WO2012111749A1 - 太陽電池モジュール用裏面保護シート、その製造方法、および太陽電池モジュール - Google Patents

太陽電池モジュール用裏面保護シート、その製造方法、および太陽電池モジュール Download PDF

Info

Publication number
WO2012111749A1
WO2012111749A1 PCT/JP2012/053660 JP2012053660W WO2012111749A1 WO 2012111749 A1 WO2012111749 A1 WO 2012111749A1 JP 2012053660 W JP2012053660 W JP 2012053660W WO 2012111749 A1 WO2012111749 A1 WO 2012111749A1
Authority
WO
WIPO (PCT)
Prior art keywords
back surface
solar cell
protective sheet
cell module
sheet
Prior art date
Application number
PCT/JP2012/053660
Other languages
English (en)
French (fr)
Inventor
野口 克弘
直也 今井
理嗣 山地
Original Assignee
大倉工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大倉工業株式会社 filed Critical 大倉工業株式会社
Priority to JP2012558007A priority Critical patent/JPWO2012111749A1/ja
Publication of WO2012111749A1 publication Critical patent/WO2012111749A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a back surface protection sheet for a solar cell module, a manufacturing method thereof, and a solar cell module provided with the back surface protection sheet.
  • a solar cell module has a large number of plate-shaped power generating elements sandwiched between ethylene-vinyl acetate copolymers (hereinafter abbreviated as EVA) called sealing materials, and a front plate such as glass is placed on the side where the sunlight strikes.
  • EVA ethylene-vinyl acetate copolymers
  • a front plate such as glass is placed on the side where the sunlight strikes.
  • a back surface protection sheet for solar cell modules (hereinafter abbreviated as back surface protection sheet) is superposed in this order, and is integrally formed by a vacuum heating lamination method or the like.
  • the back surface protection sheet protects the power generation element and the sealing material, protects the power generation element from external mechanical shock and pressure, and expands and contracts even when the temperature changes during the assembly of the solar cell module or during use. Therefore, characteristics such as preventing the penetration of moisture and preventing the deterioration of the power generation element are required. Therefore, the back surface protection sheet has low thermal shrinkage and water vapor permeability, durability such that the back surface protection sheet itself does not delaminate even when left in high temperature and high humidity, and various properties such as not delamination at the sealing material interface Is required.
  • the heat shrinkage rate at 150 ° C. which is the temperature when the front plate, the power generating element and the back surface protection sheet are integrated using a sealing material, is 0.5% or less, and the water vapor transmission rate is 2.5 g.
  • a back surface protection sheet of / m 2 ⁇ day or less.
  • a backside protection sheet with a low heat shrinkage rate is desired when the front plate, power generation element and backside protection sheet are integrated using a sealing material, and when the solar cell module is exposed to the outdoors for a long period of time, the temperature changes.
  • the thermal contraction rate of the back surface protection sheet is large when repeated, stress is applied to the wiring connecting the power generating elements, which eventually becomes a fatal defect as a solar cell module that leads to disconnection. is there.
  • the back surface protection sheet is required to have low water vapor permeability in order to prevent deterioration of the power generation element due to moisture, while acetic acid generated by hydrolysis of EVA as a sealing material must be released to the outside of the solar cell module. Therefore, it is necessary to permeate a very small amount of acetic acid. Therefore, it is desired that the water vapor permeability of the back surface protective sheet is in the range of 0.5 g / m 2 ⁇ day to 2.5 g / m 2 ⁇ day.
  • thermoplastic resin used for the back surface protection sheet it is necessary to select a thermoplastic resin that does not require a stretching process for suppressing the heat shrinkage, has a heat resistance of 150 ° C. or higher, and has a low water vapor permeability. No back protective sheet made of a thermoplastic resin that satisfies these requirements has been proposed.
  • Patent Document 1 discloses a back surface protection sheet in which an aluminum vapor deposition layer is provided on both surfaces of a polyethylene terephthalate film as a base film to form a gas barrier sheet, and two gas barrier sheets are laminated with a polyurethane-based adhesive.
  • the adhesive layer may peel off when exposed to high temperature and high humidity for a long time.
  • polybutylene terephthalate having heat resistance similar to that of polyethylene terephthalate can provide a film that can be used practically without stretching, but in order to suppress the heat shrinkage rate, the molten resin extruded from the die is as low as possible. It was necessary to cool with a temperature-controlled cooling roll. At this time, in order to reduce the water vapor permeability, for example, if it is attempted to obtain a thick film having a thickness of 120 ⁇ m or more, it is difficult to uniformly contact the molten resin with the cooling roll over the entire width. When the portion in contact with the substrate is cooled and solidified, the adjacent portion is lifted, resulting in a problem that a smooth film cannot be obtained because the cooling rate is partially different.
  • Patent Document 2 discloses a density of 0.94 (g / cm 3 ) or more and 0.97 (g / cm 3 ) or less for the purpose of obtaining a back surface protection sheet having no risk of delamination and low water vapor permeability.
  • a protective sheet is disclosed.
  • This back protective sheet is intended to effectively prevent water vapor from penetrating by adding a flat filler to the polyethylene-based resin (moisture resistance), but because it is a single layer, there is no risk of delamination, There is a problem that the heat resistance is insufficient because it is made of a polyethylene resin.
  • Patent Document 3 discloses a resin film made of a resin composition containing a thermoplastic resin and a flat filler having an aspect ratio of 20 or more, wherein the thickness of the resin film is t, and the average particle diameter of the filler is A resin film characterized by containing 10 to 35% by weight of a filler having a relationship of 0.13 ⁇ (d / t) ⁇ 0.65 as d has been proposed.
  • a single-layer back surface protective sheet made of polyethylene, polypropylene, polycarbonate, acrylonitrile / butadiene / styrene copolymer, polyamide 6, polypropylene, or amorphous copolymerized polyethylene terephthalate is exemplified.
  • this back surface protection sheet is also intended to suppress the water vapor transmission rate, but it has been difficult to obtain a sheet that is heat resistant, non-stretched, and has a small thermal shrinkage rate.
  • the present invention has been made in view of the above problems, and there is no risk of delamination even when exposed to a high temperature and high humidity for a long period of time. It is an object to provide a method and a solar cell module using the method.
  • the present inventors have found that a novel back surface protective sheet having excellent characteristics can be obtained by forming a mixture of a polybutylene terephthalate resin and a flat filler into a sheet by a specific extrusion molding method.
  • the invention has been completed.
  • a solar cell comprising a resin composition containing a polybutylene terephthalate resin and a flat filler, and the blending ratio of the flat filler is 8% by weight to 40% by weight with respect to the weight of the resin composition
  • a back protection sheet for modules, the back protection sheet for solar cell modules is unstretched, has a thickness of 120 ⁇ m to 500 ⁇ m, and has a thermal shrinkage rate at 150 ° C. of 0 in both the vertical and horizontal directions.
  • the back surface protection sheet for solar cell modules characterized by being 5% or less is provided.
  • the present invention also provides (2) The back protective sheet for solar cell modules according to (1) above, wherein the polybutylene terephthalate resin has an intrinsic viscosity of 1.0 to 1.5, and (3) the back protective sheet is The resin composition is extruded from a flat die, and the extruded sheet is obtained by passing through a nip between a rubber roll and a metal roll having a surface set temperature in the range of 25 ° C. to 90 ° C., The back surface protection sheet for solar cell modules as described in (1) or (2) is provided.
  • the present invention further provides: (4) A resin composition comprising a polybutylene terephthalate-based resin and a flat filler, wherein the mixing ratio of the flat filler is 8% by weight to 40% by weight with respect to the weight of the resin composition
  • the solar cell module according to (1) wherein the composition is extruded from a flat die, and the extruded sheet is passed through a nip between a rubber roll and a metal roll having a surface set temperature in the range of 25 ° C. to 90 ° C.
  • the said rubber roll is a silicone rubber roll, The manufacturing method as described in said (4) characterized by the above-mentioned.
  • the present invention further provides: (6) Provided is a solar cell module in which a power generation element is protected by the back surface protection sheet for solar cell module described in (1) above.
  • the back surface protective sheet of the present invention has the structure of (1) above, it is a thick sheet excellent in appearance, and as a result, there is no risk of delamination even if exposed for a long time under high temperature and high humidity, The water vapor permeability is low, the thermal contraction rate is small, the melt adhesiveness with the sealing material is good, and there is an effect that it does not peel at the interface.
  • the manufacturing method of the back surface protection sheet of this invention has the structure of said (4), it can manufacture the sheet
  • the solar cell module of this invention can maintain the characteristic, without causing deterioration of an electric power generation element over a long period of time by using the back surface protection sheet of said (1).
  • FIG. 1 is a schematic side view showing a method for producing a back surface protective sheet of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing one embodiment of the solar cell module of the present invention.
  • the resin composition constituting the back protective sheet of the present invention contains a polybutylene terephthalate resin and a flat filler as essential components.
  • a polybutylene terephthalate resin a homopolymer of polybutylene terephthalate or a copolymer thereof (hereinafter, both are abbreviated as PBT) is preferable.
  • PBT polybutylene terephthalate resin
  • what mixed a small amount of resin, such as a polycarbonate and a polyethylene terephthalate, to PBT can also be mentioned.
  • PBT examples include polybutylene terephthalate homopolymer obtained by polycondensation of 1,4-butanediol and terephthalic acid, polycondensation of 1,4-butanediol and lower alkyl ester of terephthalic acid, Polybutylene terephthalate copolymer in which part of butylene glycol is replaced with ethylene glycol, propylene glycol, or cyclohexanedimethanol, or part of terephthalic acid is replaced with isophthalic acid, 2,6-naphthalenedicarboxylic acid, or adipic acid PBT obtained by any method can be used.
  • the intrinsic viscosity of the PBT used in the present invention is preferably 0.6 to 1.6, and more preferably 1.0 to 1.5.
  • the intrinsic viscosity of PBT is 0.6 or more, the molten resin extruded from the flat die does not hang down by its own weight even when trying to obtain a back protection sheet having a thickness of 120 ⁇ m or more. A sheet is easily obtained.
  • the intrinsic viscosity is 1.6 or less, the fluidity of the melted PBT in the extruder or in the flat die is improved.
  • the solar cell module is required to stably convert solar energy into electric energy over a long period of time, and the back surface protection sheet is required not to significantly deteriorate its characteristics over a long period of time.
  • PBT contains an ester bond, which causes hydrolysis due to moisture, resulting in a decrease in molecular weight. If used over a long period of time, the physical properties may decrease. Therefore, the PBT used in the present invention preferably has a small number of terminal carboxyl groups that hardly undergo hydrolysis even under high temperature and high humidity. Specifically, the carboxyl group equivalent is 40 meq / kg or less, more preferably PBT of 30 meq / kg or less is preferably used.
  • the resin composition constituting the back surface protective sheet of the present invention includes, as necessary, carbodiimide for suppressing hydrolysis, phenol-based, phosphorus-based, sulfur for preventing thermal deterioration during melt processing into a sheet. It is also possible to add one or more additives such as antioxidants, UV absorbers and light stabilizers, anti-blocking agents, colorants, flame retardants to prevent deterioration due to ultraviolet rays contained in sunlight. it can.
  • Examples of the flat filler used in the present invention include inorganic fillers such as talc, mica, clay, montmorillonite, smectite, hydrotalcite, vermiculite, and graphite, and these may be used alone or in combination of two or more. May be. These flat fillers preferably have an average diameter of 1 to 100 ⁇ m and an aspect ratio of 20 to 500. When the average diameter is 1 ⁇ m or more, excellent dispersibility can be obtained when mixed with PBT. On the other hand, if it is 100 micrometers or less, the surface roughness of the surface of the obtained back surface protection sheet will not become large.
  • inorganic fillers such as talc, mica, clay, montmorillonite, smectite, hydrotalcite, vermiculite, and graphite, and these may be used alone or in combination of two or more. May be.
  • These flat fillers preferably have an average diameter of 1 to 100 ⁇ m and an aspect ratio of 20 to 500. When the average diameter is 1
  • the aspect ratio is 20 or more, the effect of suppressing the heat shrinkage rate of the obtained back surface protection sheet is great, and the effect of lowering the water vapor permeability is great, so that the object of the present invention can be achieved.
  • the aspect ratio is 500 or less, the flat fillers are not entangled with each other, and the dispersibility to PBT is good.
  • the “average diameter of the flat filler” is the volume average diameter of the flat filler measured by a laser diffraction method.
  • the “aspect ratio of the flat filler” is the average diameter and the average thickness obtained by measuring the average diameter and the average thickness from 100 scanning electron micrographs of the flat filler. This is the ratio obtained by dividing.
  • the blending ratio of the above flat filler should be 8 to 40% by weight of the weight of the resin composition.
  • a preferred mixing ratio is 10 to 35% by weight.
  • the mixing ratio of the flat filler is less than 8% by weight, it is not preferable because the heat shrinkage rate of the obtained back surface protection sheet is not reduced.
  • the content exceeds 40% by weight, the obtained back surface protection sheet becomes brittle and extruded. This is not preferable because the properties deteriorate.
  • the thickness of the back surface protective sheet of the present invention is 120 ⁇ m to 500 ⁇ m, preferably 150 ⁇ m to 400 ⁇ m. If the thickness of the back surface protection sheet is less than 120 ⁇ m, a plate-shaped filler exceeding 40% by weight must be blended in order to obtain a predetermined water vapor permeability. If it exceeds 500 ⁇ m, it is difficult not only to wind the back surface protective sheet after extrusion molding, but also disadvantageous in terms of cost.
  • the resin composition used in the present invention can be produced using an ordinary kneader such as a single-screw extruder, a twin-screw kneader, a Banbury mixer or a kneader capable of side feed.
  • an ordinary kneader such as a single-screw extruder, a twin-screw kneader, a Banbury mixer or a kneader capable of side feed.
  • the resin composition obtained by the above method is supplied to an extruder equipped with a flat die 1, and the molten resin composition is supplied to the flat die 1.
  • the surface setting temperature of the metal roll is preferably in the range of 25 ° C to 90 ° C.
  • it can manufacture by co-extrusion from the flat die which connected the some extruder. Co-extrusion can be performed by, for example, a known T-die method.
