WO2012111394A1 - アイドルストップ制御装置 - Google Patents

アイドルストップ制御装置 Download PDF

Info

Publication number
WO2012111394A1
WO2012111394A1 PCT/JP2012/051498 JP2012051498W WO2012111394A1 WO 2012111394 A1 WO2012111394 A1 WO 2012111394A1 JP 2012051498 W JP2012051498 W JP 2012051498W WO 2012111394 A1 WO2012111394 A1 WO 2012111394A1
Authority
WO
WIPO (PCT)
Prior art keywords
starter
brush
engine
time
total
Prior art date
Application number
PCT/JP2012/051498
Other languages
English (en)
French (fr)
Inventor
公胤 中村
悟 大熊
文彦 今村
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP12747381.7A priority Critical patent/EP2677145A4/en
Priority to CN201280009350.3A priority patent/CN103492689B/zh
Priority to US13/985,777 priority patent/US9502848B2/en
Publication of WO2012111394A1 publication Critical patent/WO2012111394A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/02Details for dynamo electric machines
    • H01R39/58Means structurally associated with the current collector for indicating condition thereof, e.g. for indicating brush wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/087Details of the switching means in starting circuits, e.g. relays or electronic switches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/022Gearing between starting-engines and started engines; Engagement or disengagement thereof the starter comprising an intermediate clutch
    • F02N15/023Gearing between starting-engines and started engines; Engagement or disengagement thereof the starter comprising an intermediate clutch of the overrunning type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/04Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears
    • F02N15/06Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement
    • F02N15/067Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement the starter comprising an electro-magnetically actuated lever
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/04Parameters used for control of starting apparatus said parameters being related to the starter motor
    • F02N2200/043Starter voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/04Parameters used for control of starting apparatus said parameters being related to the starter motor
    • F02N2200/044Starter current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/04Parameters used for control of starting apparatus said parameters being related to the starter motor
    • F02N2200/045Starter temperature or parameters related to it
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/04Parameters used for control of starting apparatus said parameters being related to the starter motor
    • F02N2200/046Energy or power necessary for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/08Parameters used for control of starting apparatus said parameters being related to the vehicle or its components
    • F02N2200/0801Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/14Parameters used for control of starting apparatus said parameter being related to wear of starter or other components, e.g. based on total number of starts or age
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4065Monitoring tool breakage, life or condition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an improvement in an idle stop control device that automatically stops an engine when a first condition is satisfied and restarts the engine using a starter when a second condition is satisfied.
  • the starter supplied with power through the upper brush is worn out each time the starter is driven. Accordingly, it is necessary to obtain the total number of times the starter is driven in consideration of the amount of brush wear.
  • the idle stop control device automatically stops the engine when the first condition is satisfied, and restarts the engine using a starter that is supplied with power via the brush when the second condition is satisfied.
  • a start-up brush wear amount calculation unit for calculating a brush wear amount at one start and a total brush for calculating a total brush wear amount by integrating the brush wear amount at one start
  • a wear amount calculating unit and an engine automatic stop prohibiting unit that prohibits the automatic engine stop when the total brush wear amount is equal to or greater than the drive guaranteed wear amount of the starter.
  • FIG. 1 is a schematic configuration diagram of the idle stop control device of the first embodiment.
  • FIG. 2 is a flowchart for explaining the setting of the brush deterioration flag according to the first embodiment.
  • FIG. 3 is a flowchart for explaining the engine automatic stop / restart processing according to the first embodiment.
  • FIG. 4 is a flowchart for explaining the setting of the brush deterioration flag according to the second embodiment.
  • FIG. 5 is a characteristic diagram of the increment with respect to the brush temperature according to the second embodiment.
  • FIG. 6 is a flowchart for explaining the setting of the brush deterioration flag according to the third embodiment.
  • FIG. 7 is a characteristic diagram showing a change in battery voltage at the start.
  • FIG. 8 is a characteristic diagram of the increment with respect to the differential voltage according to the third embodiment.
  • FIG. 9 is a flowchart for explaining the setting of the brush deterioration flag according to the fourth embodiment.
  • FIG. 10 is a characteristic diagram of the increment with respect to the starter rotation amount of the fourth embodiment.
  • FIG. 11 is a flowchart for explaining the setting of the brush deterioration flag according to the fifth embodiment.
  • FIG. 12 is a flowchart for explaining the setting of the brush deterioration flag according to the sixth embodiment.
  • FIG. 13 is a flowchart for explaining the setting of the brush deterioration flag according to the seventh embodiment.
  • FIG. 14 is a characteristic diagram of the brush wear amount with respect to the total number of times of driving in the seventh embodiment.
  • FIG. 15 is a characteristic diagram of the total brush wear amount with respect to the total number of driving times according to the seventh embodiment.
  • FIG. 16 is a block diagram illustrating a configuration of the idle stop control device of the reference embodiment.
  • FIG. 17 is a flowchart for explaining the setting of the brush deterioration flag of the reference embodiment.
  • FIG. 18 is a flowchart for explaining an engine start process according to the reference embodiment.
  • FIG. 1 is a schematic configuration diagram of an idle stop control device according to a first embodiment of the present invention. This idle stop control device is mounted on a vehicle (not shown).
  • the starter 11 is provided with a magnet switch 13 for connecting and disconnecting the motor 12 and the engine side.
  • the magnet switch 13 moves the overrunning clutch 17 left and right in FIG. 1 via the shift lever 16.
  • the pinion gear 18 meshes with the ring gear 19 and the driving force of the motor 12 is transmitted to the ring gear 19 (engine side).
  • the magnet switch 13 has an attraction coil 13a and a holding coil 13b.
  • a current flows from the battery 1 to the attraction coil 13a and the holding coil 13b in the direction of the arrow. .
  • the plunger 13 c moves to the left in FIG. 1, pushes out the pinion gear 18 through the shift lever 16, and the pinion gear 18 and the ring gear 19 engage with each other.
  • the main contact 13d of the magnet switch 13 closes, current flows from the battery 1 to the commutator 22 (motor 12) via the brush 21, and the motor 12 rotates. Torque associated with the rotation of the motor 12 is transmitted to the ring gear 19 via the pinion gear 18, and the engine is started.
  • the engine controller 3 controls the fuel supply from the fuel injection valve 4 and the ignition timing by the spark plug 5 in accordance with the depression amount of the accelerator pedal, and a predetermined condition is established with the aim of further improving fuel consumption. Sometimes the engine is automatically stopped and restarted. In the engine automatic stop / restart process, the engine controller 3 drives the starter 11 instead of the driver, and therefore a normally open second starter switch 6 is provided in parallel with the starter switch 2. The second starter switch 6 is opened and closed according to an instruction from the engine controller 3.
  • the automatic engine stop when the vehicle is stopped by the engine controller 3 is performed when the engine automatic stop permission condition (first condition) while the vehicle is stopped is satisfied while the vehicle is stopped after the engine warm-up operation is completed. Go and stop the engine automatically. Thereafter, when the engine automatic stop cancellation condition (second condition) while the vehicle is stopped is satisfied, the second starter switch 6 is closed and the starter 11 is driven to restart the fuel supply while cranking the engine. Restart the engine. Since the fuel is not consumed during the period in which the engine is automatically stopped, the fuel consumption can be improved.
  • the fuel cut means that the fuel supply from the fuel injection valve 4 is cut.
  • the brush 21 is configured to be pressed against the commutator 22 by a spring.
  • good contact between the brush 21 and the commutator 22 is ensured, and power is efficiently supplied from the brush 21 to the commutator 22 even when the commutator 22 rotates.
  • the brush 21 is slightly worn every time the engine automatic stop cancellation condition (second condition) while the vehicle is stopped is satisfied. To go. Specifically, since the material of the brush 21 is softer than that of the commutator 22, the brush 21 is worn and the length of the brush 21 is shortened.
  • the starter 11 drive guarantee count N ⁇ b> 1 determined from the total brush wear amount is determined in advance.
  • the drive count N becomes equal to or greater than the drive guarantee count N1 of the starter 11, it must be considered to prohibit the starter 11 from being driven.
  • the brush temperature T at the time of starting the engine is compared with the predetermined value T1, and when the brush temperature T at the time of starting the engine is less than the predetermined value T1, the brush 21 is worn below the allowable value. It is determined that this occurs, and the total number of times N of driving the starter 11 is increased. On the other hand, when the brush temperature T at the time of starting the engine is equal to or higher than the predetermined value T1, it is determined that wear exceeding the allowable value occurs in the brush 21, and the total number of driving times N of the starter 11 is not increased.
  • FIG. 2 is a flowchart showing processing for setting the brush deterioration flag. The flowchart of FIG. 2 is executed after the engine is started (every time the engine is started).
  • step S1 it is determined whether the engine is started after the engine is automatically stopped. Since it is the engine controller 3 that automatically stops the engine, the engine controller 3 knows whether or not the engine has been automatically stopped. If the engine is not started after the engine has been automatically stopped, the process is terminated.
  • step S2 the process proceeds to step S2, and the brush temperature T at the start is compared with a predetermined value T1.
  • the predetermined value T1 is a temperature for determining that the brush 21 is worn beyond an allowable value, and a value of, for example, 100 ° C. or more is set in advance.
  • the brush temperature T at the time of starting is detected by the temperature sensor 31 (see FIG. 1).
  • the brush temperature T at the start may be estimated.
  • total number of times the starter is driven represents the number of times the starter is driven since the start of the new starter 11 is started.
  • the total number N of times the starter is driven is initially set to zero [times] when the vehicle is shipped from the factory or when the engine is assembled at the factory. Alternatively, it is initialized to zero [times] when the starter 11 is replaced with a new one.
  • step S4 the total driving number N of the starter is compared with the guaranteed driving number N1 [times] of the starter 11.
  • step S6 when the total number of driving times N of the starter is equal to or greater than the number of guaranteed driving times N1 of the starter 11, it is determined that the starter 11 may not be driven normally due to wear of the brush 21, and the process proceeds to step S6.
  • the brush deterioration flag 1.
  • the automatic engine stop is not permitted (the automatic engine stop is prohibited).
  • FIG. 3 is a flowchart showing engine automatic stop / restart processing.
  • the flowchart of FIG. 3 shows the flow of control, and is not repeated at regular intervals.
  • step S11 it is determined whether an engine automatic stop permission condition is satisfied.
  • the automatic engine stop permission condition means that both of the following two conditions (A) and (B) are satisfied.
  • B) The brush deterioration flag 0.
  • step S13 it is determined whether an engine automatic stop cancellation condition is satisfied.
  • the engine automatic stop cancellation condition is to satisfy the following condition (C).
  • C A general engine automatic stop cancellation condition is satisfied.
  • steps S14 and S15 the second starter switch 6 is closed and the starter 11 is driven to perform cranking, and the fuel supply from the fuel injection valve 4 is resumed. As a result, the engine is started (restarted).
  • the brush temperature T at the start is less than the predetermined value T1
  • the brush 21 is worn below the allowable value, and when the guaranteed driving frequency N1 of the starter 11 is determined, the brush temperature T at the start is the predetermined value.
  • the brush 21 is worn more than the allowable value.
  • the brush wear amount when the brush temperature T at the start is equal to or higher than the predetermined value T1 is twice the brush wear amount when the brush temperature T at the start is less than the predetermined value T1.
  • 1 [times] is added to (added to) the total starter driving number N, an error occurs in the total starter driving number N.
  • the brush temperature T at the time of starting is equal to or higher than a predetermined value, the total number of driving times N is not increased, so that no error occurs in the total number of driving times N of the starter. Can do.
  • the amount of brush wear at one start is estimated based on the starter brush temperature T at the time of start. Therefore, the starter is driven in a high temperature state equal to or higher than the predetermined value T1 at which the brush wear proceeds. Even if this happens, the engine can be surely automatically stopped and restarted.
  • FIG. 4 is a flowchart showing processing for setting the brush deterioration flag of the second embodiment, which replaces FIG. 2 of the first embodiment. The same steps as those in FIG. 2 are denoted by the same step numbers.
  • the starter total drive count N is counted up (calculated) by one at each start-up, so the unit of the starter total drive count N is [times].
  • the minute hereinafter referred to as “increment”.
  • increment was 1 [time] (see step S3 in FIG. 2).
  • the increment k [times] one or more times corresponding to the brush temperature T [° C.] at start-up, that is, a value corresponding to the number of times is set.
  • step S21 in FIG. 4 a table having the characteristics shown in FIG. 5 is searched from the brush temperature T [° C.] at the start, and the increment k [ [Time] is set to an integer of 1 or more.
  • FIG. 5 is a characteristic diagram of the increment k [times] with respect to the brush temperature of the second embodiment.
  • the horizontal axis represents the starting brush temperature T
  • the vertical axis represents the increment k.
  • the first reference temperature T1 [° C.], the second reference temperature T2 [° C.], the third reference temperature T3 [° C.], and the fourth reference temperature T4 [° C.] (T1 ⁇ T2 ⁇ T3 ⁇ T4). )
  • the increment k is set to 1 [times]. This is the same as in the first embodiment.
  • the increment k is set to 2 [times]. Further, when the brush temperature at the start exceeds the second reference temperature T2 and is not more than the third reference temperature T3 (T2 ⁇ T ⁇ T3), the increment k is 3 [times], and the brush temperature at the start is the third reference temperature. When the temperature exceeds T3 and is equal to or lower than the fourth reference temperature T4 (T3 ⁇ T ⁇ T4), the increment k is set to 4 [times].
  • the brush temperature at the time of start is T1 ⁇ T ⁇ T2
  • the brush temperature at the time of start is relatively higher than that at the time of T ⁇ T1, even if it is one time of start.
  • the brush wear amount is twice as high as when the brush temperature at the start is equal to or lower than the first reference temperature T1. Therefore, considering the amount of brush wear at the time of one start at T ⁇ T1, when T1 ⁇ T ⁇ T2, brush wear for two times occurs at one start. It is necessary to add 2 [times].
  • the starter 11 when the starter 11 is driven in a relatively high temperature state in which the brush temperature at the start exceeds T1, the starter 11 is operated in a relatively low temperature state at which the brush temperature at the start is equal to or lower than T1. From the time of driving, the brush wear amount at the time of one start becomes relatively large.
  • the guaranteed drive count N1low when driving the starter 11 in a relatively low brush temperature state is different from the guaranteed drive count N1high when driving the starter 11 in a relatively high brush temperature state, and N1low> N1high. Should be. Therefore, when the start guarantee 11 is adapted when the starter 11 is driven in a relatively low brush temperature state, the drive guarantee number N1 is appropriate when the starter 11 is driven in a relatively high brush temperature state.
  • the number of reference temperatures (T1 to T4) is four, and the increment k is an integer of 1 or more, but is not limited thereto.
  • the number of reference temperatures may be at least one, and the increment k may be a decimal number of 1 or more.
  • the number of reference temperatures and the increment k are finally set by adaptation.
  • the increment k is set as a discontinuous value, but can be set as a continuous value.
  • step S22 the example in which the total starter driving number N is calculated in the form of addition has been shown.
  • the total starter driving number N may be calculated by the multiplication format, that is, the following equation (3).
  • the idle stop control device includes a starter 11 that is supplied with power via a brush 21, and automatically stops the engine when an engine automatic stop permission condition (first condition) while the vehicle is stopped is satisfied.
  • the starter 11 is used to restart the engine.
  • an increment k is set as the number of times corresponding to the brush temperature at the time of start (corresponding to the amount of brush wear at the time of one start), and the value obtained by integrating the increment k is used as the total start of the starter.
  • the number of times N is calculated, and when the total number N of restarts of the starter becomes equal to or greater than the starter driving guarantee number N1, the brush deterioration flag is set to 1 (automatic engine stop is prohibited). As a result, even when the starter 11 supplied with power via the brush 21 is driven to perform automatic engine stop / restart, the engine automatic stop / restart can be reliably performed.
  • the second embodiment it is estimated that the higher the brush temperature T at start-up, the greater the amount of brush wear at one start-up. Therefore, even when the brush temperature T at start-up is different, at one start-up The amount of brush wear can be accurately estimated.
  • the total starter driving number N is calculated according to the brush temperature T at the restart after the automatic stop.
  • the total starter driving number N according to the brush temperature T is also included during manual start. May be calculated.
  • FIG. 6 is a flowchart showing a process for setting the brush deterioration flag of the third embodiment, which replaces FIG. 4 of the second embodiment.
  • the same steps as those in FIG. 4 are denoted by the same step numbers.
  • the increment k is set according to the brush temperature T at the start.
  • the increment k is set according to at least one of voltage, current, power, and interval, which are values related to the operation of the starter 11.
  • the “voltage” is a voltage applied to the starter 11 at one start.
  • the “current” is a current that flows through the starter 11 at one start.
  • Power refers to the power used by the starter 11 at one start.
  • the “interval” is an interval between the latest start time and the previous start time.
  • the increment k is set according to at least one of voltage, current, power, and interval.
  • the voltage, current, power, and interval are closely related to the brush temperature at the start (the amount of brush wear at one start). Because it is related. For example, the voltage applied to the starter 11 at the start changes as shown in FIG. In this case, the difference voltage ⁇ V between the battery voltage before the start and the minimum battery voltage immediately after the start has a correlation with the brush temperature at the start, and the higher the brush temperature T at the start, the greater the difference voltage ⁇ V. I know that.
