WO2012114587A1 - 近傍界ノイズ抑制シート - Google Patents

近傍界ノイズ抑制シート Download PDF

Info

Publication number
WO2012114587A1
WO2012114587A1 PCT/JP2011/076196 JP2011076196W WO2012114587A1 WO 2012114587 A1 WO2012114587 A1 WO 2012114587A1 JP 2011076196 W JP2011076196 W JP 2011076196W WO 2012114587 A1 WO2012114587 A1 WO 2012114587A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise suppression
field noise
thin film
metal thin
surface resistance
Prior art date
Application number
PCT/JP2011/076196
Other languages
English (en)
French (fr)
Inventor
加川 清二
Original Assignee
Kagawa Seiji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagawa Seiji filed Critical Kagawa Seiji
Priority to RU2013143290/07A priority Critical patent/RU2013143290A/ru
Priority to BR112013019978A priority patent/BR112013019978A2/pt
Priority to EP11859152.8A priority patent/EP2680683B1/en
Priority to US13/978,848 priority patent/US8952273B2/en
Priority to KR1020137024473A priority patent/KR101903540B1/ko
Priority to CN201180068505.6A priority patent/CN103392389B/zh
Publication of WO2012114587A1 publication Critical patent/WO2012114587A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/26Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers
    • H01F10/265Magnetic multilayers non exchange-coupled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/14Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/16Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing cobalt

