WO2012111244A1 - 誘導加熱調理器 - Google Patents

誘導加熱調理器 Download PDF

Info

Publication number
WO2012111244A1
WO2012111244A1 PCT/JP2012/000109 JP2012000109W WO2012111244A1 WO 2012111244 A1 WO2012111244 A1 WO 2012111244A1 JP 2012000109 W JP2012000109 W JP 2012000109W WO 2012111244 A1 WO2012111244 A1 WO 2012111244A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
heating
heating coil
inverter circuit
power
Prior art date
Application number
PCT/JP2012/000109
Other languages
English (en)
French (fr)
Inventor
野村 智
みゆき 竹下
賢 新土井
Original Assignee
三菱電機株式会社
三菱電機ホーム機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機ホーム機器株式会社 filed Critical 三菱電機株式会社
Priority to JP2012557801A priority Critical patent/JP5599479B2/ja
Priority to ES12746467.5T priority patent/ES2646216T3/es
Priority to CN201280008052.2A priority patent/CN103348765B/zh
Priority to EP12746467.5A priority patent/EP2661152B1/en
Publication of WO2012111244A1 publication Critical patent/WO2012111244A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/03Heating plates made out of a matrix of heating elements that can define heating areas adapted to cookware randomly placed on the heating plate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/05Heating plates with pan detection means

Definitions

  • the present invention relates to an induction heating cooker including a plurality of heating coils.
  • a load detection unit that detects that an object to be heated is placed on the top plate is provided, and the load detection unit includes an object to be heated above the heating coil. It is detected that each heating coil is mounted, and the circuit supplies a high-frequency current only to the heating coil detected by the load detection means that the object to be heated is mounted on the upper side.
  • the present invention has been made to solve the above-described problems, and induction heating that can suppress a decrease in heating efficiency and an increase in leakage magnetic flux when an object to be heated is moved during a heating operation. You will get a cooker. Moreover, when a to-be-heated material is moved after a heating start, the induction heating cooking appliance which can reduce generation
  • An induction heating cooker includes a plurality of heating coils, a plurality of inverter circuits that supply a high-frequency current to the heating coils, output current detection means that detects an output current of each inverter circuit, and each inverter.
  • Load determining means for determining whether or not the object to be heated is placed above the heating coil, and the control means during the heating operation of supplying set power to the object to be heated, Based on the determination result of the load determining means, the power corresponding to the set power is output to the heating coil on which the object to be heated is placed.
  • the predetermined power equal to or lower than the set power is output to the heating coil.
  • a predetermined power equal to or lower than the set power is output to the heating coil. For this reason, when a to-be-heated object is moved during heating operation, the fall of heating efficiency and the increase in leakage magnetic flux can be suppressed.
  • FIG. It is a figure which shows the structure of the induction heating cooking appliance which concerns on Embodiment 1.
  • FIG. It is a figure which shows the circuit structure of the induction heating cooking appliance which concerns on Embodiment 1.
  • FIG. It is a figure which shows the example of the drive signal and output voltage waveform of the inverter circuit of the induction heating cooking appliance which concerns on Embodiment 1.
  • FIG. It is a figure which shows the example of the drive signal and output voltage waveform of the inverter circuit of the induction heating cooking appliance which concerns on Embodiment 1.
  • FIG. It is a figure which shows the example of the positional relationship of the heating coil of the induction heating cooking appliance which concerns on Embodiment 1, and a to-be-heated load (pan).
  • FIG. 1 It is a figure which shows the example of the heating availability determination conditions at the time of the heating start of the induction heating cooking appliance which concerns on Embodiment 1.
  • FIG. It is a figure which shows the load state of the induction heating cooking appliance which concerns on Embodiment 1, and the drive signal control range of an inverter circuit. It is a figure which shows the discrimination conditions of the load state in the heating operation of the induction heating cooking appliance which concerns on Embodiment 1.
  • FIG. It is a figure which shows the example of the detection conditions of the to-be-heated load in the drive signal restriction
  • FIG. It is a flowchart which shows the heating control process in the control means of the induction heating cooking appliance which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the initial load discrimination
  • FIG. It is a flowchart which shows the output control process of the inverter circuit for peripheral heating coils n in the control means of the induction heating cooking appliance which concerns on Embodiment 1.
  • FIG. It is a figure which shows the circuit structure of the induction heating cooking appliance which concerns on Embodiment 2.
  • FIG. It is a figure which shows the drive signal example of the inverter circuit of the induction heating cooking appliance which concerns on Embodiment 2.
  • FIG. It is a flowchart which shows the heating control process in the control means of the induction heating cooking appliance which concerns on Embodiment 2.
  • FIG. It is a flowchart which shows the output control process of the inverter circuit for the periphery heating coils n in the control means of the induction heating cooking appliance which concerns on Embodiment 2.
  • FIG. It is a figure which shows the example of a heating coil comprised from the inner side heating coil arrange
  • FIG. (Constitution) 1 is a diagram illustrating a configuration of an induction heating cooker according to Embodiment 1.
  • 101 is a top plate
  • 102 is a main body housing
  • 103 is a circuit for supplying a high frequency current
  • 104 is an operation unit
  • 105 is a display means
  • 22 is a heating coil.
  • the top plate 101 is for placing an object to be heated such as a pan, and is provided with a heating port 106 for displaying the placement position of the pan.
  • a circuit 103, a display unit 105, and a heating coil 22 are housed inside the main body housing 102, and a top plate 101 is placed on the upper surface of the main body housing 102 to house the internal structure of the main body housing 102.
  • the circuit 103 has a configuration described later with reference to FIG. 2 and supplies a high-frequency current to the heating coil 22.
  • the operation unit 104 is for the user to adjust the heating output.
  • the display means 105 is a screen display device composed of a liquid crystal display device or the like, and displays the operating state of the induction heating cooker.
  • a plurality of heating coils 22 are arranged in the depth direction and the lateral direction for each heating port.
  • FIG. 2 is a diagram illustrating a circuit configuration of the induction heating cooker according to the first embodiment.
  • the induction heating cooker is connected to an AC power source 1, and power supplied from the AC power source 1 is converted into DC power by a DC power supply circuit 2.
  • the DC power supply circuit 2 includes a rectifier diode bridge 3 that rectifies AC power, and a reactor 4 and a smoothing capacitor 5 that are provided for each inverter circuit 9.
  • the input power input to each inverter circuit 9 is detected by the input voltage detection means 7 and the input current detection means 6 provided for each inverter circuit 9.
  • the power converted into DC power by the DC power supply circuit 2 is supplied to the inverter circuits 9-1 to 9-n.
  • the input current detection means 6 and the input voltage detection means 7 constitute the “power detection means” of the present invention.
  • a plurality of inverter circuits 9-1 to 9-n are connected to the DC power supply circuit 2.
  • the inverter circuits 9-1 to 9-n have the same configuration.
  • the inverter circuit 9 is provided according to the number of heating coils 22.
  • the inverter circuit 9 includes an arm 2 formed by two switching elements (IGBT) connected in series between the positive and negative buses of the same DC power supply circuit 2 and diodes connected in antiparallel with the switching elements.
  • IGBT switching elements
  • Set hereinafter, the two sets of arms are referred to as U-phase arm 10 and V-phase arm 11, and the positive bus-side switching element and the negative bus-side switching element of each arm are referred to as an upper switch and a lower switch, respectively). It is formed with.
  • the U-phase arm 10 includes an upper switch 12, a lower switch 13, an upper diode 14 connected in antiparallel with the upper switch 12, and a lower diode 15 connected in antiparallel with the lower switch 13.
  • the V-phase arm 11 includes an upper switch 16, a lower switch 17, an upper diode 18 connected in antiparallel with the upper switch 16, and a lower diode 19 connected in antiparallel with the lower switch 17. ing.
  • the upper switch 12 and the lower switch 13 constituting the U-phase arm 10 are turned on / off by a drive signal output from the U-phase drive circuit 20. Further, the upper switch 16 and the lower switch 17 constituting the V-phase arm 11 are turned on / off by a drive signal output from the V-phase drive circuit 21.
  • the U-phase drive circuit 20 turns off the lower switch 13 while the upper switch 12 of the U-phase arm 10 is turned on, and turns on the lower switch 13 while the upper switch 12 is turned off. A drive signal for alternately turning on / off the upper switch 12 and the lower switch 13 is output.
  • the V-phase drive circuit 21 outputs a drive signal for alternately turning on and off the upper switch 16 and the lower switch 17 of the V-phase arm 11.
  • a load circuit 24 including a heating coil 22 and a resonance capacitor 23 is connected between the output points of the two arms in the inverter circuit 9.
  • the heating coil 22 and the resonance capacitor 23 form a series resonance circuit and have a resonance frequency
  • the inverter circuit 9 is driven at a frequency higher than the resonance frequency, so that the load circuit 24 has inductive characteristics. It has become.
  • the control means 25 performs the drive control of each inverter circuit 9-1 to 9-n and fulfills the function of controlling the entire induction heating cooker.
  • the control means 25 uses the detected values from the input current detection means 6 and the input voltage detection means 7 based on the thermal power instruction set by the user in the operation unit 104, and uses the U-phase drive circuit 20 and the V-phase drive circuit 21.
  • the heating output is controlled in a full-bridge operation mode in which high-frequency drive signals are output from both.
  • the output current detection means 28 detects a current (hereinafter referred to as an output current) flowing through a load circuit 24 composed of the heating coil 22 and the resonance capacitor 23.
  • the load determination means 26 provided in the control means 25 is arranged above the heating coil 22 based on the correlation between the output current detected by the output current detection means 28 and the input current detected by the input current detection means 6.
  • a load determination is made as to whether or not a pan or the like to be heated is placed on the. In the following description, a state where an object to be heated such as a pan is not placed is referred to as no load or no pan.
  • the load determination unit 26 mounts an inappropriate load above the heating coil 22 based on the correlation between the output current detected by the output current detection unit 28 and the input current detected by the input current detection unit 6.
  • the load is determined whether or not it is placed.
  • Inappropriate load is a load that is not suitable for induction heating.
  • a low resistance pan that cannot be induction heated with a low-efficiency material such as an aluminum pan, or a fork or spoon that should not be heated. This is an accessory.
  • the appropriate load (appropriate pan) refers to a load suitable for performing induction heating, and refers to an object to be heated other than an inappropriate load.
  • the load determination unit 26 performs load determination based on the output current and the input current
  • the present invention is not limited to this.
  • the input current the input power or output power of the inverter circuit 9 may be used, and the load determination may be performed based on the input power or output power and the output current.
  • an output voltage detection means for detecting a voltage (effective value) output from the inverter circuit 9 to the load circuit 24 is separately provided, and the output voltage and the output current detection means 28 detect the output voltage. The output power can be detected from the output current.
  • FIG. (A) is an example of the drive signal and output voltage waveform of each switch in a high output state.
  • (B) is an example of the drive signal and output voltage waveform of each switch in the medium output state.
  • (C) is an example of the drive signal and output voltage waveform of each switch in the low output state.
  • the leading arm refers to the arm whose output potential changes before the other of the U-phase arm 10 or V-phase arm 11
  • the following arm refers to the U-phase arm 10 or V-phase.
  • the arm whose output potential changes follows the other.
  • the control means 25 controls the drive signals output from the U-phase drive circuit 20 and the V-phase drive circuit 21 to drive the inverter circuit 9 at a frequency higher than the resonance frequency of the load circuit 24. At that time, the drive signals output from the U-phase drive circuit 20 to the upper switch 12 and the lower switch 13 and the drive signals output from the V-phase drive circuit 21 to the upper switch 16 and the lower switch 17 have the same frequency. . As shown in (a) to (c), the phase of the drive signal from the preceding arm (U-phase drive circuit 20) is ahead of the drive signal from the following arm (V-phase drive circuit 21), and the output of the preceding arm There is a phase difference between the potential and the output potential of the tracking arm.
  • the application time of the output voltage of the inverter circuit 9 is controlled by this phase difference (hereinafter also referred to as an inter-arm phase difference), and the magnitude of the output current flowing through the load circuit 24 can be controlled.
  • the phase difference between arms is enlarged and the voltage application time width in 1 period is enlarged.
  • the phase difference between the arms is made smaller than in the high output state, and the voltage application time width in one cycle is reduced.
  • the inter-arm phase difference is further reduced to further reduce the voltage application time width in one cycle.
  • the upper limit of the inter-arm phase difference is in the case of reverse phase (phase difference 180 °), and the output voltage waveform at this time is almost a rectangular wave. Further, the lower limit of the inter-arm phase difference is set to a level at which an excessive current does not flow into the switching element and is destroyed due to the phase of the current flowing through the load circuit 24 at the time of turn-on, for example.
  • FIG. 5 is a diagram illustrating an example of a positional relationship between a heating coil and a heated load (pan) of the induction heating cooker according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of a heating permission / inhibition determination condition when the induction cooking device according to Embodiment 1 starts heating.
  • FIG. 5 an example will be described in which nine heating coils 22 are arranged in the horizontal direction and three in the depth direction with respect to one heating port 106.
  • the heating coil 22 disposed at the center of the heating port 106 is referred to as a center heating coil 22a.
  • the heating coils 22 arranged in the lateral direction and depth direction of the center heating coil 22a are referred to as peripheral heating coils 22b-1 to 22b-8. In addition, when not distinguishing, it will call the surrounding heating coil 22b. Note that the number of the peripheral heating coils 22b is not limited to this and may be any number.
  • the inverter circuit 9 that drives the center heating coil 22a is also referred to as a center heating coil inverter circuit 9a, and the inverter circuit 9 that drives the peripheral heating coils 22b-1,. ... N) Inverter circuit 9b-1.
  • the control means 25 supplies a predetermined high frequency current (predetermined frequency) to each heating coil 22 at the start of heating.
  • the load determination unit 26 acquires the output current detected by the output current detection unit 28 and the input current detected by the input current detection unit 6. For example, referring to the information shown in FIG. 6, based on the acquired output current and input current, whether or not the pan is placed above each heating coil 22, the placed pan is an improper load. It is determined whether or not there is. For example, as shown in FIG. 6, when the output current is large, it is determined that the pan is a low-resistance pan that cannot be heated with a low-efficiency material such as an aluminum pan. In this case, the driving of the inverter circuit 9 is stopped.
  • the output of the inverter circuit 9 is limited to a predetermined power.
  • the predetermined power is a value equal to or lower than the power corresponding to the set power, and is, for example, a lower limit value of power that can be output by the inverter circuit 9.
  • this predetermined power is referred to as a limited output, and a state in which the output of the inverter circuit 9 is limited to a predetermined power is referred to as an output limited state.
  • the output of the inverter circuit 9 is controlled so as to become power corresponding to the set power (feedback control). That is, the output of the inverter circuit 9 is controlled in the range from the lower limit value to the upper limit value according to the set power.
  • the load determination means 26 when the pan 200 (appropriate diameter) is placed at the position indicated by the solid line at the start of heating, the load determination means 26 includes the center heating coil 22 a and the peripheral heating coils 22 b-5, 7, 8. It is determined that an appropriate load is placed above, and the peripheral heating coils 22b-1 to 4 and 6 are determined to have no pan. Then, the control means 25 includes the center heating coil inverter circuit 9a of the center heating coil 22a on which an appropriate load is placed, and the peripheral heating coil inverter circuit 9b- of the peripheral heating coils 22b-5, 7, and 8. The outputs of 5, 7, and 8 are controlled according to the set power. Further, the control means 25 sets the outputs of the peripheral heating coil inverter circuits 9b-1 to 4 and 6 of the peripheral heating coils 22b-1 to 4 and 6 determined as having no pan as the limited output. Details of the heating control operation will be described later.
  • the load is determined at the start of heating, and the heating coil 22 on which the pan is placed performs the heating operation of supplying the set power to the pan. Moreover, the fall of heating efficiency and the leakage magnetic flux are suppressed by making the output of the heating coil 22 in which the pan is not mounted into the limiting output which is a lower limit, for example.
  • the case where the load is determined based on the relationship between the output current and the input current and the power output to the heating coil 22 is set based on the information shown in FIG. 6, for example. It is not limited.
  • the output of the inverter circuit 9 may be set according to the resistance value of the load circuit 24 obtained from the input current and the output current. An example will be described with reference to FIG.
  • FIG. 7 is a diagram illustrating a load state of the induction cooking device according to Embodiment 1 and a drive signal control range of the inverter circuit.
  • the horizontal axis indicates the resistance value of the load circuit 24 obtained from the input current and output current of the inverter circuit 9
  • the vertical axis indicates the magnitude of the output of the inverter circuit 9 (drive signal level).
  • the heating coil 22 and the pan are magnetically coupled, an eddy current flows through the pan due to the output current flowing through the heating coil 22, and the pan generates heat and consumes power.
  • the eddy current flowing through the pan depends on (approximately proportional to) the degree of magnetic coupling between the heating coil 22 and the pan and the output current flowing through the heating coil 22.
  • the power consumed in the pan is generated by the eddy current flowing through the pan, and is approximately the square of the output current flowing through the heating coil 22 and the load resistance value, and is almost equal to the input power (input current). It is proportional. For this reason, load determination is performed based on a resistance value obtained from an input current (synonymous with power) and an output current. For example, as shown in FIG. 7, when the resistance value is large and the power supplied to the pan exceeds a certain level, it is determined that the load is appropriate and the output of the inverter circuit 9 is set to the power corresponding to the set power. Control (feedback control). That is, the output of the inverter circuit 9 is controlled in the range from the lower limit value to the upper limit value according to the set power.
  • the resistance value is within a predetermined range smaller than the appropriate load, it is determined that the pot is a small item such as a pan or a fork, and the output of the inverter circuit 9 is set as a limited output that is a lower limit value, for example. If the resistance value is smaller than the limit output range, it is determined that the output current is excessive, such as a non-magnetic pot such as aluminum, and the drive of the inverter circuit 9 is stopped. To do.
  • FIG. 8 is a diagram showing the condition for determining the load state during the heating operation of the induction heating cooker according to the first embodiment.
  • FIG. 9 is a diagram illustrating an example of a detection condition of a heated load in the drive signal limited state of the induction heating cooker according to the first embodiment.
  • the control means 25 acquires the output current detected by the output current detection means 28 of the inverter circuit 9 being driven and the input current detected by the input current detection means 6 during the heating operation.
  • the load discriminating means 26 refers to the information as shown in FIG. 8, for example, is the pan placed on the heating coil that is controlled (feedback control) to output power corresponding to the set power? It is determined whether or not the loaded pan has an inappropriate load.
  • the load determination means 26 refers to, for example, the information as shown in FIG. 9 and determines whether or not the pan is placed above the heating coil that outputs the limited output. It is determined whether or not it is a load.
  • the peripheral heating coils 22b-5 and 8 during the feedback control are moved from the state having the pan to the position without the pan.
  • the state changes.
  • the values of the output current and the input current of the peripheral heating coils 22b-5 and 8 that output electric power according to the set electric power are from the appropriate load region (with pan) to no load. Transition to the area (without pan).
  • the load determination means 26 determines that the peripheral heating coils 22b-5 and 8 are in a state without a pan.
  • the control means 25 sets the output of the peripheral heating coil inverter circuits 9b-5 and 8 of the peripheral heating coils 22b-5 and 8 without a pan as a limited output.
  • the peripheral heating coils 22b-4 and 6 change from a state without a pan to a state with a pan.
  • the values of the output current and the input current of the peripheral heating coils 22b-4, 6 set to the limit output are changed from the output limit state region (no pan) to the feedback control region. Move to (with pan).
  • the load determination means 26 determines that the peripheral heating coils 22b-4 and 6 are in a state where there is a pan.
  • the control means 25 controls the outputs of the peripheral heating coil inverter circuits 9b-4 and 6 of the peripheral heating coils 22b-4 and 6 having the pan so as to become electric power corresponding to the set electric power (for feedback control). return).
  • the output of the inverter circuit 9 may be set according to the resistance value of the load circuit 24 obtained from the input current and the output current as shown in FIG. .
  • the output of the heating coil 22 is limited (for example, the lower limit value). ) As well as suppressing a decrease in heating efficiency and reducing leakage magnetic flux. In addition, when the pan moves above the heating coil 22 whose output is limited, it is possible to reduce the uneven heating of the pan by causing the heating coil 22 to output power corresponding to the set power.
  • FIG. 10 is a flowchart showing a heating control process in the control means of the induction heating cooker according to the first embodiment. The flow of the heating control process will be described based on FIG. First, the control means 25 determines whether or not a heating start request such as setting of heating power is input from the operation unit 104 (S101). When there is a heating start request, the initial load determination process is started (S200). Details of the initial load determination processing will be described with reference to FIG.
  • FIG. 11 is a flowchart showing an initial load determination process in the control means of the induction heating cooker according to the first embodiment.
  • the control means 25 drives the center heating coil inverter circuit 9a with a predetermined output (predetermined frequency / predetermined inter-arm phase difference) (S201).
  • the control means 25 acquires the output current detected by the output current detection means 28 and the input current detected by the input current detection means 6 of the driven inverter circuit 9 (S202).
  • the control means 25 stops the output of the center heating coil inverter circuit 9a after a predetermined time has elapsed (S203).
  • the load determination unit 26 determines whether or not the pan is placed above the center heating coil 22a based on the acquired output current and input current and the heating availability determination condition (for example, FIG. 6). It is determined whether the loaded pan is an appropriate load or an inappropriate load. Then, the load determination result is set (held) (S204).
  • the initial load determination process is terminated. On the other hand, if it is determined that there is an appropriate load above the center heating coil 22a, the process proceeds to a load determination process for the peripheral heating coil 22b-1 (S205).
  • the control means 25 drives the peripheral heating coil 1 inverter circuit 9b-1 with a predetermined output (predetermined frequency and predetermined inter-arm phase difference).
  • the control means 25 acquires the output current detected by the output current detection means 28 and the input current detected by the input current detection means 6 of the driven inverter circuit 9.
  • the control means 25 stops the output of the inverter circuit 9b-1 for the peripheral heating coil 1 after a predetermined time has elapsed.
  • the load discriminating unit 26 places the pan on the upper side of the peripheral heating coil 22b-1 based on the acquired output current and input current and the heating availability discrimination condition (for example, FIG. 6). It is determined whether it is placed and whether the placed pan is at an appropriate load or an inappropriate load. Then, the load determination result is set (held).
  • the above processes (1) to (4) are performed in the initial load determination process (S206-2, 3... 8) of the peripheral heating coils 22b-2, 3,.
  • the initial load determination process is appropriately performed according to the number of the peripheral heating coils 22b.
  • control means 25 determines whether or not it is determined that there is an appropriate load above the center heating coil 22a (S102). If there is no appropriate load above the center heating coil 22a, the process returns to step S101 and the above operation is repeated.
  • the control means 25 determines in step S200 that the center heating coil inverter circuit 9a and an inappropriate load are placed above.
  • the driving of the peripheral heating coil inverter circuit 9b other than the peripheral heating coil 22b is started, and the output is set to the limit output (lower limit value) (S103). That is, out of the plurality of peripheral heating coils 22b, the peripheral heating coil 22b without a pan (no load) and the peripheral heating coil 22b on which an appropriate load is placed above are driven with limited output.
  • the drive frequencies of the inverter circuits 9 are driven at the same frequency.
  • the control means 25 acquires the output current detected by the output current detection means 28 and the input current detected by the input current detection means 6 of each driven inverter circuit 9 (S104).
  • the load determination means 26 determines whether or not an appropriate load is placed above the center heating coil 22a based on the output current and input current of the center heating coil 22a and the heating determination condition (for example, FIG. 8). It discriminate
  • the process proceeds to step S112, and the control unit 25 stops driving all the inverter circuits 9, and then returns to step S101.
  • control means 25 uses the set power (thermal power) set by the user in the operation unit 104, the input current detection means 6, and the input voltage detection.
  • the input power obtained from the detection value of the means 7 is compared (S106).
  • step S106 When the input power is smaller than the set power (step S106;>), it is determined whether the phase difference between the arms of the center heating coil inverter circuit 9a is less than the upper limit (180 degrees (half cycle)) (S107). When the inter-arm phase difference has reached the upper limit value, the process proceeds to the output control process of the peripheral heating coil 22b. On the other hand, if the inter-arm phase difference is less than the upper limit, the control means 25 increases the inter-arm phase difference of the center heating coil inverter circuit 9a (S108), and proceeds to the output control process of the peripheral heating coil 22b.
  • step S109 it is determined whether or not the inter-arm phase difference of the center heating coil inverter circuit 9a is larger than the lower limit value (S109).
  • the lower limit value of the phase difference between the arms is set to a level at which an excessive current does not flow to the switching element due to the phase of the current flowing in the load circuit 24 at the time of turn-on.
  • the process proceeds to the output control process of the peripheral heating coil 22b.
  • the control means 25 reduces the inter-arm phase difference of the center heating coil inverter circuit 9a (S110), and proceeds to the output control process of the peripheral heating coil 22b.
  • step S106 When the set power and the input power are substantially the same (step S106; ⁇ ), the process proceeds to the output control process of the peripheral heating coil 22b.
  • the control means 25 performs output control processing of the peripheral heating coils 22b-1, 2,... 8 (S300-1 to 8). Details of this control will be described with reference to FIG.
  • the output control process of each peripheral heating coil 22b is the same.
  • the peripheral heating coil 22b that performs the output control process is referred to as the peripheral heating coil n
  • an inverter circuit that drives the peripheral heating coil n. 9 is referred to as an inverter circuit 9b-n for the peripheral heating coil n.
  • FIG. 12 is a flowchart showing an output control process of the inverter circuit for the peripheral heating coil n in the control means of the induction heating cooker according to the first embodiment.
  • the output state of the peripheral heating coil n inverter circuit 9b-n is a state in which driving is stopped (hereinafter referred to as an output stop state), and a control state in which power is set in accordance with the set power (hereinafter referred to as the output power) , Referred to as a normal output state) or an output limited state is determined (S301). If the output is stopped in step S301, the output process of the peripheral heating coil n is terminated.
  • the control means 25 outputs the output current detected by the output current detection means 28 and the input current detected by the input current detection means 6 of the inverter circuit 9b-n for the peripheral heating coil n. And get. And as above-mentioned, as for the load determination means 26, a pan is mounted above the said surrounding heating coil n based on the acquired output current and input current, and the heating availability determination conditions (for example, FIG. 8). It is determined whether or not the loaded pan has an appropriate load or an inappropriate load (S302).
  • step S302 In the case of an improper pan (step S302; improper load), driving of the peripheral heating coil n inverter circuit 9b-n is stopped (S303), and the output processing of the peripheral heating coil n is terminated.
  • step S302 When the pan is not placed (step S302; no load), the drive of the inverter circuit 9b-n for the peripheral heating coil n is set to the output limited state (S304), and then the output of the peripheral heating coil n is output. End the process.
  • the output to the peripheral heating coil n is limited to a predetermined power to suppress a decrease in heating efficiency and an increase in leakage magnetic flux. be able to.
  • control means 25 compares the output current of the center heating coil 22a with the output current of the peripheral heating coil n (S305).
  • the phase difference between the arms of the inverter circuit 9b-n for the peripheral heating coil n is the upper limit (180 degrees (half cycle) )) Or less (S306).
  • the control means 25 increases the inter-arm phase difference of the inverter circuit 9b-n for the peripheral heating coil n (S307), and ends the output processing of the peripheral heating coil n. To do.
  • step S305; ⁇ is the phase difference between the arms of the inverter circuit 9b-n for the peripheral heating coil n larger than the lower limit value? Judgment is made (S308).
  • the lower limit value of the phase difference between the arms is set to a level at which an excessive current does not flow to the switching element due to the phase of the current flowing in the load circuit 24 at the time of turn-on.
  • the output process of the peripheral heating coil n is terminated.
  • the control means 25 reduces the inter-arm phase difference of the inverter circuit 9b-n for the peripheral heating coil n (S309), and the output processing of the peripheral heating coil n Exit.
  • step S305 When the output current of the center heating coil 22a and the output current of the peripheral heating coil n are substantially the same (step S305; ⁇ ), the output processing of the peripheral heating coil n is terminated.
  • the control means 25 When the output is limited in step S301, the control means 25 outputs the output current detected by the output current detection means 28 and the input current detection means 6 of the peripheral heating coil n inverter circuit 9b-n. To get current. And as above-mentioned, as for the load determination means 26, a pan is mounted above the said surrounding heating coil n based on the acquired output current and input current, and the heating availability determination conditions (for example, FIG. 9). It is discriminate
  • step S310 In the case of an improper pan (step S310; improper load), driving of the peripheral heating coil n inverter circuit 9b-n is stopped (S311), and the output processing of the peripheral heating coil n is terminated.
  • step S310 When the pan is not placed (step S310; no load), the output process of the peripheral heating coil n is terminated.
  • step S310 after driving the peripheral heating coil n inverter circuit 9b-n to the normal output state, the output processing of the peripheral heating coil n is terminated.
  • step S310 with an appropriate load
  • the control means 25 determines whether or not a heating stop request operation set by the user has been performed by the operation unit 104 (S111). If there is no heating stop request, the process returns to step S104 and the above operation is repeated. On the other hand, if there is a heating stop request, the process proceeds to step S112, where the control means 25 stops driving all the inverter circuits 9, and returns to step S101.
  • the present invention is not limited to this, and the center heating coil 22a and the peripheral heating coil are not limited thereto. n is not distinguished, and according to the operation state of the arbitrary heating coil 22 and the load determination result, the heating coil 22 on which the pan is no longer placed is placed in the output limited state, and the heating coil 22 that is placed thereon. May be in a normal output state.
  • it is determined whether the placed pan is an appropriate load or an inappropriate load, and the heating coil 22 on which the inappropriate load is placed is set in an output stopped state.
  • the load determination means 26 may only determine whether or not a pan is placed, and may only set the normal output state and the output restriction state.
  • the heating output is controlled by the phase difference between the arms of the inverter circuit 9
  • the present invention is not limited to this.
  • the heating output may be controlled by changing the energization ratio of the output voltage of the inverter circuit 9.
  • the setting is made to the heating coil 22 on which the object to be heated is placed based on the determination result of the load determining means 26.
  • Electric power corresponding to the electric power is output, and when an object to be heated is not placed above the heating coil 22, predetermined electric power (limited output) is output.
  • the high frequency output to the heating coil 22 in which the to-be-heated material (load) is not mounted above can be restrict
  • the loss in the said heating coil 22 and the inverter circuit 9 etc. which supplies high frequency electric power to the said heating coil 22 can be suppressed. Therefore, a decrease in heating efficiency and an increase in leakage magnetic flux can be suppressed.
  • predetermined power is supplied to the heating coil 22 on which the object to be heated is not placed based on the determination result of the load determining unit 26. (Limit output) is output, and when an object to be heated is placed above the heating coil 22, power corresponding to the set power is output to the heating coil 22. For this reason, when the object to be heated (load) is moved above the heating coil 22 on which the object to be heated is not placed, the heating coil 22 can perform heating with an output corresponding to the set power. it can. Therefore, when the position where the article to be heated is placed is shifted, the occurrence of uneven heating can be reduced.
  • the load determination unit 26 performs load determination based on the output current and input current (input power or output power) of the inverter circuit 9 operating in the output limited state, the load determination unit 26 is heated above the heating coil 22 in the output limited state. It is possible to immediately determine that an object has been placed.
  • the drive of the inverter circuit 9 of the heating coil 22 in which the improper load is mounted is stopped. For this reason, when an object to be heated that is not suitable for induction heating is placed, it is possible to prevent an excessive current from flowing through the inverter circuit 9, the load circuit 24, and the like.
  • the predetermined power in the output restriction state is set to a lower limit value of the power that can be output by the inverter circuit 9, for example. For this reason, the loss by the high frequency current which flows into the heating coil 22 in which the to-be-heated material (load) is not mounted above, and the leakage magnetic flux from this heating coil 22 can be made as small as possible.
  • Embodiment 2 FIG. In the second embodiment, an embodiment in which the inverter circuit 9 is configured by a half bridge will be described.
  • FIG. 13 is a diagram illustrating a circuit configuration of the induction heating cooker according to the second embodiment.
  • the difference from the first embodiment will be mainly described.
  • FIG. 13 the same components as those in the first embodiment (FIG. 2) are denoted by the same reference numerals.
  • Each inverter circuit 9 ′ in the second embodiment has a half-bridge configuration, and includes a high-potential side switching element (upper switch 12 ′), a low-potential side switching element (lower switch 13 ′), and an upper switch 12 ′. And an upper diode 14 'connected in antiparallel to the lower switch 13' and a lower diode 15 'connected in antiparallel to the lower switch 13'.
  • a load circuit 24 ' is connected between the output points of each inverter circuit 9'.
  • the load circuit 24 ′ includes a heating coil 22, a resonance capacitor 23, and a clamp diode 27 connected in parallel with the resonance capacitor 23.
  • the clamp diode 27 clamps the connection point potential of the heating coil 22 and the resonance capacitor 23 to the low potential side bus potential of the DC power supply. By the action of the clamp diode 27, the current flowing through the heating coil 22 is not commutated when the lower switch 13 ′ is in a conductive state.
  • the upper switch 12 'and the lower switch 13' are driven to be turned on / off by a drive signal output from the drive circuit 20 '.
  • the control means 25 of the present embodiment alternately turns on and off the high-potential side switching element (upper switch 12 ′) and the low-potential side switching element (lower switch 13 ′), A high frequency voltage is generated between one end of the DC bus and supplied to the load circuit 24 '.
  • FIG. 14 is a diagram illustrating an example of a drive signal of the inverter circuit of the induction heating cooker according to the second embodiment.
  • A is an example of the drive signal and output voltage waveform of each switch in a high output state.
  • B is an example of the drive signal and output voltage waveform of each switch in the medium output state.
  • C is an example of the drive signal and output voltage waveform of each switch in the low output state.
  • the control means 25 controls the drive signal output from the drive circuit 20 ′ to drive the inverter circuit 9 ′ at a frequency higher than the resonance frequency of the load circuit 24 ′.
  • the control means 25 of the present embodiment is configured such that the energization ratio of the switching element on the high potential side (upper switch 12 ′) and the switching element on the low potential side (lower switch 13 ′). By controlling this, the application time of the output voltage of the inverter circuit 9 ′ is controlled, and the magnitude of the output current flowing through the load circuit 24 ′ can be controlled. As shown in (a), in the high output state, the energization ratio (on duty ratio) of the upper switch 12 ′ is increased to increase the voltage application time width in one cycle.
  • the energization ratio (on-duty ratio) of the upper switch 12 ' is made smaller than in the high output state, and the voltage application time width in one cycle is increased. Decrease.
  • the energization ratio (on duty ratio) of the upper switch 12 ′ is further reduced to further reduce the voltage application time width in one cycle.
  • FIG. 15 is a flowchart showing a heating control process in the control means of the induction heating cooker according to the second embodiment.
  • FIG. 16 is a flowchart showing an output control process of the inverter circuit for the peripheral heating coil n in the control means of the induction heating cooker according to the second embodiment.
  • FIGS. 15 and 16 differences from the first embodiment (FIGS. 10 and 12) will be described.
  • the same step number is attached
  • FIG. The operation of the initial load determination process is the same as that in the first embodiment (FIG. 11).
  • the inverter circuit 9 ′ for driving the center heating coil 22a is referred to as a center heating coil inverter circuit 9′a, and the inverter circuit 9 ′ for driving the peripheral heating coils 22b-1,.
  • Inverter circuits 9'b-1 ... n for heating coils (1 ... n) are referred to.
  • step S106 when the input power is smaller than the set power (step S106;>), it is determined whether the energization ratio of the upper switch 12 ′ of the center heating coil inverter circuit 9′a is less than the upper limit (S401). When the energization ratio of the upper switch 12 ′ has reached the upper limit value, the process proceeds to the output control process of the peripheral heating coil 22b.
  • the control means 25 increases the energization ratio of the upper switch 12 ′ of the center heating coil inverter circuit 9′a (S402), and the peripheral heating coil 22b. Proceed to the output control process.
  • step S106 when the input power is larger than the set power (step S106; ⁇ ), it is determined whether the energization ratio of the upper switch 12 ′ of the center heating coil inverter circuit 9′a is larger than the lower limit value ( S403).
  • the process proceeds to the output control process of the peripheral heating coil 22b.
  • the control means 25 reduces the energization ratio of the upper switch 12 ′ of the center heating coil inverter circuit 9′a (S404), and the peripheral heating coil. The process proceeds to the output control process 22b.
  • step S106 when the set power and the input power are substantially the same (step S106; ⁇ ), the process proceeds to the output control process of the peripheral heating coil 22b.
  • step S305 when the output current of the peripheral heating coil n is smaller than the output current of the central heating coil 22a (step S305;>), the energization of the upper switch 12 ′ of the inverter circuit 9′b-n for the peripheral heating coil n It is determined whether the ratio is less than the upper limit (S501). When the energization ratio of the upper switch 12 ′ has reached the upper limit value, the output process of the peripheral heating coil n is terminated.
  • the control means 25 increases the energization ratio of the upper switch 12 ′ of the inverter circuit 9′bn for the peripheral heating coil n (S502). The output process of the heating coil n is terminated.
  • step S305 if the output current of the peripheral heating coil n is larger than the output current of the central heating coil 22a (step S305; ⁇ ), the upper switch 12 'of the inverter circuit 9'bn for the peripheral heating coil n It is determined whether the energization ratio is greater than the lower limit (S503). When the energization ratio of the upper switch 12 ′ has reached the lower limit value, the output process of the peripheral heating coil n is terminated. On the other hand, when the energization ratio of the upper switch 12 ′ is larger than the lower limit value, the control means 25 reduces the energization ratio of the upper switch 12 ′ of the peripheral heating coil n inverter circuit 9′bn (S504). The output process of the peripheral heating coil n is finished.
  • step S305 when the output current of the center heating coil 22a and the output current of the peripheral heating coil n are substantially the same (step S305; ⁇ ), the output processing of the peripheral heating coil n is terminated.
  • the inverter circuit 9 ′ is configured by a half bridge. Even in such a configuration, the same effects as those of the first embodiment can be obtained.
  • a plurality of heating coils 22 are arranged in the center heating coil 22a arranged at the center of the heating port 106 provided in the top plate 101, and a plurality of heating coils 22 in the lateral direction and the depth direction, respectively.
  • the plurality of heating coils 22 includes a center heating coil 22 a disposed at the center of the heating port 106 provided on the top plate 101 and a plurality of peripheral heating coils disposed in the circumferential direction around the center heating coil 22 a. 22b. Even in such a configuration, the same effects as those of the first embodiment can be obtained.
  • the plurality of heating coils 22 includes an inner heating coil 22 a ′ arranged at the center of the heating port 106 provided in the top plate 101, and an outer side wound around the periphery thereof. You may comprise from heating coil 22b '.
  • the center heating coil 22a in the above description of the operation corresponds to the inner heating coil 22a '
  • the peripheral heating coil 22b corresponds to the outer heating coil 22b'. Even in such a configuration, the same effects as those of the first embodiment can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Induction Heating Cooking Devices (AREA)

Abstract

 制御手段25は、被加熱物に設定電力を投入する加熱動作中において、負荷判別手段26の判別結果に基づき、上方に被加熱物が載置された加熱コイル22へ設定電力に応じた電力を出力するようにインバーター回路9を制御し、設定電力に応じた電力を出力する加熱コイル22の上方に、被加熱物が載置されなくなった場合、当該加熱コイル22へ設定電力以下の所定の電力を出力するように、インバーター回路9を制御する。

Description

誘導加熱調理器
 本発明は、複数の加熱コイルを備える誘導加熱調理器に関するものである。
 従来の誘導加熱調理器においては、例えば、「前記天板に被加熱物が載置されたことを検出する負荷検出手段を備え、前記負荷検出手段は、前記加熱コイルの上方に被加熱物が載置されたことを前記加熱コイル毎に検出し、前記回路は、上方に被加熱物が載置されたことを前記負荷検出手段が検出した加熱コイルのみに高周波電流を供給する」ものが提案されている(例えば、特許文献1参照)。
特開2008-293871号公報(請求項2)
 上記特許文献1の技術では、被加熱物を検出した加熱コイルのみに高周波電流を供給することにより、鍋のサイズや載置位置による加熱効率の低下や漏れ磁束の増大を抑制することができる。
 しかし、負荷検出して加熱を開始した後の加熱動作中に、被加熱物が載置されている位置がずらされて、高周波電流が供給されている加熱コイルの上方に被加熱物がなくなった場合には、その加熱コイルに流れる電流は被加熱物の加熱に働かず、損失となって加熱効率を低下させるとともに、漏洩磁束を増加させる、という問題点があった。
 また、被加熱物が載置されている位置がずらされて、高周波電流が供給されていない加熱コイルの上方に移動した被加熱物の部分は加熱されず、加熱むらが大きくなる、という問題点があった。
 本発明は、上記のような課題を解決するためになされたもので、加熱動作中に被加熱物を移動させた場合に、加熱効率の低下や漏洩磁束の増大を抑制することができる誘導加熱調理器を得るものである。
 また、加熱開始後に被加熱物を移動させた場合に、加熱むらの発生を軽減することができる誘導加熱調理器を得るものである。
 本発明に係る誘導加熱調理器は、複数の加熱コイルと、前記加熱コイルに高周波電流を供給する複数のインバーター回路と、前記各インバーター回路の出力電流を検出する出力電流検出手段と、前記各インバーター回路の入力電力または出力電力を検出する電力検出手段と、前記各インバーター回路を個別に駆動制御する制御手段と、駆動中の前記インバーター回路の、前記出力電流と前記入力電力または出力電力とに基づいて、前記加熱コイルの上方に被加熱物が載置されているか否かの負荷判別をする負荷判別手段とを備え、前記制御手段は、被加熱物に設定電力を投入する加熱動作中において、前記負荷判別手段の判別結果に基づき、上方に被加熱物が載置されている前記加熱コイルへ前記設定電力に応じた電力を出力するように前記インバーター回路を制御し、前記設定電力に応じた電力を出力する前記加熱コイルの上方に、前記被加熱物が載置されなくなった場合、当該加熱コイルへ前記設定電力以下の所定の電力を出力するように、前記インバーター回路を制御するものである。
 本発明は、加熱コイルの上方に被加熱物が載置されなくなった場合、当該加熱コイルへ設定電力以下の所定の電力を出力する。このため、加熱動作中に被加熱物を移動させた場合に、加熱効率の低下や漏洩磁束の増大を抑制することができる。
実施の形態1に係る誘導加熱調理器の構成を示す図である。 実施の形態1に係る誘導加熱調理器の回路構成を示す図である。 実施の形態1に係る誘導加熱調理器のインバーター回路の駆動信号と出力電圧波形の例を示す図である。 実施の形態1に係る誘導加熱調理器のインバーター回路の駆動信号と出力電圧波形の例を示す図である。 実施の形態1に係る誘導加熱調理器の加熱コイルと被加熱負荷(鍋)との位置関係の例を示す図である。 実施の形態1に係る誘導加熱調理器の加熱開始時における加熱可否判別条件の例を示す図である。 実施の形態1に係る誘導加熱調理器の負荷状態とインバーター回路の駆動信号制御範囲を示す図である。 実施の形態1に係る誘導加熱調理器の加熱動作中における負荷状態の判別条件を示す図である。 実施の形態1に係る誘導加熱調理器の駆動信号制限状態における被加熱負荷の検出条件の例を示す図である。 実施の形態1に係る誘導加熱調理器の制御手段における加熱制御処理を示すフローチャートである。 実施の形態1に係る誘導加熱調理器の制御手段における初期負荷判別処理を示すフローチャートである。 実施の形態1に係る誘導加熱調理器の制御手段における周辺加熱コイルn用インバーター回路の出力制御処理を示すフローチャートである。 実施の形態2に係る誘導加熱調理器の回路構成を示す図である。 実施の形態2に係る誘導加熱調理器のインバーター回路の駆動信号例を示す図である。 実施の形態2に係る誘導加熱調理器の制御手段における加熱制御処理を示すフローチャートである。 実施の形態2に係る誘導加熱調理器の制御手段における周辺加熱コイルn用インバーター回路の出力制御処理を示すフローチャートである。 加熱口中心部に配置した内側加熱コイルと、その周囲に複数配置した周辺加熱コイルから構成される加熱コイル例を示す図である。 加熱口中心部に配置した内側加熱コイルと、その周囲を取り囲むように巻回した外側加熱コイルから構成される加熱コイル例を示す図である。
実施の形態1.
(構成)
 図1は、実施の形態1に係る誘導加熱調理器の構成を示す図である。
 図1において、101は天板、102は本体筐体、103は高周波電流を供給する回路、104は操作部、105は表示手段、22は加熱コイルである。
 天板101は、鍋などの被加熱物を載置するためのものであり、鍋の載置位置を表示する加熱口106が設けられている。本体筐体102の内部には、回路103、表示手段105、加熱コイル22が収納されており、その上面に天板101を被せ、本体筐体102の内部構造を収納する。
 回路103は、後述の図2で説明する構成を有しており、加熱コイル22に高周波電流を供給する。
 操作部104は、ユーザが加熱出力を調整するためのものである。
 表示手段105は、液晶表示デバイス等で構成された画面表示装置で、誘導加熱調理器の動作状態を表示する。
 加熱コイル22は、加熱口ごとに奥行き方向と横方向それぞれに、複数個並ぶように配置されている。
 図2は、実施の形態1に係る誘導加熱調理器の回路構成を示す図である。
 誘導加熱調理器は、交流電源1に接続されており、交流電源1から供給される電力は直流電源回路2で直流電力に変換される。
 直流電源回路2は、交流電力を整流する整流ダイオードブリッジ3と、各インバーター回路9ごとに設けられたリアクトル4および平滑コンデンサ5とにより構成されている。そして各インバーター回路9へ入力される入力電力は、入力電圧検出手段7と各インバーター回路9ごとに設けられた入力電流検出手段6とによって検出される。直流電源回路2で直流電力に変換された電力は、各インバーター回路9-1~9-nに供給される。
 なお、入力電流検出手段6と入力電圧検出手段7とにより、本発明の「電力検出手段」を構成する。
 直流電源回路2には、複数のインバーター回路9-1~9-nが接続されている。各インバーター回路9-1~9-nはそれぞれ同一の構成である。以下、区別しないときはインバーター回路9と称する。このインバーター回路9は、加熱コイル22の数に応じて設けられている。
 インバーター回路9は、それぞれ同一の直流電源回路2の正負母線間に直列に接続された2つのスイッチング素子(IGBT)と、そのスイッチング素子とそれぞれ逆並列に接続されたダイオードとによって形成されるアーム2組(以下、2組のアームを、U相アーム10とV相アーム11と称する。また、各アームの正母線側スイッチング素子を上スイッチと、負母線側スイッチング素子を下スイッチとそれぞれ称する。)で形成されている。
 U相アーム10は、上スイッチ12と、下スイッチ13と、上スイッチ12と逆並列に接続された上ダイオード14と、下スイッチ13と逆並列に接続された下ダイオード15とで構成されている。
 また、V相アーム11は、上スイッチ16と、下スイッチ17と、上スイッチ16と逆並列に接続された上ダイオード18と、下スイッチ17と逆並列に接続された下ダイオード19とで構成されている。
 U相アーム10を構成する上スイッチ12と下スイッチ13とは、U相駆動回路20から出力される駆動信号によりオン/オフ駆動されるようになっている。
 また、V相アーム11を構成する上スイッチ16と下スイッチ17とは、V相駆動回路21から出力される駆動信号によりオン/オフ駆動されるようになっている。
 U相駆動回路20は、U相アーム10の上スイッチ12をオンさせている間は下スイッチ13をオフにし、上スイッチ12をオフさせている間は下スイッチ13をオンにするというように、上スイッチ12と下スイッチ13とを交互にオン/オフする駆動信号を出力するものである。
 また、V相駆動回路21も同様に、V相アーム11の上スイッチ16と下スイッチ17とを交互にオン/オフする駆動信号を出力するものである。
 インバーター回路9における2つのアームの出力点間には、加熱コイル22と共振コンデンサ23とで構成されている負荷回路24が接続されている。加熱コイル22と共振コンデンサ23とは、直列共振回路を形成し共振周波数を有するが、インバーター回路9は、その共振周波数よりも高い周波数で駆動されるので、負荷回路24は誘導性特性を有するようになっている。
 制御手段25は、各インバーター回路9-1~9-nの駆動制御を行うとともに、誘導加熱調理器全体を制御する機能を果たすものである。制御手段25は、操作部104においてユーザが設定した火力指示に基づき、入力電流検出手段6と入力電圧検出手段7とからの検出値を使用して、U相駆動回路20とV相駆動回路21との両方から高周波駆動信号を出力させたフルブリッジ動作モードで加熱出力を制御するようになっている。
 出力電流検出手段28は、加熱コイル22と共振コンデンサ23とで構成される負荷回路24に流れる電流(以下、出力電流と称する。)を検出するものである。
 制御手段25内に設けられた負荷判別手段26は、出力電流検出手段28により検出された出力電流と、入力電流検出手段6により検出された入力電流との相関に基づいて、加熱コイル22の上方に被加熱物である鍋等が載置されているか否かの負荷判別をする。
 なお、以下の説明において、鍋などの被加熱物が載置されていない状態を、無負荷または鍋なしと称する。
 また、負荷判別手段26は、出力電流検出手段28により検出された出力電流と、入力電流検出手段6により検出された入力電流との相関に基づいて、加熱コイル22の上方に不適正負荷が載置されているか否かの負荷判別をする。
 なお、不適正負荷(不適正鍋)とは、誘導加熱に適さない負荷であり、例えば、アルミ鍋のような低効率の材質で誘導加熱できない低抵抗鍋や、加熱すべきでないフォークやスプーン等の小物をいう。また、適正負荷(適正鍋)とは、誘導加熱を行うのに適した負荷をいい、不適正負荷以外の被加熱物をいう。
 なお、以下の説明において、負荷判別手段26は、出力電流と入力電流とに基づいて負荷判別をする場合を説明するが本発明はこれに限るものではない。
 例えば、入力電流に代えて、インバーター回路9の入力電力または出力電力を用い、この入力電力または出力電力と、出力電流とに基づいて負荷判別を行うようにしても良い。なお、出力電力を用いる場合には、インバーター回路9から負荷回路24へ出力される電圧(実効値)を検出する出力電圧検出手段を別途設けて、この出力電圧と、出力電流検出手段28により検出された出力電流とにより出力電力を検出することができる。
(電力制御動作)
 次に、インバーター回路9のアーム相互間の位相差による加熱出力の制御動作について説明する。
 図3、図4は、実施の形態1に係る誘導加熱調理器のインバーター回路の駆動信号と出力電圧波形の例を示す図である。
 (a)は高出力状態における各スイッチの駆動信号と出力電圧波形の例である。
 (b)は中出力状態における各スイッチの駆動信号と出力電圧波形の例である。
 (c)は低出力状態における各スイッチの駆動信号と出力電圧波形の例である。
 なお、図3、図4における先行アームとは、U相アーム10またはV相アーム11のうち、出力電位の変動が他方より先行するアームをいい、追従アームとは、U相アーム10またはV相アーム11のうち、出力電位の変動が他方に追従するアームをいう。
 以下の説明では、U相アーム10が先行アーム、V相アーム11が追従アームの場合を例に説明する。
 制御手段25は、U相駆動回路20およびV相駆動回路21から出力される駆動信号を制御して、負荷回路24の共振周波数よりも高い周波数でインバーター回路9を駆動する。その際、U相駆動回路20から出力される上スイッチ12および下スイッチ13への駆動信号と、V相駆動回路21から出力される上スイッチ16および下スイッチ17への駆動信号は同一周波数である。
 (a)~(c)に示すように、先行アーム(U相駆動回路20)からの駆動信号が追従アーム(V相駆動回路21)からの駆動信号より位相が進んでおり、先行アームの出力電位と追従アームの出力電位とに位相差が生じている。そして、この位相差(以下、アーム間位相差とも称する。)により、インバーター回路9の出力電圧の印加時間が制御され、負荷回路24に流れる出力電流の大きさを制御することができる。
 (a)に示すように、高出力状態の場合には、アーム間位相差を大きくして、1周期における電圧印加時間幅を大きくする。また、(b)に示すように、中出力状態の場合には、高出力状態と比較してアーム間位相差を小さくして、1周期における電圧印加時間幅を減少させる。そして、(c)に示す低出力状態の場合には、さらにアーム間位相差を小さくして、1周期における電圧印加時間幅をさらに減少させる。
 なお、アーム間位相差の上限は、逆相(位相差180°)の場合であり、このときの出力電圧波形はほぼ矩形波となる。また、アーム間位相差の下限は、例えば、ターンオン時に負荷回路24に流れる電流の位相等との関係でスイッチング素子に過大電流が流れて破壊してしまわないレベルに設定する。
(負荷判別)
 次に、負荷判別手段26の負荷判別動作について説明する。
 図5は、実施の形態1に係る誘導加熱調理器の加熱コイルと被加熱負荷(鍋)との位置関係の例を示す図である。
 図6は、実施の形態1に係る誘導加熱調理器の加熱開始時における加熱可否判別条件の例を示す図である。
 ここでは、図5に示すように、1つの加熱口106に対して、9つの加熱コイル22が横方向に3つ、奥行き方向に3つ配置されている場合を例に説明する。
 以下の説明において、加熱口106の中央部に配置した加熱コイル22を、中心加熱コイル22aと称する。
 また、中心加熱コイル22aの横方向と奥行き方向に配置した加熱コイル22を、周辺加熱コイル22b-1~22b-8と称する。なお、区別しないときは周辺加熱コイル22bと称する。なお、周辺加熱コイル22bの数はこれに限らず任意の数とすることができる。
 また、以下の説明において、中心加熱コイル22aを駆動するインバーター回路9を、中心加熱コイル用インバーター回路9aとも称し、周辺加熱コイル22b-1…nを駆動するインバーター回路9を、周辺加熱コイル(1…n)用インバーター回路9b-1…nとも称する。
 制御手段25は、加熱開始時に各加熱コイル22へ所定の高周波電流(所定周波数)を供給させる。
 そして、負荷判別手段26は、出力電流検出手段28により検出された出力電流と、入力電流検出手段6により検出された入力電流とを取得する。そして例えば図6のような情報を参照し、取得した出力電流および入力電流に基づいて、各加熱コイル22の上方に鍋が載置されているか否か、載置された鍋が不適正負荷であるか否かを判別する。
 例えば図6に示すように、出力電流が大きい場合には、アルミ鍋のような低効率の材質で加熱できない低抵抗鍋であると判断する。この場合、当該インバーター回路9の駆動は停止する。
 また、出力電流が小さい場合には、無負荷状態、または、フォークやスプーン等の加熱すべきでない小物であると判断する。この場合、当該インバーター回路9の出力を、所定の電力に制限する。なお、この所定の電力は、上記設定電力に応じた電力以下の値であり、例えばインバーター回路9が出力可能な電力の下限値である。
 なお、以下の説明において、この所定の電力を制限出力と称し、インバーター回路9の出力を、所定の電力に制限した状態を、出力制限状態と称する。
 一方、入力電流および出力電流が所定の範囲に入った場合には、加熱に適した負荷である適正負荷と判断する。この場合、当該インバーター回路9の出力を、設定電力に応じた電力となるように制御する(フィードバック制御)。つまり、当該インバーター回路9の出力は、設定電力に応じて、下限値から上限値までの範囲で制御される。
 図5に示す例において、加熱開始時に実線で示す位置に鍋200(適正径)が載置された場合、負荷判別手段26は、中心加熱コイル22a、周辺加熱コイル22b-5、7、8の上方に適正負荷が載置されたと判別し、周辺加熱コイル22b-1~4、6は鍋なしと判別する。
 そして、制御手段25は、上方に適正負荷が載置されている中心加熱コイル22aの中心加熱コイル用インバーター回路9aと、周辺加熱コイル22b-5、7、8の周辺加熱コイル用インバーター回路9b-5、7、8の出力を設定電力に応じて制御する。また、制御手段25は、鍋なしと判別された周辺加熱コイル22b-1~4、6の周辺加熱コイル用インバーター回路9b-1~4、6の出力を制限出力とする。
 なお、加熱制御動作の詳細については後述する。
 このように、加熱開始時に負荷判別をして、鍋が載置されている加熱コイル22によって当該鍋に設定電力を投入する加熱動作を行う。また、鍋が載置されていない加熱コイル22の出力を例えば下限値である制限出力とすることで、加熱効率の低下と漏洩磁束を抑制している。
 なお、上記では例えば図6に示すような情報により、出力電流と入力電流との関係により負荷判別をして、加熱コイル22へ出力する電力を設定する場合を説明したが、本発明はこれに限るものではない。例えば、入力電流と出力電流とから求まる負荷回路24の抵抗値に応じて、インバーター回路9の出力を設定するようにしても良い。一例を図7により説明する。
 図7は、実施の形態1に係る誘導加熱調理器の負荷状態とインバーター回路の駆動信号制御範囲を示す図である。
 図7において、横軸はインバーター回路9の入力電流と出力電流とから求まる負荷回路24の抵抗値を示し、縦軸はインバーター回路9の出力の大きさ(駆動信号レベル)を示している。
 ここで、加熱コイル22と鍋とが磁気結合している場合、加熱コイル22に流れる出力電流により鍋に渦電流が流れ、鍋が発熱して電力が消費される。この鍋に流れる渦電流は、加熱コイル22と鍋の磁気結合の程度と加熱コイル22に流れる出力電流に依存(ほぼ比例)する。また、鍋で消費される電力は鍋に流れる渦電流により生じたものであり、おおよそ加熱コイル22に流れる出力電流の自乗と負荷抵抗値を掛け合わせたものとなり、入力電力(入力電流)とほぼ比例したものである。このため、入力電流(電力と同義)と出力電流とから求まる抵抗値によって、負荷判別を行う。
 例えば図7に示すように、抵抗値が大きく鍋に投入される電力が一定以上となる場合には適正負荷と判別して、インバーター回路9の出力を、設定電力に応じた電力となるように制御する(フィードバック制御)。つまり、当該インバーター回路9の出力は、設定電力に応じて、下限値から上限値までの範囲で制御される。
 また、抵抗値が適正負荷より小さい所定の範囲の場合には、鍋なしまたはフォークなどの小物であると判別して、インバーター回路9の出力を、例えば下限値である制限出力とする。
 また、抵抗値が制限出力の範囲よりもさらに小さい値の場合には、アルミなどの非磁性の鍋など、出力電流が過大になる不適正負荷であると判別し、インバーター回路9の駆動を停止する。
 次に、上記のような加熱開始時の負荷判別をした後の加熱動作中において、鍋の位置が移動された場合について説明する。
 図8は、実施の形態1に係る誘導加熱調理器の加熱動作中における負荷状態の判別条件を示す図である。
 図9は、実施の形態1に係る誘導加熱調理器の駆動信号制限状態における被加熱負荷の検出条件の例を示す図である。
 制御手段25は、加熱動作中において、駆動中のインバーター回路9の出力電流検出手段28により検出された出力電流と、入力電流検出手段6により検出された入力電流とを取得する。
 そして、負荷判別手段26は、例えば図8のような情報を参照し、設定電力に応じた電力を出力するよう制御(フィードバック制御)されている加熱コイルの上方に、鍋が載置されているか否か、載置された鍋が不適正負荷であるか否かを判別する。
 また、負荷判別手段26は、例えば図9のような情報を参照し、制限出力を出力している加熱コイルの上方に、鍋が載置されているか否か、載置された鍋が不適正負荷であるか否かを判別する。
 例えば図5に示すように、加熱動作中に鍋200が実線で示す位置から点線で示す位置に移動されると、フィードバック制御中の周辺加熱コイル22b-5、8は鍋ありの状態から鍋なしの状態に変化する。このとき、図8に示すように、設定電力に応じた電力を出力する周辺加熱コイル22b-5、8の出力電流と入力電流との値は、適正負荷の領域(鍋あり)から、無負荷の領域(鍋なし)に移行する。このため、負荷判別手段26は、周辺加熱コイル22b-5、8が鍋なしの状態であると判別する。制御手段25は、鍋なしとなった周辺加熱コイル22b-5、8の周辺加熱コイル用インバーター回路9b-5、8の出力を制限出力とする。
 一方、周辺加熱コイル22b-4、6は鍋なしの状態から鍋ありの状態に変化する。このとき、図9に示すように、制限出力に設定された周辺加熱コイル22b-4、6の出力電流と入力電流との値は、出力制限状態の領域(鍋なし)から、フィードバック制御の領域(鍋あり)に移行する。このため、負荷判別手段26は、周辺加熱コイル22b-4、6が鍋ありの状態であると判別する。制御手段25は、鍋ありとなった周辺加熱コイル22b-4、6の周辺加熱コイル用インバーター回路9b-4、6の出力を、設定電力に応じた電力となるように制御する(フィードバック制御に復帰)。
 なお、加熱動作中の負荷判別においても、上述した図7のように、入力電流と出力電流とから求まる負荷回路24の抵抗値に応じて、インバーター回路9の出力を設定するようにしても良い。
 このように、加熱動作中に、鍋の載置位置がずらされて、設定電力を出力する加熱コイル22の上方に鍋がなくなった場合には、その加熱コイル22の出力を制限(例えば下限値)として、加熱効率の低下を抑制するとともに、漏洩磁束を低減させる。
 また、出力を制限した加熱コイル22の上方に鍋が移動した場合には、その加熱コイル22に設定電力に応じた電力を出力させることで、鍋の加熱むらを軽減することが可能となる。
 このような加熱動作中に被加熱物を移動させた場合に、加熱効率の低下や漏洩磁束の増大を抑制し、加熱むらの発生を軽減する、本実施の形態における動作について、次に説明する。
(動作)
 図10は、実施の形態1に係る誘導加熱調理器の制御手段における加熱制御処理を示すフローチャートである。
 図10に基づいて、この加熱制御処理の流れを説明する。
 まず、制御手段25は操作部104から加熱電力が設定されるなどの加熱開始要求が入力されたかどうかを判断する(S101)。
 加熱開始要求があった場合には、初期負荷判別処理を開始する(S200)。
 この初期負荷判別処理の詳細について図11により説明する。
 図11は、実施の形態1に係る誘導加熱調理器の制御手段における初期負荷判別処理を示すフローチャートである。
 制御手段25は、中心加熱コイル用インバーター回路9aを所定出力(所定周波数・所定アーム間位相差)で駆動させる(S201)。
 制御手段25は、駆動させた当該インバーター回路9の、出力電流検出手段28により検出された出力電流と入力電流検出手段6により検出された入力電流とを取得する(S202)。
 制御手段25は、一定時間経過したあと、中心加熱コイル用インバーター回路9aの出力を停止させる(S203)。
 負荷判別手段26は、上述したように、取得された出力電流および入力電流と、加熱可否判別条件(例えば図6)とに基づいて、中心加熱コイル22aの上方に鍋が載置されているか否か、載置された鍋が適正負荷または不適正負荷の何れであるかを判別する。そして、負荷判別結果を設定(保持)する(S204)。
 中心加熱コイル22aの上方に適正負荷がないと判別された場合には、初期負荷判別処理を終了する。一方、中心加熱コイル22aの上方に適正負荷がありと判別された場合には、周辺加熱コイル22b-1の負荷判別処理に進む(S205)。
 周辺加熱コイル22b-1の初期負荷判別処理(S206-1)においては次の処理を行う。
 (1)制御手段25は、周辺加熱コイル1用インバーター回路9b-1を所定出力(所定周波数・所定アーム間位相差)で駆動させる。
 (2)制御手段25は、駆動させた当該インバーター回路9の、出力電流検出手段28により検出された出力電流と入力電流検出手段6により検出された入力電流とを取得する。
 (3)制御手段25は、一定時間経過したあと、周辺加熱コイル1用インバーター回路9b-1の出力を停止させる。
 (4)負荷判別手段26は、上述したように、取得された出力電流および入力電流と、加熱可否判別条件(例えば図6)とに基づいて、周辺加熱コイル22b-1の上方に鍋が載置されているか否か、載置された鍋が適正負荷または不適正負荷の何れであるかを判別する。そして、負荷判別結果を設定(保持)する。
 以降同様に、周辺加熱コイル22b-2、3、…8の初期負荷判別処理(S206-2、3…8)においても上記(1)~(4)の処理を行う。
 なお、本実施の形態では、周辺加熱コイル22bが8つの場合を説明するが、本発明はこれに限るものではない。また、上記の初期負荷判別処理は周辺加熱コイル22bの数に応じて適宜実施する。
 再び図10において、制御手段25は、中心加熱コイル22aの上方に適正負荷がありと判別されたか否かを判断する(S102)。中心加熱コイル22aの上方に適正負荷がない場合は、上記ステップS101に戻り上記動作を繰り返す。
 一方、中心加熱コイル22aの上方に適正負荷がある場合には、制御手段25は、上記ステップS200で、中心加熱コイル用インバーター回路9aと、上方に不適正負荷が載置されていると判別された周辺加熱コイル22b以外の周辺加熱コイル用インバーター回路9bの駆動を開始し、当該出力を制限出力(下限値)に設定する(S103)。
 つまり、複数の周辺加熱コイル22bのうち、鍋なし(無負荷)状態の周辺加熱コイル22bと、上方に適正負荷が載置されている周辺加熱コイル22bとが、制限出力で駆動される。
 なお、2以上のインバーター回路9を駆動させる場合、当該インバーター回路9の駆動周波数をそれぞれ同一周波数で駆動させる。
 次に、制御手段25は、駆動させた各インバーター回路9の、出力電流検出手段28により検出された出力電流と入力電流検出手段6により検出された入力電流とを取得する(S104)。
 負荷判別手段26は、中心加熱コイル22aの出力電流および入力電流と、加熱可否判別条件(例えば図8)とに基づいて、中心加熱コイル22aの上方に適正負荷が載置されているか否かを判別する(S105)。
 中心加熱コイル22aの上方に適正負荷が載置されていない場合、ステップS112に進み、制御手段25は、全てのインバーター回路9の駆動を停止させた後、ステップS101に戻る。
 一方、中心加熱コイル22aの上方に適正負荷が載置されている場合、制御手段25は、操作部104で使用者により設定された設定電力(火力)と、入力電流検出手段6および入力電圧検出手段7の検出値から求めた入力電力とを比較する(S106)。
 設定電力より入力電力が小さい場合には(ステップS106;>)、中心加熱コイル用インバーター回路9aのアーム間位相差が上限(180度(半周期))未満であるか判断する(S107)。
 アーム間位相差が上限値に到達していた場合は、周辺加熱コイル22bの出力制御処理に進む。
 一方、アーム間位相差が上限未満であれば、制御手段25は、中心加熱コイル用インバーター回路9aのアーム間位相差を増大させ(S108)、周辺加熱コイル22bの出力制御処理に進む。
 設定電力より入力電力の方が大きい場合には(ステップS106;<)、中心加熱コイル用インバーター回路9aのアーム間位相差が下限値より大きいかどうか判断する(S109)。このアーム間位相差の下限値は、例えば、ターンオン時に負荷回路24に流れる電流の位相等との関係でスイッチング素子に過大電流が流れて破壊してしまわないレベルに設定するものとする。
 アーム間位相差が下限値に到達していた場合は、周辺加熱コイル22bの出力制御処理に進む。
 一方、アーム間位相差が下限値より大きい場合には、制御手段25は、中心加熱コイル用インバーター回路9aのアーム間位相差を縮小させ(S110)、周辺加熱コイル22bの出力制御処理に進む。
 設定電力と入力電力とが略同一の場合(ステップS106;≒)、周辺加熱コイル22bの出力制御処理に進む。
 制御手段25は、周辺加熱コイル22b-1、2、…8の出力制御処理を行う(S300-1~8)。この制御の詳細について図12により説明する。
 なお、各周辺加熱コイル22bの出力制御処理は同一であり、図12の説明においては、出力制御処理を行う周辺加熱コイル22bを周辺加熱コイルnと称し、この周辺加熱コイルnを駆動するインバーター回路9を、周辺加熱コイルn用インバーター回路9b-nと称する。
 図12は、実施の形態1に係る誘導加熱調理器の制御手段における周辺加熱コイルn用インバーター回路の出力制御処理を示すフローチャートである。
 制御手段25は、周辺加熱コイルn用インバーター回路9b-nの出力状態が、駆動を停止している状態(以下、出力停止状態と称する。)、設定電力に応じた電力とする制御状態(以下、通常出力状態と称する。)、または、出力制限状態、の何れの状態であるかを判断する(S301)。
 ステップS301で出力停止状態の場合には、当該周辺加熱コイルnの出力処理を終了する。
 ステップS301で通常出力状態の場合、制御手段25は、当該周辺加熱コイルn用インバーター回路9b-nの、出力電流検出手段28により検出された出力電流と入力電流検出手段6により検出された入力電流とを取得する。そして、負荷判別手段26は、上述したように、取得された出力電流および入力電流と、加熱可否判別条件(例えば図8)とに基づいて、当該周辺加熱コイルnの上方に鍋が載置されているか否か、載置された鍋が適正負荷または不適正負荷の何れであるかを判別する(S302)。
 不適正鍋の場合には(ステップS302;不適正負荷あり)、当該周辺加熱コイルn用インバーター回路9b-nの駆動を停止させ(S303)、当該周辺加熱コイルnの出力処理を終了する。
 鍋が載置されていない場合には(ステップS302;負荷なし)、当該周辺加熱コイルn用インバーター回路9b-nの駆動を出力制限状態に設定した後(S304)、当該周辺加熱コイルnの出力処理を終了する。これにより、鍋が移動される等して、上方に鍋がなくなった場合には当該周辺加熱コイルnへの出力を所定の電力に制限して、加熱効率の低下や漏洩磁束の増大を抑制することができる。
 適正負荷の場合には(ステップS302;適正負荷あり)、制御手段25は、中心加熱コイル22aの出力電流と周辺加熱コイルnの出力電流とを比較する(S305)。
 中心加熱コイル22aの出力電流より周辺加熱コイルnの出力電流が小さい場合には(ステップS305;>)、周辺加熱コイルn用インバーター回路9b-nのアーム間位相差が上限(180度(半周期))未満であるか判断する(S306)。
 アーム間位相差が上限値に到達していた場合は、当該周辺加熱コイルnの出力処理を終了する。
 一方、アーム間位相差が上限未満であれば、制御手段25は、周辺加熱コイルn用インバーター回路9b-nのアーム間位相差を増大させ(S307)、当該周辺加熱コイルnの出力処理を終了する。
 中心加熱コイル22aの出力電流より周辺加熱コイルnの出力電流の方が大きい場合には(ステップS305;<)、周辺加熱コイルn用インバーター回路9b-nのアーム間位相差が下限値より大きいかどうか判断する(S308)。このアーム間位相差の下限値は、例えば、ターンオン時に負荷回路24に流れる電流の位相等との関係でスイッチング素子に過大電流が流れて破壊してしまわないレベルに設定するものとする。
 アーム間位相差が下限値に到達していた場合は、当該周辺加熱コイルnの出力処理を終了する。
 一方、アーム間位相差が下限値より大きい場合には、制御手段25は、周辺加熱コイルn用インバーター回路9b-nのアーム間位相差を縮小させ(S309)、当該周辺加熱コイルnの出力処理を終了する。
 中心加熱コイル22aの出力電流と周辺加熱コイルnの出力電流とが略同一の場合(ステップS305;≒)、当該周辺加熱コイルnの出力処理を終了する。
 上記ステップS301で出力制限状態の場合、制御手段25は、当該周辺加熱コイルn用インバーター回路9b-nの、出力電流検出手段28により検出された出力電流と入力電流検出手段6により検出された入力電流とを取得する。そして、負荷判別手段26は、上述したように、取得された出力電流および入力電流と、加熱可否判別条件(例えば図9)とに基づいて、当該周辺加熱コイルnの上方に鍋が載置されているか否か、載置された鍋が適正負荷または不適正負荷の何れであるかを判別する(S310)。
 不適正鍋の場合には(ステップS310;不適正負荷あり)、当該周辺加熱コイルn用インバーター回路9b-nの駆動を停止させ(S311)、当該周辺加熱コイルnの出力処理を終了する。
 鍋が載置されていない場合には(ステップS310;負荷なし)、当該周辺加熱コイルnの出力処理を終了する。
 適正負荷の場合には(ステップS310;適正負荷あり)、当該周辺加熱コイルn用インバーター回路9b-nの駆動を通常出力状態に設定した後、当該周辺加熱コイルnの出力処理を終了する。これにより、鍋が移動される等して、上方に鍋が載置されるようになった場合には、当該周辺加熱コイルnへの出力を設定電力に応じた出力として、加熱むらの発生を軽減することができる。
 再び図10において、全ての周辺加熱コイルの出力制御処理が終了した後、制御手段25は、操作部104によりユーザが設定する加熱停止要求の操作がされているか否かを判断する(S111)。
 加熱停止要求がない場合には、ステップS104へ戻り上記操作を繰り返す。
 一方、加熱停止要求がある場合には、ステップS112に進み、制御手段25は、全てのインバーター回路9の駆動を停止させ、ステップS101に戻る。
 なお、上記の動作では、中心加熱コイル22aの上方に適正負荷がない場合には加熱制御処理を停止させる動作を説明したが本発明はこれに限るものではなく、中心加熱コイル22aと周辺加熱コイルnとを区別せず、任意の加熱コイル22の動作状態と負荷判別結果に応じて、鍋が載置されなくなった加熱コイル22を出力制限状態とし、載置されるようになった加熱コイル22を通常出力状態とするようにしても良い。
 なお、上記の動作では、載置された鍋が適正負荷であるか不適正負荷であるかを判別し、不適正負荷が載置されている加熱コイル22を出力停止状態としたが、本発明はこれに限るものではない。例えば、負荷判別手段26は鍋が載置されているか否かの判別のみを行い、通常出力状態と出力制限状態の設定のみを行うようにしても良い。
 なお、上記の動作では、インバーター回路9のアーム相互間の位相差により加熱出力を制御する場合を説明したが、本発明はこれに限るものではない。例えば、インバーター回路9の出力電圧の通電比率を可変することで、加熱出力を制御しても良い。
(効果)
 以上のように本実施の形態においては、被加熱物に設定電力を投入する加熱動作中において、負荷判別手段26の判別結果に基づき、上方に被加熱物が載置された加熱コイル22へ設定電力に応じた電力を出力し、この加熱コイル22の上方に、被加熱物が載置されなくなった場合、所定の電力(制限出力)を出力する。
 このため、上方に被加熱物(負荷)が載置されていない加熱コイル22への高周波出力を制限して、この加熱コイル22に流れる高周波電流を抑制することができる。
 よって、当該加熱コイル22から漏洩する高周波磁界を小さくすることができる。また、当該加熱コイル22および当該加熱コイル22に高周波電力を供給するインバーター回路9等における損失を抑制することができる。
 したがって、加熱効率の低下や漏洩磁束の増大を抑制することができる。
 また本実施の形態においては、被加熱物に設定電力を投入する加熱動作中において、負荷判別手段26の判別結果に基づき、上方に被加熱物が載置されていない加熱コイル22へ所定の電力(制限出力)を出力し、この加熱コイル22の上方に、被加熱物が載置された場合、当該加熱コイル22へ設定電力に応じた電力を出力する。
 このため、被加熱物が載置されていない加熱コイル22の上方に、被加熱物(負荷)が移動された場合には、この加熱コイル22により設定電力に応じた出力で加熱を行うことができる。
 よって、被加熱物が載置されている位置がずらされた場合、加熱むらの発生を軽減することができる。
 また、負荷判別手段26は、出力制限状態で動作中のインバーター回路9の出力電流と入力電流(入力電力または出力電力)により負荷判別を行うため、出力制限状態の加熱コイル22の上方に被加熱物が載置されたことを即時に判別することが可能となる。
 また本実施の形態においては、負荷判別手段26の判別結果に基づき、上方に不適正負荷が載置されている加熱コイル22のインバーター回路9の駆動を停止させる。
 このため、誘導加熱に適さない被加熱物が載置された場合に、インバーター回路9や負荷回路24等に過大な電流が流れることを防止することができる。
 また本実施の形態においては、出力制限状態における所定の電力は、例えばインバーター回路9が出力可能な電力の下限値に設定する。
 このため、上方に被加熱物(負荷)が載置されていない加熱コイル22に流れる高周波電流による損失と、この加熱コイル22からの漏洩磁束とを極力小さくすることができる。
実施の形態2.
 本実施の形態2では、インバーター回路9をハーフブリッジで構成した形態について説明する。
 図13は、実施の形態2に係る誘導加熱調理器の回路構成を示す図である。
 以下、上記実施の形態1との相違点を中心に説明する。なお、図13において、上記実施の形態1(図2)と同様の構成には同一の符号を付する。
 本実施の形態2における各インバーター回路9’は、ハーフブリッジ構成であり、高電位側のスイッチング素子(上スイッチ12’)と低電位側のスイッチング素子(下スイッチ13’)と、上スイッチ12’に逆並列に接続された上ダイオード14’と、下スイッチ13’に逆並列に接続された下ダイオード15’とで構成されている。
 各インバーター回路9’における出力点間には、負荷回路24’が接続されている。負荷回路24’は、加熱コイル22と、共振コンデンサ23と、この共振コンデンサ23と並列に接続されたクランプダイオード27とで構成されている。
 クランプダイオード27は、加熱コイル22と共振コンデンサ23の接続点電位を直流電源の低電位側母線電位にクランプする。このクランプダイオード27の働きにより、下スイッチ13’が導通した状態では加熱コイル22に流れる電流は転流しない。
 上スイッチ12’と下スイッチ13’は、駆動回路20’から出力される駆動信号によりオン/オフ駆動されるようになっている。
 本実施の形態の制御手段25は、高電位側のスイッチング素子(上スイッチ12’)と低電位側のスイッチング素子(下スイッチ13’)とを交互にオン・オフすることにより、その接続点と直流母線の一端との間に高周波電圧を発生し、負荷回路24’に供給する。
 図14は、実施の形態2に係る誘導加熱調理器のインバーター回路の駆動信号例を示す図である。
 (a)は高出力状態における各スイッチの駆動信号と出力電圧波形の例である。
 (b)は中出力状態における各スイッチの駆動信号と出力電圧波形の例である。
 (c)は低出力状態における各スイッチの駆動信号と出力電圧波形の例である。
 制御手段25は、駆動回路20’から出力される駆動信号を制御して、負荷回路24’の共振周波数よりも高い周波数でインバーター回路9’を駆動する。
 (a)~(c)に示すように、本実施の形態の制御手段25は、高電位側のスイッチング素子(上スイッチ12’)および低電位側のスイッチング素子(下スイッチ13’)の通電比率を制御することによって、インバーター回路9’の出力電圧の印加時間が制御され、負荷回路24’に流れる出力電流の大きさを制御することができる。
 (a)に示すように、高出力状態の場合には、上スイッチ12’の通電比率(オンデューティー比)を大きくして、1周期における電圧印加時間幅を大きくする。また、(b)に示すように、中出力状態の場合には、高出力状態と比較して上スイッチ12’の通電比率(オンデューティー比)を小さくして、1周期における電圧印加時間幅を減少させる。そして、(c)に示す低出力状態の場合には、さらに上スイッチ12’の通電比率(オンデューティー比)を小さくして、1周期における電圧印加時間幅をさらに減少させる。
 図15は、実施の形態2に係る誘導加熱調理器の制御手段における加熱制御処理を示すフローチャートである。
 図16は、実施の形態2に係る誘導加熱調理器の制御手段における周辺加熱コイルn用インバーター回路の出力制御処理を示すフローチャートである。
 図15、図16に基づいて、上記実施の形態1(図10、図12)との相違点について説明する。
 なお、上記実施の形態1と同様の動作には同一のステップ番号を付する。また、初期負荷判別処理の動作は、上記実施の形態1(図11)と同様である。
 なお、以下の説明において、中心加熱コイル22aを駆動するインバーター回路9’を、中心加熱コイル用インバーター回路9’aと称し、周辺加熱コイル22b-1…nを駆動するインバーター回路9’を、周辺加熱コイル(1…n)用インバーター回路9’b-1…nと称する。
 まず、図15の加熱制御処理について上記実施の形態1との相違点を説明する。
 ステップS106において、設定電力より入力電力が小さい場合には(ステップS106;>)、中心加熱コイル用インバーター回路9’aの上スイッチ12’の通電比率が上限未満であるか判断する(S401)。
 上スイッチ12’の通電比率が上限値に到達していた場合は、周辺加熱コイル22bの出力制御処理に進む。
 一方、上スイッチ12’の通電比率が上限未満であれば、制御手段25は、中心加熱コイル用インバーター回路9’aの上スイッチ12’の通電比率を増大させ(S402)、周辺加熱コイル22bの出力制御処理に進む。
 ステップS106において、設定電力より入力電力の方が大きい場合には(ステップS106;<)、中心加熱コイル用インバーター回路9’aの上スイッチ12’の通電比率が下限値より大きいかどうか判断する(S403)。
 上スイッチ12’の通電比率が下限値に到達していた場合は、周辺加熱コイル22bの出力制御処理に進む。
 一方、上スイッチ12’の通電比率が下限値より大きい場合には、制御手段25は、中心加熱コイル用インバーター回路9’aの上スイッチ12’の通電比率を縮小させ(S404)、周辺加熱コイル22bの出力制御処理に進む。
 ステップS106において、設定電力と入力電力とが略同一の場合(ステップS106;≒)、周辺加熱コイル22bの出力制御処理に進む。
 次に、図16の出力制御処理について上記実施の形態1との相違点を説明する。
 ステップS305において、中心加熱コイル22aの出力電流より周辺加熱コイルnの出力電流が小さい場合には(ステップS305;>)、周辺加熱コイルn用インバーター回路9’b-nの上スイッチ12’の通電比率が上限未満であるか判断する(S501)。
 上スイッチ12’の通電比率が上限値に到達していた場合は、当該周辺加熱コイルnの出力処理を終了する。
 一方、上スイッチ12’の通電比率が上限未満であれば、制御手段25は、周辺加熱コイルn用インバーター回路9’b-nの上スイッチ12’の通電比率を増大させ(S502)、当該周辺加熱コイルnの出力処理を終了する。
 ステップS305において、中心加熱コイル22aの出力電流より周辺加熱コイルnの出力電流の方が大きい場合には(ステップS305;<)、周辺加熱コイルn用インバーター回路9’b-nの上スイッチ12’の通電比率が下限値より大きいかどうか判断する(S503)。
 上スイッチ12’の通電比率が下限値に到達していた場合は、当該周辺加熱コイルnの出力処理を終了する。
 一方、上スイッチ12’の通電比率が下限値より大きい場合には、制御手段25は、周辺加熱コイルn用インバーター回路9’b-nの上スイッチ12’の通電比率を縮小させ(S504)、当該周辺加熱コイルnの出力処理を終了する。
 ステップS305において、中心加熱コイル22aの出力電流と周辺加熱コイルnの出力電流とが略同一の場合(ステップS305;≒)、当該周辺加熱コイルnの出力処理を終了する。
(効果)
 以上のように本実施の形態においては、インバーター回路9’をハーフブリッジで構成した。このような構成においても、上記実施の形態1と同様の効果を奏することができる。
 なお、実施の形態2におけるハーフブリッジ構成のインバーター回路9’と、実施の形態1におけるフルブリッジ構成のインバーター回路9とが混在する回路構成としても良い。
 なお、上記実施の形態1、2では、複数の加熱コイル22は、天板101に設けられた加熱口106の中央部に配置した中心加熱コイル22aと、その横方向と奥行き方向にそれぞれ複数配置した周辺加熱コイル22bとから構成した場合を説明したが、本発明はこれに限るものではない。
 例えば、図17に示すように、複数の加熱コイル22は、天板101に設けられた加熱口106の中央部に配置した中心加熱コイル22aと、その周囲の周方向に複数配置した周辺加熱コイル22bとから構成しても良い。
 このような構成においても、上記実施の形態1と同様の効果を奏することができる。
 また例えば、図18に示すように、複数の加熱コイル22は、天板101に設けられた加熱口106の中央部に配置した内側加熱コイル22a’と、その周囲を取り囲むように巻回した外側加熱コイル22b’とから構成しても良い。なお、この場合には上述した動作説明における中心加熱コイル22aが、内側加熱コイル22a’に相当し、周辺加熱コイル22bが外側加熱コイル22b’に相当する。
 このような構成においても、上記実施の形態1と同様の効果を奏することができる。
 1 交流電源、2 直流電源回路、3 整流ダイオードブリッジ、4 リアクトル、5 平滑コンデンサ、6 入力電流検出手段、7 入力電圧検出手段、9 インバーター回路、10 U相アーム、11 V相アーム、12 上スイッチ、13 下スイッチ、14 上ダイオード、15 下ダイオード、16 上スイッチ、17 下スイッチ、18 上ダイオード、19 下ダイオード、20 U相駆動回路、21 V相駆動回路、22 加熱コイル、23 共振コンデンサ、24 負荷回路、25 制御手段、26 負荷判別手段、27 クランプダイオード、28 出力電流検出手段、101 天板、102 本体筐体、103 回路、104 操作部、105 表示手段、106 加熱口、200 鍋。

Claims (10)

  1.  複数の加熱コイルと、
     前記加熱コイルに高周波電流を供給する複数のインバーター回路と、
     前記各インバーター回路の出力電流を検出する出力電流検出手段と、
     前記各インバーター回路の入力電力または出力電力を検出する電力検出手段と、
     前記各インバーター回路を個別に駆動制御する制御手段と、
     駆動中の前記インバーター回路の、前記出力電流と前記入力電力または出力電力とに基づいて、前記加熱コイルの上方に被加熱物が載置されているか否かの負荷判別をする負荷判別手段と
    を備え、
     前記制御手段は、
     被加熱物に設定電力を投入する加熱動作中において、
     前記負荷判別手段の判別結果に基づき、上方に被加熱物が載置されている前記加熱コイルへ前記設定電力に応じた電力を出力するように前記インバーター回路を制御し、
     前記設定電力に応じた電力を出力する前記加熱コイルの上方に、前記被加熱物が載置されなくなった場合、当該加熱コイルへ前記設定電力以下の所定の電力を出力するように、前記インバーター回路を制御する
    ことを特徴とする誘導加熱調理器。
  2.  前記制御手段は、
     被加熱物に設定電力を投入する加熱動作中において、
     前記負荷判別手段の判別結果に基づき、上方に被加熱物が載置されていない前記加熱コイルへ前記設定電力以下の所定の電力を出力するように前記インバーター回路を制御し、
     前記所定の電力を出力する前記加熱コイルの上方に、前記被加熱物が載置された場合、当該加熱コイルへ前記設定電力に応じた電力を出力するように前記インバーター回路を制御する
    ことを特徴とする請求項1記載の誘導加熱調理器。
  3.  前記負荷判別手段は、
     駆動中の前記インバーター回路の、前記出力電流と前記入力電力または出力電力との相関に基づいて、前記加熱コイルの上方に載置された被加熱物が、誘導加熱に適さない不適正負荷であるか否かの負荷判別をし、
     前記制御手段は、
     前記負荷判別手段の判別結果に基づき、上方に不適正負荷が載置されている前記加熱コイルの前記インバーター回路の駆動を停止させる
    ことを特徴とする請求項1または2記載の誘導加熱調理器。
  4.  前記所定の電力は、前記インバーター回路が出力可能な電力の下限値である
    ことを特徴とする請求項1~3の何れか1項に記載の誘導加熱調理器。
  5.  前記各インバーター回路の入力電流を検出する入力電流検出手段を備え、
     前記負荷判別手段は、
     前記電力検出手段により検出された入力電力または出力電力に代えて、前記入力電流検出手段により検出された入力電流を用いて前記負荷判別を行う
    ことを特徴とする請求項1~4の何れか1項に記載の誘導加熱調理器。
  6.  前記インバーター回路は、
     2つのスイッチング素子を直列に接続したアームを少なくとも2つ有し、フルブリッジ型インバーター回路を構成し、
     前記制御手段は、
     前記2つのアームの相互間の前記スイッチング素子の駆動位相差を可変することで、当該インバーター回路が出力する電力を制御する
    ことを特徴とする請求項1~5の何れか1項に記載の誘導加熱調理器。
  7.  前記インバーター回路は、
     2つのスイッチング素子を直列に接続し、ハーフブリッジ型インバーター回路を構成し、
     前記制御手段は、
     前記スイッチング素子の通電比率を可変することで、当該インバーター回路が出力する電力を制御する
    ことを特徴とする請求項1~5の何れか1項に記載の誘導加熱調理器。
  8.  前記複数の加熱コイルの上方に配置された天板を備え、
     前記複数の加熱コイルは、
     前記天板に設けられた加熱口の中央部に配置した中心加熱コイルと、その横方向と奥行き方向にそれぞれ複数配置した周辺加熱コイルとから構成される
    ことを特徴とする請求項1~7の何れか1項に記載の誘導加熱調理器。
  9.  前記複数の加熱コイルの上方に配置された天板を備え、
     前記複数の加熱コイルは、
     前記天板に設けられた加熱口の中央部に配置した中心加熱コイルと、その周囲の周方向に複数配置した周辺加熱コイルとから構成される
    ことを特徴とする請求項1~7の何れか1項に記載の誘導加熱調理器。
  10.  前記複数の加熱コイルの上方に配置された天板を備え、
     前記複数の加熱コイルは、
     前記天板に設けられた加熱口の中央部に配置した内側加熱コイルと、その周囲を取り囲むように巻回した外側加熱コイルとから構成される
    ことを特徴とする請求項1~7の何れか1項に記載の誘導加熱調理器。
PCT/JP2012/000109 2011-02-14 2012-01-11 誘導加熱調理器 WO2012111244A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012557801A JP5599479B2 (ja) 2011-02-14 2012-01-11 誘導加熱調理器
ES12746467.5T ES2646216T3 (es) 2011-02-14 2012-01-11 Cocina de calentamiento por inducción
CN201280008052.2A CN103348765B (zh) 2011-02-14 2012-01-11 感应加热烹调器
EP12746467.5A EP2661152B1 (en) 2011-02-14 2012-01-11 Inductive heating cooker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-028159 2011-02-14
JP2011028159 2011-02-14

Publications (1)

Publication Number Publication Date
WO2012111244A1 true WO2012111244A1 (ja) 2012-08-23

Family

ID=46672193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000109 WO2012111244A1 (ja) 2011-02-14 2012-01-11 誘導加熱調理器

Country Status (5)

Country Link
EP (1) EP2661152B1 (ja)
JP (1) JP5599479B2 (ja)
CN (1) CN103348765B (ja)
ES (1) ES2646216T3 (ja)
WO (1) WO2012111244A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITVR20120179A1 (it) * 2012-09-05 2014-03-06 Inoxpiu S R L Procedimento di riscaldamento ad induzione per cucine ad uso industriale e domestico con ottimizzazione della potenza erogata
EP2709422A1 (de) * 2012-09-13 2014-03-19 BSH Bosch und Siemens Hausgeräte GmbH Kochfeldvorrichtung
EP2709423A1 (de) * 2012-09-13 2014-03-19 BSH Bosch und Siemens Hausgeräte GmbH Kochfeldvorrichtung
JP2014093125A (ja) * 2012-10-31 2014-05-19 Mitsubishi Electric Corp 誘導加熱調理器
JP2014192031A (ja) * 2013-03-27 2014-10-06 Mitsubishi Electric Corp 誘導加熱調理器、及び電力管理システム
EP2708818A3 (de) * 2012-09-13 2015-09-16 BSH Hausgeräte GmbH Kochfeldvorrichtung
JP2016004669A (ja) * 2014-06-16 2016-01-12 三菱電機株式会社 誘導加熱調理器、および電力管理システム
KR20170115707A (ko) * 2016-04-08 2017-10-18 (주)쿠첸 복수 워킹코일 동작시 주파수 제어와 듀티 제어를 병행하는 전기 레인지
JP2019096420A (ja) * 2017-11-21 2019-06-20 日立アプライアンス株式会社 電磁誘導加熱調理器
WO2021145702A1 (en) * 2020-01-16 2021-07-22 Samsung Electronics Co., Ltd. Induction heating apparatus and method of controlling the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016065558A1 (zh) * 2014-10-29 2016-05-06 深圳拓邦股份有限公司 用于感应加热的半桥电路及电磁灶系统
TR201809520T4 (tr) 2015-12-18 2018-07-23 Ego Elektro Geraetebau Gmbh Isıtma devresi ve endüksiyonlu pişirme ocağı.
JP6909955B2 (ja) * 2016-08-30 2021-07-28 パナソニックIpマネジメント株式会社 誘導加熱装置および誘導加熱装置における負荷検知方法
CN110463344B (zh) * 2017-03-24 2021-09-24 三菱电机株式会社 感应加热烹调器
GB2597762A (en) * 2020-08-04 2022-02-09 Njori Ltd Induction cooker
KR20220079322A (ko) * 2020-12-04 2022-06-13 엘지전자 주식회사 유도 가열 방식의 쿡탑 및 그의 동작 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214679A (ja) * 1997-01-31 1998-08-11 Toshiba Corp インバータ加熱調理器
JP2008282609A (ja) * 2007-05-09 2008-11-20 Mitsubishi Electric Corp 誘導加熱調理器および誘導加熱調理器の制御方法
JP2008293871A (ja) 2007-05-28 2008-12-04 Mitsubishi Electric Corp 誘導加熱調理器
JP2009099299A (ja) * 2007-10-15 2009-05-07 Mitsubishi Electric Corp 誘導加熱調理器
JP2009165291A (ja) * 2008-01-08 2009-07-23 Mitsubishi Electric Corp 入出力装置、電気機器及び誘導加熱調理器並びに電気機器及び誘導加熱調理器の制御方法
WO2010101202A1 (ja) * 2009-03-06 2010-09-10 三菱電機株式会社 誘導加熱調理器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3835762B2 (ja) * 2002-06-26 2006-10-18 三井造船株式会社 誘導加熱装置
FR2863039B1 (fr) * 2003-11-27 2006-02-17 Brandt Ind Procede de chauffage d'un recipient pose sur une table de cuisson a moyens de chauffage associe a des inducteurs
FR2895639B1 (fr) * 2005-12-27 2008-02-29 Brandt Ind Sas Foyer de cuisson par induction de taille variable
ES2362782B1 (es) * 2009-04-17 2012-05-22 Bsh Electrodomésticos España, S.A. Campo de cocción con una disposición de detección y procedimiento para accionar un campo de cocción.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214679A (ja) * 1997-01-31 1998-08-11 Toshiba Corp インバータ加熱調理器
JP2008282609A (ja) * 2007-05-09 2008-11-20 Mitsubishi Electric Corp 誘導加熱調理器および誘導加熱調理器の制御方法
JP2008293871A (ja) 2007-05-28 2008-12-04 Mitsubishi Electric Corp 誘導加熱調理器
JP2009099299A (ja) * 2007-10-15 2009-05-07 Mitsubishi Electric Corp 誘導加熱調理器
JP2009165291A (ja) * 2008-01-08 2009-07-23 Mitsubishi Electric Corp 入出力装置、電気機器及び誘導加熱調理器並びに電気機器及び誘導加熱調理器の制御方法
WO2010101202A1 (ja) * 2009-03-06 2010-09-10 三菱電機株式会社 誘導加熱調理器

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITVR20120179A1 (it) * 2012-09-05 2014-03-06 Inoxpiu S R L Procedimento di riscaldamento ad induzione per cucine ad uso industriale e domestico con ottimizzazione della potenza erogata
WO2014037898A1 (en) * 2012-09-05 2014-03-13 Andrea Zuccatti Procedure for the induction heating of industrial and domestic cookers with optimisation of the power supplied
EP2708818A3 (de) * 2012-09-13 2015-09-16 BSH Hausgeräte GmbH Kochfeldvorrichtung
EP2709423A1 (de) * 2012-09-13 2014-03-19 BSH Bosch und Siemens Hausgeräte GmbH Kochfeldvorrichtung
EP2709422A1 (de) * 2012-09-13 2014-03-19 BSH Bosch und Siemens Hausgeräte GmbH Kochfeldvorrichtung
EP2709422B1 (de) 2012-09-13 2016-11-09 BSH Hausgeräte GmbH Kochfeldvorrichtung
JP2014093125A (ja) * 2012-10-31 2014-05-19 Mitsubishi Electric Corp 誘導加熱調理器
JP2014192031A (ja) * 2013-03-27 2014-10-06 Mitsubishi Electric Corp 誘導加熱調理器、及び電力管理システム
JP2016004669A (ja) * 2014-06-16 2016-01-12 三菱電機株式会社 誘導加熱調理器、および電力管理システム
KR20170115707A (ko) * 2016-04-08 2017-10-18 (주)쿠첸 복수 워킹코일 동작시 주파수 제어와 듀티 제어를 병행하는 전기 레인지
KR101857662B1 (ko) * 2016-04-08 2018-06-28 (주)쿠첸 복수 워킹코일 동작시 주파수 제어와 듀티 제어를 병행하는 전기 레인지
JP2019096420A (ja) * 2017-11-21 2019-06-20 日立アプライアンス株式会社 電磁誘導加熱調理器
WO2021145702A1 (en) * 2020-01-16 2021-07-22 Samsung Electronics Co., Ltd. Induction heating apparatus and method of controlling the same

Also Published As

Publication number Publication date
JPWO2012111244A1 (ja) 2014-07-03
JP5599479B2 (ja) 2014-10-01
EP2661152A1 (en) 2013-11-06
CN103348765B (zh) 2015-09-16
EP2661152B1 (en) 2017-10-11
CN103348765A (zh) 2013-10-09
EP2661152A4 (en) 2017-01-04
ES2646216T3 (es) 2017-12-12

Similar Documents

Publication Publication Date Title
JP5599479B2 (ja) 誘導加熱調理器
JP5649714B2 (ja) 誘導加熱調理器
JP4874163B2 (ja) 誘導加熱調理器および誘導加熱調理器の制御方法
US9060389B2 (en) Induction heating cooker
JP2008293871A (ja) 誘導加熱調理器
JP4863862B2 (ja) 誘導加熱調理器
EP2827679B1 (en) Induction heat cooker
JP4781295B2 (ja) 誘導加熱調理器
JP4450808B2 (ja) 誘導加熱調理器
JP4969676B2 (ja) 誘導加熱調理器
US20150201467A1 (en) Induction heating apparatus
JP2013157162A (ja) 誘導加熱調理器
JP2008053056A (ja) 誘導加熱調理器
JP5697408B2 (ja) 誘導加熱調理器
JP5073019B2 (ja) 誘導加熱調理器
JP4450813B2 (ja) 誘導加熱調理器
JP2009266726A (ja) 誘導加熱調理器
JP2016207544A (ja) 誘導加熱調理器
JP5921650B2 (ja) 誘導加熱調理器
WO2019119640A1 (zh) 电磁烹饪器具及其功率控制方法
JP4948351B2 (ja) 誘導加熱調理器
JP2010251093A (ja) 誘導加熱装置
JP5836743B2 (ja) 誘導加熱調理器
JP2011243413A (ja) 誘導加熱調理器
JP2012230874A (ja) 誘導加熱調理器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012557801

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012746467

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012746467

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE