WO2016065558A1 - 用于感应加热的半桥电路及电磁灶系统 - Google Patents
用于感应加热的半桥电路及电磁灶系统 Download PDFInfo
- Publication number
- WO2016065558A1 WO2016065558A1 PCT/CN2014/089803 CN2014089803W WO2016065558A1 WO 2016065558 A1 WO2016065558 A1 WO 2016065558A1 CN 2014089803 W CN2014089803 W CN 2014089803W WO 2016065558 A1 WO2016065558 A1 WO 2016065558A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power switch
- switch
- capacitor
- circuit
- induction heating
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/06—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
- H02M3/07—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- the invention relates to the field of induction heating circuits, in particular to a half bridge circuit and an electromagnetic oven system for induction heating.
- the half-bridge circuit for induction heating can adjust the operating frequency under symmetrical operation to achieve the change in output power.
- the operating frequency of the half-bridge circuits driving different burners is inconsistent, when their frequency difference falls within the hearing range of the human ear, the user can hear the noise, affecting User experience, so it is generally required that the operating frequency of the half-bridge circuit of different burners is the same, or the frequency difference is outside the hearing range of the human ear to avoid noise.
- the half-bridge circuit of some burners will work in an asymmetrical state.
- the asymmetry state reaches a certain level, , which will make a power switch with short conduction time out of the zero voltage switch state, resulting in a sharp increase in switching loss, causing the power switch temperature to rise and even damage.
- the half-bridge circuit needs to adopt a higher-level power switch or better heat-dissipation measures to ensure the normal operation of the half-bridge circuit under the condition of asymmetrical operating frequency to reduce noise, thereby causing a half-bridge circuit applied to induction heating. Increased circuit cost .
- the technical problem to be solved by the present invention is to provide a half bridge circuit and an electromagnetic cooker system for induction heating in view of the defects of the prior art.
- a half-bridge circuit for induction heating comprising a switch series circuit comprising a first power switch and a second power switch, wherein the switch series circuit has one end grounded and the other end connected to the power source; and further includes a series connection with the switch a first capacitor connected in parallel with the circuit, a first absorption capacitor connected in parallel to the first power switch, a second absorption capacitor connected in parallel to the second power switch, and a first resonance connected in parallel across the switch series circuit a capacitor series circuit composed of a capacitor and a second resonance capacitor, an inductance connected between a connection node of the first resonance capacitor and the second resonance capacitor, and a connection node of the first power switch and the second power switch, and a parallel connection a unidirectional conduction device on the first resonant capacitor or the second resonant capacitor for preventing reverse charging of the resonant capacitor; the first power switch having a first control signal input, the second power The switch has a second control signal input.
- the unidirectional pass device is a diode.
- a relay switch or a control switch is also connected in series with the diode, and the diode is connected in parallel with the circuit formed by the relay switch or the control switch on the first resonant capacitor or the second resonant capacitor.
- the one-way conduction device is a unidirectional thyristor.
- the first power switch and the second power switch are IGBT switches or MOSFET switches.
- the present invention also provides a half bridge circuit for induction heating, comprising a switch series circuit comprising a first power switch and a second power switch, the switch series circuit having one end grounded and the other end connected to the power source; a first capacitor connected in parallel with the series circuit, a first absorption capacitor connected in parallel to the first power switch, a second absorption capacitor connected in parallel to the second power switch, and parallel connected across the switch series circuit a capacitor series circuit composed of a first resonant capacitor and a second resonant capacitor, connected between a connection node of the first resonant capacitor and the second resonant capacitor and a connection node of the first power switch and the second power switch An inductance, and a unidirectional conduction device connected in parallel to the first resonant capacitor and the second resonant capacitor for preventing reverse charging of the resonant capacitor; the first power switch having a first control signal input terminal The second power switch has a second control signal input.
- the unidirectional conduction device is a unidirectional thyristor, a circuit formed by connecting a diode and a relay switch in series, or a circuit formed by a diode and a control switch.
- the first power switch and the second power switch are IGBT switches or MOSFET switches.
- the present invention also provides an electromagnetic cooktop system comprising at least two burners and a main control chip for controlling induction heating of the at least two burners, each of the burners having any one of claims 1-9
- the half bridge circuit for induction heating the electromagnetic cooktop system further comprising a first power switch and a second power switch connected to the main control chip and each of the half bridge circuits for induction heating And a driving circuit between the control signal input terminals for amplifying the output of the main control chip to drive the first power switch and the second power switch to operate.
- an EMC circuit connected to the AC mains, a rectifying circuit connected in series with the EMC circuit, and a half bridge circuit for inductive heating connected to the rectifying circuit and each of the burners Filter circuit.
- the present invention has the following advantages: the implementation of the present invention, A unidirectional conduction device for preventing the resonant capacitor from being reversely charged in parallel on the first resonant capacitor and/or the second resonant capacitor, such that the first power switch and the second power switch can remain zero in a wide range of asymmetric operating conditions Voltage switching state to reduce switching loss, thereby reducing the temperature rise of the first power switch and the second power switch, reducing losses, and improving the reliability of the half-bridge circuit and broadening the power output range of the asymmetrical operation of the half-bridge circuit.
- Figure 1 is a circuit diagram of a half bridge circuit for induction heating in Embodiment 1 of the present invention.
- Figure 2 is a circuit diagram of a half bridge circuit for induction heating in Embodiment 2 of the present invention.
- Figure 3 is a circuit diagram of a half bridge circuit for induction heating in Embodiment 3 of the present invention.
- Figure 4 is a circuit diagram of a half bridge circuit for induction heating in Embodiment 4 of the present invention.
- Figure 5 is a circuit diagram of a half bridge circuit for induction heating in Embodiment 5 of the present invention.
- Figure 6 is a circuit schematic diagram of an electromagnetic oven system in Embodiment 6 of the present invention.
- Fig. 1 shows a circuit diagram of a half bridge circuit 10 for induction heating in this embodiment.
- the half bridge circuit 10 for induction heating includes a switch series circuit composed of a first power switch S1 and a second power switch S2. One end of the switch series circuit is grounded, and the other end is connected to the power source.
- the first power switch S1 has a first control signal input for controlling the switch to be turned on
- the second power switch S2 has a second control signal input for controlling the switch to be turned on.
- the half bridge circuit 10 further includes a first capacitor C0 for stabilizing the mother voltage in parallel with the series circuit of the switch, a first absorption capacitor C3 for avoiding switching loss connected in parallel to the first power switch S1, and parallel connection to the second power a second absorption capacitor C4 for avoiding switching loss on the switch S2, a capacitor series circuit composed of a first resonance capacitor C1 and a second resonance capacitor C2 connected in parallel across the switch series circuit, connected to the first resonance capacitor C1 and
- the inductance L1 between the connection node of the two resonance capacitor C2 and the connection node of the first power switch S1 and the second power switch S2, and the parallel connection between the first resonance capacitor C1 or the second resonance capacitor C2 are used to prevent the resonance capacitor from being Reverse-charged unidirectional conduction device.
- the unidirectional conduction device is connected in parallel to the resonant capacitor corresponding to the power switch with a long on-time to avoid reverse charging of the resonant capacitor corresponding to the power switch with a long on-time, thereby making the on-time longer.
- the power switch is turned off, the current of the inductor L1 can pass the power switch with a short on-time.
- the voltage across the two ends is close to 0V.
- the first power switch S1 and the second power switch S2 may be IGBT switches or MOSFET switches.
- the first power switch S1 and the second power switch S2 are both IGBT switches.
- the collector of the first power switch S1 is connected to the power source
- the emitter is connected to the collector of the second power switch S2
- the emitter of the second power switch S2 is connected to the ground terminal;
- the first The base of the power switch S1 is the first control signal output end
- the substrate of the second power switch S2 is the second control signal output end.
- the first power switch S1 and the second power switch S2 are each provided with a built-in diode, and the conduction direction of the built-in diode is opposite to the conduction direction of the first power switch S1 or the second power switch S2, that is, when the first power switch S1 or the first power switch When the second power switch S2 is turned on, current flows from its collector through the emitter; when the first power switch S1 or the second power switch S2 is turned off, current flows through the built-in diode.
- the unidirectional conduction device may be a diode D1, and the conduction time of the second power switch S2 is greater than the conduction time of the first power switch S1, and the diode D1 is connected in parallel to the second power switch with a long conduction time.
- S2 corresponds to the second resonant capacitor C2.
- the second power switch S2 When the first power switch S1 is turned off, the amount of electricity stored in the inductor L1 is looped through the built-in diodes of the inductor L1, the second resonant capacitor C2, and the second power switch S2, thereby shifting to the second resonant capacitor C2, after a certain amount During the dead time, the second power switch S2 will enter a conducting state to achieve zero voltage switching.
- the electric quantity of the inductor L1 is 0, the voltage across the second resonant capacitor C2 reaches a maximum value, and the current is reversed, and the electric quantity stored in the second resonant capacitor C2 passes through the second resonant capacitor C2, the inductor L1, and the second power.
- Switch S2 forms a loop that is transferred to inductor L1.
- the voltage at the upper end of the second resonant capacitor C2 (ie, the cathode terminal of the diode D1) is continuously lowered, and the voltage at the lower end (ie, the anode terminal of the diode D1) is continuously increased, paralleling the second resonance.
- the diode D1 on the capacitor C2 is turned on.
- the inductor L1 enters a constant current state, and the current direction is maintained from the right end of the inductor L1 to the left end, and the loop is formed between the inductor L1, the second power switch S2, and the diode D1, and the second power switch S2
- the direction of current flowing through inductor L1 remains unchanged until disconnected.
- the second power switch S2 When the second power switch S2 is turned off, since the current of the inductor L1 cannot be abruptly changed, the current flowing through the inductor L1 continues to flow through the built-in diode of the first power switch S1 and the first resonant capacitor C1 during the dead time.
- the first power switch S1 is turned on, thereby implementing a zero voltage switch to avoid a hard switching state resulting in switching loss and temperature rise, thereby Widening the half-bridge circuit 10 to work in an asymmetrical manner to adjust the power output range to avoid noise.
- the diode D1 can be connected in parallel to the first resonant capacitor C1 corresponding to the first power switch S1, and its operation
- the principle is the same as that in the first embodiment.
- the half bridge circuit 10 for induction heating may further include a relay switch K1 or other control switch connected in series with the diode D1, and the circuit formed by the diode D1 and the relay switch K1 or the control switch is connected in parallel with the first resonance capacitor C1 or The second resonant capacitor C2.
- the series-connected relay switch K1 and the diode D1 are connected at both ends of the second resonance capacitor C2, and the diode D1 is controlled to be connected to the half-bridge circuit 10 by controlling the on/off of the relay switch K1 to expand the power. Adjustment range. If the relay switch K1 is turned off, the diode D1 is not connected to the half bridge circuit 10.
- the half bridge circuit 10 for induction heating is mainly used in the case where the output power is symmetrical; if the relay switch K1 is turned on, the diode D1 is connected to the half.
- the bridge circuit 10 is identical to the operation of the circuit in the first embodiment.
- the diode D1 in Embodiment 1 can also be replaced by a unidirectional thyristor SCR1 for parallel connection on a power switch with a long on-time, and the on/off of the unidirectional thyristor SCR1 is controlled by a control signal.
- the on/off of the diode D1 is controlled according to the voltage difference across the diode D1 to expand the power adjustment range, and the operation principle of the half bridge circuit 10 is identical to that in the first embodiment.
- a unidirectional conduction device for preventing the resonance capacitor from being reversely charged can also be simultaneously connected in parallel on the first resonance capacitor C1 and the second resonance capacitor C2.
- the unidirectional conduction device may be a circuit formed in series with the diode D1 and the relay switch K1 connected in parallel on the first resonant capacitor C1 (as shown in FIG. 5), and a diode D2 and a relay switch K2 connected in parallel to the second resonant capacitor C2.
- the circuit formed in series can be understood that the relay switches K1 and K2 can be replaced by other control switches, and the working principle is the same as that of the third embodiment.
- the unidirectional conductive device can also be unidirectional thyristor, and its working principle is consistent with the working principle of Embodiment 4.
- Fig. 6 shows an electromagnetic cooktop system in the present invention.
- the induction cooktop system includes at least two burners 80 and a master chip 20 for controlling the induction heating of at least two burners 80.
- each of the burners 80 is provided with the aforementioned half bridge circuit 10 for induction heating
- the electromagnetic oven system further includes a first power connected to the main control chip 20 and each of the half bridge circuits 10 for induction heating.
- a control signal between the switch S1 and the control signal input end of the second power switch S2 for amplifying the output of the main control chip 20 to drive the first power switch S1 and the second power switch S2 to operate the drive circuit 30.
- the driving circuit 30 connected to the main control chip 20 is respectively connected to the first control signal input end of the first power switch S1 and the second control signal input end of the second power switch S2.
- the electromagnetic cooktop system further includes an EMC circuit 40 connected to the AC mains, a rectifying circuit 50 connected in series with the EMC circuit 40, and a half bridge circuit for inductive heating connected to the rectifying circuit 50 and each of the burners 80. Filter circuit 60 between 10.
- the AC mains is processed by the EMC circuit 40 and the rectifier circuit 50, and then output to the half bridge circuit 10 for induction heating of each of the burners 80 through respective filter circuits 60, specifically, the main control
- the chip 20 outputs PWM control signals according to control commands from the human-machine interface 70, and is respectively amplified by the respective driving circuits 30 and input to the first power of the half-bridge circuit 10 for induction heating corresponding to each of the burners 80.
- the bases of the switch S1 and the second power switch S2 are driven to turn on and off of the first power switch S1 and the second power switch S2.
- the on-time of the first power switch S1 and the second power switch S2 of the burner 80 is asymmetric, since the diode is connected in parallel in the half-bridge circuit 10 on the corresponding resonant capacitor of the power switch with a long on-time.
- the switch can work in a zero voltage conduction state, greatly reducing the loss of the power switch, improving the energy conversion efficiency, and avoiding noise generation.
- the half bridge circuit 10 for induction heating can also be used in other induction heating products.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Induction Heating Cooking Devices (AREA)
Abstract
一种用于感应加热的半桥电路及电磁灶系统,半桥电路包括由第一功率开关( S1)与第二功率开关( S2)组成的开关串联电路、与开关串联电路并联的第一电容( C0)、并联在第一功率开关上的第一吸收电容( C3)、并联在第二功率开关上的第二吸收电容( C4)、并联在开关串联电路两端的由第一谐振电容( C1)和第二谐振电容( C2)组成的电容串联电路、连接在第一谐振电容和第二谐振电容的连接节点与第一功率开关与第二功率开关的连接节点之间的电感( L1)、以及并联在第一谐振电容或第二谐振电容上的用于防止谐振电容被反向充电的单向导通器件( D1
,SCR1)。半桥电路使两功率开关可在大范围不对称工作状态下保持零电压开关状态,以降低开关损耗,并提高半桥电路的可靠性。
Description
本发明涉及感应加热电路领域,尤其涉及一种用于感应加热的半桥电路及电磁灶系统。
现有的
的用于感应加热的半桥电路,可以在对称工作情况下调节工作频率,来实现输出功率的大小变化。在一个灶具具有多个炉头的情况下,如果驱动不同炉头的半桥电路工作频率不一致,当他们的频率差落入人耳的听觉范围内,就会产生用户可听到的噪声,影响用户体验,所以一般要求不同炉头的半桥电路工作频率一致,或者频率差在人耳听觉范围以外,来避免噪声。
当不同的半桥
电路在同一频率下工作时,由于每一个半桥电路的输出功率根据用户需求会有不同,会使得某些炉头的半桥电路工作在不对称状态,当这种不对称状态达到一定程度后,就会使得其中导通时间短的一个功率开关脱离零电压开关状态,导致开关损耗急剧增加,使得功率开关温度升高,甚至损坏
。
使得半桥电路需要采用更高等级的功率开关或更好的散热措施来保证半桥电路的在工作频率不对称的情况下的正常工作,以减少噪声,从而导致应用于感应加热的半桥电路的电路成本增加
。
本发明要解决的技术问题在于,针对现有技术的缺陷,提供一种用于感应加热的半桥电路及电磁灶系统。
本发明解决其技术问题所采用的技术方案是:
一种用于感应加热的半桥电路,包括由第一功率开关与第二功率开关组成的开关串联电路,所述开关串联电路的一端接地,另一端与电源连接;还包括与所述开关串联电路并联的第一电容、并联在所述第一功率开关上的第一吸收电容、并联在所述第二功率开关上的第二吸收电容、并联在所述开关串联电路两端的由第一谐振电容和第二谐振电容组成的电容串联电路、连接在所述第一谐振电容和第二谐振电容的连接节点与所述第一功率开关与第二功率开关的连接节点之间的电感、以及并联在所述第一谐振电容或所述第二谐振电容上的用于防止谐振电容被反向充电的单向导通器件;所述第一功率开关具有第一控制信号输入端,所述第二功率开关具有第二控制信号输入端。
优选地,所述单向导通器件是二极管。
优选地,还包括与所述二极管串联的继电器开关或控制开关,所述二极管与所述继电器开关或控制开关形成的电路并联在所述第一谐振电容或所述第二谐振电容上。
优选地,所述单向导通器件是单向可控硅。
优选地,所述第一功率开关和所述第二功率开关为IGBT开关或MOSFET开关。
本发明还提供一种用于感应加热的半桥电路,包括由第一功率开关与第二功率开关组成的开关串联电路,所述开关串联电路的一端接地,另一端与电源连接;还包括与所述开关串联电路并联的第一电容、并联在所述第一功率开关上的第一吸收电容、并联在所述第二功率开关上的第二吸收电容、并联在所述开关串联电路两端的由第一谐振电容和第二谐振电容组成的电容串联电路、连接在所述第一谐振电容和第二谐振电容的连接节点与所述第一功率开关与第二功率开关的连接节点之间的电感、以及并联在所述第一谐振电容和所述第二谐振电容上的用于防止谐振电容被反向充电的单向导通器件;所述第一功率开关具有第一控制信号输入端,所述第二功率开关具有第二控制信号输入端。
优选地,所述单向导通器件是单向可控硅、二极管与继电器开关串联形成的电路、或二极管与控制开关形成的电路。
优选地,所述第一功率开关和所述第二功率开关为IGBT开关或MOSFET开关。
本发明还提供一种电磁灶系统,包括至少两个炉头和用于控制所述至少两个炉头感应加热的主控芯片,每一所述炉头上设有权利要求1~9任一项所述用于感应加热的半桥电路,所述电磁灶系统还包括连接在所述主控芯片和每一所述用于感应加热的半桥电路的第一功率开关和第二功率开关的控制信号输入端之间的、用于放大所述主控芯片输出的控制信号以驱动所述第一功率开关和所述第二功率开关工作的驱动电路。
优选地,还包括与交流市电相连的EMC电路、与所述EMC电路串联的整流电路、连接在所述整流电路与每一所述炉头上的用于感应加热的半桥电路之间的滤波电路。
本发明与现有技术相比具有如下优点:实施本发明,通过
在第一谐振电容和/或第二谐振电容上并联用于防止谐振电容被反向充电的单向导通器件,使得第一功率开关和第二功率开关可在大范围不对称工作状态下保持零电压开关状态,以降低开关损耗,从而降低第一功率开关和第二功率开关温升,降低损耗,并提高半桥电路可靠性并拓宽半桥电路不对称工作调节功率输出范围。
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例1中用于感应加热的半桥电路的一电路图。
图2是本发明实施例2中用于感应加热的半桥电路的一电路图。
图3是本发明实施例3中用于感应加热的半桥电路的一电路图。
图4是本发明实施例4中用于感应加热的半桥电路的一电路图。
图5是本发明实施例5中用于感应加热的半桥电路的一电路图。
图6是本发明实施例6中电磁灶系统的电路原理图。
10
、半桥电路;20、主控芯片;30、驱动电路;40、EMC电路;50、整流电路;60、滤波电路;70、人机交互界面;80、炉头。
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
实施例1
图1示出本实施例中用于感应加热的半桥电路10的电路图。如图1所示, 该
用于感应加热的半桥电路10,包括由第一功率开关S1与第二功率开关S2组成的开关串联电路,开关串联电路的一端接地,另一端与电源连接。可以理解地,第一功率开关S1具有用于控制开关导通的第一控制信号输入端,第二功率开关S2具有用于控制开关导通的第二控制信号输入端。该半桥电路10还包括与开关串联电路并联的用于稳定母压的第一电容C0、并联在第一功率开关S1上的用于避免开关损耗的第一吸收电容C3、并联在第二功率开关S2上的用于避免开关损耗的第二吸收电容C4、并联在开关串联电路两端的由第一谐振电容C1和第二谐振电容C2组成的电容串联电路、连接在第一谐振电容C1和第二谐振电容C2的连接节点与第一功率开关S1与第二功率开关S2的连接节点之间的电感L1、以及并联在第一谐振电容C1或第二谐振电容C2上的用于防止谐振电容被反向充电的单向导通器件。
具体地,单向导通器件并联在导通时间长的功率开关所对应的谐振电容上,以避免导通时间长的功率开关所对应的谐振电容被反向充电,从而使得导通时间较长的功率开关断开时,电感L1的电流能够通过导通时间较短的功率开关,在开通瞬间,由于导通时间较短的功率开关的内置二极管处于续流状态,其两端电压接近0V,此时该功率开关的导通处于零电压开关状态,可有效降低开关损耗,进而避免功率开关温度升高、甚至损坏;而且可有效避免噪声的产生。
具体地,
第一功率开关S1和第二功率开关S2可以是IGBT开关或MOSFET开关。本实施例中,第一功率开关S1和第二功率开关S2均为IGBT开关。如图1所示,第一功率开关S1的集电极与电源连接,发射极与第二功率开关S2的集电极相连,第二功率开关S2的发射极与接地端相连;可以理解地,第一功率开关S1的基极为第一控制信号输出端,第二功率开关S2的基板为第二控制信号输出端。第一功率开关S1和第二功率开关S2均设有内置二极管,内置二极管的导通方向与第一功率开关S1或第二功率开关S2的导通方向相反,即当第一功率开关S1或第二功率开关S2导通时,电流从其集电极流经发射极;当第一功率开关S1或第二功率开关S2断开时,电流流经内置二极管。
如图1所示,单向导通器件可以是二极管D1,第二功率开关S2的导通时间大于第一功率开关S1的导通时间,该二极管D1并联在导通时间较长的第二功率开关S2对应的第二谐振电容C2上。当第一功率开关S1导通时,电源电流流经第一功率开关S1、电感L1、第二谐振电容C2至接地端,电量存储在电感L1中。当第一功率开关S1断开时,电感L1中存储的电量通过电感L1、第二谐振电容C2、第二功率开关S2的内置二极管形成回路,从而转移到第二谐振电容C2中,经过一定的死区时间,第二功率开关S2会进入导通状态,实现零电压开关。当电感L1的电量为0时,第二谐振电容C2两端的电压达到最大值,此时电流会反向,第二谐振电容C2中存储的电量通过第二谐振电容C2、电感L1、第二功率开关S2形成回路,从而转移到电感L1上。第二谐振电容C2的电量转移过程中,第二谐振电容C2上端(即二极管D1的阴极端)的电压不断降低、下端(即二极管D1的阳极端)的电压不断升高,并联在第二谐振电容C2上的二极管D1导通,此时电感L1进入恒流状态,电流方向维持从电感L1右端流向左端,电感L1、第二功率开关S2、二极管D1之间形成回路,在第二功率开关S2断开之前,流经电感L1的电流方向维持不变。当第二功率开关S2断开时,由于电感L1的电流不能突变,由此在死区时间内,流经电感L1的电流通过第一功率开关S1的内置二极管、第一谐振电容C1续流,在续流期间,第一功率开关S1进行导通状态,从而实现零电压开关,以避免出现硬开关状态导致开关损耗和温度升高,从而
拓宽半桥电路10不对称工作调节功率输出范围,避免噪声的产生。
实施例2
如图2所示,若第一功率开关S1的导通时间长于第二功率开关S2的导通时间,则可将二极管D1并联在第一功率开关S1对应的第一谐振电容C1上,其工作原理与实施例1中的工作原理一致。
实施例3
可以理解地,该用于感应加热的半桥电路10还可以包括与二极管D1串联的继电器开关K1或其他控制开关,二极管D1与继电器开关K1或控制开关形成的电路并联在第一谐振电容C1或第二谐振电容C2上。如图3所示,串联连接的继电器开关K1与二极管D1连接在第二谐振电容C2的两端,通过控制继电器开关K1的通断以控制是否将二极管D1接入半桥电路10,以扩大功率调节范围。若继电器开关K1断开时,二极管D1不接入半桥电路10,该用于感应加热的半桥电路10主要应用于输出功率对称的场合;若继电器开关K1导通时,二极管D1接入半桥电路10,与实施例1中的电路的工作原理一致。
实施例4
可以理解地,实施例1中的二极管D1还可以采用单向可控硅SCR1替代,用于并联在导通时间较长的功率开关上,通过控制信号控制单向可控硅SCR1的通断,以替代实施例1中根据二极管D1两端电压差控制二极管D1的通断,以扩大功率调节范围,其半桥电路10的工作原理与实施例1中的工作原理一致。
实施例5
可以理解地,在该用于感应加热的半桥电路10中,还可以在第一谐振电容C1和第二谐振电容C2上同时并联用于防止谐振电容被反向充电的单向导通器件。该
单向导通器件可以是并联在第一谐振电容C1上的由二极管D1与继电器开关K1串联形成的电路(如图5所示)、并联在第二谐振电容C2上的由二极管D2与继电器开关K2串联形成的电路,可以理解地,继电器开关K1与K2可采用其他控制开关替换,其工作原理与实施例3的工作原理一致。可以理解地,该单向导通器件还可以单向可控硅,其工作原理与实施例4的工作原理一致。
实施例6
图6示出本发明中的一种电磁灶系统。该电磁灶系统包括至少两个炉头80和用于控制至少两个炉头80感应加热的主控芯片20。具体地,每一炉头80上设有前述的用于感应加热的半桥电路10,电磁灶系统还包括连接在主控芯片20和每一用于感应加热的半桥电路10的第一功率开关S1和第二功率开关S2的控制信号输入端之间的、用于放大主控芯片20输出的控制信号以驱动第一功率开关S1和第二功率开关S2工作的驱动电路30。可以理解地,与主控芯片20相连的驱动电路30分别与第一功率开关S1的第一控制信号输入端、第二功率开关S2的第二控制信号输入端相连。具体地,该电磁灶系统还包括与交流市电相连的EMC电路40、与EMC电路40串联的整流电路50、连接在整流电路50与每一炉头80上的用于感应加热的半桥电路10之间的滤波电路60。
如图6所示,交流市电通过EMC电路40、整流电路50处理后分别经过各自的滤波电路60输出至每一炉头80的用于感应加热的半桥电路10中,具体地,主控芯片20根据来自人机交互界面70的控制指令,输出PWM控制信号,分别经各自的驱动电路30进行放大后输入至每一炉头80对应的用于感应加热的半桥电路10的第一功率开关S1和第二功率开关S2的基极,以驱动第一功率开关S1和第二功率开关S2的通断。
可以理解地,若同一时间两个炉头80的工作频率相同,其连接工作过程中不会产生噪音;在工作频率相同的情况下,当要求两个炉头80的输出功率不一致时,功率小的炉头80的第一功率开关S1和第二功率开关S2的导通时间不对称,由于在半桥电路10中在导通时间较长的功率开关的对应的谐振电容上并联二极管,使得功率开关能够工作在零电压导通状态,大大降低功率开关的损耗,提高能量转换效率,同时避免噪音的产生。可以理解地,该用于感应加热的半桥电路10还可以应用的其他感应加热产品中。
本发明是通过几个具体实施例进行说明的,本领域技术人员应当明白,在不脱离本发明范围的情况下,还可以对本发明进行各种变换和等同替代。另外,针对特定情形或具体情况,可以对本发明做各种修改,而不脱离本发明的范围。因此,本发明不局限于所公开的具体实施例,而应当包括落入本发明权利要求范围内的全部实施方式。
Claims (10)
- 一种用于感应加热的半桥电路,其特征在于:包括由第一功率开关(S1)与第二功率开关(S2)组成的开关串联电路,所述开关串联电路的一端接地,另一端与电源连接;还包括与所述开关串联电路并联的第一电容(C0)、并联在所述第一功率开关(S1)上的第一吸收电容(C3)、并联在所述第二功率开关(S2)上的第二吸收电容(C4)、并联在所述开关串联电路两端的由第一谐振电容(C1)和第二谐振电容(C2)组成的电容串联电路、连接在所述第一谐振电容(C1)和第二谐振电容(C2)的连接节点与所述第一功率开关(S1)与第二功率开关(S2)的连接节点之间的电感(L1)、以及并联在所述第一谐振电容(C1)或所述第二谐振电容(C2)上的用于防止谐振电容被反向充电的单向导通器件;所述第一功率开关(S1)具有第一控制信号输入端,所述第二功率开关(S2)具有第二控制信号输入端。
- 根据权利要求1所述的用于感应加热的半桥电路,其特征在于:所述单向导通器件是二极管(D1)。
- 根据权利要求2所述的用于感应加热的半桥电路,其特征在于:还包括与所述二极管(D1)串联的继电器开关(K1)或控制开关,所述二极管(D1)与所述继电器开关(K1)或控制开关形成的电路并联在所述第一谐振电容(C1)或所述第二谐振电容(C2)上。
- 根据权利要求1所述的用于感应加热的半桥电路,其特征在于:所述单向导通器件是单向可控硅。
- 根据权利要求1~4任一项所述的用于感应加热的半桥电路,其特征在于:所述第一功率开关(S1)和所述第二功率开关(S2)为IGBT开关或MOSFET开关。
- 一种用于感应加热的半桥电路,其特征在于:包括由第一功率开关(S1)与第二功率开关(S2)组成的开关串联电路,所述开关串联电路的一端接地,另一端与电源连接;还包括与所述开关串联电路并联的第一电容(C0)、并联在所述第一功率开关(S1)上的第一吸收电容(C3)、并联在所述第二功率开关(S2)上的第二吸收电容(C4)、并联在所述开关串联电路两端的由第一谐振电容(C1)和第二谐振电容(C2)组成的电容串联电路、连接在所述第一谐振电容(C1)和第二谐振电容(C2)的连接节点与所述第一功率开关(S1)与第二功率开关(S2)的连接节点之间的电感(L1)、以及并联在所述第一谐振电容(C1)和所述第二谐振电容(C2)上的用于防止谐振电容被反向充电的单向导通器件;所述第一功率开关(S1)具有第一控制信号输入端,所述第二功率开关(S2)具有第二控制信号输入端。
- 根据权利要求6所述的用于感应加热的半桥电路,其特征在于:所述单向导通器件是单向可控硅、二极管(D1,D2)与继电器开关(K1,K2)串联形成的电路、或二极管(D1,D2)与控制开关形成的电路。
- 根据权利要求6或7所述的用于感应加热的半桥电路,其特征在于:所述第一功率开关(S1)和所述第二功率开关(S2)为IGBT开关或MOSFET开关。
- 一种电磁灶系统,包括至少两个炉头(80)和用于控制所述至少两个炉头(80)感应加热的主控芯片(20),其特征在于:每一所述炉头(80)上设有权利要求1~8任一项所述用于感应加热的半桥电路(10),所述电磁灶系统还包括连接在所述主控芯片(20)和每一所述用于感应加热的半桥电路(10)的第一功率开关(S1)和第二功率开关(S2)的控制信号输入端之间的、用于放大所述主控芯片(20)输出的控制信号以驱动所述第一功率开关(S1)和所述第二功率开关(S2)工作的驱动电路(30)。
- 根据权利要求9所述的电磁灶系统,其特征在于:还包括与交流市电相连的EMC电路(40)、与所述EMC电路(40)串联的整流电路(50)、连接在所述整流电路(50)与每一所述炉头(80)上的用于感应加热的半桥电路之间的滤波电路(60)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/089803 WO2016065558A1 (zh) | 2014-10-29 | 2014-10-29 | 用于感应加热的半桥电路及电磁灶系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/089803 WO2016065558A1 (zh) | 2014-10-29 | 2014-10-29 | 用于感应加热的半桥电路及电磁灶系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016065558A1 true WO2016065558A1 (zh) | 2016-05-06 |
Family
ID=55856378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/089803 WO2016065558A1 (zh) | 2014-10-29 | 2014-10-29 | 用于感应加热的半桥电路及电磁灶系统 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016065558A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103348765A (zh) * | 2011-02-14 | 2013-10-09 | 三菱电机株式会社 | 感应加热烹调器 |
CN103746576A (zh) * | 2014-01-10 | 2014-04-23 | 美的集团股份有限公司 | 供电电路、加热装置的控制电路和加热装置 |
CN204190613U (zh) * | 2014-10-29 | 2015-03-04 | 深圳拓邦股份有限公司 | 用于感应加热的半桥电路及电磁灶系统 |
CN104467402A (zh) * | 2014-10-29 | 2015-03-25 | 深圳拓邦股份有限公司 | 用于感应加热的半桥电路及电磁灶系统 |
-
2014
- 2014-10-29 WO PCT/CN2014/089803 patent/WO2016065558A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103348765A (zh) * | 2011-02-14 | 2013-10-09 | 三菱电机株式会社 | 感应加热烹调器 |
CN103746576A (zh) * | 2014-01-10 | 2014-04-23 | 美的集团股份有限公司 | 供电电路、加热装置的控制电路和加热装置 |
CN204190613U (zh) * | 2014-10-29 | 2015-03-04 | 深圳拓邦股份有限公司 | 用于感应加热的半桥电路及电磁灶系统 |
CN104467402A (zh) * | 2014-10-29 | 2015-03-25 | 深圳拓邦股份有限公司 | 用于感应加热的半桥电路及电磁灶系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI468896B (zh) | 功率因數校正電路 | |
TWI530767B (zh) | 用於pfc電路的控制電路、控制方法及電源系統 | |
WO2016119736A1 (zh) | 五电平拓扑单元及五电平逆变器 | |
CN103269164B (zh) | 原边恒流控制的准单级高功率因数电路及装置 | |
CN1409474A (zh) | 开关电源装置 | |
CN104540271B (zh) | 一种自适应型led驱动电路 | |
TWI519053B (zh) | 逆變器及其控制方法 | |
CN104467402A (zh) | 用于感应加热的半桥电路及电磁灶系统 | |
CN103326552B (zh) | 超大功率igbt感应加热设备的电流均衡系统及全桥逆变单元 | |
CN106392263A (zh) | 基于SiC的超高频逆变式手工焊接电源 | |
CN204190613U (zh) | 用于感应加热的半桥电路及电磁灶系统 | |
CN108923637A (zh) | 一种降压式非隔离三相pfc变换器及其控制方法 | |
WO2016065558A1 (zh) | 用于感应加热的半桥电路及电磁灶系统 | |
CN209497623U (zh) | 一种igbt控制电路、加热电器的控制电路、加热电器 | |
CN106160480A (zh) | 功率变换器装置 | |
CN112437521B (zh) | 一种基于mosfet的智能后沿调光装置 | |
CN205481176U (zh) | 电磁炉 | |
CN205123617U (zh) | 一种dc/ac转换装置、dc/dc转换装置和恒流驱动装置 | |
CN210807706U (zh) | 一种功率控制电路及电磁炉 | |
CN109195240A (zh) | Igbt控制电路、控制方法、加热电器的控制电路、加热电器 | |
CN103516192B (zh) | 功率因数校正电路和开关电源模块、功率因数校正方法 | |
CN206585782U (zh) | 一种微波炉电源电路及微波炉 | |
CN204928559U (zh) | 一种半桥igbt驱动电路 | |
CN204707312U (zh) | 一种谐振型大功率多路输出led驱动电源 | |
CN110493905B (zh) | 一种功率控制电路、方法及电磁炉 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14905212 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/09/2017) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14905212 Country of ref document: EP Kind code of ref document: A1 |