Definitions

  • the present invention relates to a near-field noise suppression sheet suitable for use in portable information terminals such as mobile phones and smartphones, electronic devices such as personal computers, and the like.
  • noise suppression sheets contain a magnetic material and / or a conductive material.
  • Japanese Patent Application Laid-Open No. 2010-153542 discloses a base material, a conductive layer made of a conductive coating material containing metal or carbon particles such as Cu, scales, or fine wires, and a soft magnetic material such as ferrite, sendust, and permalloy.
  • seat which has a magnetic layer which consists of a magnetic coating material containing this is disclosed.
  • JP-A-2006-278433 describes, for example, a calendar process comprising a soft magnetic powder such as amorphous flakes having a composition of Fe bal —Cu 1 —Si 12.5 —Nb 3 —Cr 1 —B 12 (atomic%) and a resin.
  • a composite electromagnetic wave noise suppression sheet in which two or more sheets are laminated and integrated by calendering is disclosed.
  • none of the noise suppression sheets disclosed in JP-A-2010-153542 and JP-A-2006-278433 has a sufficient ability to absorb near-field noise, and a magnetic material and / or a conductive material is kneaded into a resin. Therefore, there is a problem that it is difficult to reduce the thickness and the manufacturing cost is high.
  • Japanese Patent Laid-Open No. 2006-279912 discloses that the reflection coefficient (S 11 ) is -10 dB or less and the noise suppression effect ( ⁇ P loss / P in ) is 0.5 or more for electromagnetic noise generated in the quasi-microwave band.
  • sputtered thin films such as AlO, CoAlO, and CoSiO are disclosed as near-field electromagnetic wave noise suppressing thin films whose surface resistance is controlled to 10 to 1000 ⁇ / ⁇ to match the space characteristic impedance Z (377 ⁇ ).
  • the electromagnetic wave absorbing ability of the near-field electromagnetic noise suppression thin film is not sufficient.
  • Japanese Patent Laid-Open No. 2008-53383 describes a graphite film having different thermal conductivity in the plane direction and thickness direction, and soft magnetic materials such as Fe, Co, FeSi, FeNi, FeCo, FeSiAl, FeCrSi, and FeBSiC formed thereon
  • an electromagnetic wave absorbing / shielding film excellent in heat dissipation characteristics comprising a soft magnetic layer containing Mn-Zn-based, Ba-Fe-based, Ni-Zn-based ferrite, and carbon particles.
  • the electromagnetic wave absorbing ability of this radio wave absorbing / shielding film is not sufficient.
  • Japanese Patent Laid-Open No. 2006-93414 discloses that a plastic substrate such as polyester (which may contain powders such as soft magnetic metal, carbon, and ferrite) is at least selected from the group consisting of iron, cobalt, and nickel by physical vapor deposition.
  • a conductive noise suppressor having a conductive noise suppression layer having a thickness of 0.005 to 0.3 ⁇ m containing a kind of soft magnetic metal, the conductive noise suppression layer having a crystal lattice in which soft magnetic metal atoms are arranged at intervals of several angstroms
  • a conduction noise suppressor is disclosed which comprises a portion, a very small portion of plastic alone without soft magnetic metal, and a portion in which the soft magnetic metal is not crystallized and dispersed in the plastic.
  • the conduction noise suppression layer is a single layer, and it is difficult to control the film thickness. Therefore, in most embodiments, a soft magnetic metal is blended in the plastic substrate. Moreover, in the only Example 4 using the plastic base
  • an object of the present invention is to provide a low-cost near-field noise suppression sheet having a stable and high absorption capability for electromagnetic noise of several hundred MHz to several GHz.
  • the present inventor found that (a) when the film thickness of the metal thin film formed on the plastic film was adjusted so that the surface resistance was 20 to 150 ⁇ / ⁇ , it was excellent against near field noise Although metal thin films with surface resistance of 20 to 150 ⁇ / ⁇ are very thin, it is difficult to avoid large variations in surface resistance between the same and different production lots. And (b) ⁇ ⁇ When a pair of plastic films having such a thin metal thin film are bonded with a conductive adhesive with the metal thin film inside, a metal thin film having a desired surface resistance is greatly reduced in variation in surface resistance. The present inventors have found that a sheet can be stably obtained and arrived at the present invention.
  • the near-field noise suppression sheet of the present invention is formed by bonding a pair of plastic films having a metal thin film formed on one side with a conductive adhesive with the metal thin film inside, and each metal thin film is made of a magnetic metal. And the thickness of each metal thin film is adjusted so that the surface resistance of the pair of metal thin films is 20 to 150 ⁇ / ⁇ .
  • the magnetic metal is preferably Ni, Fe, Co or an alloy thereof, and particularly preferably Ni.
  • the thicknesses of both metal thin films are preferably in the range of 10 to 30 nm.
  • the surface resistance of the pair of bonded metal thin films is preferably 30 to 80 ⁇ / ⁇ .
  • the metal thin film is preferably formed by a vacuum deposition method.
  • the near-field noise suppression sheet of the present invention having the above configuration has a high absorption capacity for near-field noise of several hundred MHz to several GHz, and there is a variation in surface resistance even though each metal thin film is very thin. It is significantly reduced, and has the advantage that there is very little variation between products in terms of electromagnetic wave absorption ability.
  • the near-field noise suppression sheet of the present invention having such characteristics is effective for suppressing near-field noise in various portable information terminals such as mobile phones and smartphones and electronic devices such as personal computers.
  • FIG. 5 (a) is a cross-sectional view taken along line AA.
  • FIG. 7 (a) is a schematic partial sectional view showing the system of FIG. It is a fragmentary sectional schematic diagram which shows the method of measuring the internal decoupling rate of a near field noise suppression sheet
  • seat. 6 is a graph showing the transmission attenuation rate Ptp of the near-field noise suppression sheet of Examples 1 to 3.
  • 6 is a graph showing the noise absorption rate P loss / P in of the near-field noise suppression sheets of Examples 1 to 3.
  • 6 is a graph showing the internal decoupling rate Rda of the near-field noise suppression sheets of Examples 1 to 3.
  • 6 is a graph showing the mutual decoupling rate Rde of the near-field noise suppression sheets of Examples 1 to 3.
  • 6 is a graph showing the noise absorption rate P loss / P in of the near-field noise suppression sheets of Example 1 and Comparative Examples 1 and 2.
  • 6 is a graph showing the internal decoupling rate Rda of the near-field noise suppression sheets of Comparative Examples 1 and 2.
  • 6 is a graph showing the mutual decoupling rate Rde of the near-field noise suppression sheets of Comparative Examples 1 and 2.
  • 6 is a graph showing the transmission attenuation rate Ptp of the near-field noise suppression sheet of Examples 4 and 5.
  • 6 is a graph showing the noise absorption rate P loss / P in of the near-field noise suppression sheets of Examples 4 and 5.
  • 6 is a graph showing an internal decoupling rate Rda of the near-field noise suppression sheet of Examples 4 and 5.
  • 6 is a graph showing the mutual decoupling rate Rde of the near-field noise suppression sheets of Examples 4 and 5.
  • 6 is a graph showing the transmission attenuation rate Ptp of the near-field noise suppression sheet of Example 6 and Comparative Examples 3 and 4.
  • 6 is a graph showing the noise absorption rate P loss / P in of the near-field noise suppression sheets of Example 6 and Comparative Examples 3 and 4.
  • 6 is a graph showing the internal decoupling rate Rda of the near-field noise suppression sheet of Example 6 and Comparative Examples 3 and 4.
  • 6 is a graph showing the mutual decoupling rate Rde of the near-field noise suppression sheets of Example 6 and Comparative Examples 3 and 4.
  • 6 is a graph showing the noise absorption rate P loss / P in of the near-field noise suppression sheets of Example 1 and Examples 7 and 8.
  • 12 is a graph showing transmission attenuation factors Ptp, S 11 and S 21 of the near-field noise suppression sheet of Example 7.
  • 10 is a graph showing an internal decoupling rate Rda of the near-field noise suppression sheet of Example 7.
  • 10 is a graph showing the mutual decoupling rate Rde of the near-field noise suppression sheet of Example 7.
  • 10 is a graph showing transmission attenuation factors Ptp, S 11 and S 21 of the near-field noise suppression sheet of Example 8.
  • 10 is a graph showing an internal decoupling rate Rda of the near-field noise suppression sheet of Example 8.
  • 10 is a graph showing the mutual decoupling rate Rde of the near-field noise suppression sheet of Example 8.
  • 10 is a graph showing the transmission attenuation rate Ptp of the near-field noise suppression sheets of Comparative Examples 5 to 7.
  • 10 is a graph showing the noise absorption rate P loss / P in of the near-field noise suppression sheets of Comparative Examples 5 to 7.
  • 10 is a graph showing internal decoupling rate Rda of the near-field noise suppression sheets of Comparative Examples 5 to 7.
  • 8 is a graph showing the mutual decoupling rate Rde of the near-field noise suppression sheets of Comparative Examples 5 to 7.
  • the near-field noise suppression sheet 10 of the present invention is a first composed of a plastic film 1a having a metal thin film 1b formed on one surface.
  • This sheet 1 and a second sheet 2 made of a plastic film 2a having a metal thin film 2b formed on one surface are bonded via a conductive adhesive 3.
  • each plastic film 1a, 2a is not particularly limited as long as it has insulation, sufficient strength, flexibility and processability.
  • polyester polyethylene terephthalate, etc.
  • polyarylene sulfide Polyphenylene sulfide, etc.
  • polyether sulfone polyether ether ketone
  • polycarbonate acrylic resin
  • acrylic resin polystyrene
  • polyolefin polyethylene, polypropylene, etc.
  • the thickness of the plastic film may be about 10-30 ⁇ m.
  • Each metal thin film 1b, 2b is made of a magnetic metal.
  • the magnetic metal include Ni, Fe, Co, and alloys thereof.
  • the metal thin film 1b may be a single layer or a multilayer of different magnetic metals, but is preferably a single layer of Ni in consideration of corrosion resistance.
  • the metal thin film can be formed by a known method such as a sputtering method or a vacuum evaporation method, but the vacuum evaporation method is preferable.
  • the thin films 1b and 2b made of magnetic metal become thin and have a surface resistance of 20 to 150 ⁇ / ⁇ after lamination via the conductive adhesive 3, high-frequency near-field noise, specifically 6 GHz
  • the ability to absorb near-field noise, particularly 1 to 3 GHz is remarkably increased.
  • the metal thin film 1b is very thin and thus has an overall thickness unevenness, compared with the relatively thick region 1b 1.
  • Thin region (including a portion where a metal thin film is not formed) 1b 2 It is considered that the relatively thin region 1b 2 acts as a magnetic gap and a high resistance region, and attenuates magnetic flux and current flowing in the metal thin film 1b due to near-field noise.
  • the thickness of each of the metal thin films 1b and 2b is adjusted so as to have a surface resistance of 20 to 150 ⁇ / ⁇ after lamination through the conductive adhesive 3.
  • the thickness of the metal thin films 1b and 2b is preferably 10 to 30 nm, more preferably 15 to 30 nm, and most preferably 20 to 30 nm.
  • the surface resistance of each metal thin film 1b, 2b is measured by the DC four-terminal method as shown in FIG.
  • the metal thin films 1b and 2b not only increase the surface resistance as they become thinner, but also have a tendency for the variation in the surface resistance to become remarkably large. Variation in surface resistance exists not only between product lots, but also within the same deposited film product. Such variation is considered to be because it is difficult to accurately control the manufacturing conditions of a very thin metal thin film.
  • the surface resistance changes as shown in Table 1 and FIG. 6 with respect to the target film thickness.
