WO2012111432A1 - 車両用駆動装置 - Google Patents

車両用駆動装置 Download PDF

Info

Publication number
WO2012111432A1
WO2012111432A1 PCT/JP2012/052263 JP2012052263W WO2012111432A1 WO 2012111432 A1 WO2012111432 A1 WO 2012111432A1 JP 2012052263 W JP2012052263 W JP 2012052263W WO 2012111432 A1 WO2012111432 A1 WO 2012111432A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
hydraulic
pressure
oil chamber
control valve
Prior art date
Application number
PCT/JP2012/052263
Other languages
English (en)
French (fr)
Inventor
岩瀬幹雄
山口哲哉
吉岡裕平
川本啓介
神谷敏彦
宮崎光史
Original Assignee
アイシン・エィ・ダブリュ株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社, トヨタ自動車株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to DE112012000391.8T priority Critical patent/DE112012000391B4/de
Priority to US13/981,463 priority patent/US8845484B2/en
Priority to CN201280007193.2A priority patent/CN103347725B/zh
Publication of WO2012111432A1 publication Critical patent/WO2012111432A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • B60W10/023Fluid clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/02Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
    • F16D21/06Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways at least two driving shafts or two driven shafts being concentric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/06Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
    • F16D25/062Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces
    • F16D25/063Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially
    • F16D25/0635Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs
    • F16D25/0638Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs with more than two discs, e.g. multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/10Clutch systems with a plurality of fluid-actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D48/0206Control by fluid pressure in a system with a plurality of fluid-actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • F16H61/143Control of torque converter lock-up clutches using electric control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0218Reservoirs for clutch control systems; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0257Hydraulic circuit layouts, i.e. details of hydraulic circuit elements or the arrangement thereof
    • F16D2048/0266Actively controlled valves between pressure source and actuation cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/70406Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H2045/002Combinations of fluid gearings for conveying rotary motion with couplings or clutches comprising a clutch between prime mover and fluid gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/021Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type three chamber system, i.e. comprising a separated, closed chamber specially adapted for actuating a lock-up clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0273Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type characterised by the type of the friction surface of the lock-up clutch
    • F16H2045/0284Multiple disk type lock-up clutch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors

Definitions

  • the present invention includes an input member that is drivingly connected to a rotating electrical machine, an output member that is drivingly connected to a wheel, a first engagement device that selectively drives and connects the input member to an internal combustion engine, the input member, and the
  • the present invention relates to a vehicle drive device including a fluid coupling provided in a power transmission path connecting an output member.
  • the vehicle drive device for a hybrid vehicle described in Patent Literatures 1 and 2 includes a first engagement device that selectively drives and connects an internal combustion engine to a power transmission mechanism.
  • the internal combustion engine can be separated from the power transmission mechanism by releasing the engagement device by controlling the hydraulic pressure supplied to the first engagement device so that the vehicle can be driven by the driving force of only the rotating electrical machine.
  • a first engagement device capable of selectively drivingly connecting the internal combustion engine and the power transmission system by hydraulic control is provided with the hybrid vehicle.
  • Patent Document 1 does not disclose oil supply to the friction member of the first engagement device. For this reason, the technique of patent document 1 cannot respond to supplying and cooling oil to the friction member of a 1st engagement apparatus.
  • the technique of Patent Document 2 in order to supply oil to the friction member of the first engagement device, the joint input side member and the joint output side member of the fluid coupling are directly coupled (locked up) within the cover of the fluid coupling.
  • the first engagement device is accommodated. More specifically, the body coupling chamber that houses the body portion of the fluid coupling and the friction member of the first engagement device are housed in the cover of the fluid coupling, and the hydraulic pressure of the hydraulic oil in the piston of the first engagement device.
  • a differential pressure forming chamber formed so as to apply a hydraulic pressure to the side opposite to the side on which the pressure acts is provided in communication (shared).
  • a hydraulic pressure supply system for supplying hydraulic pressure to these is also shared.
  • the engagement state of the second engagement device of the fluid coupling is controlled by at least the hydraulic pressure supplied to the main body housing chamber.
  • the engagement state of the first engagement device is controlled by the differential pressure between the hydraulic pressure of the hydraulic oil of the first engagement device and the hydraulic pressure supplied to the differential pressure forming chamber.
  • each control of the first and second engagement devices has its own aim, and each of the first and second engagement devices is controlled so as to match the aim.
  • the main body housing chamber and the differential pressure forming chamber are communicated (shared), during one control of the first and second engagement devices, The hydraulic pressure fluctuations and the operation of one hydraulic supply system affect the other, and the controllability of the other or both may be deteriorated. Further, when both controls are performed at the same time, hydraulic pressure fluctuations occurring in the respective oil chambers and operations of the respective hydraulic pressure supply systems may interfere with each other, and the controllability of both may deteriorate.
  • An input member that is drivingly connected to a rotating electrical machine, an output member that is drivingly connected to a wheel, a first engagement device that selectively drives and connects the input member to an internal combustion engine, and the input member according to the present invention.
  • a fluid coupling provided in a power transmission path connecting the output member.
  • the vehicle drive device includes a first friction member and a first friction member that presses the first friction member.
  • the first piston is configured to accommodate the first friction member, and is configured to apply the hydraulic pressure to a side opposite to a side on which the hydraulic pressure for operation is applied in the first piston.
  • An oil chamber, and the fluid coupling is drivably coupled to a main body housing chamber that accommodates a main body portion of the fluid coupling.
  • the second engagement device that directly connects the joint output side member Comprising a second oil chamber for controlling the oil pressure of the engagement state of,
  • a first hydraulic control valve that controls a first hydraulic pressure that is a hydraulic pressure supplied to the first hydraulic chamber; a second hydraulic pressure that is a hydraulic pressure supplied to the second hydraulic chamber; Includes a second hydraulic control valve that is independently controlled.
  • the “rotary electric machine” is used as a concept including a motor (electric motor), a generator (generator), and a motor / generator that functions as both a motor and a generator as necessary.
  • driving connection refers to a state in which two rotating elements are connected so as to be able to transmit a driving force, and the two rotating elements are connected so as to rotate integrally, or the two This is used as a concept including a state in which two rotating elements are connected so as to be able to transmit a driving force via one or more transmission members.
  • Such a transmission member examples include various members that transmit rotation at the same speed or a variable speed, and include, for example, a shaft, a gear mechanism, a belt, a chain, and the like.
  • an engagement element that selectively transmits rotation and driving force such as a friction clutch or a meshing clutch, may be included.
  • the “fluid coupling” is used as a concept including both a torque converter having a torque amplification function and a normal fluid coupling having no torque amplification function.
  • the 1st oil chamber hydraulic pressure supplied to a 1st oil chamber And a second hydraulic control valve that controls the second hydraulic chamber hydraulic pressure supplied to the second hydraulic chamber independently of the first hydraulic chamber hydraulic pressure. That is, the first hydraulic control valve and the hydraulic supply system to the first oil chamber including the oil passage from the first hydraulic control valve to the first oil chamber, the second hydraulic control valve, and the second hydraulic control valve And a hydraulic pressure supply system to the second oil chamber including the oil passage to the second oil chamber.
  • first hydraulic supply system and the second hydraulic supply system are provided independently, even during the control of one or both of the first engagement device and the second engagement device, due to mutual interference, Variations in the amount of oil supplied to the first oil chamber can be suppressed, and variations in the cooling performance of the first friction member provided in the first oil chamber can be suppressed.
  • the exhaust oil passage for discharging the hydraulic pressure supplied from the first hydraulic control valve to the first oil chamber from the first oil chamber is provided with a throttle portion for reducing the flow rate.
  • the throttle part is provided on the discharge port side of the first oil chamber, the first oil chamber located on the upstream side of the throttle part and the supply from the first hydraulic control valve to the first oil chamber It becomes easy to equalize the oil pressure in the oil passage, and the control accuracy of the oil pressure in the first oil chamber can be improved. Therefore, the control accuracy of the engagement state of the first engagement device can be improved. Further, since the throttle portion is provided on the discharge port side of the first oil chamber, the flow rate of the oil flowing through the first oil chamber can be adjusted by adjusting the throttle amount of the throttle portion. Therefore, it becomes easy to appropriately cool the first friction member housed in the first oil chamber.
  • the first engagement device includes an urging mechanism that urges the first piston with a predetermined initial engagement load so that the first piston presses the first friction member toward the engagement side.
  • the first hydraulic control valve controls the first oil chamber hydraulic pressure so as to generate a hydraulic pressure in the first oil chamber that presses the first piston toward the disengagement side with a load larger than the initial engagement load. It is preferable that the configuration is controlled.
  • the urging mechanism that urges the piston with a predetermined initial engagement load is provided so that the piston presses the first friction member toward the engagement side, the first engagement device is released. Even when the rotating electrical machine or the drive circuit of the rotating electrical machine fails and the hydraulic pump cannot be driven by the rotating electrical machine, if the internal combustion engine is started, the first engagement is caused by the pressing force of the first urging mechanism.
  • the torque of the internal combustion engine can be transmitted to the hydraulic pump via the device to generate the hydraulic pressure, and the first engagement device can be brought into the engaged state. Therefore, even when the rotating electric machine does not move, the driving force of the internal combustion engine can be transmitted to the wheel side to drive the wheel.
  • the first oil chamber hydraulic pressure is generated so that the first oil pressure control valve generates hydraulic pressure in the first oil chamber that presses the piston toward the disengagement side with a load larger than the initial engagement load. Therefore, in a normal state where no trouble has occurred, the first oil chamber hydraulic pressure generated by the first hydraulic control valve can release the engagement of the first engagement device by the pressing force of the urging mechanism. it can. Therefore, when the wheel is driven by the rotating electrical machine (during electric travel), it is possible to suppress the torque of the rotating electrical machine from being transmitted to the internal combustion engine via the first engagement device by the pressing force of the urging mechanism. The deterioration of energy efficiency can be suppressed.
  • a first line pressure control valve that controls the output pressure of the hydraulic pump as a first line pressure
  • a second line pressure control valve that further reduces the first line pressure and controls it as a second line pressure.
  • the first hydraulic control valve receives the supply of the oil of the first line pressure controlled by the first line pressure control valve and supplies the oil of the first oil chamber hydraulic pressure to the first oil chamber.
  • the second hydraulic control valve is configured to receive the second line pressure oil controlled by the second line pressure control valve and supply the second oil chamber hydraulic oil to the second oil chamber. This is preferable.
  • the first line pressure which is the output pressure of the hydraulic pump, rises quickly after the hydraulic pump is started.
  • the second line pressure generated by reducing the first line pressure rises later than the first line pressure after the start of driving of the hydraulic pump. Since the first line pressure, which is the output pressure of the hydraulic pump, is supplied to the first hydraulic control valve as in the above configuration, the first hydraulic control valve is controlled immediately after the hydraulic pump starts driving.
  • the first oil chamber hydraulic pressure can be raised and supplied to the first oil chamber. Therefore, immediately after the drive of the hydraulic pump is started, the hydraulic pressure acting on the side opposite to the side on which the hydraulic pressure for actuation in the first piston acts can be generated, and the working accuracy of the first engagement device can be ensured.
  • the cooling performance of the first friction member accommodated in the first oil chamber can be ensured. Further, as described above, when the biasing mechanism that presses the first friction member toward the engagement side is provided, the first engagement by the pressing force of the biasing mechanism is promptly performed after the hydraulic pump starts to be driven. The device can be disengaged.
  • the second line pressure is controlled by further reducing the first line pressure
  • the second line pressure is less susceptible to the pressure pulsation than the first line pressure that is susceptible to the pressure pulsation due to the discharge of the hydraulic pump.
  • the pressure is stable. Since the second line pressure generated by further reducing the first line pressure is supplied to the second hydraulic control valve as in the above configuration, the second line pressure that is more stable than the first line pressure is reduced. By using this, a stable second oil chamber hydraulic pressure can be generated. Therefore, the operation accuracy of the second engagement device can be stabilized.
  • the second engagement device when the second engagement device is provided with an urging mechanism that presses the second friction member toward the release side, as with the first engagement device, the second engagement device is immediately applied after the hydraulic pump starts driving. Since it is not necessary to release the engagement of the second engagement device by the biasing mechanism, the second engagement device can be stably operated after the start of driving of the hydraulic pump even when the second line pressure is used.
  • the second engagement device includes a second friction member and a second piston that presses the second friction member, and the second oil chamber includes the second friction member and the fluid therein.
  • the joint input side member and the joint output side member of the joint are accommodated, and formed so that the hydraulic pressure is applied to the side opposite to the side on which the hydraulic pressure for operation is applied in the second piston. It is preferable that
  • the control accuracy of the hydraulic pressure acting on the side opposite to the side on which the hydraulic pressure for operation of the second piston of the second engagement device acts is improved.
  • the control accuracy of the engagement state of the second engagement device can be improved.
  • variation of the cooling performance of the 2nd friction member accommodated in the 2nd oil chamber can be suppressed.
  • FIG. 1 is a schematic diagram illustrating a schematic configuration of a drive device 1 according to the present embodiment.
  • the drive apparatus 1 schematically includes an internal combustion engine IE and a rotating electrical machine MG as drive force sources, and the drive force of these drive force sources is converted into a power transmission mechanism. Via the wheel W.
  • the driving device 1 includes an input shaft I that is drivingly connected to the rotating electrical machine MG, an output shaft O that is drivingly connected to the wheels W, and a first engagement device C1 that selectively drives and connects the input shaft I to the internal combustion engine IE.
  • the drive device 1 includes a transmission device TM in a power transmission path between the torque converter TC and the output shaft O.
  • the input shaft I corresponds to the “input member” in the present invention
  • the output shaft O corresponds to the “output member” in the present invention.
  • the first engagement device C ⁇ b> 1 includes a first friction member 101, a first piston 106 that presses the first friction member 101, and a first friction member. 101 is accommodated, and a first oil chamber 102 is formed so that the hydraulic pressure is applied to the back pressure side opposite to the side on which the hydraulic pressure for operation in the first piston 106 is applied. It has.
  • the torque converter TC directly connects a pump impeller 41 that is drivingly connected to the input shaft I side and a turbine runner 51 that is drivingly connected to the output shaft O side to a main body housing chamber 137 that houses the main body of the torque converter TC.
  • the second oil chamber 112 for controlling the engagement state of the second engagement device C2 to be hydraulically controlled is provided.
  • the pump impeller 41 is a “joint input side member” in the present invention
  • the turbine runner 51 is a “joint output side member” in the present invention.
  • the drive device 1 includes a first hydraulic control valve 104 that controls a first oil chamber oil pressure 103 that is oil pressure supplied to the first oil chamber 102, and a second oil chamber that is oil pressure supplied to the second oil chamber 112. It has a feature in that it includes a second hydraulic control valve 114 that controls the hydraulic pressure 113 independently of the first hydraulic chamber hydraulic pressure 103.
  • a first hydraulic control valve 104 that controls a first oil chamber oil pressure 103 that is oil pressure supplied to the first oil chamber 102
  • a second oil chamber that is oil pressure supplied to the second oil chamber 112. It has a feature in that it includes a second hydraulic control valve 114 that controls the hydraulic pressure 113 independently of the first hydraulic chamber hydraulic pressure 103.
  • the driving device 1 includes an internal combustion engine IE and a rotating electrical machine MG as driving force sources for driving the vehicle, and the internal combustion engine IE and the rotating electrical machine MG are connected in series.
  • the drive device 1 is for a hybrid vehicle.
  • the drive device 1 includes a torque converter TC and a transmission device TM as a power transmission mechanism.
  • the torque converter TC and the transmission device TM allow the internal combustion engine IE and the rotating electrical machine MG as driving force sources. And the torque is converted and transmitted to the output shaft O.
  • the internal combustion engine IE, the rotating electrical machine MG, the torque converter TC, and the transmission device TM are arranged coaxially and from the internal combustion engine IE side to the output shaft O along the axial direction.
  • the rotating electrical machine MG, the torque converter TC, and the transmission TM are arranged in this order.
  • the internal combustion engine connecting shaft EC, the input shaft I, the intermediate shaft M, and the output shaft O are also arranged coaxially therewith.
  • the axis of each member of the drive device 1 arranged on the same axis is set as a device axis X1. Further, in the description of the embodiment, when the axial direction, the radial direction, and the circumferential direction are simply referred to, the direction based on the device axis X1 is assumed.
  • the internal combustion engine IE is a prime mover that outputs power by combustion of fuel, and for example, various known internal combustion engines such as a gasoline engine and a diesel engine can be used.
  • an output rotation shaft such as a crankshaft of the internal combustion engine IE is drivingly connected to the input shaft I via the internal combustion engine connection shaft EC and the first engagement device C1.
  • the first engagement device C1 selectively connects the input shaft I to the internal combustion engine IE.
  • the first engagement device C1 is a friction engagement element that is engaged or released by the hydraulic pressure for operation supplied from the first servo hydraulic control valve 109 (see FIG. 2).
  • a friction engagement element for example, a wet multi-plate clutch or a wet multi-plate brake is preferably used.
  • the output rotation shaft of the internal combustion engine IE is drivingly connected integrally with the internal combustion engine connecting shaft EC, or driven and connected via another member such as a damper.
  • the rotating electrical machine MG includes a stator St fixed to the case 3 and a rotor Ro that is rotatably supported on the radially inner side of the stator St.
  • the rotor Ro of the rotating electrical machine MG is drivingly connected so as to rotate integrally with the input shaft I. That is, in the present embodiment, both the internal combustion engine IE and the rotating electrical machine MG are drivingly connected to the input shaft I.
  • the rotating electrical machine MG is electrically connected to a battery (not shown) as a power storage device.
  • the rotating electrical machine MG can perform a function as a motor (electric motor) that generates power upon receiving power supply and a function as a generator (generator) that generates power upon receiving power supply. It is possible.
  • the rotating electrical machine MG is powered by receiving power supplied from the battery, or stores in the battery the power generated by the rotational driving force transmitted from the internal combustion engine IE or the wheels.
  • the battery is an example of a power storage device, and another power storage device such as a capacitor may be used, or a plurality of types of power storage devices may be used in combination.
  • a torque converter TC is provided in the power transmission path connecting the input shaft I and the output shaft O.
  • the torque converter TC is a device that transmits the rotational driving force of the internal combustion engine IE and the rotating electrical machine MG as a driving force source to the output shaft O side.
  • the torque converter TC includes a pump impeller 41 as a joint input side member drivingly connected to the rotating electrical machine MG (input shaft I) and a turbine as a joint output side member drivingly connected to the transmission TM (intermediate shaft M).
  • a runner 51 and a stator 56 provided between them and provided with a one-way clutch 57 are provided.
  • the torque converter TC transmits driving force between the driving-side pump impeller 41 and the driven-side turbine runner 51 via oil filled therein.
  • the torque converter TC includes a second engagement device C2 as a friction engagement element for lockup.
  • the second engagement device C2 is configured to rotate the pump impeller 41 and the turbine runner 51 integrally in order to eliminate the rotational speed difference (slip) between the pump impeller 41 and the turbine runner 51 and increase the transmission efficiency.
  • the clutch to be connected. Therefore, when the second engagement device C2 is engaged, the torque converter TC directly transmits the driving force of the driving force source without using the internal oil (fluid) to the transmission device TM (intermediate shaft M). To communicate.
  • the second engagement device C2 is engaged or released by the hydraulic pressure for operation supplied from the second servo hydraulic control valve 119.
  • the drive device 1 includes a hydraulic pump OP that is drivingly connected to the pump impeller 41 side of the torque converter TC.
  • the hydraulic pump OP is driven by the rotational driving force transmitted from the driving force source, sucks the oil stored in the oil storage unit OT to generate hydraulic pressure, and supplies the hydraulic pressure to the hydraulic control device (see FIG. 2).
  • the transmission TM is drivingly connected to the intermediate shaft M as the output shaft of the torque converter TC.
  • the transmission apparatus TM is a stepped automatic transmission apparatus having a plurality of shift stages having different speed ratios.
  • the transmission apparatus TM includes a gear mechanism such as a planetary gear mechanism and a plurality of friction engagement elements in order to form the plurality of shift stages.
  • the plurality of friction engagement elements are engagement elements such as clutches and brakes each having a friction material.
  • Each of the plurality of friction engagement elements is supplied with oil regulated by a hydraulic control device for the transmission apparatus TM, and is engaged or released.
  • a friction engagement element for example, a wet multi-plate clutch or a wet multi-plate brake is preferably used.
  • the torque transmitted from the transmission device TM to the output shaft O is distributed and transmitted to the two left and right wheels W via the output differential gear mechanism DF.
  • the first engagement device C1 includes the first hydraulic servo mechanism 100 including the first piston 106, the first friction member 101, the first piston 106 that presses the first friction member 101, and the first The first oil chamber is formed so that one friction member 101 is accommodated and the hydraulic pressure is supplied to the back pressure side opposite to the side on which the hydraulic pressure for operation of the first piston 106 acts. 102.
  • the torque converter TC directly connects a pump impeller 41 that is drivingly connected to the input shaft I side and a turbine runner 51 that is drivingly connected to the output shaft O side to a main body housing chamber 137 that houses the main body of the torque converter TC.
  • the second oil chamber 112 for controlling the engagement state of the second engagement device C2 to be hydraulically controlled is provided.
  • the torque converter TC is configured to include a second engagement device C2 as shown in FIG. 2, and the second engagement device C2 includes a second hydraulic servo including a second piston 116.
  • a mechanism 110, a second friction member 111, and a second piston 116 that presses the second friction member 111 are provided.
  • the second oil chamber 112 accommodates the second friction member 111 of the second engagement device C2, the pump impeller 41 of the torque converter TC, and the turbine runner 51, and is supplied with hydraulic pressure to be in the second piston 116.
  • the hydraulic pressure is applied to the back pressure side opposite to the side on which the hydraulic pressure for operation is applied.
  • the driving device 1 includes a first servo hydraulic control valve 109 and a second servo hydraulic control valve 119.
  • the driving device 1 includes a first hydraulic control valve 104 that controls a first oil chamber oil pressure 103 that is oil pressure supplied to the first oil chamber 102, and a second oil chamber that is oil pressure supplied to the second oil chamber 112. And a second hydraulic control valve 114 that controls the hydraulic pressure 113 independently of the first oil chamber hydraulic pressure 103.
  • the side on which the hydraulic pressure for operation in the first piston 106 acts refers to the side of the first servo oil chamber 108 in the first piston 106 and is opposite to the side on which the hydraulic pressure for actuation in the first piston 106 acts.
  • the side (back pressure side) refers to the first oil chamber 102 side of the first piston 106.
  • the hydraulic pressure acting on the side (back pressure side) opposite to the side on which the operating hydraulic pressure acts on the first piston 106 is the back pressure of the first piston 106 or the first hydraulic servo mechanism 100. This is called back pressure.
  • the first hydraulic servo mechanism 100 includes a first piston 106, a first cylinder 105, and a first servo oil chamber 108 surrounded by the first cylinder 105 and the first piston 106.
  • the side on which the hydraulic pressure for operation in the second piston 116 acts refers to the second servo oil chamber 118 side in the second piston 116 and is opposite to the side on which the hydraulic pressure for actuation in the second piston 116 acts.
  • the side (back pressure side) refers to the second oil chamber 112 side of the second piston 116.
  • the hydraulic pressure acting on the opposite side (back pressure side) of the second piston 116 to the working hydraulic pressure is referred to as the back pressure of the second piston 116 or the second hydraulic servo mechanism 110. This is called back pressure.
  • the second hydraulic servo mechanism 110 includes a second piston 116, a second cylinder 115, and a second servo oil chamber 118 surrounded by the second cylinder 115 and the second piston 116.
  • the main body housing chamber 137 is formed to house at least the pump impeller 41, the turbine runner 51, and the stator 56 as the main body of the torque converter TC.
  • the second oil chamber 112 is integrally formed in the cover member of the torque converter TC so as to communicate with the main body housing chamber 137.
  • the main body housing chamber 137 and the second oil chamber 112 are collectively referred to as a second oil chamber 112.
  • the hybrid vehicle drive device 1 includes a first engagement device C1 that selectively drives and connects the internal combustion engine IE to the power transmission mechanism.
  • the first engagement device C1 When the vehicle is driven by the driving force of only the rotating electrical machine MG, the first engagement device C1 is released by controlling the hydraulic pressure supplied to the first engagement device C1, and power is transmitted to the internal combustion engine IE. It is configured to be separable from the mechanism.
  • the first engagement device C1 is engaged by controlling the hydraulic pressure supplied to the first engagement device C1, so that the internal combustion engine IE is
  • the power transmission mechanism is configured to be drivingly connected.
  • a torque shock may be generated and transmitted to the wheels W.
  • the second engagement device C2 of the torque converter TC is engaged and the pump impeller 41 and the turbine runner 51 are directly connected, the first engagement device C1 is engaged.
  • the second engagement device C2 is controlled to the released state or the sliding engagement state. Thereby, it can suppress that the torque shock which arose in the 1st engagement apparatus C1 is transmitted to the wheel W side from the torque converter TC.
  • torque shock may occur, and similarly, the second engagement device C2 is controlled to be in a release state or a sliding engagement state.
  • the hydraulic pressure supplied to the first engagement device C1 when the hydraulic pressure supplied to the first engagement device C1 is controlled, the hydraulic pressure supplied to the second engagement device C2 may be controlled at the same time. In this case, in order to suppress the fluctuation of the torque transmitted to the wheel W, it becomes a problem to improve the control accuracy of the hydraulic pressure supplied to the first engagement device C1 and the second engagement device C2.
  • the first oil chamber 102 that generates the back pressure of the first hydraulic servo mechanism 100 (first piston 106) of the first engagement device C1, and the second engagement device C2 of the first engagement.
  • a second oil chamber 112 that generates a back pressure of the two hydraulic servo mechanism 110 (second piston 116) is provided independently of each other. Therefore, even when the first hydraulic servo mechanism 100 of the first engagement device C1 and the second hydraulic servo mechanism 110 of the second engagement device C2 are operated at the same time, the operation of the first hydraulic servo mechanism 100 is performed.