  • the back surface protective sheet of the present invention is preferably formed by nip roll molding of a molten PBT mixture extruded from a flat die with a metal roll and a rubber roll whose surface set temperature is in the range of 25 ° C. to 90 ° C.
  • the surface setting temperature of the metal roll is lower than 25 ° C.
  • the resin melted on the surface of the metal roll is rapidly cooled, so that the part in contact with the metal roll is cooled and solidified due to contact unevenness, and the adjacent part floats, Furthermore, a phenomenon that the PBT mixture is taken to the rubber roll occurs, and a smooth back surface protection sheet cannot be obtained.
  • the obtained back surface protection sheet is difficult to release from the surface of the metal roll, and the horizontal stripe perpendicular to the take-off direction (longitudinal direction: MD) called a peeling mark. Is not preferable.
  • the surface of the metal roll is obtained when an attempt is made to obtain a back surface protection sheet having a thickness of 120 ⁇ m or more.
  • the set temperature is in the range of 25 ° C. to 90 ° C.
  • the contact with the metal roll is not uniform, and the cooling rate is partially different, so that a smooth back surface protective sheet cannot be obtained.
  • the molten PBT mixture extruded from the flat die is forcibly brought into contact with the metal roll using means such as an air chamber or pinning, the contact with the metal roll is not uniform and the back surface is protected smoothly. I can't get a sheet.
  • any of a chrome plating roll, a ceramic sprayed roll, and the like may be used.
  • a metal roll subjected to a plating treatment or a thermal spraying treatment after imparting a fine uneven shape to the surface by means of sandblasting or the like is suitable. Used for.
  • a metal roll having a double tube structure for circulating a heat medium such as water or oil whose temperature is adjusted.
  • the rubber used for the rubber roll synthetic rubber such as silicone rubber, fluorine rubber, butadiene rubber and isoprene rubber can be used, and silicone rubber is preferable from the viewpoint of heat resistance, releasability and cost. Moreover, since the temperature of the rubber roll surface rises when the back surface protection sheet is continuously produced, it is preferable to adjust the temperature of the rubber roll by circulating water or oil therein.
  • the back surface protective sheet of the present invention uses PBT, so that the crystallization speed is high, and it has characteristics and appearance that can be put to practical use without performing a stretching treatment. Furthermore, since the thickness is 120 ⁇ m or more without using an adhesive, there is no risk of delamination even when exposed to high temperature and high humidity for a long time, and there is a feature that the thermal shrinkage rate is small and the water vapor permeability is low, Since it can be used as it is as a back protective sheet without stretching, it also has the effect that secondary processing called stretching is unnecessary after film formation.
  • the heat shrinkage rate at 150 ° C. of the back surface protective sheet is 0.5 in both the take-up direction (longitudinal direction (MD) and synonymous with the extrusion direction) when producing the back surface protective sheet and the direction orthogonal to it (transverse direction: TD). % Or less, and more preferably 0.4% or less.
  • the thermal shrinkage rate at 150 ° C exceeds 0.5%, when the solar cell is integrally formed by a vacuum heating lamination method or the like, the solar cell is warped due to the thermal shrinkage of the back surface protection sheet, or the sealing material and the back surface This is not preferable because problems such as internal stress occur at the interface with the protective sheet and further at the interface between the power generation element and the sealing material.
  • the back surface protective sheet of the present invention can be colored in any color by blending a colorant.
  • coloring the back surface protection sheet it is preferable to color it white or black.
  • a white pigment such as titanium oxide is blended.
  • coloring it black a black pigment such as carbon black is blended. Is preferred.
  • a back surface protection sheet is colored white, while being able to improve the conversion efficiency of the solar cell module from a solar energy to an electrical energy, the effect that the weather resistance of a back surface protection sheet improves is acquired.
  • a back protective sheet colored in black in design is preferred.
  • the back surface protective sheet of the present invention can be a multilayer in which a specific layer is colored, and even in that case, since the PBT-containing resin composition is used for all layers, the film is formed by the coextrusion method.
  • the linear expansion coefficient and thermal contraction rate are almost the same, almost no internal stress is generated between the layers, the interlaminar adhesion is extremely good, and there is an effect that delamination does not occur even when exposed for a long time under high temperature and high humidity.
  • Specific examples of the layer structure include a transparent layer / colored layer and a transparent layer / colored layer / transparent layer.
  • the transparent layer refers to a layer that does not contain a pigment for coloring.
  • FIG. 2 shows an example of a solar cell module using the back surface protective sheet obtained in this way.
  • the solar cell module 10 illustrated in FIG. 2 includes a front plate 11, a sealing material 13, a power generation element 12, a sealing material 13, and a back surface protection sheet 14, and has a structure in which these are integrated in this order.
  • Examples 1 to 9 Supplying a resin composition comprising PBT-A and MB-A or MB-B obtained in Master Batch Production Examples 1 and 2 to a single-layer film forming apparatus so as to achieve the blending ratio shown in Table 1. And then extruding from a flat die, and sandwiching between a rubber roll (covered with silicone rubber) and a metal roll (ceramic sprayed roll) with a set surface temperature of 70 ° C. to form a nip roll, thereby obtaining a single-layer back protection sheet It was.
  • Table 1 shows the thickness, appearance, thermal shrinkage, and water vapor permeability of the obtained back surface protective sheet.
  • Example 10 and 11 Master batch (titanium oxide content: 50% by weight) of 54 parts by weight of MB-B and 26 parts by weight of PBT-A obtained in Master Batch Production Example 2 and titanium oxide (average particle size: 26 ⁇ m, true specific gravity: 4) ) A resin composition consisting of 20 parts by weight was supplied to a single-layer film-forming apparatus, and backside protective sheets having a thickness of 250 ⁇ m and 300 ⁇ m were obtained in the same manner as in Example 1. Table 1 shows the thickness, appearance, thermal shrinkage, and water vapor permeability of the obtained back surface protective sheet.
  • Example 12 Resin composition comprising 60 parts by weight of MB-B obtained in Masterbatch Production Example 2, 34 parts by weight of PBT-A, and 6 parts by weight of a polyester-based thermoplastic elastomer (PBT using polytetramethylene glycol as part of tetramethylene glycol)
  • PBT polytetramethylene glycol
  • Example 1 shows the thickness, appearance, thermal shrinkage, and water vapor permeability of the obtained back surface protective sheet.
  • the back surface protection sheets obtained in Examples 1 to 12 were formed without stretching the PBT, and the blending ratio of the flat filler was 8 to 40% by weight and the thickness was 120 to 500 ⁇ m, MD and TD both have a thermal shrinkage ratio of 0.5% or less, and the water vapor permeability is in the range of 0.5 g / m 2 ⁇ day to 2.5 g / m 2 ⁇ day. It has excellent characteristics.
  • the back surface protection sheets obtained in Comparative Examples 1 and 2 are blended with 10% by weight of titanium oxide, which is an inorganic filler, but are not flat fillers, so the heat shrinkage rate is large and the water vapor permeability is high. It was unsuitable as a protective sheet.
  • the back surface protection sheets obtained in Comparative Examples 3 and 4 have a low water shrinkage due to the thin thickness because the flat shrinkage is mixed, but the back surface protection sheet has a high water vapor permeability. However, it did not have the desired characteristics.

Abstract

【課題】高温高湿下に長期間暴露されても層間剥離の恐れがなく、熱収縮率が小さく、水蒸気透過度が低い裏面保護シート、その製造方法、及びそれを用いた太陽電池モジュールを提供する 【解決手段】ポリブチレンテレフタレート系樹脂と8重量%~40重量%の平板状充填材とを含む樹脂組成物からなる太陽電池モジュール用裏面保護シートであって、該太陽電池モジュール用裏面保護シートは無延伸であるととともに、厚さが120μm~500μmであり、且つ、150℃における熱収縮率が縦方向、横方向共に0.5%以下であることを特徴とする太陽電池モジュール用裏面保護シート;上記樹脂組成物をフラットダイより押出し、ゴムロールと表面設定温度が25℃~90℃の範囲にある金属ロールとでニップロール成形することからなる保護シートの製造方法;及び該保護シートを用いた太陽電池モジュール。

Description

太陽電池モジュール用裏面保護シート、その製造方法、および太陽電池モジュール
 本発明は、太陽電池モジュール用裏面保護シート、その製造方法、およびこの裏面保護シートを備えた太陽電池モジュールに関するものである。
 近年、環境問題への意識の高まりにより、クリーンエネルギーを利用した発電手段の一つとして、太陽電池モジュールを備えた太陽光発電システムが普及している。太陽電池モジュールは、多数配置された板状の発電素子を封止材と呼ばれるエチレン-酢酸ビニル共重合体(以下、EVAと略記する)で挟み込み、太陽光が当る側にガラスなどの前面板が、反対側には太陽電池モジュール用裏面保護シート(以下、裏面保護シートと略記する)がこの順に重ね合わされたものであり、真空加熱ラミネーション法などにより一体成形されている。
 裏面保護シートは、発電素子や封止材を保護するものであって、外部からの機械的衝撃、圧力から発電素子を保護し、太陽電池モジュール組立時の温度変化や使用時の温度変化でも伸縮せず、水分の浸透を防いで発電素子の劣化を防ぐなどの特性が要求されている。そのため、裏面保護シートは、熱収縮率および水蒸気透過度が低く、高温高湿中に長期間放置されても裏面保護シート自身が層間剥離しない耐久性、封止材界面で剥離しない等の諸特性が要求されている。
 具体的には、封止材を用いて前面板、発電素子および裏面保護シートを一体化する時の温度である150℃での熱収縮率が0.5%以下、水蒸気透過度が2.5g/m・day以下の裏面保護シートが要望されている。熱収縮率が小さい裏面保護シートが要望されるのは、封止材を用いて前面板、発電素子および裏面保護シートを一体化する際および太陽電池モジュールが長期間屋外に暴露され気温の変動が繰返し起こる際、裏面保護シートの熱収縮率が大きいと発電素子間を接続している配線に応力がかかり、最終的には断線に到たるという太陽電池モジュールとしての致命的な欠陥となるからである。このように、裏面保護シートの熱収縮率が小さいことは、非常に重要な特性である。
 一方、裏面保護シートは、水分による発電素子の劣化を防ぐために水蒸気透過度が低い事が求められる一方、封止材であるEVAの加水分解により生じる酢酸を太陽電池モジュール外へ放出しなければならないため、極微量の酢酸を透過させる必要がある。したがって、裏面保護シートの水蒸気透過度は0.5g/m・day~2.5g/m・dayの範囲であることが要望されている。
 裏面保護シートに用いられる熱可塑性樹脂としては、熱収縮率を抑えるための延伸加工が不要なこと、150℃以上の耐熱性を有すること、さらに水蒸気透過度が低いものを選定する必要があるが、これらを同時に満足する熱可塑性樹脂よりなる裏面保護シートは提案されていない。
 特許文献1には、基材フィルムであるポリエチレンテレフタレートフィルムの両面へアルミニウム蒸着層を設けてガスバリア性シートとし、ポリウレタン系接着剤で2枚のガスバリア性シートを積層した裏面保護シートが開示されているが、当該接着剤層は高温高湿下に長時間暴露されると剥離する恐れがあった。
 一方、ポリエチレンテレフタレートと同様な耐熱性を有するポリブチレンテレフタレートは、延伸することなく実用に供しうるフィルムが得られるものの、熱収縮率を抑えるためにはダイスから押出された溶融樹脂を可能な限り低い温度に制御された冷却ロールで冷却する必要があった。この際、水蒸気透過度を低下させるために、例えば120μm以上の厚みの厚いフィルムを得ようとすると、溶融した樹脂を全幅に渡って均一に同時に冷却ロールへ接触させるのが難しく、先に冷却ロールに接触した部分が冷却され固化すると、その隣接部分に浮きが生じ、結果として部分的に冷却速度が異なるため平滑なフィルムが得られないという問題があった。
 また、特許文献2には、層間剥離の恐れがなく水蒸気透過度が低い裏面保護シートを得る目的で、密度0.94(g/cm)以上、0.97(g/cm)以下のポリエチレン系樹脂に平板状充填剤を添加した配合物からなる耐環境性能と防湿性(低い水蒸気透過度)を有し、EVAとの接着性に優れた厚さ150μmの単層で未延伸の裏面保護シートが開示されている。この裏面保護シートはポリエチレン系樹脂に平板状充填材を添加することにより水蒸気の効果的な侵入防止(防湿性)を目的としたものであり、単層であるため層間剥離の恐れはないものの、ポリエチレン系樹脂からなるため耐熱性が不充分であるという問題があった。
 また、特許文献3には、熱可塑性樹脂とアスペクト比20以上の平板状充填剤を含む樹脂組成物よりなる樹脂フィルムであって、該樹脂フィルムの厚さをt、充填剤の平均粒径をdとして0.13<(d/t)<0.65の関係にある充填剤を10~35重量%含むことを特徴とする樹脂フィルムが提案されている。そして、ポリエチレン、ポリプロピレン、ポリカーボネート、アクリロニトリル・ブタジエン・スチレンコポリマー、ポリアミド6、ポリプロピレンまたは非晶性共重合ポリエチレンテレフタレートよりなる単層の裏面保護シートが例示されている。しかしながら、この裏面保護シートも水蒸気透過度を抑えることを目的としたものであるが、耐熱性があって、且つ無延伸で熱収縮率が小さいシートを得るのは困難であった。
特開2005-322687号公報 特開平11-261085号公報 特開2003-138141号公報
 本発明は以上のような問題に鑑みなされたもので、高温高湿下に長期間暴露されても層間剥離の恐れがなく、熱収縮率が小さく、水蒸気透過度が低い裏面保護シート、その製造方法、及びそれを用いた太陽電池モジュールを提供することを課題とする。
 本発明者らは、ポリブチレンテレフタレート系樹脂と平板状充填材との混合物を、特定の押出し成形法でシートとすることにより優れた特性を有する新規の裏面保護シートが得られることを見出し、本発明を完成するに到った。
 すなわち、本発明によれば、
(1)ポリブチレンテレフタレート系樹脂と平板状充填材とを含む樹脂組成物からなり、該平板状充填材の配合割合が樹脂組成物の重量に対して8重量%~40重量%である太陽電池モジュール用裏面保護シートであって、該太陽電池モジュール用裏面保護シートは無延伸であるととともに、厚さが120μm~500μmであり、且つ、150℃における熱収縮率が縦方向、横方向共に0.5%以下であることを特徴とする太陽電池モジュール用裏面保護シート、が提供される。