  • the target film thickness is obtained from the difference between the light transmittance of the plastic film on which the metal thin film is formed and the light transmittance of the plastic film itself.
  • Conductive adhesive The conductive adhesive 3 that bonds the pair of metal thin films 1b and 2b is made of epoxy resin, silicone resin, polyimide, polyurethane, etc., binder, silver powder, gold powder, copper powder, palladium powder, nickel powder. And a conductive filler such as carbon powder.
  • the volume resistivity of typical conductive adhesives and the connection resistance between Ni and the conductive adhesives are as shown in Tables 2 and 3 below.
  • a pair of Ni thin films with various film thicknesses are bonded using a silver paste (“Dotite” manufactured by Fujikura Kasei Co., Ltd.) as a conductive adhesive at a coating amount of 1.5 g / m 2 on a solid content basis.
  • the surface resistance is as shown in Table 4.
  • Table 4 when two Ni thin films are bonded via the conductive adhesive 3, not only the surface resistance is lowered, but also the variation is significantly reduced. A noise suppression sheet can be obtained stably.
  • the surface resistance of the bonded metal thin film is preferably 24 to 80 ⁇ / ⁇ , more preferably 30 to 80 ⁇ / ⁇ , and most preferably 35 to 60 ⁇ / ⁇ .
  • the coating amount of the conductive adhesive 3 is preferably as small as possible unless both sheets are peeled off during handling. Specifically, the coating amount (based on solid content) of the conductive adhesive is preferably 0.5 to 5 g / m 2, and more preferably 1 to 2 g / m 2 .
  • the internal decoupling ratio Rda indicates how much the coupling within the same printed circuit board is attenuated by the noise suppression sheet, and is connected to the network analyzer NA as shown in Fig. 8.
  • Mutual decoupling ratio Rde indicates how much the coupling between two printed circuit boards or components is attenuated by the noise suppression sheet.
  • Examples 1 to 3 A Ni thin film 1b having a thickness shown in Table 5 below was formed on a PET film 1a having a thickness of 16 ⁇ m by a vacuum deposition method, whereby a first sheet 1 was obtained. Similarly, a Ni thin film 2b having a thickness shown in Table 5 below was formed on a PET film 2a having a thickness of 16 ⁇ m, whereby a second sheet 2 was obtained. First and second sheets 1 and 2 with Ni thin films 1b and 2b inside, 1.5 g / m 2 silver paste (“Dotite” manufactured by Fujikura Kasei Co., Ltd.) as a conductive adhesive based on solid content was adhered using.
  • 1.5 g / m 2 silver paste (“Dotite” manufactured by Fujikura Kasei Co., Ltd.) as a conductive adhesive based on solid content was adhered using.
  • a test piece TP of the near-field noise suppression sheet was cut out from any five locations of the obtained laminated sheet.
  • the surface resistance of each test piece TP was measured by the method shown in FIGS. 5 (a) and 5 (b).
  • the range and average value of the surface resistance are shown in Table 5 together with the thickness of each Ni thin film. As is apparent from Table 5, the variation in the surface resistance of each example was small.
  • the near-field noise suppression sheets of Examples 1 to 3 have a good transmission attenuation rate Rtp, but the near-field noise suppression sheet of Example 1 having a surface resistance of 40 ⁇ / ⁇ is the most. A good transmission attenuation factor Rtp is shown.
  • the near-field noise suppression sheets of Examples 1 to 3 were all good, particularly from about 1 GHz to 0.8 or more.
  • the near-field noise suppression sheets of Examples 1 to 3 all showed good internal decoupling rate Rda and mutual decoupling rate Rde. From this, it can be seen that the near-field noise suppression sheets of Examples 1 to 3 have excellent noise attenuation capability in a wide frequency range including a low frequency range of 1 to 3 GHz.
  • Comparative Examples 1 and 2 A commercially available noise suppression sheet NSS with a thickness of 200 ⁇ m (“HyperShield” manufactured by Daido Steel Co., Ltd.) (Comparative Example 1) and a commercially available noise suppression sheet NSS with a thickness of 100 ⁇ m (Bastradade manufactured by NEC Tokin Corporation) (Comparison) For Example 2), the noise absorption rate P loss / P in , the internal decoupling rate Rda, and the mutual decoupling rate Rde were determined in the same manner as in Example 1.
  • the noise absorption rate P loss / P in is shown in FIG. 14, the internal decoupling rate Rda is shown in FIG. 15, and the mutual decoupling rate Rde is shown in FIG. As apparent from FIG.
  • a Ni thin film 1b having a thickness shown in Table 6 below was formed on a PET film 1a having a thickness of 16 ⁇ m by a vacuum deposition method, whereby a first sheet 1 was obtained.
  • a Ni thin film 2b having a thickness shown in Table 6 below was formed on a PET film 2a having a thickness of 16 ⁇ m, whereby a second sheet 2 was obtained.
  • the first and second sheets 1 and 2 were bonded using the same conductive adhesive as in Example 1 with the Ni thin films 1b and 2b inside.
  • a test piece TP of the near-field noise suppression sheet was cut out from any five locations of the obtained laminated sheet.
  • the surface resistance of each test piece TP was measured by the method shown in FIGS. 5 (a) and 5 (b).
  • the range and average value of the surface resistance are shown in Table 6 together with the thickness of each Ni thin film. As is apparent from Table 6, the variation in the surface resistance of each example was small.
  • the transmission attenuation rate Rtp, noise absorption rate P loss / P in , internal decoupling rate Rda, and mutual decoupling rate Rde were determined by the same method as in Example 1.
  • FIG. 17 shows the transmission attenuation rate Rtp
  • FIG. 18 shows the noise absorption rate P loss / P in
  • FIG. 19 shows the internal decoupling rate Rda
  • FIG. 20 shows the mutual decoupling rate Rde.
  • the near-field noise suppression sheets of Examples 4 and 5 having surface resistances of 100 ⁇ / ⁇ and 150 ⁇ / ⁇ both have a good transmission attenuation factor Rtp, but the surface resistance is 40 to 81 ⁇ / ⁇ .
  • the near-field noise suppression sheets of Examples 4 and 5 both have a high noise absorption rate P loss / P in that is 0.8 or more from around 1 GHz, and a good internal reduction. It had a coupling rate Rda and a mutual decoupling rate Rde. From this, it can be seen that the near-field noise suppression sheets of Examples 4 and 5 also have a wide and excellent noise attenuation capability in a wide frequency range including a low frequency range of 1 to 3 GHz.
  • Example 6 Comparative Examples 3 and 4
  • a Ni thin film 1b having a thickness shown in Table 7 below was formed on a PET film 1a having a thickness of 16 ⁇ m by a vacuum deposition method, whereby a first sheet 1 was obtained.
  • a Ni thin film 2b having a thickness shown in Table 7 below was formed on a PET film 2a having a thickness of 16 ⁇ m, whereby a second sheet 2 was obtained.
  • the first and second sheets 1 and 2 were bonded using the same conductive adhesive as in Example 1 with the Ni thin films 1b and 2b inside.
  • a test piece TP of the near-field noise suppression sheet was cut out from any five locations of the obtained laminated sheet. The surface resistance of each test piece TP was measured by the method shown in FIGS.
  • the transmission attenuation rate Rtp, noise absorption rate P loss / P in , internal decoupling rate Rda, and mutual decoupling rate Rde were determined by the same method as in Example 1.
  • FIG. 21 shows the transmission attenuation rate Rtp
  • FIG. 22 shows the noise absorption rate P loss / P in
  • FIG. 23 shows the internal decoupling rate Rda
  • FIG. 24 shows the mutual decoupling rate Rde.
  • the near-field noise suppression sheet of Example 6 having a surface resistance of 24 ⁇ / ⁇ has a good transmission attenuation factor Rtp, but the near-field noise of Comparative Example 3 having a surface resistance of 4.5 ⁇ / ⁇ .
  • the transmission attenuation factor Rtp of the suppression sheet and the near-field noise suppression sheet of Comparative Example 4 having a surface resistance of 4.1 ⁇ / ⁇ was inferior.
  • the near-field noise suppression sheet of Example 6 had a high noise absorption rate P loss / P in even in the low frequency range of 1 to 3 GHz, but it was in the vicinity of Comparative Examples 3 and 4.
  • the noise absorption rate P loss / P in of the field noise suppression sheet was low.
  • the near-field noise suppression sheets of Comparative Examples 3 and 4 were significantly inferior to those of Example 6. From this, it can be seen that when the surface resistance is less than 20 ⁇ / ⁇ , the transmission attenuation rate Rtp, the noise absorption rate P loss / P in and the mutual decoupling rate Rde decrease.
  • Examples 7 and 8 A Ni thin film 1b having a thickness shown in Table 8 below was formed on a PET film 1a having a thickness of 16 ⁇ m by a vacuum deposition method, whereby a first sheet 1 was obtained. Similarly, a Ni thin film 2b having a thickness shown in Table 6 below was formed on a PET film 2a having a thickness of 16 ⁇ m, whereby a second sheet 2 was obtained. The first and second sheets 1 and 2 were bonded using the same conductive adhesive as in Example 1 with the Ni thin films 1b and 2b inside. A test piece TP of the near-field noise suppression sheet was cut out from any five locations of the obtained laminated sheet. The surface resistance of each test piece TP was measured by the method shown in FIGS. 5 (a) and 5 (b). The range and average value of the surface resistance are shown in Table 8 together with the thickness of each Ni thin film. As is clear from Table 8, the variation in surface resistance of each example was small.
  • FIG. 25 shows the noise absorption rate P loss / P in obtained by the same method as in Example 1.
  • the transmission attenuation rate Rtp, internal decoupling rate Rda, and mutual decoupling rate Rde of Example 7 are shown in FIGS. 26 to 28, respectively, and the transmission attenuation rate Rtp, internal decoupling rate Rda, and mutual decoupling rate Rde of Example 8 are shown. They are shown in FIGS. 29 to 31, respectively.
  • the noise absorptance P loss / P in of Examples 7 and 8 is as good as that of Example 1, from about 1 GHz to 0.8 or more.
  • FIGS. 25 shows the noise absorption rate P loss / P in obtained by the same method as in Example 1.
  • both of the near-field noise suppression sheets of Examples 7 and 8 had good transmission attenuation rate Rtp internal decoupling rate Rda and mutual decoupling rate Rde. From this, it can be seen that the near-field noise suppression sheets of Examples 7 and 8 having surface resistances of 44 ⁇ / ⁇ and 33 ⁇ / ⁇ also have excellent noise attenuation capability over a wide frequency range including a low frequency range of 1 to 3 GHz.
  • Comparative Examples 5-7 A test piece TP of the near-field noise suppression sheet of Comparative Examples 5 and 7 consisting only of the first sheet 1 by forming the Ni thin film 1b having the thickness shown in Table 9 below on the PET film 1a having a thickness of 16 ⁇ m by vacuum deposition. was made. Further, a first sheet 1 formed by forming a Ni thin film 1b having a thickness shown in Table 10 below by vacuum deposition on a PET film 1a having a thickness of 16 ⁇ m and a PET film 2a having a thickness of 16 ⁇ m shown in Table 9 below.
  • the second sheet 2 formed with the Ni thin film 2b having a thickness is bonded using the same conductive adhesive as in Example 1 with the Ni thin films 1b and 2b inside, and the near field of Comparative Example 6
  • a test piece TP of a noise suppression sheet was prepared.
  • the surface resistance of each test piece TP was measured by the method shown in FIGS. 5 (a) and 5 (b). The results are shown in Table 9.
  • the transmission attenuation rate Rtp, noise absorption rate P loss / P in , internal decoupling rate Rda, and mutual decoupling rate Rde were determined by the same method as in Example 1.
  • the transmission attenuation rate Rtp is shown in FIG. 32
  • the noise absorption rate P loss / P in is shown in FIG. 33
  • the internal decoupling rate Rda is shown in FIG. 34
  • the mutual decoupling rate Rde is shown in FIG.
  • FIGS. 32 and 33 all of the near-field noise suppression sheets of Comparative Examples 5 to 7 have a remarkably low transmission attenuation rate Rtp, and the noise absorption rate P loss / P in of Comparative Example 7 is also low. From this, it can be seen that the near-field noise suppression sheets of Comparative Examples 5 to 7 are inferior in transmission attenuation rate Rtp and noise absorption rate P loss / P in .

Abstract

 一方の面に金属薄膜が形成された一対のプラスチックフィルムを金属薄膜を内側にして導電性接着剤で接着してなり、各金属薄膜は磁性金属からなり、かつ接着された一対の金属薄膜の表面抵抗が20~150Ω/□となるように各金属薄膜の膜厚が調整されている近傍界ノイズ抑制シート。

Description

近傍界ノイズ抑制シート
 本発明は、携帯電話、スマートフォン等の携帯情報端末や、パソコン等の電子機器等に使用するのに好適な近傍界ノイズ抑制シートに関する。
 近年携帯通信端末、電子機器等は多機能化及び高性能化に加えて、小型化及び軽量化が求められ、狭小なスペース内に電子部品が高密度に配置されているとともに、高速化も図られている。このため、回路や部品間の電磁波ノイズ、特に高周波ノイズが大きな問題になってきた。このような近傍界の電磁波ノイズを抑制するために、種々のノイズ抑制シートが提案され、実用化されている。
 このようなノイズ抑制シートの多くは磁性材及び/又は導電材を含有する。例えば、特開2010-153542号は、基材と、Cu等の金属又はカーボンの粒子、鱗片又は細線を含有する導電性塗工材からなる導電層と、フェライト、センダスト、パーマロイ等の軟磁性材料を含有する磁性塗工材からなる磁性層とを有する電磁波ノイズ抑制シートを開示している。また特開2006-278433号は、例えばFebal-Cu1-Si12.5-Nb3-Cr1-B12(原子%)の組成を有するアモルファスフレークのような軟磁性体粉末と樹脂からなるカレンダー加工した2枚以上のシートを積層し、さらにカレンダー加工により一体化した複合電磁波ノイズ抑制シートを開示している。しかし、特開2010-153542号及び特開2006-278433号に開示のノイズ抑制シートはいずれも十分な近傍界ノイズの吸収能を有しておらず、磁性材及び/又は導電材を樹脂に練り込んでシートに成形しているので薄肉化が困難であり、かつ製造コストが高いという問題がある。
 特開2006-279912号は、準マイクロ波帯域で発生する電磁波ノイズに対して、その反射係数(S11)を-10 dB以下に、またノイズ抑制効果(ΔPloss/Pin)を0.5以上にするために、表面抵抗を空間の特性インピーダンスZ(377Ω)と整合する10~1000Ω/□に制御した近傍界電磁波ノイズ抑制薄膜として、AlO、CoAlO、CoSiO等のスパッタ薄膜を開示している。しかし、この近傍界電磁波ノイズ抑制薄膜の電磁波吸収能は十分でない。
 特開2008-53383号は、面方向と厚さ方向で熱伝導率が異なるグラファイトフィルムと、その上に形成されたFe、Co、FeSi、FeNi、FeCo、FeSiAl、FeCrSi、FeBSiC等の軟磁性体、Mn-Zn系、Ba-Fe系、Ni-Zn系等のフェライト、及びカーボン粒子を含有する軟磁性層とからなる放熱特性に優れた電波吸収・シールドフィルムを開示している。しかし、この電波吸収・シールドフィルムの電磁波吸収能も十分ではない。
 特開2006-93414号は、ポリエステル等のプラスチック基体(軟磁性金属、カーボン、フェライト等の粉末を含有しても良い)に、物理蒸着法により鉄、コバルト及びニッケルからなる群から選ばれた少なくとも一種の軟磁性金属を含む厚さ0.005~0.3μmの伝導ノイズ抑制層を形成した伝導ノイズ抑制体であって、伝導ノイズ抑制層は数オングストローム間隔で軟磁性金属原子が配列された結晶格子を有する部分と、軟磁性金属が存在しないプラスチックだけの非常に小さな部分と、軟磁性金属が結晶化せずプラスチック中に分散している部分とからなる伝導ノイズ抑制体を開示している。しかし、この伝導ノイズ抑制体では伝導ノイズ抑制層は単層であり、膜厚の制御が難しい。そのためほとんどの実施例ではプラスチック基体に軟磁性金属を配合している。また、軟磁性金属を配合していないプラスチック基体を用いた唯一の実施例4では、1 GHzにおけるロス電力比(Ploss/Pin)は0.55と小さかった。
 従って本発明の目的は、数百MHz乃至数GHzの電磁波ノイズに対して安定して高い吸収能を有する低コストの近傍界ノイズ抑制シートを提供することである。
 上記目的に鑑み鋭意研究の結果、本発明者は、(a) プラスチックフィルムに形成した金属薄膜の膜厚を表面抵抗が20~150Ω/□になるように調整すると、近傍界ノイズに対して優れた吸収能を発揮するが、20~150Ω/□の表面抵抗を有する金属薄膜は非常に薄いので、同じ製造ロットの間でも異なる製造ロットの間でも表面抵抗のバラツキが大きくなるのは避け難いこと、及び(b) このような薄い金属薄膜を有する一対のプラスチックフィルムを、金属薄膜を内側にして導電性接着剤で接着すると、表面抵抗のバラツキが著しく低減し、所望の表面抵抗を有する金属薄膜シートが安定的に得られることを発見し、本発明に想到した。
 すなわち、本発明の近傍界ノイズ抑制シートは、一方の面に金属薄膜が形成された一対のプラスチックフィルムを前記金属薄膜を内側にして導電性接着剤で接着してなり、各金属薄膜は磁性金属からなり、かつ接着された一対の金属薄膜の表面抵抗が20~150Ω/□となるように各金属薄膜の膜厚が調整されていることを特徴とする。
 前記磁性金属はNi,Fe,Co又はその合金であるのが好ましく、特にNiであるのが好ましい。両金属薄膜の膜厚は10~30 nmの範囲内にあるのが好ましい。接着された一対の金属薄膜の表面抵抗は30~80Ω/□であるのが好ましい。前記金属薄膜は真空蒸着法により形成するのが好ましい。
 上記構成を有する本発明の近傍界ノイズ抑制シートは、数百MHz乃至数GHzの近傍界ノイズに対して高い吸収能を有するとともに、各金属薄膜が非常に薄いにも係わらず表面抵抗のバラツキが著しく低減されており、もって電磁波吸収能に関して製品間のバラツキが非常に小さいという利点を有する。このような特徴を有する本発明の近傍界ノイズ抑制シートは、携帯電話、スマートフォン等の各種の携帯情報端末や、パソコン等の電子機器における近傍界ノイズの抑制に効果的である。
本発明の近傍界ノイズ抑制シートを構成する一対のシートを示す断面図である。 本発明の近傍界ノイズ抑制シートの構造を示す拡大断面図である。 本発明の近傍界ノイズ抑制シートを構成するシートの金属薄膜の構造を示す拡大断面図である。 プラスチックフィルムに形成した金属薄膜の表面抵抗を測定する方法を示す平面図である。 本発明の近傍界ノイズ抑制シートの金属薄膜の表面抵抗を測定する方法を示す平面図である。 図5(a) A-A断面図である。 プラスチックフィルムに蒸着したNi薄膜の表面抵抗と目標膜厚との関係を示すグラフである。 入射波に対する反射波の電力及び透過波の電力を測定するシステムを示す平面図である。 図7(a) のシステムを示す部分断面概略図である。 近傍界ノイズ抑制シートの内部減結合率を測定する方法を示す部分断面概略図である。 近傍界ノイズ抑制シートの相互減結合率を測定する方法を示す部分断面概略図である。 実施例1~3の近傍界ノイズ抑制シートの伝送減衰率Ptpを示すグラフである。 実施例1~3の近傍界ノイズ抑制シートのノイズ吸収率Ploss/Pinを示すグラフである。 実施例1~3の近傍界ノイズ抑制シートの内部減結合率Rdaを示すグラフである。 実施例1~3の近傍界ノイズ抑制シートの相互減結合率Rdeを示すグラフである。 実施例1及び比較例1及び2の近傍界ノイズ抑制シートのノイズ吸収率Ploss/Pinを示すグラフである。 比較例1及び2の近傍界ノイズ抑制シートの内部減結合率Rdaを示すグラフである。 比較例1及び2の近傍界ノイズ抑制シートの相互減結合率Rdeを示すグラフである。 実施例4及び5の近傍界ノイズ抑制シートの伝送減衰率Ptpを示すグラフである。 実施例4及び5の近傍界ノイズ抑制シートのノイズ吸収率Ploss/Pinを示すグラフである。 実施例4及び5の近傍界ノイズ抑制シートの内部減結合率Rdaを示すグラフである。 実施例4及び5の近傍界ノイズ抑制シートの相互減結合率Rdeを示すグラフである。 実施例6及び比較例3及び4の近傍界ノイズ抑制シートの伝送減衰率Ptpを示すグラフである。 実施例6及び比較例3及び4の近傍界ノイズ抑制シートのノイズ吸収率Ploss/Pinを示すグラフである。 実施例6及び比較例3及び4の近傍界ノイズ抑制シートの内部減結合率Rdaを示すグラフである。 実施例6及び比較例3及び4の近傍界ノイズ抑制シートの相互減結合率Rdeを示すグラフである。 実施例1及び実施例7及び8の近傍界ノイズ抑制シートのノイズ吸収率Ploss/Pinを示すグラフである。 実施例7の近傍界ノイズ抑制シートの伝送減衰率Ptp、S11及びS21を示すグラフである。 実施例7の近傍界ノイズ抑制シートの内部減結合率Rdaを示すグラフである。 実施例7の近傍界ノイズ抑制シートの相互減結合率Rdeを示すグラフである。 実施例8の近傍界ノイズ抑制シートの伝送減衰率Ptp、S11及びS21を示すグラフである。 実施例8の近傍界ノイズ抑制シートの内部減結合率Rdaを示すグラフである。 実施例8の近傍界ノイズ抑制シートの相互減結合率Rdeを示すグラフである。 比較例5~7の近傍界ノイズ抑制シートの伝送減衰率Ptpを示すグラフである。 比較例5~7の近傍界ノイズ抑制シートのノイズ吸収率Ploss/Pinを示すグラフである。 比較例5~7の近傍界ノイズ抑制シートの内部減結合率Rdaを示すグラフである。 比較例5~7の近傍界ノイズ抑制シートの相互減結合率Rdeを示すグラフである。
 本発明の実施形態を添付図面を参照して詳細に説明するが、特に断りがなければ一つの実施形態に関する説明は他の実施形態にも適用される。また下記説明は限定的ではなく、本発明の技術的思想の範囲内で種々の変更をしても良い。
[1] 近傍界ノイズ抑制シートの構成要素
 図1及び図2に示すように、本発明の近傍界ノイズ抑制シート10は、一方の面に金属薄膜1bが形成されたプラスチックフィルム1aからなる第一のシート1と、一方の面に金属薄膜2bが形成されたプラスチックフィルム2aからなる第二のシート2とを導電性接着剤3を介して接着してなる。
(1) プラスチックフィルム
 各プラスチックフィルム1a、2aを形成する樹脂は、絶縁性とともに十分な強度、可撓性及び加工性を有する限り特に制限されず、例えばポリエステル(ポリエチレンテレフタレート等)、ポリアリーレンサルファイド(ポリフェニレンサルファイド等)、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリカーボネート、アクリル樹脂、ポリスチレン、ポリオレフィン(ポリエチレン、ポリプロピレン等)等が挙げられる。プラスチックフィルムの厚さは10~30μm程度で良い。
(2) 金属薄膜
 各金属薄膜1b,2bは磁性金属からなる。磁性金属としてはNi,Fe,Co又はその合金が挙げられる。金属薄膜1bは単層でも異なる磁性金属の多層でも良いが、耐食性を考慮してNiの単層とするのが好ましい。金属薄膜はスパッタリング法、真空蒸着法等の公知の方法により形成することができるが、真空蒸着法が好ましい。
 磁性金属からなる薄膜1b,2bが薄くなり、導電性接着剤3を介した積層後で20~150Ω/□の表面抵抗を有するようになると、高周波数の近傍界ノイズ、具体的には6 GHz以下、特に1~3 GHzの近傍界ノイズに対する吸収能が著しく高くなることが分った。これは、例えば金属薄膜1bの断面を拡大して概略的に示す図3から明らかなように、金属薄膜1bは非常に薄いので全体的に厚さムラがあり、比較的厚い領域1b1と比較的薄い領域(金属薄膜が形成されていない部分も含む。)1b2とを有する。比較的薄い領域1b2は磁気ギャップ及び高抵抗領域として作用し、近傍界ノイズにより金属薄膜1b内を流れる磁束及び電流を減衰させると考えられる。
 従って、各金属薄膜1b,2bの膜厚は、導電性接着剤3を介した積層後に20~150Ω/□の表面抵抗を有するように調整する。具体的には、金属薄膜1b,2bの膜厚は10~30 nmが好ましく、15~30 nmがより好ましく、20~30 nmが最も好ましい。各金属薄膜1b,2bの表面抵抗は、図4に示すように直流四端子法で測定する。また積層後の金属薄膜1b,2bの表面抵抗は、図5(a) 及び図5(b) に示すように、一方の試験片TP1を他方の試験片TP2より大きくし、一方の試験片TP1に端子4を設けて、直流四端子法で測定する。
 しかし、金属薄膜1b,2bは薄くなるにつれて表面抵抗が増大するだけでなく、表面抵抗のバラツキが著しく大きくなる傾向があることが分った。表面抵抗のバラツキは、製品ロット間だけでなく同じ蒸着フィルム製品内にも存在する。このようなバラツキが生じるのは、非常に薄い金属薄膜の製造条件を正確に制御するのが困難であるためと考えられる。例えばNi薄膜の場合、その表面抵抗は目標膜厚に対して表1及び図6に示すように変化する。ここで、目標膜厚は、金属薄膜を形成したプラスチックフィルムの光透過率とプラスチックフィルム自身の光透過率との差から求める。
Figure JPOXMLDOC01-appb-T000001
(3) 導電性接着剤
 一対の金属薄膜1b,2bを接着する導電性接着剤3は、エポキシ樹脂、シリコーン樹脂、ポリイミド、ポリウレタン等をバインダーとし、銀粉、金粉、銅粉、パラジウム粉、ニッケル粉、カーボン粉等の導電性フィラーを配合してなる。代表的な導電性接着剤の体積抵抗率、及びNiと導電性接着剤との接続抵抗は下記表2及び表3に示す通りである。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[2] 近傍界ノイズ抑制シート
 このように、非常に薄い目標膜厚で形成された金属薄膜の表面抵抗は大きくばらつくので、金属薄膜を形成した一枚のプラスチックフィルムで所望の表面抵抗の近傍界ノイズ抑制シートとするのは非常に困難である。表面抵抗のバラツキは近傍界ノイズの吸収能のバラツキを引き起す。鋭意研究の結果、一対の金属薄膜1b,2bを導電性接着剤3を介して接着すると、表面抵抗のバラツキが予想以上に低減することが分った。本発明の近傍界ノイズ抑制シートは、かかる発見に基づき得られたものである。
 例えば、種々の膜厚を有する一対のNi薄膜を、導電性接着剤として銀ペースト(藤倉化成株式会社製の「ドータイト」)を用いて、固形分基準で1.5 g/m2の塗布量で接着した場合、表面抵抗は表4に示す通りとなる。表4から明らかなように、二枚のNi薄膜を導電性接着剤3を介して接着すると、表面抵抗が低下するだけでなく、そのバラツキが著しく低減するので、所望の吸収能を有する近傍界ノイズ抑制シートを安定的に得られるようになる。
Figure JPOXMLDOC01-appb-T000004
 接着した金属薄膜の表面抵抗が20Ω/□未満であると導電性が高すぎ、金属シートに近い挙動を示すので、ノイズ吸収能は低い。一方、接着した金属薄膜の表面抵抗が150Ω/□超になると、表面抵抗が大きすぎ、ノイズ吸収能が不十分になる。接着した金属薄膜の表面抵抗は好ましくは24~80Ω/□であり、より好ましくは30~80Ω/□であり、最も好ましくは35~60Ω/□である。
 導電性接着剤3の塗布量は、ハンドリング中に両シートが剥離しない限り出来るだけ少ないのが好ましい。具体的には、導電性接着剤の塗布量(固形分基準)は0.5~5 g/m2が好ましく、1~2 g/m2がより好ましい。
[3] 近傍界ノイズの吸収能の測定
(1) 伝送減衰率の測定
 伝送減衰率Rtpは、図7(a) 及び図7(b) に示すように、50ΩのマイクロストリップラインMSL(64.4 mm×4.4 mm)と、マイクロストリップラインMSLを支持する絶縁基板200と、絶縁基板200の下面に接合された接地グランド電極201と、マイクロストリップラインMSLの両端に接続された導電性ピン202,202と、ネットワークアナライザNAと、ネットワークアナライザNAを導電性ピン202,202に接続する同軸ケーブル203,203とで構成されたシステムを用い、マイクロストリップラインMSLにノイズ抑制シートの試験片TPを粘着剤により貼付し、0.1~6 GHzの入射波に対して、反射波S11の電力及び透過波S21の電力を測定し、下記式:
  Rtp=-10×log[10S21/10/(1-10S11/10)]
により求める。
(2) ノイズ吸収率の測定
 図7(a) 及び図7(b) に示すシステムに入射した電力から反射波S11の電力及び透過波S21の電力を差し引くことにより、電力損失Plossを求め、Plossを入射電力Pinで割ることによりノイズ吸収率Ploss/Pinを求める。
(3) 内部減結合率の測定
 内部減結合率Rdaは、同じプリント基板内での結合がノイズ抑制シートによりどの程度減衰するかを示すもので、図8に示すように、ネットワークアナライザNAに接続した一対のループアンテナ301,302の近傍にノイズ抑制シートの試験片TPを載置し、0~6 GHzの高周波信号が一方のループアンテナ301から他方のループアンテナ302に送信されるときの減衰率を測定することにより求める。
(4) 相互減結合率
 相互減結合率Rdeは、2つのプリント基板間又は部品間での結合がノイズ抑制シートによりどの程度減衰するかを示すもので、図9に示すように、ネットワークアナライザNAに接続した一対のループアンテナ301,302の間にノイズ抑制シートの試験片TPを載置し、0~6 GHzの高周波信号が一方のループアンテナ301から他方のループアンテナ302に送信されるときの減衰率を測定することにより求める。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。
実施例1~3
 厚さ16μmのPETフィルム1aに真空蒸着法により下記表5に示す厚さのNi薄膜1bを形成し、第一のシート1を得た。同様に厚さ16μmのPETフィルム2aに下記表5に示す厚さのNi薄膜2bを形成し、第二のシート2を得た。第一及び第二のシート1,2を、Ni薄膜1b,2bを内側にして、導電性接着剤として固形分基準で1.5 g/m2の銀ペースト(藤倉化成株式会社製の「ドータイト」)を用いて接着した。得られた積層シートの任意の5箇所から、近傍界ノイズ抑制シートの試験片TPを切り出した。各試験片TPの表面抵抗を図5(a) 及び図5(b) に示す方法により測定した。表面抵抗の範囲及び平均値を、各Ni薄膜の厚さとともに表5に示す。表5から明らかなように、各実施例の表面抵抗のバラツキは小さかった。
Figure JPOXMLDOC01-appb-T000005