  • the first hydraulic control valve 104 that controls the first oil chamber hydraulic pressure 103 supplied to the first oil chamber 102 and the second oil chamber hydraulic pressure supplied to the second oil chamber 112 are used.
  • a second hydraulic control valve 114 for controlling 113 independently of the first oil chamber hydraulic pressure 103. That is, a first hydraulic control valve 104, a hydraulic supply system (first hydraulic supply system) to the first oil chamber 102 including an oil passage from the first hydraulic control valve 104 to the first oil chamber 102, and a second hydraulic pressure
  • a control valve 114 and a hydraulic supply system (second hydraulic supply system) to the second oil chamber 112 including an oil passage from the second hydraulic control valve 114 to the second oil chamber 112 are provided independently. .
  • the first hydraulic servo mechanism 100 of the first engagement device C1 and the second hydraulic servo mechanism 110 of the second engagement device C2 are operated at the same time, the first oil chamber 102 or the second oil chamber 102 It is possible to suppress the oil pressure fluctuation in the oil chamber 112 and the operation of the first hydraulic pressure supply system or the second hydraulic pressure supply system from interfering with each other. Therefore, the control accuracy of the back pressure of the first hydraulic servo mechanism 100 and the back pressure of the second hydraulic servo mechanism 110 can be improved, and the engagement state of the first engagement device C1 and the second engagement device C2 can be improved. Control accuracy can be improved. And when engaging or releasing 1st engagement apparatus C1, the fluctuation
  • the drive device 1 is a throttle unit that restricts the flow rate to a discharge oil passage for discharging the hydraulic pressure supplied from the first hydraulic control valve 104 to the first oil chamber 102 from the first oil chamber 102.
  • a first diaphragm 120 As a first diaphragm 120.
  • the first diaphragm 120 is the “diaphragm” in the present invention.
  • the first throttle portion 120 is provided on the discharge port side of the first oil chamber 102, the first oil chamber 102 and the first hydraulic control valve 104 located on the upstream side of the first throttle portion 120. It becomes easy to equalize the oil pressure in the supply oil passage to the first oil chamber 102. Therefore, the control accuracy of the hydraulic pressure in the first oil chamber 102 can be improved, and the control accuracy of the engagement state of the first engagement device C1 can be improved. Further, since the first throttle portion 120 is provided on the discharge port side of the first oil chamber 102, the flow rate of the oil flowing in the first oil chamber 102 can be adjusted by adjusting the throttle amount of the first throttle portion 120. Can be adjusted. Therefore, it becomes easy to appropriately cool the first friction member 101 accommodated in the first oil chamber 102.
  • a first urging mechanism 107 that urges the first piston 106 with a predetermined initial engagement load is provided so that the first piston 106 presses the first friction member 101 toward the engagement side. Yes. Then, the first hydraulic control valve 104 generates the first oil chamber hydraulic pressure so that the first oil chamber 102 generates a back pressure that presses the first piston 106 toward the disengagement side with a load larger than the initial engagement load. 103 is controlled.
  • the first biasing mechanism 107 is the “biasing mechanism” in the present invention.
  • the first biasing mechanism 107 that biases the first piston 106 with a predetermined initial engagement load is provided so that the first piston 106 presses the first friction member 101 toward the engagement side.
  • the first hydraulic control valve 104 generates hydraulic pressure in the first oil chamber 102 that presses the first piston 106 toward the disengagement side with a load larger than the initial engagement load.
  • the first oil chamber oil pressure 103 is controlled so that, in a normal state where no trouble occurs, the first oil chamber oil pressure 103 generated by the first oil pressure control valve 104 is used to push the first urging mechanism 107.
  • the engagement of the first engagement device C1 due to the pressure can be released.
  • the torque of the rotating electrical machine MG is transmitted to the internal combustion engine IE through the first engagement device C1 by the pressing force of the first urging mechanism 107. This can be suppressed, and deterioration of energy efficiency during electric travel can be suppressed.
  • the drive device 1 further reduces the first line pressure 131 by controlling the output pressure of the hydraulic pump OP as the first line pressure 131, and the first line pressure 131.
  • a second line pressure control valve 140 that is controlled as 141.
  • the first hydraulic control valve 104 receives the supply of oil at the first line pressure 131 controlled by the first line pressure control valve 130 and supplies the oil in the first oil chamber hydraulic pressure 103 to the first oil chamber 102.
  • the second hydraulic control valve 114 receives the supply of the oil of the second line pressure 141 controlled by the second line pressure control valve 140 and supplies the oil of the second oil chamber hydraulic pressure 113 to the second oil chamber 112.
  • the first line pressure 131 which is the output pressure of the hydraulic pump OP, rises quickly after the drive of the hydraulic pump OP is started, for example, in order to start the driving device 1.
  • the second line pressure 141 generated by reducing the first line pressure 131 rises later than the first line pressure 131 after the drive of the hydraulic pump OP is started.
  • the first line pressure 131 that is the output pressure of the hydraulic pump OP is supplied to the first hydraulic control valve 104.
  • the first oil chamber hydraulic pressure 103 controlled by the hydraulic control valve 104 rises and can be supplied into the first oil chamber 102.
  • the back pressure of the first hydraulic servo mechanism 100 (first piston 106) can be generated quickly, and the operation accuracy of the first engagement device C1 can be ensured.
  • the engagement of the first engagement device C1 due to the pressing force of the one biasing mechanism 107 can be released. Further, the cooling performance of the first friction member 101 accommodated in the first oil chamber 102 can be ensured.
  • the second line pressure 141 is a hydraulic pressure obtained by further reducing the first line pressure 131
  • the second line pressure 141 is less affected by the pressure pulsation than the first line pressure 131 that is easily affected by the pressure pulsation caused by the discharge of the hydraulic pump OP. It is difficult to receive and the pressure is stable.
  • the second line pressure 141 generated by further reducing the first line pressure 131 is supplied to the second hydraulic control valve 114, the second line pressure 141 is more stable than the first line pressure 131.
  • a stable second oil chamber oil pressure 113 can be generated using the second line pressure 141. Therefore, the operation accuracy of the second engagement device C2 can be stabilized.
  • the hydraulic pump OP is driven as in the first engagement device C1. Since it is not necessary to release the engagement of the second engagement device C2 by the biasing mechanism after the start, even if the second line pressure 141 is used, the second engagement device C2 is stabilized after the drive of the hydraulic pump OP is started. Can be activated.
  • the first line pressure control valve 130 that controls (regulates) the output pressure of the hydraulic pump OP as the first line pressure 131 is a pressure regulating valve that includes a spool 130p and a spring 130s that biases the spool 130p.
  • a pressure regulator valve which is a kind of the above, is used. That is, the first line pressure control valve 130 has a pressing force for pressing the spool 130p in the first direction (downward in FIG. 2) by the reference pressure 136 and the spring 130s supplied to the reference pressure chamber 130a, and the feedback pressure chamber 130b.
  • One line pressure 131 is adjusted. Specifically, when the pressing force in the second direction by the first line pressure 131 exceeds the pressing force in the first direction by the reference pressure 136 and the spring 130s, the spool 130p moves to the second direction. The amount of communication opening between the pressure regulating port 130c to which the first line pressure 131 is supplied and the discharge port 130d increases, and the amount of oil discharged from the hydraulic pump OP increases from the discharge port 130d. The first line pressure 131 decreases.
  • the spool 130p moves to the first direction.
  • the communication opening amount between the pressure adjusting port 130c and the discharge port 130d is reduced, the drain amount from the discharge port 130d is decreased, and the first line pressure 131 is increased. Therefore, the first line pressure control valve 130 balances the pressing force in the second direction by the first line pressure 131 with the pressing force in the first direction by the reference pressure 136 and the spring 130s.
  • the first line pressure 131 is adjusted in a feedback manner by moving the spool 130p to increase or decrease the communication opening amount to the discharge port 130d.
  • the oil of the first line pressure 131 is sent to the first hydraulic control valve 104, the first servo hydraulic control valve 109, and the like that control the hydraulic pressure supplied to the first engagement device C1. Further, the oil drained from the discharge port 130d is sent to the oil reservoir OT or the suction port of the hydraulic pump OP.
  • the reference pressure 136 supplied to the reference pressure chamber 130a is controlled (regulated) by the reference pressure control valve 135.
  • a linear solenoid valve that is a hydraulic control valve having functions of a solenoid and a pressure regulating valve (pressure reducing valve) is used as the reference pressure control valve 135.
  • the reference pressure control valve 135 generates a reference pressure 136 by controlling the pressure reduction amount of the hydraulic pressure supplied from the hydraulic pump OP in accordance with the driving force of the solenoid.
  • the reference pressure 136 controlled (regulated) by the reference pressure control valve 135 is also supplied to the second line pressure control valve 140.
  • a pressure regulator valve which is a kind of pressure regulating valve including a spool 140p and a spring 140s for urging the spool 140p is used. That is, like the first line pressure control valve 130, the second line pressure control valve 140 moves the spool 140p in the second direction (upward in FIG. 2) by the reference pressure 136 and the spring 140s supplied to the reference pressure chamber 140a.
  • the first line pressure control valve 130 is a balance between the pressing force to be pressed and the pressing force to press the spool 140p in the first direction (downward in FIG. 2) by the second line pressure 141 supplied to the feedback pressure chamber 140b.
  • the first line pressure 131 is further reduced to adjust the second line pressure 141.
  • the oil of the second line pressure 141 is sent to the second hydraulic control valve 114, the second servo hydraulic control valve 119, etc. that control the hydraulic pressure supplied to the second engagement device C2.
  • the oil drained from the discharge port 140d is sent to the oil reservoir OT or the suction port of the hydraulic pump OP.
  • the first line pressure 131 controlled (regulated) by the first line pressure control valve 130 is supplied to the first hydraulic control valve 104.
  • the first hydraulic control valve 104 is composed of a spool 104p and a spring 104s that urges the spool 104p, etc., and simultaneously opens and closes the oil passage from the original pressure and opens and closes the oil passage to the drain.
  • the pressure regulating valve pressure reducing valve
  • the pressure regulating valve pressure reducing valve
  • the spool 104p moves to the first direction side.
  • the communication opening amount between the output port 104e that outputs the first oil chamber hydraulic pressure 103 and the discharge port 104d increases, and the communication opening amount between the output port 104e and the input port 104i decreases.
  • the amount of oil drained from the discharge port 104d from the first oil chamber oil pressure 103 increases, and the amount of oil in the first line pressure 131 supplied from the input port 104i to the output port 104e decreases.
  • the changing speed of the one oil chamber oil pressure 103 changes in the decreasing direction of the first oil chamber oil pressure 103.
  • the spool 130p moves to the second direction and outputs.
  • the communication opening amount between the port 104e and the discharge port 104d decreases, and the communication opening amount between the output port 104e and the input port 104i increases.
  • the amount of oil drained from the discharge port 104d by the oil in the first oil chamber hydraulic pressure 103 decreases, and the amount of oil in the first line pressure 131 supplied from the input port 104i to the output port 104e increases.
  • the changing speed of the one oil chamber oil pressure 103 changes in the increasing direction of the first oil chamber oil pressure 103.
  • the spool 104p moves so that the pressing force in the first direction by the first oil chamber hydraulic pressure 103 and the pressing force in the second direction by the spring 104s are balanced. Then, the first oil chamber hydraulic pressure 103 is adjusted in a feedback manner by increasing or decreasing the communication opening amount to the discharge port 104d and the communication opening amount to the input port 104i. Then, the oil in the first oil chamber hydraulic pressure 103 adjusted by the first hydraulic control valve 104 is sent to the first oil chamber 102 of the first engagement device C1. Further, the oil drained from the discharge port 104d is sent to the oil reservoir OT or the suction port of the hydraulic pump OP. Note that, as the first hydraulic control valve 104, a pressure regulating valve (pressure reducing valve) of a type that only opens and closes the oil passage to the drain, like the second hydraulic control valve 114, may be used.
  • a pressure regulating valve pressure reducing valve
  • the first hydraulic control valve 104 generates a back pressure that presses the first piston 106 toward the disengagement side with a load larger than the initial engagement load by the first urging mechanism 107.
  • the first oil chamber hydraulic pressure 103 is controlled so as to be generated at the same time.
  • the oil pressure in the first oil chamber 102 varies with respect to the first oil chamber oil pressure 103 controlled by the first oil pressure control valve 104 due to various fluctuation factors.
  • the fluctuation factors include the pipeline resistance of the oil passage from the first hydraulic control valve 104 to the first oil chamber 102, the static factors such as the oil temperature, the line pressure, and the rotation speed of the member, the oil temperature, and the line pressure.
  • the first hydraulic control valve 104 has the first oil chamber hydraulic pressure 103 with a load larger than the initial engagement load by the first biasing mechanism 107.
  • the first oil chamber hydraulic pressure 103 is controlled so that a back pressure is generated in the first oil chamber 102 to press the 106 toward the disengagement side.
  • the first hydraulic control valve 104 is configured to control the first oil chamber hydraulic pressure 103 so as to be a predetermined hydraulic pressure in consideration of the maximum hydraulic pressure fluctuation range due to these fluctuation factors.
  • the first hydraulic chamber hydraulic pressure 103 is controlled by the design of the load of the spring 104 s of the first hydraulic control valve 104 or the sectional area of the spool p of the feedback pressure chamber 104 b. It has been adjusted to meet the conditions.
  • the oil in the first oil chamber hydraulic pressure 103 adjusted by the first hydraulic control valve 104 is supplied to the first oil chamber 102.
  • the first oil chamber 102 is an oil-tight oil chamber that generates the back pressure of the first hydraulic servo mechanism 100 and houses the first friction member 101 of the first engagement device C1.
  • the first hydraulic servo mechanism 100 includes a first cylinder 105, a first piston 106, and a first servo oil chamber 108 surrounded by the first cylinder 105 and the first piston 106.
  • the back surface of the first piston 106 is the wall surface of the first oil chamber 102, and the first oil chamber oil pressure 103 is the back pressure of the first piston 106.
  • the oil supplied to the first supply port 122 of the first oil chamber 102 flows through a predetermined path (circulation path) in the first oil chamber 102 and circulates. 102 is configured to be discharged from the first discharge port 123.
  • the circulation path of the first oil chamber 102 is configured such that oil flows along the back surface of the first piston 106 and the first friction member 101.
  • the oil supplied to the first oil chamber 102 circulates in the first oil chamber 102 to generate a back pressure of the first piston 106 and cool the first friction member 101.
  • the oil that circulates in the first oil chamber 102 and is discharged from the first discharge port 123 of the first oil chamber 102 passes through the first throttle portion 120 to the suction port of the oil reservoir OT or the hydraulic pump OP. Sent.
  • the second line pressure 141 controlled (regulated) by the second line pressure control valve 140 is supplied to the second hydraulic control valve 114 via the second restrictor 125.
  • the second throttle portion 125 regulates the amount of oil of the second line pressure 141 supplied to the second oil chamber oil pressure 113 side.
  • the second oil pressure control valve 114 adjusts the oil drain amount of the supplied second line pressure 141 to adjust the second oil chamber oil pressure 113.
  • a pressure regulating valve pressure reducing valve
  • the second hydraulic control valve 114 causes the spool 114p to be first driven by the pressing force pressing the spool 114p in the second direction (upward in FIG. 2) by the spring 114s and the second oil chamber hydraulic pressure 113 supplied to the input port 114a.
  • the second line pressure 141 is further reduced to adjust the second oil chamber oil pressure 113 by adjusting the oil drain amount based on the balance with the pressing force pressing in one direction (downward in FIG. 2).
  • the spool 114p moves to the first direction side.
  • the communication opening amount between the input port 114a to which the oil in the second oil chamber oil pressure 113 is supplied and the discharge port 114b increases, and the amount of oil in which the oil in the second oil chamber oil pressure 113 is drained from the discharge port 114b increases.
  • the changing speed of the second oil chamber oil pressure 113 changes in the decreasing direction of the second oil chamber oil pressure 113.
  • the second hydraulic control valve 114 moves the spool 114p so that the pressing force in the first direction by the second oil chamber hydraulic pressure 113 and the pressing force in the second direction by the spring 114s are balanced. Then, the second oil chamber hydraulic pressure 113 is regulated in a feedback manner by increasing or decreasing the communication opening amount to the discharge port 114b. Then, the oil in the second oil chamber hydraulic pressure 113 adjusted by the second hydraulic control valve 114 is sent to the second oil chamber 112 of the second engagement device C2. Further, the oil drained from the discharge port 114b is sent to the oil reservoir OT or the suction port of the hydraulic pump OP.
  • a pressure regulating valve pressure reducing valve of the type that simultaneously opens and closes the oil passage from the original pressure and opens and closes the oil passage to the drain is used as in the first hydraulic control valve 104. You may be made to do.
  • the second oil chamber 112 is an oil-tight oil chamber that generates the back pressure of the second hydraulic servo mechanism 110.
  • the second oil chamber 112 houses the second friction member 111 of the second engagement device C2, the pump impeller 41 of the torque converter TC, and the turbine runner 51.
  • the second hydraulic servo mechanism 110 includes a second cylinder 115, a second piston 116, and a second servo oil chamber 118 surrounded by the second cylinder 115 and the second piston 116.
  • the back surface of the second piston 116 is the wall surface of the second oil chamber 112, and the second oil chamber oil pressure 113 is the back pressure of the second piston 116.
  • the oil supplied to the second supply port 127 of the second oil chamber 112 circulates in the second oil chamber 112 through a predetermined path (circulation path) in the second oil chamber 112, and the second oil chamber 112 112 is discharged from the second discharge port 128.
  • the circulation path of the second oil chamber 112 is configured such that oil flows along the back surface of the second piston 116, the second friction member 111, the pump impeller 41, and the turbine runner 51.
  • the oil supplied to the second oil chamber 112 circulates in the second oil chamber 112, generates a back pressure of the second piston 116, cools the second friction member 111, and performs the pump impeller 41 and the turbine. Supplied as operating oil for the runner 51.
  • the oil that circulates in the second oil chamber 112 and is discharged from the second discharge port 128 of the second oil chamber 112 is sent to the oil reservoir OT or the suction port of the hydraulic pump OP.
  • the first line pressure 131 controlled (regulated) by the first line pressure control valve 130 is supplied to the first servo hydraulic control valve 109.
  • the first servo hydraulic control valve 109 a linear solenoid valve that is a hydraulic control valve having the functions of a solenoid and a pressure regulating valve (pressure reducing valve) is used.
  • the first line pressure control valve 130 generates a first servo hydraulic pressure 121 by controlling the pressure reduction amount of the supplied first line pressure 131 according to the driving force of the solenoid.
  • the first servo hydraulic pressure control valve 109 is not shown, but includes a pressing force that presses the spool by the driving force of a spring and a solenoid, and a first servo hydraulic pressure 121 supplied to the feedback pressure chamber 109b.
  • the oil supply amount of the first line pressure 131 supplied from the input port 109i and the oil drain amount of the first servo hydraulic pressure 121 discharged from the discharge port 109d are adjusted by the balance with the pressing force for pressing the spool.
  • the first servo pressure 121 is regulated by further reducing the first line pressure 131.
  • a duty solenoid valve and a pressure regulating valve (pressure reducing valve) in which a solenoid function and a pressure regulating valve (pressure reducing valve) function are separated may be used.
  • the hydraulic pressure supplied to the first oil chamber 102 and the first servo oil chamber 108 of the first engagement device C1 is regulated by reducing the first line pressure 131, and is described above.
  • the first oil chamber hydraulic pressure 103 and the first servo hydraulic pressure 121 can be quickly started up after the driving of the hydraulic pump OP is started. Therefore, it is possible to quickly generate the back pressure of the first hydraulic servo mechanism 100 and to control the hydraulic pressure supplied to the first servo oil chamber 108 after the start of driving of the hydraulic pump OP.
  • the operation accuracy of the combined device C1 can be ensured.
  • the first hydraulic servo is immediately activated after the drive of the hydraulic pump OP is started.
  • the back pressure of the mechanism 100 can be raised to disengage the first engagement device C1 by the first biasing mechanism 107.
  • Second Servo Hydraulic Control Valve the second line pressure 141 controlled (regulated) by the second line pressure control valve 140 is supplied to the second servo hydraulic control valve 119.
  • the second servo hydraulic control valve 119 a linear solenoid valve that is a hydraulic control valve having the functions of a solenoid and a pressure regulating valve (pressure reducing valve) is used as in the first servo hydraulic control valve 109.
  • the second servo oil pressure control valve 119 generates a second servo oil pressure 126 by controlling the pressure reduction amount of the supplied second line pressure 141 according to the driving force of the solenoid.
  • the second servo hydraulic control valve 119 is not shown in the figure, but by the pressing force that presses the spool by the driving force of the spring and solenoid, and the second servo hydraulic pressure 126 supplied to the feedback pressure chamber 119b.
  • the oil supply amount of the second line pressure 141 supplied from the input port 119i and the oil drain amount of the second servo oil pressure 126 discharged from the discharge port 119d are adjusted by the balance with the pressing force for pressing the spool.
  • the second servo pressure 126 is regulated by further reducing the second line pressure 141.
  • a duty solenoid valve and a pressure regulating valve (pressure reducing valve) in which a solenoid function and a pressure regulating valve (pressure reducing valve) function are separated may be used.
  • the hydraulic pressure supplied to the second oil chamber 112 and the second servo oil chamber 118 of the second engagement device C2 is regulated by reducing the second line pressure 141, as described above.
  • the second oil chamber oil pressure 113 and the second servo oil pressure 126 can be generated using the second line pressure 141 that is more stable than the first line pressure 131. Accordingly, the back pressure of the second hydraulic servo mechanism 110 can be stably generated, and the hydraulic pressure supplied to the second servo oil chamber 118 can be controlled stably, and the operating accuracy of the first engagement device C1 can be controlled. Can be secured stably.
  • the hydraulic pump OP is driven as in the first engagement device C1. Since it is not necessary to release the engagement of the second engagement device C2 by the biasing mechanism after the start, even if the second line pressure 141 is used, the second engagement device C2 is stabilized after the drive of the hydraulic pump OP is started. Can be activated.
  • FIG. 3 is a partially enlarged view of the cross-sectional view of FIG.
  • the case 3 schematically includes a cylindrical peripheral wall 4 and an end support wall 5 provided on the left side (internal combustion engine IE side) of the rotating electrical machine MG in FIG. 3 in the axial direction.
  • the rotating electrical machine MG, the first engagement device C1, and the torque converter TC are accommodated in the space between the end support wall 5 and the intermediate partition wall 6 in the case 3.
  • the transmission TM is accommodated in the space on the right side in FIG.
  • An internal combustion engine IE is provided on the left side in FIG. 3 with respect to the end support wall 5.
  • the end support wall 5 has a shape extending at least in the radial direction, and here is a substantially flat disk-shaped wall portion extending in the radial direction and the circumferential direction.
  • a cylindrical projecting portion 11 that projects in the axial direction toward the torque converter TC is provided at the radial center of the end support wall 5.
  • the cylindrical protrusion 11 is a cylindrical boss protruding from the radially inner end of the end support wall 5 toward the torque converter TC.
  • a through hole penetrating in the axial direction is formed in the central portion in the radial direction of the cylindrical protruding portion 11, and the internal combustion engine connecting shaft EC is inserted through the through hole.
  • a third bearing 73 is disposed between the inner peripheral surface of the cylindrical protrusion 11 and the internal combustion engine connecting shaft EC.
  • the internal combustion engine connecting shaft EC is supported by the third bearing 73 so as to be rotatable with respect to the case 3.
  • a needle bearing is used as the third bearing 73.
  • the space between the inner peripheral surface of the cylindrical projecting portion 11 and the internal combustion engine connecting shaft EC is closed in an oil-tight state by an oil seal 68 on the internal combustion engine IE side.
  • the cylindrical protruding portion 11 is formed with a plurality of oil passages. Specifically, as shown in FIG. 3 and FIG. 4, the second oil passage that feeds the oil regulated by the first hydraulic control valve 104 to the first oil chamber 102 is provided in the cylindrical protrusion 11. L2 and a third oil passage L3 for sending the oil discharged from the first oil chamber 102 to the oil reservoir OT or the suction port of the hydraulic pump OP are formed.
  • the cylinder projecting portion 11 is supplied with oil regulated by the first servo hydraulic control valve 109 (see FIG. 2) to the first servo oil chamber 108 and also with the first servo oil.
  • a first oil passage is formed through which oil discharged from the chamber 108 is sent to the first servo hydraulic control valve 109.
  • the intermediate partition wall 6 has a shape extending at least in the radial direction, and is a substantially flat disk-shaped wall portion extending in the radial direction and the circumferential direction here. Moreover, in this embodiment, the intermediate partition 6 is comprised as a member different from the surrounding wall 4, and is fastened and fixed to the level
  • the intermediate partition wall 6 is provided with a hydraulic pump OP.
  • the hydraulic pump cover 7 is attached to the surface of the intermediate partition wall 6 on the torque converter TC side. A hydraulic pump chamber that houses the hydraulic pump rotor is formed between the intermediate partition wall 6 and the hydraulic pump cover 7.
  • the hydraulic pump OP is constituted by the hydraulic pump rotor and the hydraulic pump chamber.
  • the hydraulic pump cover 7 is fastened and fixed to the intermediate partition wall 6 by a fastening member such as a bolt while being in contact with the intermediate partition wall 6 from the torque converter TC side.
  • a through hole penetrating in the axial direction is formed at the radial center of the intermediate partition wall 6 and the hydraulic pump cover 7, and the intermediate shaft M is inserted through the through hole.
  • the hydraulic pump drive shaft 47 and the stator support shaft 58 are also inserted through the through hole.
  • the hydraulic pump drive shaft 47 is a cylindrical shaft portion that rotates integrally with the cover portion 42 of the torque converter TC.
  • the hydraulic pump drive shaft 47 is disposed radially outside the intermediate shaft M and is drivingly connected to the hydraulic pump rotor.