  • the characteristic of the increment k with respect to the differential voltage ⁇ V is set as shown in FIG.
  • the first reference difference voltage ⁇ V1 [V] the second reference difference voltage ⁇ V2 [V]
  • the third reference difference voltage ⁇ V3 [V] the fourth reference difference
  • the voltage ⁇ V4 [V] ( ⁇ V1 ⁇ V2 ⁇ V3 ⁇ V4) is set.
  • the increment k is set to 1 [times]. The processing at this time is the same as in the first embodiment.
  • the increment k is 2 [times], and the difference voltage is the second reference difference voltage ⁇ V2.
  • the increment k is 3 [times]
  • the difference voltage exceeds the third reference difference voltage ⁇ V3 and the fourth reference difference voltage ⁇ V4 or less ( ⁇ V3).
  • the increment k is set to 4 [times].
  • the brush temperature at the time of starting is higher than that in the case of ⁇ V ⁇ ⁇ V1 even in one start, and the amount of brush wear at one start is It means to double. Therefore, considering the amount of brush wear at the time of one start when ⁇ V ⁇ ⁇ V1, if ⁇ V1 ⁇ V ⁇ ⁇ V2, the wear of the brush 21 occurs twice in one start. It is necessary to add 2 [times] to the total driving number N.
  • the case where the difference voltage ⁇ V is the first reference difference voltage ⁇ V1 corresponds to the case where the starting brush temperature T is the first reference temperature T1 in the second embodiment
  • the difference voltage ⁇ V is the second reference difference voltage.
  • the time ⁇ V2 corresponds to the case where the brush temperature T at the start is the second reference temperature T2 in the second embodiment.
  • the case where the difference voltage ⁇ V is the third reference difference voltage ⁇ V3 corresponds to the case where the starting brush temperature T is the third reference temperature T3 in the second embodiment
  • the difference voltage ⁇ V is the fourth reference difference voltage ⁇ V4. This corresponds to the case where the brush temperature T at the start is the fourth reference temperature T4 in the second embodiment.
  • the number of reference differential voltages ( ⁇ V1 to ⁇ V4) is four and the increment k is an integer of 1 or more, but the present invention is not limited to this.
  • the number of the reference difference voltages may be at least one, and the increment k may be a decimal number of 1 or more.
  • the number of reference difference voltages and the increment k are finally set by adaptation.
  • the increment k is set as a discontinuous value, but can be set as a continuous value.
  • the increment k is set using this correlation.
  • the relationship between any one of current, power, and interval and the increment k is set to the same characteristic as shown in FIG. 8, and a table containing the characteristic is searched from either current, power, or interval.
  • the increment k may be set.
  • the brush temperature at the start can be predicted from the amount of power used. By measuring the resistance value (voltage difference) of the starter itself, the brush temperature at the start can also be predicted.
  • the increment k is set larger than when the current is small.
  • the increment k is set larger than when the power consumption is small.
  • the increment k is set larger than when the interval is relatively wide.
  • the increment k may be set larger than when the short interval does not continue.
  • step S22 the value obtained by adding the increment k to the total drive number N is again calculated as the total drive number N, that is, the total drive number N is calculated by the above equation (2).
  • FIG. 9 is a flowchart showing the process of setting the brush deterioration flag of the fourth embodiment, and replaces FIG. 4 of the second embodiment.
  • the same steps as those in FIG. 4 are denoted by the same step numbers.
  • the brush temperature T at the time of starting it is estimated whether the brush temperature T at the time of starting is detected. As the brush temperature T at the time of starting becomes higher, the amount of brush wear at the time of one start becomes larger. It was set.
  • the rotation amount of the motor 12 at one start (the rotation amount of the motor 12 is hereinafter referred to as “starter rotation amount”) R is detected.
  • starter rotation amount the rotation amount of the motor 12 at one start
  • the larger the starter rotation amount R at one start the larger the brush wear amount at one start, that is, the larger the starter rotation amount R at one start, the larger the increment k is set. .
  • step S ⁇ b> 41 the starter rotation amount R at the time of one start is detected by an angle sensor (not shown) provided in the motor 12.
  • the starter rotation amount R at one start may be estimated. For example, if the relationship between the start time and energization time of the starter 11 at the time of one start and the starter rotation amount R at the time of one start is obtained in advance as a characteristic, the starter start time at the time of one start.
  • the starter rotation amount R at the time of one start can be estimated by searching a table having the above characteristics from the energization time and the energization time.
  • the engine controller 3 can know the start-up time and energization time of the starter 11 at one start.
  • step S42 a table having the characteristics shown in FIG. 10 is searched from the starter rotation amount R at the time of one start obtained in step S41, and an increment k [times] is set.
  • FIG. 10 is a characteristic diagram of the increment k with respect to the starter rotation amount R.
  • the horizontal axis is the starter rotation amount R at the time of one start
  • the vertical axis is the increment k.
  • the first reference starter rotation amount R1, the second reference starter rotation amount R2, the third reference starter rotation amount R3, and the fourth reference starter rotation amount R4 (R1 ⁇ R2 ⁇ R3 ⁇ R4) is set.
  • the increment k is set to 1 [times]. The processing at this time is the same as in the first embodiment.
  • the increment k is set to 2 [times].
  • the increment k is set to 3 [times]
  • the increment k is set to 4 [times].
  • step S22 a value obtained by adding the increment k set in step S42 to the total starter driving number N is again calculated as the total starter driving number N, that is, the total starter driving number N is calculated by the above equation (2). .
  • the brush wear amount at one start is estimated by the starter rotation amount R at one start, even if the starter rotation amount R at one start is different, 1 It is possible to accurately estimate the amount of brush wear at the start of each rotation. In particular, it is estimated that the brush wear amount at the time of one start increases as the starter rotation amount R at the time of one start increases. It is possible to accurately estimate the amount of brush wear at the time of starting.
  • FIG. 11 is a flowchart showing a process for setting the brush deterioration flag of the fifth embodiment, which replaces FIG. 9 of the fourth embodiment. The same steps as those in FIG. 9 are denoted by the same step numbers.
  • the fourth embodiment shown in FIG. 9 takes into account the starter rotation amount R at the time of one start by automatic start.
  • the fifth embodiment further considers starter rotation amounts R2 and R3 (described later) at the time of one start by manual start. That is, the total starter driving number N is calculated in consideration of the starter rotation amounts R2 and R3 at the time of one start by manual start.
  • step S1 when it is determined in step S1 that the engine start is not after the automatic engine stop, that is, a manual start (start performed by the driver), the process proceeds to step S51, and it is determined whether or not the manual start method is the key start method. To do.
  • the manual start method includes a push button start method and a key start method.
  • the “push button starting method” means that when the driver pushes the push button in the driver's seat, the control device such as the body control module closes the second starter switch 6 on behalf of the driver, In this method, the starter 11 is started.
  • the “key start method” is a method in which the starter 11 continues to start while the driver closes the starter switch 2 (see FIG. 1). Which starting method is used is determined in advance by the specification of the vehicle.
  • step S51 when the manual start method is the key start method, the process proceeds to step S52, and the starter rotation amount R2 at the time of one start in the key start method is detected. Subsequently, in step S53, an increment k is set according to the obtained starter rotation amount R2 at the time of one start in the key start method.
  • steps S52 and S53 are the same as the processes in steps S41 and S42. That is, in step S52, the rotation amount R2 of the starter at the time of one start in the key start method is detected by an angle sensor (not shown) provided in the motor 12. However, the starter rotation amount R2 at the time of one start in the key start method may be estimated.
  • the characteristics indicating the relationship between the start time and energization time of the starter 11 at the time of one start in the key start method and the starter rotation amount R2 at the time of one start in the key start method are obtained in advance by adaptation.
  • the starter rotation amount at the time of one start in the key start method is searched by searching a table having the above characteristics from the start time and the energization time of the starter 11 at the time of one start in the key start method.
  • R2 can be estimated.
  • the engine controller 3 can know the start-up time and energization time of the starter 11 at one start in the key start method.
  • the starter rotation amount remains only for an appropriate time.
  • the time for which the starter 11 is continuously started tends to be long, and the starter rotation amount R2 at one start in the key start method increases.
  • step S51 if it is determined in step S51 that the manual start method is not the key start method, that is, the push button start method, the process proceeds to step S55, and the starter rotation amount R3 at one start in the push button start method is detected. .
  • step S56 an increment k3 is set according to the obtained starter rotation amount R3 at the time of one start in the push button start method.
  • steps S55 and S56 are slightly different from the processes in steps S52 and S53.
  • the starter 11 is driven by a control device such as a body control module. For this reason, how long the starter 11 is driven, that is, the starter rotation amount R3 at the time of one start in the push button start method is determined in advance. Therefore, this predetermined value (a constant value) is used as the starter rotation amount R3 at the time of one start in the push button start method, and an increment k3 (also a constant value of 1 or more) according to the starter rotation amount R3.
  • the starter total drive count N is calculated in consideration of not only the starter rotation amount R at the time of one start by automatic start but also the starter rotation amounts R2, R3 at the time of one start by manual start. According to 5th Embodiment, there exists an effect similar to 4th Embodiment.
  • FIG. 12 is a flowchart showing a process for setting the brush deterioration flag of the sixth embodiment, which replaces FIG. 9 of the fourth embodiment. The same steps as those in FIG. 9 are denoted by the same step numbers.
  • Starter pre-engagement may be performed while the engine speed is decreasing from the idle state toward zero due to the automatic stop of the engine.
  • starter pre-engagement is an operation of previously engaging the pinion gear 18 and the ring gear 19 of the starter 11 in preparation for restarting the engine from automatic stop.
  • a ring gear 19 is formed on the outer periphery of a flywheel attached to the rear end of the crankshaft.
  • the starter 11 engages the pinion gear 18 with the ring gear 19 to drive the ring gear 19 (cranking is performed).
  • the pinion gear 18 of the starter 11 is not normally engaged with the ring gear 19. Therefore, it takes a certain time to mesh the pinion gear 18 with the ring gear 19.
  • start cranking
  • the pinion gear 18 and the ring gear 19 of the starter 11 are meshed in advance, so that it is not necessary to mesh the pinion gear 18 with the ring gear 19 at the time of starting. Therefore, cranking can be performed promptly.
  • the starter rotation amount R at the time of one start is substantially increased as compared with the idle stop control device not having the starter pre-engage function.
  • the starter rotation amount rotated in accordance with the starter pre-engagement is included (added) to the starter rotation amount R at the time of one start.
  • step S61 it is determined whether or not starter pre-engagement is performed in step S61.
  • the engine controller 3 can know in advance whether or not the starter pre-engagement is being performed.
  • steps S42 and S22 are executed. This is the same as in the fourth embodiment.
  • step S61 if starter pre-engagement is performed, the process proceeds from step S61 to step S62, and a value obtained by adding a constant value ⁇ R to the starter rotation amount R at the time of one start is used as the starter rotation at the time of one start.
  • the amount be R.
  • the constant value ⁇ R is the amount of starter rotation accompanying the starter pre-engagement.
  • the constant value ⁇ R is obtained in advance by adaptation.
  • the idle stop control device since the starter rotation amount rotated with the starter pre-engagement is included in the starter rotation amount R at the time of one start, the idle stop control device is provided with a starter pre-engage function.
  • the total number of times N of the starter can be obtained with high accuracy. This is particularly effective when the starter rotation amount R is estimated and obtained.
  • FIG. 13 is a flowchart showing a process for setting the brush deterioration flag of the seventh embodiment, which replaces FIG. 9 of the fourth embodiment.
  • the same steps as those in FIG. 2 are denoted by the same step numbers.
  • step S1 if the engine start is after the engine is automatically stopped in step S1, the process proceeds to step S3, and a value obtained by adding 1 [times] to the total starter drive count N [times] is added to the new starter total drive count N. And In other words, the total starter driving number N is calculated by the above equation (1).
  • step S91 a table having the characteristics shown in FIG. 14 is searched from the total starter driving number N obtained in step S3, and the brush wear amount ⁇ Abr [mm] at one start is calculated.
  • FIG. 14 is a characteristic diagram of the brush wear amount ⁇ Abr [mm] with respect to the total number N of times the starter is driven. As shown in FIG. 14, the brush wear amount ⁇ Abr at the time of one start-up becomes smaller as the total number N of times the starter is driven becomes larger. This is obtained from the solid line characteristic of FIG.
  • FIG. 15 is a diagram showing how the total brush wear amount Abr increases with respect to the total starter driving frequency N.
  • FIG. 15 in a region where the total starter driving number N is relatively small, brush wear proceeds rapidly, and in a region where the total starter driving number N is relatively large, the speed at which brush wear proceeds decreases.
  • Such upward convex curve characteristics depend on the configuration of the brush 21. That is, although not shown in FIG. 1, by pressing the brush 21 against the commutator 22 with a spring, good electrical contact with the commutator 22 is ensured, and power is supplied from the brush 21 to the commutator 22 even when the commutator 22 rotates. Is done efficiently.
  • step S92 the total brush wear amount Abr [mm] (initially set to zero when the vehicle is shipped from the factory or when the engine is assembled at the factory) is added to the new brush wear amount ⁇ Abr at one start.
  • the total brush wear amount Abr [mm] That is, the total brush wear amount Abr is calculated from the following equation (6).
  • Abr Abr + ⁇ Abr (6)
  • step S93 the total brush wear amount Abr is compared with the drive guaranteed wear amount Abr1.
  • the guaranteed drive wear amount Abr1 is a value that may cause the starter 11 to not be driven normally due to wear of the brush 21 when the total brush wear amount is larger than that.
  • the brush deterioration flag set in this way is used in the engine automatic stop / restart process of FIG.
  • the brush wear amount ⁇ Abr at one start is calculated, and the total brush wear amount Abr is calculated by adding (adding) the brush wear amount ⁇ Abr at one start.
  • the brush wear amount Abr becomes equal to or greater than the drive guarantee wear amount Abr1 of the starter 11, the brush deterioration flag is set to 1 (automatic engine stop is prohibited). Accordingly, even when the engine automatic stop / restart is performed using the starter 11 supplied with power via the brush 21, the engine automatic stop / restart can be reliably performed.
  • FIG. 16 is a block diagram illustrating a configuration of the idle stop control device of the reference embodiment. The same parts as those in FIG.
  • the idle stop control device including one starter 11 is targeted.
  • the reference embodiment is directed to an idle stop control device including two starters.
  • the configuration including two starters is simply a configuration in which a motor generator 23 driven by a belt 24 is provided instead of the conventional alternator, and the second starter function is provided separately from the conventional starter 11. It has been made.
  • the starter 11 meshes a pinion gear (not shown) with an engine ring gear (not shown) and transmits power (rotation) from the motor 12 to the crankshaft 22 on the basis of the engine start operation of the driver. Start up.
  • the motor generator 23 is connected to the crankshaft 22 of the engine 21 by a belt 24.
  • the motor generator 23 functions as a generator (generator) using the engine 21 as a drive source, and also functions as a second starter that starts the engine 21 when the engine 21 is restarted from an automatic stop.
  • the reason why the motor generator 23 driven by the belt 24 is provided in place of the conventional alternator is as follows. That is, if the automatic stop / restart of the engine is repeated only with the starter 11 having the motor 12 with the brush 21 shown in FIG. 1, the wear of the brush 21 is accelerated, and the automatic stop / restart of the engine 21 using the starter 11 is performed. You may not be able to do it. Therefore, a motor generator 23 driven by a belt 24 is used as a second starter for frequently stopping and restarting the engine. In this case, a brushless motor generator is employed as the motor generator 23.
  • Battery 25 supplies current to starter 11 and motor generator 23.
  • the voltage sensor 26 detects the voltage of the battery 25 and outputs it to the engine controller 3.
  • the current sensor 27 detects the charging / discharging current of the battery 25 and outputs it to the engine controller 3.
  • FIG. 17 is a flowchart showing processing for setting the brush deterioration flag of the reference embodiment, which replaces FIG. 9 of the fourth embodiment. The same steps as those in FIG. 9 are denoted by the same step numbers.
  • step S1 of FIG. 17 it is determined whether or not the engine is started after the engine is automatically stopped. If the engine is started after the engine is automatically stopped, the starter 11 is not used, and the process is terminated as it is.
  • step S41 If the engine start is not after the engine is automatically stopped, that is, if it is a start using the starter 11 (manual start), the process proceeds to step S41 and subsequent steps, the same processing as in the fourth embodiment is performed, and the brush deterioration flag is set. To do.
  • the value of the brush deterioration flag is stored in a memory 28 (see FIG. 16) such as an EEPROM so that the value is not lost even after the operation of the vehicle is finished.
  • FIG. 18 is a flowchart showing an engine start process in the reference embodiment.
  • the flowchart of FIG. 18 is executed every time the engine is started when starting the vehicle, that is, every manual start. In relation to the flowchart shown in FIG. 17, it is executed prior to the processing of the flowchart shown in FIG. That is, the processing of the flowchart shown in FIG. 18 is executed immediately after the ignition key switch is turned on, and then the processing of the flowchart shown in FIG. 17 is executed after the engine is started.
  • step S81 in FIG. 18 it is determined whether or not the brush deterioration flag is 1.
  • the brush deterioration flag is stored in the memory 28 at the end of the previous vehicle operation after being set in the process of the flowchart shown in FIG.
  • two starters a starter 11 that is fed via a brush 21 and a motor generator 23 driven by a belt 24 as a second starter, are provided, and an engine using the motor generator 23 as a second starter.
  • an increment k (value corresponding to the number of times) is set according to the amount of rotor rotation at the time of starting the starter 11 once, and a value obtained by integrating the increment k is calculated as the total number of times N of driving the starter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Motor Or Generator Current Collectors (AREA)