 最も平均値に近い表面抵抗を有する試験片TPを図7(a) 及び図7(b) に示すシステムのマイクロストリップラインMSLに粘着剤により貼付し、反射波S11の電力及び透過波S21の電力を測定し、上記[3] の(1) 及び(2) の方法によりそれぞれ伝送減衰率Rtp及びノイズ吸収率Ploss/Pinを求めた。さらに図8に示す方法により各試験片TPの内部減結合率Rdaを測定し、図9に示す方法により各試験片TPの相互減結合率Rdeを測定した。伝送減衰率Rtpを図10に示し、ノイズ吸収率Ploss/Pinを図11に示し、内部減結合率Rdaを図12に示し、相互減結合率Rdeを図13に示す。なお各図において、[]中の数字は(一方のシートにおけるNi薄膜の厚さ)/(他方のシートにおけるNi薄膜の厚さ)を示し、()中の数字は表面抵抗を示す。以下同じ。
 図10から明らかなように、実施例1~3の近傍界ノイズ抑制シートはいずれも良好な伝送減衰率Rtpを有するが、表面抵抗が40Ω/□の実施例1の近傍界ノイズ抑制シートが最も良い伝送減衰率Rtpを示した。ノイズ吸収率Ploss/Pinに関しては、図11から明らかなように、実施例1~3の近傍界ノイズ抑制シートはいずれも良好であり、特に約1 GHzから0.8以上になった。また図12及び図13から明らかなように、実施例1~3の近傍界ノイズ抑制シートはいずれも良好な内部減結合率Rda及び相互減結合率Rdeを示した。これから、実施例1~3の近傍界ノイズ抑制シートは1~3 GHzの低周波数域を含む広い周波数範囲で優れたノイズ減衰能を有することが分る。
比較例1及び2
 厚さ200μmの市販のノイズ抑制シートNSS(大同特殊鋼株式会社製の「HyperShield」)(比較例1)、及び厚さ100μmの市販のノイズ抑制シートNSS(NECトーキン株式会社製のバスタレイド)(比較例2)に対して、実施例1と同様にしてノイズ吸収率Ploss/Pin、内部減結合率Rda及び相互減結合率Rdeを求めた。ノイズ吸収率Ploss/Pinを図14に示し、内部減結合率Rdaを図15に示し、相互減結合率Rdeを図16に示す。図14から明らかなように、比較例1及び2のノイズ抑制シートのノイズ吸収率Ploss/Pinは実施例1のものより劣っていた。また図15及び図16から明らかなように、比較例1及び2のノイズ抑制シートの内部減結合率Rda及び相互減結合率Rdeはいずれも劣っていた。
実施例4及び5
 厚さ16μmのPETフィルム1aに真空蒸着法により下記表6に示す厚さのNi薄膜1bを形成し、第一のシート1を得た。同様に厚さ16μmのPETフィルム2aに下記表6に示す厚さのNi薄膜2bを形成し、第二のシート2を得た。第一及び第二のシート1,2を、Ni薄膜1b,2bを内側にして、実施例1と同じ導電性接着剤を用いて接着した。得られた積層シートの任意の5箇所から、近傍界ノイズ抑制シートの試験片TPを切り出した。各試験片TPの表面抵抗を図5(a) 及び図5(b) に示す方法により測定した。表面抵抗の範囲及び平均値を、各Ni薄膜の厚さとともに表6に示す。表6から明らかなように、各実施例の表面抵抗のバラツキは小さかった。
Figure JPOXMLDOC01-appb-T000006
 また実施例1と同じ方法により、伝送減衰率Rtp、ノイズ吸収率Ploss/Pin、内部減結合率Rda及び相互減結合率Rdeを求めた。伝送減衰率Rtpを図17に示し、ノイズ吸収率Ploss/Pinを図18に示し、内部減結合率Rdaを図19に示し、相互減結合率Rdeを図20に示す。図17から明らかなように、表面抵抗が100Ω/□及び150Ω/□の実施例4及び5の近傍界ノイズ抑制シートはいずれも良好な伝送減衰率Rtpを有するが、表面抵抗が40~81Ω/□の実施例1~3の近傍界ノイズ抑制シートより劣っていた。図18~図20から明らかなように、実施例4及び5の近傍界ノイズ抑制シートはいずれも1 GHz付近から0.8以上と高いノイズ吸収率Ploss/Pinを有し、かつ良好な内部減結合率Rda及び相互減結合率Rdeを有していた。これから、実施例4及び5の近傍界ノイズ抑制シートも1~3 GHzの低周波数域を含む広い周波数範囲で広い優れたノイズ減衰能を有することが分る。
実施例6、比較例3及び4
 厚さ16μmのPETフィルム1aに真空蒸着法により下記表7に示す厚さのNi薄膜1bを形成し、第一のシート1を得た。同様に厚さ16μmのPETフィルム2aに下記表7に示す厚さのNi薄膜2bを形成し、第二のシート2を得た。第一及び第二のシート1,2を、Ni薄膜1b,2bを内側にして、実施例1と同じ導電性接着剤を用いて接着した。得られた積層シートの任意の5箇所から、近傍界ノイズ抑制シートの試験片TPを切り出した。各試験片TPの表面抵抗を図5(a) 及び図5(b) に示す方法により測定した。表面抵抗の範囲及び平均値を、各Ni薄膜の厚さとともに表7に示す。表7から明らかなように、実施例6の表面抵抗のバラツキは小さかった。比較例3及び4の表面抵抗はほとんどバラツキがなかったが、約4Ω/□と小さかったので、後述の通り近傍界ノイズの吸収能が著しく劣っていた。
Figure JPOXMLDOC01-appb-T000007
 また実施例1と同じ方法により、伝送減衰率Rtp、ノイズ吸収率Ploss/Pin、内部減結合率Rda及び相互減結合率Rdeを求めた。伝送減衰率Rtpを図21に示し、ノイズ吸収率Ploss/Pinを図22に示し、内部減結合率Rdaを図23に示し、相互減結合率Rdeを図24に示す。図21から明らかなように、表面抵抗が24Ω/□の実施例6の近傍界ノイズ抑制シートは良好な伝送減衰率Rtpを有するが、表面抵抗が4.5Ω/□の比較例3の近傍界ノイズ抑制シート及び表面抵抗が4.1Ω/□の比較例4の近傍界ノイズ抑制シートの伝送減衰率Rtpは劣っていた。図22から明らかなように、実施例6の近傍界ノイズ抑制シートは1~3 GHzの低周波数域でも高いノイズ吸収率Ploss/Pinを有していたが、比較例3及び4の近傍界ノイズ抑制シートのノイズ吸収率Ploss/Pinは低かった。また相互減結合率Rdeに関しては、比較例3及び4の近傍界ノイズ抑制シートは実施例6のものより著しく劣っていた。これから、表面抵抗が20Ω/□未満になると、伝送減衰率Rtp、ノイズ吸収率Ploss/Pin及び相互減結合率Rdeのいずれも低下することが分る。
実施例7及び8
 厚さ16μmのPETフィルム1aに真空蒸着法により下記表8に示す厚さのNi薄膜1bを形成し、第一のシート1を得た。同様に厚さ16μmのPETフィルム2aに下記表6に示す厚さのNi薄膜2bを形成し、第二のシート2を得た。第一及び第二のシート1,2を、Ni薄膜1b,2bを内側にして、実施例1と同じ導電性接着剤を用いて接着した。得られた積層シートの任意の5箇所から、近傍界ノイズ抑制シートの試験片TPを切り出した。各試験片TPの表面抵抗を図5(a) 及び図5(b) に示す方法により測定した。表面抵抗の範囲及び平均値を、各Ni薄膜の厚さとともに表8に示す。表8から明らかなように、各実施例の表面抵抗のバラツキは小さかった。
Figure JPOXMLDOC01-appb-T000008
 また実施例1と同じ方法により求めたノイズ吸収率Ploss/Pinを図25に示す。実施例7の伝送減衰率Rtp、内部減結合率Rda及び相互減結合率Rdeをそれぞれ図26~28に示し、実施例8の伝送減衰率Rtp、内部減結合率Rda及び相互減結合率Rdeをそれぞれ図29~31に示す。図25から明らかなように、実施例7及び8のノイズ吸収率Ploss/Pinはいずれも実施例1と同程度に良好であり、約1 GHzから0.8以上になった。また図26~31から明らかなように、実施例7及び8の近傍界ノイズ抑制シートはいずれも良好な伝送減衰率Rtp内部減結合率Rda及び相互減結合率Rdeを有していた。これから、表面抵抗が44Ω/□及び33Ω/□の実施例7及び8の近傍界ノイズ抑制シートも1~3 GHzの低周波数域を含む広い周波数範囲で広い優れたノイズ減衰能を有することが分る。
比較例5~7
 厚さ16μmのPETフィルム1aに真空蒸着法により下記表9に示す厚さのNi薄膜1bを形成し、第一のシート1のみからなる比較例5及び7の近傍界ノイズ抑制シートの試験片TPを作製した。また、厚さ16μmのPETフィルム1aに真空蒸着法により下記表10に示す厚さのNi薄膜1bを形成してなる第一のシート1と、厚さ16μmのPETフィルム2aに下記表9に示す厚さのNi薄膜2bを形成してなる第二のシート2とを、Ni薄膜1b,2bを内側にして、実施例1と同じ導電性接着剤を用いて接着し、比較例6の近傍界ノイズ抑制シートの試験片TPを作製した。各試験片TPの表面抵抗を図5(a) 及び図5(b) に示す方法により測定した。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 また実施例1と同じ方法により、伝送減衰率Rtp、ノイズ吸収率Ploss/Pin、内部減結合率Rda及び相互減結合率Rdeを求めた。伝送減衰率Rtpを図32に示し、ノイズ吸収率Ploss/Pinを図33に示し、内部減結合率Rdaを図34に示し、相互減結合率Rdeを図35に示す。図32及び図33から明らかなように、比較例5~7の近傍界ノイズ抑制シートのいずれも伝送減衰率Rtpが著しく低く、また比較例7のノイズ吸収率Ploss/Pinも低かった。これから、比較例5~7の近傍界ノイズ抑制シートは伝送減衰率Rtp及びノイズ吸収率Ploss/Pinに劣ることが分かる。