  • the stator support shaft 58 is a cylindrical shaft portion that is fixed to the intermediate partition wall 6 and supports the stator 56 of the torque converter TC, and is disposed between the intermediate shaft M and the hydraulic pump drive shaft 47 in the radial direction. Yes.
  • the intermediate partition wall 6 and the hydraulic pump cover 7 are formed with a first suction oil passage L8 and a first discharge oil passage L9 of the hydraulic pump OP. Further, as shown in part in FIG. 3, there are oil passages for supplying such oil in the peripheral wall 4, the end support wall 5, the intermediate partition wall 6 and the shafts of the case 3. Is provided.
  • the hydraulic pump rotor of the hydraulic pump OP is drivingly connected to the hydraulic pump drive shaft 47 by spline engagement or the like. Therefore, the hydraulic pump rotor is configured to rotate integrally with the pump impeller 41 of the torque converter TC and the rotor Ro of the rotating electrical machine MG.
  • the hydraulic pump OP is an inscribed gear pump having an inner rotor and an outer rotor as hydraulic pump rotors.
  • the hydraulic pump OP is arranged coaxially with the rotating electrical machine MG, the torque converter TC, and the transmission TM, and is connected so that the inner rotor rotates integrally with the pump impeller 41 of the torque converter TC at the center in the radial direction. Has been. Accordingly, as the pump impeller 41 rotates, the hydraulic pump OP discharges oil to generate hydraulic pressure and supplies the hydraulic pressure control device.
  • the hydraulic pump OP sucks oil from the oil reservoir OT via a strainer (not shown) and the first suction oil passage L8, and discharges it to the first discharge oil passage L9.
  • the oil discharged from the hydraulic pump OP is sent to the first line pressure control valve 130 via the first discharge oil passage L9.
  • the first line pressure control valve 130 regulates the output pressure of the hydraulic pump OP as the first line pressure 131. Therefore, the hydraulic pressure of each oil passage such as the first discharge oil passage L9 communicating with the discharge port of the hydraulic pump OP is regulated as the first line pressure 131 by the first line pressure control valve 130.
  • the oil at the first line pressure 131 is supplied to the first hydraulic control valve 104 and the first servo hydraulic control valve 109.
  • the rotating electric machine MG is disposed closer to the internal combustion engine IE (the left side in FIG. 3) than the torque converter TC.
  • the rotating electrical machine MG is disposed between the end support wall 5 and the torque converter TC in the axial direction. Further, the rotating electrical machine MG is disposed on the radially outer side with respect to the internal combustion engine coupling shaft EC and the first engagement device C1.
  • the stator St of the rotating electrical machine MG is fixed to the case 3.
  • the rotor Ro is supported by the case 3 in a rotatable state.
  • the rotor Ro is connected to the pump impeller 41 and the cover portion 42 of the torque converter TC via the rotor support member 22 so as to rotate integrally.
  • the rotor support member 22 is a member provided so as to extend at least in the radial direction and support the rotor Ro.
  • a cylindrical boss portion 22 a is provided at the radially inner end portion of the rotor support member 22, and the second portion is formed between the inner peripheral surface of the boss portion 22 a and the cylindrical protrusion 11 of the case 3.
  • One bearing 71 is disposed.
  • the rotor Ro and the rotor support member 22 are supported by the first bearing 71 so as to be rotatable with respect to the case 3.
  • a ball bearing is used as the first bearing 71.
  • the rotation sensor 13 is disposed between the rotor support member 22 and the end support wall 5 in the axial direction and outside the boss portion 22a in the radial direction.
  • the rotation sensor 13 is a sensor that detects the rotational position of the rotor Ro of the rotating electrical machine MG, and a resolver or the like can be suitably used.
  • the sensor stator 13a of the rotation sensor 13 is fixed to the end support wall 5, and the sensor rotor 13b of the rotation sensor 13 is fixed to the boss 22a of the rotor support member 22 (see FIG. 4).
  • the first engaging device C ⁇ b> 1 is located radially inside the rotating electrical machine MG and has a portion that overlaps the rotating electrical machine MG when viewed in the radial direction of the rotating electrical machine MG. Is arranged.
  • the first engagement device C ⁇ b> 1 is disposed on the torque converter TC side in the axial direction with respect to the rotor support member 22.
  • the first engagement device C1 is an engagement device for selectively drivingly connecting the internal combustion engine connecting shaft EC, the rotary electric machine MG, and the pump impeller 41 of the torque converter TC.
  • the first engagement device C1 is a friction engagement device.
  • the first clutch hub 31 which is an input side member of the first engagement device C1, is provided integrally with the internal combustion engine connecting shaft EC. Specifically, the first clutch hub 31 is formed integrally with the internal combustion engine connecting shaft EC and is a disk-like member extending radially outward from the transmission device TM side end portion of the internal combustion engine connecting shaft EC. Yes.
  • the first engagement device drum 32 which is the output side member of the first engagement device C1, is connected to rotate integrally with the cover portion 42 of the torque converter TC and the rotor support member 22 of the rotating electrical machine MG. Yes.
  • the first engagement device drum 32 is joined to the inner peripheral surface of the boss portion 22a of the rotor support member 22, and the step formed at the radial intermediate portion of the cover portion 42 of the torque converter TC. It is joined to the outer peripheral surface of the portion 43b.
  • the first engagement device drum 32 also serves as a housing and a cylinder of the first engagement device C1, and houses the first clutch hub 31, the first piston 106, the first friction member 101, and the like inside.
  • the first engagement device drum 32 is sealed at the joint with other members so that the internal oil does not leak to the outside, and the inside is in an oil-tight state.
  • the first servo oil chamber 108 provided in the first hydraulic servo mechanism 100 of the first engagement device C ⁇ b> 1 includes a first engagement device drum 32 that functions as the first cylinder 105, It is surrounded by one piston 106.
  • the first servo oil chamber 108 is formed in an oil-tight manner by a sealing material.
  • the first oil chamber 102 of the first engagement device C1 houses the first friction member 101 and the like of the first engagement device C1, and is formed in an oil-tight manner.
  • the first oil chamber 102 generates a back pressure of the first hydraulic servo mechanism 100.
  • the end surface of the first piston 106 on the internal combustion engine IE side is the piston inner surface (inner surface) of the first servo oil chamber 108.
  • the end face of the first piston 106 on the transmission device TM side is the inner surface of the first oil chamber 102 and the piston outer surface (back surface) of the first servo oil chamber 108.
  • the hydraulic pressure in the first oil chamber 102 becomes the back pressure of the first piston 106, and the first piston 106 is moved by the force obtained by multiplying the hydraulic pressure in the first oil chamber 102 and the cross-sectional area of the first cylinder 105. It pushes to the internal combustion engine IE side, that is, the release side of the first engagement device C1.
  • a first urging mechanism 107 is provided between the first cylinder 105 and the first engagement device drum 32 serving as the first piston 106, and the first urging mechanism 107 moves the first piston 106.
  • the pressure is applied to the transmission TM side, that is, the engagement side of the first engagement device C1.
  • the first biasing mechanism 107 is a disc spring.
  • the first biasing mechanism 107 may be a spring other than a disc spring, for example, a coil spring.
  • the hydraulic pressure in the first servo oil chamber 108 is a force obtained by multiplying the hydraulic pressure in the first servo oil chamber 108 and the cross-sectional area of the first cylinder 105 so that the first piston 106 is moved to the transmission device TM side, that is, the first Press toward the engagement side of one engagement device C1. Therefore, the balance between the hydraulic pressure in the first servo oil chamber 108 and the pressing force of the first piston 106 by the first urging mechanism 107 and the pressing force of the first piston 106 by the hydraulic pressure in the first oil chamber 102 gives One engagement device C1 is engaged or released.
  • the oil supplied to the first supply port 122 of the first oil chamber 102 flows through a predetermined path (circulation path) in the first oil chamber 102, circulates, and
  • the oil chamber 102 is configured to be discharged from the first discharge port 123.
  • the first supply port 122 of the first oil chamber 102 is formed by a gap between the first clutch hub 31 and the radially inner end of the first engagement device drum 32.
  • the oil regulated by the first hydraulic control valve 104 is sent through the second oil passage L2 provided in the peripheral wall 4 of the case 3, the end support wall 5 and the wall surface of the cylindrical protrusion 11, and the The oil is supplied from the one supply port 122 to the first oil chamber 102.
  • the oil supplied to the first supply port 122 flows in a radially outward space (circulation path) formed between the first piston 106 and the first clutch hub 31 in the radial direction.
  • the oil that has flowed outward in the radial direction flows through gaps (circulation paths) formed along the plurality of first friction members 101.
  • the first friction member 101 is cooled.
  • the oil flowing along the first friction member 101 passes through a radially extending space (circulation path) formed between the first clutch hub 31 and the first cover member 43 of the torque converter TC in the radial direction. It flows inward.
  • oil is discharged from the first discharge port 123 of the first oil chamber 102.
  • the first discharge port 123 is a radially inner portion in a space formed between the first clutch hub 31 and the first cover member 43.
  • a gap narrowed (squeezed) in the space formed between the first clutch hub 31 and the first cover member 43 is the first throttle portion 120 and functions as an orifice. Since the first oil chamber 102 is throttled on the discharge side, the hydraulic pressure in the first oil chamber 102 is made uniform as described above.
  • the oil discharged from the first discharge port 123 of the first oil chamber 102 is an oil-tight space between the internal combustion engine connecting shaft EC and the first cover member 43, a fifth oil provided in the internal combustion engine connecting shaft EC.
  • the path L5, the oil-tight gap between the internal combustion engine connecting shaft EC and the cylindrical projection 11 of the case 3, the third oil path L3 provided in the cylindrical projection 11 and the end support wall 5 of the case 3 Then, it flows in order through the tubular member 96c and the eleventh oil passage L11 provided in the peripheral wall 4, and is sent from the first oil chamber 102 to the oil reservoir OT or the suction port of the hydraulic pump OP (see FIG. 3).
  • the oil regulated by the first servo hydraulic control valve 109 is sent through a supply oil passage (not shown) provided in the peripheral wall 4 of the case 3, the end support wall 5, and the wall surface of the cylindrical protrusion 11.
  • the first servo oil chamber 108 is supplied from the first supply / discharge port 124 (see FIG. 2).
  • the torque converter TC is disposed between the rotating electrical machine MG and the transmission TM in the axial direction.
  • the torque converter TC includes a pump impeller 41, a turbine runner 51, a stator 56, and a cover portion 42 that accommodates them.
  • the second engagement device C2 and the damper 54 are also accommodated in the cover portion 42.
  • the cover part 42 is configured to rotate integrally with the pump impeller 41.
  • the pump impeller 41 is integrally provided inside the cover portion 42.
  • the cover portion 42 is configured by joining a first cover member 43 on the rotating electrical machine MG side and a second cover member 44 on the transmission device TM side.
  • the first cover member 43 is a cylindrical member formed so as to cover the rotating electrical machine MG side of the torque converter TC.
  • the first cover member 43 is a stepped cylindrical member in which a stepped portion 43b is formed in a radially intermediate portion. ing.
  • the outer peripheral surface of the stepped portion 43b is joined to the inner peripheral surface of the first engagement device drum 32, whereby the cover portion 42 is integrated with the first engagement device drum 32 of the first engagement device C1. It is connected so as to rotate.
  • a second engagement device C2 is housed inside the stepped portion 43b in the radial direction.
  • the second cover member 44 is a cover member formed so as to cover the transmission device TM side of the torque converter TC, and in this example, the radial intermediate portion faces the transmission device TM side.
  • the annular member has a bulging arc-shaped cross-sectional shape.
  • a hydraulic pump drive shaft 47 extending in the axial direction toward the transmission device TM is integrally provided at the radially inner end of the second cover member 44.
  • the hydraulic pump drive shaft 47 is a cylindrical shaft portion that rotates integrally with the cover portion 42 of the torque converter TC, and is disposed coaxially with the intermediate shaft M on the radially outer side of the intermediate shaft M.
  • a second bearing 72 is disposed between the outer peripheral surface of the hydraulic pump drive shaft 47 and the inner peripheral surface of the through hole of the hydraulic pump cover 7.
  • the hydraulic pump drive shaft 47 and the cover portion 42 of the torque converter TC are supported by the second bearing 72 so as to be rotatable with respect to the case 3.
  • a needle bearing is used as the second bearing 72.
  • An end of the hydraulic pump drive shaft 47 on the transmission device TM side is connected to rotate integrally with a hydraulic pump rotor of the hydraulic pump OP.
  • the connection between the hydraulic pump drive shaft 47 and the hydraulic pump rotor is performed by spline engagement.
  • the first cover member 43 and the second cover member 44 are integrally joined by welding or the like. Further, when viewed as the drive device 1 as a whole, the cover portion 42 of the torque converter TC, the rotor support member 22, and the first engagement device drum 32 of the first engagement device C1 are connected to rotate integrally. It is a connecting body of a plurality of members, and this connecting body constitutes the input shaft I.
  • the input shaft I is rotatably supported by the case 3 via the first bearing 71 on the internal combustion engine connecting shaft EC side, and is rotatably supported by the case 3 via the second bearing 72 on the transmission device TM side. Yes.
  • the input shaft I is joined so as to rotate integrally with the rotor Ro of the rotating electrical machine MG and the pump impeller 41.
  • the turbine runner 51 of the torque converter TC is disposed opposite to the pump impeller 41 on the rotating electrical machine MG side with respect to the pump impeller 41 inside the cover portion 42.
  • the turbine runner 51 is connected so as to rotate integrally with the input shaft I.
  • the radially inner end of the turbine runner 51 is spline-engaged with the intermediate shaft M.
  • the stator 56 of the torque converter TC is disposed between the pump impeller 41 and the turbine runner 51 in the axial direction.
  • the stator 56 is supported on a stator support shaft 58 via a one-way clutch 57.
  • the stator support shaft 58 is a cylindrical shaft portion and is fixed to the intermediate partition wall 6 on the transmission device TM side.
  • the torque converter TC can transmit torque between the drive-side pump impeller 41 and the driven-side turbine runner 51 via oil filled in the cover portion 42.
  • the damper 54 is disposed between the second engagement device C2 and the turbine runner 51 in the axial direction.
  • the damper 54 is provided to absorb the vibration of the driving force transmitted between the pump impeller 41 and the turbine runner 51 in the engaged state of the second engagement device C2.
  • the damper 54 is for vibration absorption provided between the input side member 54a and the output side member 54b configured to be relatively movable in the circumferential direction, and between the input side member 54a and the output side member 54b. Spring 54c and the like.
  • the input side member 54a of the damper 54 is connected to rotate integrally with the second engagement device drum 62 of the second engagement device C2.
  • the output side member 54b of the damper 54 is connected so as to rotate integrally with the turbine runner 51 and the intermediate shaft M.
  • the second engagement device C ⁇ b> 2 is arranged on the inner side in the radial direction of the stepped portion 43 b of the cover portion 42 and on the rotating electrical machine MG side in the axial direction with respect to the turbine runner 51.
  • the second engagement device C2 engages the pump impeller 41 and the turbine runner 51, thereby stopping the transmission of the driving force via the oil and bringing them into a directly connected state (lock-up state). It is.
  • the second engagement device C2 is a friction engagement device.
  • the second clutch hub 61 which is an input side member of the second engagement device C2, is provided so as to rotate integrally with the cover portion.
  • the second clutch hub 61 is connected to the support cylindrical portion 43a of the first cover member 43 of the cover portion 42 by spline engagement on the radially inner side.
  • the second engagement device drum 62 that is an output side member of the second engagement device C ⁇ b> 2 is drivingly connected to the turbine runner 51 and the intermediate shaft M via the damper 54.
  • the second engagement device drum 62 is formed integrally with the input side member 54 a of the damper 54.
  • the second piston 116, the second friction member 111, and the like of the second engagement device C2 are also accommodated in a space radially inward of the stepped portion 43b.
  • the second engagement device C2 is disposed adjacent to the first engagement device C1 in the axial direction with the first cover member 43 interposed therebetween.
  • the first cover member 43 also serves as a housing and a cylinder of the second engagement device C2, and houses the second clutch hub 61, the second piston 116, the second friction member 111, and the like inside.
  • the second servo oil chamber 118 provided in the second hydraulic servo mechanism 110 of the second engagement device C2 includes a first cover member 43 that functions as a second cylinder 115, and a second piston. 116.
  • the second servo oil chamber 118 is formed in an oil-tight manner by a sealing material.
  • the second oil chamber 112 of the second engagement device C2 houses the second friction member 111 and the like of the second engagement device C2, and is formed in an oil-tight manner.
  • the second oil chamber 112 generates a back pressure of the second hydraulic servo mechanism 110.
  • the end surface of the second piston 116 on the internal combustion engine IE side is the piston inner surface of the second servo oil chamber 118.
  • the end face of the second piston 116 on the transmission device TM side is the inner surface of the second oil chamber 112 and the piston outer surface of the second servo oil chamber 118.
  • the hydraulic pressure in the second oil chamber 112 becomes the back pressure of the second piston 116, and the second piston 116 is moved by the force obtained by multiplying the hydraulic pressure in the second oil chamber 112 and the cross-sectional area of the second cylinder 115. Press toward the internal combustion engine IE, that is, the release side of the second engagement device C2.
  • a second urging mechanism 117 is provided between the second cylinder 115 and the second clutch hub 61, and the second urging mechanism 117 moves the second piston 116 to the internal combustion engine IE side, that is, the second urging mechanism 117. Press toward the release side of the engagement device C2.
  • the second urging mechanism 117 is a coil spring.
  • the second urging mechanism 117 may be a spring other than the coil spring, for example, a disc spring.
  • the hydraulic pressure in the second servo oil chamber 118 is a force obtained by multiplying the hydraulic pressure in the second servo oil chamber 118 and the cross-sectional area of the second cylinder 115 so that the second piston 116 is moved to the transmission TM side, that is, the first.
  • the oil supplied to the second supply port 127 of the second oil chamber 112 circulates through a predetermined path (circulation path) in the second oil chamber 112,
  • the second oil chamber 112 is configured to be discharged from the second discharge port 128 (see FIG. 3).
  • the second supply port 127 of the second oil chamber 112 is formed in a support cylindrical portion 43 a provided on the radially inner side of the first cover member 43.
  • the support cylindrical portion 43a is a cylindrical portion that is arranged coaxially with respect to the axis X and is formed so as to extend in the axial direction toward the transmission device TM.
  • the outer peripheral surface of the support cylindrical portion 43 a constitutes the radially inner side surface of the second cylinder 115 and is splined to the second clutch hub 61.
  • An intermediate shaft M is arranged on the radially inner side of the support cylindrical portion 43a, and an end portion of the intermediate shaft M on the internal combustion engine IE side is rotatably supported by the inner peripheral surface of the support cylindrical portion 43a.
  • the oil regulated by the second hydraulic control valve 114 is sent through a sixth oil passage L6 provided in the intermediate shaft M and is supplied from the second supply port 127 to the second oil chamber 112.
  • the oil supplied to the second supply port 127 flows in a radially outward space (circulation path) formed between the second piston 116 and the second clutch hub 61 in the radial direction.
  • the oil that has flowed outward in the radial direction flows through gaps (circulation paths) formed along the plurality of second friction members 111. At this time, the second friction member 111 is cooled.
  • the oil that has flowed along the second friction member 111 passes a radially extending space (circulation path) formed between the first cover member 43 and the second engagement device drum 62 outward in the radial direction. It flows toward. And after circulating through the inside of the cover part 42 in which the pump impeller 41 and the turbine runner 51 are arranged, as shown in FIG. 3, the oil is discharged from the second discharge port 128 of the second oil chamber 112. The oil discharged from the second discharge port 128 of the second oil chamber 112 flows through the oil passage provided around the intermediate shaft M and is sent to the oil storage unit OT or the suction port of the hydraulic pump OP.
  • the oil regulated by the second servo hydraulic control valve 119 is sent through a seventh oil passage L7 provided in the intermediate shaft M, and is supplied from the second supply / discharge port 129 to the second servo oil chamber 118. .
  • the transmission TM is arranged on the output shaft O side of the intermediate partition wall 6, that is, on the side opposite to the torque converter TC (right side in FIG. 3) across the intermediate partition wall 6.
  • the transmission apparatus TM is a stepped automatic transmission apparatus having a plurality of shift stages having different speed ratios.
  • the hydraulic pump OP is configured by a mechanical pump driven by the driving force transmitted to the input shaft I.
  • the embodiment of the present invention is not limited to this. That is, the hydraulic pump OP is an electric pump driven by a pump driving motor different from the internal combustion engine IE and the rotating electrical machine MG, or is configured by a combination of such an electric pump and a mechanical pump. May be.
  • the drive device 1 includes the pump impeller 41, the turbine runner 51, and the second engagement device C2 that directly connects the pump impeller 41 and the turbine runner 51 as the torque converter TC.
  • the drive device 1 is not provided with the torque converter TC, and instead of the torque converter TC, a friction engagement device that selectively drives and connects the input shaft I and the intermediate shaft M is used as the second engagement device C2. May be provided.
  • the second engagement device C2 includes a second oil chamber 112 that generates the back pressure of the second hydraulic servo mechanism 110 and accommodates the second friction member 111 of the second engagement device C2.
  • the second oil chamber hydraulic pressure 113 is controlled independently of the first oil chamber oil pressure 103.
  • the second hydraulic servomechanism 110 of the second engagement device C2 is surrounded by the first cover member 43 functioning as the second cylinder 115 and the second piston 116 so as to be oil-tight.
  • the case where the configured second servo oil chamber 118 is provided has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, the second servo oil chamber 118 may not be provided in an oil-tight manner, but may be configured integrally with the second oil chamber 112.
  • the second piston 116 presses the second friction member 111 by controlling the hydraulic pressure supplied to the second servo oil chamber 118 side or the opposite side of the second servo oil chamber 118 of the second piston 116.
  • the second oil chamber 112 integrally includes a second servo oil chamber 118 provided in communication with the second oil chamber 112, and the engagement state of the second engagement device C2 is the second It is controlled by the hydraulic pressure supplied to the second oil chamber 112 on the servo oil chamber 118 side or the hydraulic pressure supplied to the second oil chamber 112 other than the second servo oil chamber 118.
  • the first hydraulic control valve 104 receives the oil of the first line pressure 131 controlled by the first line pressure control valve 130 and supplies the oil of the first oil chamber hydraulic pressure 103 to the first oil pressure.
  • the second oil pressure control valve 114 is supplied to the first oil chamber 102, and receives the oil of the second oil pressure 113 controlled by the second line pressure control valve 140.
  • the case where the oil chamber 112 is supplied has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, the first hydraulic control valve 104 may be configured to receive the supply of the oil of the second line pressure 141 and supply the oil of the first oil chamber hydraulic pressure 103 to the first oil chamber 102.
  • the second hydraulic control valve 114 is configured to receive the supply of the oil of the second line pressure 141 or the first line pressure 131 and supply the oil of the second oil chamber oil pressure 113 to the second oil chamber 112. May be.
  • the first hydraulic control valve 104 is configured to receive the supply of the oil of the first line pressure 131 and supply the oil of the first oil chamber oil pressure 103 to the first oil chamber 102
  • the two hydraulic control valve 114 may be configured to receive the supply of the oil of the first line pressure 131 and supply the oil of the second oil chamber oil pressure 113 to the second oil chamber 112.
  • the transmission TM is a stepped automatic transmission
  • the embodiment of the present invention is not limited to this. That is, when the transmission apparatus TM is a transmission apparatus other than the stepped automatic transmission apparatus, such as a continuously variable automatic transmission apparatus capable of continuously changing the transmission gear ratio, one preferred embodiment of the present invention. One.
  • the driving device 1 is described as an example in which the first throttle unit 120 as the throttle unit that throttles the flow rate is provided in the oil discharge passage for the oil discharged from the first oil chamber 102. did.
  • the embodiment of the present invention is not limited to this. That is, the drive device 1 may be configured not to include a throttle portion that restricts the flow rate in the oil discharge oil passage discharged from the first oil chamber 102, or a place other than the discharge oil passage, for example,
  • the first oil chamber 102 or the supply oil passage of the first oil chamber 102 may be provided with a throttle portion for reducing the flow rate.
  • the first engagement device C1 biases the first piston 106 with a predetermined initial engagement load so as to press the first friction member 101 toward the engagement side.
  • the case where the biasing mechanism 107 is provided has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, the first engagement device C1 may include a first biasing mechanism 107 that biases the first piston 106 with a predetermined initial engagement load so as to press the first friction member 101 toward the release side. Good.
  • the first hydraulic control valve 104 generates a back pressure in the first oil chamber 102 that presses the first piston 106 toward the disengagement side with a load larger than the initial engagement load.
  • the case where the first oil chamber oil pressure 103 is controlled has been described as an example. However, the embodiment of the present invention is not limited to this. In other words, the first hydraulic control valve 104 generates the first oil chamber hydraulic pressure 103 so as to generate a back pressure in the first oil chamber 102 that presses the first piston 106 toward the disengagement side with a load smaller than the initial engagement load. May be controlled.
  • the present invention includes an input member that is drivingly connected to a rotating electrical machine, an output member that is drivingly connected to a wheel, a first engagement device that selectively drives and connects the input member to an internal combustion engine, the input member, and the
  • the present invention can be suitably used for a vehicle drive device including a fluid coupling provided in a power transmission path that connects the output member.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 第一係合装置の作動と、第二係合装置の作動と、が重なる場合でも、第一係合装置の油圧と、第二係合装置の油圧とが、互いに干渉することを抑制する。 回転電機を内燃機関に選択的に駆動連結する第一係合装置と、流体継手と、を備えた車両用駆動装置であって、第一係合装置は、第一摩擦部材と、第一ピストンと、第一摩擦部材が収容されるとともに、第一ピストンの背圧を作用させるように形成された第一油室と、を備え、流体継手は、本体部収容室に、継手入力側部材と継手出力側部材とを直結する第二係合装置の係合状態を制御するための第二油室を備え、第一油室油圧を制御する第一油圧制御弁と、これとは独立して第二油室油圧を制御する第二油圧制御弁と、を備える。