Abstract

 第一の条件が成立するとエンジンを自動停止し、その後に第二の条件が成立すると、ブラシを介して給電されるスタータを用いてエンジンを再始動させるアイドルストップ制御装置は、1回の始動時のブラシ摩耗量を算出する始動時ブラシ摩耗量算出部と、1回の始動時のブラシ摩耗量を積算して総ブラシ摩耗量を算出する総ブラシ摩耗量算出部と、総ブラシ摩耗量がスタータの駆動保証摩耗量以上になると、エンジンの自動停止を禁止するエンジン自動停止禁止部とを備える。

Description

アイドルストップ制御装置
 この発明は、第一の条件が成立したらエンジンを自動停止し、その後に第二の条件が成立したら、スタータを用いてエンジンを再始動させるアイドルストップ制御装置の改良に関する。
 スタータの総駆動回数Tがスタータの駆動保証回数以上となった場合に、スタータの駆動が正常に行われない可能性があると判断し、エンジンの自動停止を禁止する技術が知られている(JP2001-65440A参照)。この技術では、手動始動時のスタータ駆動回数の積算値Cmと自動始動時のスタータ駆動回数の積算値Caとを別々に求めると共に、手動始動と自動始動の負荷の違いを考慮して、負荷割合α:βを導入する。そして、スタータの総駆動回数Tを、次式により算出する。
  T=α×Cm+β×ca
この場合、負荷割合α:βを決定する要因として、バッテリ電圧、エンジン冷間状態(エンジン水温、外気温)を挙げている。
 ところで、上ブラシを介して給電されるスタータは、スタータを駆動するたびにブラシが摩耗していく。従って、ブラシ摩耗量を考慮してスタータの総駆動回数を求める必要がある。
 しかしながら、JP2001-65440Aに開示されている技術では、スタータの耐久劣化に至る要因として、ピニオンギアとリングギアとのかみ合いによる摩耗を挙げるのみで、ブラシ摩耗量については言及されていない。
 本発明は、ブラシを介して給電されるスタータを駆動してエンジン自動停止・再始動を行わせる場合でも、確実にエンジン自動停止・再始動が行われるようにし得る装置を提供することを目的とする。
 本発明の一態様におけるアイドルストップ制御装置は、第一の条件が成立するとエンジンを自動停止し、その後に第二の条件が成立すると、ブラシを介して給電されるスタータを用いてエンジンを再始動させる。このアイドルストップ制御装置において、1回の始動時のブラシ摩耗量を算出する始動時ブラシ摩耗量算出部と、1回の始動時のブラシ摩耗量を積算して総ブラシ摩耗量を算出する総ブラシ摩耗量算出部と、総ブラシ摩耗量がスタータの駆動保証摩耗量以上になると、エンジンの自動停止を禁止するエンジン自動停止禁止部とを備える。
 本発明の実施形態、本発明の利点については、添付された図面とともに以下に詳細に説明される。
図1は、第1実施形態のアイドルストップ制御装置の概略構成図である。 図2は、第1実施形態のブラシ劣化フラグの設定を説明するためのフローチャートである。 図3は、第1実施形態のエンジン自動停止・再始動の処理を説明するためのフローチャートである。 図4は、第2実施形態のブラシ劣化フラグの設定を説明するためのフローチャートである。 図5は、第2実施形態のブラシ温度に対する増分の特性図である。 図6は、第3実施形態のブラシ劣化フラグの設定を説明するためのフローチャートである。 図7は、始動時のバッテリ電圧の変化を示す特性図である。 図8は、第3実施形態の差電圧に対する増分の特性図である。 図9は、第4実施形態のブラシ劣化フラグの設定を説明するためのフローチャートである。 図10は、第4実施形態のスタータ回転量に対する増分の特性図である。 図11は、第5実施形態のブラシ劣化フラグの設定を説明するためのフローチャートである。 図12は、第6実施形態のブラシ劣化フラグの設定を説明するためのフローチャートである。 図13は、第7実施形態のブラシ劣化フラグの設定を説明するためのフローチャートである。 図14は、第7実施形態の総駆動回数に対するブラシ摩耗量の特性図である。 図15は、第7実施形態の総駆動回数に対する総ブラシ摩耗量の特性図である。 図16は、参考実施形態のアイドルストップ制御装置の構成を示すブロック図である。 図17は、参考実施形態のブラシ劣化フラグの設定を説明するためのフローチャートである。 図18は、参考実施形態のエンジン始動の処理を説明するためのフローチャートである。
 (第1実施形態)
 図1は本発明の第1実施形態のアイドルストップ制御装置の概略構成図である。このアイドルストップ制御装置は、車両(図示しない)に搭載されている。
 図1において、スタータ11は、モータ12とエンジン側との結合離脱を行うためのマグネットスイッチ13を備えている。マグネットスイッチ13は、シフトレバー16を介して、オーバランニングクラッチ17を図1の左右に移動させる。このとき、オーバランニングクラッチ17が図1の右方向に押し出されると、ピニオンギア18がリングギア19に噛み合い、モータ12の駆動力がリングギア19(エンジン側)に伝達される。
 詳細には、マグネットスイッチ13は、吸引コイル13aと保持コイル13bとを有し、スタータスイッチ2が投入されることにより、バッテリ1から吸引コイル13aと保持コイル13bとに矢印の方向に電流が流れる。すると、このとき発生する吸引力により、プランジャ13cが図1の左側へ移動し、シフトレバー16を介してピニオンギア18を押し出し、ピニオンギア18とリングギア19とが噛み合う。こうしてプランジャ13cが移動するとき、マグネットスイッチ13の主接点13dが閉じて、バッテリ1からブラシ21を介してコンミテータ22(モータ12)に電流が流れモータ12が回転する。モータ12の回転に伴うトルクがピニオンギア18を介してリングギア19に伝達され、エンジンが始動する。
 エンジン始動後、スタータスイッチ2をオフすると、プランジャ13cの吸引力が解消され、リターンスプリング14の付勢力により、プランジャ13cが元の位置に戻る。従って、マグネットスイッチ13の主接点13dが開いて、モータ12への通電が遮断されると共に、ピニオンギア18とリングギア19とが離れる。
 エンジンコントローラ3は、アクセルペダルの踏み込み量に応じて、燃料噴射弁4からの燃料供給と、点火プラグ5による点火時期とを制御するとともに、燃費の一層の向上を目指して所定の条件が成立したときに、エンジンの自動停止・再始動の処理を行う。このエンジンの自動停止・再始動の処理では、エンジンコントローラ3がドライバに代わってスタータ11を駆動するため、スタータスイッチ2と並列に、常開の第2スタータスイッチ6を設けている。第2スタータスイッチ6は、エンジンコントローラ3からの指示に従って開閉される。
 エンジンコントローラ3による車両停車中のエンジン自動停止は、エンジンの暖機運転完了後の車両停止中に、車両停止中のエンジン自動停止許可条件(第一の条件)が成立したときに、燃料カットを行ってエンジンを自動停止させる。その後に、車両停車中のエンジン自動停止解除条件(第二の条件)が成立したとき、第2スタータスイッチ6を閉じてスタータ11を駆動してエンジンのクランキングを行いつつ燃料供給を再開して、エンジンを再始動させる。エンジンを自動停止させている期間は、燃料が消費されることがないので、燃費を向上させることができる。ここで、燃料カットとは、燃料噴射弁4からの燃料供給をカットすることをいう。
 図1では詳述していないが、スプリングによりブラシ21をコンミテータ22に押しつけるように構成している。これによって、ブラシ21とコンミテータ22との良好な接触を確保し、コンミテータ22の回転時にもブラシ21からコンミテータ22へと給電が効率的に行われる。このように、ブラシ21を介して給電されるスタータ11では、車両停車中のエンジン自動停止解除条件(第二の条件)が成立して駆動されるたびに、ブラシ21がわずかではあるが摩耗していく。具体的には、ブラシ21のほうがコンミテータ22より材質が柔らかいので、ブラシ21のほうが摩耗し、ブラシ21の長さが短くなってゆく。
 このため、ブラシ21を介して給電されるスタータ11を用いてエンジン自動停止・再始動を行わせるときには、総ブラシ摩耗量から定まるスタータ11の駆動保証回数N1を予め定めておき、スタータ11の総駆動回数Nがこのスタータ11の駆動保証回数N1以上となったとき、スタータ11の駆動を禁止することを考えなければならない。
 そこで、本発明の第1実施形態では、エンジン始動時のブラシ温度Tと所定値T1を比較し、エンジン始動時のブラシ温度Tが所定値T1未満のときには、ブラシ21に許容値以下の摩耗が生じると判断して、スタータ11の総駆動回数Nを増やしていく。一方、エンジン始動時のブラシ温度Tが所定値T1以上のときには、ブラシ21に許容値を超える摩耗が生じると判断して、スタータ11の総駆動回数Nを増やさない。これは、1回の始動時に生じるブラシ摩耗量が許容値を超える場合にも、1回の始動時に生じるブラシ摩耗量が許容値以下の場合と同じに扱ってスタータ11の総駆動回数Nを増やしたのでは、総駆動回数Nに誤差が生じてしまうためである。
 エンジンコントローラ3で行われるこの制御をフローチャートに基づいて説明する。
 図2は、ブラシ劣化フラグを設定する処理を示すフローチャートである。図2のフローチャートは、エンジンが始動した後(エンジンの始動毎)に実行する。
 ステップS1では、エンジン始動がエンジン自動停止後であるか否かを判定する。エンジンを自動停止するのはエンジンコントローラ3であるので、エンジンを自動停止したか否かはエンジンコントローラ3が知っている。エンジン始動がエンジン自動停止後でなければそのまま処理を終了する。
 エンジン始動がエンジン自動停止後であればステップS2に進み、始動時のブラシ温度Tと所定値T1を比較する。所定値T1はブラシ21が許容値を超えて摩耗すると判定するための温度で、例えば100℃以上の値を予め設定しておく。始動時のブラシ温度Tは温度センサ31(図1参照)によって検出する。始動時のブラシ温度Tは、推定するようにしてもかまわない。
 始動時のブラシ温度Tが所定値T1未満であれば、ブラシ21は許容値を超えて摩耗しないと判断してステップS3に進み、前回までのスタータ11の駆動回数N[回]を1[回]だけ加算した値を今回までのスタータ11の駆動回数Nとする。すなわち、次式(1)により、今回までのスタータ11の駆動回数Nを算出する。
  N=N+1                       …(1)
 以下、今回までのスタータ11の駆動回数を「スタータの総駆動回数」という。スタータの総駆動回数Nは、新品のスタータ11の使用を開始してからスタータの駆動を行った回数を表す。スタータの総駆動回数Nは、車両の工場出荷時にまたは工場でのエンジン組み立て時にゼロ[回]に初期設定しておく。あるいは、スタータ11の新品への交換時にゼロ[回]に初期設定する。
 ステップS4では、このスタータの総駆動回数Nとスタータ11の駆動保証回数N1[回]を比較する。スタータ11の駆動保証回数N1は、それ以上のスタータの総駆動回数になると、ブラシ21の摩耗に起因してコンミテータ22への給電が効率よく行われないために、スタータ11の駆動が正常に行われない可能性がある値である。この値は、スタータ11の仕様等から予め定めておく。スタータの総駆動回数Nがスタータ11の駆動保証回数N1未満であれば、ステップS5に進み、ブラシ劣化フラグ=0とする。ブラシ劣化フラグ=0であるときには、スタータ11を正常に駆動し得るので、後述するようにエンジンの自動停止が許可される。
 一方、スタータの総駆動回数Nがスタータ11の駆動保証回数N1以上になったときには、ブラシ21の摩耗でスタータ11の駆動が正常に行われない可能性があると判断してステップS6に進み、ブラシ劣化フラグ=1とする。ブラシ劣化フラグ=1であるときには、後述するようにエンジンの自動停止が許可されない(エンジンの自動停止が禁止される)。
 ステップS2でブラシ温度Tが所定値T1を超えたときにもステップS6に進んで、ブラシ劣化フラグ=1とする。
 図3は、エンジン自動停止・再始動の処理を示すフローチャートである。図3のフローチャートは、制御の流れを示すもので、一定時間毎に繰り返すものでない。
 ステップS11では、エンジン自動停止許可条件が成立しているか否かを判定する。ここで、エンジン自動停止許可条件とは、次の(A)、(B)の2つの条件を共に満足することである。
 (A)一般的なエンジン自動停止許可条件が成立している。
 (B)ブラシ劣化フラグ=0である。
 上記(A)、(B)のいずれかの条件が成立していなければ、つまりブラシ劣化フラグ=1(ブラシ21が劣化している)ときには、エンジン自動停止許可条件が成立していないと判断し、そのまま待機する(エンジン自動停止が許可されない)。このように、エンジン自動停止許可条件として(B)の条件を新たに加えている。
 上記(A)、(B)の条件を共に満たせば、エンジン自動停止許可条件が成立していると判断してステップS12に進み、燃料カットを実行する。
 ステップS13では、エンジン自動停止解除条件が成立しているか否かを判定する。ここで、エンジン自動停止解除条件とは、次の(C)の条件を満足することである。
 (C)一般的なエンジン自動停止解除条件が成立している。
 上記(C)の条件が成立していなければ、エンジン自動停止解除条件が成立していないと判断しそのまま待機する。
 上記(C)の条件を満たせば、エンジン自動停止解除条件が成立していると判断してステップS14、S15に進む。ステップS14、S15では、第2スタータスイッチ6を閉成してスタータ11を駆動することによりクランキングを行わせると共に、燃料噴射弁4からの燃料供給を再開する。これによってエンジンが始動(再始動)される。
 ここで、第1実施形態の作用効果を説明する。
 始動時のブラシ温度Tが所定値T1未満の場合に、ブラシ21に許容値未満の摩耗が生じるとして、スタータ11の駆動保証回数N1を定めている場合に、始動時のブラシ温度Tが所定値T1以上の場合には、ブラシ21に許容値以上の摩耗が生じる。例えば簡単のため、始動時のブラシ温度Tが所定値T1以上の場合のブラシ摩耗量は、始動時のブラシ温度Tが所定値T1未満の場合のブラシ摩耗量の2倍であるとする。このときにもスタータの総駆動回数Nに1[回]を積算(加算)するとすれば、スタータの総駆動回数Nに誤差が生じる。つまり、相対的に高温状態でのスタータ11の駆動によって1回の始動時のブラシ摩耗量が2回の駆動分生じる場合にも、総駆動回数Nに1[回]として加算したのでは、総駆動回数Nは1回不足することとなり、実際より小さな値を見積もることになる。この結果、スタータの総駆動回数Nがスタータ11の駆動保証回数N1に到達する以前に、実際にはブラシ21の摩耗でスタータ11の駆動が正常に行われない可能性があるのに、スタータ11の駆動を許可することになってしまう。
 一方、第1実施形態では、始動時のブラシ温度Tが所定値以上の場合には、総駆動回数Nを増やさないようにするので、スタータの総駆動回数Nに誤差が生じないようにすることができる。
 このように第1実施形態によれば、1回の始動時のブラシ摩耗量を始動時のスタータブラシ温度Tによって推定するので、ブラシ摩耗が進行する所定値T1以上の高温状態でスタータを駆動することがあっても、確実にエンジン自動停止・再始動が行わせることができる。
 (第2実施形態)
 図4は、第2実施形態のブラシ劣化フラグを設定する処理を示すフローチャートであり、第1実施形態の図2と置き換わる。図2と同一部分には、同一のステップ番号を付している。
 第1実施形態では、1回の始動時毎にスタータの総駆動回数Nを1ずつカウントアップ(算出)しているので、スタータの総駆動回数Nの単位は[回]であり、従ってカウントアップ分(以下「増分」という。)は1[回]であった(図2のステップS3参照)。一方、第2実施形態では、増分k[回]として、始動時のブラシ温度T[℃]に応じた1以上の回数、つまり回数相当値を設定する。
 第1実施形態と相違する部分を主に説明すると、図4においてステップS21では、始動時のブラシ温度T[℃]から、図5に示す特性を内容とするテーブルを検索して、増分k[回]を1以上の整数で設定する。
 図5は、第2実施形態のブラシ温度に対する増分k[回]の特性図である。図5において、横軸を始動時のブラシ温度T、縦軸を増分kとしている。始動時のブラシ温度に、第1基準温度T1[℃]、第2基準温度T2[℃]、第3基準温度T3[℃]、第4基準温度T4[℃](T1<T2<T3<T4)を採り、始動時のブラシ温度Tが第1基準温度以下(T≦T1)の場合、増分kを1[回]としている。このときは、第1実施形態と同じである。
 一方、始動時のブラシ温度が第1基準温度T1を超えかつ第2基準温度T2以下(T1<T≦T2)の場合、増分kを2[回]としている。また、始動時のブラシ温度が第2基準温度T2を超えかつ第3基準温度T3以下(T2<T≦T3)の場合、増分kを3[回]、始動時のブラシ温度が第3基準温度T3を超えかつ第4基準温度T4以下(T3<T≦T4)の場合、増分kを4[回]としている。これは、例えば、始動時のブラシ温度がT1<T≦T2のときには、1回の始動であってもT≦T1のときより始動時のブラシ温度が相対的に高くて、1回の始動時のブラシ摩耗量が、始動時のブラシ温度が第1基準温度T1以下のときより2倍になることを意味している。従って、T≦T1での1回の始動時のブラシ摩耗量を基準に考えると、T1<T≦T2のときには1回の始動で2回分のブラシ摩耗が生じるので、スタータの総駆動回数Nに2[回]を加算する必要があるのである。
 さらに述べると、始動時のブラシ温度がT1を超えている相対的に高い温度状態でスタータ11を駆動するときのほうが、始動時のブラシ温度がT1以下の相対的に低い温度状態でスタータ11を駆動するときより、1回の始動時のブラシ摩耗量が相対的に大きくなる。つまり、相対的に低いブラシ温度状態でスタータ11を駆動するときの駆動保証回数N1lowと、相対的に高いブラシ温度状態でスタータ11を駆動するときの駆動保証回数N1highとでは相違し、N1low>N1highとなるはずである。従って、相対的に低いブラシ温度状態でスタータ11を駆動するときに駆動保証回数N1を適合している場合に、相対的に高いブラシ温度状態でスタータ11を駆動するときには、駆動保証回数N1が適切な値を与えず、適切な値より大き過ぎることになる。そこで、相対的に高いブラシ温度状態でスタータ11を駆動するときには、相対的に低いブラシ温度状態でスタータ11を駆動するときより増分kを増やす。これによって、相対的に低いブラシ温度状態でスタータ11を駆動するときより、早期に駆動保証回数N1に到達するようにする。
 図5では、基準温度(T1~T4)の数を4つ、増分kを1以上の整数としているが、これに限定されるものでない。基準温度の数は少なくとも1つあればよく、増分kは1以上の小数でもかまわない。基準温度の数及び増分kは、最終的には適合により設定する。また、図5では、増分kを不連続値で設置しているが、連続値で設定することもできる。
 図4に示すフローチャートの処理の説明に戻る。ステップS22では、スタータの総駆動回数Nに、増分kを加算した値を、スタータの総駆動回数Nとする。すなわち、次式(2)により、スタータの総駆動回数Nを算出する。
  N=N+k                       …(2)
 ステップS22では、スタータの総駆動回数Nを加算の形式で算出する例を示したが、乗算の形式、つまり、次式(3)により、スタータの総駆動回数Nを算出するようにしてもよい。なお、式(3)のk1は増分率[%]である。
  N=N・k1                      …(3)
 第2実施形態におけるアイドルストップ制御装置は、ブラシ21を介して給電されるスタータ11を備え、車両停止中のエンジン自動停止許可条件(第一の条件)が成立したらエンジンを自動停止し、その後に車両停車中のエンジン自動停止解除条件(第二の条件)が成立したら、スタータ11を用いてエンジンを再始動させる。このアイドルストップ制御装置において、始動時のブラシ温度(1回の始動時のブラシ摩耗量相当)に応じて回数相当値としての増分kを設定し、この増分kを積算した値をスタータの総始動回数Nとして算出し、このスタータの総再始動回数Nがスタータの駆動保証回数N1以上となったときブラシ劣化フラグ=1とする(エンジンの自動停止を禁止する)。これにより、ブラシ21を介して給電されるスタータ11を駆動してエンジン自動停止・再始動を行わせる場合でも、確実にエンジン自動停止・再始動を行わせることができる。
 第2実施形態によれば、始動時のブラシ温度Tが高いほど1回の始動時のブラシ摩耗量が大きくなると推定するので、始動時のブラシ温度Tが相違しても、1回の始動時のブラシ摩耗量を精度よく推定できる。
 なお、本実施形態では、自動停止後の再始動時にブラシ温度Tに応じてスタータの総駆動回数Nを算出したが、さらに手動始動時も含めてブラシ温度Tに応じてスタータの総駆動回数Nを算出するようにしてもよい。
 (第3実施形態)
 図6は、第3実施形態のブラシ劣化フラグを設定する処理を示すフローチャートであり、第2実施形態の図4と置き換わる。図4と同一部分には、同一のステップ番号を付している。
 第2実施形態では、始動時のブラシ温度Tに応じて増分kを設定した。第3実施形態では、スタータ11の作動に関連する値である電圧、電流、電力、インターバルの少なくとも1つに応じて、増分kを設定する。ここで、「電圧」とは、1回の始動時にスタータ11に印加する電圧のことである。「電流」とは、1回の始動時にスタータ11に流れる電流のことである。「電力」とは、1回の始動時のスタータ11の使用電力のことである。「インターバル」とは、最新の始動時期とその一つ前の始動時期との間隔のことである。
 電圧、電流、電力、インターバルの少なくとも1つに応じて増分kを設定するのは、これら電圧、電流、電力、インターバルが始動時のブラシ温度(1回の始動時のブラシ摩耗量)と密接に関係しているためである。例えば、始動時にスタータ11に印加される電圧は、図7に示したように変化する。この場合に、始動前のバッテリ電圧と始動直後のバッテリ電圧最小値との差電圧ΔVは、始動時のブラシ温度と相関があり、始動時のブラシ温度Tが高いほど、差電圧ΔVが大きくなることが分かっている。
 従って、差電圧ΔVに対する増分kの特性を図8に示したように設定する。図8では、差電圧と比較するための基準差電圧として、第1基準差電圧ΔV1[V]、第2基準差電圧ΔV2[V]、第3基準差電圧ΔV3[V]、第4基準差電圧ΔV4[V](ΔV1<ΔV2<ΔV3<ΔV4)を設定している。差電圧ΔVが第1基準差電圧ΔV1以下(ΔV≦ΔV1)の場合に、増分kを1[回]とする。このときの処理は、第1実施形態と同じである。
 一方、差電圧が第1基準差電圧温度ΔV1を超えかつ第2基準差電圧ΔV2以下(ΔV1<ΔV≦ΔV2)の場合は、増分kを2[回]、差電圧が第2基準差電圧ΔV2を超えかつ第3基準差電圧ΔV3以下(ΔV2<ΔV≦ΔV3)の場合は、増分kを3[回]、差電圧が第3基準差電圧ΔV3を超えかつ第4基準差電圧ΔV4以下(ΔV3<ΔV≦ΔV4)の場合は、増分kを4[回]としている。これは、例えば差電圧がΔV1<ΔV≦ΔV2の場合には、1回の始動であってもΔV≦ΔV1の場合より始動時のブラシ温度が高くて、1回の始動時のブラシ摩耗量が2倍になることを意味している。従って、ΔV≦ΔV1での1回の始動時のブラシ摩耗量を基準に考えると、ΔV1<ΔV≦ΔV2の場合には、1回の始動で2回分の摩耗がブラシ21に生じるので、スタータの総駆動回数Nに2[回]を加算する必要がある。
 ここで、差電圧ΔVが第1基準差電圧ΔV1のときが、第2実施形態において始動時のブラシ温度Tが第1基準温度T1であるときに相当し、差電圧ΔVが第2基準差電圧ΔV2のときが、第2実施形態において始動時のブラシ温度Tが第2基準温度T2であるときに相当する。また、差電圧ΔVが第3基準差電圧ΔV3のときが、第2実施形態において始動時のブラシ温度Tが第3基準温度T3であるときに相当し、差電圧ΔVが第4基準差電圧ΔV4のときが、第2実施形態において始動時のブラシ温度Tが第4基準温度T4であるときに相当する。
 図8では、基準差電圧(ΔV1~ΔV4)の数を4つ、増分kを1以上の整数としているが、これに限定されるものでない。基準差電圧の数は少なくとも1つあればよく、増分kは1以上の小数でもかまわない。基準差電圧の数及び増分kは、最終的には適合により設定する。また、図8では、増分kを不連続値で設置しているが、連続値で設定することもできる。
 同様にして、電流、電力、インターバルについても、始動時のブラシ温度や1回の始動時のブラシ摩耗量との相関性を適合により予め求めておき、この相関性を用いて、増分kを設定することができる。すなわち、電流、電力、インターバルのいずれかと増分kとの関係を図8に示したのと同様の特性にしておき、電流、電力、インターバルのいずれかから、その特性を内容とするテーブルを検索することにより、増分kを設定するようにすればよい。例えば、使用した電力量により、始動時のブラシ温度を予測することができる。スタータそのものの抵抗値(電圧差)を測定することにより、始動時のブラシ温度を予測することもできる。始動時にスタータに流れる電流が相対的に大きいときには、電流が小さいときより増分kを大きく設定する。始動時のスタータの使用電力が相対的に大きいときには、使用電力が小さいときより増分kを大きく設定する。インターバルが相対的に狭いときには、インターバルが相対的に広いときより増分kを大きく設定する。また、短いインターバルが連続する場合は、短いインターバルが連続しない場合より増分kを大きく設定する等が考えられる。
 図6に戻り、ステップS22では、総駆動回数Nにこの増分kを加算した値を改めて総駆動回数Nとして、つまり上記の(2)式により総駆動回数Nを算出する。
 第3実施形態によれば、第2実施形態と同様の作用効果を奏する。
 (第4実施形態)
 図9のフローチャートは、第4実施形態のブラシ劣化フラグを設定する処理を示すフローチャートであり、第2実施形態の図4と置き換わる。図4と同一部分には同一のステップ番号を付している。
 図4に示す第2実施形態では、始動時のブラシ温度Tを検出するか推定し、この始動時のブラシ温度Tが高くなるほど、1回の始動時のブラシ摩耗量が大きくなるとして、増分kを設定した。一方、第4実施形態では、1回の始動時のモータ12の回転量(モータ12の回転量を以下では「スタータ回転量」という。)Rを検出する。この1回の始動時のスタータ回転量Rが大きいほど、1回の始動時のブラシ摩耗量が大きくなる、つまり、1回の始動時のスタータ回転量Rが大きいほど、増分kを大きく設定する。
 第2実施形態と相違する部分について、以下で主に説明する。図9においてステップS41では、1回の始動時のスタータ回転量Rを、モータ12に備えさせた角度センサ(図示しない)により検出する。1回の始動時のスタータ回転量Rは、推定するようにしてもよい。例えば、1回の始動時のスタータ11の起動時間や通電時間と、1回の始動時のスタータ回転量Rの関係を特性にして予め求めておけば、1回の始動時のスタータの起動時間や通電時間から、上記特性を内容とするテーブルを検索することにより、1回の始動時のスタータ回転量Rを推定することができる。1回の始動時のスタータ11の起動時間や通電時間は、エンジンコントローラ3が知り得る。
 ステップS42では、ステップS41で求めた1回の始動時のスタータ回転量Rから、図10に示す特性を内容とするテーブルを検索して、増分k[回]を設定する。
 図10は、スタータ回転量Rに対する増分kの特性図である。図10では、横軸を1回の始動時のスタータ回転量R、縦軸を増分kとしている。また、1回の始動時のスタータ回転量の基準値として、第1基準スタータ回転量R1、第2基準スタータ回転量R2、第3基準スタータ回転量R3、第4基準スタータ回転量R4(R1<R2<R3<R4)を設定する。1回の始動時のスタータ回転量Rが第1基準スタータ回転量以下(R≦R1)の場合に、増分kを1[回]とする。このときの処理は、第1実施形態と同じである。
 一方、1回の始動時のスタータ回転量Rが第1基準スタータ回転量R1を超え、かつ第2基準スタータ回転量R2以下(R1<R≦R2)の場合に増分kを2[回]、1回の始動時のスタータ回転量が第2基準スタータ回転量R2を超え、かつ第3基準スタータ回転量R3以下(R2<R≦R3)の場合に増分kを3[回]、1回の始動時のスタータ回転量が第3基準スタータ回転量R3を超え、かつ第4基準スタータ回転量R4以下(R3<R≦R4)の場合に増分kを4[回]としている。これは、例えば1回の始動時のスタータ回転量がR1<R≦R2のときには、1回の始動であってもR≦R1のときより1回の始動時のブラシ摩耗量が2倍になることを意味している。従って、R≦R1での1回の始動時のブラシ摩耗量を基準に考えると、R1<R≦R2のときには、1回の始動で2回分のブラシ摩耗が生じるので、スタータの総駆動回数Nに2[回]を加算する必要がある。
 ステップS22では、スタータの総駆動回数Nに、ステップS42で設定した増分kを加算した値を改めてスタータの総駆動回数Nとして、つまり上記の(2)式によりスタータの総駆動回数Nを算出する。
 第4実施形態によれば、1回の始動時のブラシ摩耗量を1回の始動時のスタータ回転量Rによって推定するので、1回の始動時のスタータ回転量Rが相違しても、1回の始動時のブラシ摩耗量を精度よく推定することができる。特に、1回の始動時のスタータ回転量Rが大きいほど、1回の始動時のブラシ摩耗量が大きくなると推定するので、1回の始動時のスタータ回転量Rが相違しても、1回の始動時のブラシ摩耗量を精度よく推定することができる。
 (第5実施形態)
 図11は、第5実施形態のブラシ劣化フラグを設定する処理を示すフローチャートであり、第4実施形態の図9と置き換わる。図9と同一部分には、同一のステップ番号を付している。
 図9に示す第4実施形態は、自動始動による1回の始動時のスタータ回転量Rを考慮している。第5実施形態は、さらに手動始動による1回の始動時のスタータ回転量R2、R3(後述)についても考慮する。すなわち、手動始動による1回の始動時のスタータ回転量R2、R3も考慮して、スタータの総駆動回数Nを算出する。
 第4実施形態と相違する部分について、以下で主に説明する。図11において、ステップS1でエンジン始動がエンジン自動停止後でない、つまり手動始動(ドライバが行う始動)であると判定するとステップS51に進み、手動始動の方式がキー始動方式であるか否かを判定する。
 手動始動の方式には、プッシュボタン始動方式とキー始動方式とがある。ここで、「プッシュボタン始動方式」とは、運転席にあるプッシュボタンをドライバが押すと、ボディコントロールモジュール等の制御装置がドライバに代わって、上記第2スタータスイッチ6を閉成させることにより、スタータ11を始動させる方式である。一方、「キー始動方式」とは、スタータスイッチ2(図1参照)をドライバが閉成している間、スタータ11が起動し続ける方式である。いずれの始動方式にするかは、車両の仕様によって予め定まっている。
 ステップS51で手動始動の方式がキー始動方式であるときにはステップS52に進み、キー始動方式での1回の始動時のスタータ回転量R2を検出する。続いて、ステップS53で、求めたキー始動方式での1回の始動時のスタータ回転量R2に応じて増分kを設定する。ステップS52、S53の処理は、ステップS41、S42の処理と同様である。すなわち、ステップS52では、キー始動方式での1回の始動時のスタータの回転量R2をモータ12に備えさせた角度センサ(図示しない)により検出する。ただし、キー始動方式での1回の始動時のスタータ回転量R2を推定するようにしてもよい。例えば、キー始動方式での1回の始動時のスタータ11の起動時間や通電時間と、キー始動方式での1回の始動時のスタータ回転量R2との関係を示す特性を適合により予め求めておき、キー始動方式での1回の始動時のスタータ11の起動時間や通電時間から、上記特性を内容とするテーブルを検索することにより、キー始動方式での1回の始動時のスタータ回転量R2を推定することができる。ここで、キー始動方式での1回の始動時のスタータ11の起動時間や通電時間は、エンジンコントローラ3が知り得る。
 プッシュボタン始動方式の場合には、適正な時間のみのスタータ回転量にとどまる。一方、キー始動方式の場合、特に低温始動時には、スタータ11を起動し続ける時間が長くなる傾向があり、キー始動方式での1回の始動時のスタータ回転量R2は増加する。
 ステップS54では、スタータの総駆動回数Nに、このステップS53で設定した増分k2を加算した値を改めてスタータの総駆動回数Nとする。すなわち、次式(4)により、スタータの総駆動回数Nを算出する。
  N=N+k2                      …(4)
 一方、ステップS51で手動始動の方式がキー始動方式でない、つまりプッシュボタン始動方式であると判定すると、ステップS55に進み、プッシュボタン始動方式での1回の始動時のスタータ回転量R3を検出する。続くステップS56では、求めたプッシュボタン始動方式での1回の始動時のスタータ回転量R3に応じて増分k3を設定する。ステップS55、S56の処理は、ステップS52、S53の処理とは多少相違する。
 すなわち、プッシュボタン始動方式でのスタータ11の起動は、ドライバが指示するとはいえ、スタータ11を駆動するのは、ボディコントロールモジュール等の制御装置である。このため、どのくらいの時間、スタータ11を駆動するのか、つまりプッシュボタン始動方式での1回の始動時のスタータ回転量R3は予め定まっている。従って、この予め定まっている値(一定値)をプッシュボタン始動方式での1回の始動時のスタータ回転量R3とし、そのスタータ回転量R3に応じて増分k3(これも1以上の一定値)を設定する。
 ステップS57では、スタータの総駆動回数Nに、このステップS56で設定した増分k3を加算した値を改めてスタータの総駆動回数Nとする。すなわち、次式(5)により、スタータの総駆動回数Nを算出する。
  N=N+k3                      …(5)
 このように、自動始動による1回の始動時のスタータ回転量Rだけでなく、手動始動による1回の始動時のスタータ回転量R2、R3も考慮して、スタータの総駆動回数Nを算出する第5実施形態によれば、第4実施形態と同様の作用効果を奏する。
 (第6実施形態)
 図12は、第6実施形態のブラシ劣化フラグを設定する処理を示すフローチャートであり、第4実施形態の図9と置き換わる。図9と同一部分には、同一のステップ番号を付している。
 エンジンの自動停止によって、エンジン回転速度がアイドル状態よりゼロに向かって低下している途中に、スタータプリエンゲージが行われることがある。ここで、「スタータプリエンゲージ」とは、エンジンの自動停止からの再始動に備えて、スタータ11のピニオンギア18とリングギア19とを予め噛み合わせておく操作のことである。
 スタータプリエンゲージについて簡単に説明する。クランクシャフトの後端に取り付けたフライホイールの外周に、リングギア19が形成されている。スタータ11は、始動要求を受けて、リングギア19に対しピニオンギア18を噛み合わせることによって、リングギア19を駆動する(クランキングを行わせる)。スタータ11のピニオンギア18は、常時は、リングギア19と噛み合っていない。従って、ピニオンギア18をリングギア19に噛み合わせるには、ある時間を要する。その一方で、自動停止からの再始動時には、一刻も早くクランキング(始動)を行わせたいという要求がある。この要求に応えるために考え出されたのが、スタータプリエンゲージである。すなわち、エンジンの自動停止からの再始動に備えて、スタータ11のピニオンギア18とリングギア19を予め噛み合わせておくことによって、始動に際して、ピニオンギア18をリングギア19に噛み合わせる操作が不要となり、その分クランキングを速やかに行わせることができる。
 このように、スタータプリエンゲージの機能を備えるアイドルストップ制御装置では、スタータプリエンゲージの機能を備えていないアイドルストップ制御装置よりも、1回の始動時のスタータ回転量Rが実質的に増すこととなる。そこで、第5実施形態では、スタータプリエンゲージの機能を有するアイドルストップ制御装置において、スタータプリエンゲージに伴い回転したスタータ回転量を1回の始動時のスタータ回転量Rに含める(加算する)。
 第4実施形態と相違する部分について、主に説明する。
 図12において、ステップS61でスタータプリエンゲージが行われているか否かを判定する。スタータプリエンゲージが行われているか否かは、エンジンコントローラ3が予め知り得る。スタータプリエンゲージが行われていない場合には、ステップS42、S22の操作を実行する。これは、第4実施形態と同じである。
 一方、スタータプリエンゲージが行われている場合には、ステップS61からステップS62に進み、1回の始動時のスタータ回転量Rに一定値ΔRを加算した値を、1回の始動時のスタータ回転量Rとする。ここで、一定値ΔRは、スタータプリエンゲージに伴うスタータ回転量である。一定値ΔRは、適合により予め求めておく。
 第6実施形態によれば、スタータプリエンゲージに伴い回転したスタータ回転量を、1回の始動時のスタータ回転量Rに含めるので、アイドルストップ制御装置がスタータプリエンゲージの機能を備える場合であっても、スタータの総駆動回数Nを精度よく求めることができる。特に、スタータ回転量Rを推定して求める場合には効果がある。
 (第7実施形態)
 図13は、第7実施形態のブラシ劣化フラグを設定する処理を示すフローチャートであり、第4実施形態の図9と置き換わる。図2と同一部分には、同一のステップ番号を付している。
 図9に示す第4実施形態では、1回の始動時のスタータ回転量Rが大きいほど、1回の始動時のブラシ摩耗量が大きくなると判断し、1回の始動時のスタータ回転量Rを増分kに反映させた。第7実施形態では、1回の始動時のブラシ摩耗量ΔAbrそのものに直接着目する。
 第4実施形態と相違する部分について、主に説明する。
 図13においてステップS1でエンジン始動がエンジン自動停止後であれば、ステップS3に進んで、スタータの総駆動回数N[回]を1[回]だけ加算した値を新たなスタータの総駆動回数Nとする。すなわち、上記(1)式により、スタータの総駆動回数Nを算出する。
 ステップS91では、ステップS3で求めたスタータの総駆動回数Nから、図14に示す特性を有するテーブルを検索して、1回の始動時のブラシ摩耗量ΔAbr[mm]を算出する。
 図14は、スタータの総駆動回数Nに対するブラシ摩耗量ΔAbr[mm]の特性図である。1回の始動時のブラシ摩耗量ΔAbrは、図14に示すように、スタータの総駆動回数Nが大きくなるほど小さくなる。これは、図15の実線特性より得られるものである。
 図15は、スタータの総駆動回数Nに対して、総ブラシ摩耗量Abrがどのように増えていくかを示す図である。図15において、スタータの総駆動回数Nが相対的に小さい領域では、ブラシ摩耗が急速に進み、スタータの総駆動回数Nが相対的に大きい領域になると、ブラシ摩耗が進む速度が低下する。このような上に凸の曲線特性となるのは、ブラシ21の構成による。すなわち、図1では図示していないが、スプリングによりブラシ21をコンミテータ22に押しつけることによって、コンミテータ22との良好な電気接触を確保し、コンミテータ22の回転時にも、ブラシ21からコンミテータ22へと給電が効率よく行われるようにしている。スタータ11の機種にもよるが、一般的には、スタータの総駆動回数Nが相対的に大きくなり、ブラシ21の長さが短くなってくると、スプリング張力等の関係から、スタータの総駆動回数Nが相対的に小さいときよりブラシ磨耗が少なくなる傾向がある。この傾向によって、総ブラシ摩耗量の特性は、図15のように上に凸の曲線となるわけである。
 ステップS92では、総ブラシ摩耗量Abr[mm](車両の工場出荷時にまたは工場でのエンジン組み立て時にゼロに初期設定)に、1回の始動時のブラシ摩耗量ΔAbrを加算した値を、新たな総ブラシ摩耗量Abr[mm]とする。すなわち、次式(6)より、総ブラシ摩耗量Abrを算出する。
  Abr=Abr+ΔAbr                …(6)
 ステップS93では、総ブラシ摩耗量Abrと駆動保証摩耗量Abr1を比較する。駆動保証摩耗量Abr1は、それ以上の総ブラシ摩耗量になると、ブラシ21の摩耗に起因して、スタータ11の駆動が正常に行われない可能性がある値とする。駆動保証摩耗量Abr1は、スタータ11の仕様等から予め定めておく。総ブラシ摩耗量Abrが駆動保証摩耗量Abr1未満であれば、ステップS5に進み、ブラシ劣化フラグ=0とする。ブラシ劣化フラグ=0である場合には、エンジン自動停止が許可される。
 一方、総ブラシ摩耗量Abrが駆動保証摩耗量Abr1以上の場合には、ブラシ21の摩耗でスタータ11の駆動が正常に行われない可能性があると判断して、ステップS6に進み、ブラシ劣化フラグ=1とする。ブラシ劣化フラグ=1である場合には、エンジン自動停止が許可されない。
 このようにして設定されるブラシ劣化フラグは、図3のエンジン自動停止・再始動の処理において用いられる。
 第7実施形態によれば、1回の始動時のブラシ摩耗量ΔAbrを算出し、1回の始動時のブラシ摩耗量ΔAbrを積算(加算)して総ブラシ摩耗量Abrを算出し、この総ブラシ摩耗量Abrがスタータ11の駆動保証摩耗量Abr1以上となったとき、ブラシ劣化フラグ=1とする(エンジンの自動停止を禁止する)。これにより、ブラシ21を介して給電されるスタータ11を使用してエンジン自動停止・再始動を行わせる場合でも、確実に、エンジン自動停止・再始動を行わせることができる。
 (参考実施形態)
 図16は、参考実施形態のアイドルストップ制御装置の構成を示すブロック図である。図1と同一部分には同一番号を付している。
 図9に示す第4実施形態では、1個のスタータ11を備えるアイドルストップ制御装置を対象としている。一方、参考実施形態では、2個のスタータを備えるアイドルストップ制御装置を対象とする。2個のスタータを備える構成とは、簡単には、従来のオルタネータに代えて、ベルト24駆動のモータジェネレータ23を設ける構成であって、従来のスタータ11とは別に、第2スタータの機能を備えさせたものである。
 図16を参照して、2個のスタータを備えるアイドルストップ制御装置について詳述する。スタータ11は、ドライバのエンジン始動操作に基づいて、ピニオンギア(図示しない)をエンジンのリングギア(図示しない)に噛み合わせ、モータ12からクランクシャフト22へ動力(回転)を伝えることにより、エンジン21の始動を行う。
 モータジェネレータ23は、ベルト24によって、エンジン21のクランクシャフト22に連結されている。モータジェネレータ23は、エンジン21を駆動源としてジェネレータ(発電機)として機能すると共に、エンジン21の自動停止からの再始動時にエンジン21を始動する第2スタータとしても機能する。
 このように、従来のオルタネータに代えて、ベルト24駆動のモータジェネレータ23を設ける構成とした理由は、次の通りである。すなわち、図1に示したブラシ21付きモータ12を有するスタータ11のみでエンジンの自動停止・再始動を繰り返すと、ブラシ21の摩耗が早まり、スタータ11を用いたエンジン21の自動停止・再始動を行うことができなくなる可能性がある。そこで、頻度の高いエンジンの自動停止・再始動用に、第2スタータとして、ベルト24駆動のモータジェネレータ23を用いる。この場合、モータジェネレータ23としては、ブラシレスのモータジェネレータを採用する。
 バッテリ25は、スタータ11及びモータジェネレータ23に電流を供給する。電圧センサ26は、バッテリ25の電圧を検出して、エンジンコントローラ3に出力する。電流センサ27は、バッテリ25の充放電電流を検出して、エンジンコントローラ3に出力する。
 このような2個のスタータ(11、23)を備えるアイドルストップ制御装置を対象とする場合、ブラシ摩耗が生じるのは、スタータ11の側のみである。
 図17は、参考実施形態のブラシ劣化フラグを設定する処理を示すフローチャートであり、第4実施形態の図9と置き換わる。図9と同一部分には、同一のステップ番号を付している。
 第4実施形態と相違する部分について、主に説明する。図17のステップS1では、エンジン始動がエンジン自動停止後であるか否かを判定する。エンジン始動がエンジン自動停止後であれば、スタータ11は用いられないので、そのまま処理を終了する。
 エンジン始動がエンジン自動停止後でない場合、つまりスタータ11を用いた始動(手動始動)である場合には、ステップS41以降に進み、第4実施形態と同様の処理を行って、ブラシ劣化フラグを設定する。ブラシ劣化フラグの値は、車両の運転終了後もその値が失われることがないように、EEPROMなどのメモリ28(図16参照)に保存しておく。
 図18は、参考実施形態において、エンジン始動処理を示すフローチャートである。図18のフローチャートは、車両の運転を開始する際のエンジンの始動毎、すなわち手動始動毎に実行する。図17に示すフローチャートとの関係では、図17に示すフローチャートの処理より先に実行する。すなわち、イグニッションキースイッチのON直後に図18に示すフローチャートの処理を実行し、その後、エンジンが始動された後に、図17に示すフローチャートの処理を実行する。
 図18のステップS81では、ブラシ劣化フラグが1であるか否かを判定する。ブラシ劣化フラグは、図17に示すフローチャートの処理において設定された後、前回の車両運転終了時に、メモリ28に保存されている。今回の車両運転開始時に、メモリ28よりブラシ劣化フラグの値を読み出し、ブラシ劣化フラグ=1である場合には、前回の車両運転時に、スタータの総駆動回数Nがスタータ11の駆動保証回数N1以上となっている。従って、今回の車両運転開始時には、ブラシ21の摩耗に起因して、スタータ11の駆動が正常に行われない可能性があると判断する。この場合、スタータ11を駆動してのエンジン始動は行えないので、ステップS83に進み、モータジェネレータ23を第2スタータとして用いてエンジン始動することを指示する。
 一方、ステップS81でブラシ劣化フラグ=0であるときには、前回の車両運転時にスタータの総駆動回数Nがスタータ11の駆動保証回数N1以上となっておらず、今回の車両運転時にもスタータ11をまだ駆動し得ると判断する。この場合には、ステップS84に進み、スタータ11を駆動してのエンジン始動を指示する。
 参考実施形態では、ブラシ21を介して給電されるスタータ11と、第2スタータとしてのベルト24駆動のモータジェネレータ23との2個のスタータを備え、第2スタータとしてのモータジェネレータ23を用いてエンジンの自動停止・再始動を行う構成が前提である。このような構成において、スタータ11の1回の始動時のロータ回転量に応じて増分k(回数相当値)を設定し、この増分kを積算した値をスタータの総駆動回数Nとして算出し、このスタータの総再始動回数Nがスタータ11の駆動保証回数N1以上となった場合に、ブラシ21が劣化したことを表す情報を今回の車両運転終了後も保存する(ブラシ劣化フラグ=1とし、このフラグの値を今回の車両運転終了後に保存する)。次回の車両運転時に、保存した情報(ブラシ劣化フラグの値)をみて、前回の車両運転時にブラシ21が劣化している(ブラシ劣化フラグ=1である)と判断すると、スタータ11に代えて第2スタータとしてのモータジェネレータ23を駆動して、エンジン21を始動する。これにより、スタータ11の総駆動回数Nが駆動保証回数N1を超えた後にも、車両運転開始時の初めてのエンジン始動時にエンジン21を始動させることができる。
 本願は、2011年2月16日に日本国特許庁に出願された特願2011-30469に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (6)

  1.  第一の条件が成立するとエンジンを自動停止し、その後に第二の条件が成立すると、ブラシを介して給電されるスタータを用いてエンジンを再始動させるアイドルストップ制御装置において、
     1回の始動時のブラシ摩耗量を算出する始動時ブラシ摩耗量算出部と、
     1回の始動時のブラシ摩耗量を積算して総ブラシ摩耗量を算出する総ブラシ摩耗量算出部と、
     総ブラシ摩耗量が前記スタータの駆動保証摩耗量以上になると、エンジンの自動停止を禁止するエンジン自動停止禁止部と
     を備えるアイドルストップ制御装置。
  2.  請求項1に記載のアイドルストップ制御装置において、
     前記始動時ブラシ摩耗量算出部は、前記1回の始動時のブラシ摩耗量を始動時のスタータブラシ温度に基づいて推定するアイドルストップ制御装置。
  3.  請求項2に記載のアイドルストップ制御装置において、
     前記始動時ブラシ摩耗量算出部は、前記始動時のブラシ温度が高いほど、前記1回の始動時のブラシ摩耗量が大きくなると推定するアイドルストップ制御装置。
  4.  請求項1に記載のアイドルストップ制御装置において、
     前記1回の始動時のブラシ摩耗量を前記1回の始動時のスタータ回転量に基づいて推定するアイドルストップ制御装置。
  5.  請求項4に記載のアイドルストップ制御装置において、
     前記1回の始動時のスタータ回転量が大きいほど、前記1回の始動時のブラシ摩耗量が大きくなると推定するアイドルストップ制御装置。
  6.  第一の条件が成立するとエンジンを自動停止し、その後に第二の条件が成立すると、ブラシを介して給電されるスタータを用いてエンジンを再始動させるアイドルストップ制御装置において、
     1回の始動時のブラシ摩耗量に応じて回数相当値を設定する回数相当値設定部と、
     前記回数相当値を積算した値を、前記スタータの総始動回数として算出する総再始動回数算出部と、
     前記スタータの総始動回数が前記スタータの駆動保証回数以上になると、エンジンの自動停止を禁止するエンジン自動停止禁止部と
     を備えるアイドルストップ制御装置。
PCT/JP2012/051498 2011-02-16 2012-01-25 アイドルストップ制御装置 WO2012111394A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12747381.7A EP2677145A4 (en) 2011-02-16 2012-01-25 Idle stop control device
CN201280009350.3A CN103492689B (zh) 2011-02-16 2012-01-25 怠速停止控制装置
US13/985,777 US9502848B2 (en) 2011-02-16 2012-01-25 Idle stop control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011030469A JP6069815B2 (ja) 2011-02-16 2011-02-16 アイドルストップ制御装置
JP2011-030469 2011-02-16

Publications (1)

Publication Number Publication Date
WO2012111394A1 true WO2012111394A1 (ja) 2012-08-23

Family

ID=46672332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051498 WO2012111394A1 (ja) 2011-02-16 2012-01-25 アイドルストップ制御装置

Country Status (5)

Country Link
US (1) US9502848B2 (ja)
EP (1) EP2677145A4 (ja)
JP (1) JP6069815B2 (ja)
CN (1) CN103492689B (ja)
WO (1) WO2012111394A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6069815B2 (ja) * 2011-02-16 2017-02-01 日産自動車株式会社 アイドルストップ制御装置
JP6206218B2 (ja) * 2014-01-28 2017-10-04 株式会社デンソー 燃料ポンプの制御装置
US20150292465A1 (en) * 2014-04-14 2015-10-15 Ford Global Technologies, Llc Vehicle starter activation counter
US10408183B2 (en) * 2017-03-07 2019-09-10 Ford Global Technologies, Llc Methods and systems for improving engine starter durability for a stop/start vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974721A (ja) * 1995-06-27 1997-03-18 Denso Corp 回転電機およびその回転電機を備えたスタータ
JP2001065440A (ja) 1999-08-23 2001-03-16 Denso Corp 車両用電子制御装置
JP2002115578A (ja) * 2000-10-03 2002-04-19 Honda Motor Co Ltd エンジン自動停止始動制御装置
JP2007262935A (ja) * 2006-03-28 2007-10-11 Denso Corp 燃料ポンプの駆動制御装置
JP2011020567A (ja) * 2009-07-16 2011-02-03 Toyota Motor Corp ショックアブソーバ装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3612928A (en) * 1970-03-19 1971-10-12 Charles B Small Submerged dc motor
US4334188A (en) * 1980-02-06 1982-06-08 Eltra Corporation Voltage detector using an oscillator and comparator means
US4316186A (en) * 1980-02-06 1982-02-16 Eltra Corporation Brush wear detection and warning system
JPS62155745A (ja) * 1985-11-21 1987-07-10 Mitsubishi Electric Corp サ−ボモ−タのブラシ摩耗管理装置
JPS62155744A (ja) * 1985-11-21 1987-07-10 Mitsubishi Electric Corp サ−ボモ−タのブラシ摩耗管理装置
JPH06141513A (ja) * 1992-07-22 1994-05-20 Toyoda Mach Works Ltd 回転電動機のブラシ監視装置
JP3928828B2 (ja) * 1998-06-24 2007-06-13 本田技研工業株式会社 エンジン始動兼アシスト装置
EP1589211A1 (en) * 2003-01-31 2005-10-26 Kobelco Construction Machinery Co., Ltd. Engine control device for and administration system for construction machine
JP4512318B2 (ja) * 2003-02-04 2010-07-28 日立化成工業株式会社 積層ブラシ
JP4493324B2 (ja) * 2003-12-03 2010-06-30 三菱電機株式会社 車両用発電機のブラシ摩耗検出装置
JP4380393B2 (ja) 2004-03-31 2009-12-09 トヨタ自動車株式会社 モータ用ブラシ状態判断装置
DE102005060324B4 (de) * 2005-12-16 2021-03-18 Robert Bosch Gmbh Erfassung des Verschleißes einer Motoransteuerung
DE202006019888U1 (de) * 2006-02-28 2007-05-16 Gefeg-Neckar Antriebssysteme Gmbh Kommutatormotor mit integrierter Betriebselektronik
DE102007024352A1 (de) * 2007-05-24 2008-11-27 Ford Global Technologies, LLC, Dearborn Verfahren und Vorrichtung zum Betrieb eines Kraftfahrzeugsystems
JP2008291756A (ja) * 2007-05-25 2008-12-04 Denso Corp 燃料ポンプの故障診断装置
JP4855337B2 (ja) * 2007-05-29 2012-01-18 新明和工業株式会社 ブラシ摩耗検知装置を備える流体圧装置
WO2009007465A2 (de) * 2007-07-12 2009-01-15 Robert Bosch Gmbh Startvorrichtung
JP2011062020A (ja) * 2009-09-11 2011-03-24 Advics Co Ltd 直流モータ管理装置
FR2961973B1 (fr) * 2010-06-25 2012-07-13 Valeo Equip Electr Moteur Procede de detection d'usure balais pour alterno-demarreur dans un vehicule
EP2651016B1 (en) * 2010-12-10 2019-01-23 Mitsubishi Electric Corporation Rotating electrical machine
JP6069815B2 (ja) * 2011-02-16 2017-02-01 日産自動車株式会社 アイドルストップ制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974721A (ja) * 1995-06-27 1997-03-18 Denso Corp 回転電機およびその回転電機を備えたスタータ
JP2001065440A (ja) 1999-08-23 2001-03-16 Denso Corp 車両用電子制御装置
JP2002115578A (ja) * 2000-10-03 2002-04-19 Honda Motor Co Ltd エンジン自動停止始動制御装置
JP2007262935A (ja) * 2006-03-28 2007-10-11 Denso Corp 燃料ポンプの駆動制御装置
JP2011020567A (ja) * 2009-07-16 2011-02-03 Toyota Motor Corp ショックアブソーバ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2677145A4 *

Also Published As

Publication number Publication date
US20130338908A1 (en) 2013-12-19
EP2677145A4 (en) 2018-08-15
JP6069815B2 (ja) 2017-02-01
US9502848B2 (en) 2016-11-22
EP2677145A1 (en) 2013-12-25
JP2012167626A (ja) 2012-09-06
CN103492689B (zh) 2017-04-12
CN103492689A (zh) 2014-01-01

Similar Documents

Publication Publication Date Title
US8833325B2 (en) In-vehicle engine start control apparatus
EP2221226B1 (en) Idle stop control apparatus and method thereof
US8290692B2 (en) Engine starting device for idling-stop vehicle
JP5212391B2 (ja) アイドルストップ制御装置
JP5428931B2 (ja) スタータの制御装置
US20140350827A1 (en) Restarting device of internal combustion engine
WO2012111394A1 (ja) アイドルストップ制御装置
JP2011163321A (ja) エンジン始動制御装置
JP5429199B2 (ja) エンジン停止始動制御装置
US8549939B2 (en) Start control device
JP2003247478A (ja) エンジン制御装置
JP2012184703A (ja) エンジン停止始動制御装置
US9638155B2 (en) Control device of vehicle and control method of vehicle
US20130104828A1 (en) Engine starting device and vehicle incorporating the same
US20130103289A1 (en) Control device and control method for engine, engine starting device, and vehicle
JP5527294B2 (ja) アイドルストップ制御装置
US20160115931A1 (en) Engine automatic stop/restart device
JP5075145B2 (ja) 内燃機関の制御装置
US8706387B2 (en) Control device and control method for engine, and vehicle
JP2013087723A (ja) アイドルストップ制御装置
JP5999930B2 (ja) エンジン制御装置
US7948240B2 (en) Abnormality diagnosing apparatus for a glow plug
JP2012002039A (ja) 車両の開閉体制御装置
JP6629148B2 (ja) 内燃機関の停止始動制御装置
JP5724238B2 (ja) エンジン停止始動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13985777

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012747381

Country of ref document: EP