Claims (6)

  1.  一方の面に金属薄膜が形成された一対のプラスチックフィルムを前記金属薄膜を内側にして導電性接着剤で接着してなり、各金属薄膜は磁性金属からなり、かつ接着された一対の金属薄膜の表面抵抗が20~150Ω/□となるように各金属薄膜の膜厚が調整されていることを特徴とする近傍界ノイズ抑制シート。
  2.  請求項1に記載の近傍界ノイズ抑制シートにおいて、前記磁性金属がNi,Fe,Co又はその合金であることを特徴とする近傍界ノイズ抑制シート。
  3.  請求項1又は2のいずれかに記載の近傍界ノイズ抑制シートにおいて、前記金属薄膜がNiからなることを特徴とする近傍界ノイズ抑制シート。
  4.  請求項1~3のいずれかに記載の近傍界ノイズ抑制シートにおいて、両金属薄膜の膜厚が10~30 nmの範囲内にあることを特徴とする近傍界ノイズ抑制シート。
  5.  請求項1~4のいずれかに記載の近傍界ノイズ抑制シートにおいて、接着された一対の金属薄膜の表面抵抗が30~80Ω/□であることを特徴とする近傍界ノイズ抑制シート。
  6.  請求項1~5のいずれかに記載の近傍界ノイズ抑制シートにおいて、前記金属薄膜が真空蒸着法により形成されたものであることを特徴とする近傍界ノイズ抑制シート。
PCT/JP2011/076196 2011-02-25 2011-11-14 近傍界ノイズ抑制シート WO2012114587A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2013143290/07A RU2013143290A (ru) 2011-02-25 2011-11-14 Лист для подавления помех в ближней зоне
BR112013019978A BR112013019978A2 (pt) 2011-02-25 2011-11-14 folha de supressão de ruído de campo próximo.
EP11859152.8A EP2680683B1 (en) 2011-02-25 2011-11-14 Near-field-noise-suppressing sheet
US13/978,848 US8952273B2 (en) 2011-02-25 2011-11-14 Near-field noise suppression sheet
KR1020137024473A KR101903540B1 (ko) 2011-02-25 2011-11-14 근방계 노이즈 억제 시트
CN201180068505.6A CN103392389B (zh) 2011-02-25 2011-11-14 近场噪声抑制片材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011040977A JP5582539B2 (ja) 2011-02-25 2011-02-25 近傍界ノイズ抑制シート
JP2011-040977 2011-02-25

Publications (1)

Publication Number Publication Date
WO2012114587A1 true WO2012114587A1 (ja) 2012-08-30

Family

ID=46720391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076196 WO2012114587A1 (ja) 2011-02-25 2011-11-14 近傍界ノイズ抑制シート

Country Status (9)

Country Link
US (1) US8952273B2 (ja)
EP (1) EP2680683B1 (ja)
JP (1) JP5582539B2 (ja)
KR (1) KR101903540B1 (ja)
CN (1) CN103392389B (ja)
BR (1) BR112013019978A2 (ja)
RU (1) RU2013143290A (ja)
TW (1) TWI566680B (ja)
WO (1) WO2012114587A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065389A (ja) * 2013-09-26 2015-04-09 新日鉄住金化学株式会社 電磁波ノイズ抑制体及び回路基板

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105917526A (zh) * 2013-10-24 2016-08-31 南洋理工大学 用于涡轮机叶片应用的微波吸收复合材料
KR101530624B1 (ko) * 2014-02-26 2015-06-23 (주)창성 복합 기능성 일체형 근거리무선통신 안테나 및 그 제조 방법
JP6379071B2 (ja) * 2015-06-15 2018-08-22 Jx金属株式会社 電磁波シールド材
JP6280157B2 (ja) * 2016-05-17 2018-02-14 株式会社リケン 近傍界用ノイズ抑制シート
JP6612676B2 (ja) * 2016-05-17 2019-11-27 株式会社リケン 近傍界用ノイズ抑制シート
CN106505074A (zh) * 2016-11-24 2017-03-15 南通沃特光电科技有限公司 一种图像传感器的制造方法
JP6492114B2 (ja) * 2017-03-03 2019-03-27 日東電工株式会社 電磁波吸収体及び電磁波吸収体付成形品
JP2019016782A (ja) * 2017-07-03 2019-01-31 信越ポリマー株式会社 電磁波シールドフィルム及びその製造方法、並びに電磁波シールドフィルム付きプリント配線板及びその製造方法
TWI644332B (zh) * 2017-07-24 2018-12-11 理研股份有限公司 Near field noise suppression film
JP7336390B2 (ja) 2020-01-09 2023-08-31 株式会社トーキン 電磁干渉抑制体の評価方法及び評価装置
US11710707B2 (en) * 2020-03-26 2023-07-25 Shibaura Mechatronics Corporation Electromagnetic wave attenuator, electronic device, film formation apparatus, and film formation method
CN113543613A (zh) * 2020-04-20 2021-10-22 Tdk株式会社 噪声抑制薄片