Description

車両用駆動装置
 本発明は、回転電機に駆動連結される入力部材と、車輪に駆動連結される出力部材と、前記入力部材を内燃機関に選択的に駆動連結する第一係合装置と、前記入力部材と前記出力部材とを結ぶ動力伝達経路に設けられた流体継手と、を備えた車両用駆動装置に関する。
 内燃機関及び回転電機を駆動力源として備えるハイブリッド車両用の車両用駆動装置として、例えば、下記の特許文献1、2に記載された装置が既に知られている。特許文献1、2に記載されたハイブリッド車両の車両用駆動装置には、内燃機関を動力伝達機構に選択的に駆動連結する第一係合装置が備えられている。そして、回転電機のみの駆動力で車両を駆動できるように、第一係合装置に供給する油圧を制御することにより係合装置を解放して、内燃機関を動力伝達機構から分離できるように構成されている。すなわち、特許文献1、2の技術では、ハイブリッド車両化に伴い、内燃機関と動力伝達系とを油圧制御により選択的に駆動連結することができる第一係合装置が設けられている。
 しかしながら、特許文献1の技術には、第一係合装置の摩擦部材に対する油の供給について開示されていない。このため、特許文献1の技術は、第一係合装置の摩擦部材に油を供給して冷却することに対応し得ない。
 特許文献2の技術では、第一係合装置の摩擦部材に油を供給するために、流体継手のカバー内に、流体継手の継手入力側部材と継手出力側部材とを直結(ロックアップ)する第二係合装置に加えて、第一係合装置を収容している。詳細には、流体継手のカバー内に、流体継手の本体部を収容する本体部収容室と、第一係合装置の摩擦部材が収容されると共に第一係合装置のピストンにおける作動油の油圧が作用する側とは反対側に油圧を作用させるように形成された差圧形成室とが、連通(共用)して備えられている。また、本体部収容室と差圧形成室とが連通して備えられる場合には、通常、これらに油圧を供給する油圧供給系統も共用されると考えられる。
 ここで、流体継手の第二係合装置は、少なくとも本体部収容室へ供給される油圧によりその係合状態が制御される。第一係合装置は、第一係合装置の作動油の油圧と、差圧形成室に供給される油圧と、の差圧により、その係合状態が制御される。このとき、第一及び第二係合装置の制御にはそれぞれ独自の狙いがあり、その狙いに適合するように第一及び第二係合装置のそれぞれが制御される。
 しかしながら、特許文献2の技術では、本体部収容室と差圧形成室とが連通(共用)されているため、第一及び第二係合装置の一方の制御中には、一方の油室内に生じる油圧変動や、一方の油圧供給系統の作動が、他方に影響し、他方又は双方の制御性が悪化する恐れがある。また、双方の制御が同時に行なわれる場合には、各油室内に生じる油圧変動や、各油圧供給系統の作動が、互いに干渉し、双方の制御性が悪化する恐れがある。
特開2006-137406号公報 特開2010-105450号公報
 そこで、内燃機関を動力伝達機構に選択的に駆動連結する第一係合装置の油圧と、流体継手を直結する第二係合装置の油圧とが、互いに干渉することを抑制し、双方の制御性を向上できる車両用駆動装置が求められる。
 本発明に係る、回転電機に駆動連結される入力部材と、車輪に駆動連結される出力部材と、前記入力部材を内燃機関に選択的に駆動連結する第一係合装置と、前記入力部材と前記出力部材とを結ぶ動力伝達経路に設けられた流体継手と、を備えた車両用駆動装置の特徴構成は、前記第一係合装置は、第一摩擦部材と、当該第一摩擦部材を押圧する第一ピストンと、前記第一摩擦部材が収容されるとともに、油圧が供給されて前記第一ピストンにおける作動用の油圧が作用する側とは反対側に油圧を作用させるように形成された第一油室と、を備え、前記流体継手は、当該流体継手の本体部を収容する本体部収容室に、前記入力部材側に駆動連結される継手入力側部材と前記出力部材側に駆動連結される継手出力側部材とを直結する第二係合装置の係合状態を油圧により制御するための第二油室を備え、
 前記第一油室に供給する油圧である第一油室油圧を制御する第一油圧制御弁と、前記第二油室に供給する油圧である第二油室油圧を前記第一油室油圧とは独立して制御する第二油圧制御弁と、を備える点にある。
 なお、本願において「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。
 また、本願において「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が一又は二以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む概念として用いている。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材が含まれ、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。また、このような伝動部材として、回転及び駆動力を選択的に伝達する係合要素、例えば摩擦クラッチや噛み合い式クラッチ等が含まれていてもよい。
 なお、本願において「流体継手」は、トルク増幅機能を有するトルクコンバータ、及びトルク増幅機能を有さない通常の流体継手のいずれをも含む概念として用いている。
 上記の特徴構成によれば、第一係合装置の第一油室と、第二係合装置の第二油室と、を個別に備えると共に、第一油室に供給する第一油室油圧を制御する第一油圧制御弁と、第二油室に供給する第二油室油圧を第一油室油圧とは独立して制御する第二油圧制御弁と、を備えている。すなわち、第一油圧制御弁及び当該第一油圧制御弁から第一油室までの油路を含む第一油室への油圧供給系統と、第二油圧制御弁及び当該第二油圧制御弁から第二油室までの油路を含む第二油室への油圧供給系統と、が独立して備えられている。よって、第一係合装置及び第二係合装置の何れか一方の制御中においても、一方の油室内に生じる油圧変動や、一方の油圧供給系統の作動が、他方に影響し、他方又は双方の制御性が悪化することを抑制できる。また、第一係合装置及び第二係合装置の双方の制御が重なる場合でも、各油室内に生じる油圧変動や、各油圧供給系統の作動が、互いに干渉し、双方の制御性が悪化することを抑制できる。従って、第一油室、及び第二油室への油圧供給の制御精度を向上させることができ、第一係合装置及び第二係合装置の係合状態の制御精度を向上させることができる。そして、第一係合装置を係合又は解放させる際に、車輪に伝達されるトルクの変動を抑制することができる。
 また、第一油圧供給系統と、第二油圧供給系統とが独立して備えられているので、第一係合装置及び第二係合装置の一方又は双方の制御中においても、相互干渉により、第一油室内に供給される油量が変動することを抑制することができ、第一油室内に備えられた第一摩擦部材の冷却性能の変動を抑制できる。
 ここで、前記第一油圧制御弁から前記第一油室へ供給された油圧を、当該第一油室から排出するための排出油路に、流量を絞る絞り部を備える構成とすると好適である。
 この構成のように、第一油室の排出口側に、絞り部を備えているので、絞り部の上流側に位置する第一油室及び第一油圧制御弁から第一油室までの供給油路内の油圧を均一化することが容易になり、第一油室内の油圧の制御精度を向上させることができる。よって、第一係合装置の係合状態の制御精度を向上させることができる。また、第一油室の排出口側に、絞り部を備えているので、絞り部の絞り量を調節することにより、第一油室内を流れる油の流量を調節することができる。よって、第一油室内に収容された第一摩擦部材の冷却を適切にすることが容易になる。
 ここで、前記第一係合装置は、前記第一ピストンが前記第一摩擦部材を係合側に押圧するように所定の初期係合荷重で前記第一ピストンを付勢する付勢機構を備え、前記第一油圧制御弁は、前記初期係合荷重より大きい荷重で前記第一ピストンを係合解除側に押圧する油圧を前記第一油室に発生させるように、前記第一油室油圧を制御する構成とすると好適である。
 この構成のように、ピストンが第一摩擦部材を係合側に押圧するように所定の初期係合荷重でピストンを付勢する付勢機構が備えられているので、第一係合装置の解放状態で回転電機や回転電機の駆動回路等が故障して、回転電機による油圧ポンプの駆動ができなくなった場合でも、内燃機関を始動すれば、第一付勢機構の押圧力により第一係合装置を介して内燃機関のトルクを油圧ポンプに伝達して油圧を発生させ、第一係合装置を係合状態にすることができる。よって、回転電機が動かない場合でも、内燃機関の駆動力を車輪側に伝達して、車輪を駆動することができる。
 また、上記の構成ように、第一油圧制御弁が、前記初期係合荷重より大きい荷重でピストンを係合解除側に押圧する油圧を第一油室に発生させるように、第一油室油圧を制御するので、どこも故障していない通常状態では、第一油圧制御弁により発生された第一油室油圧により、付勢機構の押圧力による第一係合装置の係合を解除することができる。よって、回転電機による車輪の駆動時(電動走行時)に、付勢機構の押圧力により第一係合装置を介して内燃機関に回転電機のトルクが伝達されることを抑制でき、電動走行時のエネルギ効率の悪化を抑制できる。
 ここで、油圧ポンプの出力圧を第一ライン圧として制御する第一ライン圧制御弁と、前記第一ライン圧を更に減圧し、第二ライン圧として制御する第二ライン圧制御弁と、を備え、前記第一油圧制御弁は、前記第一ライン圧制御弁により制御された前記第一ライン圧の油の供給を受けて前記第一油室油圧の油を前記第一油室に供給し、前記第二油圧制御弁は、前記第二ライン圧制御弁により制御された前記第二ライン圧の油の供給を受けて前記第二油室油圧の油を前記第二油室に供給する構成とすると好適である。
 油圧ポンプの出力圧である第一ライン圧は、油圧ポンプの駆動を開始した後、速やかに立ち上がる。一方、第一ライン圧を減圧して生成される第二ライン圧は、油圧ポンプの駆動開始後、第一ライン圧より遅れて立ち上がる。上記の構成のように、油圧ポンプの出力圧である第一ライン圧が、第一油圧制御弁に供給されるので、油圧ポンプの駆動開始後、速やかに、第一油圧制御弁により制御される第一油室油圧を立ち上げることができ、第一油室内に供給することができる。よって、油圧ポンプの駆動開始後、速やかに、第一ピストンにおける作動用の油圧が作用する側とは反対側に作用する油圧を生成し、第一係合装置の作動精度を確保することができると共に、第一油室内に収容された第一摩擦部材の冷却性能を確保することができる。また、上記のように、第一摩擦部材を係合側に押圧する付勢機構が備えられている場合は、油圧ポンプの駆動開始後、速やかに、付勢機構の押圧力による第一係合装置の係合を解除できる。
 一方、第二ライン圧は、第一ライン圧を更に減圧して制御されるので、油圧ポンプの吐出による圧力脈動の影響を受け易い第一ライン圧よりも、当該圧力脈動の影響を受けにくく、圧力が安定している。上記の構成のように、第一ライン圧を更に減圧して生成された第二ライン圧が、第二油圧制御弁に供給されるので、第一ライン圧より安定している第二ライン圧を用いて、安定した第二油室油圧を生成することができる。よって、第二係合装置の作動精度を安定させることができる。
 特に、第二係合装置に、第二摩擦部材を解放側に押圧する付勢機構が備えられている場合は、第一係合装置のように、油圧ポンプの駆動開始後、速やかに、付勢機構による第二係合装置の係合を解除する必要がないため、第二ライン圧を用いても、油圧ポンプの駆動開始後、第二係合装置を安定して作動させることができる。
 ここで、前記第二係合装置は、第二摩擦部材と、当該第二摩擦部材を押圧する第二ピストンとを備え、前記第二油室は、その中に前記第二摩擦部材及び前記流体継手の前記継手入力側部材及び前記継手出力側部材が収容されるとともに、油圧が供給されて前記第二ピストンにおける作動用の油圧が作用する側とは反対側に油圧を作用させるように形成されていると好適である。
 この構成によれば、第一係合装置の場合と同様に、第二係合装置の第二ピストンにおける作動用の油圧が作用する側とは反対側に作用する油圧の制御精度を向上させることができ、第二係合装置の係合状態の制御精度を向上させることができる。また、第二油室内に収容された第二摩擦部材の冷却性能の変動を抑制できる。
本発明の実施形態に係る車両用駆動装置の駆動伝達系の概略構成を示す模式図である。 本発明の実施形態に係る車両用駆動装置の油圧制御系の概略構成を示す図である。 本発明の実施形態に係る車両用駆動装置の断面図である。 本発明の実施形態に係る車両用駆動装置の断面図である。
〔第一の実施形態〕
 本発明に係る車両用駆動装置1(以下、駆動装置1と称す)の実施形態について、図面を参照して説明する。図1は、本実施形態に係る駆動装置1の概略構成を示す模式図である。この図に示すように、本実施形態に係る駆動装置1は、概略的には、内燃機関IE及び回転電機MGを駆動力源として備え、これらの駆動力源の駆動力を、動力伝達機構を介して車輪Wへ伝達する構成となっている。駆動装置1は、回転電機MGに駆動連結される入力軸Iと、車輪Wに駆動連結される出力軸Oと、入力軸Iを内燃機関IEに選択的に駆動連結する第一係合装置C1と、入力軸Iと出力軸Oとを結ぶ動力伝達経路に設けられた流体継手としてのトルクコンバータTCと、を備えている。本実施形態では、駆動装置1は、トルクコンバータTCと出力軸Oとの間の動力伝達経路に、変速装置TMを備えている。なお、入力軸Iが、本発明における「入力部材」に相当し、出力軸Oが、本発明における「出力部材」に相当する。
 このような構成において、図2及び図3に示すように、第一係合装置C1は、第一摩擦部材101と、当該第一摩擦部材101を押圧する第一ピストン106と、第一摩擦部材101が収容されるとともに、油圧が供給されて第一ピストン106における作動用の油圧が作用する側とは反対側である背圧側に油圧を作用させるように形成された第一油室102と、を備えている。
 トルクコンバータTCは、当該トルクコンバータTCの本体部を収容する本体部収容室137に、入力軸I側に駆動連結されるポンプインペラ41と出力軸O側に駆動連結されるタービンランナ51とを直結する第二係合装置C2の係合状態を油圧により制御するための第二油室112を備えている。なお、ポンプインペラ41が、本発明における「継手入力側部材」であり、タービンランナ51が、本発明における「継手出力側部材」である。
 そして、駆動装置1は、第一油室102に供給する油圧である第一油室油圧103を制御する第一油圧制御弁104と、第二油室112に供給する油圧である第二油室油圧113を第一油室油圧103とは独立して制御する第二油圧制御弁114と、を備える点に特徴を有している。以下、本実施形態に係る駆動装置1について、詳細に説明する。
1.駆動装置の駆動伝達系の構成
 まず、本実施形態に係る駆動装置1の駆動伝達系の構成について説明する。図1に示すように、駆動装置1は、車両駆動用の駆動力源として内燃機関IE及び回転電機MGを備え、これらの内燃機関IEと回転電機MGとが直列に駆動連結されるパラレル方式のハイブリッド車両用の駆動装置1となっている。本実施形態では、駆動装置1は、動力伝達機構として、トルクコンバータTCと変速装置TMとを備えており、当該トルクコンバータTC及び変速装置TMにより、駆動力源としての内燃機関IE及び回転電機MGの回転速度を変速すると共にトルクを変換して出力軸Oに伝達する。本実施形態に係わる駆動装置1では、内燃機関IEと回転電機MGとトルクコンバータTCと変速装置TMとが同軸上に配置されていると共に、内燃機関IE側から軸方向に沿って出力軸Oへ向かって回転電機MG、トルクコンバータTC、変速装置TMの順に配列されている。また、内燃機関連結軸EC、入力軸I、中間軸M、及び出力軸Oも、これと同軸上に配置されている。ここでは、これらの同軸上に配置された駆動装置1の各部材の軸心を装置軸心X1とする。また、実施形態の説明において、単に軸方向、径方向、周方向という場合には、この装置軸心X1を基準とした方向を指すものとする。
 内燃機関IEは、燃料の燃焼により動力を出力する原動機であり、例えば、ガソリンエンジンやディーゼルエンジンなどの公知の各種内燃機関を用いることができる。本例では、内燃機関IEのクランクシャフト等の出力回転軸が、内燃機関連結軸EC及び第一係合装置C1を介して入力軸Iに駆動連結される。これにより、第一係合装置C1は、入力軸Iを内燃機関IEに選択的に駆動連結する。この第一係合装置C1は、第一サーボ油圧制御弁109から供給される作動用の油圧により、係合又は解放する摩擦係合要素である(図2参照)。このような摩擦係合要素としては、例えば湿式多板クラッチや湿式多板ブレーキ等が好適に用いられる。なお、内燃機関IEの出力回転軸が、内燃機関連結軸ECと一体的に駆動連結され、或いはダンパ等の他の部材を介して駆動連結された構成としても好適である。
 回転電機MGは、ケース3に固定されたステータStと、このステータStの径方向内側に回転自在に支持されたロータRoと、を有している。この回転電機MGのロータRoは、入力軸Iと一体回転するように駆動連結されている。すなわち、本実施形態においては、入力軸Iに内燃機関IE及び回転電機MGの双方が駆動連結される構成となっている。回転電機MGは、蓄電装置としてのバッテリ(不図示)に電気的に接続されている。そして、回転電機MGは、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能と、を果たすことが可能とされている。すなわち、回転電機MGは、バッテリからの電力供給を受けて力行し、或いは内燃機関IEや車輪から伝達される回転駆動力により発電した電力をバッテリに蓄電する。なお、バッテリは蓄電装置の一例であり、キャパシタなどの他の蓄電装置を用い、或いは複数種類の蓄電装置を併用することも可能である。
 本実施形態では、入力軸Iと出力軸Oとを結ぶ動力伝達経路に、トルクコンバータTCが備えられている。トルクコンバータTCは、駆動力源としての内燃機関IE及び回転電機MGの回転駆動力を、出力軸O側に伝達する装置である。このトルクコンバータTCは、回転電機MG(入力軸I)に駆動連結された継手入力側部材としてのポンプインペラ41と、変速装置TM(中間軸M)に駆動連結された継手出力側部材としてのタービンランナ51と、これらの間に設けられ、ワンウェイクラッチ57を備えたステータ56と、を備えている。そして、トルクコンバータTCは、内部に充填された油を介して、駆動側のポンプインペラ41と従動側のタービンランナ51との間で駆動力の伝達を行う。
 トルクコンバータTCは、ロックアップ用の摩擦係合要素として、第二係合装置C2を備えている。この第二係合装置C2は、ポンプインペラ41とタービンランナ51との間の回転速度差(滑り)を無くして伝達効率を高めるために、ポンプインペラ41とタービンランナ51とを一体回転させるように連結するクラッチである。従って、トルクコンバータTCは、第二係合装置C2が係合されている場合は、内部の油(流体)を介さずに、駆動力源の駆動力を直接、変速装置TM(中間軸M)に伝達する。本実施形態では、第二係合装置C2は、第二サーボ油圧制御弁119から供給される作動用の油圧により、係合又は解放される。
 また、駆動装置1は、トルクコンバータTCのポンプインペラ41側に駆動連結された油圧ポンプOPを備えている。油圧ポンプOPは、駆動力源から伝達された回転駆動力により駆動されて、油貯留部OTに貯留された油を吸引して油圧を生じさせ、油圧制御装置に供給する(図2参照)。
 トルクコンバータTCの出力軸としての中間軸Mには、変速装置TMが駆動連結されている。本実施形態では、変速装置TMは、変速比の異なる複数の変速段を有する有段の自動変速装置である。変速装置TMは、これら複数の変速段を形成するため、遊星歯車機構等の歯車機構と複数の摩擦係合要素とを備えている。本例では、複数の摩擦係合要素は、それぞれ摩擦材を有して構成されるクラッチやブレーキ等の係合要素である。これらの複数の摩擦係合要素のそれぞれには、変速装置TM用の油圧制御装置により調圧された油が供給されて、係合又は解放される。このような摩擦係合要素としては、例えば湿式多板クラッチや湿式多板ブレーキ等が好適に用いられる。変速装置TMから出力軸Oへ伝達されたトルクは、出力用差動歯車機構DFを介して左右二つの車輪Wに分配されて伝達される。
2.油圧制御系
 次に、第一係合装置C1及び第二係合装置C2に係わる油圧制御系の構成について図2を参照して説明する。
 上記したように、第一係合装置C1は、第一ピストン106を含む第一油圧サーボ機構100と、第一摩擦部材101と、当該第一摩擦部材101を押圧する第一ピストン106と、第一摩擦部材101が収容されるとともに、油圧が供給されて第一ピストン106における作動用の油圧が作用する側とは反対側である背圧側に油圧を作用させるように形成された第一油室102と、を備えている。
 トルクコンバータTCは、当該トルクコンバータTCの本体部を収容する本体部収容室137に、入力軸I側に駆動連結されるポンプインペラ41と出力軸O側に駆動連結されるタービンランナ51とを直結する第二係合装置C2の係合状態を油圧により制御するための第二油室112を備えている。
 本実施形態では、トルクコンバータTCは、図2に示すように、第二係合装置C2を含んで構成されており、この第二係合装置C2は、第二ピストン116を含む第二油圧サーボ機構110と、第二摩擦部材111と、当該第二摩擦部材111を押圧する第二ピストン116と、を備えている。また、第二油室112には、第二係合装置C2の第二摩擦部材111及びトルクコンバータTCのポンプインペラ41及びタービンランナ51が収容されるとともに、油圧が供給されて第二ピストン116における作動用の油圧が作用する側とは反対側である背圧側に油圧を作用させるように形成されている。
 そして、駆動装置1は、第一サーボ油圧制御弁109及び第二サーボ油圧制御弁119を備えている。また、駆動装置1は、第一油室102に供給する油圧である第一油室油圧103を制御する第一油圧制御弁104と、第二油室112に供給する油圧である第二油室油圧113を第一油室油圧103とは独立して制御する第二油圧制御弁114と、を備えている。
 ここで、第一ピストン106における作動用の油圧が作用する側とは、第一ピストン106における第一サーボ油室108側を指し、第一ピストン106における作動用の油圧が作用する側とは反対側(背圧側)とは、第一ピストン106における第一油室102側を指す。なお、以下の説明では、第一ピストン106における作動用の油圧が作用する側とは反対側(背圧側)に作用する油圧を、第一ピストン106の背圧、或いは第一油圧サーボ機構100の背圧と称する。第一油圧サーボ機構100は、第一ピストン106、第一シリンダ105、及び第一シリンダ105と第一ピストン106とに囲まれた第一サーボ油室108により構成されている。
 同様に、第二ピストン116における作動用の油圧が作用する側とは、第二ピストン116における第二サーボ油室118側を指し、第二ピストン116における作動用の油圧が作用する側とは反対側(背圧側)とは、第二ピストン116における第二油室112側を指す。なお、以下の説明では、第二ピストン116における作動用の油圧が作用する側とは反対側(背圧側)に作用する油圧を、第二ピストン116の背圧、或いは第二油圧サーボ機構110の背圧と称する。第二油圧サーボ機構110は、第二ピストン116、第二シリンダ115、及び第二シリンダ115と第二ピストン116とに囲まれた第二サーボ油室118により構成されている。
 なお、本実施形態では、本体部収容室137は、トルクコンバータTCの本体部として、少なくとも、ポンプインペラ41、タービンランナ51、及びステータ56を収容するように形成されている。また、第二油室112は、トルクコンバータTCのカバー部材内に、本体部収容室137と連通して一体的に形成されている。以下では、本体部収容室137と第二油室112とをまとめて単に第二油室112と称する。
 本実施形態に係わるハイブリッド車両用の駆動装置1では、内燃機関IEを動力伝達機構に選択的に駆動連結する第一係合装置C1が備えられている。そして、回転電機MGのみの駆動力で車両を駆動する場合は、第一係合装置C1に供給する油圧を制御することにより、第一係合装置C1を解放して、内燃機関IEを動力伝達機構から分離できるように構成されている。一方、内燃機関IEの駆動力を用いて車両を駆動する場合は、第一係合装置C1に供給する油圧を制御することにより、第一係合装置C1を係合して、内燃機関IEを動力伝達機構に駆動連結するように構成されている。
 この第一係合装置C1を係合する際に、トルクショックが生じ車輪Wに伝達される恐れがある。これを抑制するため、トルクコンバータTCの第二係合装置C2が係合されており、ポンプインペラ41とタービンランナ51とが直結されている場合は、第一係合装置C1を係合する際に、第二係合装置C2を解放状態又は滑り係合状態に制御する。これにより、第一係合装置C1で生じたトルクショックが、トルクコンバータTCより車輪W側に伝達されることを抑制できる。また、第一係合装置C1を解放する際にも、トルクショックが生じる恐れがあり、同様に第二係合装置C2を解放状態又は滑り係合状態に制御する。従って、第一係合装置C1に供給される油圧を制御する場合に、同時期に第二係合装置C2に供給される油圧を制御する場合が生じる。この場合、車輪Wに伝達されるトルクの変動を抑制するために、第一係合装置C1及び第二係合装置C2に供給される油圧の制御精度を向上することが課題となる。
 本実施形態では、後述するように、第一係合装置C1の第一油圧サーボ機構100(第一ピストン106)の背圧を生成する第一油室102と、第二係合装置C2の第二油圧サーボ機構110(第二ピストン116)の背圧を生成する第二油室112と、が互いに独立して備えられている。よって、第一係合装置C1の第一油圧サーボ機構100と、第二係合装置C2の第二油圧サーボ機構110と、が同時期に作動される場合でも、第一油圧サーボ機構100の作動により生じた第一油室102内の油圧変動と、第二油圧サーボ機構110の作動により生じた第二油室112内の油圧変動と、が互いに干渉することを防止できる。従って、第一油圧サーボ機構100の背圧、及び第二油圧サーボ機構110の背圧の制御精度を向上させることができ、第一係合装置C1及び第二係合装置C2の係合又は解放の制御精度を向上させることができる。
 また、本実施形態では、上記のように、第一油室102に供給する第一油室油圧103を制御する第一油圧制御弁104と、第二油室112に供給する第二油室油圧113を第一油室油圧103とは独立して制御する第二油圧制御弁114と、が備えられている。すなわち、第一油圧制御弁104及び当該第一油圧制御弁104から第一油室102までの油路を含む第一油室102への油圧供給系統(第一油圧供給系統)と、第二油圧制御弁114及び当該第二油圧制御弁114から第二油室112までの油路を含む第二油室112への油圧供給系統(第二油圧供給系統)と、が独立して備えられている。よって、第一係合装置C1の第一油圧サーボ機構100と、第二係合装置C2の第二油圧サーボ機構110と、が同時期に作動される場合に、第一油室102又は第二油室112内の油圧変動や、第一油圧供給系統又は第二油圧供給系統の作動が、互いに干渉することを抑制できる。従って、第一油圧サーボ機構100の背圧、及び第二油圧サーボ機構110の背圧の制御精度を向上させることができ、第一係合装置C1及び第二係合装置C2の係合状態の制御精度を向上させることができる。そして、第一係合装置C1を係合又は解放させる際に、車輪Wに伝達されるトルクの変動を抑制することができる。
 本実施形態では、駆動装置1は、第一油圧制御弁104から第一油室102へ供給された油圧を、当該第一油室102から排出するための排出油路に、流量を絞る絞り部としての第一絞り部120を備える。なお、第一絞り部120が、本発明における「絞り部」である。
 このように、第一油室102の排出口側に、第一絞り部120を備えているので、第一絞り部120の上流側に位置する第一油室102及び第一油圧制御弁104から第一油室102までの供給油路内の油圧を均一化することが容易になる。よって、第一油室102内の油圧の制御精度を向上させることができ、第一係合装置C1の係合状態の制御精度を向上させることができる。また、第一油室102の排出口側に、第一絞り部120を備えているので、第一絞り部120の絞り量を調節することにより、第一油室102内を流れる油の流量を調節することができる。よって、第一油室102内に収容された第一摩擦部材101の冷却を適切にすることが容易になる。
 また、本実施形態では、第一ピストン106が第一摩擦部材101を係合側に押圧するように所定の初期係合荷重で第一ピストン106を付勢する第一付勢機構107を備えている。そして、第一油圧制御弁104は、前記初期係合荷重より大きい荷重で第一ピストン106を係合解除側に押圧する背圧を第一油室102に発生させるように、第一油室油圧103を制御する。なお、第一付勢機構107が、本発明における「付勢機構」である。
 このように、第一ピストン106が第一摩擦部材101を係合側に押圧するように所定の初期係合荷重で第一ピストン106を付勢する第一付勢機構107が備えられているので、第一係合装置C1の解放状態で回転電機MGや回転電機MGの駆動回路等が故障して、回転電機MGによる油圧ポンプOPの駆動ができなくなった場合でも、スタータにより内燃機関IEを始動すれば、第一付勢機構107の押圧力により第一係合装置C1を介して内燃機関IEのトルクを油圧ポンプOPに伝達して油圧を発生させ、第一係合装置C1を係合状態にすることができる。よって、回転電機MGが動かない場合でも、内燃機関IEの駆動力を車輪W側に伝達して、車輪Wを駆動することができる。
 また、本実施形態では、上記のように、第一油圧制御弁104が、前記初期係合荷重より大きい荷重で第一ピストン106を係合解除側に押圧する油圧を第一油室102に発生させるように、第一油室油圧103を制御するので、どこも故障していない通常状態では、第一油圧制御弁104により発生された第一油室油圧103により、第一付勢機構107の押圧力による第一係合装置C1の係合を解除することができる。よって、回転電機MGによる車輪Wの駆動時(電動走行時)に、第一付勢機構107の押圧力により第一係合装置C1を介して内燃機関IEに回転電機MGのトルクが伝達されることを抑制でき、電動走行時のエネルギ効率の悪化を抑制できる。
 また、本実施形態では、駆動装置1は、油圧ポンプOPの出力圧を第一ライン圧131として制御する第一ライン圧制御弁130と、第一ライン圧131を更に減圧し、第二ライン圧141として制御する第二ライン圧制御弁140と、を備えている。そして、第一油圧制御弁104は、第一ライン圧制御弁130により制御された第一ライン圧131の油の供給を受けて第一油室油圧103の油を第一油室102に供給する。第二油圧制御弁114は、第二ライン圧制御弁140により制御された第二ライン圧141の油の供給を受けて第二油室油圧113の油を第二油室112に供給する。
 油圧ポンプOPの出力圧である第一ライン圧131は、駆動装置1を起動するためなどに、油圧ポンプOPの駆動を開始した後、速やかに立ち上がる。一方、第一ライン圧131を減圧して生成させる第二ライン圧141は、油圧ポンプOPの駆動開始後、第一ライン圧131より遅れて立ち上がる。本実施形態では、上記のように、油圧ポンプOPの出力圧である第一ライン圧131が、第一油圧制御弁104に供給されるので、油圧ポンプOPの駆動開始後、速やかに、第一油圧制御弁104により制御される第一油室油圧103が立ち上がり、第一油室102内に供給することができる。よって、油圧ポンプOPの駆動開始後、速やかに、第一油圧サーボ機構100(第一ピストン106)の背圧を生成し、第一係合装置C1の作動精度を確保することができると共に、第一付勢機構107の押圧力による第一係合装置C1の係合を解除できる。また、第一油室102内に収容された第一摩擦部材101の冷却性能を確保することができる。
 一方、第二ライン圧141は、第一ライン圧131を更に減圧した油圧であるため、油圧ポンプOPの吐出による圧力脈動の影響を受け易い第一ライン圧131よりも、当該圧力脈動の影響を受けにくく、圧力が安定している。本実施形態では、上記のように、第一ライン圧131を更に減圧して生成された第二ライン圧141が、第二油圧制御弁114に供給されるので、第一ライン圧131より安定している第二ライン圧141を用いて、安定した第二油室油圧113を生成することができる。よって、第二係合装置C2の作動精度を安定させることができる。
 特に、第二係合装置C2に、第二摩擦部材111を解放側に押圧する第二付勢機構117が備えられている場合は、第一係合装置C1のように、油圧ポンプOPの駆動開始後に付勢機構による第二係合装置C2の係合を解除する必要がないため、第二ライン圧141を用いても、油圧ポンプOPの駆動開始後、第二係合装置C2を安定して作動させることができる。
2-1.第一ライン圧制御弁の詳細構成
 次に、図2に示す油圧制御系の各構成の詳細について説明する。
 本実施形態では、油圧ポンプOPの出力圧を第一ライン圧131として制御(調圧)する第一ライン圧制御弁130として、スプール130p及び当該スプール130pを付勢するばね130s等からなる調圧弁の一種であるプレッシャーレギュレータバルブが用いられている。すなわち、第一ライン圧制御弁130は、基準圧室130aに供給された基準圧136及びばね130sによりスプール130pを第一方向(図2における下向き)に押圧する押圧力と、フィードバック圧室130bに供給された第一ライン圧131によりスプール130pを第二方向(図2における上向き)に押圧する押圧力と、のバランスにより、油圧ポンプOPから吐出された油のドレイン量を調節することにより、第一ライン圧131を調圧する。具体的には、第一ライン圧131による第二方向側への押圧力が、基準圧136及びばね130sによる第一方向側への押圧力を上回った場合に、スプール130pが第二方向側へ移動して、第一ライン圧131が供給されている調圧ポート130cと排出ポート130dとの連通開口量が大きくなり、油圧ポンプOPから吐出された油を排出ポート130dからドレインする量が増加し、第一ライン圧131が低下する。逆に、第一ライン圧131による第二方向側への押圧力が、基準圧136及びばね130sによる第一方向側への押圧力を下回った場合に、スプール130pが第一方向側へ移動して、調圧ポート130cと排出ポート130dとの連通開口量が小さくなり、排出ポート130dからのドレイン量が減少し、第一ライン圧131が上昇する。よって、第一ライン圧制御弁130は、第一ライン圧131による第二方向側への押圧力と、基準圧136及びばね130sによる第一方向側への押圧力と、がバランスするように、スプール130pが移動して排出ポート130dへの連通開口量を増減することにより、フィードバック的に第一ライン圧131を調圧する。図2に示す油圧制御系では、第一ライン圧131の油は、第一係合装置C1に供給する油圧を制御する第一油圧制御弁104及び第一サーボ油圧制御弁109等に送られる。また、排出ポート130dからドレインされた油は、油貯留部OT又は油圧ポンプOPの吸入口に送られる。
 基準圧室130aに供給される基準圧136は、基準圧制御弁135により制御(調圧)される。本実施形態では、基準圧制御弁135として、ソレノイドと調圧弁(減圧弁)との機能を合わせ持った油圧制御弁であるリニアソレノイド弁が用いられている。基準圧制御弁135は、ソレノイドの駆動力に応じて、油圧ポンプOPから供給された油圧の減圧量を制御して、基準圧136を生成する。
2-2.第二ライン圧制御弁の詳細構成
 本実施形態では、基準圧制御弁135により制御(調圧)された基準圧136は、第二ライン圧制御弁140にも供給される。第二ライン圧制御弁140として、第一ライン圧制御弁130と同様に、スプール140p及び当該スプール140pを付勢するばね140s等からなる調圧弁の一種であるプレッシャーレギュレータバルブが用いられる。すなわち、第二ライン圧制御弁140は、第一ライン圧制御弁130と同様に、基準圧室140aに供給された基準圧136及びばね140sによりスプール140pを第二方向(図2における上向き)に押圧する押圧力と、フィードバック圧室140bに供給された第二ライン圧141によりスプール140pを第一方向(図2における下向き)に押圧する押圧力と、のバランスにより、第一ライン圧制御弁130の出力ポート130eから供給された油のドレイン量を調節することにより、第一ライン圧131を更に減圧して第二ライン圧141を調圧する。図2に示す油圧制御系では、第二ライン圧141の油は、第二係合装置C2に供給する油圧を制御する第二油圧制御弁114及び第二サーボ油圧制御弁119等に送られる。また、排出ポート140dからドレインされた油は、油貯留部OT又は油圧ポンプOPの吸入口に送られる。
2-3.第一油圧制御弁の詳細構成
 本実施形態では、第一ライン圧制御弁130により制御(調圧)された第一ライン圧131は、第一油圧制御弁104に供給される。本例では、第一油圧制御弁104として、スプール104p及び当該スプール104pを付勢するばね104s等から構成され、元圧からの油路の開閉とドレインへの油路の開閉とを同時に行うタイプの調圧弁(減圧弁)が用いられる。すなわち、第一油圧制御弁104は、ばね104sによりスプール104pを第二方向(図2における上向き)に押圧する押圧力と、フィードバック圧室104bに供給された第一油室油圧103によりスプール104pを第一方向(図2における下向き)に押圧する押圧力と、のバランスにより、第一ライン圧131の油の供給量及び第一油室油圧103の油のドレイン量を調節することにより、第一ライン圧131を更に減圧して第一油室油圧103を調圧する。
 具体的には、第一油室油圧103による第一方向側への押圧力が、ばね104sによる第二方向側への押圧力を上回った場合に、スプール104pが第一方向側へ移動して、第一油室油圧103を出力する出力ポート104eと排出ポート104dとの連通開口量が大きくなると共に、出力ポート104eと入力ポート104iとの連通開口量が小さくなる。これにより、第一油室油圧103の油が排出ポート104dからドレインされる油量が増加すると共に、入力ポート104iから出力ポート104eに供給される第一ライン圧131の油量が減少し、第一油室油圧103の変化速度が第一油室油圧103の低下方向に変化する。逆に、第一油室油圧103による第一方向側への押圧力が、ばね104sによる第二方向側への押圧力を下回った場合に、スプール130pが第二方向側へ移動して、出力ポート104eと排出ポート104dとの連通開口量が小さくなると共に、出力ポート104eと入力ポート104iとの連通開口量が大きくなる。これにより、第一油室油圧103の油が排出ポート104dからドレインされる油量が減少すると共に、入力ポート104iから出力ポート104eに供給される第一ライン圧131の油量が増加し、第一油室油圧103の変化速度が第一油室油圧103の増加方向に変化する。
 よって、第一油圧制御弁104は、第一油室油圧103による第一方向側への押圧力と、ばね104sによる第二方向側への押圧力と、がバランスするように、スプール104pが移動して、排出ポート104dへの連通開口量及び入力ポート104iへの連通開口量を増減することにより、フィードバック的に第一油室油圧103を調圧する。そして、第一油圧制御弁104により調圧された第一油室油圧103の油は、第一係合装置C1の第一油室102に送られる。また、排出ポート104dからドレインされた油は、油貯留部OT又は油圧ポンプOPの吸入口に送られる。なお、第一油圧制御弁104として、第二油圧制御弁114のように、ドレインへの油路の開閉のみを行うタイプの調圧弁(減圧弁)が用いられるようにしてもよい。
 また、第一油圧制御弁104は、上記のように、第一付勢機構107による初期係合荷重より大きい荷重で第一ピストン106を係合解除側に押圧する背圧を第一油室102に発生させるように、第一油室油圧103を制御する。第一油室102内の油圧は、各種の変動要因により、第一油圧制御弁104により制御された第一油室油圧103に対して変動する。変動要因には、第一油圧制御弁104から第一油室102までの油路の管路抵抗と、油温、ライン圧、及び部材の回転速度などによる静的要因と、油温、ライン圧、及び部材の回転速度などの変動による動的要因と、油圧制御弁及び管路抵抗などのバラツキによる機械的バラツキと、がある。第一油圧制御弁104は、これらの変動要因により最大限の油圧変動が生じたとしても、第一油室油圧103が、第一付勢機構107による初期係合荷重より大きい荷重で第一ピストン106を係合解除側に押圧する背圧を第一油室102に発生させるように、第一油室油圧103を制御する。本実施形態では、第一油圧制御弁104は、第一油室油圧103が、これらの変動要因による最大限の油圧変動幅を考慮した所定油圧になるように制御するように構成されている。図2に示す例の第一油圧制御弁104では、第一油圧制御弁104のばね104sの荷重、又はフィードバック圧室104bのスプールpの断面積などの設計により、第一油室油圧103が上記の条件を満たすように、調整されている。
2-4.第一油室の詳細構成
 第一油圧制御弁104により調圧された第一油室油圧103の油は、第一油室102に供給される。第一油室102は、第一油圧サーボ機構100の背圧を生成すると共に当該第一係合装置C1の第一摩擦部材101を収容している、油密状の油室である。本実施形態では、第一油圧サーボ機構100は、第一シリンダ105、第一ピストン106、及び第一シリンダ105と第一ピストン106とに囲まれた第一サーボ油室108により構成されている。第一ピストン106の背面が、第一油室102の壁面となっており、第一油室油圧103が、第一ピストン106の背圧となっている。また、第一油室102は、第一油室102の第一供給口122に供給された油が、第一油室102内の所定経路(循環路)を流れて循環し、第一油室102の第一排出口123から排出されるように構成されている。第一油室102の循環路は、第一ピストン106の背面及び第一摩擦部材101に沿って油が流れるように構成されている。この第一油室102に供給された油は、第一油室102内を循環して、第一ピストン106の背圧を生成するとともに、第一摩擦部材101を冷却する。第一油室102内を循環して、第一油室102の第一排出口123から排出された油は、第一絞り部120を介して、油貯留部OT又は油圧ポンプOPの吸入口に送られる。
2-5.第二油圧制御弁の詳細構成
 本実施形態では、第二ライン圧制御弁140により制御(調圧)された第二ライン圧141は、第二絞り部125を介して、第二油圧制御弁114に供給される。この第二絞り部125により、第二油室油圧113側に供給される第二ライン圧141の油量が規制されている。そして、第二油圧制御弁114により、供給された第二ライン圧141の油のドレイン量が調節されて、第二油室油圧113が調圧される。本例では、第二油圧制御弁114として、スプール114p及び当該スプール114pを付勢するばね114s等から構成され、ドレインへの油路の開閉のみを行うタイプの調圧弁(減圧弁)が用いられる。すなわち、第二油圧制御弁114は、ばね114sによりスプール114pを第二方向(図2における上向き)に押圧する押圧力と、入力ポート114aに供給された第二油室油圧113によりスプール114pを第一方向(図2における下向き)に押圧する押圧力と、のバランスにより、油のドレイン量を調節することにより、第二ライン圧141を更に減圧して第二油室油圧113を調圧する。
 具体的には、第二油室油圧113による第一方向側への押圧力が、ばね114sによる第二方向側への押圧力を上回った場合に、スプール114pが第一方向側へ移動して、第二油室油圧113の油が供給される入力ポート114aと排出ポート114bとの連通開口量が大きくなり、第二油室油圧113の油が排出ポート114bからドレインされる油量が増加する。これにより、第二油室油圧113の変化速度が第二油室油圧113の低下方向に変化する。逆に、第二油室油圧113による第一方向側への押圧力が、ばね114sによる第二方向側への押圧力を下回った場合に、スプール114pが第二方向側へ移動して、入力ポート114aと排出ポート114bとの連通開口量が小さくなり、第二油室油圧113の油が排出ポート114bからドレインされる油量が減少する。これにより、第二油室油圧113の変化速度が第二油室油圧113の増加方向に変化する。
 よって、第二油圧制御弁114は、第二油室油圧113による第一方向側への押圧力と、ばね114sによる第二方向側への押圧力と、がバランスするように、スプール114pが移動して、排出ポート114bへの連通開口量を増減することにより、フィードバック的に第二油室油圧113を調圧する。そして、第二油圧制御弁114により調圧された第二油室油圧113の油は、第二係合装置C2の第二油室112に送られる。また、排出ポート114bからドレインされた油は、油貯留部OT又は油圧ポンプOPの吸入口に送られる。なお、第二油圧制御弁114として、第一油圧制御弁104のように、元圧からの油路の開閉とドレインへの油路の開閉とを同時に行うタイプの調圧弁(減圧弁)が用いられるようにしてもよい。
2-6.第二油室の詳細構成
 第二油圧制御弁114により調圧された第二油室油圧113の油は、第二油室112に供給される。第二油室112は、第二油圧サーボ機構110の背圧を生成する油密状の油室である。この第二油室112には、第二係合装置C2の第二摩擦部材111及びトルクコンバータTCのポンプインペラ41及びタービンランナ51が収容されている。本実施形態では、第二油圧サーボ機構110は、第二シリンダ115、第二ピストン116、及び第二シリンダ115と第二ピストン116とに囲まれた第二サーボ油室118により構成されている。第二ピストン116の背面が、第二油室112の壁面となっており、第二油室油圧113が、第二ピストン116の背圧となっている。また、第二油室112は、第二油室112の第二供給口127に供給された油が、第二油室112内の所定経路(循環路)を流れて循環し、第二油室112の第二排出口128から排出されるように構成されている。第二油室112の循環路は、第二ピストン116の背面、第二摩擦部材111、ポンプインペラ41、及びタービンランナ51に沿って油が流れるように構成されている。この第二油室112に供給された油は、第二油室112内を循環して、第二ピストン116の背圧を生成し、第二摩擦部材111を冷却すると共に、ポンプインペラ41及びタービンランナ51の作動油として供給される。第二油室112内を循環して、第二油室112の第二排出口128から排出された油は、油貯留部OT又は油圧ポンプOPの吸入口に送られる。
2-7.第一サーボ油圧制御弁の詳細構成
 本実施形態では、第一ライン圧制御弁130により制御(調圧)された第一ライン圧131は、第一サーボ油圧制御弁109に供給される。第一サーボ油圧制御弁109として、ソレノイドと調圧弁(減圧弁)との機能を合わせ持った油圧制御弁であるリニアソレノイド弁が用いられている。第一ライン圧制御弁130は、ソレノイドの駆動力に応じて、供給された第一ライン圧131の減圧量を制御して、第一サーボ油圧121を生成する。具体的には、第一サーボ油圧制御弁109は、図示はしていないが、ばね及びソレノイドの駆動力によりスプールを押圧する押圧力と、フィードバック圧室109bに供給された第一サーボ油圧121によりスプールを押圧する押圧力と、のバランスにより、入力ポート109iから供給される第一ライン圧131の油の供給量、及び排出ポート109dから排出される第一サーボ油圧121の油のドレイン量を調節することにより、第一ライン圧131を更に減圧して第一サーボ油圧121を調圧する。なお、第一サーボ油圧制御弁109として、ソレノイドの機能と調圧弁(減圧弁)の機能とが分離された、デューティソレノイド弁と調圧弁(減圧弁)とが用いられるようにしてもよい。
 よって、本実施形態では、第一係合装置C1の第一油室102及び第一サーボ油室108に供給される油圧は、第一ライン圧131を減圧して調圧されており、上記したように、油圧ポンプOPの駆動を開始した後、速やかに、第一油室油圧103及び第一サーボ油圧121を立ち上げることができる。よって、油圧ポンプOPの駆動開始後、速やかに、第一油圧サーボ機構100の背圧を生成すると共に、第一サーボ油室108へ供給する油圧を制御することができ、速やかに、第一係合装置C1の作動精度を確保することができる。
 特に、第一係合装置C1に第一摩擦部材101を係合側に押圧する第一付勢機構107が備えられている場合は、油圧ポンプOPの駆動開始後、速やかに、第一油圧サーボ機構100の背圧を立ち上げて、第一付勢機構107による第一係合装置C1の係合を解除することできる。
2-8.第二サーボ油圧制御弁の詳細構成
 本実施形態では、第二ライン圧制御弁140により制御(調圧)された第二ライン圧141は、第二サーボ油圧制御弁119に供給される。第二サーボ油圧制御弁119として、第一サーボ油圧制御弁109と同様に、ソレノイドと調圧弁(減圧弁)との機能を合わせ持った油圧制御弁であるリニアソレノイド弁が用いられている。第二サーボ油圧制御弁119は、ソレノイドの駆動力に応じて、供給された第二ライン圧141の減圧量を制御して、第二サーボ油圧126を生成する。具体的には、第二サーボ油圧制御弁119は、図示はしていないが、ばね及びソレノイドの駆動力によりスプールを押圧する押圧力と、フィードバック圧室119bに供給された第二サーボ油圧126によりスプールを押圧する押圧力と、のバランスにより、入力ポート119iから供給される第二ライン圧141の油の供給量、及び排出ポート119dから排出される第二サーボ油圧126の油のドレイン量を調節することにより、第二ライン圧141を更に減圧して第二サーボ油圧126を調圧する。なお、第二サーボ油圧制御弁119として、ソレノイドの機能と調圧弁(減圧弁)の機能とが分離された、デューティソレノイド弁と調圧弁(減圧弁)とが用いられるようにしてもよい。
 よって、本実施形態では、第二係合装置C2の第二油室112及び第二サーボ油室118に供給される油圧は、第二ライン圧141を減圧して調圧されており、上記したように、第一ライン圧131より安定している第二ライン圧141を用いて、第二油室油圧113及び第二サーボ油圧126を生成することができる。よって、安定して、第二油圧サーボ機構110の背圧を生成すると共に、安定して、第二サーボ油室118へ供給する油圧を制御することができ、第一係合装置C1の作動精度を安定的に確保することができる。
 特に、第二係合装置C2に、第二摩擦部材111を解放側に押圧する第二付勢機構117が備えられている場合は、第一係合装置C1のように、油圧ポンプOPの駆動開始後に付勢機構による第二係合装置C2の係合を解除する必要がないため、第二ライン圧141を用いても、油圧ポンプOPの駆動開始後、第二係合装置C2を安定して作動させることができる。
3.駆動装置の各部の構成
 次に、本実施形態に係る駆動装置1の各部の詳細な構成について、図3及び図4を参照して説明する。図4は、図3の断面図の部分拡大図である。
3-1.ケース
 図3に示すように、ケース3は、概略的に、円筒状の周壁4と、軸方向における回転電機MGの図3における左側(内燃機関IE側)に設けられた端部支持壁5と、端部支持壁5の径方向中心部から軸方向に突出する筒状突出部11と、軸方向におけるトルクコンバータTCの図3における右側(変速装置TM側)に設けられた中間隔壁6と、を有している。ケース3内における端部支持壁5と中間隔壁6との間の空間に、回転電機MG、第一係合装置C1、及びトルクコンバータTCが収容されている。また、図示は省略しているが、中間隔壁6よりも図3における右側の空間に、変速装置TMが収容されている。なお、端部支持壁5よりも図3における左側には、内燃機関IEが備えられている。
 端部支持壁5は、少なくとも径方向に延びる形状を有し、ここでは径方向及び周方向に延びる略平坦な円板状の壁部とされている。また、端部支持壁5の径方向中心部には、軸方向にトルクコンバータTC側へ突出する筒状突出部11が設けられている。本例では、筒状突出部11は、端部支持壁5の径方向内側端部からトルクコンバータTC側へ突出する円筒状のボス部とされている。筒状突出部11の径方向中心部には、軸方向に貫通する貫通孔が形成され、この貫通孔に内燃機関連結軸ECが挿通されている。本実施形態では、筒状突出部11の内周面と内燃機関連結軸ECとの間に第三軸受73が配置されている。内燃機関連結軸ECは、この第三軸受73により、ケース3に対して回転可能に支持されている。本実施形態では、第三軸受73としてニードルベアリングを用いている。筒状突出部11の内周面と内燃機関連結軸ECとの間の空間は、内燃機関IE側で、オイルシール68により円環状の蓋をされ、油密状態にされている。
 本実施形態では、筒状突出部11には、複数の油路が形成されている。具体的には、図3及び図4に示されているように、筒状突出部11には、第一油圧制御弁104により調圧された油を第一油室102に送る第二油路L2、及び第一油室102から排出された油を油貯留部OT又は油圧ポンプOPの吸入口に送る第三油路L3が形成されている。また、図示はされていないが、筒状突出部11には、第一サーボ油圧制御弁109(図2参照)により調圧された油を第一サーボ油室108に送ると共に、第一サーボ油室108から排出された油を第一サーボ油圧制御弁109に送る第一油路が形成されている。
 中間隔壁6は、少なくとも径方向に延びる形状を有し、ここでは径方向及び周方向に延びる略平坦な円板状の壁部とされている。また、本実施形態では、中間隔壁6は、周壁4とは別部材として構成されており、ボルト等の締結部材により周壁4の内周面に形成された段差部に締結固定されている。そして、中間隔壁6に油圧ポンプOPが設けられている。ここでは、中間隔壁6のトルクコンバータTC側の面に油圧ポンプカバー7が取り付けられている。そして、中間隔壁6と油圧ポンプカバー7との間に、油圧ポンプロータを収容する油圧ポンプ室が形成されている。これらの油圧ポンプロータ及び油圧ポンプ室により油圧ポンプOPが構成されている。油圧ポンプカバー7は、中間隔壁6に対してトルクコンバータTC側から当接した状態で、ボルト等の締結部材により中間隔壁6に締結固定されている。中間隔壁6及び油圧ポンプカバー7の径方向中心部には、軸方向に貫通する貫通孔が形成され、この貫通孔に中間軸Mが挿通されている。また、この貫通孔には、油圧ポンプ駆動軸47及びステータ支持軸58も挿通されている。油圧ポンプ駆動軸47は、トルクコンバータTCのカバー部42と一体回転する円筒状の軸部であって、中間軸Mの径方向外側に配置され、油圧ポンプロータに駆動連結されている。ステータ支持軸58は、中間隔壁6に固定されてトルクコンバータTCのステータ56を支持する円筒状の軸部であって、径方向における中間軸Mと油圧ポンプ駆動軸47との間に配置されている。また、中間隔壁6及び油圧ポンプカバー7には、油圧ポンプOPの第一吸入油路L8及び第一吐出油路L9が形成されている。また、図3に一部が示されているように、ケース3の周壁4、端部支持壁5及び中間隔壁6や各軸の内部には、このような油の供給のための油路が設けられている。
 油圧ポンプOPの油圧ポンプロータは、スプライン係合等により油圧ポンプ駆動軸47に駆動連結されている。よって、油圧ポンプロータは、トルクコンバータTCのポンプインペラ41及び回転電機MGのロータRoと一体回転するように構成されている。本実施形態においては、油圧ポンプOPは、油圧ポンプロータとしてインナロータとアウタロータとを有する内接型のギヤポンプとされている。また、油圧ポンプOPは、回転電機MG、トルクコンバータTC、及び変速装置TMと同軸上に配置されており、インナロータがその径方向中心部でトルクコンバータTCのポンプインペラ41と一体回転するように連結されている。従って、ポンプインペラ41の回転に伴い、油圧ポンプOPは油を吐出して油圧を生じさせ、油圧制御装置に供給する。
 油圧ポンプOPは、図2に示すように、油貯留部OTからストレーナ(不図示)及び第一吸入油路L8を介して油を吸引し、第一吐出油路L9に吐出する。油圧ポンプOPから吐出された油は、第一吐出油路L9を介して第一ライン圧制御弁130へ送られる。そして、第一ライン圧制御弁130は、油圧ポンプOPの出力圧を第一ライン圧131として調圧する。よって、油圧ポンプOPの吐出口と連通している第一吐出油路L9などの各油路の油圧は、第一ライン圧制御弁130により第一ライン圧131として調圧される。そして、図2で示す油圧制御系では、第一ライン圧131の油が、第一油圧制御弁104及び第一サーボ油圧制御弁109に供給される。
3-2.回転電機
 図3に示すように、回転電機MGは、トルクコンバータTCよりも内燃機関IE側(図3における左側)に配置されている。本実施形態では、回転電機MGは、軸方向における端部支持壁5とトルクコンバータTCとの間に配置されている。また、回転電機MGは、内燃機関連結軸EC及び第一係合装置C1に対して径方向外側に配置されている。回転電機MGのステータStは、ケース3に固定されている。ロータRoは、回転可能な状態でケース3に支持されている。また、ロータRoは、ロータ支持部材22を介してトルクコンバータTCのポンプインペラ41及びカバー部42と一体回転するように連結されている。ロータ支持部材22は、少なくとも径方向に延びてロータRoを支持するように設けられた部材である。本実施形態では、ロータ支持部材22の径方向内側端部に円筒状のボス部22aが設けられており、当該ボス部22aの内周面とケース3の筒状突出部11との間に第一軸受71が配置されている。ロータRo及びロータ支持部材22は、この第一軸受71により、ケース3に対して回転可能に支持されている。本実施形態では、第一軸受71としてボールベアリングを用いている。また、軸方向におけるロータ支持部材22と端部支持壁5との間であって、ボス部22aの径方向外側に、回転センサ13が配置されている。この回転センサ13は、回転電機MGのロータRoの回転位置を検出するセンサであり、レゾルバ等を好適に用いることができる。ここでは、端部支持壁5に回転センサ13のセンサステータ13aが固定され、ロータ支持部材22のボス部22aに回転センサ13のセンサロータ13bが固定されている(図4参照)。
3-3.第一係合装置
 図3に示すように、第一係合装置C1は、回転電機MGの径方向内側であって、回転電機MGの径方向に見て回転電機MGと重複する部分を有する位置に配置されている。また、第一係合装置C1は、ロータ支持部材22に対して軸方向でトルクコンバータTC側に配置されている。第一係合装置C1は、内燃機関連結軸ECと回転電機MG及びトルクコンバータTCのポンプインペラ41とを選択的に駆動連結するための係合装置である。本実施形態では、第一係合装置C1は、摩擦係合装置とされている。第一係合装置C1の入力側部材である第一クラッチハブ31は、内燃機関連結軸ECと一体的に設けられている。具体的には、第一クラッチハブ31は、内燃機関連結軸ECと一体的に形成され、当該内燃機関連結軸ECの変速装置TM側端部から径方向外側に延びる円板状部材とされている。また、第一係合装置C1の出力側部材である第一係合装置ドラム32は、トルクコンバータTCのカバー部42及び回転電機MGのロータ支持部材22と一体的に回転するように連結されている。具体的には、第一係合装置ドラム32は、ロータ支持部材22のボス部22aの内周面に接合されているとともに、トルクコンバータTCのカバー部42における径方向中間部分に形成された段差部43bの外周面に接合されている。第一係合装置ドラム32は、第一係合装置C1のハウジング及びシリンダを兼ねており、内側に第一クラッチハブ31、第一ピストン106、及び第一摩擦部材101等を収容している。そして、第一係合装置ドラム32は、内部のオイルが外に漏れないように他の部材との接合部が密閉され、内部を油密状態としている。
 図4に示すように、第一係合装置C1の第一油圧サーボ機構100に設けられている第一サーボ油室108は、第一シリンダ105として機能する第一係合装置ドラム32と、第一ピストン106とにより囲まれて構成されている。第一サーボ油室108は、シール材により油密状に形成されている。また、第一係合装置C1の第一油室102は、当該第一係合装置C1の第一摩擦部材101等を収容し、油密状に形成されている。そして、第一油室102は、第一油圧サーボ機構100の背圧を生成する。
 本実施形態では、第一ピストン106の内燃機関IE側の端面が、第一サーボ油室108のピストン内側面(内面)となっている。また、第一ピストン106の変速装置TM側の端面が、第一油室102の内面であって第一サーボ油室108のピストン外側面(背面)となっている。このため、第一油室102内の油圧が、第一ピストン106の背圧となり、第一油室102内の油圧と第一シリンダ105の断面積とを乗じた力で、第一ピストン106を内燃機関IE側、すなわち第一係合装置C1の解放側に押圧する。また、第一シリンダ105と第一ピストン106となる第一係合装置ドラム32との間に、第一付勢機構107が備えられており、第一付勢機構107は、第一ピストン106を変速装置TM側、すなわち第一係合装置C1の係合側に押圧する。本実施形態では、第一付勢機構107は皿ばねである。なお、第一付勢機構107は、皿ばね以外のばね、例えばコイルばねであってもよい。また、第一サーボ油室108内の油圧は、当該第一サーボ油室108内の油圧と第一シリンダ105の断面積とを乗じた力で、第一ピストン106を変速装置TM側、すなわち第一係合装置C1の係合側に押圧する。よって、第一サーボ油室108内の油圧及び第一付勢機構107による第一ピストン106の押圧力と、第一油室102内の油圧による第一ピストン106の押圧力とのバランスにより、第一係合装置C1が係合又は解放される。
 第一油室102は、上記したように、第一油室102の第一供給口122に供給された油が、第一油室102内の所定経路(循環路)を流れて循環し、第一油室102の第一排出口123から排出されるように構成されている。本実施形態では、第一油室102の第一供給口122は、第一クラッチハブ31と第一係合装置ドラム32の径方向内側端部との隙間により形成されている。第一油圧制御弁104で調圧された油は、ケース3の周壁4、端部支持壁5、及び筒状突出部11の壁面内に設けられた第二油路L2を送られて、第一供給口122から第一油室102に供給される。第一供給口122に供給された油は、第一ピストン106と第一クラッチハブ31との間に形成された径方向に広がる空間(循環路)を、径方向外側に流れる。そして、径方向外側に向かって流れた油は、複数の第一摩擦部材101に沿って形成された隙間(循環路)を流れる。この際、第一摩擦部材101が冷却される。その後、第一摩擦部材101に沿って流れた油は、第一クラッチハブ31とトルクコンバータTCの第一カバー部材43との間に形成された径方向に広がる空間(循環路)を、径方向内側に向かって流れる。そして、第一油室102の第一排出口123から油が排出される。第一排出口123は、第一クラッチハブ31と第一カバー部材43との間に形成された空間における径方向内側の部分である。そして、第一クラッチハブ31と第一カバー部材43との間に形成された空間において間隔が狭くなっている(絞られている)隙間が、第一絞り部120であり、オリフィスとして働く。第一油室102は、排出側で絞られているので、第一油室102内の油圧は、上記したように、均一化される。
 第一油室102の第一排出口123から排出された油は、内燃機関連結軸ECと第一カバー部材43との間の油密空間、内燃機関連結軸EC内に設けられた第五油路L5、内燃機関連結軸ECとケース3の筒状突出部11との間の油密状の隙間、ケース3の筒状突出部11及び端部支持壁5に設けられた第三油路L3、管状部材96c、及び周壁4に設けられた第十一油路L11を順に流れて、第一油室102から油貯留部OT又は油圧ポンプOPの吸入口に送られる(図3参照)。
 第一サーボ油圧制御弁109で調圧された油は、ケース3の周壁4、端部支持壁5、及び筒状突出部11の壁面内に設けられた不図示の供給油路を送られて、第一給排口124から第一サーボ油室108に供給される(図2参照)。
3-4.トルクコンバータ
 図3に示すように、トルクコンバータTCは、軸方向における回転電機MGと変速装置TMとの間に配置されている。トルクコンバータTCは、ポンプインペラ41、タービンランナ51、ステータ56、及びこれらを収容するカバー部42を備えている。また、本実施形態では、カバー部42内に、第二係合装置C2及びダンパ54も収容されている。カバー部42は、ポンプインペラ41と一体回転するように構成されている。ここでは、ポンプインペラ41は、カバー部42の内側に一体的に設けられている。
 本実施形態では、カバー部42は、回転電機MG側の第一カバー部材43と、変速装置TM側の第二カバー部材44とを接合して構成されている。第一カバー部材43は、トルクコンバータTCの回転電機MG側を覆うように形成された円筒状部材であり、本例では径方向中間部分に段差部43bが形成された段付円筒状部材とされている。この段差部43bの外周面には第一係合装置ドラム32の内周面が接合されており、これによりカバー部42が第一係合装置C1の第一係合装置ドラム32と一体的に回転するように連結されている。また、段差部43bの径方向内側には第二係合装置C2が収容されている。図2に示すように、第二カバー部材44は、トルクコンバータTCの変速装置TM側を覆うように形成されたカバー部材であり、本例では、径方向中間部分が変速装置TM側に向かって膨出した円弧状の断面形状を有する環状部材とされている。第二カバー部材44の径方向内側の端部には、軸方向に変速装置TM側へ延びる油圧ポンプ駆動軸47が一体的に設けられている。油圧ポンプ駆動軸47は、トルクコンバータTCのカバー部42と一体回転する円筒状の軸部であって、中間軸Mと同軸に中間軸Mの径方向外側に配置されている。油圧ポンプ駆動軸47の外周面と油圧ポンプカバー7の貫通孔の内周面との間に第二軸受72が配置されている。油圧ポンプ駆動軸47及びトルクコンバータTCのカバー部42は、この第二軸受72により、ケース3に対して回転可能に支持されている。本実施形態では、第二軸受72としてニードルベアリングを用いている。油圧ポンプ駆動軸47の変速装置TM側の端部は、油圧ポンプOPの油圧ポンプロータと一体回転するように連結されている。油圧ポンプ駆動軸47と油圧ポンプロータとの連結は、ここではスプライン係合により行われている。
 第一カバー部材43と第二カバー部材44とは、溶接等により一体的に接合されている。また、駆動装置1全体として見れば、トルクコンバータTCのカバー部42、ロータ支持部材22、及び第一係合装置C1の第一係合装置ドラム32は、一体的に回転するように連結された複数部材の連結体となっており、この連結体が入力軸Iを構成する。この入力軸Iは、内燃機関連結軸EC側において第一軸受71を介してケース3に回転可能に支持され、変速装置TM側において第二軸受72を介してケース3に回転可能に支持されている。また、入力軸Iは、回転電機MGのロータRo、及びポンプインペラ41と一体回転するように接合されている。
 トルクコンバータTCのタービンランナ51は、カバー部42の内部におけるポンプインペラ41に対して回転電機MG側に、ポンプインペラ41と対向して配置されている。このタービンランナ51は、入力軸Iと一体回転するように連結されており、ここでは、タービンランナ51の径方向内側端部が、中間軸Mとスプライン係合されている。トルクコンバータTCのステータ56は、軸方向におけるポンプインペラ41とタービンランナ51との間に配置されている。このステータ56は、ワンウェイクラッチ57を介してステータ支持軸58に支持されている。上記のように、ステータ支持軸58は、円筒状の軸部であって変速装置TM側において中間隔壁6に固定されている。このトルクコンバータTCは、カバー部42の内部に充填された油を介して、駆動側のポンプインペラ41と従動側のタービンランナ51との間のトルクの伝達を行うことが可能となっている。
 ダンパ54は、軸方向における第二係合装置C2とタービンランナ51との間に配置されている。このダンパ54は、第二係合装置C2の係合状態で、ポンプインペラ41とタービンランナ51との間で伝達される駆動力の振動を吸収するために設けられている。本実施形態では、ダンパ54は、周方向に相対移動可能に構成された入力側部材54a及び出力側部材54bと、これら入力側部材54aと出力側部材54bとの間に設けられた振動吸収用のばね54c等を有している。そして、ダンパ54の入力側部材54aは第二係合装置C2の第二係合装置ドラム62と一体回転するように連結されている。また、ダンパ54の出力側部材54bはタービンランナ51及び中間軸Mと一体回転するように連結されている。
3-5.第二係合装置
 図3に示すように、第二係合装置C2は、カバー部42の段差部43bの径方向内側であって、タービンランナ51に対して軸方向で回転電機MG側に配置されている。第二係合装置C2は、ポンプインペラ41とタービンランナ51とを係合することにより、オイルを介した駆動力の伝達を止めてこれらを直結状態(ロックアップ状態)とするための係合装置である。本実施形態では、第二係合装置C2は、摩擦係合装置とされている。第二係合装置C2の入力側部材である第二クラッチハブ61は、カバー部42と一体回転するように設けられている。具体的には、第二クラッチハブ61は、径方向内側においてカバー部42の第一カバー部材43が有する支持円筒状部43aにスプライン係合して連結されている。また、第二係合装置C2の出力側部材である第二係合装置ドラム62は、ダンパ54を介してタービンランナ51及び中間軸Mに駆動連結されている。具体的には、第二係合装置ドラム62は、ダンパ54の入力側部材54aと一体的に形成されている。なお、第二係合装置C2の第二ピストン116及び第二摩擦部材111等も、段差部43bの径方向内側の空間に収容されている。また、本実施形態では、第二係合装置C2は、第一カバー部材43を挟んで第一係合装置C1と軸方向に隣接して配置されている。
 第一カバー部材43は、第二係合装置C2のハウジング及びシリンダを兼ねており、内側に第二クラッチハブ61、第二ピストン116、及び第二摩擦部材111等を収容している。
 図4に示すように、第二係合装置C2の第二油圧サーボ機構110に設けられている第二サーボ油室118は、第二シリンダ115として機能する第一カバー部材43と、第二ピストン116とにより囲まれて構成されている。第二サーボ油室118は、シール材により油密状に形成されている。また、第二係合装置C2の第二油室112は、当該第二係合装置C2の第二摩擦部材111等を収容し、油密状に形成されている。そして、第二油室112は、第二油圧サーボ機構110の背圧を生成する。
 本実施形態では、第二ピストン116の内燃機関IE側の端面が、第二サーボ油室118のピストン内側面となっている。また、第二ピストン116の変速装置TM側の端面が、第二油室112の内面であって第二サーボ油室118のピストン外側面となっている。このため、第二油室112内の油圧が、第二ピストン116の背圧となり、第二油室112内の油圧と第二シリンダ115の断面積とを乗じた力で、第二ピストン116を内燃機関IE側、すなわち第二係合装置C2の解放側に押圧する。また、第二シリンダ115と第二クラッチハブ61との間に、第二付勢機構117が備えられており、第二付勢機構117は、第二ピストン116を内燃機関IE側、すなわち第二係合装置C2の解放側に押圧する。本実施形態では、第二付勢機構117はコイルばねである。なお、第二付勢機構117は、コイルばね以外のばね、例えば皿ばねであってもよい。また、第二サーボ油室118内の油圧は、当該第二サーボ油室118内の油圧と第二シリンダ115の断面積とを乗じた力で、第二ピストン116を変速装置TM側、すなわち第二係合装置C2の係合側に押圧する。よって、第二サーボ油室118内の油圧による第二ピストン116の押圧力と、第二油室112内の油圧及び第二付勢機構117による第二ピストン116の押圧力とのバランスにより、第二係合装置C2が係合又は解放される。
 第二油室112は、上記したように、第二油室112の第二供給口127に供給された油が、第二油室112内の所定経路(循環路)を流れて循環し、第二油室112の第二排出口128(図3参照)から排出されるように構成されている。本実施形態では、第二油室112の第二供給口127は、第一カバー部材43の径方向内側部に設けられた支持円筒状部43a内に形成されている。
 ここで、支持円筒状部43aは、軸心Xに対して同軸状に配置され、軸方向に変速装置TM側に延在するように形成された円筒状部である。支持円筒状部43aの外周面は、第二シリンダ115の径方向内側側面を構成すると共に、第二クラッチハブ61にスプライン連結している。支持円筒状部43aの径方向内側には中間軸Mが配置されており、支持円筒状部43aの内周面により中間軸Mの内燃機関IE側端部が回転可能に支持されている。
 第二油圧制御弁114で調圧された油は、中間軸M内に設けられた第六油路L6を送られて、第二供給口127から第二油室112に供給される。第二供給口127に供給された油は、第二ピストン116と第二クラッチハブ61との間に形成された径方向に広がる空間(循環路)を、径方向外側に流れる。そして、径方向外側に向かって流れた油は、複数の第二摩擦部材111に沿って形成された隙間(循環路)を流れる。この際、第二摩擦部材111が冷却される。その後、第二摩擦部材111に沿って流れた油は、第一カバー部材43と第二係合装置ドラム62との間に形成された径方向に広がる空間(循環路)を、径方向外側に向かって流れる。そして、ポンプインペラ41及びタービンランナ51が配置されたカバー部42内を循環した後、図3に示すように、第二油室112の第二排出口128から排出される。第二油室112の第二排出口128から排出された油は、中間軸Mの周辺に設けられた油路を流れて油貯留部OT又は油圧ポンプOPの吸入口に送られる。
 第二サーボ油圧制御弁119で調圧された油は、中間軸M内に設けられた第七油路L7を送られて、第二給排口129から第二サーボ油室118に供給される。
3-6.変速装置
 図3では省略しているが、中間隔壁6の出力軸O側、すなわち中間隔壁6を挟んでトルクコンバータTCとは反対側(図3における右側)に、変速装置TMが配置されている。本実施形態では、変速装置TMは、変速比の異なる複数の変速段を有する有段の自動変速装置である。
4.その他の実施形態
 最後に、本発明のその他の実施形態について説明する。なお、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。
(1)上記の実施形態では、油圧ポンプOPが、入力軸Iに伝達される駆動力により駆動される機械式ポンプにより構成される場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではない。すなわち、油圧ポンプOPは、内燃機関IE及び回転電機MGとは別のポンプ駆動用モータにより駆動される電動式ポンプとされ、或いは、このような電動式ポンプと機械式ポンプとの組み合わせにより構成されてもよい。
(2)上記の実施形態では、駆動装置1に、トルクコンバータTCとして、ポンプインペラ41と、タービンランナ51と、ポンプインペラ41とタービンランナ51とを直結する第二係合装置C2と、が備えられている場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではない。すなわち、駆動装置1に、トルクコンバータTCが備えられず、トルクコンバータTCの代わりに、入力軸Iと中間軸Mとを選択的に駆動連結する摩擦係合装置などが、第二係合装置C2として備えられるようにしてもよい。この場合にも第二係合装置C2は、第二油圧サーボ機構110の背圧を生成すると共に第二係合装置C2の第二摩擦部材111を収容する第二油室112を備える。そして、上記の実施形態と同様に、第二油室油圧113を第一油室油圧103とは独立して制御する第二油圧制御弁114を備える。
(3)上記の実施形態では、第二係合装置C2の第二油圧サーボ機構110として、第二シリンダ115として機能する第一カバー部材43と第二ピストン116とにより囲まれて油密状に構成された第二サーボ油室118が備えられている場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではない。すなわち、第二サーボ油室118が油密状に備えられず、第二油室112と連通して一体的に構成されてもよい。この場合、第二ピストン116の第二サーボ油室118側又は第二サーボ油室118と反対側へ供給される油圧が制御されることにより、第二ピストン116が第二摩擦部材111を押圧する押圧力が制御され、第二係合装置C2の係合状態が制御される。すなわち、この場合は、第二油室112は、第二油室112と連通して備えられる第二サーボ油室118を一体的に含み、第二係合装置C2の係合状態は、第二サーボ油室118側の第二油室112に供給する油圧、又は第二サーボ油室118以外の第二油室112に供給する油圧により制御される。
(4)上記の実施形態では、第一油圧制御弁104は、第一ライン圧制御弁130により制御された第一ライン圧131の油の供給を受けて第一油室油圧103の油を第一油室102に供給し、第二油圧制御弁114は、第二ライン圧制御弁140により制御された第二ライン圧141の油の供給を受けて第二油室油圧113の油を第二油室112に供給する場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではない。すなわち、第一油圧制御弁104は、第二ライン圧141の油の供給を受けて第一油室油圧103の油を第一油室102に供給するように構成されてもよい。この場合において、第二油圧制御弁114は、第二ライン圧141又は第一ライン圧131の油の供給を受けて第二油室油圧113の油を第二油室112に供給するように構成されてもよい。また、第一油圧制御弁104は、第一ライン圧131の油の供給を受けて、第一油室油圧103の油を第一油室102に供給するように構成されている場合は、第二油圧制御弁114は、第一ライン圧131の油の供給を受けて第二油室油圧113の油を第二油室112に供給するように構成されてもよい。
(5)上記の実施形態においては、変速装置TMが有段の自動変速装置である場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、変速装置TMが、連続的に変速比を変更可能な無段の自動変速装置である場合など、有段の自動変速装置以外の変速装置である場合も本発明の好適な実施形態の一つである。
(6)上記の実施形態においては、駆動装置1は、第一油室102から排出される油の排出油路に、流量を絞る絞り部としての第一絞り部120を備える場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、駆動装置1は、第一油室102から排出される油の排出油路に、流量を絞る絞り部を備えないように構成されてもよく、あるいは、当該排出油路以外の箇所、例えば、第一油室102内、又は、第一油室102の供給油路に、流量を絞る絞り部が備えられるように構成されてもよい。
(7)上記の実施形態においては、第一係合装置C1が、第一摩擦部材101を係合側に押圧するように所定の初期係合荷重で第一ピストン106を付勢する第一付勢機構107を備えている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、第一係合装置C1が、第一摩擦部材101を解放側に押圧するように所定の初期係合荷重で第一ピストン106を付勢する第一付勢機構107を備えるようにしてもよい。
(8)上記の実施形態においては、第一油圧制御弁104は、初期係合荷重より大きい荷重で第一ピストン106を係合解除側に押圧する背圧を第一油室102に発生させるように、第一油室油圧103を制御する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、第一油圧制御弁104は、初期係合荷重より小さい荷重で第一ピストン106を係合解除側に押圧する背圧を第一油室102に発生させるように、第一油室油圧103を制御するようにしてもよい。
 本発明は、回転電機に駆動連結される入力部材と、車輪に駆動連結される出力部材と、前記入力部材を内燃機関に選択的に駆動連結する第一係合装置と、前記入力部材と前記出力部材とを結ぶ動力伝達経路に設けられた流体継手と、を備えた車両用駆動装置に好適に利用することができる。
MG:回転電機
IE:内燃機関
TC:トルクコンバータ(流体継手)
TM:変速装置TM
C1:第一係合装置
C2:第二係合装置
I:入力軸(入力部材)
M:中間軸
O:出力軸(出力部材)
W:車輪
1:駆動装置(車両用駆動装置)
41:ポンプインペラ(継手入力側部材)
51:タービンランナ(継手出力側部材)
100:第一油圧サーボ機構
101:第一摩擦部材
102:第一油室
103:第一油室油圧
104:第一油圧制御弁
105:第一シリンダ
106:第一ピストン
107:第一付勢機構(付勢機構)
108:第一サーボ油室
109:第一サーボ油圧制御弁
110:第二油圧サーボ機構
111:第二摩擦部材
112:第二油室
113:第二油室油圧
114:第二油圧制御弁
115:第二シリンダ
116:第二ピストン
117:第二付勢機構
118:第二サーボ油室
119:第二サーボ油圧制御弁
120:第一絞り部(絞り部)
121:第一サーボ油圧
122:第一供給口
123:第一排出口
124:第一給排口
125:第二絞り部
126:第二サーボ油圧
127:第二供給口
128:第二排出口
129:第二給排口
130:第一ライン圧制御弁
131:第一ライン圧
135:基準圧制御弁
136:基準圧
137:本体部収容室(第二油室)
140:第二ライン圧制御弁
141:第二ライン圧
EX:排出(ドレイン)

Claims (5)

  1.  回転電機に駆動連結される入力部材と、車輪に駆動連結される出力部材と、前記入力部材を内燃機関に選択的に駆動連結する第一係合装置と、前記入力部材と前記出力部材とを結ぶ動力伝達経路に設けられた流体継手と、を備えた車両用駆動装置であって、
     前記第一係合装置は、第一摩擦部材と、当該第一摩擦部材を押圧する第一ピストンと、前記第一摩擦部材が収容されるとともに、油圧が供給されて前記第一ピストンにおける作動用の油圧が作用する側とは反対側に油圧を作用させるように形成された第一油室と、を備え、
     前記流体継手は、当該流体継手の本体部を収容する本体部収容室に、前記入力部材側に駆動連結される継手入力側部材と前記出力部材側に駆動連結される継手出力側部材とを直結する第二係合装置の係合状態を油圧により制御するための第二油室を備え、
     前記第一油室に供給する油圧である第一油室油圧を制御する第一油圧制御弁と、前記第二油室に供給する油圧である第二油室油圧を前記第一油室油圧とは独立して制御する第二油圧制御弁と、を備える車両用駆動装置。
  2.  前記第一油圧制御弁から前記第一油室へ供給された油圧を、当該第一油室から排出するための排出油路に、流量を絞る絞り部を備える請求項1に記載の車両用駆動装置。
  3.  前記第一係合装置は、前記第一ピストンが前記第一摩擦部材を係合側に押圧するように所定の初期係合荷重で前記第一ピストンを付勢する付勢機構を備え、
     前記第一油圧制御弁は、前記初期係合荷重より大きい荷重で前記第一ピストンを係合解除側に押圧する油圧を前記第一油室に発生させるように、前記第一油室油圧を制御する請求項1又は2に記載の車両用駆動装置。
  4.  油圧ポンプの出力圧を第一ライン圧として制御する第一ライン圧制御弁と、前記第一ライン圧を更に減圧し、第二ライン圧として制御する第二ライン圧制御弁と、を備え、
     前記第一油圧制御弁は、前記第一ライン圧制御弁により制御された前記第一ライン圧の油の供給を受けて前記第一油室油圧の油を前記第一油室に供給し、
     前記第二油圧制御弁は、前記第二ライン圧制御弁により制御された前記第二ライン圧の油の供給を受けて前記第二油室油圧の油を前記第二油室に供給する請求項1から3のいずれか一項に記載の車両用駆動装置。
  5.  前記第二係合装置は、第二摩擦部材と、当該第二摩擦部材を押圧する第二ピストンとを備え、
     前記第二油室は、その中に前記第二摩擦部材及び前記流体継手の前記継手入力側部材及び前記継手出力側部材が収容されるとともに、油圧が供給されて前記第二ピストンにおける作動用の油圧が作用する側とは反対側に油圧を作用させるように形成されている請求項1から4のいずれか一項に記載の車両用駆動装置。
PCT/JP2012/052263 2011-02-17 2012-02-01 車両用駆動装置 WO2012111432A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112012000391.8T DE112012000391B4 (de) 2011-02-17 2012-02-01 Fahrzeugantriebsvorrichtung
US13/981,463 US8845484B2 (en) 2011-02-17 2012-02-01 Vehicle drive device
CN201280007193.2A CN103347725B (zh) 2011-02-17 2012-02-01 车辆驱动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011031995A JP5149974B2 (ja) 2011-02-17 2011-02-17 車両用駆動装置
JP2011-031995 2011-02-17

Publications (1)

Publication Number Publication Date
WO2012111432A1 true WO2012111432A1 (ja) 2012-08-23

Family

ID=46672364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052263 WO2012111432A1 (ja) 2011-02-17 2012-02-01 車両用駆動装置

Country Status (5)

Country Link
US (1) US8845484B2 (ja)
JP (1) JP5149974B2 (ja)
CN (1) CN103347725B (ja)
DE (1) DE112012000391B4 (ja)
WO (1) WO2012111432A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014173413A1 (de) * 2013-04-25 2014-10-30 Schaeffler Technologies Gmbh & Co. Kg Hydrostatisches kupplungsbetätigungssystem
CN109595271A (zh) * 2018-12-26 2019-04-09 贵州凯星液力传动机械有限公司 一种液力变速器的离合器油压控制系统

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010009832A1 (de) * 2010-03-02 2011-09-08 Ivd Prof. Hohenberg Gmbh Kraftfahrzeug mit kombiniertem Antrieb
JP5793787B2 (ja) 2011-11-04 2015-10-14 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
JP5761570B2 (ja) * 2011-11-22 2015-08-12 アイシン・エィ・ダブリュ株式会社 制御装置
JP5652414B2 (ja) * 2012-02-27 2015-01-14 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
JP5942941B2 (ja) * 2013-07-30 2016-06-29 トヨタ自動車株式会社 ハイブリッドシステム
JP5949692B2 (ja) * 2013-07-30 2016-07-13 トヨタ自動車株式会社 ハイブリッドシステム
US9108615B2 (en) * 2013-09-19 2015-08-18 Borgwarner Inc. Multimode clutch for a parallel hybrid vehicle
WO2015067259A1 (de) * 2013-11-08 2015-05-14 Schaeffler Technologies AG & Co. KG Fluidanordnung
US10820883B2 (en) 2014-04-16 2020-11-03 Bongiovi Acoustics Llc Noise reduction assembly for auscultation of a body
US10639000B2 (en) 2014-04-16 2020-05-05 Bongiovi Acoustics Llc Device for wide-band auscultation
JP6252521B2 (ja) * 2015-03-06 2017-12-27 マツダ株式会社 変速機のブレーキ制御システム
WO2016203509A1 (ja) * 2015-06-15 2016-12-22 日産自動車株式会社 車両の制御方法および車両の制御装置
EP3191333B2 (de) 2015-11-25 2022-10-12 Schaeffler Technologies AG & Co. KG Hybridmodul mit trenn- und hauptkupplung und dazwischen angeordneten betätigungssystemen
DE102015226678A1 (de) * 2015-12-23 2017-06-29 Zf Friedrichshafen Ag Getriebe für ein Kraftfahrzeug
JP6369501B2 (ja) 2016-05-19 2018-08-08 マツダ株式会社 自動変速機の制御方法及び制御装置
JP6369502B2 (ja) * 2016-05-19 2018-08-08 マツダ株式会社 自動変速機の制御方法及び制御装置
JP6369504B2 (ja) * 2016-05-19 2018-08-08 マツダ株式会社 自動変速機の制御方法及び制御装置
US10011283B2 (en) * 2016-06-28 2018-07-03 Ford Global Technologies, Llc System and method for driving vehicle accessories
US10172287B2 (en) * 2016-09-27 2019-01-08 Deere & Company Independent doffer drive system for a cotton harvester row unit
US10106024B2 (en) * 2016-10-18 2018-10-23 Gm Global Technology Operation Llc Hybrid manual transmission
JP6491167B2 (ja) * 2016-10-25 2019-03-27 株式会社Subaru ハイブリッド車両の制御装置
JP6531133B2 (ja) * 2017-04-27 2019-06-12 本田技研工業株式会社 ハイブリッド車両の駆動装置
JP7043312B2 (ja) * 2018-03-28 2022-03-29 株式会社エクセディ 車両用の駆動装置
DE102018205463A1 (de) * 2018-04-11 2019-10-17 Zf Friedrichshafen Ag Hybridantriebsmodul für ein Kraftfahrzeug
JP7159657B2 (ja) * 2018-07-10 2022-10-25 トヨタ自動車株式会社 リニアソレノイドの制御装置
CN112601877B (zh) * 2018-08-30 2022-08-05 沃尔沃卡车集团 油系统和控制油系统的方法
EP3904727B1 (en) * 2019-03-29 2023-07-12 Aisin Corporation Vehicle drive device
CN112178245A (zh) * 2019-07-05 2021-01-05 章睿承 双动力源复合控制装置
WO2021046512A1 (en) * 2019-09-05 2021-03-11 Rifai Ahmad Oussama Methods of accurately placing a gastric tube in a subject
US10975944B2 (en) * 2019-09-12 2021-04-13 Schaeffler Technologies AG & Co. KG Hybrid module with impact torque limiter
DE102019125872A1 (de) * 2019-09-25 2021-03-25 Schaeffler Technologies AG & Co. KG Hybridantriebsstrang
WO2021059511A1 (ja) * 2019-09-27 2021-04-01 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
US11408495B2 (en) * 2020-02-29 2022-08-09 Schaeffler Technologies AG & Co. KG Compact torque converter assembly for hybrid module
US10899220B1 (en) * 2020-05-15 2021-01-26 Schaeffler Technologies AG & Co. KG Hybrid module with sequential clutch
JP2022044921A (ja) * 2020-09-08 2022-03-18 株式会社エクセディ 駆動装置
JP2022044920A (ja) * 2020-09-08 2022-03-18 株式会社エクセディ 駆動装置
CN116201864A (zh) * 2021-11-30 2023-06-02 通用汽车环球科技运作有限责任公司 用于扭矩转换器组件的液压系统和控制逻辑

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05286368A (ja) * 1992-04-16 1993-11-02 Aqueous Res:Kk ハイブリッド型車両
JP2000356148A (ja) * 1998-12-11 2000-12-26 Toyota Motor Corp 伝動装置用電動オイルポンプを備えた車両の制御装置
JP2009001165A (ja) * 2007-06-21 2009-01-08 Nissan Motor Co Ltd 摩擦クラッチ
JP2009103222A (ja) * 2007-10-23 2009-05-14 Aisin Aw Co Ltd 車両用制御装置
JP2010216583A (ja) * 2009-03-17 2010-09-30 Aisin Aw Co Ltd 自動変速機の制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137406A (ja) 2004-10-15 2006-06-01 Aisin Seiki Co Ltd 複数の駆動源を備えた車両用駆動装置
JP2009243640A (ja) * 2008-03-31 2009-10-22 Aisin Aw Co Ltd 発進装置の油圧制御装置
JP5419969B2 (ja) * 2008-06-02 2014-02-19 シェフラー テクノロジーズ アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト ハイブリッドシステムにおいて使用するための組合せ力伝達・駆動ユニット及びハイブリッドシステム
JP5131153B2 (ja) 2008-10-28 2013-01-30 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
US8622182B2 (en) * 2009-11-19 2014-01-07 Aisin Aw Co., Ltd. Vehicle drive device
JP2012086826A (ja) * 2010-09-24 2012-05-10 Aisin Aw Co Ltd 車両用駆動装置
JP5793787B2 (ja) * 2011-11-04 2015-10-14 アイシン・エィ・ダブリュ株式会社 車両用駆動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05286368A (ja) * 1992-04-16 1993-11-02 Aqueous Res:Kk ハイブリッド型車両
JP2000356148A (ja) * 1998-12-11 2000-12-26 Toyota Motor Corp 伝動装置用電動オイルポンプを備えた車両の制御装置
JP2009001165A (ja) * 2007-06-21 2009-01-08 Nissan Motor Co Ltd 摩擦クラッチ
JP2009103222A (ja) * 2007-10-23 2009-05-14 Aisin Aw Co Ltd 車両用制御装置
JP2010216583A (ja) * 2009-03-17 2010-09-30 Aisin Aw Co Ltd 自動変速機の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014173413A1 (de) * 2013-04-25 2014-10-30 Schaeffler Technologies Gmbh & Co. Kg Hydrostatisches kupplungsbetätigungssystem
CN105143700A (zh) * 2013-04-25 2015-12-09 舍弗勒技术股份两合公司 静液压离合器操纵系统
CN109595271A (zh) * 2018-12-26 2019-04-09 贵州凯星液力传动机械有限公司 一种液力变速器的离合器油压控制系统

Also Published As

Publication number Publication date
DE112012000391T5 (de) 2013-10-02
US8845484B2 (en) 2014-09-30
JP2012171372A (ja) 2012-09-10
CN103347725B (zh) 2014-08-27
DE112012000391B4 (de) 2016-03-10
US20130310216A1 (en) 2013-11-21
JP5149974B2 (ja) 2013-02-20
CN103347725A (zh) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5149974B2 (ja) 車両用駆動装置
US10539071B2 (en) Vehicle drive device
US7234577B2 (en) Torque converter
US9447864B2 (en) Vehicle drive device
US8997956B2 (en) Vehicle drive device
US10183567B2 (en) Vehicle drive device
US8955658B2 (en) Vehicle power transmission device
WO2011062266A1 (ja) 車両用駆動装置
WO2011062265A1 (ja) 車両用駆動装置
US8839922B2 (en) Vehicle power transmission device
US20140256506A1 (en) Vehicle power transmission device
JP2013095390A5 (ja)
US20210246974A1 (en) Electric machine with fluid coupling
JP5250013B2 (ja) 車両用駆動装置
JP5406815B2 (ja) 車両用駆動装置
JP2019043521A (ja) 車両用駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747159

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13981463

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012000391

Country of ref document: DE

Ref document number: 1120120003918

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12747159

Country of ref document: EP

Kind code of ref document: A1