 本発明は、また、
(2)前記ポリブチレンテレフタレート系樹脂の固有粘度が1.0~1.5であることを特徴とする上記(1)記載の太陽電池モジュール用裏面保護シート、及び
(3)前記裏面保護シートは、前記樹脂組成物をフラットダイより押出し、押出したシートをゴムロールと表面設定温度が25℃~90℃の範囲にある金属ロールとの間のニップを通過させることにより得られたものである、上記(1)又は(2)記載の太陽電池モジュール用裏面保護シート、を提供する。
 本発明は、更に、
(4)ポリブチレンテレフタレート系樹脂と平板状充填材とを含む樹脂組成物であって、該平板状充填材の配合割合が樹脂組成物の重量に対して8重量%~40重量%である樹脂組成物をフラットダイより押出し、押出したシートをゴムロールと表面設定温度が25℃~90℃の範囲にある金属ロールの間のニップを通過させることからなる、上記(1)に記載の太陽電池モジュール用裏面保護シートの製造方法、及び
(5)前記ゴムロールがシリコーンゴムロールであることを特徴とする上記(4)に記載の製造方法、を提供する。
 本発明は、更に、
(6)上記(1)記載の太陽電池モジュール用裏面保護シートで発電素子を保護したことを特徴とする太陽電池モジュール、を提供する。
 本発明の裏面保護シートは、上記(1)の構成を有することから、外観に優れた厚物のシートであり、結果として高温高湿下に長期間暴露されても層間剥離の恐れがなく、水蒸気透過度が低く、熱収縮率が小さく、封止材との溶融接着性が良好で、その界面で剥離しないという効果を有する。また、本発明の裏面保護シートの製造方法は上記(4)の構成を有することから、外観に優れた厚物のシートが製造でき、さらには押出し成形の金属ロールの表面設定温度を低くしなくても熱収縮率が小さいシートが得られる。更に、本発明の太陽電池モジュールは、上記(1)の裏面保護シートを用いることにより、長期間にわたって発電素子の劣化を引き起こすことなく、その特性を維持することができる。
図1は本発明の裏面保護シートの製造方法を示す模式的側面図である。 図2は本発明の太陽電池モジュールの一実施形態を示す模式的断面図である。
 以下、本発明の裏面保護シート、その製造方法、および太陽電池モジュールについて詳細に説明する。
 本発明の裏面保護シートを構成する樹脂組成物は、ポリブチレンテレフタレート系樹脂と平板状充填材を必須成分として含有する。ポリブチレンテレフタレート系樹脂としては、ポリブチレンテレフタレートのホモポリマーやその共重合体(以下、両方を併せてPBTと略記する)が好ましい。また、PBTへポリカーボネートやポリエチレンテレフタレートなどの樹脂を少量混合したものも挙げることができる。
 PBTとしては、1,4-ブタンジオールとテレフタル酸とを重縮合させる方法、1,4-ブタンジオールとテレフタル酸の低級アルキルエステルとを重縮合させる方法などで得られるポリブチレンテレフタレートホモポリマーや、ブチレングリコールの一部をエチレングリコール、プロピレングリコール、またはシクロヘキサンジメタノールに置き換えたり、テレフタル酸の一部をイソフタル酸、2,6-ナフタレンジカルボン酸、またはアジピン酸に置き換えたりしたポリブチレンテレフタレート共重合体があり、いずれの方法で得られたPBTでも用いることができる。本発明で用いられるPBTの固有粘度は0.6~1.6が好ましく、さらには1.0~1.5が好ましい。PBTの固有粘度が0.6以上の場合は、厚さ120μm以上の裏面保護シートを得ようとしても、フラットダイから押出された溶融樹脂が自重で垂れることがなく、厚さが均一な裏面保護シートが容易に得られる。固有粘度が1.6以下の場合は、押出し成形する際に溶融させたPBTの押出し機内やフラットダイ内での流動性が良好となる。
 太陽電池モジュールは、長期に渡って安定的に太陽エネルギーを電気エネルギーに変換することが求められており、裏面保護シートには、長期に渡ってその特性が大きく低下しないことが求められる。PBTはエステル結合を含有しており、水分により加水分解を起こして分子量が低下し、長期に渡って使用すると物性が低下する恐れがある。したがって、本発明に用いられるPBTは、高温高湿下においても加水分解が起こり難くい末端のカルボキシル基の数が少ないものが好ましく、具体的には、カルボキシル基当量が40meq/kg以下、更に好ましくは30meq/kg以下のPBTが好適に使用される。
 本発明の裏面保護シートを構成する樹脂組成物には、必要に応じて、加水分解を抑制するためのカルボジイミド、シート状に溶融加工する際の熱劣化を防ぐためのフェノール系、リン系、イオウ系などの酸化防止剤、太陽光に含まれる紫外線による劣化を防ぐための紫外線吸収剤や光安定剤、アンチブロッキング剤、着色剤、難燃剤などの添加剤を一種または複数種を添加することもできる。
 本発明に用いられる平板状充填材としては、タルク、マイカ、クレイ、モンモリロナイト、スメクタイト、ハイドロタルサイト、バーミキュライト、黒鉛等の無機充填剤が挙げられ、これらを単独で、あるいは二種以上を併用してもよい。これら平板状充填材の平均径は1~100μmが好ましく、アスペクト比は20~500が好ましい。平均径が1μm以上であればPBTと混合する際優れた分散性が得られる。一方、100μm以下であれば、得られる裏面保護シート表面の表面粗さが大きくならない。また、アスペクト比が20以上の場合は得られる裏面保護シートの熱収縮率を抑える効果が大きく、水蒸気透過度を低くする効果が大きいため本発明の目的を達成することができる。一方、アスペクト比が500以下であると、平板状充填材同士が絡まりあうことがなく、PBTへの分散性が良い。ここで、「平板状充填材の平均径」とは、レーザー回折法により測定される平板状充填材の体積平均径である。また、「平板状充填材のアスペクト比」とは、100個の平板状充填材の走査型電子顕微鏡写真から平均径と平均厚さを測定し、次に得られた平均径を平均厚さで割ることにより算出して得られる比である。
 上記平板状充填材の配合割合は、樹脂組成物の重量の8~40重量%が必要である。好ましい配合割合は10~35重量%である。平板状充填材の配合割合が8重量%未満の場合は、得られる裏面保護シートの熱収縮率が小さくならないので好ましくなく、40重量%を超えると得られた裏面保護シートが脆くなると共に押出し成形性が悪くなるので好ましくない。
 本発明の裏面保護シートの厚みは、120μm~500μmであるが、好ましくは150μm~400μmである。裏面保護シートの厚みが120μm未満の場合は所定の水蒸気透過度を得ようとすると40重量%を超える平板状充填材を配合しなければならず、押出し成形が困難となり、裏面保護シートの厚みが500μmを超えると押出し成形後に裏面保護シートを巻き取るのが困難となるばかりでなく、コスト的にも不利となる。
 次に、裏面保護シートの製造方法について説明する。本発明に用いられる樹脂組成物は、サイドフィードが可能な単軸押出し機、二軸混練機、あるいはバンバリーミキサー、ニーダーなどの通常の混練機を用いて製造することができる。
 本発明の裏面保護シートを得るには、図1に示すように、上記方法により得られた樹脂組成物をフラットダイ1が装着された押出し機へ供給し、溶融した樹脂組成物をフラットダイ1から吐出させ、吐出した樹脂組成物を金属ロール2とゴムロール3とで構成されるニップロールで引き取るニップロール成形をすることにより、外観が良好な厚みのある裏面保護シート4を得ることができる。その際、金属ロールの表面設定温度は25℃~90℃の範囲が好ましい。なお、後述する多層構造を有する裏面保護シートを得るには、複数の押出し機を連結したフラットダイより共押出して製造することができる。共押出は、例えば、公知のT-ダイ法により行うことができる。
 上述のように、本発明の裏面保護シートはフラットダイから押出された溶融状態のPBT混合物を表面設定温度が25℃~90℃の範囲にされた金属ロールとゴムロールでニップロール成形するのが好ましい。金属ロールの表面設定温度が25℃を下回ると、金属ロール表面で溶融した樹脂が急冷されるため、接触ムラにより金属ロールに接触した部分が冷却・固化し、その隣接部分に浮きが生じて、さらにPBT混合物がゴムロールへ取られる現象が生じ、平滑な裏面保護シートが得られない。一方、金属ロールの表面設定温度が90℃を超える場合は、得られた裏面保護シートが金属ロール表面から離型し難く、引き剥がし痕と呼ばれる引取り方向(縦方向:MD)に垂直な横筋が生じるので好ましくない。
 平板状充填材を配合していないPBTの場合は、当該金属ロールの表面設定温度を低くしないと熱収縮率の小さい裏面保護シートが得られず、熱収縮率の小さい裏面保護シートを得たい場合は金属ロールの表面設定温度を可能な限り低く設定する必要があるが、金属ロールの表面設定温度を低くしすぎると前述の如く平滑な裏面保護シートが得られない。しかしながら、本発明のPBT混合物を用いた場合は、金属ロールの表面設定温度が上記範囲の高温側であっても熱収縮率を小さく抑えることができ、金属ロールの表面設定温度の選択幅を広くできるという効果も有する。
 なお、フラットダイから押出された溶融状態のPBT混合物を、ゴムロールを用いず金属ロールのみに沿わせて押出し成形した場合は、厚さ120μm以上の裏面保護シートを得ようとすると、金属ロールの表面設定温度を25℃~90℃の範囲としても、金属ロールへの接触が不均一となって部分的に冷却速度が異なり平滑な裏面保護シートを得ることができない。また、フラットダイから押出された溶融状態のPBT混合物をエアチャンバーやピニング等の手段を用いて強制的に金属ロールに接触させても、金属ロールへの接触が均一とはならず平滑な裏面保護シートを得ることができない。
 金属ロールとしては、クロムメッキロール、セラミック溶射ロール等のいずれを用いても良く、好ましくはサンドブラスト等の手段で表面に微細な凹凸形状を付与した後メッキ処理や溶射処理を行った金属ロールが好適に用いられる。さらには、上記金属ロール表面の温度を制御するために、温調された水やオイル等の熱媒体を循環させるための二重管構造とした金属ロールを用いるのが好ましい。
 ゴムロールに用いられるゴムとしては、シリコーンゴム、フッ素ゴム、ブタジエンゴム、イソプレンゴム等の合成ゴムを使用することができ、耐熱性、離型性、コストなどの観点からシリコーンゴムが好ましい。また、裏面保護シートを連続生産するとゴムロール表面の温度が上昇するので、ゴムロールもその内部へ水やオイルを循環させて温度を調整するのが好ましい。
 本発明の裏面保護シートは、PBTを用いているために結晶化速度が速く、延伸処理をしなくても実用に供し得る特性と外観を有している。さらに、接着剤を用いることなく厚さ120μm以上としているため、長期間高温高湿度下に暴露されても層間剥離の恐れがなく、熱収縮率が小さく、水蒸気透過度も低いという特徴があり、延伸することなくそのまま裏面保護シートとして使用することができるため、製膜後に延伸という二次加工が不要であるという効果をも有する。
 裏面保護シートの150℃における熱収縮率は、裏面保護シートを製造する際の引取り方向(縦方向(MD)、押出し方向と同義)、それに直交する方向(横方向:TD)共に0.5%以下であり、更には0.4%以下が好ましい。150℃における熱収縮率が0.5%を超える場合は、真空加熱ラミネーション法などで太陽電池を一体成形する際、裏面保護シートの熱収縮により太陽電池に反りが生じたり、封止材と裏面保護シートとの界面で、さらには発電素子と封止材界面で内部応力が発生したりするなどの不具合を生じるので好ましくない。
 また、本発明の裏面保護シートは着色剤を配合して任意の色に着色することもできる。裏面保護シートを着色する場合は、白色、または黒色に着色するのが好ましく、白色に着色する場合は酸化チタンなどの白色顔料を、黒色に着色する場合はカーボンブラックなどの黒色顔料を配合するのが好ましい。なお、裏面保護シートは白色に着色することにより、太陽エネルギーから電気エネルギーへの太陽電池モジュールの変換効率を向上させることができると共に、裏面保護シートの耐候性が向上するという効果が得られる。一方、太陽電池モジュールを屋根等に設置する場合は、デザイン的に黒色に着色した裏面保護シートが好まれる。
 本発明の裏面保護シートは、特定の層を着色した多層とすることもでき、その場合であっても全層にPBT含有樹脂組成物を用い共押出し法で製膜しているので、各層の線膨張係数や熱収縮率がほぼ同じで層間の内部応力がほとんど発生せず、層間接着性が極めてよく、高温高湿下に長期間暴露しても層間剥離が生じないという効果を有する。具体的な層構成としては、透明層/着色層、透明層/着色層/透明層が挙げられる。特に、着色したPBT混合物を単層で製膜するとメヤニの発生の恐れがある場合は、表層に透明層を配することでメヤニの発生を防止できるという効果を有する。ここで、透明層とは、着色のための顔料等を含有しない層のことを示す。
 このようにして得られた裏面保護シートを用いた太陽電池モジュールの一例を図2に示す。図2に例示した太陽電池モジュール10は、前面板11、封止材13、発電素子12、封止材13、裏面保護シート14からなり、をこの順に一体化した構造を有する。
 以下に、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。なお、特性の評価は次の方法で行った。
(1)固有粘度の測定
 PBTをo-クロロフェノールに溶解し、ウヴェローデ型粘度計を用いて35℃で測定することにより、固有粘度を求めた。
(2)水蒸気透過度
 水蒸気透過度は、ASTM F1249-01の赤外線センサー法に準じ、下記の条件で測定した。
 透過セルの温度:37.8℃
 高湿度セルの相対湿度:90%(加湿窒素ガス)
 低湿度セルの相対湿度:0%(乾燥窒素ガス)
(3)熱収縮率
 縦200mm、横200mmのシートの中央部に約100mmの間隔で標点を付け、次いで150℃に保持された熱風乾燥機にこの試験片を入れ、30分間加熱した後取り出し、室温に30分間放置してから標点間距離を測定して、次式により裏面保護シートの引取り方向(縦方向:MD)およびそれに垂直な方向(横方向:TD)の熱収縮率を算出した。
 
 熱収縮率(%)=[(加熱前の標点間間隔-加熱後の標点間間隔)/加熱前の標点間間隔]×100
 
[マスターバッチ製造例1]
 サイドフィーダーを装着した二軸混練機を用い、ホッパーからポリブチレンテレフタレートホモポリマー(固有粘度:1.1、カルボキシル基当量:7meq/kg、比重:1.31、以下、PBT-Aと略記する)を、サイドフィーダーから平板状充填材であるマイカA(平均径:47μm、アスペクト比:85、真比重:3)を供給し、溶融混練することにより、マイカAの配合割合が50重量%のマスターバッチ(MB-A)を得た。
[マスターバッチ製造例2]
 マイカAをマイカB(平均径:23μm、アスペクト比:70、真比重:3)に変えた以外はマスターバッチ製造例1と同様にして、マイカBの配合割合が50重量%のマスターバッチ(MB-B)を得た。
[実施例1~9]
 表1に示す配合割合となるように、PBT-Aと、上記マスターバッチ製造例1、2で得られたMB-AまたはMB-Bとからなる樹脂組成物を単層の製膜装置へ供給してフラットダイより押出した後、ゴムロール(シリコーンゴムで被覆)と表面設定温度を70℃とした金属ロール(セラミック溶射ロール)とで挟み込んでニップロール成形することにより、単層の裏面保護シートを得た。得られた裏面保護シートの厚さ、外観、熱収縮率、水蒸気透過度を表1に示す。
[実施例10、11]
 マスターバッチ製造例2で得られたMB-Bを54重量部、PBT-Aを26重量部および酸化チタン(平均粒子径:26μm、真比重:4)のマスターバッチ(酸化チタン含量:50重量%)20重量部からなる樹脂組成物を単層の製膜装置へ供給し、実施例1と同様にして厚さ250μmおよび300μmの裏面保護シートを得た。得られた裏面保護シートの厚さ、外観、熱収縮率、水蒸気透過度を表1に示す。
[実施例12]
 マスターバッチ製造例2で得られたMB-B60重量部、PBT-A34重量部およびポリエステル系熱可塑性エラストマー(テトラメチレングリコールの一部としてポリテトラメチレングリコールを用いたPBT)6重量部からなる樹脂組成物を製膜装置へ供給し、実施例1と同様にして単層の裏面保護シートを得た。得られた裏面保護シートの厚さ、外観、熱収縮率、水蒸気透過度を表1に示す。
[比較例1、2]
 フラットダイを装着した単層の製膜装置へ、PBT-A80重量部、酸化チタン(平均粒子径:26μm、真比重:4)のマスターバッチ(酸化チタン含量:50重量%)20重量部からなる樹脂組成物を供給し、溶融状態のシートをゴムロールと表面設定温度を70℃とした金属ロールとで挟み込んでニップロール成形することにより、異なる厚さの単層の裏面保護シートを得た。得られた裏面保護シートの厚さ、外観、熱収縮率、水蒸気透過度を表1に示す。
[比較例3、4]
 マスターバッチ製造例で得られたMB-AとPBT-Aからなる樹脂組成物、またはMB-BとPBT-Aとからなる樹脂組成物をそれぞれ単層の製膜装置へ供給し、実施例1と同様にして単層の裏面保護シートを得た。得られた裏面保護シートの厚さ、外観、熱収縮率、水蒸気透過度を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 以上の結果から明らかなように、実施例1~12で得られた裏面保護シートは、PBTを延伸することなく成形し、さらに平板状充填材の配合割合が8~40重量%、厚さが120~500μm、MDおよびTDの熱収縮率がいずれも0.5%以下で、水蒸気透過度も0.5g/m・day~2.5g/m・dayの範囲であり、裏面保護シートとして優れた特性を有している。それに対し、比較例1、2で得られた裏面保護シートは無機フィラーである酸化チタンが10重量%配合されているものの平板状充填材でないため熱収縮率が大きく、水蒸気透過度も高く、裏面保護シートとして不適であった。また、比較例3、4で得られた裏面保護シートは、平板状充填材が配合されているため熱収縮率は抑えられているものの、厚さが薄いため水蒸気透過度が高く、裏面保護シートとして要望される特性を具備していなかった。
 1:フラットダイ
 2:金属ロール
 3:ゴムロール
 4:裏面保護シート
 10:太陽電池モジュール
 11:前面板
 12:発電素子
 13:封止材
 14:裏面保護シート
 

Claims (6)

  1.  ポリブチレンテレフタレート系樹脂と平板状充填材とを含む樹脂組成物からなり、該平板状充填材の配合割合が樹脂組成物の重量に対して8重量%~40重量%である太陽電池モジュール用裏面保護シートであって、該太陽電池モジュール用裏面保護シートは無延伸であるととともに、厚さが120μm~500μmであり、且つ、150℃における熱収縮率が縦方向、横方向共に0.5%以下であることを特徴とする太陽電池モジュール用裏面保護シート。
  2.  前記ポリブチレンテレフタレート系樹脂の固有粘度が1.0~1.5であることを特徴とする請求項1記載の太陽電池モジュール用裏面保護シート。
  3.  前記裏面保護シートは、前記樹脂組成物をフラットダイより押出し、押出したシートをゴムロールと表面設定温度が25℃~90℃の範囲にある金属ロールとの間のニップを通過させることにより得られたものである、請求項1又は2記載の太陽電池モジュール用裏面保護シート。
  4.  ポリブチレンテレフタレート系樹脂と平板状充填材とを含む樹脂組成物であって、該平板状充填材の配合割合が樹脂組成物の重量に対して8重量%~40重量%である樹脂組成物をフラットダイより押出し、押出したシートをゴムロールと表面設定温度が25℃~90℃の範囲にある金属ロールの間のニップを通過させることからなる、請求項1に記載の太陽電池モジュール用裏面保護シートの製造方法。
  5.  前記ゴムロールがシリコーンゴムロールであることを特徴とする請求項4に記載の製造方法。
  6.  請求項1に記載の太陽電池モジュール用裏面保護シートで発電素子を保護したことを特徴とする太陽電池モジュール。
     
PCT/JP2012/053660 2011-02-18 2012-02-16 太陽電池モジュール用裏面保護シート、その製造方法、および太陽電池モジュール WO2012111749A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012558007A JPWO2012111749A1 (ja) 2011-02-18 2012-02-16 太陽電池モジュール用裏面保護シート、その製造方法、および太陽電池モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-033156 2011-02-18
JP2011033156 2011-02-18

Publications (1)

Publication Number Publication Date
WO2012111749A1 true WO2012111749A1 (ja) 2012-08-23

Family

ID=46672661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053660 WO2012111749A1 (ja) 2011-02-18 2012-02-16 太陽電池モジュール用裏面保護シート、その製造方法、および太陽電池モジュール

Country Status (3)

Country Link
JP (1) JPWO2012111749A1 (ja)
TW (1) TW201248892A (ja)
WO (1) WO2012111749A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049624A (ja) * 2012-08-31 2014-03-17 Mitsubishi Chemicals Corp 有機薄膜太陽電池素子の製造方法
JP2017050541A (ja) * 2015-09-03 2017-03-09 エルジー エレクトロニクス インコーポレイティド 太陽電池モジュール
KR20190012644A (ko) * 2017-07-28 2019-02-11 현대모비스 주식회사 폴리에스테르 수지 조성물 및 이로부터 제조된 성형품
JP2020072159A (ja) * 2018-10-30 2020-05-07 大日本印刷株式会社 太陽電池モジュール用の透明保護シート

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01178551A (ja) * 1988-01-08 1989-07-14 Kanebo Ltd ポリエステル樹脂組成物
JP2002053739A (ja) * 2000-08-04 2002-02-19 Dainippon Ink & Chem Inc 熱可塑性樹脂組成物
JP2002105231A (ja) * 2000-10-04 2002-04-10 Toray Ind Inc 表面金属化熱可塑性ポリエステル樹脂成形品
JP2004307794A (ja) * 2003-02-18 2004-11-04 Mitsubishi Chemicals Corp ポリブチレンテレフタレート及びその組成物
JP2006169356A (ja) * 2004-12-15 2006-06-29 Toray Ind Inc 難燃性熱可塑性樹脂組成物およびそれからなる成形品。
WO2006106844A1 (ja) * 2005-03-31 2006-10-12 Toppan Printing Co., Ltd. 太陽電池用裏面保護シートおよびそれを用いた太陽電池モジュール
JP2007129204A (ja) * 2005-10-07 2007-05-24 Toray Ind Inc 太陽電池裏面封止用フィルムおよびそれを用いた太陽電池
JP2009141345A (ja) * 2007-11-16 2009-06-25 Okura Ind Co Ltd 太陽電池モジュール用裏面保護シートおよび太陽電池モジュール
WO2010018662A1 (ja) * 2008-08-12 2010-02-18 ウィンテックポリマー株式会社 ポリブチレンテレフタレート樹脂混合物及びフィルム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01178551A (ja) * 1988-01-08 1989-07-14 Kanebo Ltd ポリエステル樹脂組成物
JP2002053739A (ja) * 2000-08-04 2002-02-19 Dainippon Ink & Chem Inc 熱可塑性樹脂組成物
JP2002105231A (ja) * 2000-10-04 2002-04-10 Toray Ind Inc 表面金属化熱可塑性ポリエステル樹脂成形品
JP2004307794A (ja) * 2003-02-18 2004-11-04 Mitsubishi Chemicals Corp ポリブチレンテレフタレート及びその組成物
JP2006169356A (ja) * 2004-12-15 2006-06-29 Toray Ind Inc 難燃性熱可塑性樹脂組成物およびそれからなる成形品。
WO2006106844A1 (ja) * 2005-03-31 2006-10-12 Toppan Printing Co., Ltd. 太陽電池用裏面保護シートおよびそれを用いた太陽電池モジュール
JP2007129204A (ja) * 2005-10-07 2007-05-24 Toray Ind Inc 太陽電池裏面封止用フィルムおよびそれを用いた太陽電池
JP2009141345A (ja) * 2007-11-16 2009-06-25 Okura Ind Co Ltd 太陽電池モジュール用裏面保護シートおよび太陽電池モジュール
WO2010018662A1 (ja) * 2008-08-12 2010-02-18 ウィンテックポリマー株式会社 ポリブチレンテレフタレート樹脂混合物及びフィルム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049624A (ja) * 2012-08-31 2014-03-17 Mitsubishi Chemicals Corp 有機薄膜太陽電池素子の製造方法
JP2017050541A (ja) * 2015-09-03 2017-03-09 エルジー エレクトロニクス インコーポレイティド 太陽電池モジュール
US10720536B2 (en) 2015-09-03 2020-07-21 Lg Electronics Inc. Solar cell module
KR20190012644A (ko) * 2017-07-28 2019-02-11 현대모비스 주식회사 폴리에스테르 수지 조성물 및 이로부터 제조된 성형품
KR102291484B1 (ko) * 2017-07-28 2021-08-20 현대모비스 주식회사 폴리에스테르 수지 조성물 및 이로부터 제조된 성형품
JP2020072159A (ja) * 2018-10-30 2020-05-07 大日本印刷株式会社 太陽電池モジュール用の透明保護シート
JP7206809B2 (ja) 2018-10-30 2023-01-18 大日本印刷株式会社 太陽電池モジュール用の透明保護シート

Also Published As

Publication number Publication date
TW201248892A (en) 2012-12-01
JPWO2012111749A1 (ja) 2014-07-07

Similar Documents

Publication Publication Date Title
JP5914339B2 (ja) ポリエステルフィルムおよびその製造方法
CN103958192B (zh) 太阳能电池组件用背面保护片材及使用其的太阳能电池组件
JP5815276B2 (ja) 太陽電池用バックシート用ポリマーシート及びその製造方法並びに太陽電池モジュール
KR101511201B1 (ko) 태양전지용 백시트와 그 제조 방법, 및 태양전지 모듈
KR102389859B1 (ko) 태양광 모듈 백시트 및 이의 제조방법
KR20120003915A (ko) 태양 전지 이면 보호막용 적층 폴리에스테르 필름
JP5661386B2 (ja) ポリエステルフィルム及びその製造方法、太陽電池用バックシート、並びに太陽電池モジュール
JP5895661B2 (ja) 太陽電池モジュール用裏面保護シート及び太陽電池モジュール
WO2012111749A1 (ja) 太陽電池モジュール用裏面保護シート、その製造方法、および太陽電池モジュール
JP4902464B2 (ja) 太陽電池裏面保護膜用フィルム
JP4881464B2 (ja) 太陽電池裏面保護膜用ポリエステルフィルム
JP2012171310A (ja) ポリオレフィン系樹脂多層フィルム
JP2015195338A (ja) 太陽電池モジュールのリワーク方法
JP5840967B2 (ja) 樹脂組成物とその製造方法、ポリエチレンテレフタレートフィルム及び太陽電池モジュール用バックシート
JP5896367B2 (ja) ポリオレフィン系樹脂多層フィルム
JP2018125525A (ja) 太陽電池バックシート用ポリエステルフィルム及び太陽電池バックシート用ポリエステルフィルムを巻き取ってなる太陽電池バックシート用ポリエステルフィルムロールの製造方法
JP2007190785A (ja) ポリエステル積層フィルム
WO2012091004A1 (ja) 太陽電池モジュール用裏面保護シート、その製造方法、および太陽電池モジュール
TW201230353A (en) Back-surface protective sheet for solar cell module, and solar cell module
JP2012200981A (ja) 積層フィルム、太陽電池用バックシートおよび積層フィルムの製造方法
JP2013211336A (ja) 太陽電池用裏面保護シートの製造方法、太陽電池用裏面保護シート及び太陽電池モジュール
KR102287227B1 (ko) 태양전지 백시트용 폴리에스테르 필름 및 이를 포함하는 태양전지 모듈
JP2013159682A (ja) 2軸延伸ポリエステルフィルム、太陽電池モジュール用バックシートおよび太陽電池モジュール
JP2013042006A (ja) 太陽電池モジュール用ポリマーシートとその製造方法、太陽電池モジュール用バックシート及び太陽電池モジュール
KR20180122808A (ko) 태양전지 백시트용 폴리에스테르 필름 및 이를 포함하는 태양전지 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746652

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012558007

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12746652

Country of ref document: EP

Kind code of ref document: A1