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081973A1 (fr) * 2002-03-27 2003-10-02 Toyo Services,Corp. Feuille de blindage anti-ondes electromagnetiques, cable de transmission a blindage anti-ondes electromagnetiques et lsi a blindage anti-ondes electromagnetiques
JP2004095566A (ja) * 2002-07-08 2004-03-25 Tatsuta Electric Wire & Cable Co Ltd シールドフィルム、シールドフレキシブルプリント配線板及びそれらの製造方法
JP2006093414A (ja) 2004-09-24 2006-04-06 Shin Etsu Polymer Co Ltd 伝導ノイズ抑制体および伝導ノイズ対策方法
JP2006278433A (ja) 2005-03-28 2006-10-12 Hitachi Metals Ltd 複合電磁波ノイズ抑制シート
JP2006279912A (ja) 2005-03-28 2006-10-12 Res Inst Electric Magnetic Alloys 近傍界電磁波ノイズ抑制材料
JP2007096269A (ja) * 2005-08-30 2007-04-12 Nisca Corp 近傍界電磁波吸収体
WO2007105555A1 (ja) * 2006-03-10 2007-09-20 Shin-Etsu Polymer Co., Ltd. ノイズ抑制構造体、多層プリント回路基板およびその製造方法
JP2008053383A (ja) 2006-08-23 2008-03-06 Kaneka Corp 放熱・電波吸収・シールドフィルム
JP2008218790A (ja) * 2007-03-06 2008-09-18 Osamu Hashimoto 電磁波吸収体及び電磁吸収体の製造方法
JP2008270714A (ja) * 2007-12-17 2008-11-06 Taiyo Yuden Co Ltd 電磁波遮蔽シート
JP2010153542A (ja) 2008-12-25 2010-07-08 Ado Union Kenkyusho:Kk 電磁波抑制シート及びその製造方法
JP2010278090A (ja) * 2009-05-26 2010-12-09 Seiji Kagawa 電磁波吸収フィルム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749625A (en) * 1986-03-31 1988-06-07 Hiraoka & Co., Ltd. Amorphous metal laminate sheet
JP2763952B2 (ja) * 1990-02-14 1998-06-11 ユニチカ株式会社 導電性織物およびその製造方法
DE69812447D1 (de) * 1997-01-20 2003-04-30 Daido Steel Co Ltd Weichmagnetisches Pulver für electromagnetische und magnetische Abschirmung und Abschirmungen mit dieses Pulver
US6262364B1 (en) * 1997-06-24 2001-07-17 Bridgestone Corporation Electromagnetic-wave shielding and light transmitting plate
WO2003021610A1 (fr) * 2001-08-31 2003-03-13 Tdk Corporation Element stratifie constitue d'un materiau magnetique doux, feuille constituee d'un materiau magnetique doux et procede de production dudit element stratifie
US6906256B1 (en) * 2002-01-22 2005-06-14 Nanoset, Llc Nanomagnetic shielding assembly
KR100701832B1 (ko) * 2005-06-15 2007-04-02 (주)창성 표면 전기저항 제어를 이용한 다층 박형 전자파 흡수필름
CN101472455A (zh) * 2007-12-29 2009-07-01 3M创新有限公司 电磁屏蔽衬垫和用于填充电磁屏蔽系统中的间隙的方法
JP5139156B2 (ja) * 2008-05-30 2013-02-06 タツタ電線株式会社 電磁波シールド材及びプリント配線板
EP2299795B1 (en) * 2008-06-26 2014-01-01 KAGAWA, Seiji Electromagnetic wave absorptive film and electromagnetic wave absorbent
WO2010055597A1 (ja) * 2008-11-12 2010-05-20 Necトーキン株式会社 磁性膜付着体及びその製造方法
US8138429B2 (en) * 2008-12-17 2012-03-20 3M Innovative Properties Company Electromagnetic shielding article
FR2940533B1 (fr) * 2008-12-19 2017-05-19 Carewave Shielding Tech Materiau multicouche, en particulier pour la protection contre les rayonnements electromagnetiques, et son procede de fabrication.
US9238351B2 (en) * 2009-02-13 2016-01-19 Seiji Kagawa Composite film of linearly-scratched, thin metal film and plastic film, and its production apparatus
US20120236528A1 (en) * 2009-12-02 2012-09-20 Le John D Multilayer emi shielding thin film with high rf permeability
JP5581163B2 (ja) * 2010-09-30 2014-08-27 日東電工株式会社 ワイヤレス電力伝送用電磁波シールドシート
KR101337959B1 (ko) * 2012-03-19 2013-12-09 현대자동차주식회사 전자파차폐용 복합재
US20140177197A1 (en) * 2012-12-26 2014-06-26 Nokia Corporation Multi-Layered Magnetic Shields

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081973A1 (fr) * 2002-03-27 2003-10-02 Toyo Services,Corp. Feuille de blindage anti-ondes electromagnetiques, cable de transmission a blindage anti-ondes electromagnetiques et lsi a blindage anti-ondes electromagnetiques
JP2004095566A (ja) * 2002-07-08 2004-03-25 Tatsuta Electric Wire & Cable Co Ltd シールドフィルム、シールドフレキシブルプリント配線板及びそれらの製造方法
JP2006093414A (ja) 2004-09-24 2006-04-06 Shin Etsu Polymer Co Ltd 伝導ノイズ抑制体および伝導ノイズ対策方法
JP2006278433A (ja) 2005-03-28 2006-10-12 Hitachi Metals Ltd 複合電磁波ノイズ抑制シート
JP2006279912A (ja) 2005-03-28 2006-10-12 Res Inst Electric Magnetic Alloys 近傍界電磁波ノイズ抑制材料
JP2007096269A (ja) * 2005-08-30 2007-04-12 Nisca Corp 近傍界電磁波吸収体
WO2007105555A1 (ja) * 2006-03-10 2007-09-20 Shin-Etsu Polymer Co., Ltd. ノイズ抑制構造体、多層プリント回路基板およびその製造方法
JP2008053383A (ja) 2006-08-23 2008-03-06 Kaneka Corp 放熱・電波吸収・シールドフィルム
JP2008218790A (ja) * 2007-03-06 2008-09-18 Osamu Hashimoto 電磁波吸収体及び電磁吸収体の製造方法
JP2008270714A (ja) * 2007-12-17 2008-11-06 Taiyo Yuden Co Ltd 電磁波遮蔽シート
JP2010153542A (ja) 2008-12-25 2010-07-08 Ado Union Kenkyusho:Kk 電磁波抑制シート及びその製造方法
JP2010278090A (ja) * 2009-05-26 2010-12-09 Seiji Kagawa 電磁波吸収フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2680683A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065389A (ja) * 2013-09-26 2015-04-09 新日鉄住金化学株式会社 電磁波ノイズ抑制体及び回路基板

Also Published As

Publication number Publication date
EP2680683B1 (en) 2016-02-03
US8952273B2 (en) 2015-02-10
US20130284511A1 (en) 2013-10-31
BR112013019978A2 (pt) 2017-10-24
TW201240594A (en) 2012-10-01
EP2680683A4 (en) 2014-12-10
EP2680683A1 (en) 2014-01-01
CN103392389B (zh) 2018-04-06
JP5582539B2 (ja) 2014-09-03
KR20140009367A (ko) 2014-01-22
RU2013143290A (ru) 2015-03-27
TWI566680B (zh) 2017-01-11
JP2012178476A (ja) 2012-09-13
CN103392389A (zh) 2013-11-13
KR101903540B1 (ko) 2018-10-04

Similar Documents

Publication Publication Date Title
JP5582539B2 (ja) 近傍界ノイズ抑制シート
KR101399022B1 (ko) 전자파 흡수시트 및 그의 제조방법과 이를 포함하는 전자기기
JP5202377B2 (ja) カバーレイフィルムおよびフレキシブルプリント配線板
CN101796894B (zh) 传导噪音抑制结构体以及布线电路基板
TW201440629A (zh) 電磁波干擾抑制體
KR20150014415A (ko) 칩 전자부품 및 이의 제조방법
JP4916803B2 (ja) 多層プリント回路基板
US20220351883A1 (en) Coil component
US9907218B2 (en) Near-field noise suppression film
JP4429961B2 (ja) プリント配線基板およびその製造方法
JP2009038250A (ja) 伝導ノイズ抑制構造体および配線回路基板
Kim et al. Conduction noise absorption by ITO thin films attached to microstrip line utilizing Ohmic loss
JP2006279912A (ja) 近傍界電磁波ノイズ抑制材料
JP6334877B2 (ja) 電磁波ノイズ抑制体及び回路基板
JP5602045B2 (ja) 回路基板
JP2005251918A (ja) 電磁波ノイズ抑制体
JP2010073786A (ja) プリント配線板
JP2005122915A (ja) 電気コネクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859152

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13978848

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011859152

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137024473

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013143290

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013019978

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013019978

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130806