まれず、光反射板の軽量性が低下する虞れがある。したがって、光反射板における被覆酸化チタンの含有量は、ポリオレフィン系樹脂100重量部に対して20~120重量部に限定され、30~120重量部が好ましく、30~100重量部がより好ましい。
 本発明の光反射板は、上述した被覆酸化チタンの他にポリオレフィン系樹脂を含有している。ポリオレフィン系樹脂としては、特に限定されず、例えば、ポリエチレン系樹脂や、ポリプロピレン系樹脂などが挙げられ、ポリプロピレン系樹脂が好ましい。なお、ポリオレフィン系樹脂は単独で用いられても二種以上が併用されてもよい。
 上記ポリエチレン系樹脂としては、例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、中密度ポリエチレンなどが挙げられる。
 また、上記ポリプロピレン系樹脂としては、ホモポリプロピレン、エチレン-プロピレン共重合体、プロピレン-α-オレフィン共重合体などが挙げられる。更に、光反射板が発泡してなるものである場合には、ポリプロピレン系樹脂としては、特許第2521388号公報や特開2001-226510号公報にて開示されている高溶融張力ポリプロピレン系樹脂が好ましい。
 なお、エチレン-プロピレン共重合体及びプロピレン-α-オレフィン共重合体はランダム共重合体であってもブロック共重合体の何れであってもよい。エチレン-プロピレン共重合体におけるエチレン成分の含有量は、0.5~30重量%が好ましく、1~10重量%がより好ましい。又、プロピレン-α-オレフィン共重合体中におけるα-オレフィン成分の含有量は、0.5~30重量%が好ましく、1~10重量%がより好ましい。
 α-オレフィンとしては、炭素数が4~10のα-オレフィンが挙げられ、例えば、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテンなどが挙げられる。
 なかでも、ポリオレフィン系樹脂としては、ポリプロピレン系樹脂が好ましく、ホモポリプロピレンが特に好ましい。被覆酸化チタンはポリプロピレン系樹脂中で特に微分散することができる。
 また、ポリオレフィン系樹脂中における被覆酸化チタンの分散性を向上させるために、被覆酸化チタンの表面をチタンカップリング剤及びシランカップリング剤からなる群から選ばれた一種以上のカップリング剤、シロキサン化合物、多価アルコールで処理することが好ましく、シランカップリング剤で処理することがより好ましい。
 シランカップリング剤としては、例えば、アルキル基、アルケニル基、アミノ基、アリール基、エポキシ基などを有するアルコキシシラン類の他、クロロシラン類、ポリアルコキシアルキルシロキサン類などが挙げられる。具体的には、シランカップリング剤としては、例えば、n-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、n-β(アミノエチル)γ-アミノプロピルメチルトリメトキシシラン、n-β(アミノエチル)γ-アミノプロピルメチルトリエトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、n-フェニル-γ-アミノプロピルトリメトキシシランなどのアミノシランカップリング剤、ジメチルジメトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、n-ブチルトリメトキシシラン、n-ブチルトリエトキシシラン、n-ブチルメチルジメトキシシラン、n-ブチルメチルジエトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、イソブチルメチルジメトキシシラン、tert-ブチルトリメトキシシラン、tert-ブチルトリエトキシシラン、tert-ブチルメチルジメトキシシラン、tert-ブチルメチルジエトキシシランなどのアルキルシランカップリング剤を挙げることができ、アミノシランカップリング剤が好ましい。なお、シランカップリング剤は、単独で用いられても二種以上が併用されてもよい。
 シロキサン化合物としては、例えば、ジメチルシリコーン、メチルハイドロジェンシリコーン、アルキル変性シリコーンなどを挙げることができる。又、多価アルコールとしては、例えば、トリメチロールエタン、トリメチロールプロパン、トリプロパノールエタン、ペンタエリスリトール、ペンタエリトリットなどを挙げられ、トリメチロールエタン、トリメチロールプロパンが好ましい。なお、シロキサン化合物及び多価アルコールは、単独で用いられても二種以上が併用されてもよい。
 なお、上記被覆酸化チタンは、E.I.Dupont de Nemours&Co.、SCM Corporation、Kerr-McGee Co.、CanadeanTitanium Pigments Ltd.、Tioxide of Canada Ltd.、Pigmentos y Productos Quimicos、S.A.de C.V、Tibras Titanos S.A.、Tioxide International Ltd.、SCM Corp.、Kronos Titan GmbH、NL Chemical SA/NV、Tioxide、TDF Tiofine BV、石原産業社、テイカ社、堺化学工業社、古河機械金属社、トーケムプロダクツ、チタン工業社、富士チタン工業社、韓国チタニウム社、中国金属加工社、ISK台湾社などから市販されている。
 また、光反射板には一次酸化防止剤が含有されていてもよい。この一次酸化防止剤は、熱や光によって発生するラジカルを捕捉してラジカル反応を停止させる安定剤であり、このような一次酸化防止剤としては、光反射板の光線反射率の低下を抑制する効果が高いので、フェノール系酸化防止剤が好ましい。
 上記フェノール系酸化防止剤としては、例えば、2,6-ジ-t-ブチル-4-メチルフェノール、n-オクタデシル-3-(3',5'-ジ-t-ブチル-4'-ヒドロキシフェニル)プロピオネート、テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、トリス[N-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)]イソシアヌレート、ブチリデン-1,1-ビス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)、トリエチレングリコールビス[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート]、3,9-ビス{2-[3(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンなどが挙げられ、単独で用いられても二種以上が併用されてもよい。
 そして、光反射板中における一次酸化防止剤の含有量は、少ないと、光反射板の光線反射率の低下を抑制することができないことがある一方、多くても、光反射板の光線反射率の低下の抑制効果に変化はなく、一次酸化防止剤自体の着色によって光反射板の光線反射率が低下することがあるので、ポリオレフィン系樹脂100重量部に対して0.01~0.5重量部が好ましく、0.01~0.3重量部がより好ましく、0.01~0.2重量部が特に好ましい。
 ここで、光反射板に0.5重量%を超える含水率を有する被覆酸化チタンが含まれていると、光反射板の熱成形時にこの光反射板が加熱されることによって、酸化チタンの強い還元力が生じて被覆酸化チタンに含まれている多くの水分がH・とOH・にラジカル化される。これによって生じたOHラジカルは光反射板中に含まれているフェノール系酸化防止剤を攻撃してスチルベンギノン(茶色)などの着色物質を形成して、光反射板を黄色などに変色する問題も生じる場合がある。しかしながら、本発明では、0.5重量%以下の含水率を有する被覆酸化チタンによれば、光反射板がフェノール系酸化防止剤を含んでいたとしても、光反射板中における水分量が少ないため、OHラジカルによるフェノール系酸化防止剤の攻撃によって着色物質が殆ど生じることはなく光反射板の変色を高く抑制することができる。
 また、光反射板には二次酸化防止剤が含有されていてもよい。この二次酸化防止剤は、熱や光によって生じるポリオレフィン系樹脂の自動酸化劣化の中間体であるヒドロペルオキシド(ROOH)をイオン分解して自動酸化を阻止するものである。光反射板の光線反射率の低下を抑制する効果が高いことから、リン系酸化防止剤やイオウ系酸化防止剤が好ましく、リン系酸化防止剤がより好ましい。
 上記リン系酸化防止剤としては、例えば、トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)-4,4'-ビフェニレンジ-ホスホナイトなどを挙げることができ、単独で用いても二種以上が併用されてもよい。
 また、上記イオウ系酸化防止剤としては、例えば、ジラウリル-3,3'-チオ-ジプロピオネート、ジミリスチル-3,3'-チオ-ジプロピオネート、ジステアリル-3,3'-チオ-ジプロピオネート、ペンタエリスリトールテトラキス(3-ラウリルチオ-プロピオネート)などが挙げられ、単独で用いても二種以上を併用してもよい。
 光反射板中における二次酸化防止剤の含有量が少な過ぎると、光反射板の光線反射率の低下を抑制することができないことがある。一方、光反射板中における二次酸化防止剤の含有量が多過ぎても、光反射板の光線反射率の低下の抑制効果に変化はない虞れがある。したがって、光反射板中における二次酸化防止剤の含有量は、ポリオレフィン系樹脂100重量部に対して0.01~0.5重量部が好ましく、0.01~0.3重量部がより好ましく、0.01~0.2重量部が特に好ましい。
 更に、光反射板中には紫外線吸収剤が含有されていてもよい。このような紫外線吸収剤としては、例えば、2-(2'-ヒドロキシ-5'-メチルフェニル)ベンゾトリアゾール、2-[2'-ヒドロキシ-3',5'-ビス(α,α-ジメチルベンジル)フェニル]-ベンゾトリアゾール、2-(2’-ヒドロキシ-3',5-ジ-t-ブチルフェニル)-ベンゾトリアゾール、2-(2'-ヒドロキシ-3'-t-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3',5'-ジ-t-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-アミル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2N-ベンゾトリアゾール-2-イル)フェノール]などのベンゾトリアゾール系紫外線吸収剤、2,4-ジヒドロキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸、2-ヒドロキシ-4-n-オクチル-ベンゾフェノン、2-ヒドロキシ-4-n-ドデシロキシ-ベンゾフェノン、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2,2’-ジヒドロキシ-4-メトキシ-ベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノンなどのベンゾフェノン系紫外線吸収剤、サリチル酸フェニル、4-t-ブチルフェニルサリチレートなどのサリシレート系紫外線吸収剤、エチル-2-シアノ-3,3-ジフェニル-アクリレート、2-エチルヘキシル-2-シアノ-3,3’-ジフェニル-アクリレートなどのシアノアクリレート系紫外線吸収剤、2-エトキシ-3-t-ブチル-2’-エチル-シュウ酸ビスアニリド、2-エトキシ-2’-エチル-シュウ酸ビスアニリドなどのオキザリックアシッドアニリド系紫外線吸収剤、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエートなどのベンゾエート系紫外線吸収剤、2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-ヒドロキシフェノール、2-(2,4-ジヒドロキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4-ビス(2-ヒドロキシ-4-ブトキシフェニル)-6-(2,4-ジブトキシフェニル)-1,3-5-トリアジンなどのトリアジン系紫外線吸収剤などが挙げられ、光反射板の光線反射率の低下を効果的に抑制することから、ベンゾトリアゾール系紫外線吸収剤が好ましい。なお、紫外線吸収剤は単独で用いられても二種以上が併用されてもよい。
 紫外線吸収剤の分子量は、250以上が好ましく、300~500がより好ましく、400~500が特に好ましい。光反射板形成用樹脂組成物を押出成形して光反射板を製造する際に、分子量が250未満である紫外線吸収剤は光反射板形成用樹脂組成物の押出物表面から揮発し易く、この紫外線吸収剤の揮発は得られる光反射板表面に光沢ムラ、荒れ、及び裂けなどの欠陥を生じさせる虞れがある。これらの欠陥が生じた光反射板の成形体は、優れた光反射性能を均一に発揮することができない。
 また、光反射板中における紫外線吸収剤の含有量が少な過ぎると、光反射板の光線反射率の低下を抑制することができない虞れがある。一方、光反射板中における紫外線吸収剤の含有量が多過ぎても、光反射板の光線反射率の低下の抑制効果に変化がない虞れがある。したがって、光反射板中における紫外線吸収剤の含有量は、ポリオレフィン系樹脂100重量部に対して0.01~0.5重量部が好ましく、0.01~0.3重量部がより好ましく、0.01~0.2重量部が特に好ましい。
 さらに、光反射板中にはヒンダードアミン系光反射安定剤が含有されていてもよい。このようなヒンダードアミン系光安定剤としては、特に限定されず、例えば、ビス(2,2,6,6-テトラメチル-4-ピペリジニル)セバケート、ビス(N-メチル-2,2,6,6-テトラメチル-4-ピペリジニル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)-2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタン-テトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタン-テトラカルボキシレート、(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタン-テトラカルボキシレートと(2,2,6,6-テトラメチル-4-トリデシル)-1,2,3,4-ブタン-テトラカルボキシレートとの混合物、(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタン-テトラカルボキシレートと(1,2,2,6,6-ペンタメチル-4-トリデシル)-1,2,3,4-ブタン-テトラカルボキシレートとの混合物、{2,2,6,6-テトラメチル-4-ピペリジル-3,9-[2,4,8,10-テトラオキサスピロ(5.5)ウンデカン]ジエチル}-1,2,3,4-ブタン-テトラカルボキシレートと{2,2,6,6-テトラメチル-β,β,β',β'-テトラメチル-3,9-[2,4,8,10-テトラオキサスピロ(5.5)ウンデカン]ジエチル}-1,2,3,4-ブタン-テトラカルボキシレートとの混合物、{1,2,2,6,6-ペンタメチル-4-ピペリジル-3,9-[2,4,8,10-テトラオキサスピロ(5.5)ウンデカン]ジエチル}-1,2,3,4-ブタン-テトラカルボキシレートと{1,2,2,6,6-ペンタメチル-β,β,β',β'-テトラメチル-3,9-[2,4,8,10-テトラオキサスピロ(5.5)ウンデカン]ジエチル}-1,2,3,4-ブタン-テトラカルボキシレートとの混合物、ポリ[6-(1,1,3,3-テトラメチルブチル)イミノ-1,3,5-トリアジン-2,4-ジイル]、[(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]ヘキサメチレン[(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]、4-ヒロドキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールとジメチルスクシナートポリマーとの混合物、N,N’,N”,N'"-テトラキス{4,6-ビス[ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ]-トリアジン-2-イル}-4,7-ジアザデカン-1,10-ジアミンなどが挙げられ、単独で用いられても二種以上が併用されてもよい。
 また、光反射板中におけるヒンダードアミン系光安定剤の含有量が少な過ぎると、光反射板の光線反射率の低下を抑制することができない虞れがある。一方、光反射板中におけるヒンダードアミン系光安定剤の含有量が多過ぎても、光反射板の光線反射率の低下の抑制効果に変化はなく、ヒンダードアミン系光安定剤自体の着色によって光反射板の光線反射率の低下を生じる虞れがある。したがって、光反射板中におけるヒンダードアミン系光安定剤の含有量は、ポリオレフィン系樹脂100重量部に対して0.01~0.5重量部が好ましく、0.01~0.3重量部がより好ましく、0.01~0.2重量部が特に好ましい。
 ここで、ポリオレフィン系樹脂の劣化は、高分子主鎖の切断に起因している。具体的には、熱や光などによってラジカルが生成し、この生成したラジカルが酸素と反応することによってペルオキシラジカルに変わり、主鎖から水素を引き抜いてヒドロペルオキシドとなる。その後、ヒドロペルオキシドは熱や光などの作用により分解し、アルコキシラジカルとなって高分子主鎖を切断して、高分子主鎖の切断に伴ってラジカルが発生する。この反応サイクルが繰り返し行われて高分子主鎖は切断され低分子量化されてポリオレフィン系樹脂は劣化する。このポリオレフィン系樹脂の劣化は、ポリオレフィン系樹脂の黄変を引き起し、その結果、光反射板の光線反射率の低下をもたらす。
 そこで、本発明の光反射板では、上述したように、酸化チタンの表面をアルミニウム酸化物及びケイ素酸化物を含有する被覆層で被覆してなる被覆酸化チタンを用い、酸化チタンとポリオレフィン系樹脂との接触を回避し、更に、酸化チタンに入射する紫外線を被覆層によってできるだけ遮断して、酸化チタンの光触媒作用によるポリオレフィン系樹脂の酸化分解を防止していると共に、酸化チタンの結晶中での光化学変化による酸素欠陥の増大に起因した暗灰色への変色を防止している。
 さらに、光反射板を構成している光反射板中に、上述のように、一次酸化防止剤、二次酸化防止剤、紫外線吸収剤及びヒンダードアミン系光安定剤を添加することによってポリオレフィン系樹脂の劣化に伴う黄変や被覆酸化チタンの光化学変化を抑制して光反射板の光線反射率の低下を更に防止することができる。
 詳細には、紫外線吸収剤及びヒンダードアミン系光安定剤を添加することによってポリオレフィン系樹脂の光安定化効果によりポリオレフィン系樹脂の劣化に伴う黄変をより効果的に防止していると共に、酸化チタンの活性化によるポリオレフィン系樹脂の酸化分解の防止と光化学変化の更なる抑制を図っている。
 一方、上述のように、紫外線吸収剤及びヒンダードアミン系光安定剤は、酸化チタンによるポリオレフィン系樹脂の酸化分解の防止を抑える力を有しているものの、その抑制力が充分ではなく、紫外線吸収剤及びヒンダードアミン系光安定剤自体が酸化チタンによって酸化分解される虞れがある。
 そこで、紫外線吸収剤及びヒンダードアミン系光安定剤に加えて、一次酸化防止剤及び二次酸化防止剤を添加してラジカル反応の捕捉及びヒドロペルオキシドのイオン分解によって、ポリオレフィン系樹脂を光安定化させて劣化に伴う黄変防止を更に確実なものとしていると共に、酸化チタンによる紫外線吸収剤及びヒンダードアミン系光安定剤の酸化分解をより確実に防止している。
 即ち、一次酸化防止剤及び二次酸化防止剤によってポリオレフィン系樹脂の劣化による黄変防止に加えて、酸化チタンによる紫外線吸収剤及びヒンダードアミン系光安定剤の分解を更に確実に防止していると共に、この保護された紫外線吸収剤及びヒンダードアミン系光安定剤によって酸化チタンによるポリオレフィン系樹脂の酸化分解の防止と光化学変化の抑制を更に確実なものとしており、初期に有していた光線反射率が短時間のうちに低下してしまう事態をより確実に防止することができると共に、長期間に亘っても優れた光線反射率を維持することができる。
 さらに、光反射板は銅害防止剤(金属不活性剤)を含んでいてもよい。光反射板中に銅害防止剤を添加することによって、光反射板が銅などの金属と接触し、或いは、光反射板に銅イオンなどの重金属イオンが作用した場合にあっても、劣化促進因子である銅イオンなどをキレート化合物として捕捉することができ、光反射板を各種の液晶表示装置や照明装置などに組み込んだ場合において、光反射板が銅などの金属と接触しても、ポリオレフィン系樹脂が劣化し黄変することを防止することができる。
 上記銅害防止剤(金属不活性剤)としては、例えば、N,N-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジンなどのヒドラジン系化合物、3-(3,5-ジ-テトラ-ブチル-4-ヒドロキシフェニル)プロピオニルジハイドライジドなどが挙げられる。
 そして、光反射板中における銅害防止剤(金属不活性剤)の含有量が少な過ぎると、銅害防止剤を添加した効果が発現しない虞れがある。一方、光反射板中における銅害防止剤(金属不活性剤)の含有量が多過ぎると、光反射板の光線反射率が低下する虞れがある。したがって、光反射板中における銅害防止剤(金属不活性剤)の含有量は、ポリオレフィン系樹脂100重量部に対して0.1~1.0重量部が好ましい。
 また、光反射板中に帯電防止剤を添加してもよい。このように帯電防止剤を添加することによって光反射板の帯電を防止し、光反射板に埃やゴミが付着するのを防止することができ、光反射板の光線反射率の低下を未然に防止することができる。
 このような帯電防止剤としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、ポリエチレングリコール、ポリエステルアミド、ポリエーテルエステルアミド、エチレン-メタクリル酸共重合体などのアイオノマー、ポリエチレングリコールメタクリレート系共重合体などの第四級アンモニウム塩、特開2001-278985号公報に記載のオレフィン系ブロックと親水性ブロックとが繰返し交互に結合した構造を有するブロック共重合体などの高分子型帯電防止剤、無機塩、多価アルコール、金属化合物、カーボンなどが挙げられる。
 そして、高分子型帯電防止剤を除いた帯電防止剤の光反射板中における含有量が少な過ぎると、帯電防止剤を添加した効果が発現しないことがある。一方、高分子型帯電防止剤を除いた帯電防止剤の光反射板中における含有量が多過ぎると、帯電防止剤の添加濃度に見合った効果が得られないばかりか、帯電防止剤の効果の低下がみられ、或いは、著しいブリードアウト、着色及び光による黄変が生じることがある。したがって、高分子型帯電防止剤を除いた帯電防止剤の光反射板中における含有量は、ポリオレフィン系樹脂100重量部に対して0.1~2重量部が好ましい。
 また、光反射板中における高分子型帯電防止剤の含有量は、上記と同様の理由で、ポリオレフィン系樹脂100重量部に対して5~50重量部が好ましい。
 さらに、上記光反射板には、銅害禁止剤(金属不活性剤)や帯電防止剤の他に、ステアリン酸金属石鹸などの分散剤、クエンチャー、ラクトン系加工安定剤、蛍光増白剤、結晶核剤などが添加されてもよい。
 光反射板の厚みは薄過ぎると、光反射板の剛性が低下して、光反射板に撓みが生じる虞れがある他、光反射板を熱成形して任意の形状に成形する際に薄肉部が発生しやすくなる虞れがある。また、光反射板の厚みが厚過ぎると、光反射板を組み込む装置の厚みや重量が増大する虞れがある。したがって、光反射板の厚みは、0.1~1.5mmが好ましく、0.1~0.8mmがより好ましく、0.1~0.6mmが特に好ましい。なお、光反射板の形状は、特に制限されないが、シート状が好ましい。
 次に、本発明の光反射板の製造方法について説明する。本発明の光反射板の製造には、ポリオレフィン系樹脂100重量部と、酸化チタンの表面がアルミニウム酸化物及びケイ素酸化物を含有する被覆層で被覆されてなり且つ含水率が0.5重量%以下である被覆酸化チタン20~120重量部とを含む光反射板形成用樹脂組成物が用いられる。
 被覆酸化チタンの含水率を0.5重量%以下とするには、光反射板の製造に用いられる被覆酸化チタンを加熱し、被覆酸化チタンに含まれている水和水を蒸発させることにより行うことができる。このように予め加熱乾燥させることにより含水率を0.5重量%以下とした被覆酸化チタンを光反射板の製造に用いるのが好ましい。
 被覆酸化チタンに含まれる水和水を除去又は低減するには、被覆酸化チタンを好ましくは50~140℃、より好ましくは90~120℃で加熱することにより水和水を蒸発させて水和水を除去又は低減させることが好ましい。加熱時間は、2~8時間が好ましく、3~5時間がより好ましい。
 光反射板形成用樹脂組成物は、ポリオレフィン系樹脂及び含水率が0.5重量%以下である被覆酸化チタンの他に、必要に応じて、一次酸化防止剤、二次酸化防止剤、紫外線吸収剤及びヒンダードアミン系光安定剤などの他の添加剤を含んでいるのが好ましい。なお、光反射板形成用樹脂組成物に用いられるポリオレフィン系樹脂、被覆酸化チタン、一次酸化防止剤、二次酸化防止剤、紫外線吸収剤及びヒンダードアミン系光安定剤などの他の添加剤についての説明は、上述した通りである。
 また、光反射板形成用樹脂組成物は、ポリオレフィン系樹脂及び被覆酸化チタンを含有するマスターバッチを予め作製し、上記マスターバッチ、ポリオレフィン系樹脂、並びに必要に応じて、一次酸化防止剤、二次酸化防止剤、紫外線吸収剤及びヒンダードアミン系光安定剤などの他の添加剤を含んでいるのが好ましい。このように被覆酸化チタンを含有するマスターバッチを用いることにより、光反射板形成用樹脂組成物中における被覆酸化チタンの分散性を向上させることができる。また、マスターバッチ中では、含水率が0.5重量%以下の被覆酸化チタンはポリオレフィン系樹脂によって完全に被覆されており、ポリオレフィン系樹脂に被覆されずに露出している被覆酸化チタンは殆ど存在しない。したがって、マスターバッチを長時間に亘って放置したとしてもマスターバッチ中に含まれている被覆酸化チタンの含水率は概ね変化することなく一定に保たれる。
 マスターバッチの製造は、特に制限されないが、被覆酸化チタン及びポリオレフィン系樹脂を所定の重量比で押出機に供給して溶融混練することにより溶融混練物を得た後、この溶融混練物を押出機により押出す方法により行われるのが好ましい。また、マスターバッチを用いる場合にも、上記の通りに予め加熱乾燥させて含水率を0.5重量%以下とした被覆酸化チタンを用いてマスターバッチを作製するのが好ましい。
 押出機中で被覆酸化チタン及びポリオレフィン系樹脂を溶融混練することにより溶融混練物を得る際に、揮発分除去手段を有する押出機を用い、溶融混練時に溶融混練物から生じる揮発分を押出機の外部に排出するのが好ましい。このような方法により被覆酸化チタンの被覆層に含まれている水和水をより高く除去することができる。
 揮発分除去手段を有する押出機としては、例えば、被覆酸化チタン及びポリオレフィン系樹脂を溶融混練する押出機のシリンダーの中間部にシリンダー内部の気体を外部に排出するためのベント口を設けたベント式押出機などが好適に用いられる。ベント式押出機によれば、真空ポンプなどを用いてシリンダー内部の気体をベント口より吸引して外部へ排出することができる。
 ベント口から気体を吸引する場合、シリンダー内の圧力を7.5~225mmHg(1~30kPa)とするのが好ましく、22.5~150mmHg(3~20kPa)とするのがより好ましい。シリンダー内の圧力を上記範囲内とすることにより、溶融混練時にも溶融混練物に含まれる被覆酸化チタンに含まれる水和水を除去することができる。また、溶融混練する際の溶融混練物の温度は180~290℃が好ましく、180~270℃がより好ましい。
 光反射板形成用樹脂組成物は、ポリオレフィン系樹脂及び含水率が0.5重量%以下である被覆酸化チタン、並びに必要に応じて、一次酸化防止剤、二次酸化防止剤、紫外線吸収剤及びヒンダードアミン系光安定剤などの他の添加剤を、最終的に得られる光反射板において各成分が所望の重量比で含まれているように、押出機に供給して溶融混練することにより製造されるのが好ましい。マスターバッチを用いる場合には、光反射板形成用樹脂組成物は、ポリオレフィン系樹脂及び含水率が0.5重量%以下である被覆酸化チタンを含むマスターバッチ、ポリオレフィン系樹脂、並びに必要に応じて、一次酸化防止剤、二次酸化防止剤、紫外線吸収剤及びヒンダードアミン系光安定剤などの他の添加剤を、最終的に得られる光反射板において各成分が所望の重量比で含まれているように、押出機に供給して溶融混練することにより製造されるのが好ましい。
 また、被覆酸化チタンとポリオレフィン系樹脂とを、又はマスターバッチを用いる場合にはマスターバッチとポリオレフィン系樹脂とを、押出機中で溶融混練することにより光反射板形成用樹脂組成物を得る際にも、ベント式押出機などの揮発分除去手段を有する押出機を用い、樹脂組成物の溶融混練時に樹脂組成物から生じる揮発分を押出機の外部に排出するのが好ましい。このような方法により被覆酸化チタンの被覆層に含まれる水和水をより高く除去することができる。なお、ベント式押出機は、マスターバッチにおいて上述したのと同様である。
 ベント式押出機のベント口から気体を吸引する場合、シリンダー内の圧力を7.5~225mmHg(1~30kPa)とするのが好ましく、22.5~150mmHg(3~20kPa)とするのがより好ましい。シリンダー内の圧力を上記範囲内とすることにより、溶融混練時にも樹脂組成物に含まれる被覆酸化チタンに含まれる水和水を除去することができる。また、溶融混練する際の樹脂組成物の温度は180~290℃が好ましく、180~270℃がより好ましい。
 光反射板形成用樹脂組成物は、好ましくは、ポリオレフィン系樹脂及び被覆酸化チタンなどを押出機などの汎用の混練装置に供給して溶融混練することにより製造されるが、その後、光反射板形成用樹脂組成物をペレット状などの所定の形状に成形してもよい。このように成形された光反射板形成用樹脂組成物中では、含水率が0.5重量%以下の被覆酸化チタンはポリオレフィン系樹脂によって完全に被覆されており、ポリオレフィン系樹脂に被覆されずに露出している被覆酸化チタンは殆ど存在しない。したがって、成形された光反射板形成用樹脂組成物を長時間に亘って放置したとしても光反射板形成用樹脂組成物中に含まれている被覆酸化チタンの含水率は概ね変化することなく一定に保たれる。
 光反射板形成用樹脂組成物をペレット状に成形するには、例えば、被覆酸化チタン及びポリオレフィン系樹脂を押出機に供給して溶融混練することにより光反射板形成用樹脂組成物を得、光反射板形成用樹脂組成物を押出機からストランド状に押出した後に所定の間隔毎に切断することにより、ペレット状に成形することができる。又、マスターバッチを用いる場合にはマスターバッチ及びポリオレフィン系樹脂を、押出機に供給して溶融混練することにより光反射板形成用樹脂組成物を得、光反射板形成用樹脂組成物を押出機からストランド状に押出した後に所定の間隔毎に切断することにより、ペレット状に成形することができる。
 なお、光反射板形成用樹脂組成物に含まれている被覆酸化チタンの含水率の測定は、光反射板中に含まれている被覆酸化チタンの含水率の上述した測定方法において、光反射板を裁断することにより得られる重量が5gの試験片に代えて、光反射板形成用樹脂組成物5gを計り取ることにより得られる試料を用いる以外は、同様にして測定することができる。
 そして、上述した光反射板形成用樹脂組成物をシート状に成形することにより、非発泡シートからなる本発明の光反射板を製造することができる。光反射板形成用樹脂組成物をシート状に成形するには、インフレーション法、Tダイ法、カレンダー法などの公知の方法によって光反射板形成用樹脂組成物をシート状に成形すればよく、Tダイ法が好ましい。Tダイ法により光反射板形成用樹脂組成物をシート状に成形するには、例えば、押出機の先端にTダイを取り付け、このTダイから押出機中で溶融混練した光反射板形成用樹脂組成物をシート状に押出すことにより行えばよい。
 ポリオレフィン系樹脂及び被覆酸化チタンなどを押出機に供給し、押出機中で溶融混練することにより光反射板形成用樹脂組成物を得た場合、この光反射板形成用樹脂組成物を押出機から直接押出すことにより光反射板を製造することができる。また、ペレット状など所定の形状に成形された光反射板形成用樹脂組成物を用いる場合には、この成形された光反射板形成用樹脂組成物を押出機に供給して溶融混練した後、押出機から押出すことによって光反射板を製造することができる。
 また、光反射板形成用樹脂組成物を押出機中で溶融混練した後、シート状に成形する際にも、ベント式押出機などの揮発分除去手段を有する押出機を用い、光反射板形成用樹脂組成物の溶融混練時に光反射板形成用樹脂組成物から生じる揮発分を押出機の外部に排出するのが好ましい。なお、ベント式押出機は、マスターバッチにおいて上述したのと同様である。
 ベント式押出機のベント口から気体を吸引する場合、シリンダー内の圧力を7.5~225mmHg(1~30kPa)とするのが好ましく、22.5~150mmHg(3~20kPa)とするのがより好ましい。シリンダー内の圧力を上記範囲内とすることにより、溶融混練時にも樹脂組成物に含まれる被覆酸化チタンに含まれる水和水を除去することができる。また、溶融混練する際の光反射板形成用樹脂組成物の温度は180~290℃が好ましく、180~270℃がより好ましい。
 また、光反射板形成用樹脂組成物を押出機から押出すことによりシート状の押出物を得た後、これが冷却固化して光反射板となる前に、シート状の押出物の少なくとも一方の面に鏡面加工処理を行うのが好ましい。鏡面加工処理によれば、シート状の押出物の表面平滑性を向上させて優れた光反射性能を有する光反射板を提供することができる。
 鏡面加工処理としては、例えば、外周面が鏡面に形成された鏡面ロールとこの鏡面ロールに対峙して配設された支持ロールとからなる一対のロール間にシート状の押出物を供給してシート状の押出物の表面に鏡面ロールを押圧する方法などが好ましく用いられる。
 本発明の光反射板の一方の面にシート状の支持体を積層一体化して積層体とすることもできる。このような支持体としては、2軸延伸されたポリプロピレン系樹脂フィルム、2軸延伸されたポリエステル系樹脂フィルム、ポリアミド系樹脂フィルム、及び紙などが挙げられる。ここで、ポリプロピレン系樹脂としてはポリプロピレンが好ましく挙げられる。ポリエステル系樹脂としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、及びポリ乳酸が好ましく挙げられる。ポリアミド系樹脂としてはナイロン-6、ナイロン-6,6などが好ましく挙げられる。
 また、本発明の光反射板の一方の面に金属箔を積層一体化して積層体とすることもできる。金属箔としては、アルミニウム箔が好ましく挙げられる。このように金属箔を積層一体化することにより、優れた光反射性を有する積層体が得られる。
 光反射板に支持体又は金属箔を積層一体化するには、特に制限されず、熱ラミネート法、ドライラミネート法、及び押出ラミネートなど公知の方法を用いて行えばよい。
 さらに、本発明の光反射板は、その製造にあたって延伸工程を必要とせず、優れた熱成形性を有しており、用途に応じて所望形状に熱成形されていてもよい。光反射板の成形方法としては、例えば、真空成形や圧空成形が挙げられる。真空成形や圧空成形としては、例えば、プラグ成形、フリードローイング成形、プラグ・アンド・リッジ成形、マッチド・モールド成形、ストレート成形、ドレープ成形、リバースドロー成形、エアスリップ成形、プラグアシスト成形、プラグアシストリバースドロー成形などが挙げられる。なお、上記成形方法においては温度調節可能な金型を用いることが好ましい。
 本発明の光反射板は、ワードプロセッサー、パーソナルコンピュータ、携帯電話、ナビゲーションシステム、テレビジョン、携帯型テレビなどの液晶表示装置のバックライトユニットに用いられるのが好ましい。上述の通り、本発明の光反射板は、優れた光反射性能を有するので、このような光反射板を液晶表示装置のバックライトユニットに用いることにより輝度の低下やムラの発生が抑制された液晶表示装置を提供することができる。
 本発明の光反射板を液晶表示装置のバックライトユニットに用いる場合、光反射板を液晶表示装置を構成する直下ライト式バックライト、サイドライト式バックライト又は面状光源方式バックライト内に組み込んで用いることができる。
 本発明の光反射板が用いられる液晶表示装置のサイドライト式のバックライトユニットの模式図を図1に示す。図1に示す液晶表示装置は、光反射板10、この光反射板10上に積層一体化されてなる光拡散層20、この光拡散層20上に配設された導光板30、導光板30の側方に配設されて導光板30に光を放射する発光光源40、及び、発光光源40から放射された光を導光板30に反射させるためのランプリフレクタ50を有する。なお、発光光源40としては、例えば、冷却陰極やLEDなどが挙げられる。
 光拡散層20は、熱可塑性樹脂などのバインダ樹脂中にスチレン系樹脂やアクリル系樹脂などからなる透光性粒子21が分散されてなる。また、光拡散層20の表面は透光性粒子21により形成された凹凸形状を有し、この凹凸形状によって光を拡散させることができる。なお、光拡散層20は、透光性粒子をバインダ樹脂中に含有させてなる塗料を光反射板の表面に塗布して乾燥させることによって形成することができる。
 液晶表示装置では、発光光源40によって導光板30内に入射した光が導光板30の表面及び裏面間を繰り返して反射することによって導光板30の表面から導光板30の外部へ導出される。また、導光板30の裏面から導出した光は、光拡散層20の表面に透光性粒子21により形成された凹凸形状によって、導光板30の表面側に向かって均一となるように拡散されて反射される。さらに、導光板30の裏面から導出した光が光拡散層20を透過した場合には、上記光は光反射板10によって導光板30の表面側に向かって反射される。このように発光光源に導光板30、光拡散層20及び光反射板10を組み合わせることにより、液晶表示装置の輝度を向上させることができる。
 また、本発明の光反射板は、上述した液晶表示装置のバックライトユニットの他にも、広告や看板用の照明装置にも好ましく用いられる。以下に、本発明の光反射板を用いた照明装置の一例を図面を参照しながら説明する。
 光反射板を広告や看板用の照明装置に用いる場合、光反射板を予め所定の形状に熱成形して用いるのが好ましい。熱成形された光反射板は、具体的には図2及び図3に示すように、縦横に連続的に成形された複数個の逆四角錐台状の凹部12、12・・・を有し、上記凹部12、12・・・の内底面13には光源を配設するための光源配設部として貫通孔13aが形成されていると共に、上記凹部12、12・・・の内周面14は上記光源から放射された光を反射する光反射面に形成されている。
 そして、上記の通りに熱成形された光反射板を用いた照明装置を図4に示す。この照明装置は、図4に示すように、筐体60内に、光反射板10と発光ダイオードLとを備えた照明体Cが配設されて構成されている。上記筐体60は、光反射板10よりも一回り大きな大きさを有する平面矩形状の底面部61とこの底面部61の四方外周縁から上方に向かって延設された四角枠状の周壁部62とからなる。なお、周壁部62の内周面上端部にはその全周に亘って段部62aが形成されており、この段部62aに曇りガラス又は光学シート80が着脱自在に配設可能に構成されている。なお、照明体Cの光源は、発光ダイオードの他に、汎用の光源であってもよい。
 又、筐体60の底面部61上に敷設し得る大きさの平面正方形状の基板71上に多数個の発光ダイオードL、L・・・が配設されてなる光源体70を用意する。なお、光源体70上に光反射板10を重ね合わせた状態において、各凹部12の貫通孔13aと、光源体70の各発光ダイオードLの位置が合致するように構成されている。
 そして、上記光源体70がその発光ダイオードLを上方(筐体60の開口方向)に向けた状態にて筐体60の底面部61上に敷設されており、光源体70上に光反射板10が敷設され、光源体70の発光ダイオードLが光反射板10の凹部12の貫通孔13aを通じて配設されて照明体Cが構成されている。
 この照明装置Bを使用するにあたっては、先ず、筐体60の周壁部62の段部62a上に曇りガラス又は光学シート80を着脱自在に配設した上で、発光ダイオードLを発光させる(図4参照)。すると、発光ダイオードLから光が放射状に放射され光反射板10の凹部12の内周面に入射した光は、内周面で一回或いは複数回に亘って反射されて進行方向が曇りガラス又は光学シート80方向に向けられて曇りガラス又は光学シート80に入射する。なお、照明体Cの光反射板10と、曇りガラス又は光学シート80とは密着させない方が好ましい。
 そして、光学シート80は、その内部に光を拡散させる酸化チタンなどの光拡散剤が含有されており、光学シート80内に入射した光は、光学シート80内において光拡散剤によって乱反射させられ、或いは、曇りガラス内に入射した光は曇りガラスによって乱反射させられて更に拡散された上で曇りガラス又は光学シート80から外方に向かって放出され、曇りガラス又は光学シート80は正面から見ると全面的に略均一に光った状態となっている。
 ここで、曇りガラス又は光学シート80内に入射した光は、曇りガラス又は光学シート80において乱反射され、光の一部は光反射板A方向に反射されて再度、光反射板A方向に入射するが、光反射板10内に再度、入射した光は、凹部12の内周面において反射されて再び、曇りガラス又は光学シート80内に入射する。
 このように、発光ダイオードLから放射された光は、凹部12の内周面において反射されることによって、拡散されながら曇りガラス又は光学シート80方向に向かって反射され、よって、曇りガラス又は光学シート80はその全面に亘って略均一な光束でもって光が照射されるので、曇りガラス又は光学シート80を通して発光ダイオードの位置が視認されることは殆どない。
 そして、曇りガラス又は光学シート80に直接、描かれた図柄や文字、或いは、曇りガラス又は光学シート80上に配設された化粧シート上に描かれた図柄や文字が、曇りガラス又は光学シート80全体から均一に放射される光によって明瞭に且つ均一に浮かび上がった状態となる。したがって、上述した照明装置は、広告や看板用の照明装置として好適に用いることができる。
 上述では、光反射板の表面に光拡散層を形成し、光拡散層によって光を拡散させた場合を説明したが、光反射板の片面又は両面を凹凸面に形成し、この凹凸面によって光反射板に入射する光を拡散させるようにしてもよい。
 光反射板の表面を凹凸面に形成する方法としては、特に限定されず、例えば、(1)インフレーション法、Tダイ法、カレンダー法などの公知の方法によって光反射板形成用樹脂組成物を用いてシート状の押出物を製造し、このシート状の押出物を一対のロール間に供給し、一方又は双方のロールの表面に形成された凹凸をシート状の押出物の表面に転写させることによって、光反射板の表面を凹凸面に形成する方法が好ましい。上記(1)の方法によれば、押出機から押出して製造されたシート状の押出物の表面に連続的に凹凸を形成することによって、表面が凹凸面に形成された光反射板を連続的に一工程にて製造することができる。
 光反射板の凹凸面の表面粗さRaは、小さいと、光反射板の光拡散性が低下することがあり、大きいと、光反射板から反射された光の拡散性が不均一となり、光反射板から反射された光の拡散反射率が低下することがあるので、1~20μmが好ましく、1~15μmがより好ましい。
 光反射板の凹凸面における凹凸の平均間隔Smは、光反射板の光拡散性が低下することがあり、大きいと、光反射板から反射された光の拡散性が不均一となり、光反射板から反射された光の拡散反射率が低下することがあるので、5~300μmが好ましく、10~130μmがより好ましい。
 光反射板の凹凸面の最大高さ(Ry)は、小さいと、光反射板の光拡散性が低下することがあり、大きいと、光反射板から反射された光の拡散性が不均一となり、光反射板から反射された光の拡散反射率が低下することがあるので、5~80μmが好ましく、10~50μmがより好ましく、10~30μmが特に好ましい。
 光反射板の凹凸面の表面粗さRaは、JIS B0601に準拠して基準長さ2.5mm、評価長さ12.5mmにて測定された値をいう。光反射板の凹凸面における凹凸の平均間隔Smは、JIS B0601に準拠して基準長さ2.5mm、評価長さ12.5mmにて測定された値をいう。光反射板の凹凸面の最大高さ(Ry)は、JIS B0601に準拠して基準長さ2.5mm、評価長さ12.5mmにて測定された値をいう。具体的には、表面粗さRa及び平均間隔Smは、キーエンス社から商品名「ダブルスキャン高精度レーザー測定器 LT-9500」及び「ダブルスキャン高精度レーザー測定機 LT-9010M」で市販されている測定器、並びに、コムス社から商品名「非接触輪郭形状・粗さ測定システムMAP-2DS」で市販されている測定器を組み合わせて測定することができる。
 このように、光反射板の表面に凹凸を形成することによって、光反射板に優れた光拡散性を付与することができる。上述のように、シート状の押出物を一対のロール間に供給して、一方或いは双方のロールの外周面に形成されている凹凸をシート状の押出物の表面に転写させることによって、光反射板の少なくとも一面を凹凸面に形成している場合には、ロールの外周面に形成された凹凸を正確に光反射板の表面に転写、形成することができ、よって、光反射板の表面に所望の凹凸を均一に形成して凹凸面とすることができ、光反射板は均一な光拡散性を有している。
 そして、光反射板の表面を凹凸面に形成するにあたって、シート状の押出物の表面に、シボロールの外周面に形成された凹凸などの凹凸を押圧することによって、光反射板の表面を凹凸面に形成しているので、光反射板の厚みにかかわりなく、光反射板の少なくとも一つの表面を凹凸面に形成することができ、厚みの厚く且つ光拡散性に優れた光反射板を容易に製造することができる。
 少なくとも一面が凹凸面に形成された光反射板も上述の光反射板と同様に、その製造にあたって延伸工程を必要とせず、優れた熱成形性を有しており、用途に応じて所望形状に熱成形されていてもよい。なお、成形方法は、上述と同様の要領であるので、その説明を省略する。
 上記光反射板は、その少なくとも一面が凹凸面に形成されているので、熱成形中に、光反射板の凹凸面が金型に接触する場合には、光反射板の凹凸面と金型の表面との間に空隙部が形成され、この空隙部を通じて、光反射板と金型との対向面間に存在する空気を円滑に排除することができ、光反射板を所望形状に正確に熱成形することができる。
 なお、光反射板の凹凸面が金型に接触した状態で光反射板を熱成形すると、熱成形中に光反射板の凹凸面が金型に押しつけられて凹凸面の凹凸が若干小さくなることがある。即ち、凹凸面の表面粗さRa、凹凸面の凹凸の平均間隔Sm及び凹凸面の最大高さ(Ry)が、光反射板の熱成形後に小さくなることがある。従って、光反射板の凹凸面が金型に接触した状態で光反射板を熱成形する場合には、熱成形後の光反射板において、凹凸面の表面粗さRa、凹凸面の凹凸の平均間隔Sm及び凹凸面の最大高さ(Ry)が所望の値をとるように、熱成形前の光反射板において、凹凸面の表面粗さRa、凹凸面の凹凸の平均間隔Sm及び凹凸面の最大高さ(Ry)のそれぞれが、熱成形後の所望の値よりも大きくなるように調整しておくことが好ましい。
 以下に、本発明を実施例を用いてより具体的に説明するが、本発明はこれに限定されない。
 (実施例1)
 まず、被覆酸化チタンA(石原産業社製  商品名「CR-93」、平均粒子径:0.28μm)を用意した。この被覆酸化チタンAは、ルチル型酸化チタンの表面がアルミニウム酸化物及びケイ素酸化物を含有する被覆層で被覆されていた。被覆酸化チタンA中において、アルミニウム酸化物の量を蛍光X線分析によって定量したところ、Al23に換算して、二酸化チタンの全重量に対して3.1重量%であった。又、被覆酸化チタンA中において、ケイ素酸化物の量を蛍光X線分析によって定量したところ、SiO2に換算して、二酸化チタンの全重量に対して4.2重量%であった。
 次に、上記被覆酸化チタンAを100℃で5時間加熱して乾燥させることにより、被覆酸化チタンに含まれる水和水を低減した。この水和水を低減した被覆酸化チタンA53.8重量部と、ホモポリプロピレン(サンアロマー社製 商品名「PL500A」、メルトフローレイト:3.3g/10分、密度:0.9g/cm3)40重量部とを口径120mmのベント式二軸押出機にて230℃で溶融混練しペレット化して被覆酸化チタンAのマスターバッチを作製した。なお、ベント式二軸押出機のシリンダー内で被覆酸化チタンA及びホモポリプロピレンを溶融混練する際に、シリンダー内の圧力が60mmHg(8kPa)となるようにして真空ポンプによりベント口からシリンダー内の気体を外部へ排出した。
 そして、マスターバッチ93.8重量部、ホモポリプロピレン(サンアロマー社製 商品名「PL500A」、メルトフローレイト:3.3g/10分、密度:0.9g/cm3)60重量部、フェノール系酸化防止剤(BASF社製 商品名IRGANOX(登録商標)1010)0.15重量部、リン系酸化防止剤(BASF社製 商品名IRGAFOS168)0.15重量部、ベンゾトリアゾール系紫外線吸収剤1(分子量315.8、BASF社製 商品名TINUVIN(登録商標)326)0.15重量部、及びヒンダードアミン系光安定剤(BASF社製 商品名TINUVIN(登録商標)111)0.15重量部を、口径が120mmのベント式単軸押出機に供給して220℃で溶融混練することにより光反射板形成用樹脂組成物を得、この光反射板形成用樹脂組成物を押出機の先端に取り付けたTダイ(シート幅:1000mm、スリット間隔:0.2mm、温度200℃)からシート状に押出してシート状の押出物を得た。次に、このシート状の押出物を、外周面が鏡面に形成された鏡面ロールとこの鏡面ロールに対峙して配設された支持ロールとからなる一対のロール間に供給し、鏡面ロールをシート状の押出物の表面に押圧することによって、一方の面が鏡面加工処理されてなり、厚みが0.2mmで且つ密度が1.3g/cm3の非発泡の光反射板を得た。なお、ベント式単軸押出機のシリンダー内で樹脂組成物を溶融混練する際に、シリンダー内の圧力が60mmHg(8kPa)となるようにして真空ポンプによりベント口からシリンダー内の気体を外部へ排出した。
 (実施例2)
 被覆酸化チタンAに代えて被覆酸化チタンB(石原産業社製 商品名「CR-90」、平均粒子径0.25μm)を用いた以外は、実施例1と同様にして光反射板を製造した。
 なお、被覆酸化チタンBは、ルチル型酸化チタンの表面がアルミニウム酸化物及びケイ素酸化物を含有する被覆層で被覆されていた。被覆酸化チタンB中において、アルミニウム酸化物の量を蛍光X線分析によって定量したところ、Al23に換算して、二酸化チタンの全重量に対して2.7重量%であった。又、被覆酸化チタンB中において、ケイ素酸化物の量を蛍光X線分析によって定量したところ、SiO2に換算して、二酸化チタンの全重量に対して3.6重量%であった。
 (実施例3)
 被覆酸化チタンAに代えて被覆酸化チタンC(石原産業社製 商品名「CR-80」、平均粒子径0.25μm)を用いた以外は、実施例1と同様にして光反射板を製造した。
 なお、被覆酸化チタンCは、ルチル型酸化チタンの表面がアルミニウム酸化物及びケイ素酸化物を含有する被覆層で被覆されていた。被覆酸化チタンC中において、アルミニウム酸化物の量を蛍光X線分析によって定量したところ、Al23に換算して、二酸化チタンの全重量に対して3.3重量%であった。又、被覆酸化チタンC中において、ケイ素酸化物の量を蛍光X線分析によって定量したところ、SiO2に換算して、二酸化チタンの全重量に対して1.8重量%であった。
 (実施例4)
 被覆酸化チタンAに代えて被覆酸化チタンD(石原産業社製 商品名「CR-63」、平均粒子径0.21μm)を用いた以外は、実施例1と同様にして光反射板を製造した。
 なお、被覆酸化チタンDは、ルチル型酸化チタンの表面がアルミニウム酸化物及びケイ素酸化物を含有する被覆層で被覆されていた。被覆酸化チタンD中において、アルミニウム酸化物の量を蛍光X線分析によって定量したところ、Al23に換算して、二酸化チタンの全重量に対して1.4重量%であった。又、被覆酸化チタンD中において、ケイ素酸化物の量を蛍光X線分析によって定量したところ、SiO2に換算して、二酸化チタンの全重量に対して0.7重量%であった。
 (実施例5)
 被覆酸化チタンAに代えて被覆酸化チタンE(石原産業社製 商品名「CR-50」、平均粒子径0.25μm)を用いた以外は、実施例1と同様にして光反射板を製造した。
 なお、被覆酸化チタンEは、ルチル型酸化チタンの表面がアルミニウム酸化物及びケイ素酸化物を含有する被覆層で被覆されていた。被覆酸化チタンE中において、アルミニウム酸化物の量を蛍光X線分析によって定量したところ、Al23に換算して、二酸化チタンの全重量に対して2.3重量%であった。又、被覆酸化チタンE中において、ケイ素酸化物の量を蛍光X線分析によって定量したところ、SiO2に換算して、二酸化チタンの全重量に対して0.1重量%であった。
 (実施例6~10)
 表1に示すように、被覆酸化チタンの種類を変更し、さらにベンゾトリアゾール系紫外線吸収剤1に代えてベンゾトリアゾール系紫外線吸収剤2(分子量447.6、BASF社製 商品名TINUVIN(登録商標)234)を用いた以外は、実施例1と同様にして光反射板を製造した。
 (実施例11及び12)
 表1に示すように、被覆酸化チタンの配合量を変更し、さらにベンゾトリアゾール系紫外線吸収剤1に代えてベンゾトリアゾール系紫外線吸収剤2(分子量447.6、BASF社製 商品名TINUVIN(登録商標)234)を用いた以外は、実施例1と同様にして光反射板を製造した。
 (比較例1~4)
 表1に示すように、被覆酸化チタンの種類を変更し、被覆酸化チタンの加熱乾燥を行わなかった以外は、実施例1と同様にして光反射板を製造した。
 (比較例5及び6)
 表1に示すように、被覆酸化チタンの配合量を変更し、被覆酸化チタンの加熱乾燥を行わず、さらにベンゾトリアゾール系紫外線吸収剤1に代えてベンゾトリアゾール系紫外線吸収剤2(分子量447.6、BASF社製 商品名TINUVIN(登録商標)234)を用いた以外は、実施例1と同様にして光反射板を製造した。
 (実施例13)
 まず、被覆酸化チタンA(石原産業社製  商品名「CR-93」、平均粒子径:0.28μm)を用意した。この被覆酸化チタンAは、ルチル型酸化チタンの表面がアルミニウム酸化物及びケイ素酸化物を含有する被覆層で被覆されていた。被覆酸化チタンA中において、アルミニウム酸化物の量を蛍光X線分析によって定量したところ、Al23に換算して、二酸化チタンの全重量に対して3.1重量%であった。又、被覆酸化チタンA中において、ケイ素酸化物の量を蛍光X線分析によって定量したところ、SiO2に換算して、二酸化チタンの全重量に対して4.2重量%であった。
 次に、上記被覆酸化チタンAを100℃で5時間加熱して乾燥させることにより、被覆酸化チタンに含まれる水和水を低減した。この水和水を低減した被覆酸化チタンA53.8重量部と、ホモポリプロピレン(サンアロマー社製 商品名「PL500A」、メルトフローレイト:3.3g/10分、密度:0.9g/cm3)40重量部とを口径120mmのベント式二軸押出機にて230℃で溶融混練しペレット化して被覆酸化チタンAのマスターバッチを作製した。なお、ベント式二軸押出機のシリンダー内で被覆酸化チタンA及びホモポリプロピレンを溶融混練する際に、シリンダー内の圧力が60mmHg(8kPa)となるようにして真空ポンプによりベント口からシリンダー内の気体を外部へ排出した。
 次に、マスターバッチ93.8重量部、ホモポリプロピレン(サンアロマー社製 商品名「PL500A」、メルトフローレイト:3.3g/10分、密度:0.9g/cm3)60重量部、フェノール系酸化防止剤(BASF社製 商品名IRGANOX(登録商標)1010)0.15重量部、リン系酸化防止剤(BASF社製 商品名IRGAFOS168)0.15重量部、ベンゾトリアゾール系紫外線吸収剤1(分子量315.8、BASF社製 商品名TINUVIN(登録商標)326)0.15重量部、及びヒンダードアミン系光安定剤(BASF社製 商品名TINUVIN(登録商標)111)0.15重量部を、口径が120mmのベント式単軸押出機に供給して220℃で溶融混練することにより光反射板形成用樹脂組成物を得た。この樹脂組成物をベント式単軸押出機の先端に取り付けたノズル金型からストランド状に押出し、このストランドを長さ2.5mm毎に切断して直径が2.5mmの円柱状に成形することにより、ペレット化された光反射板形成用樹脂組成物を得た。なお、ベント式単軸押出機のシリンダー内で光反射板形成用樹脂組成物を溶融混練する際に、シリンダー内の圧力が60mmHg(8kPa)となるようにして真空ポンプによりベント口からシリンダー内の気体を外部へ排出した。
 そして、ペレット化された光反射板形成用樹脂組成物を、口径が120mmのベント式単軸押出機に供給して220℃で溶融混練した後、押出機の先端に取り付けたTダイ(シート幅:1000mm、スリット間隔:0.2mm、温度200℃)からシート状に押出してシート状の押出物を得た。次に、このシート状の押出物を、外周面が鏡面に形成された鏡面ロールとこの鏡面ロールに対峙して配設された支持ロールとからなる一対のロール間に供給し、鏡面ロールをシート状の押出物の表面に押圧することによって、一方の面が鏡面加工処理されてなり、厚みが0.2mmで且つ密度が1.3g/cm3の非発泡の光反射板を得た。なお、ベント式単軸押出機のシリンダー内でペレット化された光反射板形成用樹脂組成物を溶融混練する際に、シリンダー内の圧力が60mmHg(8kPa)となるようにして真空ポンプによりベント口からシリンダー内の気体を外部へ排出した。
 (実施例14)
 被覆酸化チタンAに代えて被覆酸化チタンB(石原産業社製 商品名「CR-90」、平均粒子径0.25μm)を用いた以外は、実施例13と同様にして光反射板を製造した。
 なお、被覆酸化チタンBは、ルチル型酸化チタンの表面がアルミニウム酸化物及びケイ素酸化物を含有する被覆層で被覆されていた。被覆酸化チタンB中において、アルミニウム酸化物の量を蛍光X線分析によって定量したところ、Al23に換算して、二酸化チタンの全重量に対して2.7重量%であった。又、被覆酸化チタンB中において、ケイ素酸化物の量を蛍光X線分析によって定量したところ、SiO2に換算して、二酸化チタンの全重量に対して3.6重量%であった。
 (実施例15)
 被覆酸化チタンAに代えて被覆酸化チタンC(石原産業社製 商品名「CR-80」、平均粒子径0.25μm)を用いた以外は、実施例13と同様にして光反射板を製造した。
 なお、被覆酸化チタンCは、ルチル型酸化チタンの表面がアルミニウム酸化物及びケイ素酸化物を含有する被覆層で被覆されていた。被覆酸化チタンC中において、アルミニウム酸化物の量を蛍光X線分析によって定量したところ、Al23に換算して、二酸化チタンの全重量に対して3.3重量%であった。又、被覆酸化チタンC中において、ケイ素酸化物の量を蛍光X線分析によって定量したところ、SiO2に換算して、二酸化チタンの全重量に対して1.8重量%であった。
 (実施例16)
 被覆酸化チタンAに代えて被覆酸化チタンD(石原産業社製 商品名「CR-63」、平均粒子径0.21μm)を用いた以外は、実施例13と同様にして光反射板を製造した。
 なお、被覆酸化チタンDは、ルチル型酸化チタンの表面がアルミニウム酸化物及びケイ素酸化物を含有する被覆層で被覆されていた。被覆酸化チタンD中において、アルミニウム酸化物の量を蛍光X線分析によって定量したところ、Al23に換算して、二酸化チタンの全重量に対して1.4重量%であった。又、被覆酸化チタンD中において、ケイ素酸化物の量を蛍光X線分析によって定量したところ、SiO2に換算して、二酸化チタンの全重量に対して0.7重量%であった。
 (実施例17)
 被覆酸化チタンAに代えて被覆酸化チタンE(石原産業社製 商品名「CR-50」、平均粒子径0.25μm)を用いた以外は、実施例13と同様にして光反射板を製造した。
 なお、被覆酸化チタンEは、ルチル型酸化チタンの表面がアルミニウム酸化物及びケイ素酸化物を含有する被覆層で被覆されていた。被覆酸化チタンE中において、アルミニウム酸化物の量を蛍光X線分析によって定量したところ、Al23に換算して、二酸化チタンの全重量に対して2.3重量%であった。又、被覆酸化チタンE中において、ケイ素酸化物の量を蛍光X線分析によって定量したところ、SiO2に換算して、二酸化チタンの全重量に対して0.1重量%であった。
 (実施例18~22)
 表1に示すように、被覆酸化チタンの種類を変更し、さらにベンゾトリアゾール系紫外線吸収剤1に代えてベンゾトリアゾール系紫外線吸収剤2(分子量447.6、BASF社製 商品名TINUVIN(登録商標)234)を用いた以外は、実施例13と同様にして光反射板を製造した。
 (実施例23及び24)
 表1に示すように、被覆酸化チタンの配合量を変更し、さらにベンゾトリアゾール系紫外線吸収剤1に代えてベンゾトリアゾール系紫外線吸収剤2(分子量447.6、BASF社製 商品名TINUVIN(登録商標)234)を用いた以外は、実施例13と同様にして光反射板を製造した。
 (比較例7~10)
 表1に示すように、被覆酸化チタンの種類を変更し、被覆酸化チタンの加熱乾燥を行わなかった以外は、実施例13と同様にして光反射板を製造した。
 (比較例11及び12)
 表1に示すように、被覆酸化チタンの配合量を変更し、被覆酸化チタンの加熱乾燥を行わず、さらにベンゾトリアゾール系紫外線吸収剤1に代えてベンゾトリアゾール系紫外線吸収剤2(分子量447.6、BASF社製 商品名TINUVIN(登録商標)234)を用いた以外は、実施例13と同様にして光反射板を製造した。
 (実施例25)
 鏡面ロールの代わりに、外周面に凹凸が形成されたシボロールを用い、シボロールの外周面の凹凸をシート状の押出物の表面に押圧させたこと以外は実施例1と同様にして光反射板を得た。得られた光反射板において、シボロールを押圧した面が凹凸面に形成されていた。
 (実施例26)
 被覆酸化チタンAに代えて被覆酸化チタンB(石原産業社製 商品名「CR-90」、平均粒子径0.25μm)を用いた以外は、実施例25と同様にして光反射板を製造した。
 (実施例27)
 被覆酸化チタンAに代えて被覆酸化チタンC(石原産業社製 商品名「CR-80」、平均粒子径0.25μm)を用いた以外は、実施例25と同様にして光反射板を製造した。
 (実施例28)
 被覆酸化チタンAに代えて被覆酸化チタンD(石原産業社製 商品名「CR-63」、平均粒子径0.21μm)を用いた以外は、実施例25と同様にして光反射板を製造した。
 (実施例29)
 被覆酸化チタンAに代えて被覆酸化チタンE(石原産業社製 商品名「CR-50」、平均粒子径0.25μm)を用いた以外は、実施例25と同様にして光反射板を製造した。
 (実施例30~34)
 表1に示すように、被覆酸化チタンの種類を変更し、さらにベンゾトリアゾール系紫外線吸収剤1に代えてベンゾトリアゾール系紫外線吸収剤2(分子量447.6、BASF社製 商品名TINUVIN(登録商標)234)を用いた以外は、実施例25と同様にして光反射板を製造した。
 (実施例35及び36)
 表1に示すように、被覆酸化チタンの配合量を変更し、さらにベンゾトリアゾール系紫外線吸収剤1に代えてベンゾトリアゾール系紫外線吸収剤2(分子量447.6、BASF社製 商品名TINUVIN(登録商標)234)を用いた以外は、実施例25と同様にして光反射板を製造した。
 (比較例13~16)
 表1に示すように、被覆酸化チタンの種類を変更し、被覆酸化チタンの加熱乾燥を行わなかった以外は、実施例25と同様にして光反射板を製造した。
 (比較例17及び18)
 表1に示すように、被覆酸化チタンの配合量を変更し、被覆酸化チタンの加熱乾燥を行わず、さらにベンゾトリアゾール系紫外線吸収剤1に代えてベンゾトリアゾール系紫外線吸収剤2(分子量447.6、BASF社製 商品名TINUVIN(登録商標)234)を用いた以外は、実施例25と同様にして光反射板を製造した。
 (比較例19)
 シボロールとして別のシボロールを用いた以外は、比較例13と同様にして光反射板を製造した。
 (評価)
 光反射板に含まれる被覆酸化チタンの平均粒子径を上述した方法により測定した。結果を表1~3に示す。また、光反射板の厚み方向に沿った断面において、粒子径が0.10~0.39μmであり且つ凝集をしていない被覆酸化チタンの個数を上述した方法により測定した。なお、上記被覆酸化チタンの個数は、光反射板の厚み方向に沿った断面から任意に選定した10箇所の測定領域(各測定領域の大きさは一辺が30μmの正方形状である)について測定し、その相加平均値を表1~3に示す。
 また、光反射板に含まれる被覆酸化チタンの含水率も上述した方法により測定した。なお、光反射板を切断して30枚の試験片を用意し、各試験片について被覆酸化チタンの含水率を上記方法に従って測定し、その相加平均値を光反射板に含まれている被覆酸化チタンの含水率とした。結果を表1~3に示す。
 さらに、実施例13~24及び比較例7~12において作製したペレット化された光反射板形成用樹脂組成物についても、これらに含まれる被覆酸化チタンの含水率を上述した方法により測定した。なお、ペレット化された光反射板形成用樹脂組成物から30個の試料を用意し、各試料について被覆酸化チタンの含水率を上記方法に従って測定し、その相加平均値をペレット化された光反射板形成用樹脂組成物に含まれている被覆酸化チタンの含水率とした。いずれの比較例及び実施例においても、ペレット化された光反射板形成用樹脂組成物に含まれている被覆酸化チタンの含水率と、光反射板に含まれている被覆酸化チタンの含水率とは同じであった。
 そして、光反射板の成形性、並びに、耐候性試験前の光線反射率及び耐候性試験後の光線反射率をそれぞれ下記手順に従って評価した。結果を表1~3に示す。光反射板の表面平滑性を下記手順に従って評価した。結果を表1、2に示す。光反射板の表面均一性を下記手順に従って評価した。結果を表3に示す。熱成形前後の光反射板の凹凸面について、表面粗さRa、凹凸の平均間隔Sm、凹凸面の最大高さ(Ry)、光線反射率及び拡散反射率を上述の要領で測定した。結果を表3に示す。
 (表面平滑性)
 実施例1~24及び比較例1~12の光反射板の鏡面加工処理した面の表面平滑性を目視により評価した。表1及び2において、「優」(excellent)、「良」(good)、及び「不良」(bad)はそれぞれ下記の通りである。
  優:光反射板にその両面間に亘って貫通する貫通孔及び凸部が形成されている箇所が0箇所であった。
  良:光反射板にその両面間に亘って貫通する貫通孔及び凸部が形成されている箇所が1~3個であった。
  不良:光反射板にその両面間に亘って貫通する貫通孔及び凸部が形成されている箇所が3個を超えていた。
 なお、光反射板に形成されている凸部とは、光反射板内部に存在していた水分などに起因した発泡によって、光反射板の鏡面加工処理した面から0.01mm以上膨出している凸部を意味する。
 (成形性)
 実施例1~24及び比較例1~12の光反射板を、一辺が64cmの平面正方形状に切り出し、その表面が170℃となるように350℃の加熱炉により加熱した後、マッチド・モールド成形により四方外周縁部を除いた部分に、逆四角錐台状の凹部12、12・・・を鏡面加工処理した面(表面)から当該面に対向する面(裏面)に向かって膨出成形した後、所定箇所から切断することによって、光反射板の熱成形を行った。このように熱成形された光反射板は、略全面に96個の凹部12、12・・・が縦横に連続的に形成されてなり、縦42cm、横29.7cmの平面長方形状(A3サイズ)を有していた。なお、凹部12、12・・・は、長辺方向に12個、短辺方向に8個形成されていた。
 得られた光反射板10の凹部12は、一辺が0.6cmの平面正方形状の底面部13と、この底面部13の四方外周縁から表面側に向かって徐々に拡がった状態に延設された周壁部14とからなっており、周壁部14の内周面は全面的に光反射面に形成されていた。周壁部14の開口端は縦3.2cm、横3.5cmの平面長方形状に形成され、底面部13の内面から連結部15の頂部までの高さは1.6cmであった。更に、凹部12の底面部13に一辺が0.54cmの平面正方形状の貫通孔13aを表裏面間に亘って貫設した。
 そして、上記と同様にして100個の光反射板を熱成形し、熱成形された光反射板の表面状態をそれぞれ目視し、以下の基準に従って光反射板の成形性を評価した。表1及び表2において、「優」(excellent)、「良」(good)、及び「不良」(bad)はそれぞれ下記の通りである。
 優:100個の熱成形された光反射板のうち、表面に光沢ムラ、荒れを生じたものが3個未満であった。
 良:100個の熱成形された光反射板のうち、表面に光沢ムラ、荒れを生じたものが3~10個であった。
 不良:100個の熱成形された光反射板のうち、表面に光沢ムラ、荒れを生じたものが10個を超えていた。
 なお、熱成形後の光反射板表面において、目視観察により、光沢度の程度が低い部分が局所的に生じていることを確認できたものを熱成形後の光反射板表面に「光沢ムラ」が生じていると評価した。また、熱成形後の光反射板表面において、光反射板内部に存在している水分などに起因した発泡によって光反射板表面から0.01mm以上膨出している凸部が生じていたり、局所的に凹部が生じていたり、亀裂が生じていたものを光反射板表面に「荒れ」が生じていると評価した。
 (耐候性試験)
 光反射板から縦50mm×横150mmの試験片を切り出し、この試験片についてJIS A1415(プラスチック建築材料の促進暴露試験方法)に準拠して促進暴露試験を下記条件下にて行った。
  照射装置:スガ試験器社製 商品名「サンシャインスーパーロングライフウェザーメーターWEL-SUN-HC・B型」
  照射条件:バックパネル温度:60~70℃、スプレー噴霧:なし
  試験槽温度:45~55℃、相対湿度:10~30%
 (光線反射率)
 実施例1~24及び比較例1~12の光反射板において、上記促進暴露試験を行う前、上記促進暴露試験を500時間行った後、及び、上記促進暴露試験を1000時間行った後の試験片の光線反射率を下記の要領で測定した。なお、試験片を30個用意し、各試験片の光線反射率の相加平均値を光線反射率とした。また、光線反射率の測定は、試験片の鏡面加工処理した面について行った。
 実施例25~36及び比較例13~19の光反射板において、上記促進暴露試験を行う前及び上記促進暴露試験を1000時間行った後の試験片の光線反射率を下記の要領で測定した。なお、試験片を30個用意し、各試験片の光線反射率の相加平均値を光線反射率とした。また、光線反射率の測定は、試験片の凹凸面について行った。
 試験片の光線反射率は、JIS K7105に記載の測定法Bに準拠して8°の入射条件下にて全反射光測定を行った場合における波長550nmの光線反射率をいい、標準反射板として硫酸バリウム板を用いた時の光線反射率を100とした時の絶対値で示したものである。
 具体的には、試験片の光線反射率は、島津製作所社から商品名「UV-2450」にて市販されている紫外可視分光光度計と、島津製作所社から商品名「ISR-2200」にて市販されている積分球付属装置(内径:φ60mm)とを組み合わせて測定することができる。
 (表面均一性)
 実施例25~36及び比較例13~19の光反射板について下記の要領にて表面均一性を評価した。具体的には、光反射板の凹凸面を目視観察し、光反射板に凸部又は両面間に亘って貫通する貫通孔が発生しているか否かを確認した。
 更に、光反射板の凹凸面の任意の部分に一辺が64cmの平面正方形状の測定部Dを特定した。図5に示したように、測定部Dにおける互いに対向する辺の中間点同士を結ぶ直線上に、8cm間隔毎に測定点Eを定め、各測定点Eにおける拡散反射率をJIS K7105に記載の測定法Bに準拠して0°の入射条件下にて測定した。
 表3において、「優」(excellent)、「良」(good)、及び「不良」(bad)はそれぞれ下記の通りである。
  優:光反射板にその両面間に亘って貫通する貫通孔及び凸部が形成されている箇所が0箇所であり且つ全ての測定点Eの拡散反射率のうちの最大値と最小値との差が0.2%以下であった。
  不良:光反射板にその両面間に亘って貫通する貫通孔及び凸部が形成されている箇所が3個を超えていたか、又は、全ての測定点Eの拡散反射率のうちの最大値と最小値との差が0.4%以上であった。
 「優」及び「不良」以外の光反射板を「良」と評価した。
 なお、光反射板に形成されている凸部とは、光反射板内部に存在していた水分などに起因した発泡によって、光反射板の凹凸面の最も大きな凸部の頂点から0.03mm以上膨出している凸部を意味する。
 全ての測定点の拡散反射率のうちの最大値と最小値との差が大きいことは、光反射板の凹凸面に均一に凹凸が形成されていないことや、光反射板に偏肉や両面間に亘って貫通する貫通孔が形成されていることを意味する。
 (成形性)
 実施例25~36及び比較例13~19の光反射板を、一辺が64cmの平面正方形状に切り出し、その表面が170℃となるように350℃の加熱炉により加熱した後、マッチド・モールド成形により四方外周縁部を除いた部分に、逆四角錐台状の凹部12、12・・・を凹凸面(表面)から当該面に対向する面(裏面)に向かって膨出成形した後、所定箇所から切断することによって、光反射板の熱成形を行った。このように熱成形された光反射板は、略全面に96個の凹部12、12・・・が縦横に連続的に形成されてなり、縦42cm、横29.7cmの平面長方形状(A3サイズ)を有していた。なお、凹部12、12・・・は、長辺方向に12個、短辺方向に8個形成されていた。
 得られた光反射板10の凹部12は、一辺が0.6cmの平面正方形状の底面部13と、この底面部13の四方外周縁から表面側に向かって徐々に拡がった状態に延設された周壁部14とからなっており、周壁部14の内周面は全面的に光反射面に形成されていた。また、互いに隣接する凹部12、12同士は、それらの開口端縁において、格子状に形成された連結部15を介して一体的に形成されていた。周壁部14の開口端は縦3.2cm、横3.5cmの平面長方形状に形成され、底面部13の内面から連結部15の頂部までの高さは1.6cmであった。更に、凹部12の底面部13に一辺が0.54cmの平面正方形状の貫通孔13aを表裏面間に亘って貫設した。
 そして、上記と同様にして100個の光反射板を熱成形し、熱成形された光反射板の表面状態をそれぞれ目視し、以下の基準に従って光反射板の成形性を評価した。表3において、「優」(excellent)、「良」(good)、及び「不良」(bad)はそれぞれ下記の通りである。
 優:100個の熱成形された光反射板のうち、表面に荒れを生じたものが3個未満であった。
 良:100個の熱成形された光反射板のうち、表面に荒れを生じたものが3~10個であった。
 不良:100個の熱成形された光反射板のうち、表面に荒れを生じたものが10個を超えていた。
 なお、熱成形後の光反射板表面において、光反射板内部に存在している水分などに起因した発泡によって光反射板の凹凸面の最も大きな凸部の頂点から0.03mm以上膨出している凸部が生じていたり、局所的に凹部が生じていたり、亀裂が生じていたものを光反射板表面に「荒れ」が生じていると評価した。
 (光反射板の凹凸面の評価)
 実施例25~36及び比較例13~19の光反射板の凹凸面について、表面粗さRa、凹凸の平均間隔Sm及び凹凸面の最大高さ(Ry)を上述の要領で測定した。
 実施例25~36及び比較例13~19の光反射板を上述の要領で熱成形して得られた光反射板における凹部12の周壁部14を任意に3箇所切り出して台形状の試験片を3個作製した。各試験片の凹凸面の表面粗さRaを測定し、試験片の表面粗さRaの相加平均値を光反射板の表面粗さRaとした。各試験片の凹凸面の凹凸の平均間隔Smを測定し、試験片の凹凸の平均間隔Smの相加平均値を光反射板の凹凸の平均間隔Smとした。各試験片の凹凸面の凹凸面の最大高さ(Ry)を測定し、試験片の凹凸面の最大高さ(Ry)の相加平均値を光反射板の凹凸面の最大高さ(Ry)とした。各試験片の光線反射率を測定し、試験片の光線反射率の相加平均値を光反射板の光線反射率とした。
 実施例1~24及び比較例1~12の光反射板の鏡面加工処理した面について、上述の要領で、表面粗さRa、凹凸の平均間隔Sm及び凹凸面の最大高さ(Ry)を測定した。実施例1~24及び比較例1~12の光反射板の全てにおいて、表面粗さRaが0.4μm、凹凸の平均間隔Smが1μm、凹凸面の最大高さ(Ry)が1μmであった。
 (平均輝度)
 実施例25~36及び比較例13~19の光反射板について、上述の要領で熱成形する前の光反射板の凹凸面について下記の要領で平均輝度を測定した。具体的には、実施例25~36及び比較例13~19の光反射板を液晶表示装置に光反射板として用いたときの液晶画面の輝度を評価した。DELL社から市販されている液晶画面の大きさが12.1インチのノート型パソコン(商品名「Latitude LS H400ST」)を用意した。パソコンのバックライトの反射フィルムを取り外し、この反射フィルムの代わりに実施例又は比較例で得られた光反射板を用いた。輝度計(トプコンテクノハウス社製 商品名「BM-7」)を用いて、液晶画面の対角線の交点から液晶画面に対して直交する方向に500mm離れた位置から輝度を測定した。
 (拡散反射率)
 実施例25~36及び比較例13~19の光反射板について、上述の要領で熱成形する前後の光反射板の凹凸面について、JIS K7105に記載の測定法Bに準拠して0°の入射条件下にて測定した。熱成形後の拡散反射率は、光反射板における凹部12の周壁部14の凹凸面において測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び2から、本発明の光反射板は比較例の光反射板よりも光線反射率が0.3~0.4%も向上し、優れた光反射性能を有していることが分かる。例えば、本発明の光反射板を液晶表示装置のバックライトに用いた場合、導光板内に入射した光は、導光板の表裏面と光反射板との間で繰り返し反射された後に導光板の表面側、即ち、液晶パネル側へ導出されるが、導光板の表裏面と光反射板との間での光の反射は実際には何万回と繰り返して行われている。したがって、本発明の光反射板では比較例に比して光線反射率が0.3~0.4%程度高くなっているが、上述のように、光の反射は何万回と繰り返し行われた上で液晶パネルに到達するため、光反射板の光線反射率の0.3~0.4%という差は、液晶パネルの輝度において極めて大きい差となってあらわれる。よって、本発明の光反射板をバックライトユニットに用いることにより液晶表示装置の輝度を大幅に向上させることができる。
Figure JPOXMLDOC01-appb-T000003
 本発明の光反射板は、例えば、ワードプロセッサー、パーソナルコンピュータ、携帯電話、ナビゲーションシステム、テレビジョン、携帯型テレビなどの液晶表示装置のバックライトユニット、照明ボックスのような面発光システムの照明具のバックライト、スロトボ照明器、複写機、プロジェクター方式のディスプレイ、ファクシミリ、電子黒板などを構成する照明装置内に組み込んで用いることができる。
  10 光反射板
  12 凹部
  13 凹部の内底面
  13a 貫通孔
  14 内周面
  15 連結部
  20 光拡散層
  21 透光性粒子
  30 導光板
  40 発光光源
  50 ランプリフレクタ
  60 筐体
  61 筐体の底面部
  62 筐体の周壁部
  62a 筐体の段部
  70 光源体
  71 基板
  C  照明体
  L  発光ダイオード

Claims (8)

  1.  ポリオレフィン系樹脂100重量部と、酸化チタンの表面がアルミニウム酸化物及びケイ素酸化物を含有する被覆層で被覆されてなり且つ含水率が0.5重量%以下である被覆酸化チタン20~120重量部とを含むことを特徴とする光反射板。
  2.  ポリオレフィン系樹脂が、ポリプロピレン系樹脂を含むことを特徴とする請求項1に記載の光反射板。
  3.  ポリオレフィン系樹脂が、ホモポリプロピレンを含むことを特徴とする請求項1に記載の光反射板。
  4.  光反射板の厚みが、0.1~1.5mmであることを特徴とする請求項1に記載の光反射板。
  5.  少なくとも一面が凹凸面に形成されており、上記凹凸面の表面粗さRaが1~20μmで且つ凹凸の平均間隔Smが5~300μmであることを特徴とする請求項1に記載の光反射板。
  6.  凹凸面の最大高さ(Ry)5~80μmであることを特徴とする請求項5に記載の光反射板。
  7.  ポリオレフィン系樹脂100重量部と、酸化チタンの表面がアルミニウム酸化物及びケイ素酸化物を含有する被覆層で被覆されてなり且つ含水率が0.5重量%以下である被覆酸化チタン20~120重量部とを含む光反射板形成用樹脂組成物。
  8.  ポリオレフィン系樹脂100重量部と、酸化チタンの表面がアルミニウム酸化物及びケイ素酸化物を含有する被覆層で被覆されてなり且つ含水率が0.5重量%以下である被覆酸化チタン20~120重量部とを含む光反射板形成用樹脂組成物を押出機に供給して溶融混練して押出機から押出す工程を有することを特徴とする光反射板の製造方法。
PCT/JP2012/053044 2011-02-21 2012-02-10 光反射板、光反射板形成用樹脂組成物及び光反射板の製造方法 WO2012114895A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011035077 2011-02-21
JP2011-035077 2011-02-21
JP2011-192018 2011-09-02
JP2011192018 2011-09-02

Publications (1)

Publication Number Publication Date
WO2012114895A1 true WO2012114895A1 (ja) 2012-08-30

Family

ID=46720679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053044 WO2012114895A1 (ja) 2011-02-21 2012-02-10 光反射板、光反射板形成用樹脂組成物及び光反射板の製造方法

Country Status (2)

Country Link
TW (1) TWI554400B (ja)
WO (1) WO2012114895A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014080454A (ja) * 2012-10-12 2014-05-08 Panasonic Corp 光反射シート用ポリプロピレン系樹脂組成物とそれを用いた光反射シート
JP2015013411A (ja) * 2013-07-04 2015-01-22 パナソニック株式会社 光学部材、照明装置、および光学部材の製造方法
JP2015175976A (ja) * 2014-03-14 2015-10-05 東洋インキScホールディングス株式会社 光線反射樹脂組成物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101524992B1 (ko) * 2012-08-03 2015-06-01 데이진 듀폰 필름 가부시키가이샤 백색 반사성 필름
WO2016021509A1 (ja) * 2014-08-06 2016-02-11 Nsマテリアルズ株式会社 樹脂成形品及びその製造方法、並びに波長変換部材、照明部材

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265948A (ja) * 1987-04-23 1988-11-02 Konica Corp ポリエステル樹脂組成物の製造方法
WO2006115087A1 (ja) * 2005-04-19 2006-11-02 Sekisui Plastics Co., Ltd. 反射板用発泡シート、反射板及び反射板用発泡シートの製造方法
JP2010066512A (ja) * 2008-09-10 2010-03-25 Sekisui Plastics Co Ltd 光反射板及び光反射積層板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838494B2 (en) * 2002-12-30 2005-01-04 Ferro Corporation Light reflecting polymeric compositions
CN101023135B (zh) * 2004-09-15 2010-09-29 出光兴产株式会社 光反射片及其成型品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265948A (ja) * 1987-04-23 1988-11-02 Konica Corp ポリエステル樹脂組成物の製造方法
WO2006115087A1 (ja) * 2005-04-19 2006-11-02 Sekisui Plastics Co., Ltd. 反射板用発泡シート、反射板及び反射板用発泡シートの製造方法
JP2010066512A (ja) * 2008-09-10 2010-03-25 Sekisui Plastics Co Ltd 光反射板及び光反射積層板

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014080454A (ja) * 2012-10-12 2014-05-08 Panasonic Corp 光反射シート用ポリプロピレン系樹脂組成物とそれを用いた光反射シート
JP2015013411A (ja) * 2013-07-04 2015-01-22 パナソニック株式会社 光学部材、照明装置、および光学部材の製造方法
JP2015175976A (ja) * 2014-03-14 2015-10-05 東洋インキScホールディングス株式会社 光線反射樹脂組成物

Also Published As

Publication number Publication date
TWI554400B (zh) 2016-10-21
TW201238756A (en) 2012-10-01

Similar Documents

Publication Publication Date Title
JP5697739B2 (ja) 光反射板
WO2012114895A1 (ja) 光反射板、光反射板形成用樹脂組成物及び光反射板の製造方法
JP2008203877A (ja) 光反射体
WO2007007852A1 (ja) 発泡樹脂シートおよび液晶表示装置
US20090061192A1 (en) Reflective sheet and production method thereof
JP2010066512A (ja) 光反射板及び光反射積層板
KR20160137574A (ko) 반사 시트, 면 광원 장치용 반사 유닛 및 면 광원 장치
US20070104961A1 (en) Thermoplastic resin sheets provided with functionality by transfer method and their production processes
JP2009229879A (ja) 光拡散板
JP5270409B2 (ja) 光反射体ならびにそれを用いた面光源装置及び照明装置
JP2003176367A (ja) 光反射体
JP5464997B2 (ja) 光反射体及び面光源装置
JP5532799B2 (ja) 白色反射フィルム
EP1953574B1 (en) Light reflector, planar light source and illumination device using the same
JP5353178B2 (ja) ポリエステルフィルムならびにそれを用いた液晶ディスプレイ用バックライトおよび太陽電池用
JP2013076738A (ja) 光反射成形体の製造方法及び金型
KR101640270B1 (ko) 광 반사체 및 면광원 장치
JP2012048015A (ja) 反射シート
JP2007148334A (ja) 液晶表示装置用光拡散板およびその製造方法
JP2006330546A (ja) 直下型バックライト用光拡散板
JP2010211163A (ja) 光反射板及びこれを用いた光反射体
JP4049659B2 (ja) 光反射体
JP2005234521A (ja) ポリカーボネート樹脂製直下型バックライト用光拡散板
JP2004109990A (ja) 光反射体
JP2018012746A (ja) 白色樹脂組成物、及びそれからなる白色成形体と白色積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12750027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12750027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP