WO2012111616A9 - 保護膜付複合基板、および半導体デバイスの製造方法 - Google Patents

保護膜付複合基板、および半導体デバイスの製造方法 Download PDF

Info

Publication number
WO2012111616A9
WO2012111616A9 PCT/JP2012/053279 JP2012053279W WO2012111616A9 WO 2012111616 A9 WO2012111616 A9 WO 2012111616A9 JP 2012053279 W JP2012053279 W JP 2012053279W WO 2012111616 A9 WO2012111616 A9 WO 2012111616A9
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
protective film
film
composite substrate
substrate
Prior art date
Application number
PCT/JP2012/053279
Other languages
English (en)
French (fr)
Other versions
WO2012111616A1 (ja
Inventor
一成 佐藤
吉田 浩章
喜之 山本
昭広 八郷
松原 秀樹
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2012557953A priority Critical patent/JPWO2012111616A1/ja
Priority to US13/820,599 priority patent/US20130168693A1/en
Priority to KR1020137007075A priority patent/KR20130141465A/ko
Priority to EP12746625.8A priority patent/EP2677534A1/en
Priority to CN2012800033555A priority patent/CN103155102A/zh
Publication of WO2012111616A1 publication Critical patent/WO2012111616A1/ja
Publication of WO2012111616A9 publication Critical patent/WO2012111616A9/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond

Definitions

  • the present invention relates to a composite substrate with a protective film including a support substrate, an oxide film, a semiconductor layer, and a protective film for protecting the oxide film, and a method for manufacturing a semiconductor device using the composite substrate with a protective film.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-201429
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2007-201430
  • Disclosed is a method for making a composite substrate comprising at least one thin insulating layer interposed between layers.
  • the composite substrate manufactured by the method disclosed in the above Japanese Unexamined Patent Application Publication No. 2007-201429 (Patent Document 1) and Japanese Unexamined Patent Application Publication No. 2007-201430 (Patent Document 2) uses an oxide layer as an insulating layer. It has been. For this reason, when, for example, a group III nitride layer is further epitaxially grown on the active layer of the semiconductor material of the composite substrate as a semiconductor layer, there is a problem that the yield is lowered.
  • the present inventors have found that [1] the oxide layer (insulating layer) of the composite substrate is not covered with the support substrate and the active layer. Exposed portions (for example, the side surface portion of the oxide layer exposed on the side surface of the composite substrate, the main surface portion of the oxide layer exposed on the main surface of the composite substrate due to the loss of the active layer, etc.) And [2] Ammonia having an oxide layer (insulating layer) of about 800 ° C. or more and 1500 ° C.
  • the oxide layer (insulating layer) is corroded under gas-containing atmosphere conditions, group-nitride gas-containing atmosphere conditions of about 800 ° C. to 1500 ° C. in the HVPE (hydride vapor phase epitaxy) method, etc. Is possible, in particular to be significantly corroded from the portion that is exposed without being covered with the supporting substrate and the active layer of the oxide layer was found to be in.
  • group-nitride gas-containing atmosphere conditions of about 800 ° C. to 1500 ° C. in the HVPE (hydride vapor phase epitaxy) method, etc.
  • An object is to provide a composite substrate with a protective film including a film, a semiconductor layer, and a protective film for protecting an oxide film, and a method for manufacturing a semiconductor device using the composite substrate with a protective film.
  • the present invention provides a support substrate, an oxide film disposed on the support substrate, a semiconductor layer disposed on the oxide film, and any of the support substrate and the semiconductor layer among the oxide films.
  • a protective film with a protective film including a protective film that protects the oxide film by covering a portion not covered with the protective film.
  • the oxide film is selected from the group consisting of a TiO 2 film, a SrTiO 3 film, an indium tin oxide film, an antimony tin oxide film, a ZnO film, and a Ga 2 O 3 film.
  • the support substrate and the semiconductor layer can be formed of a group III nitride.
  • a protective film for protecting a support substrate, an oxide film, a semiconductor layer, and an oxide film having a large effective region capable of epitaxially growing a functional semiconductor layer exhibiting the function of a semiconductor device with high quality is provided. And a method of manufacturing a semiconductor device using such a composite substrate with a protective film.
  • composite substrate 2P, 2Q with a protective film which is an embodiment in one aspect of the present invention, includes support substrate 10, oxide film 20 disposed on support substrate 10, and oxidation Protection for protecting the oxide film 20 by covering the semiconductor layer 30a disposed on the material film 20 and the portions 20s and 20t of the oxide film 20 that are not covered by any of the support substrate 10 and the semiconductor layer 30a.
  • a film 40 the portions 20 s and 20 t of the oxide film 20 that are not covered by any of the support substrate 10 and the semiconductor layer 30 a are, for example, the side surfaces of the oxide film 20 and the support substrate 10 and the semiconductor layer 30 a.
  • the portions 20s, 20t of the oxide film 20 that are not covered by either the support substrate 10 or the semiconductor layer 30a are covered with the protective film 40.
  • the protective film 40 On the main surface of the semiconductor layer 30a of the composite substrate with protective films 2P and 2Q, there is a large effective area in which a functional semiconductor layer that exhibits a function as a semiconductor device can be epitaxially grown with high quality.
  • the composite substrate with protective film 2P shown in FIG. 1A includes the main surface of the semiconductor layer 30a in addition to the portions 20s and 20t of the oxide film 20 that are not covered by either the support substrate 10 or the semiconductor layer 30a. Is also covered with the protective film 40.
  • the functional semiconductor layer is epitaxially grown on the semiconductor layer 30a of the composite substrate with the protective film, it is necessary to remove the portion of the protective film 40 that covers the main surface of the semiconductor layer 30a, but the functional semiconductor layer is epitaxially grown. Before the deposition, the protective film 40 can protect not only the oxide film 20 but also the semiconductor layer 30a.
  • the composite substrate with protective film 2Q shown in FIG. 1B is obtained by removing the portion of the protective film 40 covering the main surface of the semiconductor layer 30a from the composite substrate with protective film 2P shown in FIG. 1A. The main surface is exposed.
  • the composite substrate with protective film 2Q having such a configuration has a large effective region in which a high-quality functional semiconductor layer can be epitaxially grown on the main surface of the semiconductor layer 30a.
  • the support substrate 10 in the composite substrate with protective film 2P, 2Q of the present embodiment is not particularly limited as long as the oxide film 20 can be formed thereon, and is a sapphire support substrate, Si support substrate, SiC support.
  • a substrate, a group III nitride supporting substrate and the like are preferable.
  • the support substrate 10 is a group III nitride support formed of a group III nitride, which is a semiconductor material, from the viewpoint that the difference in thermal expansion coefficient and refractive index with the semiconductor layer 30a is small, high consistency, and conductivity.
  • a substrate is particularly preferred.
  • the support substrate 10 is particularly preferably a sapphire support substrate formed of sapphire, which is a transparent material, from the viewpoint of low cost and high optical transparency in the case of an optical device.
  • the support substrate 10 having the same or similar chemical composition as the semiconductor layer 30a is preferable.
  • the support substrate 10 is preferably a Si support substrate
  • the support substrate 10 is preferably a group III nitride support substrate.
  • the support substrate 10 may be a single crystal, a polycrystal such as a non-oriented polycrystal (for example, a sintered body), an oriented polycrystal, or a non-crystalline. However, from the viewpoint of reducing the manufacturing cost, it is preferably a polycrystalline body or an amorphous body.
  • the thickness of the support substrate 10 is not particularly limited as long as it can support the oxide film 20 and the semiconductor layer 30a, but is preferably 300 ⁇ m or more from the viewpoint of easy handling, and 1000 ⁇ m or less from the viewpoint of reducing material costs. Is preferred.
  • the oxide film 20 in the composite substrate with protective film 2P, 2Q of the present embodiment can form the semiconductor layer 30a thereon, can be formed on the support substrate 10, and the support substrate 10 and the semiconductor layer 30a.
  • the bonding strength is high, there is no particular limitation, TiO 2 film, SrTiO 3 film, ITO (indium tin oxide) film, ATO (antimony tin oxide) film, ZnO film, Ga 2 O 3 film, An Al 2 O 3 film is preferable.
  • the oxide film 20 is preferably at least one selected from the group consisting of a TiO 2 film, a SrTiO 3 film, an ITO film, an ATO film, a ZnO film, and a Ga 2 O 3 film.
  • the oxide film 20 is made of an oxide film having a high refractive index, such as a TiO 2 film (the refractive index of light having a wavelength of 400 nm is about 2.8) and an SrTiO 3 film (light having a wavelength of 400 nm) Is preferably at least one selected from the group consisting of about 2.4).
  • the thickness of the oxide film 20 is not particularly limited as long as it increases the bonding strength between the support substrate 10 and the semiconductor layer 30a.
  • the thickness is preferably 50 nm or more from the viewpoint of increasing the bonding strength. 1000 nm or less is preferable from the viewpoint of reduction.
  • the semiconductor layer 30a in the composite substrate with protective film 2P, 2Q of the present embodiment is not particularly limited as long as it can epitaxially grow a functional semiconductor layer on which the function of the target semiconductor device is manifested.
  • Preferred examples include group nitride layers and Si layers.
  • the semiconductor layer 30a has the same or approximate chemical composition as the functional semiconductor layer from the viewpoint of improving the quality of the functional semiconductor layer.
  • Particularly preferred is a group III nitride layer made of group III nitride.
  • the support substrate 10 is preferably formed of a group III nitride that is a semiconductor from the viewpoint of conductivity. Therefore, it is preferable that at least one of the support substrate 10 and the semiconductor layer 30a is formed of a group III nitride.
  • the support substrate 10 and the semiconductor layer 30a are preferably the support substrate 10 having the same or similar chemical composition from the viewpoint of reducing the difference in thermal expansion coefficient between them. Therefore, it is preferable that both the support substrate 10 and the semiconductor layer 30a are formed of group III nitride.
  • the thickness of the semiconductor layer 30a is not particularly limited as long as a high-quality functional semiconductor layer can be epitaxially grown thereon, but is preferably 100 nm or more from the viewpoint of forming the semiconductor layer 30a without cracking.
  • the thickness is preferably 1000 ⁇ m or less from the viewpoint of maintaining high quality of the semiconductor layer 30a and accuracy of its thickness.
  • the protective film 40 in the composite substrates with protective films 2P and 2Q of the present embodiment covers the oxide films 20 by covering the portions 20s and 20t of the oxide film 20 that are not covered by either the support substrate 10 or the semiconductor layer 30a. If it protects 20, there will be no restriction
  • the protective film 40 is preferably a film having high heat resistance and corrosion resistance under conditions for epitaxial growth of a functional semiconductor layer on the semiconductor layer 30 a.
  • the preferable heat resistance and corrosion resistance of the protective film 40 are, for example, when the method of epitaxially growing a group III nitride layer as a functional semiconductor layer on the semiconductor layer 30a is a MOCVD (metal organic chemical vapor deposition) method. It means having heat resistance and corrosion resistance in an atmosphere containing ammonia gas having a partial pressure of 1 kPa to 100 kPa at 800 ° C. to 1500 ° C.
  • the group III when the method of epitaxially growing a group III nitride layer as a functional semiconductor layer on the semiconductor layer 30a is the HVPE (hydride vapor phase epitaxy) method, the group III having a partial pressure of 800 to 1500 ° C. and 1 to 100 kPa It means having heat resistance and corrosion resistance in an atmosphere containing chloride gas.
  • HVPE hydrogen vapor phase epitaxy
  • the protective film 40 covers the supporting substrate 10 and the oxide film 20 from the viewpoint of reliably covering and separating the portions 20 s and 20 t of the oxide film 20 that are not covered by either the supporting substrate 10 or the semiconductor layer 30 a.
  • the bonding strength with at least one of the semiconductor layers 30a is high and the thermal expansion coefficient is the same as or close to that of at least one of the support substrate 10, the oxide film 20, and the semiconductor layer 30a.
  • the thermal expansion coefficient of the protective film 40 is preferably such that the difference from at least one thermal expansion coefficient of the support substrate 10, the oxide film 20, and the semiconductor layer 30a is 3 ⁇ 10 ⁇ 6 ° C. ⁇ 1 or less. .
  • the protective film 40 for example, III-nitride (III group element and a compound formed by a nitrogen, for example In x Al y Ga 1-xy N (0 ⁇ x, 0 ⁇ y, x + y ⁇ 1)), mullite (aluminosilicate minerals having a single chain structure, chemical formula 3Al 2 O 3 ⁇ 2SiO 2 ⁇ 2Al 2 O 3 ⁇ SiO 2 or Al 6 O 13 Si 2), silicon (Si), molybdenum (Mo ) Or the like.
  • III-nitride III group element and a compound formed by a nitrogen, for example In x Al y Ga 1-xy N (0 ⁇ x, 0 ⁇ y, x + y ⁇ 1)
  • mullite aluminosilicate minerals having a single chain structure, chemical formula 3Al 2 O 3 ⁇ 2SiO 2 ⁇ 2Al 2 O 3 ⁇ SiO 2 or Al 6 O 13 Si 2
  • silicon Si
  • Mo moly
  • the thickness of the protective film 40 is not particularly limited as long as it is sufficient to protect the oxide film 20, but is preferably 10 nm or more from the viewpoint of enhancing the protection of the oxide film 20. 20 nm or less is preferable from the viewpoint of reducing the amount of light absorption in 20 and reducing the film formation cost.
  • the main surface of the semiconductor layer 30a is exposed in the composite substrate with a protective film 2Q.
  • a functional semiconductor layer that exhibits the function of the target semiconductor device can be easily epitaxially grown.
  • the manufacturing method of composite substrate with protective film 2P, 2Q of the present embodiment is a step of preparing composite substrate 1 including support substrate 10, oxide film 20, and semiconductor layer 30a (FIG. 2A). )), A step of obtaining the composite substrate 2P with protective film by forming the protective film 40 on the composite substrate 1 (FIG. 2B), and the protective film 40 by processing the composite substrate 2P with protective film. And a step of removing the portion covering the main surface of the semiconductor layer 30a to obtain the composite substrate 2Q with a protective film in which the main surface of the semiconductor layer 30a is exposed (FIG. 2C). it can.
  • the composite substrates with protective films 2P and 2Q capable of epitaxially growing a high-quality functional semiconductor layer on the main surface of the semiconductor layer 30a can be efficiently manufactured.
  • the preparation process of composite substrate 1 is not particularly limited, but from the viewpoint of efficiently preparing composite substrate 1, a sub-process of preparing support substrate 10 (FIG. 3A).
  • a sub-process for forming the oxide film 20 on the main surface of the support substrate 10 (FIG. 3A), and a sub-process for injecting ions I into the semiconductor substrate 30 into a region having a certain depth from one main surface.
  • FIG. 3B an ion implantation region 30i (referred to as a region where ions I are implanted) of the semiconductor substrate 30 on the main surface of the oxide film 20 formed on the main surface of the support substrate 10.
  • Sub-process for bonding the main surface on the side (FIG.
  • the semiconductor substrate 30 is separated into the semiconductor layer 30a and the remaining semiconductor substrate 30b at the ion implantation region 30i, and the main surface of the support substrate 10 is separated.
  • a semiconductor is formed on the main surface of the oxide film 20 formed thereon.
  • Substep (FIG. 3 (D)) to form the 30a and may include.
  • support substrate 10 can be prepared by a general method suitable for the material and shape thereof.
  • a group III nitride supporting substrate is a group III nitride crystal obtained by a vapor phase method such as HVPE (hydride vapor phase epitaxy) method, a sublimation method, a liquid phase method such as a flux method or a high nitrogen pressure solution method.
  • HVPE hydrogen vapor phase epitaxy
  • a sublimation method a liquid phase method such as a flux method or a high nitrogen pressure solution method.
  • the sapphire support substrate can be prepared by processing a sapphire crystal into a predetermined shape.
  • the method for forming the oxide film 20 on the main surface of the support substrate 10 is the formation of the oxide film.
  • general methods such as sputtering, pulse laser deposition, molecular beam epitaxy, electron beam evaporation, and chemical vapor deposition can be used.
  • the depth at which the ions I are implanted is not particularly limited, but is 100 nm or more. 1000 ⁇ m or less is preferable. If the depth at which the ions I are implanted is smaller than 100 nm, the semiconductor layer 30a formed by separating the semiconductor substrate 30 by the ion implantation region 30i tends to break, and if the depth is larger than 1000 ⁇ m, the distribution of ions is widened and separated. Since it becomes difficult to adjust the depth, it is difficult to adjust the thickness of the semiconductor layer 30a.
  • the type of ions to be implanted is not particularly limited, but ions having a small mass are preferable from the viewpoint of suppressing deterioration of the quality of the semiconductor layer to be formed.
  • ions having a small mass are preferable from the viewpoint of suppressing deterioration of the quality of the semiconductor layer to be formed.
  • hydrogen ions and helium ions are preferable.
  • the ion implantation region 30i formed in this way is embrittled by the implanted ions.
  • the method is not particularly limited, but from the viewpoint of maintaining the bonding strength even in a high temperature atmosphere after bonding, the surfaces of the surfaces to be bonded are washed and directly bonded, and then heated to about 600 ° C. to 1200 ° C.
  • a direct bonding method by bonding, a surface activation method by activating the bonding surface with plasma or ions, and bonding at a low temperature of about room temperature (for example, 25 ° C.) to 400 ° C. are preferable.
  • the semiconductor substrate 30 shown in FIG. 3D is separated into the semiconductor layer 30a and the remaining semiconductor substrate 30b at the ion implantation region 30i, and the oxide film 20 formed on the main surface of the support substrate 10 is formed.
  • the method for separating the semiconductor substrate 30 by the ion implantation region 30i is not particularly limited as long as it is a method for applying some energy to the ion implantation region 30i of the semiconductor substrate 30. At least one of a method of applying stress to the ion implantation region 30i, a method of applying heat, a method of irradiating light, and a method of applying ultrasonic waves can be used.
  • the semiconductor substrate 30 Since the ion implantation region 30i is embrittled by the implanted ions, the semiconductor substrate 30 is bonded onto the oxide film 20 formed on the main surface of the support substrate 10 by receiving the energy. The semiconductor layer 30a and the remaining semiconductor substrate 30b are easily separated.
  • the support substrate 10 and the main surface of the support substrate 10 are formed.
  • the composite substrate 1 including the oxide film 20 and the semiconductor layer 30a formed on the main surface of the oxide film 20 is obtained.
  • the composite substrate 1 obtained in this way has a portion 20s that is the side surface of the oxide film 20 and is not covered by either the support substrate 10 or the semiconductor layer 30a.
  • the semiconductor substrate 30 may be caused by a problem in forming the oxide film 20, a problem in ion implantation into the semiconductor substrate 30, a problem in bonding the oxide film 20 and the semiconductor substrate 30, and the like. May be separated at the interface between the semiconductor substrate 30 and the oxide film 20 without being separated by the ion implantation region 30i when the semiconductor layer 30a and the remaining semiconductor substrate 30b are separated. .
  • an abnormal separation region R of the composite substrate 1 there is a portion 20t of the main surface of the oxide film 20 that is not covered by either the support substrate 10 or the semiconductor layer 30a.
  • a functional semiconductor layer is epitaxially grown on the main surface of the semiconductor layer 30a. Since the oxide film 20 has poor heat resistance and corrosion resistance under the conditions, the oxide film 20 is significantly corroded from the portions 20s and 20t that are not covered by the support substrate 10 and the semiconductor layer 30a. As a result, there has been a problem in that the effective region when the semiconductor device is manufactured by epitaxially growing the functional semiconductor layer is lowered.
  • composite substrates 2P and 2Q with protective films are manufactured by the following steps.
  • the manufacturing method of composite substrate 2P, 2Q with a protective film of this embodiment is a process for obtaining composite substrate 2P with protective film by forming protective film 40 on composite substrate 1 described above. Can be included.
  • the method of forming the protective film 40 on the composite substrate 1 is that the portions 20s and 20t of the oxide film 20 that are not covered by either the support substrate 10 or the semiconductor layer 30a are formed.
  • the composite substrate with protective film 2P obtained in this way protects the main surface of the semiconductor layer 30a in addition to the portions 20s and 20t of the oxide film 20 that are not covered by either the support substrate 10 or the semiconductor layer 30a. Since it has a form covered with the film 40, not only the oxide film 20 but also the semiconductor layer 30 a can be protected by the protective film 40 before the functional semiconductor layer is epitaxially grown.
  • Step of obtaining composite substrate 2Q with protective film Referring to FIG. 2C, in the manufacturing method of composite substrate with protective film 2Q of this embodiment, the main surface of semiconductor layer 30a in protective film 40 is covered by processing composite substrate with protective film 2P. A step of removing the exposed portion to obtain the composite substrate with protective film 2Q in which the main surface of the semiconductor layer 30a is exposed.
  • the method for removing the portion of the protective film 40 covering the main surface of the semiconductor layer 30a by processing the composite substrate with protective film 2P there is no particular limitation on the method for removing the portion of the protective film 40 covering the main surface of the semiconductor layer 30a by processing the composite substrate with protective film 2P.
  • General methods such as dry etching such as RIE (reactive ion etching), wet etching using an acid solution, an alkali solution, etc., grinding, mechanical polishing, chemical mechanical polishing, and chemical polishing can be used.
  • portions 20s and 20t of the oxide film 20 that are not covered with either the support substrate 10 or the semiconductor layer 30a are covered with the protective film 40, and the semiconductor layer 30a. Since the main surface is exposed, the effective area in which a high-quality functional semiconductor layer can be epitaxially grown on the main surface of the semiconductor layer 30a is large.
  • the composite substrate with protective film 2Q obtained by the manufacturing method described above is subjected to the step of epitaxially growing the functional semiconductor layer 50 on the main surface of the semiconductor layer 30a. Since an effective region in which a high-quality functional semiconductor layer can be epitaxially grown is large, a semiconductor device having high characteristics can be manufactured with a high yield.
  • a method for manufacturing a semiconductor device includes a step of preparing the composite substrate with protective film 2Q (FIGS. 2A to 2C), And a step (FIG. 2D) of epitaxially growing at least one functional semiconductor layer 50 that develops the function as the semiconductor device 3 on the semiconductor layer 30a of the composite substrate with protective film 2Q. It is.
  • the support substrate 10, the oxide film 20, the semiconductor layer 30a, and the protective film 40 are included, and the oxide film 20 covers either the support substrate 10 or the semiconductor layer 30a.
  • a composite substrate 2Q with a protective film in which the unseen portions 20s and 20t are covered with a protective film 40 is prepared, and at least one functional semiconductor layer 50 is epitaxially grown on the semiconductor layer 30a of the composite substrate with a protective film 2Q.
  • the method for manufacturing a semiconductor device of this embodiment includes a step of preparing the composite substrate with protective film 2Q described above.
  • the preparation step of the composite substrate with protective film 2Q includes the preparation step of the composite substrate 1 described above, the step of obtaining the composite substrate with protective film 2P, and the step of obtaining the composite substrate with protective film 2Q. This is the same as the manufacturing method of the attached composite substrate 2Q.
  • At least one functional semiconductor layer that causes the function as the semiconductor device 3 to be exhibited on the semiconductor layer 30a of the composite substrate 2Q with the protective film. 50 is epitaxially grown.
  • the method for epitaxially growing the functional semiconductor layer 50 is not particularly limited, but from the viewpoint of growing the high-quality functional semiconductor layer 50, MOCVD method, HVPE method, MBE (molecular beam growth) method, sublimation method, etc.
  • MOCVD method MOCVD method
  • HVPE method molecular beam growth
  • MBE molecular beam growth method
  • sublimation method etc.
  • the vapor phase method, the flux method, and the liquid phase method such as the high nitrogen pressure solution method are preferable.
  • At least one functional semiconductor layer 50 that exhibits the function as the semiconductor device 3 differs depending on the type of the semiconductor device.
  • the functional semiconductor layer 50 includes a light emitting layer having an MQW (multiple quantum well) structure.
  • examples of the functional semiconductor layer include an electron stop layer and an electron drift layer.
  • Example 1-1 Preparation of Support Substrate With reference to FIG. 3A, a substrate having a diameter of 50 mm and a thickness of 500 ⁇ m is cut out from a GaN crystal (not shown) grown by the HVPE method, and its main surface is polished. A GaN support substrate (support substrate 10) was prepared.
  • Oxide film 20 is grown on the GaN support substrate (support substrate 10) by sputtering. It was.
  • a substrate having a diameter of 50 mm and a thickness of 500 ⁇ m is cut out from a GaN crystal (not shown) grown by the HVPE method.
  • the main surface was subjected to chemical mechanical polishing to prepare a GaN substrate (semiconductor substrate 30), and hydrogen ions were implanted to a depth of 300 nm from one main surface of the substrate.
  • the bonded substrates are heat-treated at 300 ° C. for 2 hours to increase the bonding strength of the bonded substrates, and the GaN substrate (semiconductor substrate 30). Is separated by the ion implantation region 30i to form a GaN layer (semiconductor layer 30a) having a thickness of 300 nm on the TiO 2 film (oxide film 20), and a GaN support substrate (support substrate 10), TiO 2 A composite substrate 1 in which two films (oxide film 20) and a GaN layer (semiconductor layer 30a) were formed in this order was obtained.
  • the obtained composite substrate 1 was observed with an optical microscope, it was a side surface of the TiO 2 film (oxide film 20), and was applied to both the GaN support substrate (support substrate 10) and the GaN layer (semiconductor layer 30a). There was an uncovered portion 20s and a portion 20t of the main surface of the TiO 2 film (oxide film 20) that was not covered by either the support substrate 10 or the semiconductor layer 30a.
  • a thickness of 300 nm is formed on the main surface of the composite substrate 1 on which the TiO 2 film (oxide film 20) and the GaN layer (semiconductor layer 30a) are formed.
  • the composite substrate 2P with a protective film was obtained by forming the GaN film (protective film 40) of this by sputtering.
  • the obtained composite substrate with protective film 2P was observed with an optical microscope, it was on the side surface of the TiO 2 film (oxide film 20) and formed of the GaN support substrate (support substrate 10) and GaN layer (semiconductor layer 30a).
  • a GaN layer semiconductor The main surface and side surface of the layer 30a were also covered with the GaN film (protective film 40).
  • the portion of the protective film 40 covering the main surface of the semiconductor layer 30a is removed by chemical mechanical polishing (CMP) to obtain a semiconductor.
  • CMP chemical mechanical polishing
  • the obtained composite substrate with a protective film 2Q was observed with an optical microscope, the side surface of the oxide film 20 that was not covered with either the support substrate 10 or the semiconductor layer 30a, and the oxide A portion 20t of the main surface of the film 20 that is not covered with either the support substrate 10 or the semiconductor layer 30a was covered with the GaN film (protective film 40).
  • Example 1-2 a composite with a protective film as shown in FIG. 2C is formed in the same manner as in Example 1-1 except that a mullite film having a thickness of 300 ⁇ m is formed as the protective film 40 by sputtering.
  • a substrate 2Q was obtained.
  • the transmittance of light with a wavelength of 500 nm in the obtained composite substrate with a protective film 2Q was measured in the same manner as in Example 1-1, and was 59.4%.
  • a 300 nm-thick GaN layer (functional semiconductor layer 50) was epitaxially grown on the main surface of the GaN layer (semiconductor layer 30a) of the composite substrate with protective film 2Q.
  • the transmittance of light having a wavelength of 500 nm in the composite substrate with protective film 2Q after the GaN layer (functional semiconductor layer 50) was epitaxially grown was measured in the same manner as in Example 1-1, and was 58.8%. The results are summarized in Table 1.
  • Example 1-3 a composite with a protective film as shown in FIG. 2C is formed in the same manner as in Example 1-1 except that a 300 ⁇ m-thick molybdenum film is formed as the protective film 40 by sputtering.
  • a substrate 2Q was obtained.
  • the transmittance of light with a wavelength of 500 nm in the obtained composite substrate with a protective film 2Q was measured in the same manner as in Example 1-1, and was 59.4%.
  • a 300 nm-thick GaN layer (functional semiconductor layer 50) was epitaxially grown on the main surface of the GaN layer (semiconductor layer 30a) of the composite substrate with protective film 2Q.
  • the transmittance of light having a wavelength of 500 nm in the composite substrate with protective film 2Q after the GaN layer (functional semiconductor layer 50) was epitaxially grown was measured in the same manner as in Example 1-1, and was 58.8%. The results are summarized in Table 1.
  • Example 1 A composite substrate 1 was obtained in the same manner as in Example 1-1.
  • the transmittance of light with a wavelength of 500 nm in the obtained composite substrate 1 was 62.5% when measured in the same manner as in Example 1.
  • a 300 nm-thick GaN layer (functional semiconductor layer) was epitaxially grown on the main surface of the GaN layer (semiconductor layer) of the composite substrate 1 in the same manner as in Example 1-1.
  • the transmittance of light with a wavelength of 500 nm in the composite substrate 1 after the GaN layer (functional semiconductor layer) was epitaxially grown was 43.8% as measured in the same manner as in Example 1-1.
  • Table 1 The results are summarized in Table 1.
  • the composite substrate without the protective film of Comparative Example 1 has a light transmittance significantly reduced from 62.5% to 43.8% due to the epitaxial growth of the functional semiconductor layer.
  • their light transmittance hardly decreased from 59.4% to 58.8% even by the epitaxial growth of the functional semiconductor layer. .
  • Such a decrease in light transmittance in the composite substrates with protective films of Examples 1-1, 1-2, and 1-3 and the composite substrate without the protective film of Comparative Example 1 is caused when the functional semiconductor layer is grown epitaxially.
  • the composite substrate with a protective film has a TiO 2 film (oxide film) protected by one of the GaN film, mullite film, and molybdenum film, which are protective films, and therefore functions more than a composite substrate without a protective film. It has been found that a highly effective semiconductor device can be obtained with high yield because the effective region is largely maintained by greatly reducing deterioration of the oxide film during epitaxial growth of the semiconductor layer.
  • Example 2 Referring to FIGS. 2 and 3, as shown in FIG. 2C, similar to Example 1-1, except that an SrTiO 3 film having a thickness of 300 nm is grown as the oxide film 20 by the sputtering method. A composite substrate 2Q with such a protective film was obtained. The transmittance of light having a wavelength of 500 nm in the obtained composite substrate with a protective film 2Q was measured in the same manner as in Example 1-1, and was 61.1%. A 300 nm-thick GaN layer (functional semiconductor layer) was epitaxially grown on the main surface of the GaN layer (semiconductor layer) of the composite substrate with protective film 2Q in the same manner as in Example 1-1.
  • an SrTiO 3 film having a thickness of 300 nm is grown as the oxide film 20 by the sputtering method.
  • a composite substrate 2Q with such a protective film was obtained.
  • the transmittance of light having a wavelength of 500 nm in the composite substrate with protective film 2Q after the GaN layer (functional semiconductor layer) was epitaxially grown was 60.5% as measured in the same manner as in Example 1-1.
  • the results are summarized in Table 2.
  • Example 2-2 a composite with a protective film as shown in FIG. 2C is formed in the same manner as in Example 2-1, except that a mullite film having a thickness of 300 ⁇ m is formed as the protective film 40 by sputtering.
  • a substrate 2Q was obtained.
  • the transmittance of light having a wavelength of 500 nm in the obtained composite substrate with a protective film 2Q was measured in the same manner as in Example 1-1, and was 61.1%.
  • a 300 nm-thick GaN layer (functional semiconductor layer 50) was epitaxially grown on the main surface of the GaN layer (semiconductor layer 30a) of the composite substrate with protective film 2Q.
  • the transmittance of light having a wavelength of 500 nm in the composite substrate with protective film 2Q after the GaN layer (functional semiconductor layer 50) was epitaxially grown was measured in the same manner as in Example 1-1, and found to be 60.5%. The results are summarized in Table 2.
  • Example 2-3 a composite with a protective film as shown in FIG. 2C is formed in the same manner as in Example 2-1, except that a 300 ⁇ m-thick molybdenum film is formed as the protective film 40 by sputtering.
  • a substrate 2Q was obtained.
  • the transmittance of light having a wavelength of 500 nm in the obtained composite substrate with a protective film 2Q was measured in the same manner as in Example 1-1, and was 61.1%.
  • a 300 nm-thick GaN layer (functional semiconductor layer 50) was epitaxially grown on the main surface of the GaN layer (semiconductor layer 30a) of the composite substrate with protective film 2Q.
  • the transmittance of light having a wavelength of 500 nm in the composite substrate with protective film 2Q after the GaN layer (functional semiconductor layer 50) was epitaxially grown was measured in the same manner as in Example 1-1, and found to be 60.5%. The results are summarized in Table 2.
  • Example 2 [Correction based on Rule 91 28.12.2012]
  • a composite substrate 1 as shown in FIG. 2A was obtained in the same manner as in Example 2-1.
  • the transmittance of light with a wavelength of 500 nm in the obtained composite substrate 1 was measured in the same manner as in Example 1-1, and was found to be 64.3%.
  • a 300 nm-thick GaN layer (functional semiconductor layer) was epitaxially grown on the main surface of the GaN layer (semiconductor layer) of the composite substrate 1 in the same manner as in Example 1-1.
  • the transmittance of light having a wavelength of 500 nm in the composite substrate 1 after the GaN layer (functional semiconductor layer) was epitaxially grown was 45.0% as measured in the same manner as in Example 1-1.
  • Table 2 The results are summarized in Table 2.
  • the composite substrate without the protective film of Comparative Example 2 has a light transmittance significantly reduced from 64.3% to 45.0% due to the epitaxial growth of the functional semiconductor layer.
  • their light transmittance hardly decreased from 61.1% to 60.5% even by the epitaxial growth of the functional semiconductor layer.
  • Such a decrease in light transmittance in the composite substrates with protective films of Examples 2-1, 2-2, and 2-3 and the composite substrate without the protective film of Comparative Example 2 is caused by SrTiO during epitaxial growth of the functional semiconductor layer. It was derived from devitrification due to deterioration of the three films (oxide films) due to heat and corrosion.
  • the composite substrate with a protective film has a function compared to a composite substrate without a protective film because the SrTiO 3 film (oxide film) is protected by one of the protective film GaN film, mullite film, and molybdenum film. It has been found that a highly effective semiconductor device can be obtained with high yield because the effective region is largely maintained by greatly reducing deterioration of the oxide film during epitaxial growth of the semiconductor layer.
  • Example 3-1 Referring to FIGS. 2 and 3, in the same manner as in Example 1-1, except that an ITO (indium tin oxide) film having a thickness of 300 nm was grown as the oxide film 20 by the sputtering method, FIG. A composite substrate 2Q with a protective film as shown in (C) was obtained. The transmittance of light having a wavelength of 500 nm in the obtained composite substrate with a protective film 2Q was 57.3% as measured in the same manner as in Example 1-1. A 300 nm-thick GaN layer (functional semiconductor layer) was epitaxially grown on the main surface of the GaN layer (semiconductor layer) of the composite substrate with protective film 2Q in the same manner as in Example 1-1.
  • ITO indium tin oxide
  • the transmittance of light having a wavelength of 500 nm in the composite substrate with protective film 2Q after the GaN layer (functional semiconductor layer) was epitaxially grown was measured in the same manner as in Example 1-1, and found to be 56.7%. The results are summarized in Table 3.
  • Example 3-2 a composite with a protective film as shown in FIG. 2C is formed in the same manner as in Example 3-1, except that a mullite film having a thickness of 300 ⁇ m is formed as the protective film 40 by sputtering.
  • a substrate 2Q was obtained.
  • the transmittance of light having a wavelength of 500 nm in the obtained composite substrate with a protective film 2Q was 57.3% as measured in the same manner as in Example 1-1.
  • a 300 nm-thick GaN layer (functional semiconductor layer 50) was epitaxially grown on the main surface of the GaN layer (semiconductor layer 30a) of the composite substrate with protective film 2Q.
  • the transmittance of light having a wavelength of 500 nm in the composite substrate with protective film 2Q after the GaN layer (functional semiconductor layer 50) was epitaxially grown was measured in the same manner as in Example 1-1, and found to be 56.7%. The results are summarized in Table 3.
  • Example 3-3 a composite with a protective film as shown in FIG. 2C is formed in the same manner as in Example 3-1, except that a 300 ⁇ m-thick molybdenum film is formed as the protective film 40 by sputtering.
  • a substrate 2Q was obtained.
  • the transmittance of light having a wavelength of 500 nm in the obtained composite substrate with a protective film 2Q was 57.3% as measured in the same manner as in Example 1-1.
  • a 300 nm-thick GaN layer (functional semiconductor layer 50) was epitaxially grown on the main surface of the GaN layer (semiconductor layer 30a) of the composite substrate with protective film 2Q.
  • the transmittance of light having a wavelength of 500 nm in the composite substrate with protective film 2Q after the GaN layer (functional semiconductor layer 50) was epitaxially grown was measured in the same manner as in Example 1-1, and found to be 56.7%. The results are summarized in Table 3.
  • Example 3 [Correction based on Rule 91 28.12.2012]
  • a composite substrate 1 as shown in FIG. 2A was obtained in the same manner as in Example 3-1.
  • the transmittance of light having a wavelength of 500 nm in the obtained composite substrate 1 was 60.3% when measured in the same manner as in Example 1-1.
  • a 300 nm-thick GaN layer (functional semiconductor layer) was epitaxially grown on the main surface of the GaN layer (semiconductor layer) of the composite substrate 1 in the same manner as in Example 1-1.
  • the transmittance of light having a wavelength of 500 nm in the composite substrate 1 after the GaN layer (functional semiconductor layer) was epitaxially grown was measured in the same manner as in Example 1-1, and was 42.2%.
  • Table 3 The results are summarized in Table 3.
  • the composite substrate without the protective film of Comparative Example 3 has a light transmittance significantly reduced from 60.3% to 42.2% due to the epitaxial growth of the functional semiconductor layer.
  • their light transmittance hardly decreased from 57.3% to 56.7% even by the epitaxial growth of the functional semiconductor layer.
  • Such a decrease in light transmittance in the composite substrate with protective film of Examples 3-1, 3-2 and 3-3 and the composite substrate without the protective film of Comparative Example 3 is caused by the ITO during epitaxial growth of the functional semiconductor layer. It was derived from devitrification due to deterioration of the film (oxide film) due to heat and corrosion.
  • the ITO film oxide film
  • the GaN film the GaN film
  • the mullite film the molybdenum film that are protective films. It has been found that a highly effective semiconductor device can be obtained with a high yield because the effective region is largely maintained by greatly reducing the deterioration of the oxide film during the epitaxial growth of the layer.
  • Example 4-1 2 and 3 the same procedure as in Example 1-1 was performed except that an ATO (antimony tin oxide) film having a thickness of 300 nm was grown as the oxide film 20 by the sputtering method.
  • a composite substrate 2Q with a protective film as shown in (C) was obtained.
  • the transmittance of light having a wavelength of 500 nm in the obtained composite substrate with a protective film 2Q was measured in the same manner as in Example 1-1, and was 57.8%.
  • a 300 nm-thick GaN layer (functional semiconductor layer) was epitaxially grown on the main surface of the GaN layer (semiconductor layer) of the composite substrate with protective film 2Q in the same manner as in Example 1-1.
  • the transmittance of light having a wavelength of 500 nm in the composite substrate with protective film 2Q after the GaN layer (functional semiconductor layer) was epitaxially grown was measured in the same manner as in Example 1-1, and found to be 57.2%. The results are summarized in Table 4.
  • Example 4-2 a composite with a protective film as shown in FIG. 2C is formed in the same manner as in Example 4-1, except that a mullite film having a thickness of 300 ⁇ m is formed as the protective film 40 by sputtering.
  • a substrate 2Q was obtained.
  • the transmittance of light having a wavelength of 500 nm in the obtained composite substrate with a protective film 2Q was measured in the same manner as in Example 1-1, and was 57.8%.
  • a 300 nm-thick GaN layer (functional semiconductor layer 50) was epitaxially grown on the main surface of the GaN layer (semiconductor layer 30a) of the composite substrate with protective film 2Q.
  • the transmittance of light having a wavelength of 500 nm in the composite substrate with protective film 2Q after the GaN layer (functional semiconductor layer 50) was epitaxially grown was measured in the same manner as in Example 1-1, and found to be 57.2%. The results are summarized in Table 4.
  • Example 4-3 a composite with a protective film as shown in FIG. 2C is formed in the same manner as in Example 4-1, except that a 300 ⁇ m-thick molybdenum film is formed as the protective film 40 by sputtering.
  • a substrate 2Q was obtained.
  • the transmittance of light having a wavelength of 500 nm in the obtained composite substrate with a protective film 2Q was measured in the same manner as in Example 1-1, and was 57.8%.
  • a 300 nm-thick GaN layer (functional semiconductor layer 50) was epitaxially grown on the main surface of the GaN layer (semiconductor layer 30a) of the composite substrate with protective film 2Q.
  • the transmittance of light having a wavelength of 500 nm in the composite substrate with protective film 2Q after the GaN layer (functional semiconductor layer 50) was epitaxially grown was measured in the same manner as in Example 1-1, and found to be 57.2%. The results are summarized in Table 4.
  • Example 4 [Correction based on Rule 91 28.12.2012]
  • a composite substrate 1 as shown in FIG. 2A was obtained in the same manner as in Example 4-1.
  • the transmittance of light having a wavelength of 500 nm in the obtained composite substrate 1 was 60.8% as measured in the same manner as in Example 1-1.
  • a 300 nm-thick GaN layer (functional semiconductor layer) was epitaxially grown on the main surface of the GaN layer (semiconductor layer) of the composite substrate 1 in the same manner as in Example 1-1.
  • the transmittance of light having a wavelength of 500 nm in the composite substrate 1 after the GaN layer (functional semiconductor layer) was epitaxially grown was 42.6% as measured in the same manner as in Example 1-1.
  • Table 4 The results are summarized in Table 4.
  • the composite substrate without the protective film of Comparative Example 4 has a light transmittance significantly reduced from 60.8% to 42.6% due to the epitaxial growth of the functional semiconductor layer.
  • their light transmittance was hardly lowered from 57.8% to 57.2% even by the epitaxial growth of the functional semiconductor layer.
  • Such a decrease in light transmittance in the composite substrate with a protective film of Examples 4-1, 4-2 and 4-3 and the composite substrate without the protective film of Comparative Example 4 is caused by the ATO during epitaxial growth of the functional semiconductor layer. It was derived from devitrification due to deterioration of the film (oxide film) due to heat and corrosion.
  • the ATO film oxide film
  • the GaN film the GaN film
  • the mullite film the molybdenum film
  • a highly effective semiconductor device can be obtained with a high yield because the effective region is largely maintained by greatly reducing the deterioration of the oxide film during the epitaxial growth of the layer.
  • Example 5-1 Referring to FIGS. 2 and 3, as shown in FIG. 2C, similar to Example 1-1, except that a 300 nm thick ZnO film was grown as the oxide film 20 by sputtering. A composite substrate 2Q with a protective film was obtained. The transmittance of light having a wavelength of 500 nm in the obtained composite substrate with a protective film 2Q was measured in the same manner as in Example 1-1, and was 57.1%. A 300 nm-thick GaN layer (functional semiconductor layer) was epitaxially grown on the main surface of the GaN layer (semiconductor layer) of the composite substrate with protective film 2Q in the same manner as in Example 1-1.
  • a 300 nm thick ZnO film was grown as the oxide film 20 by sputtering.
  • a composite substrate 2Q with a protective film was obtained.
  • the transmittance of light having a wavelength of 500 nm in the obtained composite substrate with a protective film 2Q was measured in the same manner as in Example 1-1,
  • the transmittance of light having a wavelength of 500 nm in the composite substrate with protective film 2Q after the GaN layer (functional semiconductor layer) was epitaxially grown was measured in the same manner as in Example 1-1, and found to be 56.5%. The results are summarized in Table 5.
  • Example 5-2 a composite with a protective film as shown in FIG. 2C is obtained in the same manner as in Example 5-1, except that a mullite film having a thickness of 300 ⁇ m is formed as the protective film 40 by sputtering.
  • a substrate 2Q was obtained.
  • the transmittance of light having a wavelength of 500 nm in the obtained composite substrate with a protective film 2Q was measured in the same manner as in Example 1-1, and was 57.1%.
  • a 300 nm-thick GaN layer (functional semiconductor layer 50) was epitaxially grown on the main surface of the GaN layer (semiconductor layer 30a) of the composite substrate with protective film 2Q.
  • the transmittance of light having a wavelength of 500 nm in the composite substrate with protective film 2Q after the GaN layer (functional semiconductor layer 50) was epitaxially grown was measured in the same manner as in Example 1-1, and found to be 56.5%. The results are summarized in Table 5.
  • Example 5-3 a composite with a protective film as shown in FIG. 2C is formed in the same manner as in Example 5-1, except that a 300 ⁇ m-thick molybdenum film is formed as the protective film 40 by sputtering.
  • a substrate 2Q was obtained.
  • the transmittance of light having a wavelength of 500 nm in the obtained composite substrate with a protective film 2Q was measured in the same manner as in Example 1-1, and was 57.1%.
  • a 300 nm-thick GaN layer (functional semiconductor layer 50) was epitaxially grown on the main surface of the GaN layer (semiconductor layer 30a) of the composite substrate with protective film 2Q.
  • the transmittance of light having a wavelength of 500 nm in the composite substrate with protective film 2Q after the GaN layer (functional semiconductor layer 50) was epitaxially grown was measured in the same manner as in Example 1-1, and found to be 56.5%. The results are summarized in Table 5.
  • Example 5 [Correction based on Rule 91 28.12.2012]
  • a composite substrate 1 as shown in FIG. 2A was obtained in the same manner as in Example 5-1.
  • the transmittance of light with a wavelength of 500 nm in the obtained composite substrate 1 was 60.1% when measured in the same manner as in Example 1-1.
  • a 300 nm-thick GaN layer (functional semiconductor layer) was epitaxially grown on the main surface of the GaN layer (semiconductor layer) of the composite substrate 1 in the same manner as in Example 1-1.
  • the transmittance of light having a wavelength of 500 nm in the composite substrate 1 after the GaN layer (functional semiconductor layer) was epitaxially grown was 42.1% as measured in the same manner as in Example 1-1.
  • the results are summarized in Table 5.
  • the composite substrate without the protective film of Comparative Example 5 has a light transmittance significantly reduced from 60.1% to 42.1% due to the epitaxial growth of the functional semiconductor layer.
  • their light transmittance was hardly lowered from 57.1% to 56.5% even by the epitaxial growth of the functional semiconductor layer.
  • Such a decrease in light transmittance in the composite substrate with protective film of Examples 5-1, 5-2 and 5-3 and the composite substrate without the protective film of Comparative Example 5 is caused by ZnO during epitaxial growth of the functional semiconductor layer. It was derived from devitrification due to deterioration of the film (oxide film) due to heat and corrosion.
  • the ZnO film (oxide film) is protected by one of the GaN film, the mullite film, and the molybdenum film, which is a protective film. It has been found that a highly effective semiconductor device can be obtained with a high yield because the effective region is largely maintained by greatly reducing the deterioration of the oxide film during the epitaxial growth of the layer.
  • Example 6-1 2 and 3 the same procedure as in Example 1-1 was performed except that a 300 nm-thick Ga 2 O 3 film was grown as the oxide film 20 by the sputtering method. As a result, a composite substrate 2Q with a protective film was obtained. The transmittance of light having a wavelength of 500 nm in the obtained composite substrate with a protective film 2Q was 54.7% as measured in the same manner as in Example 1-1.
  • a 300 nm-thick GaN layer (functional semiconductor layer) was epitaxially grown on the main surface of the GaN layer (semiconductor layer) of the composite substrate with protective film 2Q in the same manner as in Example 1-1.
  • the transmittance of light with a wavelength of 500 nm in the composite substrate with protective film 2Q after the GaN layer (functional semiconductor layer) was epitaxially grown was measured in the same manner as in Example 1-1, and found to be 54.2%. The results are summarized in Table 6.
  • Example 6-2 a composite with a protective film as shown in FIG. 2C is obtained in the same manner as in Example 6-1 except that a mullite film having a thickness of 300 ⁇ m is formed as the protective film 40 by sputtering.
  • a substrate 2Q was obtained.
  • the transmittance of light having a wavelength of 500 nm in the obtained composite substrate with a protective film 2Q was 54.7% as measured in the same manner as in Example 1-1.
  • a 300 nm-thick GaN layer (functional semiconductor layer 50) was epitaxially grown on the main surface of the GaN layer (semiconductor layer 30a) of the composite substrate with protective film 2Q.
  • the transmittance of light having a wavelength of 500 nm in the composite substrate with protective film 2Q after the GaN layer (functional semiconductor layer 50) was epitaxially grown was measured in the same manner as in Example 1-1, and found to be 54.2%. The results are summarized in Table 6.
  • Example 6-3 a composite with a protective film as shown in FIG. 2C is formed in the same manner as in Example 6-1 except that a 300 ⁇ m-thick molybdenum film is formed as the protective film 40 by sputtering.
  • a substrate 2Q was obtained.
  • the transmittance of light having a wavelength of 500 nm in the obtained composite substrate with a protective film 2Q was 54.7% as measured in the same manner as in Example 1-1.
  • a 300 nm-thick GaN layer (functional semiconductor layer 50) was epitaxially grown on the main surface of the GaN layer (semiconductor layer 30a) of the composite substrate with protective film 2Q.
  • the transmittance of light having a wavelength of 500 nm in the composite substrate with protective film 2Q after the GaN layer (functional semiconductor layer 50) was epitaxially grown was measured in the same manner as in Example 1-1, and found to be 54.2%. The results are summarized in Table 6.
  • Example 6 [Correction based on Rule 91 28.12.2012] (Comparative Example 6)
  • a composite substrate 1 as shown in FIG. 2A was obtained in the same manner as in Example 6-1.
  • the transmittance of light with a wavelength of 500 nm in the obtained composite substrate 1 was 57.6% as measured in the same manner as in Example 1-1.
  • a 300 nm-thick GaN layer (functional semiconductor layer) was epitaxially grown on the main surface of the GaN layer (semiconductor layer) of the composite substrate 1 in the same manner as in Example 1-1.
  • the transmittance of light having a wavelength of 500 nm in the composite substrate 1 after the GaN layer (functional semiconductor layer) was epitaxially grown was 51.8% as measured in the same manner as in Example 1-1.
  • Table 6 The results are summarized in Table 6.
  • the composite substrate without the protective film of Comparative Example 6 has a light transmittance significantly reduced from 57.6% to 51.8% due to the epitaxial growth of the functional semiconductor layer.
  • their light transmittance hardly decreased from 54.7% to 54.2% even by the epitaxial growth of the functional semiconductor layer. .
  • Such a decrease in light transmittance in the composite substrates with protective films of Examples 6-1, 6-2, and 6-3 and the composite substrate without the protective film of Comparative Example 6 is caused by Ga during epitaxial growth of the functional semiconductor layer. This was derived from devitrification due to heat and corrosion of the 2 O 3 film (oxide film).
  • the Ga 2 O 3 film (oxide film) is protected by one of the GaN film, the mullite film, and the molybdenum film, which are protective films, and therefore, compared with the composite substrate without the protective film. It has been found that a highly effective semiconductor device can be obtained with a high yield because the effective region is largely maintained by greatly reducing deterioration of the oxide film during epitaxial growth of the functional semiconductor layer.

Abstract

 本保護膜付複合基板(2Q)は、支持基板(10)と、支持基板(10)上に配置された酸化物膜(20)と、酸化物膜(20)上に配置された半導体層(30a)と、酸化物膜(20)のうち支持基板(10)および半導体層(30a)のいずれにも覆われていない部分(20s,20t)を覆うことにより酸化物膜(20)を保護する保護膜(40)と、を含む。本半導体デバイスの製造方法は、保護膜付複合基板(2Q)を準備する工程と、保護膜付複合基板(2Q)の半導体層(30a)上に、半導体デバイスとしての機能を発現させる少なくとも1層の機能半導体層をエピタキシャル成長させる工程と、を含む。これにより、品質の高い機能半導体層をエピタキシャル成長させることができる有効領域が大きい保護膜付複合基板およびかかる保護膜付複合基板を用いた半導体デバイスの製造方法を提供する。

Description

保護膜付複合基板、および半導体デバイスの製造方法
 本発明は、支持基板と酸化物膜と半導体層と酸化物膜を保護するための保護膜とを含む保護膜付複合基板、およびかかる保護膜付複合基板を用いた半導体デバイスの製造方法に関する。
 半導体デバイスの製造に有用な複合基板の製造方法として、たとえば、特開2007-201429号公報(特許文献1)および特開2007-201430号公報(特許文献2)は、支持基板と半導体材料の活性層との間に介在させた少なくとも1つの薄い絶縁層を備える複合基板の作製方法を開示する。
特開2007-201429号公報 特開2007-201430号公報
 しかし、上記の特開2007-201429号公報(特許文献1)および特開2007-201430号公報(特許文献2)に開示された方法により作製される複合基板は、絶縁層として酸化物層が用いられている。このため、上記の複合基板の半導体材料の活性層上に、さらに半導体層としてたとえばIII族窒化物層をエピタキシャル成長させる場合には、歩留まりが低下するという問題点があった。
 本発明者らは、この問題点について鋭意検討した結果、この問題点の原因は、[1]上記の複合基板の酸化物層(絶縁層)には、支持基板および活性層に覆われずに露出している部分(たとえば複合基板の側表面に露出している酸化物層の側表面部分、活性層の欠損により複合基板の主表面に露出している酸化物層の主表面部分など)があること、および、[2]酸化物層(絶縁層)が上記のIII族窒化物層をエピタキシャル成長させる条件(たとえば、MOCVD(有機金属化学気相堆積)法における800℃以上1500℃以下程度のアンモニアガス含有雰囲気条件、HVPE(ハイドライド気相成長)法における800℃以上1500℃以下程度のIII族窒化物ガス含有雰囲気条件など)においては、酸化物層(絶縁層)が腐食されること、特に酸化物層のうち支持基板および活性層に覆われずに露出している部分から著しく腐食されること、にあることを見出した。
 本発明者らは、上記の知見に基づき、上記の問題点を解決して、半導体デバイスの機能を発現させる機能半導体層を高品質でエピタキシャル成長させることができる有効領域が大きい、支持基板と酸化物膜と半導体層と酸化物膜を保護するための保護膜とを含む保護膜付複合基板、およびかかる保護膜付複合基板を用いた半導体デバイスの製造方法を提供することを目的とする。
 本発明は、ある局面に従えば、支持基板と、支持基板上に配置された酸化物膜と、酸化物膜上に配置された半導体層と、酸化物膜のうち支持基板および半導体層のいずれにも覆われていない部分を覆うことにより酸化物膜を保護する保護膜と、を含む保護膜付複合基板である。
 本発明にかかる保護膜付複合基板において、酸化物膜は、TiO2膜、SrTiO3膜、インジウムスズ酸化物膜、アンチモンスズ酸化物膜、ZnO膜およびGa23膜からなる群から選ばれる少なくともひとつとすることができる。また、支持基板および半導体層の少なくともひとつをIII族窒化物で形成することができる。
 また、本発明は、別の局面に従えば、上記の保護膜付複合基板を準備する工程と、保護膜付複合基板の半導体層上に、半導体デバイスとしての機能を発現させる少なくとも1層の機能半導体層をエピタキシャル成長させる工程と、を含む半導体デバイスの製造方法である。
 本発明によれば、半導体デバイスの機能を発現させる機能半導体層を高品質でエピタキシャル成長させることができる有効領域が大きい、支持基板と酸化物膜と半導体層と酸化物膜を保護するための保護膜とを含む保護膜付複合基板、およびかかる保護膜付複合基板を用いた半導体デバイスの製造方法を提供することができる。
本発明にかかる保護膜付複合基板の一例を示す概略断面図である。 本発明にかかる保護膜付複合基板の別の例を示す概略断面図である。 本発明にかかる保護膜付複合基板の製造方法および半導体デバイスの製造方法の一例を示す概略断面図である。 複合基板の製造方法の一例を示す概略断面図である。
 [保護膜付複合基板]
 図1Aおよび図1Bを参照して、本発明のある局面における実施形態である保護膜付複合基板2P,2Qは、支持基板10と、支持基板10上に配置された酸化物膜20と、酸化物膜20上に配置された半導体層30aと、酸化物膜20のうち支持基板10および半導体層30aのいずれにも覆われていない部分20s,20tを覆うことにより酸化物膜20を保護する保護膜40と、を含む。ここで、酸化物膜20のうち支持基板10および半導体層30aのいずれにも覆われていない部分20s,20tとは、たとえば、酸化物膜20の側表面であって支持基板10および半導体層30aのいずれにも覆われていない部分20s、酸化物膜20の主表面のうち支持基板10および半導体層30aのいずれにも覆われていない部分20tなどを含む。
 本実施形態の保護膜付複合基板2P,2Qは、酸化物膜20のうち支持基板10および半導体層30aのいずれにも覆われていない部分20s,20tが保護膜40により覆われているため、この保護膜付複合基板2P,2Qの半導体層30aの主表面上に、半導体デバイスとしての機能を発現させる機能半導体層を高品質でエピタキシャル成長させることができる有効領域が大きい。
 ここで、図1Aに示す保護膜付複合基板2Pは、酸化物膜20のうち支持基板10および半導体層30aのいずれにも覆われていない部分20s,20tに加えて、半導体層30aの主表面も保護膜40で覆われている形態を有する。保護膜付複合基板の半導体層30a上に機能半導体層をエピタキシャル成長させる際には、保護膜40のうち半導体層30aの主表面を覆っている部分を除去する必要があるが、機能半導体層をエピタキシャル成長させる前においては、上記保護膜40により酸化物膜20のみならず半導体層30aも保護できる。
 また、図1Bに示す保護膜付複合基板2Qは、図1Aに示す保護膜付複合基板2Pから保護膜40のうち半導体層30aの主表面を覆っている部分が除去されて、半導体層30aの主表面が露出した形態を有する。かかる形態を有する保護膜付複合基板2Qは、その半導体層30aの主表面上に品質の高い機能半導体層をエピタキシャル成長させることができる有効領域が大きい。
[規則91に基づく訂正 28.12.2012] 
 (支持基板)
 本実施形態の保護膜付複合基板2P,2Qにおける支持基板10は、その上に酸化物膜20を形成することができるものであれば特に制限はなく、サファイア支持基板、Si支持基板、SiC支持基板、III族窒化物支持基板などが好適に挙げられる。支持基板10は、半導体層30aとの熱膨張係数および屈折率の差が小さく整合性が高くまた導電性である観点から、半導体材料であるIII族窒化物で形成されているIII族窒化物支持基板が特に好ましい。また、支持基板10は、安価でありまた光デバイスの場合は光透過性が高い観点から、透明材料であるサファイアで形成されているサファイア支持基板が特に好ましい。
 ここで、保護膜付複合基板2P,2Qにおいて支持基板10と半導体層30aとの間の熱膨張係数の差を低減する観点から、半導体層30aと化学組成が同一または近似の支持基板10が好ましい。たとえば、半導体層30aがSi層のとき支持基板10はSi支持基板が好ましく、半導体層30aがIII族窒化物層のとき支持基板10はIII族窒化物支持基板が好ましい。
 また、支持基板10は、単結晶体であっても、非配向性多結晶体(たとえば焼結体)、配向性多結晶体などの多結晶体であっても、非結晶体であってもよいが、製造コストの低減の観点から、多結晶体、非結晶体であることが好ましい。
 また、支持基板10の厚さは、酸化物膜20および半導体層30aを支持できる厚さであれば特に制限はないが、取り扱い易い観点から300μm以上が好ましく、材料コストを低減する観点から1000μm以下が好ましい。
 (酸化物膜)
 本実施形態の保護膜付複合基板2P,2Qにおける酸化物膜20は、その上に半導体層30aを形成することができ、支持基板10上に形成することができ、支持基板10と半導体層30aとの接合強度が高いものであれば特に制限はなく、TiO2膜、SrTiO3膜、ITO(インジウムスズ酸化物)膜、ATO(アンチモンスズ酸化物)膜、ZnO膜、Ga23膜、Al23膜などが好適に挙げられる。以下の観点から、酸化物膜20は、TiO2膜、SrTiO3膜、ITO膜、ATO膜、ZnO膜およびGa23膜からなる群から選ばれる少なくともひとつであるであることが好ましい。光の透過性を高める観点から、酸化物膜20は、屈折率が高い酸化物膜、たとえばTiO2膜(波長400nmの光の屈折率が約2.8)およびSrTiO3膜(波長400nmの光の屈折率が約2.4)からなる群から選ばれる少なくともひとつであることが好ましい。
 また、酸化物膜20の厚さは、支持基板10と半導体層30aとの接合強度を高める厚さであれば特に制限はないが、接合強度を高める観点から50nm以上が好ましく、成膜コストを低減する観点から1000nm以下が好ましい。
 (半導体層)
 本実施形態の保護膜付複合基板2P,2Qにおける半導体層30aは、その上に目的とする半導体デバイスの機能を発現させる機能半導体層をエピタキシャル成長させることができるものであれば特に制限はなく、III族窒化物層、Si層などが好適に挙げられる。目的とする半導体デバイスが光デバイスであって機能半導体層としてIII族窒化物層をエピタキシャル成長させる場合は、機能半導体層の品質を高める観点から、半導体層30aは機能半導体層と化学組成が同一または近似するIII族窒化物で形成されているIII族窒化物層であることが特に好ましい。
[規則91に基づく訂正 28.12.2012] 
 また、上記のように、支持基板10は、導電性である観点から半導体であるIII族窒化物から形成されていることが好ましい。したがって、支持基板10および半導体層30aの少なくともひとつがIII族窒化物で形成されていることが好ましい。
 さらに、上記のように、支持基板10と半導体層30aとは、両者間の熱膨張係数の差を低減する観点から、化学組成が同一または近似の支持基板10が好ましい。したがって、支持基板10および半導体層30aはいずれもIII族窒化物で形成されていることが好ましい。
 半導体層30aの厚さは、その上に品質の高い機能半導体層をエピタキシャル成長させることができる厚さであれば特に制限はないが、半導体層30aを割れることなく形成する観点から100nm以上が好ましく、半導体層30aの品質およびその厚さの精度を高く維持する観点から1000μm以下が好ましい。
 (保護膜)
 本実施形態の保護膜付複合基板2P,2Qにおける保護膜40は、酸化物膜20のうち支持基板10および半導体層30aのいずれにも覆われていない部分20s,20tを覆うことにより酸化物膜20を保護するものであれば特に制限はない。
 保護膜40は、酸化物膜20を保護する観点から、半導体層30a上に機能半導体層をエピタキシャル成長させる条件において耐熱性および耐腐食性が高い膜が好ましい。保護膜40の有する好ましい耐熱性および耐腐食性とは、たとえば、半導体層30a上に機能半導体層としてIII族窒化物層をエピタキシャル成長させる方法がMOCVD(有機金属化学気相堆積)法の場合は、800℃以上1500℃以下で1kPa以上100kPa以下の分圧のアンモニアガスが含有される雰囲気中において耐熱性および耐腐食性を有することを意味する。また、半導体層30a上に機能半導体層としてIII族窒化物層をエピタキシャル成長させる方法がHVPE(ハイドライド気相成長)法の場合は、800℃以上1500℃以下で1kPa以上100kPa以下の分圧のIII族塩化物ガスが含有される雰囲気中において耐熱性および耐腐食性を有することを意味する。
 また、保護膜40は、酸化物膜20のうち支持基板10および半導体層30aのいずれにも覆われていない部分20s,20tを確実に覆って分離させない観点から、支持基板10、酸化物膜20および半導体層30aの少なくともひとつとの接合強度が高く、支持基板10、酸化物膜20および半導体層30aの少なくともひとつの熱膨張係数と同一または近似の熱膨張係数を有していることが好ましい。かかる観点から、保護膜40の熱膨張係数は、支持基板10、酸化物膜20および半導体層30aの少なくともひとつの熱膨張係数との差が3×10-6-1以下であることが好ましい。
 上記の観点から、保護膜40は、たとえば、III族窒化物(III族元素と窒素とにより形成される化合物、たとえばInxAlyGa1-x-yN(0≦x、0≦y、x+y≦1))、ムライト(単鎖構造を有するアルミノケイ酸塩鉱物、化学式は3Al23・2SiO2~2Al23・SiO2またはAl613Si2)、ケイ素(Si)、モリブデン(Mo)などの少なくともひとつにより形成されていることが好ましい。
 また、保護膜40の厚さは、酸化物膜20を保護するのに十分な厚さであれば特に制限はないが、酸化物膜20の保護を高める観点から10nm以上が好ましく、酸化物膜20中の光吸収量の低減および成膜コスト低減の観点から500nm以下が好ましい。
[規則91に基づく訂正 28.12.2012] 
 また、図1Bに示すように、保護膜付複合基板2Qは、半導体層30aの主表面が露出していることが好ましい。かかる保護膜付複合基板2Qの半導体層30aの露出した主表面上に、目的とする半導体デバイスの機能を発現させる機能半導体層を容易にエピタキシャル成長させることができる。
 [保護膜付複合基板の製造方法]
 図2を参照して、本実施形態の保護膜付複合基板2P,2Qの製造方法は、支持基板10と酸化物膜20と半導体層30aを含む複合基板1を準備する工程(図2(A))と、複合基板1上に保護膜40を形成することにより保護膜付複合基板2Pを得る工程(図2(B))と、保護膜付複合基板2Pを加工することにより、保護膜40のうち半導体層30aの主表面を覆っている部分を除去して、半導体層30aの主表面を露出させた保護膜付複合基板2Qを得る工程(図2(C))と、を含むことができる。
 上記の工程により、半導体層30aの主表面上に品質の高い機能半導体層をエピタキシャル成長させることができる保護膜付複合基板2P,2Qを効率よく製造することができる。
 (複合基板1の準備工程)
 図2(A)を参照して、本実施形態の保護膜付複合基板2P,2Qの製造方法は、支持基板10と酸化物膜20と半導体層30aを含む複合基板1を準備する工程(複合基板1の準備工程)を含むことができる。
 ここで、図3を参照して、複合基板1の準備工程は、特に制限はないが、効率よく複合基板1を準備する観点から、支持基板10を準備するサブ工程(図3(A))、支持基板10の主表面上に酸化物膜20を形成するサブ工程(図3(A))、半導体基板30にその一方の主表面から一定の深さの領域にイオンIを注入するサブ工程(図3(B))、支持基板10の主表面上に形成された酸化物膜20の主表面に半導体基板30のイオン注入領域30i(イオンIが注入された領域をいう。以下同じ。)側の主表面を貼り合わせるサブ工程(図3(C))、半導体基板30を、そのイオン注入領域30iで、半導体層30aと残りの半導体基板30bとに分離して、支持基板10の主表面上に形成された酸化物膜20の主表面上に半導体層30aを形成するサブ工程(図3(D))と、を含むことができる。
 図3(A)を参照して、支持基板10を準備するサブ工程において、支持基板10は、その材質および形状に適した一般的な方法で準備することができる。たとえば、III族窒化物支持基板は、HVPE(ハイドライド気相成長)法、昇華法などの気相法、フラックス法、高窒素圧溶液法などの液相法により得られたIII族窒化物結晶体を、所定の形状に加工することにより準備することができる。また、サファイア支持基板は、サファイア結晶体を所定の形状に加工することにより準備することができる。
 また、図3(A)に示す支持基板10上に酸化物膜20を形成するサブ工程において、支持基板10の主表面上に、酸化物膜20を形成する方法は、その酸化物膜の形成に適している限り特に制限はなく、スパッタ法、パルスレーザ堆積法、分子線エピタキシ法、電子線蒸着法、化学気相成長法などの一般的な方法を用いることができる。
 図3(B)に示す半導体基板30にその一方の主表面から一定の深さの領域にイオンIを注入するサブ工程において、イオンIを注入する深さは、特に制限はないが、100nm以上1000μm以下が好ましい。イオンIを注入する深さが、100nmより小さいと半導体基板30をそのイオン注入領域30iで分離することにより形成される半導体層30aが割れやすくなり、1000μmより大きいとイオンの分布が広くなり分離する深さを調節することが難しくなるため半導体層30aの厚さを調節することが難しくなる。また、注入するイオンの種類は、特に制限はないが、形成する半導体層の品質の低下を抑制する観点から、質量が小さいイオンが好ましく、たとえば、水素イオン、ヘリウムイオンなどが好ましい。こうして形成されたイオン注入領域30iは、注入されたイオンにより脆化する。
 図3(C)に示す支持基板10の主表面上に形成された酸化物膜20の主表面上に、半導体基板30のイオン注入領域30i側の主表面を貼り合わせるサブ工程において、その貼り合わせ方法は、特に制限はないが、貼り合わせ後高温雰囲気下においても接合強度を保持できる観点から、貼り合わせる面の表面を洗浄して直接貼り合わせた後600℃~1200℃程度に昇温して接合することによる直接接合法、プラズマやイオンなどで貼り合わせ面を活性化させ室温(たとえば25℃)~400℃程度の低温で接合することによる表面活性化法などが好ましい。
 図3(D)に示す半導体基板30を、そのイオン注入領域30iで、半導体層30aと残りの半導体基板30bとに分離して、支持基板10の主表面上に形成された酸化物膜20の主表面上に半導体層30aを形成するサブ工程において、半導体基板30をそのイオン注入領域30iで分離する方法は、半導体基板30のイオン注入領域30iに何らかのエネルギーを与える方法であれば特に制限はなく、イオン注入領域30iに、応力を加える方法、熱を加える方法、光を照射する方法、および超音波を印加する方法の少なくともひとつの方法を用いることができる。かかるイオン注入領域30iは、注入されたイオンにより脆化しているため、上記エネルギーを受けることにより、半導体基板30は、支持基板10の主表面上に形成された酸化物膜20上に貼り合わされた半導体層30aと、残りの半導体基板30bと、に容易に分離される。
 上記のようにして、支持基板10の主表面上に形成された酸化物膜20の主表面上に半導体層30aを形成することにより、支持基板10と、支持基板10の主表面上に形成されている酸化物膜20と、酸化物膜20の主表面上に形成されている半導体層30aと、を含む複合基板1が得られる。
 図3(D)を参照して、こうして得られた複合基板1には、酸化物膜20の側表面であって支持基板10および半導体層30aのいずれにも覆われていない部分20sが存在する。また、上記サブ工程において、酸化物膜20を形成する際の不具合、半導体基板30にイオン注入する際の不具合、酸化物膜20と半導体基板30とを貼り合わせる際の不具合などにより、半導体基板30を半導体層30aと残りの半導体基板30bとに分離する際に、イオン注入領域30iで分離されずに半導体基板30と酸化物膜20との界面で分離する分離異常領域Rが発生する場合がある。複合基板1のかかる分離異常領域Rにおいては、酸化物膜20の主表面のうち支持基板10および半導体層30aのいずれにも覆われていない部分20tが存在する。
 上記のような酸化物膜20のうち支持基板10および半導体層30aのいずれにも覆われていない部分20s,20tを有する複合基板1は、半導体層30aの主表面上に機能半導体層をエピタキシャル成長させる条件において酸化物膜20の耐熱性および耐腐食性に乏しいため、上記の酸化物膜20が上記の支持基板10および半導体層30aのいずれにも覆われていない部分20s,20tから著しく腐食されることにより、機能半導体層をエピタキシャル成長させて半導体デバイスを製造する際の有効領域が低下する問題点があった。
 図2(B)~(C)を参照して、上記問題点を解決するため、以下の工程により保護膜付複合基板2P,2Qを製造する。
 (保護膜付複合基板2Pを得る工程)
 図2(B)を参照して、本実施形態の保護膜付複合基板2P,2Qの製造方法は、上記の複合基板1に保護膜40を形成することにより保護膜付複合基板2Pを得る工程を含むことができる。
 保護膜付複合基板2Pを得る工程において、複合基板1に保護膜40を形成する方法は、酸化物膜20のうち支持基板10および半導体層30aのいずれにも覆われていない部分20s,20tを覆うことができる方法であれば特に制限はなく、スパッタ法、パルスレーザ堆積法、分子線エピタキシ法、電子線蒸着法、化学気相成長法、ゾルゲル法などの一般的な方法を用いることができる。
 こうして得られた保護膜付複合基板2Pは、酸化物膜20のうち支持基板10および半導体層30aのいずれにも覆われていない部分20s,20tに加えて、半導体層30aの主表面も、保護膜40で覆われている形態を有するため、機能半導体層をエピタキシャル成長させる前において、上記保護膜40により酸化物膜20のみならず半導体層30aも保護できる。
 (保護膜付複合基板2Qを得る工程)
 図2(C)を参照して、本実施形態の保護膜付複合基板2Qの製造方法は、保護膜付複合基板2Pを加工することにより、保護膜40のうち半導体層30aの主表面を覆っている部分を除去して、半導体層30aの主表面を露出させた保護膜付複合基板2Qを得る工程を含むことができる。
 保護膜付複合基板2Qを得る工程において、保護膜付複合基板2Pを加工することにより、保護膜40のうち半導体層30aの主表面を覆っている部分を除去する方法には、特に制限はなく、RIE(反応性イオンエッチング)などのドライエッチング、酸溶液、アルカリ溶液などによるウェットエッチング、研削、機械的研磨、化学機械的研磨、化学的研磨などの一般的な方法を用いることができる。
 こうして得られた保護膜付複合基板2Qは、酸化物膜20のうち支持基板10および半導体層30aのいずれにも覆われていない部分20s,20tが保護膜40に覆われており、半導体層30aの主表面が露出しているため、半導体層30aの主表面上に品質の高い機能半導体層をエピタキシャル成長させることができる有効領域が大きい。
 すなわち、図2(D)を参照して、上記の製造方法により得られた保護膜付複合基板2Qは、その半導体層30aの主表面上に機能半導体層50をエピタキシャル成長させる工程を加えることにより、品質の高い機能半導体層をエピタキシャル成長させることができる有効領域が大きいため、特性の高い半導体デバイスを歩留まりよく製造することができる。
 [半導体デバイスの製造方法]
 図2を参照して、本発明の別の局面における実施形態である半導体デバイスの製造方法は、上記の保護膜付複合基板2Qを準備する工程(図2(A)~(C))と、保護膜付複合基板2Qの半導体層30a上に、半導体デバイス3としての機能を発現させる少なくとも1層の機能半導体層50をエピタキシャル成長させる工程(図2(D))と、を含む半導体デバイスの製造方法である。
 本実施形態の半導体デバイスの製造方法によれば、支持基板10、酸化物膜20、半導体層30aおよび保護膜40を含み、酸化物膜20のうち支持基板10および半導体層30aのいずれにも覆われていない部分20s,20tが保護膜40に覆われた保護膜付複合基板2Qを準備し、その保護膜付複合基板2Qの半導体層30a上に少なくとも1層の機能半導体層50をエピタキシャル成長させることにより、エピタキシャル成長の際の高温および高腐食性の雰囲気下においても酸化物膜の腐食が抑制され、広い有効領域において品質の高い機能半導体層を成長させることができるため、特性の高い半導体デバイスを歩留まりよく製造することができる。
 (保護膜付複合基板の準備工程)
 図2(A)~(C)を参照して、本実施形態の半導体デバイスの製造方法は、上記の保護膜付複合基板2Qを準備する工程を含む。かかる保護膜付複合基板2Qの準備工程は、上記の複合基板1の準備工程と、保護膜付複合基板2Pを得る工程と、および保護膜付複合基板2Qを得る工程とを含む、すなわち保護膜付複合基板2Qの製造方法と同様である。
 (機能半導体層のエピタキシャル成長工程)
 図2(D)を参照して、本実施形態の半導体デバイスの製造方法は、保護膜付複合基板2Qの半導体層30a上に、半導体デバイス3としての機能を発現させる少なくとも1層の機能半導体層50をエピタキシャル成長させる工程を含む。
 ここで、機能半導体層50をエピタキシャル成長させる方法には、特に制限はないが、品質の高い機能半導体層50を成長させる観点から、MOCVD法、HVPE法、MBE(分子線成長)法、昇華法などの気相法、フラックス法、高窒素圧溶液法などの液相法などが好ましい。
 また、半導体デバイス3としての機能を発現させる少なくとも1層の機能半導体層50は、半導体デバイスの種類により異なる。たとえば、半導体デバイスが光デバイスであれば、機能半導体層50としてMQW(多重量子井戸)構造の発光層などが挙げられる。半導体デバイスが電子デバイスであれば、機能半導体層として電子ストップ層、電子ドリフト層などが挙げられる。
 [実施例1]
 (実施例1-1)
 1.支持基板の準備
 図3(A)を参照して、HVPE法により成長させたGaN結晶体(図示せず)から直径が50mmで厚さが500μmの基板を切り出して、その主表面を研磨して、GaN支持基板(支持基板10)を準備した。
 2.支持基板上への酸化物膜の形成
 図3(A)を参照して、スパッタ法により、GaN支持基板(支持基板10)上に厚さ300nmのTiO2膜(酸化物膜20)を成長させた。
 3.酸化物膜上への半導体層の形成
 図3(B)を参照して、HVPE法により成長させたGaN結晶体(図示せず)から直径が50mmで厚さが500μmの基板を切り出して、その主表面を化学機械的研磨して、GaN基板(半導体基板30)を準備し、その基板の一方の主表面から300nmの深さに水素イオンを注入した。
 図3(C)を参照して、GaN支持基板(支持基板10)上のTiO2膜(酸化物膜20)の主表面と、GaN基板(半導体基板30)のイオン注入側の主表面とを、それぞれアルゴンプラズマにより清浄化させた後、接合圧力8MPaで貼り合わせた。
 図3(D)および図2(A)を参照して、貼り合わせた基板を、300℃で2時間熱処理することにより、貼り合わせた基板の接合強度を高めるとともに、GaN基板(半導体基板30)をそのイオン注入領域30iで分離することにより、TiO2膜(酸化物膜20)上に厚さが300nmのGaN層(半導体層30a)を形成して、GaN支持基板(支持基板10)、TiO2膜(酸化物膜20)およびGaN層(半導体層30a)がこの順に形成された複合基板1が得られた。
 得られた複合基板1は、光学顕微鏡により観察したところ、TiO2膜(酸化物膜20)の側表面であってGaN支持基板(支持基板10)およびGaN層(半導体層30a)のいずれにも覆われていない部分20s、および、TiO2膜(酸化物膜20)の主表面のうち支持基板10および半導体層30aのいずれにも覆われていない部分20tが存在していた。
 4.保護膜の形成
 図2(B)を参照して、上記の複合基板1のTiO2膜(酸化物膜20)およびGaN層(半導体層30a)が形成されている主表面上に、厚さ300nmのGaN膜(保護膜40)を、スパッタ法で形成することにより、保護膜付複合基板2Pが得られた。
 得られた保護膜付複合基板2Pは、光学顕微鏡により観察したところ、TiO2膜(酸化物膜20)の側表面であってGaN支持基板(支持基板10)およびGaN層(半導体層30a)のいずれにも覆われていない部分20s、および、TiO2膜(酸化物膜20)の主表面のうち支持基板10および半導体層30aのいずれにも覆われていない部分20tに加えてGaN層(半導体層30a)の主表面および側表面も、GaN膜(保護膜40)で覆われていた。
 図2(C)を参照して、上記の保護膜付複合基板2Pにおいて、保護膜40のうち半導体層30aの主表面を覆っている部分を化学機械的研磨(CMP)により除去して、半導体層30aの主表面を露出させることにより、保護膜付複合基板2Qが得られた。
 得られた保護膜付複合基板2Qは、光学顕微鏡により観察したところ、酸化物膜20の側表面であって支持基板10および半導体層30aのいずれにも覆われていない部分20s、ならびに、酸化物膜20の主表面のうち支持基板10および半導体層30aのいずれにも覆われていない部分20tがGaN膜(保護膜40)で覆われていた。
 5.保護膜付複合基板の透過率測定
 上記の保護膜付複合基板2Qにおける波長500nmの光の透過率は、紫外可視分光光度計により測定したところ、59.4%であった。
 6.機能半導体層のエピタキシャル成長
 上記の保護膜付複合基板2QのGaN層(半導体層30a)の主表面上に、MOCVD法により、厚さ300nmのGaN層(機能半導体層50)をエピタキシャル成長させた。
 7.エピタキシャル成長後の保護膜付複合基板の透過率測定
 上記のようにしてGaN層(機能半導体層50)がエピタキシャル成長された後の保護膜付複合基板2Qにおける波長500nmの光の透過率は、紫外可視分光光度計により測定したところ、58.8%であった。結果を表1にまとめた。
 (実施例1-2)
 図2を参照して、保護膜40として厚さ300μmのムライト膜をスパッタ法により形成したこと以外は、実施例1-1と同様にして、図2(C)に示すような保護膜付複合基板2Qを得た。得られた保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、59.4%であった。上記の保護膜付複合基板2QのGaN層(半導体層30a)の主表面上に、厚さ300nmのGaN層(機能半導体層50)をエピタキシャル成長させた。GaN層(機能半導体層50)がエピタキシャル成長された後の保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、58.8%であった。結果を表1にまとめた。
 (実施例1-3)
 図2を参照して、保護膜40として厚さ300μmのモリブデン膜をスパッタ法により形成したこと以外は、実施例1-1と同様にして、図2(C)に示すような保護膜付複合基板2Qを得た。得られた保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、59.4%であった。上記の保護膜付複合基板2QのGaN層(半導体層30a)の主表面上に、厚さ300nmのGaN層(機能半導体層50)をエピタキシャル成長させた。GaN層(機能半導体層50)がエピタキシャル成長された後の保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、58.8%であった。結果を表1にまとめた。
 (比較例1)
 実施例1-1と同様にして、複合基板1を得た。得られた複合基板1における波長500nmの光の透過率は、実施例1と同様に測定したところ、62.5%であった。上記の複合基板1のGaN層(半導体層)の主表面上に、実施例1-1と同様にして、厚さ300nmのGaN層(機能半導体層)をエピタキシャル成長させた。GaN層(機能半導体層)がエピタキシャル成長された後の複合基板1における波長500nmの光の透過率は、実施例1-1と同様に測定したところ、43.8%であった。結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
[規則91に基づく訂正 28.12.2012] 
 表1から明らかなように、比較例1の保護膜のない複合基板は、その光透過率が、機能半導体層のエピタキシャル成長により62.5%から43.8%と著しく低下したのに比べて、実施例1-1、1-2および1-3の保護膜付複合基板は、それらの光透過率が、機能半導体層のエピタキシャル成長によっても59.4%から58.8%とほとんど低下しなかった。実施例1-1、1-2、および1-3の保護膜付複合基板ならびに比較例1の保護膜のない複合基板におけるこのような光透過率の低下は、機能半導体層をエピタキシャル成長させる際のTiO2膜(酸化物膜)の熱および腐食による劣化による失透に由来するものであった。すなわち、保護膜付複合基板は、保護膜であるGaN膜、ムライト膜およびモリブデン膜のひとつによってTiO2膜(酸化物膜)が保護されているため、保護膜のない複合基板に比べて、機能半導体層をエピタキシャル成長させる際の酸化物膜の劣化を極めて低減されることにより有効領域が大きく維持されるため、特性の高い半導体デバイスが歩留まりよく得られることがわかった。
 [実施例2]
 (実施例2-1)
 図2および図3を参照して、酸化物膜20として厚さ300nmのSrTiO3膜をスパッタ法により成長させたこと以外は、実施例1-1と同様にして、図2(C)に示すような保護膜付複合基板2Qを得た。得られた保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、61.1%であった。上記の保護膜付複合基板2QのGaN層(半導体層)の主表面上に、実施例1-1と同様にして、厚さ300nmのGaN層(機能半導体層)をエピタキシャル成長させた。GaN層(機能半導体層)がエピタキシャル成長された後の保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、60.5%であった。結果を表2にまとめた。
 (実施例2-2)
 図2を参照して、保護膜40として厚さ300μmのムライト膜をスパッタ法により形成したこと以外は、実施例2-1と同様にして、図2(C)に示すような保護膜付複合基板2Qを得た。得られた保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、61.1%であった。上記の保護膜付複合基板2QのGaN層(半導体層30a)の主表面上に、厚さ300nmのGaN層(機能半導体層50)をエピタキシャル成長させた。GaN層(機能半導体層50)がエピタキシャル成長された後の保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、60.5%であった。結果を表2にまとめた。
 (実施例2-3)
 図2を参照して、保護膜40として厚さ300μmのモリブデン膜をスパッタ法により形成したこと以外は、実施例2-1と同様にして、図2(C)に示すような保護膜付複合基板2Qを得た。得られた保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、61.1%であった。上記の保護膜付複合基板2QのGaN層(半導体層30a)の主表面上に、厚さ300nmのGaN層(機能半導体層50)をエピタキシャル成長させた。GaN層(機能半導体層50)がエピタキシャル成長された後の保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、60.5%であった。結果を表2にまとめた。
[規則91に基づく訂正 28.12.2012] 
 (比較例2)
 図2を参照して、実施例2-1と同様にして、図2(A)に示すような複合基板1を得た。得られた複合基板1における波長500nmの光の透過率は、実施例1-1と同様に測定したところ、64.3%であった。上記の複合基板1のGaN層(半導体層)の主表面上に、実施例1-1と同様にして、厚さ300nmのGaN層(機能半導体層)をエピタキシャル成長させた。GaN層(機能半導体層)がエピタキシャル成長された後の複合基板1における波長500nmの光の透過率は、実施例1-1と同様に測定したところ、45.0%であった。結果を表2にまとめた。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、比較例2の保護膜のない複合基板は、その光透過率が、機能半導体層のエピタキシャル成長により64.3%から45.0%と著しく低下したのに比べて、実施例2-1、2-2および2-3の保護膜付複合基板は、それらの光透過率が、機能半導体層のエピタキシャル成長によっても61.1%から60.5%とほとんど低下しなかった。実施例2-1、2-2および2-3の保護膜付複合基板ならびに比較例2の保護膜のない複合基板におけるこのような光透過率の低下は、機能半導体層をエピタキシャル成長させる際のSrTiO3膜(酸化物膜)の熱および腐食による劣化による失透に由来するものであった。すなわち、保護膜付複合基板は、保護膜であるGaN膜、ムライト膜およびモリブデン膜のひとつによってSrTiO3膜(酸化物膜)が保護されているため、保護膜のない複合基板に比べて、機能半導体層をエピタキシャル成長させる際の酸化物膜の劣化を極めて低減されることにより有効領域が大きく維持されるため、特性の高い半導体デバイスが歩留まりよく得られることがわかった。
 [実施例3]
 (実施例3-1)
 図2および図3を参照して、酸化物膜20として厚さ300nmのITO(インジウムスズ酸化物)膜をスパッタ法により成長させたこと以外は、実施例1-1と同様にして、図2(C)に示すような保護膜付複合基板2Qを得た。得られた保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、57.3%であった。上記の保護膜付複合基板2QのGaN層(半導体層)の主表面上に、実施例1-1と同様にして、厚さ300nmのGaN層(機能半導体層)をエピタキシャル成長させた。GaN層(機能半導体層)がエピタキシャル成長された後の保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、56.7%であった。結果を表3にまとめた。
 (実施例3-2)
 図2を参照して、保護膜40として厚さ300μmのムライト膜をスパッタ法により形成したこと以外は、実施例3-1と同様にして、図2(C)に示すような保護膜付複合基板2Qを得た。得られた保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、57.3%であった。上記の保護膜付複合基板2QのGaN層(半導体層30a)の主表面上に、厚さ300nmのGaN層(機能半導体層50)をエピタキシャル成長させた。GaN層(機能半導体層50)がエピタキシャル成長された後の保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、56.7%であった。結果を表3にまとめた。
 (実施例3-3)
 図2を参照して、保護膜40として厚さ300μmのモリブデン膜をスパッタ法により形成したこと以外は、実施例3-1と同様にして、図2(C)に示すような保護膜付複合基板2Qを得た。得られた保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、57.3%であった。上記の保護膜付複合基板2QのGaN層(半導体層30a)の主表面上に、厚さ300nmのGaN層(機能半導体層50)をエピタキシャル成長させた。GaN層(機能半導体層50)がエピタキシャル成長された後の保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、56.7%であった。結果を表3にまとめた。
[規則91に基づく訂正 28.12.2012] 
 (比較例3)
 図2を参照して、実施例3-1と同様にして、図2(A)に示すような複合基板1を得た。得られた複合基板1における波長500nmの光の透過率は、実施例1-1と同様に測定したところ、60.3%であった。上記の複合基板1のGaN層(半導体層)の主表面上に、実施例1-1と同様にして、厚さ300nmのGaN層(機能半導体層)をエピタキシャル成長させた。GaN層(機能半導体層)がエピタキシャル成長された後の複合基板1における波長500nmの光の透過率は、実施例1-1と同様に測定したところ、42.2%であった。結果を表3にまとめた。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、比較例3の保護膜のない複合基板は、その光透過率が、機能半導体層のエピタキシャル成長により60.3%から42.2%と著しく低下したのに比べて、実施例3-1、3-2および3-3の保護膜付複合基板は、それらの光透過率が、機能半導体層のエピタキシャル成長によっても57.3%から56.7%とほとんど低下しなかった。実施例3-1、3-2および3-3の保護膜付複合基板ならびに比較例3の保護膜のない複合基板におけるこのような光透過率の低下は、機能半導体層をエピタキシャル成長させる際のITO膜(酸化物膜)の熱および腐食による劣化による失透に由来するものであった。すなわち、保護膜付複合基板は、保護膜であるGaN膜、ムライト膜およびモリブデン膜のひとつによってITO膜(酸化物膜)が保護されているため、保護膜のない複合基板に比べて、機能半導体層をエピタキシャル成長させる際の酸化物膜の劣化を極めて低減されることにより有効領域が大きく維持されるため、特性の高い半導体デバイスが歩留まりよく得られることがわかった。
 [実施例4]
 (実施例4-1)
 図2および図3を参照して、酸化物膜20として厚さ300nmのATO(アンチモンスズ酸化物)膜をスパッタ法により成長させたこと以外は、実施例1-1と同様にして、図2(C)に示すような保護膜付複合基板2Qを得た。得られた保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、57.8%であった。上記の保護膜付複合基板2QのGaN層(半導体層)の主表面上に、実施例1-1と同様にして、厚さ300nmのGaN層(機能半導体層)をエピタキシャル成長させた。GaN層(機能半導体層)がエピタキシャル成長された後の保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、57.2%であった。結果を表4にまとめた。
 (実施例4-2)
 図2を参照して、保護膜40として厚さ300μmのムライト膜をスパッタ法により形成したこと以外は、実施例4-1と同様にして、図2(C)に示すような保護膜付複合基板2Qを得た。得られた保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、57.8%であった。上記の保護膜付複合基板2QのGaN層(半導体層30a)の主表面上に、厚さ300nmのGaN層(機能半導体層50)をエピタキシャル成長させた。GaN層(機能半導体層50)がエピタキシャル成長された後の保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、57.2%であった。結果を表4にまとめた。
 (実施例4-3)
 図2を参照して、保護膜40として厚さ300μmのモリブデン膜をスパッタ法により形成したこと以外は、実施例4-1と同様にして、図2(C)に示すような保護膜付複合基板2Qを得た。得られた保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、57.8%であった。上記の保護膜付複合基板2QのGaN層(半導体層30a)の主表面上に、厚さ300nmのGaN層(機能半導体層50)をエピタキシャル成長させた。GaN層(機能半導体層50)がエピタキシャル成長された後の保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、57.2%であった。結果を表4にまとめた。
[規則91に基づく訂正 28.12.2012] 
 (比較例4)
 図2を参照して、実施例4-1と同様にして、図2(A)に示すような複合基板1を得た。得られた複合基板1における波長500nmの光の透過率は、実施例1-1と同様に測定したところ、60.8%であった。上記の複合基板1のGaN層(半導体層)の主表面上に、実施例1-1と同様にして、厚さ300nmのGaN層(機能半導体層)をエピタキシャル成長させた。GaN層(機能半導体層)がエピタキシャル成長された後の複合基板1における波長500nmの光の透過率は、実施例1-1と同様に測定したところ、42.6%であった。結果を表4にまとめた。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、比較例4の保護膜のない複合基板は、その光透過率が、機能半導体層のエピタキシャル成長により60.8%から42.6%と著しく低下したのに比べて、実施例4-1、4-2および4-3の保護膜付複合基板は、それらの光透過率が、機能半導体層のエピタキシャル成長によっても57.8%から57.2%とほとんど低下しなかった。実施例4-1、4-2および4-3の保護膜付複合基板ならびに比較例4の保護膜のない複合基板におけるこのような光透過率の低下は、機能半導体層をエピタキシャル成長させる際のATO膜(酸化物膜)の熱および腐食による劣化による失透に由来するものであった。すなわち、保護膜付複合基板は、保護膜であるGaN膜、ムライト膜およびモリブデン膜のひとつによってATO膜(酸化物膜)が保護されているため、保護膜のない複合基板に比べて、機能半導体層をエピタキシャル成長させる際の酸化物膜の劣化を極めて低減されることにより有効領域が大きく維持されるため、特性の高い半導体デバイスが歩留まりよく得られることがわかった。
 [実施例5]
 (実施例5-1)
 図2および図3を参照して、酸化物膜20として厚さ300nmのZnO膜をスパッタ法により成長させたこと以外は、実施例1-1と同様にして、図2(C)に示すような保護膜付複合基板2Qを得た。得られた保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、57.1%であった。上記の保護膜付複合基板2QのGaN層(半導体層)の主表面上に、実施例1-1と同様にして、厚さ300nmのGaN層(機能半導体層)をエピタキシャル成長させた。GaN層(機能半導体層)がエピタキシャル成長された後の保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、56.5%であった。結果を表5にまとめた。
 (実施例5-2)
 図2を参照して、保護膜40として厚さ300μmのムライト膜をスパッタ法により形成したこと以外は、実施例5-1と同様にして、図2(C)に示すような保護膜付複合基板2Qを得た。得られた保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、57.1%であった。上記の保護膜付複合基板2QのGaN層(半導体層30a)の主表面上に、厚さ300nmのGaN層(機能半導体層50)をエピタキシャル成長させた。GaN層(機能半導体層50)がエピタキシャル成長された後の保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、56.5%であった。結果を表5にまとめた。
 (実施例5-3)
 図2を参照して、保護膜40として厚さ300μmのモリブデン膜をスパッタ法により形成したこと以外は、実施例5-1と同様にして、図2(C)に示すような保護膜付複合基板2Qを得た。得られた保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、57.1%であった。上記の保護膜付複合基板2QのGaN層(半導体層30a)の主表面上に、厚さ300nmのGaN層(機能半導体層50)をエピタキシャル成長させた。GaN層(機能半導体層50)がエピタキシャル成長された後の保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、56.5%であった。結果を表5にまとめた。
[規則91に基づく訂正 28.12.2012] 
 (比較例5)
 図2を参照して、実施例5-1と同様にして、図2(A)に示すような複合基板1を得た。得られた複合基板1における波長500nmの光の透過率は、実施例1-1と同様に測定したところ、60.1%であった。上記の複合基板1のGaN層(半導体層)の主表面上に、実施例1-1と同様にして、厚さ300nmのGaN層(機能半導体層)をエピタキシャル成長させた。GaN層(機能半導体層)がエピタキシャル成長された後の複合基板1における波長500nmの光の透過率は、実施例1-1と同様に測定したところ、42.1%であった。結果を表5にまとめた。
Figure JPOXMLDOC01-appb-T000005
 表5から明らかなように、比較例5の保護膜のない複合基板は、その光透過率が、機能半導体層のエピタキシャル成長により60.1%から42.1%と著しく低下したのに比べて、実施例5-1、5-2および5-3の保護膜付複合基板は、それらの光透過率が、機能半導体層のエピタキシャル成長によっても57.1%から56.5%とほとんど低下しなかった。実施例5-1、5-2および5-3の保護膜付複合基板ならびに比較例5の保護膜のない複合基板におけるこのような光透過率の低下は、機能半導体層をエピタキシャル成長させる際のZnO膜(酸化物膜)の熱および腐食による劣化による失透に由来するものであった。すなわち、保護膜付複合基板は、保護膜であるGaN膜、ムライト膜およびモリブデン膜のひとつによってZnO膜(酸化物膜)が保護されているため、保護膜のない複合基板に比べて、機能半導体層をエピタキシャル成長させる際の酸化物膜の劣化を極めて低減されることにより有効領域が大きく維持されるため、特性の高い半導体デバイスが歩留まりよく得られることがわかった。
 [実施例6]
 (実施例6-1)
 図2および図3を参照して、酸化物膜20として厚さ300nmのGa23膜をスパッタ法により成長させたこと以外は、実施例1-1と同様にして、図2(C)に示すような保護膜付複合基板2Qを得た。得られた保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、54.7%であった。上記の保護膜付複合基板2QのGaN層(半導体層)の主表面上に、実施例1-1と同様にして、厚さ300nmのGaN層(機能半導体層)をエピタキシャル成長させた。GaN層(機能半導体層)がエピタキシャル成長された後の保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、54.2%であった。結果を表6にまとめた。
 (実施例6-2)
 図2を参照して、保護膜40として厚さ300μmのムライト膜をスパッタ法により形成したこと以外は、実施例6-1と同様にして、図2(C)に示すような保護膜付複合基板2Qを得た。得られた保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、54.7%であった。上記の保護膜付複合基板2QのGaN層(半導体層30a)の主表面上に、厚さ300nmのGaN層(機能半導体層50)をエピタキシャル成長させた。GaN層(機能半導体層50)がエピタキシャル成長された後の保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、54.2%であった。結果を表6にまとめた。
 (実施例6-3)
 図2を参照して、保護膜40として厚さ300μmのモリブデン膜をスパッタ法により形成したこと以外は、実施例6-1と同様にして、図2(C)に示すような保護膜付複合基板2Qを得た。得られた保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、54.7%であった。上記の保護膜付複合基板2QのGaN層(半導体層30a)の主表面上に、厚さ300nmのGaN層(機能半導体層50)をエピタキシャル成長させた。GaN層(機能半導体層50)がエピタキシャル成長された後の保護膜付複合基板2Qにおける波長500nmの光の透過率は、実施例1-1と同様に測定したところ、54.2%であった。結果を表6にまとめた。
[規則91に基づく訂正 28.12.2012] 
 (比較例6)
 図2を参照して、実施例6-1と同様にして、図2(A)に示すような複合基板1を得た。得られた複合基板1における波長500nmの光の透過率は、実施例1-1と同様に測定したところ、57.6%であった。上記の複合基板1のGaN層(半導体層)の主表面上に、実施例1-1と同様にして、厚さ300nmのGaN層(機能半導体層)をエピタキシャル成長させた。GaN層(機能半導体層)がエピタキシャル成長された後の複合基板1における波長500nmの光の透過率は、実施例1-1と同様に測定したところ、51.8%であった。結果を表6にまとめた。
Figure JPOXMLDOC01-appb-T000006
 表6から明らかなように、比較例6の保護膜のない複合基板は、その光透過率が、機能半導体層のエピタキシャル成長により57.6%から51.8%と著しく低下したのに比べて、実施例6-1、6-2および6-3の保護膜付複合基板は、それらの光透過率が、機能半導体層のエピタキシャル成長によっても54.7%から54.2%とほとんど低下しなかった。実施例6-1、6-2および6-3の保護膜付複合基板ならびに比較例6の保護膜のない複合基板におけるこのような光透過率の低下は、機能半導体層をエピタキシャル成長させる際のGa23膜(酸化物膜)の熱および腐食による劣化による失透に由来するものであった。すなわち、保護膜付複合基板は、保護膜であるGaN膜、ムライト膜およびモリブデン膜のひとつによってGa23膜(酸化物膜)が保護されているため、保護膜のない複合基板に比べて、機能半導体層をエピタキシャル成長させる際の酸化物膜の劣化を極めて低減されることにより有効領域が大きく維持されるため、特性の高い半導体デバイスが歩留まりよく得られることがわかった。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 複合基板、2P,2Q 保護膜付複合基板、3 半導体デバイス、10 支持基板、20 酸化物膜、20s,20t 覆われていない部分、30 半導体基板、30a 半導体層、30b 残りの半導体基板、30i イオン注入領域、40 保護膜、50 機能半導体層。

Claims (5)

  1. [規則91に基づく訂正 28.12.2012] 
     支持基板(10)と、前記支持基板(10)上に配置された酸化物膜(20)と、前記酸化物膜(20)上に配置された半導体層(30a)と、前記酸化物膜(20)のうち前記支持基板(10)および前記半導体層(30a)のいずれにも覆われていない部分(20s,20t)を覆うことにより前記酸化物膜(20)を保護する保護膜(40)と、を含む保護膜付複合基板。
  2.  前記酸化物膜(20)は、TiO2膜、SrTiO3膜、インジウムスズ酸化物膜、アンチモンスズ酸化物膜、ZnO膜およびGa23膜からなる群から選ばれる少なくともひとつである請求項1に記載の保護膜付複合基板。
  3.  前記支持基板(10)および前記半導体層(30a)の少なくともひとつがIII族窒化物で形成されている請求項2に記載の保護膜付複合基板。
  4.  前記支持基板(10)および前記半導体層(30a)の少なくともひとつがIII族窒化物で形成されている請求項1に記載の保護膜付複合基板。
  5.  請求項1に記載の保護膜付複合基板(2Q)を準備する工程と、
     前記保護膜付複合基板(2Q)の前記半導体層(30a)上に、半導体デバイス(3)としての機能を発現させる少なくとも1層の機能半導体層(50)をエピタキシャル成長させる工程と、を含む半導体デバイスの製造方法。
PCT/JP2012/053279 2011-02-15 2012-02-13 保護膜付複合基板、および半導体デバイスの製造方法 WO2012111616A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012557953A JPWO2012111616A1 (ja) 2011-02-15 2012-02-13 保護膜付複合基板、および半導体デバイスの製造方法
US13/820,599 US20130168693A1 (en) 2011-02-15 2012-02-13 Protective-film-attached composite substrate and method of manufacturing semiconductor device
KR1020137007075A KR20130141465A (ko) 2011-02-15 2012-02-13 보호막 부착 복합 기판 및 반도체 디바이스의 제조 방법
EP12746625.8A EP2677534A1 (en) 2011-02-15 2012-02-13 Composite substrate with protection film and method of manufacturing semiconductor device
CN2012800033555A CN103155102A (zh) 2011-02-15 2012-02-13 具有保护膜的复合衬底和制造半导体器件的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-029865 2011-02-15
JP2011029865 2011-02-15

Publications (2)

Publication Number Publication Date
WO2012111616A1 WO2012111616A1 (ja) 2012-08-23
WO2012111616A9 true WO2012111616A9 (ja) 2013-05-10

Family

ID=46672535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053279 WO2012111616A1 (ja) 2011-02-15 2012-02-13 保護膜付複合基板、および半導体デバイスの製造方法

Country Status (7)

Country Link
US (1) US20130168693A1 (ja)
EP (1) EP2677534A1 (ja)
JP (1) JPWO2012111616A1 (ja)
KR (1) KR20130141465A (ja)
CN (1) CN103155102A (ja)
TW (1) TW201241874A (ja)
WO (1) WO2012111616A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6385009B2 (ja) * 2013-05-31 2018-09-05 日本碍子株式会社 酸化亜鉛自立基板及びその製造方法
JP2016048712A (ja) * 2014-08-27 2016-04-07 住友電気工業株式会社 半導体デバイスの製造方法
JP2019012826A (ja) * 2017-06-30 2019-01-24 国立研究開発法人物質・材料研究機構 ガリウム窒化物半導体基板、ガリウム窒化物半導体装置、撮像素子およびそれらの製造方法
JP6837032B2 (ja) * 2018-05-30 2021-03-03 双葉電子工業株式会社 高分子基板の製造方法及び電子装置の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04163907A (ja) * 1990-10-29 1992-06-09 Fujitsu Ltd 半導体基板
JPH04349621A (ja) * 1991-05-27 1992-12-04 Canon Inc 半導体基材の作製方法
JPH05226312A (ja) * 1992-02-14 1993-09-03 Seiko Instr Inc 半導体薄膜素子の製造方法
US5258323A (en) * 1992-12-29 1993-11-02 Honeywell Inc. Single crystal silicon on quartz
JPH11204452A (ja) * 1998-01-13 1999-07-30 Mitsubishi Electric Corp 半導体基板の処理方法および半導体基板
JP2002353466A (ja) * 2001-03-09 2002-12-06 Seiko Epson Corp 電気光学装置の製造方法および電気光学装置
JP4556378B2 (ja) * 2003-02-13 2010-10-06 セイコーエプソン株式会社 トランジスタの製造方法及び複合基板の製造方法
US7364974B2 (en) * 2005-03-18 2008-04-29 Translucent Inc. Double gate FET and fabrication process
US7291539B2 (en) * 2005-06-01 2007-11-06 International Business Machines Corporation Amorphization/templated recrystallization method for hybrid orientation substrates
US20070201430A1 (en) 2005-12-29 2007-08-30 Telefonaktiebolaget Lm Ericsson (Publ) Implicit secondary PDP context activation method
FR2896619B1 (fr) 2006-01-23 2008-05-23 Soitec Silicon On Insulator Procede de fabrication d'un substrat composite a proprietes electriques ameliorees
FR2896618B1 (fr) * 2006-01-23 2008-05-23 Soitec Silicon On Insulator Procede de fabrication d'un substrat composite
US8236668B2 (en) * 2007-10-10 2012-08-07 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
JP5496540B2 (ja) * 2008-04-24 2014-05-21 株式会社半導体エネルギー研究所 半導体基板の作製方法
FR2941324B1 (fr) * 2009-01-22 2011-04-29 Soitec Silicon On Insulator Procede de dissolution de la couche d'oxyde dans la couronne d'une structure de type semi-conducteur sur isolant.

Also Published As

Publication number Publication date
US20130168693A1 (en) 2013-07-04
JPWO2012111616A1 (ja) 2014-07-07
CN103155102A (zh) 2013-06-12
KR20130141465A (ko) 2013-12-26
TW201241874A (en) 2012-10-16
WO2012111616A1 (ja) 2012-08-23
EP2677534A1 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP5317398B2 (ja) 格子パラメータを変化させる元素を含有する窒化ガリウムデバイス基板
JP5938871B2 (ja) GaN系膜の製造方法
JP2006528593A (ja) エピタキシャル成長層の形成方法
JP2010533371A (ja) 窒化ガリウムのエピタキシャル成長用基板
KR102047864B1 (ko) 단결정 재료 사용의 개선된 효율을 갖는 유사 기판
GB2539780A (en) Method of fabricating diamond-semiconductor composite substrates
EP2924150B1 (en) ß-GA2O3-BASED SINGLE CRYSTAL SUBSTRATE
US8697541B1 (en) Methods and structures for preparing single crystal silicon wafers for use as substrates for epitaxial growth of crack-free gallium nitride films and devices
KR20190100285A (ko) 복합 기판 및 복합 기판의 제조 방법
US20130026498A1 (en) Substrate assembly for crystal growth and fabricating method for light emitting device using the same
WO2012111616A9 (ja) 保護膜付複合基板、および半導体デバイスの製造方法
US20130032928A1 (en) Group iii nitride composite substrate
WO2009090840A1 (ja) 窒化ガリウムの結晶成長方法および窒化ガリウム基板の製造方法
KR20090115826A (ko) 그룹 3족 질화물계 반도체 소자용 버퍼층 및 그 제조 방법
EP2634294A1 (en) Method for manufacturing optical element
CN106536794B (zh) 氮化镓衬底
WO2017216997A1 (ja) 窒化物半導体テンプレート、窒化物半導体テンプレートの製造方法および窒化物半導体自立基板の製造方法
JP5439675B2 (ja) 窒化物半導体形成用基板及び窒化物半導体
Xu et al. Progress in research of GaN-based LEDs fabricated on SiC substrate
EP2867177A1 (en) Glass-ceramic substrates for semiconductor processing
JP5929434B2 (ja) AlN系膜の製造方法およびそれに用いられる複合基板
JP3652861B2 (ja) 薄膜成長用基板及びそれを用いた発光装置
JP2013084900A (ja) Iii族窒化物複合基板
JP2013116848A (ja) GaAs系膜の製造方法およびそれに用いられる複合基板
KR20120079394A (ko) 반도체 발광소자의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280003355.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746625

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13820599

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012557953

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012746625

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137007075

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE