WO2012111294A1 - リチウムイオン二次電池用負極活物質材料およびその製造方法 - Google Patents

リチウムイオン二次電池用負極活物質材料およびその製造方法 Download PDF

Info

Publication number
WO2012111294A1
WO2012111294A1 PCT/JP2012/000908 JP2012000908W WO2012111294A1 WO 2012111294 A1 WO2012111294 A1 WO 2012111294A1 JP 2012000908 W JP2012000908 W JP 2012000908W WO 2012111294 A1 WO2012111294 A1 WO 2012111294A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium composite
lithium
composite oxide
raw material
ion secondary
Prior art date
Application number
PCT/JP2012/000908
Other languages
English (en)
French (fr)
Inventor
なつみ 後藤
竹内 崇
長谷川 正樹
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012524026A priority Critical patent/JP5070366B2/ja
Priority to CN201280001030.3A priority patent/CN102844912B/zh
Priority to EP12747513.5A priority patent/EP2677576B1/en
Publication of WO2012111294A1 publication Critical patent/WO2012111294A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an inorganic material used as a negative electrode active material of a lithium ion secondary battery and a method for producing the same.
  • lithium ion secondary batteries have been developed.
  • carbon materials have been mainly used as negative electrode active materials for lithium ion secondary batteries.
  • a new lithium titanium composite oxide material has been developed and attracts attention.
  • a lithium ion secondary battery using LiCoO 2 as a positive electrode active material and Li 4 Ti 5 O 12 as a negative electrode active material has already been put into practical use.
  • Li 4 Ti 5 O 12 is a material having a spinel crystal structure, and can be repeatedly occluded or released from Li. Therefore, Li 4 Ti 5 O 12 can be used as an active material of a lithium ion secondary battery. Li 4 Ti 5 O 12 occludes or releases Li at a potential of about 1.5 V with reference to the standard oxidation-reduction potential (Li / Li + ) of lithium. For this reason, when Li 4 Ti 5 O 12 is used as a negative electrode active material for a lithium ion secondary battery, lithium metal is not easily deposited on the negative electrode even if a reaction overvoltage occurs due to rapid charging, etc. A secondary battery is expected to be realized. Moreover, since the lattice expansion accompanying charging / discharging is very small, it has a feature that cycle characteristics are good.
  • Patent Document 1 aims at improving output characteristics by improving electron conductivity, and a part of the Ti element of Li 4 Ti 5 O 12 is a different element selected from V element, Nb element, Mo element and P element. Disclosed materials are disclosed. However, the discharge capacity at high load is 83% or less of the discharge capacity at low load, and the discharge characteristics are not sufficient.
  • Patent Document 2 discloses a material in which a part of the Ti element of Li 4 Ti 5 O 12 is replaced with a kind of transition metal element other than the Ti element for the purpose of suppressing side reactions with the electrolytic solution. Yes. Patent Document 2 reports that the storage performance is improved by substituting a part of Ti element with various transition metal elements. However, the fact that the target lithium titanium composite oxide can be obtained by actually synthesizing and the characteristics of the obtained material are reported only when the element to be substituted is B element, Co element or Zn element. is there. Further, no specific description is given regarding output characteristics and electrode capacitance density.
  • Patent Document 3 Li 4 Ti 5 a part of Ti element of O 12 was replaced by Fe Li 4/3 Ti 5/3- x Fe x O 4 (0 ⁇ x ⁇ 0.2) is, Li 4 Ti It discloses that the electron conductivity is improved as compared with 5 O 12 . However, Li 4 Ti 5 O 12 and Li 4/3 Ti 5/3-x Fe x O 4 , since the particle size of the primary particles is small, the packing density in the electrode decreases, less energy density as an electrode There was a problem.
  • An object of the present invention is to solve at least one of the above-described conventional problems and to provide a negative electrode active material for a lithium ion secondary battery having a high packing density in an electrode and a method for producing the same.
  • Negative electrode active material for lithium ion secondary battery of the present invention Li 4 Ti 5-xy Fe x V y O 12 (where, x is 0 ⁇ x ⁇ 0.3,0 ⁇ y ⁇ 0.05), or, (where, x is 0 ⁇ x ⁇ 0.3,0 ⁇ z ⁇ 0.3)
  • Li 4 Ti 5-xz Fe x B z O 12 includes a lithium-titanium composite oxide having a composition represented by.
  • FIG. 6 is a graph showing the relationship between the average particle diameter of the lithium titanium composite oxides of Examples 1 to 15 and Comparative Examples 2 to 5 and the amount of Fe added.
  • FIG. 6 is a graph showing the relationship between the average particle size and the B or V addition amount of the lithium titanium composite oxides of Comparative Example 1, Comparative Examples 6 to 7 and Comparative Examples 9 to 12.
  • FIG. 5 is a graph showing the relationship between the compression density and the Fe addition amount of lithium titanium composite oxides of Examples 1 to 15 and Comparative Examples 2 to 5.
  • FIG. 6 is a graph showing the relationship between the average particle diameter of the lithium titanium composite oxides of Examples 1 to 15 and Comparative Examples 2 to 5 and the amount of Fe added.
  • FIG. 6 is a graph showing the relationship between the compression density and the B or V addition amount of the lithium titanium composite oxides of Comparative Example 1, Comparative Examples 6 to 7 and Comparative Examples 9 to 12.
  • FIG. 6 is a graph showing the relationship between the dischargeable capacity and Fe addition amount of batteries including active materials of Examples 1 to 15 and Comparative Examples 2 to 5.
  • FIG. 6 is a graph showing the relationship between the dischargeable capacity and the amount of B or V added in batteries containing the active materials of Comparative Example 1, Comparative Examples 6-7 and Comparative Examples 9-12.
  • FIG. 6 is a graph showing the relationship between the electrode capacity density and the Fe addition amount of batteries containing active materials of Examples 1 to 15 and Comparative Examples 2 to 5.
  • FIG. 6 is a graph showing the relationship between the electrode capacity density and the B or V addition amount of batteries including the active materials of Comparative Example 1, Comparative Examples 6-7 and Comparative Examples 9-12.
  • Negative electrode active material for lithium ion secondary battery of the present embodiment Li 4 Ti 5-xy Fe x V y O 12 (where, x is 0 ⁇ x ⁇ 0.3,0 ⁇ y ⁇ 0.05)
  • the lithium titanium complex oxide which has a composition shown by these is included.
  • Lithium-titanium composite oxide of this embodiment Li 4 Ti (wherein, x is 0 ⁇ x ⁇ 0.3) 5- x Fe x O 12 with compounds substituted with further V element a part of Ti element is there.
  • x and y represent the substitution amounts of Fe element and V element, respectively.
  • V element has the effect of increasing the particle size of the lithium titanium composite oxide.
  • Conventional lithium titanium composite oxide materials typically have a primary particle size of 1 ⁇ m or less. For this reason, there is a problem that the packing density cannot be increased when an electrode is formed using a lithium titanium composite oxide material.
  • the inventor of the present application has found that by replacing a part of the Ti element with the V element, the primary particle diameter can be increased and the filling property as an electrode of the lithium ion secondary battery can be improved. .
  • x is 0 ⁇ x ⁇ 0.3
  • Li 4 Ti 5-x Fe x O 12 In the lithium-titanium composite oxide having a composition represented by, be replaced with further V element and Ti element
  • a lithium-titanium composite oxide having a large primary particle size is realized. Therefore, when the lithium titanium composite oxide of this embodiment is used as a negative electrode active material for a lithium ion secondary battery, a high capacity lithium ion secondary battery is realized.
  • the lithium titanium composite oxide contained in the negative electrode active material for a lithium ion secondary battery of this embodiment has a spinel crystal structure.
  • the crystal structure can be confirmed by X-ray diffraction (XRD).
  • the addition amount x of Fe element preferably satisfies 0 ⁇ x ⁇ 0.3. From Patent Document 3, it is known that if a small part of the Ti element is replaced by Fe, the lithium titanium composite oxide exhibits excellent electronic conductivity. For this reason, x should just be larger than 0. On the other hand, as a result of detailed examination by the inventors of the present application, when x increases, the dischargeable capacity of the lithium ion secondary battery using the negative electrode active material of the present embodiment tends to decrease, and x is 0.3. When it exceeded, it turned out that the reduction
  • the amount of V element added is preferably 0 ⁇ y ⁇ 0.05.
  • the V source V 2 O 5
  • the oxide particles are easy to grow.
  • the addition amount of V element exceeds 0.05, an oxide phase not containing Ti element is generated, and it becomes difficult to obtain a single phase of a lithium titanium composite oxide having a spinel crystal structure. This can be confirmed by X-ray diffraction (XRD) measurement.
  • the lithium ion secondary battery using the negative electrode active material of this embodiment having a large amount of substitution x and y of Fe element and V element shows a tendency to decrease the dischargeable capacity. That is, the dischargeable capacity decreases according to the substitution amount of the Fe element and the V element.
  • the lithium-titanium composite oxide of this embodiment is used as the negative electrode active material of a lithium ion secondary battery, the packing density in the electrode is reduced due to the effect of increasing the primary particle diameter in the range of the above substitution amounts x and y. The capacitance density as an electrode is improved.
  • the lithium titanium composite oxide of the present embodiment may be primary particles or may constitute secondary particles in which the primary particles are aggregated.
  • the average particle diameter d ( ⁇ m) of the primary particles is preferably 1 ⁇ d ⁇ 5.
  • the average particle size of the primary particles tends to increase as the amount of substitution of the V element increases.
  • the average particle diameter d of the lithium titanium composite oxide may be 5 ⁇ m or more.
  • the lithium titanium composite oxide contained in the negative electrode active material for a lithium ion secondary battery of the present embodiment can be synthesized by mixing and firing a compound containing constituent elements.
  • a Li source, titanium oxide, Fe source, and V source are weighed at a ratio such that Li, Ti, Fe, and V are in a ratio represented by the above composition formula, and weighed raw materials Can be manufactured by a step of mixing them uniformly and a step of firing the mixture.
  • “uniform” means that there is no significant deviation in distribution at the level of the particles constituting the raw material.
  • LiOH or a hydrate thereof Li 2 CO 3 , Li 2 SO 4 , LiF, Li 2 O, or the like can be used.
  • a hydrate of LiOH monohydrate (LiOH.H 2 O) is generally used, but LiOH hydrate having other water content may be used. From the viewpoint of the reaction temperature and the possibility of impurities remaining, it is preferable to use LiOH or a hydrate thereof or Li 2 CO 3 . Titanium oxide having a rutile type or anatase type crystal structure can be used. From the viewpoint of easy progress of the reaction, it is preferable to use an anatase type crystal structure.
  • FeO, Fe 2 O 3 , Fe 3 O 4 , FeO 2 , ⁇ -FeOOH, Fe (OH) 3 , FeSO 4 , Fe 2 (SO 4 ) 3 or the like can be used. From the viewpoint of reaction temperature, it is preferable to use Fe 2 O 3 or ⁇ -FeOOH.
  • V 2 O 5 is preferably used as the V source.
  • Firing may be performed in an air atmosphere, an oxygen atmosphere, or an inert gas atmosphere such as nitrogen or argon.
  • the firing temperature depends on the Li source, titanium oxide, Fe source and V source used.
  • the mixture is fired at a temperature of about 700 ° C. or higher and 1000 ° C. or lower to obtain Li 4 Ti 5-xy Fe x V y.
  • the lithium titanium composite oxide (wherein, x is 0 ⁇ x ⁇ 0.3) Li 4 Ti 5-x Fe x O 12 to Since the primary particle size is larger than that of the negative electrode active material in the negative electrode, the high-capacity lithium ion secondary battery can be realized.
  • Negative electrode active material for lithium ion secondary battery of the present embodiment Li 4 Ti 5-xz Fe x B z O 12 (wherein, x is 0 ⁇ x ⁇ 0.3,0 ⁇ z ⁇ 0.3)
  • the lithium titanium complex oxide which has a composition shown by these is included.
  • x and z represent the substitution amounts of the Fe element and B element, respectively.
  • the B element has the effect of increasing the particle diameter of the lithium titanium composite oxide in the same manner as the V element.
  • the inventor of this application increases the primary particle diameter of the lithium-titanium composite oxide in the same manner as the V element by substituting a part of the Ti element with the B element, thereby improving the filling property as an electrode of the lithium ion secondary battery. I found out that I can make it.
  • x is 0 ⁇ x ⁇ 0.3
  • Li 4 Ti 5-x Fe x O 12 In the lithium-titanium composite oxide having a composition represented by, be replaced with further element B the Ti element
  • a lithium-titanium composite oxide having a large primary particle size is realized. Therefore, when the lithium titanium composite oxide of this embodiment is used as a negative electrode active material for a lithium ion secondary battery, a high capacity lithium ion secondary battery is realized.
  • the lithium titanium composite oxide contained in the negative electrode active material for a lithium ion secondary battery of the present embodiment has a spinel crystal structure as in the first embodiment.
  • the crystal structure can be confirmed by X-ray diffraction (XRD).
  • the amount of Fe element added is preferably 0 ⁇ x ⁇ 0.3. This is for the same reason as in the first embodiment.
  • the addition amount of the B element is preferably 0 ⁇ z ⁇ 0.3.
  • the effect of increasing the primary particle size can be obtained.
  • the cause of the increase in the primary particle size is not clear, but the melting point of B 2 O 3 as the B source is relatively low at 480 ° C. and is in a molten state at the time of firing. It is presumed that the oxide particles are easy to grow. Even when using the HBO 3 as B source, since the HBO 3 is decomposed into B 2 O 3 at around 169 ° C., likewise believed likely to grow particles of a lithium-titanium composite oxide.
  • the lithium ion secondary battery using the negative electrode active material of this embodiment having a large amount of substitution x and z of Fe element and B element tends to decrease the dischargeable capacity. That is, the dischargeable capacity is reduced according to the substitution amount of the Fe element and the B element.
  • the lithium-titanium composite oxide of this embodiment is used as the negative electrode active material of the lithium ion secondary battery, the packing density in the electrode is reduced due to the effect of increasing the primary particle diameter in the above-described substitution amounts x and z. The capacitance density as an electrode is improved.
  • the lithium titanium composite oxide of the present embodiment may be primary particles or may constitute secondary particles in which the primary particles are aggregated. In any case, it is preferable that the average particle diameter d ( ⁇ m) of the primary particles is 1 ⁇ d ⁇ 11. The average particle diameter of the primary particles tends to increase as the amount of substitution of the V element increases. Depending on the application, the average particle diameter d of the lithium titanium composite oxide may be 11 ⁇ m or more.
  • the lithium titanium composite oxide contained in the negative electrode active material for a lithium ion secondary battery of this embodiment can also be synthesized by mixing a compound containing constituent elements and firing.
  • a compound containing constituent elements and firing for example, Li source, titanium oxide, Fe source, and B source are weighed at a ratio such that Li, Ti, Fe, and B are in the ratio represented by the above composition formula, and weighed raw materials Can be manufactured by a step of mixing them uniformly and a step of firing the mixture.
  • LiOH or a hydrate thereof Li 2 CO 3 , Li 2 SO 4 , LiF, Li 2 O, or the like can be used.
  • a hydrate of LiOH monohydrate (LiOH.H 2 O) is generally used, but LiOH hydrate having other water content may be used. From the viewpoint of the reaction temperature and the possibility of impurities remaining, it is preferable to use LiOH or a hydrate thereof or Li 2 CO 3 . Titanium oxide having a rutile type or anatase type crystal structure can be used. From the viewpoint of easy progress of the reaction, it is preferable to use an anatase type crystal structure.
  • FeO, Fe 2 O 3 , Fe 3 O 4 , FeO 2 , ⁇ -FeOOH, Fe (OH) 3 , FeSO 4 , Fe 2 (SO 4 ) 3 or the like can be used. From the viewpoint of reaction temperature, it is preferable to use Fe 2 O 3 or ⁇ -FeOOH. It is preferable to use H 3 BO 3 or B 2 O 3 for the B source.
  • Firing may be performed in an air atmosphere, an oxygen atmosphere, or an inert gas atmosphere such as nitrogen or argon.
  • the firing temperature depends on the Li source, titanium oxide, Fe source and B source used.
  • the mixture is fired at a temperature of about 700 ° C. or higher and 1000 ° C. or lower to obtain Li 4 Ti 5-xz Fe x B z.
  • the lithium titanium composite oxide (wherein, x is 0 ⁇ x ⁇ 0.3) Li 4 Ti 5-x Fe x O 12 to Since the primary particle size is larger than that of the negative electrode active material in the negative electrode, the high-capacity lithium ion secondary battery can be realized.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the raw material TiO 2 having an anatase type crystal structure and an average particle diameter of about 0.3 ⁇ m was used.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the raw material TiO 2 having an anatase type crystal structure and an average particle diameter of about 0.3 ⁇ m was used.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the raw material TiO 2 having an anatase type crystal structure and an average particle diameter of about 0.3 ⁇ m was used.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the raw material TiO 2 having an anatase type crystal structure and an average particle diameter of about 0.3 ⁇ m was used.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the raw material TiO 2 having an anatase type crystal structure and an average particle diameter of about 0.3 ⁇ m was used.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the raw material TiO 2 having an anatase type crystal structure and an average particle diameter of about 0.3 ⁇ m was used.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the raw material TiO 2 having an anatase type crystal structure and an average particle diameter of about 0.3 ⁇ m was used.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the raw material TiO 2 having an anatase type crystal structure and an average particle diameter of about 0.3 ⁇ m was used.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the raw material TiO 2 having an anatase type crystal structure and an average particle diameter of about 0.3 ⁇ m was used.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the raw material TiO 2 having an anatase type crystal structure and an average particle diameter of about 0.3 ⁇ m was used.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • the mixed raw material powder was placed in an Al 2 O 3 crucible and baked in an electric furnace in an air atmosphere.
  • the firing temperature was 850 ° C., and the firing temperature was maintained for 12 hours.
  • the fired material was taken out from the crucible and pulverized in a mortar to obtain the target lithium titanium composite oxide.
  • Table 1 summarizes the addition amounts x, y, and z of Fe, V, and B in each example and comparative example.
  • the lithium titanium composite oxide of Comparative Example 8 contains a small amount of Li 3 VO 4 phase in addition to the phase having the spinel structure. Further, the lithium titanium composite oxide of Comparative Example 13 contains a small amount of Li 2 B 4 O 7 phase in addition to the phase having the spinel structure.
  • Comparative Example 5 and Comparative Example 14 are substantially the same, the same lithium titanium composite oxide can be obtained regardless of whether Fe 2 O 3 or ⁇ -FeOOH is used as the Fe source. It was revealed. 3. Confirmation of Average Particle Size
  • the average particle size of primary particles was evaluated by “average particle size d” defined below. 30 particles were arbitrarily selected from the SEM photograph, the primary particle diameter was measured, the average was calculated, and the “average particle diameter d” was estimated.
  • “cumulative average particle diameter d 50 ” in the particle size distribution measurement is often used as the average particle diameter.
  • the particle size distribution measurement measures not the size of primary particles but the size of aggregated particles (secondary particles). There is no correlation between the size of primary particles and the size of secondary particles. Therefore, in order to show the effect of the present invention, “average particle diameter d” which is a unit indicating the size of primary particles is appropriate.
  • Table 2 shows the average particle diameters d of the lithium titanium composite oxides of Examples 1 to 15, Comparative Examples 1 to 7, and Comparative Examples 9 to 12, calculated from SEM photographs. Further, FIG. 2A shows the relationship between the average particle diameter d of the lithium titanium composite oxides of Examples 1 to 15 and Comparative Examples 2 to 5 and the amount of Fe added. Comparative Example 1, Comparative Examples 6 to 7 and Comparative Examples 9 to 12 FIG. 2B shows the relationship between the average particle size d of the lithium titanium composite oxide and the amount of V or B added.
  • the average particle diameter d of the lithium-titanium composite oxides of Comparative Examples 1 to 5 is about 0.8 ⁇ m to 0.9 ⁇ m, compared with the lithiums of Examples 1 to 15, Comparative Examples 6 to 7, and Comparative Examples 9 to 12.
  • the average particle diameter d of the titanium composite oxide is about 1 ⁇ m to 11 ⁇ m, and the average particle diameter d is large. From these results, even if the Ti element is replaced with only the Fe element, the primary particle diameter does not change much, but when the Ti element is replaced with the B element or the V element, there is an effect of increasing the primary particle diameter. It became clear.
  • FIG. 3A shows the relationship between the measurement results of the compression density of Examples 1 to 15 and Comparative Examples 2 to 5 and the amount of Fe added.
  • FIG. 3B shows the relationship between the compression density measurement results of Comparative Example 1, Comparative Examples 6-7 and Comparative Examples 9-12, and the amount of V or B added.
  • Electrode Production Electrodes were produced using the lithium titanium composite oxides of Examples 1 to 15, Comparative Examples 1 to 7 and Comparative Examples 9 to 12 as active materials.
  • the active material / conductive material / binder were weighed to a weight ratio of 85/10/5 and mixed in a mortar.
  • Acetylene black was used as the conductive material, and PTFE was used as the binder. After mixing, it was rolled with a roller and punched into pellet-shaped electrodes.
  • a lithium ion secondary battery uses a lithium transition metal composite oxide such as LiCoO 2 (generally containing a transition metal such as Co, Mn, Ni) as a positive electrode active material.
  • a lithium transition metal composite oxide such as LiCoO 2 (generally containing a transition metal such as Co, Mn, Ni)
  • LiCoO 2 generally containing a transition metal such as Co, Mn, Ni
  • metal Li is used instead of a general positive electrode active material. Such a method is often used to evaluate an active material.
  • a coin-shaped battery was produced.
  • the above-described electrode produced using this example and comparative example, a separator impregnated with an electrolyte, and a metal Li plate were stacked in this order, placed in a coin-shaped case, and sealed to obtain a battery.
  • a separator a PE microporous membrane manufactured by Asahi Kasei E-Materials Co., Ltd. and a PP non-woven fabric manufactured by Tapirs Co., Ltd. were used in the order of PP / PE / PP.
  • Batteries prepared using the lithium titanium composite oxides of Examples 1 to 15, Comparative Examples 1 to 7 and Comparative Examples 9 to 12 as active materials were used in Examples 1 to 15, Comparative Examples 1 to 7 and Comparative Examples 9 to 9, respectively. It is called a battery containing 12 active materials.
  • Table 2 shows the measurement results of the dischargeable capacity of the batteries containing the active materials of Examples 1 to 15, Comparative Examples 1 to 7 and Comparative Examples 9 to 12 obtained by the above method.
  • FIG. 4A shows the relationship between the measurement results of Examples 1 to 15 and Comparative Examples 2 to 5 and the amount of Fe added.
  • FIG. 4B shows the relationship between the measurement results of Comparative Example 1, Comparative Examples 6-7 and Comparative Examples 9-12, and the amount of V or B added.
  • the dischargeable capacity of Comparative Example 1 is the highest among Comparative Example 1, Comparative Examples 6-7 and Comparative Examples 9-12. From the measurement results of the batteries containing the active materials of Comparative Examples 1 to 5, it can be seen that the dischargeable capacity decreases as the amount x of replacing the Ti element with the Fe element increases. Further, from the results of the batteries containing the active materials of Comparative Examples 6 to 7 and Comparative Examples 9 to 12, the dischargeable capacity decreases as the amounts y and z of replacing the Ti element with the V element or B element increase.
  • Electrode capacity density The capacity density per volume of the electrode directly contributes to the energy density of the battery.
  • the capacity density of the electrode is represented by the product of the density of the active material in the electrode, the weight capacity density of the active material, and the discharge average voltage.
  • the compressed density of the active material can be used as one index representing the density of the active material in the electrode, that is, the filling property.
  • the weight capacity density of the active material is the dischargeable capacity measured as described above. Therefore, in this example, “electrode capacity density ⁇ ” was defined as a product of the compression density and the dischargeable capacity as an evaluation index of the capacity density of the electrode, and was calculated.
  • Table 2 shows the results of “electrode capacity density ⁇ ” of the batteries containing the active materials of Examples 1 to 15, Comparative Examples 1 to 7, and Comparative Examples 9 to 12 obtained by the above method.
  • FIG. 5A shows the relationship between the calculation results of the batteries according to Examples 1 to 15 and Comparative Examples 2 to 5 and the amount of Fe added.
  • FIG. 5B shows the relationship between the battery calculation results of Comparative Example 1, Comparative Examples 6-7 and Comparative Examples 9-12, and the amount of V or B added.
  • FIG. 5A shows that the “electrode capacity density ⁇ ” is larger than that of the battery containing the active material of Comparative Example 1 when the addition amount x of Fe element is greater than 0 and 0.1 or less. Moreover, when the addition amount x of Fe element is 0.3, it turns out that "electrode capacity density (rho)" of the battery containing the active material of an Example will fall. This is considered to be because the dischargeable capacity is greatly reduced when the addition amount x of Fe element is 0.3 (FIG. 4A). Therefore, it can be seen that the addition amount x of Fe element preferably satisfies 0 ⁇ x ⁇ 0.1.
  • the “electrode capacity density ⁇ ” of the batteries containing the active materials of Examples 1 to 15 in which B element or V element was added in addition to Fe element was compared with Comparative Examples 2 to 5 not containing B element and V element. It turns out that it is equivalent or large. This is probably because the dischargeable capacity decreases according to the addition amount of the B element and the V element, but the effect of increasing the compression density contributes greatly. For this reason, even if the addition amount x of Fe element is 0.3, the “electrode capacity density ⁇ ” of the batteries containing the active materials of Examples 4, 5, and 9 further containing B element or V element is Comparative Example 1. Is bigger than. The same tendency is observed in the results of Comparative Examples 6 to 7 and Comparative Examples 9 to 12 with respect to Comparative Example 1.
  • the negative electrode active material for lithium ion secondary batteries according to the present invention has a high capacity density when used as an electrode and is useful as a negative electrode active material for mobile lithium ion secondary batteries. It can also be applied to applications such as large batteries and electric vehicles.

Abstract

 本発明のリチウムイオン二次電池用負極活物質材料は、Li4Ti5-x-yFexy12(式中、xは0<x≦0.3、0<y≦0.05)、または、Li4Ti5-x-zFexz12(式中、xは0<x≦0.3、0<z≦0.3)で示される組成を有するリチウムチタン複合酸化物を含む。

Description

リチウムイオン二次電池用負極活物質材料およびその製造方法
 本発明はリチウムイオン二次電池の負極活物質として用いられる無機材料およびその製造方法に関する。
 近年、種々のリチウムイオン二次電池が開発されている。リチウムイオン二次電池の負極活物質として、従来、炭素材料が主に用いられている。しかし、新たにリチウムチタン複合酸化物材料が開発され、注目されている。例えば、正極活物質にLiCoO2を用い、負極活物質にLi4Ti512を用いたリチウムイオン二次電池が既に実用化されている。
 Li4Ti512は、スピネル型の結晶構造を持つ材料であり、Liの吸蔵または放出が繰り返し可能であるため、リチウムイオン二次電池の活物質として用いることができる。Li4Ti512は、リチウムの標準酸化還元電位(Li/Li+)を基準として約1.5Vの電位でLiの吸蔵または放出を行う。このため、Li4Ti512を負極活物質としてリチウムイオン二次電池に用いた場合、急速充電などで反応過電圧が生じても、負極でリチウム金属が析出しにくく、安全性の高いリチウムイオン二次電池が実現すると考えられる。また、また充放電に伴う格子膨張が非常に少ないため、サイクル特性が良いという特徴を備える。
 Li4Ti512に添加元素を加えることで種々の特性を改善させた材料も開発されている。例えば特許文献1は、電子伝導性の向上による出力特性の改善を目的とし、Li4Ti512のTi元素の一部がV元素、Nb元素、Mo元素およびP元素から選ばれる異元素で置換された材料を開示している。しかしながら、高負荷時における放電容量が低負荷時の放電容量の83%以下であり、放電特性が十分とはいえない。
 また、特許文献2は、電解液との副反応の抑制を目的として、Li4Ti512のTi元素の一部がTi元素以外の一種の遷移金属元素で置換された材料を開示している。特許文献2は、Ti元素の一部を種々の遷移金属元素で置換することにより保存性能が向上すると報告している。しかし、実際に合成を行い、目的のリチウムチタン複合酸化物を得られることおよび得られた材料の特性を報告しているのは、置換する元素がB元素、Co元素、Zn元素の場合のみである。また、出力特性や電極の容量密度に関しては何ら具体的には記述していない。
 特許文献3は、Li4Ti512のTi元素の一部をFeで置換したLi4/3Ti5/3-xFex4(0<x≦0.2)が、Li4Ti512に比べ電子伝導性が向上することを開示している。しかしながら、Li4Ti512およびLi4/3Ti5/3-xFex4は、一次粒子の粒径が小さいため、電極中の充填密度が低くなり、電極としてのエネルギー密度が小さいという課題があった。
特開2000-277116号公報 特開2000-156229号公報 特開2001-185141号公報
 本発明は、上述した従来の課題の少なくとも1つを解決し、電極中の充填密度が高いリチウムイオン二次電池用負極活物質材料およびその製造方法を提供することを目的とする。
 本発明のリチウムイオン二次電池用負極活物質材料は、Li4Ti5-x-yFexy12(式中、xは0<x≦0.3、0<y≦0.05)、または、Li4Ti5-x-zFexBz12(式中、xは0<x≦0.3、0<z≦0.3)で示される組成を有するリチウムチタン複合酸化物を含む。Li4Ti5-xFex12(式中、xは0<x≦0.3)のTi元素の一部をV元素あるいはB元素で置換することにより、リチウムチタン複合酸化物の一次粒子径が増大するため、電極中の充填密度が高められ、電極としての容量密度が向上する。
 本発明によれば、Li4Ti5-xFex12(式中、xは0<x≦0.3)のTi元素の一部をV元素あるいはB元素で置換することにより、リチウムチタン複合酸化物の一次粒子径を大きくすることができる。このため、容量密度の大きいリチウムイオン二次電池を実現することができる。
実施例1~15および比較例1~14のリチウムチタン複合酸化物のX線回折パターンを示す。 実施例1~15および比較例2~5のリチウムチタン複合酸化物の平均粒径とFe添加量との関係を示す図である。 比較例1、比較例6~7および比較例9~12のリチウムチタン複合酸化物の平均粒径とBまたはV添加量との関係を示す図である。 実施例1~15および比較例2~5のリチウムチタン複合酸化物の圧縮密度とFe添加量との関係を示す図である。 比較例1、比較例6~7および比較例9~12のリチウムチタン複合酸化物の圧縮密度とBまたはV添加量との関係を示す図である。 実施例1~15および比較例2~5の活物質を含む電池の放電可能容量とFe添加量との関係を示す図である。 比較例1、比較例6~7および比較例9~12の活物質を含む電池の放電可能容量とBまたはV添加量との関係を示す図である。 実施例1~15および比較例2~5の活物質を含む電池の電極容量密度とFe添加量との関係を示す図である。 比較例1、比較例6~7および比較例9~12の活物質を含む電池の電極容量密度とBまたはV添加量との関係を示す図である。
 以下、図面を参照しながら、本発明によるリチウムイオン二次電池用負極活物質材料およびその製造方法の実施形態を説明する。
 (第1の実施形態)
 本発明のリチウムイオン二次電池用負極活物質材料の第1の実施形態を説明する。本実施形態のリチウムイオン二次電池用負極活物質材料は、Li4Ti5-x-yFexy12(式中、xは0<x≦0.3、0<y≦0.05)で示される組成を有するリチウムチタン複合酸化物を含む。本実施形態のリチウムチタン複合酸化物は、Li4Ti5-xFex12(式中、xは0<x≦0.3)のTi元素の一部をさらにV元素で置換した化合物である。x、yは、それぞれFe元素、V元素の置換量を表している。
 V元素は、リチウムチタン複合酸化物の粒径を増大させる効果を有する。従来のリチウムチタン複合酸化物材料は、典型的には1μm以下の一次粒子径を有していた。このため、リチウムチタン複合酸化物材料を用いて電極を構成する場合に充填密度を大きくできないという課題があった。
 これに対し、本願発明者は、Ti元素の一部をV元素で置換することにより、一次粒子径を増大させ、リチウムイオン二次電池の電極としての充填性を向上させることができることを見出した。このため、Li4Ti5-xFex12(式中、xは0<x≦0.3)で示される組成を有するリチウムチタン複合酸化物において、Ti元素をさらにV元素で置換することにより、一次粒子径の大きなリチウムチタン複合酸化物が実現する。よって、本実施形態のリチウムチタン複合酸化物をリチウムイオン二次電池の負極活物質材料として用いた場合、高容量のリチウムイオン二次電池が実現する。
 本実施形態のリチウムイオン二次電池用負極活物質材料に含まれるリチウムチタン複合酸化物は、スピネル型の結晶構造を有する。結晶構造は、X線回折(XRD)により確認することができる。
 本実施形態のリチウムチタン複合酸化物は、Fe元素の添加量xが0<x≦0.3を満たすことが好ましい。特許文献3より、Ti元素のごく一部がFeで置換されれば、リチウムチタン複合酸化物は優れた電子伝導性を発揮することが分かっている。このため、xは0よりも大きければよい。一方、本願発明者の詳細な検討の結果、xが増大すると、本実施形態の負極活物質材料を用いたリチウムイオン二次電池の放電可能容量が減少する傾向にあり、xが0.3を超えると、放電可能容量の減少が顕著であることが分かった。実施例で説明するように、電極容量密度の観点から、Fe元素の添加量xが0<x≦0.1を満たすことがより好ましい。
 V元素の添加量は、0<y≦0.05であることが好ましい。Tiの一部がV元素で置換されることにより、一次粒子径増大の効果を得ることができる。一次粒子径が増大する原因は明らかでないが、V源であるV25の融点が690℃と比較的低く、焼成時に融解状態にあるため、V源の拡散が非常に速く、リチウムチタン複合酸化物の粒子を成長させやすいためではないかと推測される。一方、V元素の添加量が0.05を超えると、Ti元素を含まない酸化物相が生成し、スピネル型結晶構造のリチウムチタン複合酸化物の単相を得ることが困難となる。これは、X線回折(XRD)測定により確認することができる。
 Fe元素およびV元素の置換量x、yが多い本実施形態の負極活物質材料を用いたリチウムイオン二次電池は、放電可能容量が減少する傾向を示す。つまり、Fe元素とV元素の置換量に応じて放電可能容量が減少する。しかし、リチウムイオン二次電池の負極活物質として本実施形態のリチウムチタン複合酸化物を用いる場合、上述の置換量x、yの範囲において、一次粒子径増大の効果により、電極中の充填密度が高められ、電極としての容量密度が向上する。
 本実施形態のリチウムチタン複合酸化物は、一次粒子であってもよいし、一次粒子が凝集した二次粒子を構成していてもよい。いずれの場合であっても一次粒子の平均粒子径d(μm)が1≦d≦5であることが好ましい。
 一次粒子の平均粒子径はV元素の置換量が増大するにつれ、大きくなる傾向を示す。また、用途によっては、リチウムチタン複合酸化物の平均粒子径dは5μm以上であってもよい。
 本実施形態のリチウムイオン二次電池用負極活物質材料に含まれるリチウムチタン複合酸化物は、構成元素を含む化合物を混合し、焼成することによって合成できる。具体的には、例えば、Li源と、酸化チタンと、Fe源とV源とを、Li、Ti、Fe、Vが上記組成式で示される比率となるような割合で秤量し、秤量した原料を合わせて均一に混合する工程と、混合物を焼成する工程によって製造することができる。ここで「均一」とは、原料を構成する粒子のレベルで分布に大きな偏りがないことを意味する。
 Li源には、LiOHまたはその水和物、Li2CO3、Li2SO4、LiF、Li2O等を用いることができる。LiOHの水和物としては、一水和物(LiOH・H2O)が一般的であるが、他の含水量のLiOH水和物を用いてもよい。反応温度と不純物の残存可能性の観点から、LiOHまたはその水和物あるいはLi2CO3を用いることが好ましい。酸化チタンには、ルチル型およびアナターゼ型の結晶構造のものを用いることができる。反応の進みやすさの観点から、アナターゼ型の結晶構造のものを用いることが好ましい。Fe源としては、FeO、Fe23、Fe34、FeO2、α-FeOOH、Fe(OH)3、FeSO4、Fe2(SO43等を用いることができる。反応温度の観点から、Fe23あるいはα-FeOOHを用いることが好ましい。V源には、V25を用いることが好ましい。
 焼成は、大気雰囲気中で行ってもよいし、酸素雰囲気中、あるいは窒素やアルゴンなどの不活性ガス雰囲気中で行ってもよい。焼成温度は、用いるLi源、酸化チタン、Fe源およびV源に依存する。上述した好ましい材料をそれぞれLi源、酸化チタン、Fe源およびV源として用いる場合には、700℃以上1000℃以下程度の温度で混合物を焼成することによって、Li4Ti5-x-yFexy12(式中、xは0<x≦0.3、0<y≦0.05)で示される組成を有するリチウムチタン複合酸化物が得られる。
 本実施形態のリチウムイオン二次電池用負極活物質材料によれば、リチウムチタン複合酸化物は、Li4Ti5-xFex12(式中、xは0<x≦0.3)に比べて一次粒子径が大きく、負極における負極活物質材料の充填密度を高められるため、高容量のリチウムイオン二次電池が実現する。
(第2の実施形態)
 本発明のリチウムイオン二次電池用負極活物質材料の第2の実施形態を説明する。本実施形態のリチウムイオン二次電池用負極活物質材料は、Li4Ti5-x-zFexz12(式中、xは0<x≦0.3、0<z≦0.3)で示される組成を有するリチウムチタン複合酸化物を含む。本実施形態のリチウムチタン複合酸化物は、Li4Ti5-xFex12(式中、xは0<x≦0.3)のTi元素の一部をさらにB元素で置換した化合物である。x、zは、それぞれFe元素、B元素の置換量を表している。
 B元素は、V元素と同様にリチウムチタン複合酸化物の粒子径を増大させる効果を有する。本願発明者は、Ti元素の一部をB元素で置換することにより、V元素と同様にリチウムチタン複合酸化物の一次粒子径を増大させ、リチウムイオン二次電池の電極としての充填性が向上させることができることを見出した。このため、Li4Ti5-xFex12(式中、xは0<x≦0.3)で示される組成を有するリチウムチタン複合酸化物において、Ti元素をさらにB元素で置換することにより、一次粒子径の大きなリチウムチタン複合酸化物が実現する。よって、本実施形態のリチウムチタン複合酸化物をリチウムイオン二次電池の負極活物質材料として用いた場合、高容量のリチウムイオン二次電池が実現する。
 本実施形態のリチウムイオン二次電池用負極活物質材料に含まれるリチウムチタン複合酸化物は、第1の実施形態と同様、スピネル型の結晶構造を有する。結晶構造は、X線回折(XRD)により確認することができる。
 本実施形態のリチウムチタン複合酸化物は、Fe元素の添加量が0<x≦0.3であることが好ましい。これは、第1の実施形態と同様の理由による。
 B元素の添加量は、0<z≦0.3であることが好ましい。Tiの一部がB元素で置換されることにより、一次粒子径増大の効果を得ることができる。一次粒子径が増大する原因は明らかでないが、B源であるB23の融点が480℃と比較的低く、焼成時に融解状態にあるため、B源の拡散が非常に速く、リチウムチタン複合酸化物の粒子を成長させやすいためではないかと推測される。B源としてHBO3を用いた場合も、HBO3が169℃付近でB23に分解するため、同様にリチウムチタン複合酸化物の粒子を成長させやすいと考えられる。
 一方、B元素の添加量が0.3を超えると、Ti元素を含まない酸化物相が生成し、スピネル型結晶構造のリチウムチタン複合酸化物の単相を得ることが困難となる。これは、X線回折(XRD)測定により確認することができる。
 Fe元素およびB元素の置換量x、zが多い本実施形態の負極活物質材料を用いたリチウムイオン二次電池は、放電可能容量が減少する傾向を示す。つまり、Fe元素とB元素の置換量に応じて放電可能容量が減少する。しかし、リチウムイオン二次電池の負極活物質として本実施形態のリチウムチタン複合酸化物を用いる場合、上述の置換量x、zの範囲において、一次粒子径増大の効果により、電極中の充填密度が高められ、電極としての容量密度が向上する。
 本実施形態のリチウムチタン複合酸化物は、一次粒子であってもよいし、一次粒子が凝集した二次粒子を構成していてもよい。いずれの場合であっても一次粒子の平均粒子径d(μm)が1≦d≦11であることが好ましい。一次粒子の平均粒子径はV元素の置換量が増大するにつれ、大きくなる傾向を示す。また、用途によっては、リチウムチタン複合酸化物の平均粒子径dは11μm以上であってもよい。
 第1の実施形態と同様に、本実施形態のリチウムイオン二次電池用負極活物質材料に含まれるリチウムチタン複合酸化物も、構成元素を含む化合物を混合し、焼成することによって合成できる。具体的には、例えば、Li源と、酸化チタンと、Fe源とB源とを、Li、Ti、Fe、Bが上記組成式で示される比率となるような割合で秤量し、秤量した原料を合わせて均一に混合する工程と、混合物を焼成する工程によって製造することができる。
 Li源には、LiOHまたはその水和物、Li2CO3、Li2SO4、LiF、Li2O等を用いることができる。LiOHの水和物としては、一水和物(LiOH・H2O)が一般的であるが、他の含水量のLiOH水和物を用いてもよい。反応温度と不純物の残存可能性の観点から、LiOHまたはその水和物あるいはLi2CO3を用いることが好ましい。酸化チタンには、ルチル型およびアナターゼ型の結晶構造のものを用いることができる。反応の進みやすさの観点から、アナターゼ型の結晶構造のものを用いることが好ましい。Fe源としては、FeO、Fe23、Fe34、FeO2、α-FeOOH、Fe(OH)3、FeSO4、Fe2(SO43等を用いることができる。反応温度の観点から、Fe23あるいはα-FeOOHを用いることが好ましい。B源には、H3BO3、B23を用いることが好ましい。
 焼成は、大気雰囲気中で行ってもよいし、酸素雰囲気中、あるいは窒素やアルゴンなどの不活性ガス雰囲気中で行ってもよい。焼成温度は、用いるLi源、酸化チタン、Fe源およびB源に依存する。上述した好ましい材料をそれぞれLi源、酸化チタン、Fe源およびB源として用いる場合には、700℃以上1000℃以下程度の温度で混合物を焼成することによって、Li4Ti5-x-zFexz12(式中、xは0<x≦0.3、0<z≦0.3)で示される組成を有するリチウムチタン複合酸化物が得られる。
 本実施形態のリチウムイオン二次電池用負極活物質材料によれば、リチウムチタン複合酸化物は、Li4Ti5-xFex12(式中、xは0<x≦0.3)に比べて一次粒子径が大きく、負極における負極活物質材料の充填密度を高められるため、高容量のリチウムイオン二次電池が実現する。
 以下、本発明の実施例であるリチウムイオン二次電池用負極活物質材料を合成し、種々の特性を調べた結果を説明する。
 1.合成
(実施例1)
 LiOH・H2O、TiO2、Fe23、V25の原料粉末を、Li/Ti/Fe/Vのモル混合比が4/(5-x-y)/x/y、x=0.01、y=0.01となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(実施例2)
 LiOH・H2O、TiO2、Fe23、V25の原料粉末を、Li/Ti/Fe/Vのモル混合比が4/(5-x-y)/x/y、x=0.01、y=0.05となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(実施例3)
 LiOH・H2O、TiO2、Fe23、V25の原料粉末を、Li/Ti/Fe/Vのモル混合比が4/(5-x-y)/x/y、x=0.05、y=0.05となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(実施例4)
 LiOH・H2O、TiO2、Fe23、V25の原料粉末を、Li/Ti/Fe/Vのモル混合比が4/(5-x-y)/x/y、x=0.3、y=0.01となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(実施例5)
 LiOH・H2O、TiO2、Fe23、V25の原料粉末を、Li/Ti/Fe/Vのモル混合比が4/(5-x-y)/x/y、x=0.3、y=0.05となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(実施例6)
 LiOH・H2O、TiO2、Fe23、HBO3の原料粉末を、Li/Ti/Fe/Bのモル混合比が4/(5-x-z)/x/z、x=0.01、z=0.01となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(実施例7)
 LiOH・H2O、TiO2、Fe23、HBO3の原料粉末を、Li/Ti/Fe/Bのモル混合比が4/(5-x-z)/x/z、x=0.01、z=0.3となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(実施例8)
 LiOH・H2O、TiO2、Fe23、HBO3の原料粉末を、Li/Ti/Fe/Bのモル混合比が4/(5-x-z)/x/z、x=0.05、z=0.05となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(実施例9)
 LiOH・H2O、TiO2、Fe23、HBO3の原料粉末を、Li/Ti/Fe/Bのモル混合比が4/(5-x-z)/x/z、x=0.3、z=0.01となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(実施例10)
 LiOH・H2O、TiO2、Fe23、HBO3の原料粉末を、Li/Ti/Fe/Bのモル混合比が4/(5-x-z)/x/z、x=0.3、z=0.3となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(実施例11)
 LiOH・H2O、TiO2、Fe23、HBO3の原料粉末を、Li/Ti/Fe/Bのモル混合比が4/(5-x-z)/x/z、x=0.1、z=0.01となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(実施例12)
 LiOH・H2O、TiO2、Fe23、HBO3の原料粉末を、Li/Ti/Fe/Bのモル混合比が4/(5-x-z)/x/z、x=0.1、z=0.3となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(実施例13)
 LiOH・H2O、TiO2、Fe23、V25の原料粉末を、Li/Ti/Fe/Vのモル混合比が4/(5-x-y)/x/y、x=0.1、y=0.01となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(実施例14)
 LiOH・H2O、TiO2、Fe23、V25の原料粉末を、Li/Ti/Fe/Vのモル混合比が4/(5-x-y)/x/y、x=0.1、y=0.05となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(実施例15)
 LiOH・H2O、TiO2、Fe23、V25の原料粉末を、Li/Ti/Fe/Vのモル混合比が4/(5-x-y)/x/y、x=0.05、y=0.02となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(比較例1)
 LiOH・H2O、TiO2の原料粉末を、Li/Tiのモル混合比が4/5となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(比較例2)
 LiOH・H2O、TiO2、Fe23の原料粉末を、Li/Ti/Feのモル混合比が4/(5-x)/x、x=0.01となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(比較例3)
 LiOH・H2O、TiO2、Fe23の原料粉末を、Li/Ti/Feのモル混合比が4/(5-x)/x、x=0.05となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(比較例4)
 LiOH・H2O、TiO2、Fe23の原料粉末を、Li/Ti/Feのモル混合比が4/(5-x)/x、x=0.1となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(比較例5)
 LiOH・H2O、TiO2、Fe23の原料粉末を、Li/Ti/Feのモル混合比が4/(5-x)/x、x=0.3となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(比較例6)
 LiOH・H2O、TiO2、VO5の原料粉末を、Li/Ti/Vのモル混合比が4/(5-y)/y、y=0.01となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(比較例7)
 LiOH・H2O、TiO2、VO5の原料粉末を、Li/Ti/Vのモル混合比が4/(5-y)/y、y=0.05となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(比較例8)
 LiOH・H2O、TiO2、VO5の原料粉末を、Li/Ti/Vのモル混合比が4/(5-y)/y、y=0.1となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(比較例9)
 LiOH・H2O、TiO2、HBO3の原料粉末を、Li/Ti/Bのモル混合比が4/(5-z)/z、z=0.01となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(比較例10)
 LiOH・H2O、TiO2、HBO3の原料粉末を、Li/Ti/Bのモル混合比が4/(5-z)/z、z=0.05となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(比較例11)
 LiOH・H2O、TiO2、HBO3の原料粉末を、Li/Ti/Bのモル混合比が4/(5-z)/z、z=0.1となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(比較例12)
 LiOH・H2O、TiO2、HBO3の原料粉末を、Li/Ti/Bのモル混合比が4/(5-z)/z、z=0.3となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(比較例13)
 LiOH・H2O、TiO2、HBO3の原料粉末を、Li/Ti/Bのモル混合比が4/(5-z)/z、z=0.75となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(比較例14)
 LiOH・H2O、TiO2、α-FeOOHの原料粉末を、Li/Ti/Feのモル混合比が4/(5-x)/x、x=0.3となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
 混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
 焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
 2.結晶構造の確認
 実施例1~15および比較例1~14のリチウムチタン複合酸化物の結晶構造を確認するため、粉末X線回折(XRD)測定を行った。測定には、リガク社製のXRD測定装置を使用した。
 XRD測定結果のプロファイルを図1に示す。また、表1に各実施例および比較例におけるFe、V、Bの添加量x、y、zをまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 この結果から、実施例1~15、比較例1~7、比較例9~12、比較例14のリチウムチタン複合酸化物はスピネル型構造の単相であることが確認できた。比較例8のリチウムチタン複合酸化物は、スピネル型構造の相に加えて、少量のLi3VO4相を含む。また、比較例13のリチウムチタン複合酸化物は、スピネル型構造の相に加えて、少量のLi247相を含む。
 これらのことから、実施例1~15、比較例1~7、比較例9~12、比較例14のリチウムチタン複合酸化物の組成の範囲内、つまり、0<x≦0.3、0<y≦0.05、0<z≦0.3の範囲において、スピネル型構造の単相からなるリチウムチタン複合酸化物が得られることがわかった。また、比較例8のようにVの添加量yが多すぎる場合や、比較例13のようにBの添加量zが多すぎる場合はスピネル型構造単相が得られないことが明らかになった。
 また、比較例5および比較例14における測定結果がほぼ同じであることから、Fe源にFe23およびα-FeOOHのどちらを使用しても、同じリチウムチタン複合酸化物が得られることが明らかになった。

 3.平均粒径の確認
 本発明の実施例では一次粒子の平均粒径を、以下に定義する「平均粒径d」で評価した。SEM写真から任意に30粒子を選び、一次粒子径を計測し、その平均を算出して「平均粒径d」を見積もった。
 平均粒径として、一般に粒度分布測定における「累積平均粒径d50」がよく用いられる。しかしながら、粒度分布測定は一次粒子の大きさではなく凝集粒子(二次粒子)の大きさを計測するものである。一次粒子の大きさと二次粒子の大きさには相関がない。したがって、本発明の効果を示すためには、一次粒子の大きさを示す単位である「平均粒径d」が適当である。
 スピネル型構造単相の得られた実施例1~15、比較例1~7および比較例9~12のリチウムチタン複合酸化物の「平均粒径d」を調べるため、走査電子顕微鏡(SEM)で観察を行った。日立ハイテクノロジーズ社製の装置を使用した。
 SEM写真から算出した、実施例1~15、比較例1~7および比較例9~12のリチウムチタン複合酸化物の平均粒径dを表2に示す。また実施例1~15および比較例2~5のリチウムチタン複合酸化物の平均粒径dとFe添加量との関係を図2Aに、比較例1、比較例6~7および比較例9~12のリチウムチタン複合酸化物の平均粒径dとVまたはB添加量との関係を図2Bにそれぞれ示す。
Figure JPOXMLDOC01-appb-T000002
 比較例1~5のリチウムチタン複合酸化物の平均粒径dは約0.8μm~0.9μmであるのに比べ、実施例1~15、比較例6~7および比較例9~12のリチウムチタン複合酸化物の平均粒径dは約1μm~11μmであり、平均粒径dが大きい。これらの結果から、Ti元素をFe元素のみで置換しても一次粒子径にはあまり変化が起こらないが、Ti元素をB元素あるいはV元素で置換した場合は一次粒子径を増大させる効果があることが明らかになった。
 4.圧縮密度の測定
 実施例1~15、比較例1~7および比較例9~12のリチウムチタン複合酸化物について、電極にした際の充填性の指標として、圧縮密度を測定した。測定には三菱化学アナリテック社製の粉体抵抗測定システムを使用した。64MPaの圧力を印加したときの密度を圧縮密度とした。
 測定結果を表2に示す。また、実施例1~15、比較例2~5の圧縮密度の測定結果と、Fe添加量との関係を図3Aに示す。比較例1、比較例6~7および比較例9~12の圧縮密度の測定結果と、VまたはB添加量との関係を図3Bに示す。
 比較例1~5の圧縮密度が2.1g/cm3~2.2g/cm3程度であるのに比べ、実施例1~15、比較例6~7および比較例9~12の圧縮密度は2.3g/cm3~2.9g/cm3程度と大きい値であった。
 平均粒径および圧縮密度の結果より、平均粒径が大きいものは圧縮密度も大きい傾向があることが明らかになった。
 5.電極の作製
 実施例1~15、比較例1~7および比較例9~12のリチウムチタン複合酸化物を活物質として用いて、電極を作製した。活物質/導電材/バインダーを85/10/5の重量比になるよう秤量し、乳鉢で混合した。導電材にはアセチレンブラック、バインダーにはPTFEを用いた。混合後、ローラーで圧延し、打ち抜いてペレット状の電極にした。
 6.電池の作製
 リチウムイオン二次電池の負極活物質としての特性を調べるために上記電極を用いて、電池を作製した。一般にリチウムイオン二次電池では、正極活物質にLiCoO2などのリチウム遷移金属複合酸化物(Co、Mn、Niなどの遷移金属を含むものが一般的である)を用いる。しかしながら、本発明では、正極活物質に依存しない、負極活物質そのものの特性を調べるために、対極に一般の正極活物質ではなく、金属Liを用いた。このような方法は、活物質の評価をするのによく用いられる。
 コイン形の電池を作製した。本実施例および比較例を用いて作製した上記電極と、電解液を含浸させたセパレータ、金属Li板の順に重ね、コイン形のケースに入れ、封止して、電池とした。セパレータは旭化成イーマテリアルズ社製のPE微多孔膜と、タピルス社製のPP不織布を、PP/PE/PPの順で3枚重ねて使用した。電解液には、EC/EMC=1/3となるように混合した溶媒に、1mol/LのLiPF6を溶解させたものを用いた。
 実施例1~15、比較例1~7および比較例9~12のリチウムチタン複合酸化物を活物質として用いて作製した電池をそれぞれ実施例1~15、比較例1~7および比較例9~12の活物質を含む電池と呼ぶ。
 7.放電可能容量の評価
 放電可能容量を調べるために、作製した上記電池を、一度充電させた後に、放電させた。充放電試験には、ナガノ社製の充放電システムを使用した。充放電の電圧範囲は1V~3V、電流レートは、0.02Cレートとなるようにした。ここで、1Cレートは1時間放電率を表す電流値と定義され、0.02Cレートは、1Cレートの0.02倍の電流値、すなわち50時間放電率を表す電流値である。
 上記の方法で求めた実施例1~15、比較例1~7および比較例9~12の活物質を含む電池の放電可能容量の測定結果を表2に示す。また、実施例1~15、比較例2~5による測定結果と、Fe添加量との関係を図4Aに示す。比較例1、比較例6~7および比較例9~12による測定結果と、VまたはB添加量との関係を図4Bに示す。
 図4Bおよび表2から分かるように、比較例1、比較例6~7および比較例9~12の中では、比較例1の放電可能容量が最も高い。比較例1~5の活物質を含む電池の測定結果から、Ti元素をFe元素で置換する量xが増加すればするほど、放電可能容量が減少することが分かる。また、比較例6~7および比較例9~12の活物質を含む電池の結果から、Ti元素をV元素もしくはB元素で置換する量y、zが増加すればするほど、放電可能容量が減少することが分かる。さらに、実施例1~15の活物質を含む電池の測定結果から、Fe元素に加えてV元素もしくはB元素でTi元素を置換したものは、Fe置換による減少分に加えてV、B置換によりさらに放電可能容量が減少することが分かった。
 8.電極容量密度の評価
 電極の体積あたりの容量密度は、電池のエネルギー密度に直接寄与するため、向上が望まれている。電極の容量密度は、電極中の活物質の密度と活物質の重量容量密度と放電平均電圧との積で表される。電極中の活物質の密度、すなわち充填性を表すひとつの指標として、活物質の圧縮密度を用いることができる。また、活物質の重量容量密度は、上記で測定した放電可能容量である。したがって、本実施例では、電極の容量密度の評価指標として「電極容量密度ρ」を、圧縮密度と放電可能容量の積として定義し、算出した。
 上記の方法で求めた実施例1~15、比較例1~7および比較例9~12の活物質を含む電池の「電極容量密度ρ」の結果を表2に示す。また、実施例1~15および比較例2~5による電池の算出結果と、Fe添加量との関係を図5Aに示す。比較例1、比較例6~7および比較例9~12による電池の算出結果と、VまたはB添加量との関係を図5Bに示す。
 図5Aから、Fe元素の添加量xが0より大きく0.1以下である場合には、比較例1の活物質を含む電池よりも「電極容量密度ρ」が大きくなっていることが分かる。また、Fe元素の添加量xが0.3である場合、実施例の活物質を含む電池の「電極容量密度ρ」が低下してしまうことが分かる。これは、Fe元素の添加量xが0.3である場合、放電可能容量が大きく低下するためであると考えられる(図4A)。したがって、Fe元素の添加量xは0<x≦0.1を満たすことがより好ましいことが分かる。
 また、Fe元素に加えてB元素もしくはV元素を添加した実施例1~15の活物質を含む電池の「電極容量密度ρ」はB元素およびV元素を含まない比較例2~5に比べて同等あるいは大きいことが分かった。これは、B元素、V元素の添加量に応じて放電可能容量が減少するものの、圧縮密度が増大した効果が大きく寄与するためと考えられる。このため、Fe元素の添加量xが0.3であっても、B元素もしくはV元素をさらに含む実施例4、5、9の活物質を含む電池の「電極容量密度ρ」は比較例1よりも大きくなっている。比較例1に対する比較例6~7および比較例9~12の結果も同様の傾向が見られる。
 本発明によるリチウムイオン二次電池用負極活物質材料は、電極として用いる場合に高い容量密度を備え、モバイル用のリチウムイオン二次電池の負極活物質として有用である。また大型電池や電気自動車等の用途にも応用できる。

Claims (6)

  1.  Li4Ti5-x-yFexy12(式中、xは0<x≦0.3、0<y≦0.05)で示される組成を有するリチウムチタン複合酸化物を含むリチウムイオン二次電池用負極活物質材料。
  2.  Li4Ti5-x-zFexz12(式中、xは0<x≦0.3、0<z≦0.3)で示される組成を有するリチウムチタン複合酸化物を含むリチウムイオン二次電池用負極活物質材料。
  3.  前記リチウムチタン複合酸化物の一次粒子の平均粒子径は、1μm以上5μm以下である、請求項1に記載のリチウムイオン二次電池用負極活物質材料。
  4.  前記リチウムチタン複合酸化物の一次粒子の平均粒子径は、1μm以上11μm以下である、請求項2に記載のリチウムイオン二次電池用負極活物質材料。
  5.  前記xは0<x≦0.1を満たす請求項1から4のいずれかに記載のリチウムイオン二次電池用負極活物質材料。
  6.  LiOH、LiOH水和物またはLi2CO3から選ばれるリチウム源と、アナターゼ型の結晶構造を有する酸化チタンと、Fe23またはFeOOHから選ばれる1種以上のFe源と、B23、H3BO3またはV25から選ばれる1種以上の添加物原料とを均一に混合する工程と、
     前記混合物を700℃以上1000℃以下の温度で焼成する工程と
    を包含するリチウムイオン二次電池用負極活物質材料の製造方法。
PCT/JP2012/000908 2011-02-15 2012-02-10 リチウムイオン二次電池用負極活物質材料およびその製造方法 WO2012111294A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012524026A JP5070366B2 (ja) 2011-02-15 2012-02-10 リチウムイオン二次電池用負極活物質材料およびその製造方法
CN201280001030.3A CN102844912B (zh) 2011-02-15 2012-02-10 锂离子二次电池用负极活性物质材料及其制造方法
EP12747513.5A EP2677576B1 (en) 2011-02-15 2012-02-10 Negative electrode active material for lithium ion secondary battery, and manufacturing method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161442958P 2011-02-15 2011-02-15
US61/442,958 2011-02-15

Publications (1)

Publication Number Publication Date
WO2012111294A1 true WO2012111294A1 (ja) 2012-08-23

Family

ID=46653007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000908 WO2012111294A1 (ja) 2011-02-15 2012-02-10 リチウムイオン二次電池用負極活物質材料およびその製造方法

Country Status (5)

Country Link
US (1) US20120214067A1 (ja)
EP (1) EP2677576B1 (ja)
JP (1) JP5070366B2 (ja)
CN (1) CN102844912B (ja)
WO (1) WO2012111294A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156229A (ja) 1998-11-20 2000-06-06 Yuasa Corp 非水電解質リチウム二次電池
JP2000277116A (ja) 1999-03-25 2000-10-06 Sanyo Electric Co Ltd リチウム二次電池
JP2001126728A (ja) * 1999-10-26 2001-05-11 Toyota Motor Corp リチウムイオン2次電池用負極
JP2001185141A (ja) 1999-12-22 2001-07-06 Kyocera Corp リチウム電池
JP2002184400A (ja) * 2000-12-15 2002-06-28 Hitachi Maxell Ltd リチウム二次電池
JP2009190954A (ja) * 2008-02-18 2009-08-27 Toyota Central R&D Labs Inc リチウムチタン鉄複合酸化物、その使用方法、リチウムイオン二次電池、及びリチウムチタン鉄複合酸化物の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3894614B2 (ja) * 1996-03-18 2007-03-22 石原産業株式会社 チタン酸リチウムの製造方法
JP4296580B2 (ja) * 2000-01-11 2009-07-15 株式会社ジーエス・ユアサコーポレーション 非水電解質リチウム二次電池
AU2002319587B2 (en) * 2001-07-20 2007-05-10 Altair Nanomaterials Inc. Process for making lithium titanate
JP2003217583A (ja) * 2002-01-18 2003-07-31 Hitachi Maxell Ltd 複合電極およびそれを用いた電気化学素子
JP2003297433A (ja) * 2002-03-28 2003-10-17 Hitachi Maxell Ltd 電気化学素子
JP2005135775A (ja) * 2003-10-30 2005-05-26 Yuasa Corp リチウムイオン二次電池
JP2007018883A (ja) * 2005-07-07 2007-01-25 Toshiba Corp 負極活物質、非水電解質電池及び電池パック
US7879493B2 (en) * 2006-06-05 2011-02-01 A123 Systems, Inc. Alkali metal titanates and methods for their synthesis
EP2418723B1 (en) * 2007-04-05 2018-09-19 Mitsubishi Chemical Corporation Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same
CN100497180C (zh) * 2007-04-25 2009-06-10 北京理工大学 一种纳米晶锂钛复合氧化物的制备方法
US20090004563A1 (en) * 2007-06-28 2009-01-01 Zhimin Zhong Substituted lithium titanate spinel compound with improved electron conductivity and methods of making the same
JP5459757B2 (ja) * 2008-10-17 2014-04-02 Necエナジーデバイス株式会社 二次電池用正極活物質およびそれを使用した二次電池
RU2397576C1 (ru) * 2009-03-06 2010-08-20 ООО "Элионт" Анодный материал для литий-ионных хит и способ его получения
KR20120017991A (ko) * 2010-08-20 2012-02-29 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156229A (ja) 1998-11-20 2000-06-06 Yuasa Corp 非水電解質リチウム二次電池
JP2000277116A (ja) 1999-03-25 2000-10-06 Sanyo Electric Co Ltd リチウム二次電池
JP2001126728A (ja) * 1999-10-26 2001-05-11 Toyota Motor Corp リチウムイオン2次電池用負極
JP2001185141A (ja) 1999-12-22 2001-07-06 Kyocera Corp リチウム電池
JP2002184400A (ja) * 2000-12-15 2002-06-28 Hitachi Maxell Ltd リチウム二次電池
JP2009190954A (ja) * 2008-02-18 2009-08-27 Toyota Central R&D Labs Inc リチウムチタン鉄複合酸化物、その使用方法、リチウムイオン二次電池、及びリチウムチタン鉄複合酸化物の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. D. ROBERTSON ET AL.: "Li1+xFe1-3xTi1+2xO4(0.0?x? 0.33) Based Spinels:Possible Negative Electrode Materials for Future Li-Ion Batteries", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 146, no. 11, 1999, pages 3958 - 3962, XP002270610 *
PIERRE KUBIAK ET AL.: "Phase transition in the spinel Li4Tis012 induced by lithium insertion Influence of the substitutions Ti/V, Ti/Mn, Ti/Fe", JOURNAL OF POWER SOURCES, vol. 119-121, 2003, pages 626 - 630, XP004430243 *
See also references of EP2677576A4 *

Also Published As

Publication number Publication date
JPWO2012111294A1 (ja) 2014-07-03
JP5070366B2 (ja) 2012-11-14
EP2677576B1 (en) 2016-02-10
US20120214067A1 (en) 2012-08-23
EP2677576A1 (en) 2013-12-25
CN102844912A (zh) 2012-12-26
EP2677576A4 (en) 2014-09-24
CN102844912B (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
US9601772B2 (en) Cathode active material for a nonaqueous electrolyte secondary battery and manufacturing method thereof, and a nonaqueous electrolyte secondary battery that uses cathode active material
KR101430843B1 (ko) 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지
TWI433382B (zh) 充電電池用高密度鋰鈷氧化物
WO2018043669A1 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP5903956B2 (ja) 非水電解質二次電池用リチウム複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP5877817B2 (ja) 非水系二次電池用正極活物質及びその正極活物質を用いた非水系電解質二次電池
JP5218782B2 (ja) 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
KR101445954B1 (ko) 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지
KR101450421B1 (ko) 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지
WO2012165654A1 (ja) 非水系二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いた非水系電解質二次電池
JP6688996B2 (ja) 非水電解質二次電池
JPWO2008078784A1 (ja) 非水電解質二次電池用正極活物質、正極及び二次電池
JP2012043794A (ja) Li蓄電池内での高い安全性と高出力とを兼備する正電極材料
JP6201146B2 (ja) 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質および非水系電解質二次電池
KR20190036525A (ko) 니켈망간 복합 수산화물과 그 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그 제조 방법, 및 비수계 전해질 이차 전지
JP2016100174A (ja) 非水電解質二次電池用正極活物質粒子粉末とその製造方法、および非水電解質二次電池
JP5148781B2 (ja) リチウムイオン二次電池用負極活物質材料およびその製造方法
JP5456218B2 (ja) リチウムイオン二次電池用負極活物質材料
JP2014167873A (ja) リチウムイオン二次電池用負極活物質、その製造方法及びリチウムイオン二次電池
JP2010108603A (ja) リチウムイオン電池用負極活物質の製造方法
JP5070366B2 (ja) リチウムイオン二次電池用負極活物質材料およびその製造方法
WO2020175554A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
JP2016100173A (ja) 非水電解質二次電池用正極活物質粒子粉末とその製造方法、および非水電解質二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001030.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012524026

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2012747513

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE