WO2012108518A1 - ラクトバチルス・ラムノーサス由来のバクテリオシン - Google Patents

ラクトバチルス・ラムノーサス由来のバクテリオシン Download PDF

Info

Publication number
WO2012108518A1
WO2012108518A1 PCT/JP2012/053020 JP2012053020W WO2012108518A1 WO 2012108518 A1 WO2012108518 A1 WO 2012108518A1 JP 2012053020 W JP2012053020 W JP 2012053020W WO 2012108518 A1 WO2012108518 A1 WO 2012108518A1
Authority
WO
WIPO (PCT)
Prior art keywords
bacteriocin
strain
lactobacillus rhamnosus
kog2
kog1
Prior art date
Application number
PCT/JP2012/053020
Other languages
English (en)
French (fr)
Inventor
浩樹 二川
Original Assignee
国立大学法人広島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人広島大学 filed Critical 国立大学法人広島大学
Priority to DK12745195.3T priority Critical patent/DK2682463T3/en
Priority to EP12745195.3A priority patent/EP2682463B1/en
Priority to JP2012556935A priority patent/JP5907490B2/ja
Priority to CN201280008481.XA priority patent/CN103748220B/zh
Priority to KR1020137023858A priority patent/KR101675525B1/ko
Priority to ES12745195T priority patent/ES2698421T3/es
Priority to US13/984,783 priority patent/US20140128314A1/en
Publication of WO2012108518A1 publication Critical patent/WO2012108518A1/ja
Priority to US14/707,956 priority patent/US9314498B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/164Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/335Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Lactobacillus (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/225Lactobacillus

Definitions

  • the present invention relates to a bacteriocin that exhibits antibacterial activity against causative bacteria of oral diseases, a composition for preventing, improving and / or treating oral diseases comprising the bacteriocin as an active ingredient, and encoding the bacteriocin.
  • a recombinant expression vector obtained by incorporating the gene, a host cell having the recombinant expression vector, a transformant transformed with the recombinant expression vector, a method for producing the bacteriocin, and the bacteriocin
  • the present invention relates to a Lactobacillus rhamnosus KO1 strain which is a novel lactic acid strain to be produced.
  • Non-Patent Document 1 describes a low molecular weight bacteriocin rhamnosin A produced by Lactobacillus rhamnosus strain 68.
  • antibacterial peptides as described above are peptides derived from mammals such as humans or artificially synthesized peptides, these peptides can be easily produced in large quantities. Can not.
  • antibacterial activity is weak at low concentrations, a high concentration, that is, a large amount of antibacterial peptides is required when these are used.
  • the therapeutic effect may not be obtained due to the emergence of multi-drug resistant bacteria due to the abuse of antibiotics. Therefore, there is a need for a novel bacteriocin that can be easily produced in large quantities, has high antibacterial activity even at low concentrations, and has a low possibility of causing resistant bacteria.
  • the present invention has been made in view of the above circumstances, can be easily produced in large quantities, has high antibacterial activity even at low concentrations, has a wide antibacterial spectrum, and may cause resistance bacteria.
  • the purpose is to provide a low bacteriocin.
  • a composition for preventing, ameliorating and / or treating oral diseases comprising the bacteriocin (including pharmaceutically acceptable derivatives) as an active ingredient, a gene encoding the bacteriocin, and incorporating the gene Recombinant expression vector obtained, host cell carrying the recombinant expression vector, transformant transformed with the recombinant expression vector, method for producing the bacteriocin, and lactobacillus of a novel lactic acid strain producing the bacteriocin ⁇
  • the aim is to provide Ramnosus KO1 stock.
  • Lactobacillus rhamnosus KO3 strain (L8020) proposed in Patent Document 1 (Independent Administrative Institution, Product Evaluation Technology Foundation, Patent Microorganism Depositary Center ( ⁇ 292-0818, Chiba, Japan) 2-5-8) Kisarazu City, Kazusa Prefecture, Kazusa, Kashisa, on June 10, 2009. After that, a request for transfer to the deposit under the Budapest Treaty was made, and it was produced under the deposit number NITE BP-771).
  • a peptide having the amino acid sequence described in SEQ ID NO: 1 (hypothetical protein HMPREF0539_2969, accession number ZP_044432437.1, hereinafter referred to as Kog1) and a peptide having the amino acid sequence described in SEQ ID NO: 2 (hypothetical protein HMPREF0539_1169, accession number ZP 04440638.1, the following Kog2) is a wide antibacterial spectrum, antibacterial high at low concentrations, are less likely isoelectric point of occurrence of the above-resistant bacteria found to act as more than 12 bacteriocin.
  • Lactobacillus rhamnosus KO1 strain which is a novel lactic acid strain that similarly produces Kog1 and Kog2 ( The application for deposit was made on the 24th of March, and the separation and identification of the deposit number NITE P-1065) was also successful. That is, by using the Lactobacillus rhamnosus KO3 strain and Lactobacillus rhamnosus KO1 strain, bacteriocin Kog1 and Kog2 having a wide antibacterial spectrum, high antibacterial activity at low concentrations, and low possibility of causing resistant bacteria, It was found that it is possible to produce easily and in large quantities.
  • bacteriocins Kog1 and Kog2 have a wide antibacterial spectrum, high antibacterial activity at low concentrations, and low possibility of causing resistant bacteria was clarified. As will be described in detail in Example 7 later, this is because bacteriocins Kog1 and Kog2 have an inactivating effect on endotoxin (LPS, Lipopolysaccharide) possessed by Gram-negative bacteria such as periodontal disease bacteria.
  • LPS Lipopolysaccharide
  • the bacteriocin according to the first aspect of the present invention is 1 or a number in the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2 in the sequence listing, It is characterized by having an amino acid sequence in which one amino acid is deleted, substituted, inserted and / or added to bring about antibacterial activity, and has an isoelectric point of 12 or more.
  • the bacteriocin is characterized by having antibacterial properties against caries, periodontal disease, and Candida.
  • composition for prevention, amelioration and / or treatment of oral disease according to the second aspect of the present invention is the bacteriocin according to the first aspect, or a pharmaceutically acceptable derivative or pharmacological agent in the bacteriocin. It is characterized by using as an active ingredient a salt acceptable in
  • the composition for preventing, improving and / or treating oral diseases is a growth inhibitor of caries, periodontal and / or Candida.
  • the gene according to the third aspect of the present invention encodes the bacteriocin according to the first aspect.
  • the recombinant expression vector according to the fourth aspect of the present invention is obtained by incorporating the gene according to the third aspect.
  • the host cell according to the fifth aspect of the present invention has the recombinant expression vector according to the fourth aspect.
  • the transformant according to the sixth aspect of the present invention is characterized by being transformed with the recombinant expression vector according to the fourth aspect.
  • the transformant is a bacterium.
  • the method for producing bacteriocin according to the seventh aspect of the present invention comprises: A culture process for cultivating Lactobacillus rhamnosus , An extraction step of extracting the bacteriocin according to the first aspect from the cell culture obtained by the culturing step; It is characterized by including.
  • the Lactobacillus rhamnosus ( Lactobacillus rhamnosus ) is applied to the Lactobacillus rhamnosus KO1 strain (National Institute of Technology and Evaluation, Patent Microorganism Depositary on January 24, 2011), and the accession number NITE P-1065) and / or Lactobacillus rhamnosus KO3 strain (Independent Administrative Institution, National Institute of Technology and Technology Patent Microorganisms Deposit Application on June 10, 2009, deposit number NITE BP -771).
  • Lactobacillus rhamnosus ( Lactobacillus rhamnosus ) is applied to the Lactobacillus rhamnosus KO1 strain (National Institute of Technology and Evaluation, Patent Microorganism Depositary on January 24, 2011), and the accession number NITE P-1065) and / or Lactobacillus rhamnosus KO3 strain (Independent Administrative Institution, National Institute of Technology and Technology Patent Microorganisms Deposit Application on June 10, 2009, deposit number NITE BP -771).
  • Candida killed bacteria are added.
  • Lactobacillus rhamnosus KO1 strain according to the eighth aspect of the present invention was filed with an independent administrative agency, Product Evaluation Technology Foundation, Patent Microorganism Deposit Center on January 24, 2011, and deposited under the accession number NITE P-1065. It is characterized by having been entrusted as.
  • a bacteriocin that can be easily and mass-produced, has a wide antibacterial spectrum, and is less likely to cause resistant bacteria
  • the bacteriocin pharmaceutically acceptable derivatives, etc.
  • a composition for the prevention, amelioration and / or treatment of oral diseases comprising an active ingredient), a gene encoding the bacteriocin, a recombinant expression vector obtained by incorporating the gene, and a host cell carrying the recombinant expression vector
  • the present invention can provide a transformant transformed with the recombinant expression vector, a method for producing the bacteriocin, and a novel lactic acid strain Lactobacillus rhamnosus KO1 strain that produces the bacteriocin.
  • the bacteriocin according to the present invention has high heat resistance, and for example, antibacterial performance is maintained even under boiling conditions.
  • FIG. 1 It is a figure which shows the antibacterial power with respect to Candida albicans GDH18 strain
  • FIG. It is a figure which shows the antibacterial activity with respect to Candida albicans GDH18 strain
  • FIG. It is a figure which shows the antibacterial power with respect to Streptococcus sobrinus B-13 strain of Kog1, Kog2, and another antibacterial peptide which concern on Example 3.
  • FIG. 10 is a graph showing the amount of TNF- ⁇ secreted according to the relationship between the amount of LPS and Kog1 according to Example 7. It is a figure which shows the secretion amount of ccl2 by the relationship between the quantity of LPS which concerns on Example 8, and Kog2.
  • FIG. 10 is a graph showing the value of Type collagen / ⁇ -actin of real-time quantitative RT-PCR according to Example 8. It is a figure which shows the result of the heat resistance data by the boiling experiment which concerns on Example 9.
  • FIG. 10 is a graph showing the value of Type collagen / ⁇ -actin of real-time quantitative RT-PCR according to Example 8. It is a figure which shows the result of the heat resistance data by the boiling experiment which concerns on Example 9.
  • bacteriocin The bacteriocin according to Embodiment 1 of the present invention relates to a basic antimicrobial peptide having a specific amino acid sequence, providing a specific effect, and having a specific characteristic. More specifically, “bacteriocin” in the present specification refers to a basic antibacterial peptide (Kog1) having the amino acid sequence shown in SEQ ID NO: 1 or a basic antibacterial having the amino acid sequence shown in SEQ ID NO: 2. A peptide (Kog2) can be mentioned.
  • basic antibacterial peptide having the amino acid sequence shown in SEQ ID NO: 1 and SEQ ID NO: 2 one or several amino acids are deleted, substituted, inserted and / or added, resulting in antibacterial activity, and the like
  • a basic antibacterial peptide having an electric point of 12 or more is also included. “Several” is 2 to 8, preferably 2 to 6, more preferably 2 to 5, and still more preferably 2 to 4.
  • bacteriocin having an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and / or added in such an amino acid sequence of Kog1 or Kog2, and which provides antibacterial activity, preferably Kog1 Or it has antibacterial activity equivalent to Kog2 and approximate basicity (isoelectric point). More preferably, it has antibacterial properties against all caries, periodontal disease, and Candida.
  • the bacteriocin according to the first embodiment may be produced by a method using a Lactobacillus rhamnosus KO1 strain or a KO3 strain, which will be described in detail later in the fourth embodiment. However, it may be produced by an artificial ordinary method in the art such as a peptide synthesis method or a genetic engineering method. The genetic engineering method will be described in detail later in Embodiment 3.
  • liquid phase method is a method in which a reaction is carried out in a solution state, a product is isolated and purified from a reaction mixture, and this product is used as an intermediate for the next peptide extension reaction.
  • solid phase method is a method in which an amino acid is bound to a solid phase carrier insoluble in a reaction solvent, a condensation reaction is sequentially performed on the amino acid, and a peptide chain is elongated.
  • an amino acid protected with an amino group is dehydrated and condensed with an amino acid protected with a carboxyl group to form a peptide bond.
  • the next amino group-protected amino acid is sequentially extended to the free amino group one by one from the C-terminal to the N-terminal.
  • the carboxyl group is activated and reacted with an amino group to be bonded. Examples of the activation include dicyclohexylcarbodiimide (DCC) method, active ester method, acid anhydride method or azide method, etc., which are selected as appropriate in consideration of their high reactivity, racemization and other side reactions. do it.
  • DCC dicyclohexylcarbodiimide
  • a protective group is introduced into the amino group, carboxyl group and / or side chain functional group of the amino acid.
  • These protecting groups are preferably those which are stable under the conditions in the condensation reaction and can be removed quickly when necessary. Further, it is preferable that the amino protecting group and the carboxyl protecting group can be selectively removed from each other.
  • amino-protecting groups examples include benzyloxycarbonyl (Bz), t-butyloxycarbonyl (Boc), p-biphenylisopropyloxycarbonyl, 9-fluorenylmethyloxycarbonyl (Fmoc) and the like. it can.
  • protecting group for the carboxy group examples include groups capable of forming an alkyl ester or a benzyl ester.
  • the C-terminal carboxyl group is bonded to a carrier such as chlorotrityl resin, chloromethyl resin, oxymethyl resin or p-alkoxybenzyl alcohol resin, so the condensation reaction is not possible with a condensing agent such as carbodiimide. It is preferably carried out in the presence or with N-protected amino acid active esters or peptide active esters. After completion of the condensation reaction, the protecting group is removed. In the solid phase method, the bond between the C-terminus of the peptide and the resin is also cleaved.
  • the chemically synthesized peptide is purified by, for example, ion exchange chromatography, high performance liquid chromatography (HPLC), reverse phase chromatography, affinity chromatography, Edman degradation method or gas chromatography mass spectrometry (GC-MS). Can be analyzed.
  • the bacteriocin according to the first embodiment produced by such a peptide synthesis method or the like, or a genetic engineering method described later and a method using Lactobacillus rhamnosus KO1 strain or KO3 strain is a pharmaceutically acceptable bacteriocin. It can be used as an active ingredient of a composition for preventing, ameliorating and / or treating oral diseases according to Embodiment 2 described below, including derivatives of syn and the like.
  • Embodiment 2 of the present invention relates to a composition for the prevention, amelioration and / or treatment of oral diseases, comprising as an active ingredient the bacteriocin according to Embodiment 1 described above and a pharmaceutically acceptable derivative thereof. . Since the composition for prevention, amelioration and / or treatment of oral disease according to the second embodiment has the bacteriocin according to the first embodiment and a pharmaceutically acceptable derivative thereof as active ingredients, Has similar characteristics.
  • the amino acid sequences and characteristics of bacteriocins Kog1 and Kog2 described in Embodiment 1 will be briefly described.
  • the amino acid sequences have a high proportion of basic amino acids and hydrophobic amino acids. Since this feature is similar to an antibacterial peptide derived from a mammal, there is a low possibility that resistant bacteria are generated.
  • the isoelectric point is 12 or more and a highly basic antibacterial peptide is obtained, cytotoxicity is reduced.
  • it has the outstanding antimicrobial force. For details on the effects of Kog1 or Kog2, see the examples described later.
  • oral disease means a disease in the oral cavity caused by, for example, caries, periodontal, and / or Candida.
  • caries disease decayed tooth
  • gingivitis gingivitis
  • periodontitis gingivitis
  • glossitis gingivitis
  • cough ulcer cough ulcer
  • Examples of carious bacteria include Streptococcus mutans and Streptococcus sobrinus .
  • the periodontal bacteria for example, Aggregatibacter actinomycetemcomitans Hudoe001 (Aggregatibacter actinomycetemcomitans Hudoe001), Porphyromonas gingivalis (Porphyromonas gingivalis), Prevotella intermedia (Prevotella intermedia), Treponema Dentikora (Treponema denticola ), Tannerella forsythensis (Tannerella forsythensis), mention may be made of Actinobacillus actinomycetemcomitans (Actinobacillus actinomycetemcomitans) or Fusobacterium nucleatum (Fusobacterium nucleatum) and the like.
  • Examples of Candida bacteria include Candida albicans , Candida glabrata, and Candida tropicalis .
  • composition for prevention, amelioration and / or treatment of oral disease is preferably a composition which is a growth inhibitor of the aforementioned caries, periodontal and / or Candida.
  • Specific examples include foods, pharmaceuticals, and oral compositions that can suppress the growth of cariogenic bacteria, periodontal disease bacteria, and / or Candida bacteria.
  • compositions for preventing, improving and / or treating intraoral diseases are used to adjust various foods, pharmaceuticals or oral compositions. You may combine things suitably.
  • the bacteriocin and the composition may be used as a derivative or salt form.
  • Derivatives may include peptide derivatives such as partially substituted bacteriocin or addition compounds. More specifically, for example, derivatives in which a carboxyl group is amidated or acylated can be exemplified.
  • salt forms inorganic acid salts such as hydrochloride, nitrate or hydrobromide, or organic acid salts such as p-toluenesulfonate, metasulfonate, fumarate, succinate or lactate Etc.
  • the content of the bacteriocin according to Embodiment 1 as an active ingredient and the daily dose are appropriately adjusted depending on the type of the composition and the like. It is possible.
  • Embodiment 3 of the present invention relates to a gene encoding the bacteriocin according to Embodiment 1 described above.
  • Specific examples include a gene and a polynucleotide having the base sequence (and / or its complementary strand) described in SEQ ID NO: 3 (Kog1) or SEQ ID NO: 4 (Kog2).
  • a gene having the nucleotide sequence set forth in SEQ ID NO: 3 (Kog1) or SEQ ID NO: 4 (Kog2) can be obtained from a Lactobacillus rhamnosus KO1 strain or KO3 strain using a conventional method by those skilled in the art. It is possible to separate and purify and extract DNA. Further, for example, DNA synthesis may be performed artificially using a DNA synthesis kit or the like.
  • the gene sequence obtained by DNA synthesis using separation / purification or a kit can be used as a recombinant expression vector used for producing the bacteriocin according to Embodiment 1 described above in the genetic engineering method.
  • Embodiment 4 relates to a recombinant expression vector obtained by incorporating the gene of Embodiment 3 described above.
  • the recombination method may be any method used by those skilled in the art.
  • a method for constructing a recombinant expression vector for example, first, a gene having a base sequence of SEQ ID NO: 3 (Kog1) or SEQ ID NO: 4 (Kog2) is synthesized.
  • a recombinant expression vector having a gene construct for expression is constructed according to the host cell.
  • the recombinant expression vector constructed in this way is introduced into a predetermined host cell so that it can be expressed.
  • the introduction method may be any method used by those skilled in the art.
  • the fifth embodiment relates to a host cell that holds the recombinant expression vector.
  • the host cell is a bacterium.
  • lactic acid bacteria, Escherichia coli or yeast can be mentioned.
  • Embodiment 6 relates to a transformant transformed with the recombinant expression vector. That is, for example, a transformed cell in which transformation has occurred in a host cell having the above-described recombinant expression vector of Embodiment 5.
  • the transformant is a bacterium.
  • lactic acid bacteria Escherichia coli, yeast and the like can be mentioned. These bacteria are cultured under predetermined conditions. As a result, the expression and production of the bacteriocin according to Embodiment 1 described above in the host cell (bacteria) becomes possible and can be easily extracted and purified in large quantities.
  • the detailed production method is almost the same as that in the case of culturing the lactic acid bacterium Lactobacillus rhamnosus in Embodiment 7 to be described later, so please refer to it.
  • Embodiment 7 of the present invention relates to a method for producing bacteriocin according to Embodiment 1 described above using Lactobacillus rhamnosus.
  • the Lactobacillus rhamnosus includes a step of cultivating Lactobacillus rhamnosus and a step of extracting the bacteriocin according to Embodiment 1 from the cell culture obtained by the culturing step.
  • the Lactobacillus rhamnosus is Lactobacillus rhamnosus KO3 strain and / or a novel lactic acid strain Lactobacillus rhamnosus KO1 strain.
  • the Lactobacillus rhamnosus KO1 and KO3 strains are, for example, inoculated into MRS medium sterilized at 121 ° C. for 20 minutes, pre-cultured at 37 ° C. for 48 hours in the atmosphere, distilled water, ultrapure water or buffer solution After washing with, etc., the cells can be collected by centrifugation or the like to obtain bacterial cells.
  • various media such as a fruit juice medium, a vegetable juice medium, a milk medium, a skim milk medium, a medium containing milk components, or a semi-synthetic medium not containing milk components can be used.
  • a reduced skim milk medium obtained by reducing skim milk and heat sterilization a skim milk medium added with yeast extract, an MRS medium, or a GAM medium can be used.
  • the culture method is not particularly limited as long as the Lactobacillus rhamnosus grows well, such as static culture, neutralized culture with a constant pH, rotational culture, or continuous culture.
  • the detailed bacteriological properties of the Lactobacillus rhamnosus KO3 strain are almost the same as the detailed bacteriological properties of the novel lactic acid strain Lactobacillus rhamnosus KO1 strain described later in Embodiment 8.
  • Candida killed bacteria in the culturing step because Kog1 and Kog2 can be obtained in a larger amount (see Example 6).
  • Lactobacillus rhamnosus KO1 strain Lactobacillus rhamnosus KO1 strain (Application for Deposit on January 24, 2011 to the Patent Microorganism Depositary of the National Institute of Technology and Evaluation) was deposited from the human oral cavity by the inventor as the deposit number NITE P-1065. It is a newly isolated and identified lactic acid strain.
  • the Lactobacillus rhamnosus KO1 strain like the Lactobacillus rhamnosus KO3 strain, is classified into a Lactobacillus genus rhamnosus that produces Kog1 and Kog2, but a novel lactic acid bacterium with different expression levels and genome information of various proteins. Is a stock.
  • Lactobacillus rhamnosus KO1 strain shows 100% homology between the nucleotide sequence of 16S rRNA and the nucleotide sequence of Lactobacillus rhamnosus strainIDCC3201 and 1443/1443, and the appearance of Gram-positive bacilli under the microscope after Gram staining It was identified as a Lactobacillus rhamnosus species.
  • the bacteriological properties of the Lactobacillus rhamnosus KO1 strain are characterized by gram-positive lactobacilli, homo-type lactic acid fermentation, catalase negative, no spore-forming ability, culturable under aerobic conditions, and forming exopolysaccharides And
  • Candida, caries, and periodontal bacteria include Candida albicans GDH18 strain, Streptococcus sobrinus B-13 strain, Streptococcus mutans NCTC 10449 strain, Streptococcus mutans Ingbritt strain, Porphyromonas gingivalis strain Hudoi001, and Aggregate bacter actinomycetemcomitans Hudoe001 strain was used, and each test strain was provided by the National University of Japan Hiroshima University Dental School and Dental Hospital.
  • Candida albicans GDH18 strain was precultured under aerobic conditions at 37 ° C. for 24 hours using SD medium (Difco).
  • Streptococcus sobrinus B-13 strain, Streptococcus mutans NCTC 10449 strain and Streptococcus mutans Ingbritt strain were prepared using TSB medium (Difco) supplemented with 5% yeast extract (Difco) at 37 degrees for 24 hours.
  • Pre-culture was performed under atmospheric conditions.
  • Porphyromonas gingivalis strain Hudoi001 and Aggregatebacter actinomycetemcomitans Hudoe001 strain were prepared using BHI medium (Difco) supplemented with hemin (5 mg / L) and vitamin K3 (1 mg / L).
  • Pre-culture was performed under anaerobic conditions using the Anaero Pack TM System (Mitsubishi Gas Chemical Co., Ltd.) at 37 degrees for 96 hours.
  • Candida, caries, and periodontal bacteria are collected by centrifugation at 1000 ⁇ g, washed twice with 1 mM, pH 6.8 phosphate buffer, and finally concentrated.
  • the suspension of Streptococcus strains was also sonicated.
  • Example 1 relates to the synthesis of Kog1 and Kog2.
  • Kog1 having the amino acid sequence shown in SEQ ID NO: 1 and Kog2 having the amino acid sequence shown in SEQ ID NO: 2 are protected with 9-fluorenylmethyloxycarbonyl as a protecting group.
  • synthesized by the tea bag method (the method of Helmerhorst et al. (1999)) using p-benzoyloxybenzyl alcohol as a resin. After completion of the basic antibacterial peptide, cleavage from the resin and side-chain deprotection were performed using a mixture of 5% thioanisole, 5% phenol, 5% purified water and 85% trifluoroacetic acid.
  • hBD2 human ⁇ -defensin-2 (see Eur J., 2002, Oral Sci. (109), 121-124)) is well known as a basic antibacterial peptide, and has an isoelectric point of about 10 It is.
  • Example 2 This Example 2 relates to analysis of the antibacterial activity of Kog1 and Kog2 against Candida albicans GDH18 strain.
  • the antibacterial activity was evaluated by a method with some modifications to the method of Edgerton et al. (1998).
  • 1 mM phosphate containing 0 to 25 ⁇ M of Kog1 or Kog2 synthesized in the above-mentioned Example 1 was added to 20 ⁇ l of the suspension of Candida albicans GDH18 strain cultured and prepared by the method described in the above Preparation Example. Mix in 20 ml buffer and incubate for 90 minutes at 37 degrees with shaking. As a control, only 20 ml of 1 mM phosphate buffer was used. The reaction was stopped by adding 360 ml of YNB medium (Difco), and the number of surviving bacteria was determined by counting colony forming units (CFUs) together with those of the control. That is, the percentage was calculated using the formula (CFUs of suspension containing Kog1 or Kog2 / CFUml ⁇ 1 of suspension of control) ⁇ 100.
  • FIG. 1 is a view showing the antibacterial activity of Kog1 against Candida albicans GDH18 strain at 0.39 to 25 ⁇ M according to Example 2.
  • FIG. 2 is a diagram showing the antibacterial activity of Kog2 against Candida albicans GDH18 strain at 0.39 to 12 ⁇ M according to Example 2. As shown in FIGS. 1 and 2, both Cog1 and Kog2 killed 100% of Candida albicans GDH18 strain at a peptide concentration of 0.39 ⁇ M.
  • amphotericin B which is an antifungal agent
  • lactoferricin B which is an antimicrobial peptide derived from milk
  • histatin 5 which is an antimicrobial peptide derived from human saliva (sequence)
  • JH8194 having the amino acid sequence described in SEQ ID NO: 7
  • JH8194 having the amino acid sequence described in SEQ ID NO: 7
  • the antibacterial peptides Kog1 and Kog2 can kill Candida at a lower concentration than any of these antifungal agents and antibacterial peptides, that is, in a small amount.
  • Example 3 relates to the analysis of the antibacterial activity of Kog1 and Kog2 against Streptococcus sobrinus B-13 strain. Specifically, examples are shown in which antibacterial activity is compared with hBD2 and lysozyme protein (Lysozyme).
  • Streptococcus sobrinus B-13 strain was cultured and prepared by the method described in the preparation examples.
  • the antibacterial activity was evaluated using the same method as in Example 2 described above. In addition, it evaluated about the case where the density
  • FIG. 3 is a graph showing the antibacterial activity of Kog1, Kog2 and other antibacterial peptides according to Example 3 against Streptococcus sobrinus B-13 strain.
  • the peptide concentration (concentration of peptide) on the horizontal axis in FIG. 3 is indicated on the logarithmic axis.
  • hBD2 killed 100% of Streptococcus sobrinus B-13 at a concentration of 3.125 ⁇ M. Lysozyme protein could not completely kill Streptococcus sobrinus B-13.
  • Kog1 had a concentration of 1.56 ⁇ M and Kog2 had a concentration of 0.39 ⁇ M, and 100% of Streptococcus sobrinus B-13 was killed. Therefore, it was proved that even when the test strain was Streptococcus sobrinus B-13, it could be killed at a low concentration.
  • Example 4 relates to the analysis of the antibacterial activity of Kog1 and Kog2 related to Streptococcus mutans. Specifically, as in Example 3 described above, an example in which hBD2 and lysozyme protein are compared with antibacterial activity is shown.
  • Streptococcus mutans NCTC10449 strain and Streptococcus mutans Ingbritt strain were cultured and prepared by the method of the preparation example described above.
  • the antibacterial activity was evaluated and compared using the same method as in Example 3 described above.
  • about all the mutans bacteria it evaluated and compared in the case where the density
  • FIG. 4 is a diagram showing the antibacterial activity of Kog1, Kog2 and other antibacterial peptides according to Example 4 against Streptococcus mutans NCTC10449 strain.
  • FIG. 5 shows the antibacterial activity of Kog1, Kog2 and other antibacterial peptides according to Example 4 against Streptococcus mutans Ingbritt strain.
  • the peptide concentration (Concentration of peptide) on the horizontal axis in FIGS. 4 and 5 is indicated on the logarithmic axis.
  • FIG. 4 and FIG. 5 again, regarding mutans, it is estimated that Kog1 and Kog2 can kill a large amount of mutans at a relatively low concentration compared to other antimicrobial peptides. .
  • Example 5 Furthermore, the present inventor also analyzed the antibacterial activity against other periodontal disease bacteria.
  • Example 5 relates to analysis of antibacterial activity of bacteriocins Kog1 and Kog2 related to periodontal disease bacteria Aggregate bacter actinomycetemcomitans Hudoe001 strain. Specifically, examples are shown in which antibacterial activity is compared with hBD2 and histatin 5 as described above, and lactoferricin B and lactoferricin H (human-derived lactoferricin).
  • Aggregate bacter actinomycetemcomitans Hudoe001 strain was cultured and prepared by the method of the preparation example described above.
  • the antibacterial activity was evaluated and compared using the same method as in Example 3 described above.
  • FIG. 6 is a diagram showing the antibacterial activity of Kog1, Kog2 and other antibacterial peptides according to Example 5 against Aggregate bacter actinomycetemcomitans Hudoe001 strain.
  • the peptide concentration (concentration of peptide) on the horizontal axis in FIG. 6 is indicated on the logarithmic axis.
  • 100% of the periodontal fungus Aggregatibacter actinomycetemcomitans Hudoe001 was killed at Kog1 of 3.13 ⁇ M and Kog2 of 1.56 ⁇ M. This is equivalent to or better than lactoferricin B or hBD2.
  • Example 6 relates to the cultivation of Lactobacillus rhamnosus KO1 strain while adding Candida killed bacteria. Specifically, Lactobacillus rhamnosus KO1 strain was cultured in the absence and presence of killed Candida albicans GDH18 strain, and the expression levels of Kog1 and Kog2 were measured by a DNA microarray system.
  • FIG. 7 is a diagram showing the expression level of Kog1 on a DNA microarray in Lactobacillus rhamnosus KO1 strain to which Candida killed bacteria according to Example 6 was added.
  • FIG. 8 is a diagram showing the expression level of Kog2 on a DNA microarray in Lactobacillus rhamnosus KO1 strain to which Candida killed bacteria according to Example 6 was added. 7 and FIG. 8, depending on the amount of Candida (CaGDH18) killed in the presence of Candida (CaGDH18), compared to the culture of only the leftmost KO1 strain (from the left 2, 4 and 6 ⁇ g), the expression levels of both Kog1 and Kog2 were increased.
  • bacteriophage having excellent antibacterial activity can also be obtained by culturing bacteria such as lactic acid bacteria or Escherichia coli transformed with a recombinant expression vector obtained by incorporating a gene encoding the bacteriocin Kog1 or Kog2. It will be appreciated by those skilled in the art that thin Kog1 or Kog2 can be produced easily and in large quantities.
  • Example 7 In this Example 7, the breadth of the antibacterial spectrum of bacteriocins Kog1 and Kog2 proved in Examples 1 to 6 and the difficulty of generating resistant bacteria due to the basic isoelectric point were examined. The present inventor predicted that bacteriones Kog1 and Kog2 may inactivate LPS possessed by gram-negative bacteria such as periodontal disease bacteria, and analyzed the relationship between LPS and bacteriocin Kog1 and Kog2. did.
  • RPMI 1640 medium supplemented with 10% FBS (Fetal Bovine Serum) (Biological industries, Haemek, Israel), 1% antibiotics, and 1% L-glutamine was used.
  • FBS Fetal Bovine Serum
  • the bacteriocin Kog1 or Kog2 is the same as that used in Example 1, and in an Eppendorf tube, Porphyromonas gingivalis LPS (InvivoGen) (hereinafter, P.g-LPS) is used under the following four conditions. Incubation was performed at 37 ° C. in a 5% CO 2 gas phase with the same medium as described above for 2 hours.
  • P.g-LPS Porphyromonas gingivalis LPS
  • FIG. 9 is a diagram showing the amount of ccl2 secreted according to the relationship between the LPS and the amount of Kog1 according to Example 7. That is, the amount of secreted chemokine ccl2 when LPS and Kog1 were incubated for 2 hours (100% when Kog1 is 0 ⁇ M is shown) (LPS + kog1 ⁇ cell ccl2).
  • * (significance level) p ⁇ 0.05
  • ** (significance level) p ⁇ 0.01
  • n 3.
  • the amount of secreted chemokine ccl2 decreased as the amount of Kog1 added increased. That is, it was found that bacteriocin Kog1 has an LPS inactivating action.
  • FIG. 10 is a graph showing the amount of TNF- ⁇ secreted according to the relationship between the LPS and the amount of Kog1 according to Example 7. That is, it shows the amount of secreted cytokine TNF- ⁇ when LPS and Kog1 are incubated for 2 hours (100% when Kog1 is 0 ⁇ M) (LPS + kog1 ⁇ cell TNF- ⁇ ). ).
  • the amount of secreted cytokine TNF- ⁇ decreased as the amount of Kog1 added increased. That is, it was found that bacteriocin Kog1 has an LPS inactivating effect, similar to the results shown in FIG.
  • FIG. 11 is a diagram showing the amount of ccl2 secreted according to the relationship between the LPS and the amount of Kog2 according to Example 7. That is, it shows the amount of secreted chemokine ccl2 when LPS and Kog2 are used for incubation for 2 hours (the case where Kog2 is 0 ⁇ M is 100%) (LPS + kog2 ⁇ cell ⁇ ccl2).
  • * (significance level) p ⁇ 0.05
  • ** (significance level) p ⁇ 0.01
  • n 3.
  • FIG. 12 is a graph showing the amount of TNF- ⁇ secreted according to the relationship between LPS and Kog2 amount according to Example 7. That is, it shows the amount of secreted cytokine TNF- ⁇ when LPS and Kog2 are used for incubation for 2 hours (100% when Kog2 is 0 ⁇ M) (LPS + kog2 ⁇ cell TNF- ⁇ ). ).
  • the added amount of Kog2 is small (5 ⁇ M)
  • the added amount of secreted cytokine TNF- ⁇ increases, but when the added amount exceeds a certain amount, the added amount increases. This suggests that the amount of TNF- ⁇ decreases. That is, it was found that the addition of a large amount has an LPS inactivation effect, similar to the results shown in FIG.
  • FIG. 13 is a diagram showing the relationship with various diseases caused by LPS. As shown in FIG. 13, LPS, which is an endotoxin, is involved in many diseases or therapeutic mechanisms via various substances.
  • Example 8 Therefore, the present inventor examined whether Kog2 affects osteoblast differentiation in addition to oral diseases by real-time quantitative RT (Reverse transcriptase) -PCR.
  • mouse-derived osteoblast-like cells As the cells, mouse-derived osteoblast-like cells, MC3T3-E1 cells, were used.
  • the MC3T3-E1 cells were treated with 10% FBS (Biological industries, Haemek, Israel), L-glutamine, antibiotic mixture (Invitrogen), 50 ⁇ g / ml ascorbic acid (Sigma), and Kog2 at 0 nM, 250 nM, 500 nM or 1000 nM.
  • FBS Biological industries, Haemek, Israel
  • L-glutamine antibiotic mixture
  • 50 ⁇ g / ml ascorbic acid Sigma
  • Kog2 at 0 nM, 250 nM, 500 nM or 1000 nM.
  • ⁇ -MEM ⁇ -modified Eagle's medium
  • Type-I collagen used the forward primer shown in SEQ ID NO: 8, the reverse primer shown in SEQ ID NO: 9, and the probe shown in SEQ ID NO: 10.
  • the forward primer shown in SEQ ID NO: 11 the reverse primer shown in SEQ ID NO: 12, and the probe shown in SEQ ID NO: 13 were used.
  • FIG. 14 is a diagram showing the value of Type-I collagen / ⁇ -actin of real-time quantitative RT-PCR according to Example 8.
  • the value of Type I collagen / ⁇ -actin increased almost three times when Kog2 was added at 250 nM compared to when Kog2 was not added at all (ctrl (0 ⁇ M)). It was.
  • Example 9 Furthermore, the present inventor investigated whether or not bacteriocins Kog1 and Kog2 have the same antibacterial activity even when heated by boiling experiments.
  • Example 9 antibacterial activity was examined for Candida albicans MYA274 strain.
  • Candida albicans MYA274 strain was pre-cultured at 37 ° C. for 24 hours using Sabouraud Dextrose Broth (Difco), washed twice with MQ water, and 0.3 (1.0 OD 600). ⁇ 10 7 cells / ml).
  • Example 9 bacteriocin Kog1 or Kog2, or Lactobacillus rhamnosus KO1 strain or KO3 strain was not used directly, but a lactic acid bacteria medium containing Lactobacillus rhamnosus KO3 strain, 8020 yogurt (drink type ) was used to conduct the experiment. Specifically, the 8020 yogurt (drink type) is cultured at 35 degrees for 2 days by adding 1% Lactobacillus rhamnosus KO3 strain and 1% YF-L811 starter to 15% skim milk + 3% glucose medium. It is a thing.
  • raw materials include fructose, glucose liquid sugar, dairy products, sugar, stabilizer (pectin), sour and flavor, Brix 17.4%, lactate acidity 0.57%, pH 3.96, the non-fat milk solid content is adjusted to 3.0%.
  • the three types of samples are 1) 1 ml of Sabouraud Broth, 1 ml of supernatant B and 50 ⁇ l of the above-mentioned Candida albicans MYA274 strain preparation, and 2) 1 ml of Sabouraud Broth, 1 ml of supernatant Boil And 50 ml of the above-mentioned Candida albicans MYA274 strain preparation solution, 3) 1 ml of Sabouraud broth as a control, 1 ml of 15% skim milk + 3% glucose medium and 50 ⁇ l of the above-mentioned Candida albicans MYA274 preparation solution Is included.
  • FIG. 15 is a diagram showing the results of heat resistance data by the boiling experiment according to Example 9.
  • the heat resistance data is obtained by preparing four samples for each sample and calculating an average value ⁇ SD.
  • the amount of ATP similar to that of the supernatant B is measured even in the supernatant Boil boiled at 100 degrees for 20 minutes, the boiled supernatant Boil has the same high antibacterial property as the supernatant B. It was confirmed. That is, it was confirmed that bacteriocin Kog1 and Kog2 have the same antibacterial activity even when heated.
  • SEQ ID NO: 1 Kog1 having the amino acid sequence described in 2 and Kog2 having the amino acid sequence described in SEQ ID NO: 2 function as a bacteriocin having a wide antibacterial spectrum, high antibacterial activity at low concentrations, and low possibility of causing resistant bacteria. I found out.
  • a bacteriocin that can be easily produced in large quantities, has a wide antibacterial spectrum, and is less likely to cause resistant bacteria
  • the bacteriocin pharmaceutically acceptable derivative
  • a composition for the prevention, amelioration and / or treatment of oral diseases, which comprises an active ingredient), a gene encoding the bacteriocin, a recombinant expression vector obtained by incorporating the gene, and the recombinant expression vector A host cell, a transformant transformed with the recombinant expression vector, and a method for producing the bacteriocin can be provided.
  • the novel lactic acid bacterium Lactobacillus rhamnosus KO1 strain which produces this bacteriocin can also be provided.
  • the bacteriocin according to the present invention has high heat resistance, industrial processing becomes easy.
  • gummy jelly, troches, tablets, candy, chewing gum, etc. are accompanied by heat during the molding process, and therefore, when using the bacteriocin according to the present invention having heat resistance, it becomes possible to process without reducing the antibacterial effect. .
  • the bacteriocin effect is not lost, so that it is expected to lead to various uses.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Cosmetics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

 容易にかつ大量に産生することが可能であり、低濃度でも抗菌力が高く、その上抗菌スペクトルが広く、さらには耐性菌の生じる可能性が低いバクテリオシンを提供する。当該バクテリオシンは、配列表の配列番号1もしくは配列番号2に示すアミノ酸配列、または、配列表の配列番号1もしくは配列番号2に示すアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換、挿入および/もしくは付加され抗菌活性をもたらすアミノ酸配列を有し、かつ等電点が12以上であることを特徴とする。

Description

ラクトバチルス・ラムノーサス由来のバクテリオシン
 本発明は、口腔内の病気の原因菌に対して抗菌力を発揮するバクテリオシン、該バクテリオシンを有効成分とする口腔内疾患の予防、改善および/または治療用組成物、該バクテリオシンをコードする遺伝子、該遺伝子を組み込んで得られる組み換え発現ベクター、該組み換え発現ベクターを保有する宿主細胞、該組み換え発現ベクターにより形質転換された形質転換体、該バクテリオシンの生産方法、ならびに、該バクテリオシンを産生する新規乳酸菌株のラクトバチルス・ラムノーサスKO1株に関する。
 現在、う蝕症および歯周疾患等の口腔内疾患と全身の健康との関連性が重視されている。そこで、う蝕症および歯周疾患等の口腔内疾患の治療方法として、これらの原因菌に対して抗菌力を発揮するペプチドが多く開発されている。例えば、非特許文献1には、ラクトバチルス・ラムノーサスstrain68株によって産生される、低分子量バクテリオシンのラムノシンA(rhamnosin A)について記載されている。
 また、う蝕菌および歯周病菌等の口腔内疾患の原因菌に対して抗菌力を発揮する、新規な乳酸菌の分離同定についても近年よく行われている。例えば、本発明者は以前、口腔内疾患の原因菌に対して抗菌スペクトルが広く、風味が良く、かつ嗜好性に優れた発酵物を製造可能である、新規乳酸菌株ラクトバチルス・ラムノーサスKO3株(L8020菌)、ラクトバチルス・カゼイ(Lactobacillus casei)YU3株およびラクトバチルス・パラカゼイ(Lactobacillus paracasei)YU4株を提案した(特許文献1参照)。さらに、口腔内疾患の治療方法のうち、抗菌ペプチドおよび乳酸菌分離株以外の技術では、抗生物質による治療方法も提案されている。
国際公開第2011/007584号
R. Dimitrijevic, M. Stojanovic, I. Petersen, R. M. Jankov, L. Dimitrijevic, M. Gavrovic-Jankulovic、2009、Journal of Applied Microbiology(107)、2108-2115
 しかし、前述したような種々の抗菌ペプチドの大部分は、ヒト等の哺乳類由来のペプチドであったり、人工的に合成されたペプチドである為、容易にかつ大量にこれらのペプチドを産生することができない。その上、低濃度では抗菌力が弱い為、これらを使用する際には高濃度、すなわち大量の抗菌ペプチドが必要となる。
 また、抗生物質による治療方法においても、抗生物質の濫用による多剤耐性菌の出現により、その治療効果を得ることができなくなる場合がある。その為、容易にかつ大量に産生でき、低濃度でも抗菌力が高く、さらに耐性菌の生じる可能性が低い、新規なバクテリオシンが求められている。
 本発明は上記事情に鑑みてなされたものであり、容易にかつ大量に産生することが可能であり、低濃度でも抗菌力が高く、その上抗菌スペクトルが広く、さらには耐性菌の生じる可能性が低いバクテリオシンの提供を目的とする。また、該バクテリオシン(薬学的に許容される誘導体等を含む)を有効成分とする口腔内疾患の予防、改善および/または治療用組成物、該バクテリオシンをコードする遺伝子、該遺伝子を組み込んで得られる組み換え発現ベクター、該組み換え発現ベクターを保有する宿主細胞、該組み換え発現ベクターにより形質転換された形質転換体、該バクテリオシンの生産方法、ならびに、該バクテリオシンを産生する新規乳酸菌株のラクトバチルス・ラムノーサスKO1株の提供も目的とする。
 本発明者が鋭意研究を行った結果、特許文献1において提案されているラクトバチルス・ラムノーサスKO3株(L8020菌)(独立行政法人製品評価技術基盤機構特許微生物寄託センター(〒292-0818 日本国千葉県木更津市かずさ鎌足2-5-8)に2009年6月10日に寄託申請し、その後ブダペスト条約に基づく寄託への移管請求を行い受託番号NITE BP-771として受託)において産生される、配列番号1に記載のアミノ酸配列を有するペプチド(hypothetical protein HMPREF0539_2969、アクセッション番号ZP_04442437.1、以下Kog1)および配列番号2に記載のアミノ酸配列を有するペプチド(hypothetical protein HMPREF0539_1169、アクセッション番号ZP_04440638.1、以下Kog2)が、抗菌スペクトルが広く、低濃度において抗菌力が高く、その上耐性菌の生じる可能性が低い等電点が12以上のバクテリオシンとして機能することを発見した。
 また、本発明者が鋭意研究を行った結果、同様にKog1およびKog2を産生する新規乳酸菌株である、ラクトバチルス・ラムノーサスKO1株(独立行政法人製品評価技術基盤機構特許微生物寄託センターに2011年1月24日に寄託申請し受託番号NITE P-1065として受託)の分離同定にも成功した。すなわち、ラクトバチルス・ラムノーサスKO3株およびラクトバチルス・ラムノーサスKO1株を用いることにより、抗菌スペクトルが広く、低濃度において抗菌力が高く、その上耐性菌の生じる可能性が低いバクテリオシンKog1およびKog2を、容易にかつ大量に産生することが可能であることを見出した。
 さらに、本発明者が鋭意研究を行った結果、バクテリオシンKog1およびKog2の、抗菌スペクトルが広く、低濃度において抗菌力が高く、耐性菌の生じる可能性が低い理由について解明した。後の実施例7において詳細に述べるが、これは、バクテリオシンKog1およびKog2が、歯周病菌等のグラム陰性菌が持つ内毒素(LPS、Lipopolysaccharide)の不活性化作用を有するためであった。
 そこで、本発明の第1の態様に係るバクテリオシンは、配列表の配列番号1もしくは配列番号2に示すアミノ酸配列、または、配列表の配列番号1もしくは配列番号2に示すアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換、挿入および/もしくは付加され抗菌活性をもたらすアミノ酸配列を有し、かつ等電点が12以上であることを特徴とする。
 好ましくは、前記バクテリオシンは、う蝕菌、歯周病菌およびカンジダ菌の全てに対して抗菌性を有することを特徴とする。
 本発明の第2の態様に係る口腔内疾患の予防、改善および/または治療用組成物は、第1の態様に係るバクテリオシン、または、前記バクテリオシンにおいて薬学的に許容される誘導体もしくは薬学的に許容される塩類を有効成分とすることを特徴とする。
 好ましくは、前記口腔内疾患の予防、改善および/または治療用組成物は、う蝕菌、歯周病菌および/またはカンジダ菌の増殖抑制剤であることを特徴とする。
 本発明の第3の態様に係る遺伝子は、第1の態様に係るバクテリオシンをコードすることを特徴とする。
 本発明の第4の態様に係る組み換え発現ベクターは、第3の態様に係る遺伝子を組み込んで得られることを特徴とする。
 本発明の第5の態様に係る宿主細胞は、第4の態様に係る組み換え発現ベクターを保有することを特徴とする。
 本発明の第6の態様に係る形質転換体は、第4の態様に係る組み換え発現ベクターにより形質転換されたことを特徴とする。
 好ましくは、前記形質転換体は、細菌であることを特徴とする。
 本発明の第7の態様に係るバクテリオシンの生産方法は、
 ラクトバチルス・ラムノーサス(Lactobacillus rhamnosus)を培養する培養工程と、
 前記培養工程によって得られた菌体培養物から、第1の態様に係るバクテリオシンを抽出する抽出工程と、
 を含むことを特徴とする。
 好ましくは、前記ラクトバチルス・ラムノーサス(Lactobacillus rhamnosus)は、ラクトバチルス・ラムノーサス(Lactobacillus rhamnosus)KO1株(独立行政法人製品評価技術基盤機構特許微生物寄託センターに2011年1月24日に寄託申請し受託番号NITE P-1065として受託)、および/または、ラクトバチルス・ラムノーサス(Lactobacillus rhamnosus)KO3株(独立行政法人製品評価技術基盤機構特許微生物寄託センターに2009年6月10日に寄託申請し受託番号NITE BP-771として受託)であることを特徴とする。
 さらに好ましくは、前記培養工程において、カンジダ菌の死菌を添加することを特徴とする。
 本発明の第8の態様に係るラクトバチルス・ラムノーサス(Lactobacillus rhamnosus)KO1株は、独立行政法人製品評価技術基盤機構特許微生物寄託センターに2011年1月24日に寄託申請し受託番号NITE P-1065として受託されたことを特徴とする。
 本発明によれば、容易にかつ大量に産生することが可能であり、抗菌スペクトルが広く、その上耐性菌の生じる可能性が低いバクテリオシン、該バクテリオシン(薬学的に許容される誘導体等を含む)を有効成分とする口腔内疾患の予防、改善および/または治療用組成物、該バクテリオシンをコードする遺伝子、該遺伝子を組み込んで得られる組み換え発現ベクター、該組み換え発現ベクターを保有する宿主細胞、該組み換え発現ベクターにより形質転換された形質転換体、該バクテリオシンの生産方法、ならびに、該バクテリオシンを産生する新規乳酸菌株ラクトバチルス・ラムノーサスKO1株を提供することができる。更に、本発明に係るバクテリオシンは耐熱性が高く、例えば煮沸条件下でも抗菌性能は維持されるものである。
実施例2に係る0.39から25μMにおけるKog1のカンジダ・アルビカンスGDH18株に対する抗菌力を示す図である。 実施例2に係る0.39から12μMにおけるKog2のカンジダ・アルビカンスGDH18株に対する抗菌力を示す図である。 実施例3に係るKog1、Kog2および他の抗菌ペプチドのストレプトコッカス・ソブリナスB-13株に対する抗菌力を示す図である。 実施例4に係るKog1、Kog2および他の抗菌ペプチドのストレプトコッカス・ミュータンスNCTC10449株に対する抗菌力を示す図である。 実施例4に係るKog1、Kog2および他の抗菌ペプチドのストレプトコッカス・ミュータンスIngbritt株に対する抗菌力を示す図である。 実施例5に係るKog1、Kog2および他の抗菌ペプチドのアグリゲイティバクター・アクチノミセテムコミタンスHudoe001株に対する抗菌力を示す図である。 実施例6に係るカンジダの死菌を添加したラクトバチルス・ラムノーサスKO1株における、DNAマイクロアレイでのKog1の発現量を示す図である。 実施例6に係るカンジダの死菌を添加したラクトバチルス・ラムノーサスKO1株における、DNAマイクロアレイでのKog2の発現量を示す図である。 実施例7に係るLPSとKog1の量との関係によるccl2の分泌量を示す図である。 実施例7に係るLPSとKog1の量との関係によるTNF-αの分泌量を示す図である。 実施例8に係るLPSとKog2の量との関係によるccl2の分泌量を示す図である。 実施例8に係るLPSとKog2の量との関係によるTNF-αの分泌量を示す図である。 LPSが原因となる種々の疾患等との関係を示す図である。 実施例8に係るreal-time quantitative RT-PCRのType I collagen/β-アクチンの値を示す図である。 実施例9に係る煮沸実験による耐熱データの結果を示す図である。
 以下、本発明の実施の形態について詳細に説明する。なお、本明細書において「有する」、「含む」または「含有する」といった表現は、「からなる」または「から構成される」という意も含むものとする。
 (バクテリオシン)
 本発明の実施の形態1に係るバクテリオシンは、特定のアミノ酸配列を有し、特定の効果をもたらし、特定の特徴を有する塩基性抗菌ペプチドに関する。より具体的には、本明細書における「バクテリオシン」とは、配列番号1に記載のアミノ酸配列を有する塩基性抗菌ペプチド(Kog1)、または、配列番号2に記載のアミノ酸配列を有する塩基性抗菌ペプチド(Kog2)を挙げることができる。さらに、配列番号1および配列番号2に記載のアミノ酸配列を有する塩基性抗菌ペプチドにおいて、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されており、抗菌活性をもたらし、かつ等電点が12以上である塩基性抗菌ペプチドも含まれる。「数個」とは、2ないし8個、好ましくは2ないし6個、より好ましくは2ないし5個、さらに好ましくは2ないし4個である。
 このようなKog1またはKog2のアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されているアミノ酸配列を有し、かつ抗菌活性をもたらすバクテリオシンの場合、好ましくは、Kog1またはKog2と同等の抗菌力および近似した塩基性(等電点)を有する。さらに好ましくは、う蝕菌、歯周病菌およびカンジダ菌の全てに対して抗菌性を有する。
 本実施の形態1に係るバクテリオシンは、後の実施の形態4において詳細に述べるラクトバチルス・ラムノーサスKO1株またはKO3株等を用いる方法により産生しても構わない。しかし、ペプチド合成法または遺伝子工学的方法等の当該技術分野における人工的な常法によって産生してもよい。遺伝子工学的方法については、後の実施の形態3において詳細に述べる。
 ペプチド合成法の場合、液相法または固相法を挙げることができる。液相法は、反応を溶液状態で行い、反応混合物から生成物を単離精製し、この生成物を中間体として次のペプチド伸長反応に用いる方法である。一方、固相法は、反応溶媒に対して不溶の固相担体にアミノ酸を結合させ、このアミノ酸に順次縮合反応を行い、ペプチド鎖を伸長させていく方法である。
 具体的に、ペプチド合成は、まず、カルボキシル基を保護したアミノ酸にアミノ基を保護したアミノ酸を脱水縮合させ、ペプチド結合を形成させる。次に、アミノ保護基を除去後、遊離したアミノ基に次のアミノ基保護アミノ酸をC末端からN末端に向かって一つずつ順次延長させていく。脱水縮合反応では、カルボキシル基を活性化し、結合させようとするアミノ基と反応させる。活性化にはジシクロへキシカルボジイミド(DCC)法、活性エステル法、酸無水物法またはアジド法等が挙げられるが、その反応性の高さ、ラセミ化およびその他の副反応を考慮し、適宜選択すればよい。縮合反応時の副反応を防止する為、アミノ酸のアミノ基、カルボキシル基および/または側鎖の官能基には保護基が導入される。これらの保護基は、縮合反応での条件において安定であり、必要な時には速やかに除去可能であるものが好ましい。また、アミノ基の保護基とカルボキシル基の保護基とは、互いに選択的に除去可能であることが好ましい。
 アミノ基の保護基としては、例えば、ベンジルオキシカルボニル(Bz)、t-ブチルオキシカルボニル(Boc)、p-ビフェニルイソプロピロオキシカルボニルまたは9-フルオレニルメチルオキシカルボニル(Fmoc)等を挙げることができる。カルボキシ基の保護基としては、例えば、アルキルエステルまたはベンジルエステル等を形成し得る基を挙げることができる。
 ただし、固相法の場合、C末端のカルボキシル基はクロロトリチル樹脂、クロルメチル樹脂、オキシメチル樹脂またはp-アルコキシベンジルアルコール樹脂等の担体に結合している為、縮合反応はカルボジイミド等の縮合剤の存在下、またはN保護アミノ酸活性エステルもしくはペプチド活性エステルを用いて実施すると好ましい。縮合反応終了後、保護基は除去される。固相法の場合、ペプチドのC末端と樹脂との結合も切断される。その後、化学合成されたペプチドは、例えば、イオン交換クロマトグラフィー、高速液体クロマトグラフィー(HPLC)、逆相クロマトグラフィー、アフィニティークロマトグラフィー、エドマン分解法またはガスクロマトグラフィー質量分析(GC-MS)等により精製、解析をすることができる。
 このようなペプチド合成法等、または後述の遺伝子工学的方法およびラクトバチルス・ラムノーサスKO1株またはKO3株を用いる方法によって産生した本実施の形態1に係るバクテリオシンは、薬学的に許容される該バクテリオシンの誘導体等も含め、次に述べる実施の形態2に係る口腔内疾患の予防、改善および/または治療用組成物の有効成分として利用することが可能となる。
 (口腔内疾患の予防、改善および/または治療用組成物)
 本発明の実施の形態2は、前述の実施の形態1に係るバクテリオシンおよびその薬学的に許容される誘導体等を有効成分とする、口腔内疾患の予防、改善および/または治療用組成物に関する。本実施の形態2に係る口腔内疾患の予防、改善および/または治療用組成物は、前述の実施の形態1に係るバクテリオシンおよびその薬学的に許容される誘導体等を有効成分としている為、同様の特性を有する。
 ここで、実施の形態1において述べたバクテリオシンKog1およびKog2のアミノ酸配列およびその特徴について簡単に説明すると、塩基性アミノ酸および疎水性アミノ酸の割合が多いという特徴を有する。この特徴は、哺乳類由来の抗菌ペプチドと近似している為、耐性菌が生じる可能性が低い。また、等電点が12以上であり、高い塩基性の抗菌ペプチドとなることから、細胞毒性が小さくなる。さらに、後述の実施例に示すように、優れた抗菌力を有する。これらのKog1またはKog2における効果についての詳細は、後述の実施例を参照されたい。
 なお、本明細書において、「口腔内疾患」とは、例えば、う蝕菌、歯周病菌および/またはカンジダ菌等によって引き起こされる、口腔内における疾患を意味する。具体的には、例えば、う蝕症(虫歯)、歯肉炎、歯周炎、舌炎、鵞口瘡または口角炎等を挙げることができる。
 う蝕菌としては、例えば、ストレプトコッカス・ミュータンス(Streptococcus mutans)またはストレプトコッカス・ソブリナス(Streptococcus sobrinus)等を挙げることができる。歯周病菌としては、例えば、アグリゲイティバクター・アクチノミセテムコミタンスHudoe001(Aggregatibacter actinomycetemcomitans Hudoe001)、ポルフィロモナス・ジンジバリス(Porphyromonas gingivalis)、プレボテラ・インターメディア(Prevotella intermedia)、トレポネーマ・デンティコーラ(Treponema denticola)、タンネレラ・フォーサイセンシス(Tannerella forsythensis)、アクチノバチルス・アクチノミセテムコミタンス(Actinobacillus actinomycetemcomitans)またはフソバクテリウム・ヌクレアタム(Fusobacterium nucleatum)等を挙げることができる。カンジダ菌としては、例えば、カンジダ・アルビカンス(Candida albicans)、カンジダ・グラブレータ(Candida glabrata)またはカンジダ・トロピカリス(Candida tropicalis)等を挙げることができる。
 本明細書において、「口腔内疾患の予防、改善および/または治療用組成物」とは、好ましくは、前述の、う蝕菌、歯周病菌および/またはカンジダ菌の増殖抑制剤となる組成物を意味する。具体的には、う蝕菌、歯周病菌および/またはカンジダ菌の増殖を抑制することができる、食品、医薬品または口腔用組成物等を挙げることができる。
 さらに詳細には、食品の場合、例えば、虫歯、歯周病または口腔内感染症等の予防・改善をコンセプトとした、健康食品、サプリメント、特定保健用食品、乳飲料、ヨーグルトまたはチーズ等を挙げることができる。医薬品の場合、例えば、液剤、錠剤、顆粒剤、細粒剤、粉剤、タブレット、カプセル剤、口腔用スプレーまたはトローチ等を挙げることができ、経口投与の投与形態が好ましい。口腔用組成物の場合、例えば、洗口剤、マウスウォッシュ、練歯磨、粉歯磨、水歯磨、口腔用軟膏剤、ゲル剤、錠剤、顆粒剤、細粒剤、グミゼリー、トローチ、タブレット、カプセル、キャンディーまたはチューインガム等を挙げることができる。
 なお、本実施の形態2に係る口腔内疾患の予防、改善および/または治療用組成物において、種々の食品、医薬品または口腔用組成物等を調整する為、薬学的に許容される他の組成物を適宜組み合わせてもよい。さらには、当該バクテリオシンおよび当該組成物を誘導体または塩の形態として使用しても構わない。
 誘導体としては、バクテリオシンの一部置換体または付加化合物等のペプチド誘導体を挙げることができる。さらに具体的には、例えば、カルボキシル基をアミド化またはアシル化した誘導体を例示することができる。塩の形態としては、塩酸塩、硝酸塩もしくは臭化水素酸塩等の無機酸塩、または、p-トルエンスルホン酸塩、メタスルホン酸塩、フマル酸塩、コハク酸塩もしくは乳酸塩等の有機酸塩等を挙げることができる。
 また、これらの食品、医薬品または口腔用組成物等において、前述の実施の形態1に係るバクテリオシンの有効成分としての含有量および一日における投与量は、当該組成物等の種類によって適宜調節することが可能である。
 (遺伝子)
 本発明の実施の形態3は、前述の実施の形態1に係るバクテリオシンをコードする遺伝子に関する。具体的には、例えば、配列番号3(Kog1)または配列番号4(Kog2)に記載の塩基配列(および/またはその相補鎖)を有する遺伝子、ポリヌクレオチドを挙げることができる。
 このような配列番号3(Kog1)または配列番号4(Kog2)に記載の塩基配列を有する遺伝子は、当該技術分野の当業者であれば常法を用い、ラクトバチルス・ラムノーサスKO1株またはKO3株からDNAの分離精製、抽出を行うことが可能である。また、例えば、DNA合成キット等を使用し人工的にDNA合成を行っても構わない。
 (組み換え発現ベクター)
 分離精製またはキット等を用いDNA合成した遺伝子配列は、前述の実施の形態1に係るバクテリオシンを遺伝子工学的方法において産生する際に用いる、組み換え発現ベクターに利用することができる。本実施の形態4は、前述の実施の形態3の遺伝子を組み込んで得られる、組み換え発現ベクターに関する。当該組み換え方法は、当業者が利用する任意の方法で構わない。組み換え発現ベクターの構築方法としては、例えば、まず、配列番号3(Kog1)または配列番号4(Kog2)の塩基配列を有する遺伝子の合成を行う。次に、合成した遺伝子と当該遺伝子を宿主細胞内で発現させる為の種々の調節エレメント(プロモーター、リボゾーム結合部位、ターミネーター、エンハンサーおよび/または発現レベルを制御する種々のシスエレメント等)とからなる、発現用遺伝子構築物を有する組み換え発現ベクターを宿主細胞に応じて構築する。
 (宿主細胞、形質転換体)
 このようにして構築した組み換え発現ベクターは、所定の宿主細胞に発現可能に導入される。当該導入方法は、当業者が利用する任意の方法で構わない。本実施の形態5は、該組み換え発現ベクターを保有する、宿主細胞に関する。好ましくは、宿主細胞は、細菌である。例えば、乳酸菌、大腸菌または酵母等を挙げることができる。さらに、実施の形態6は、該組み換え発現ベクターにより形質転換された形質転換体に関する。すなわち、例えば、前述の実施の形態5の組み換え発現ベクターを保有する宿主細胞において形質転換が起こった形質転換細胞が挙げられる。好ましくは、形質転換体は、細菌である。前述と同様に、例えば、乳酸菌、大腸菌または酵母等を挙げることができる。これらの細菌を所定の条件で培養する。これにより、前述の実施の形態1に係るバクテリオシンの宿主細胞(細菌)内での発現および産生が可能となり、容易にかつ大量に抽出、精製することができる。詳細な生産方法については、後述の実施の形態7での乳酸菌ラクトバチルス・ラムノーサスを培養する場合とほぼ同様であるため、参照されたい。
 (バクテリオシンの生産方法)
 本発明の実施の形態7は、ラクトバチルス・ラムノーサスを用いる、前述の実施の形態1に係るバクテリオシンの生産方法に関する。
 具体的には、ラクトバチルス・ラムノーサスを培養する工程と、培養工程によって得られた菌体培養物から、前述の実施の形態1に係るバクテリオシンを抽出する工程と、を含む。好ましくは、当該ラクトバチルス・ラムノーサスは、ラクトバチルス・ラムノーサスKO3株および/または新規乳酸菌株ラクトバチルス・ラムノーサスKO1株である。
 なお、ラクトバチルス・ラムノーサスKO1株およびKO3株は、例えば、121度で20分間滅菌したMRS培地等に接種し、37度において48時間大気下で前培養し、蒸留水、超純水または緩衝液等で洗浄後、遠心分離等で集菌し、菌体を得ることができる。
 ラクトバチルス・ラムノーサスKO1株およびKO3株はKog1およびKog2を産生する為、ラクトバチルス属ラムノーサス種の菌株であれば、Kog1およびKog2を産生することが示唆される。従って、ラクトバチルス属ラムノーサス種の菌株を大量に培養し、当該技術分野におけるタンパク質抽出の常法(例えば、細胞破砕法等)を用いることにより、産生されたKog1およびKog2ペプチドを容易にかつ大量に得ることが可能となる。
 培養工程では、果汁培地、野菜汁培地、牛乳培地、脱脂粉乳培地、乳成分を含む培地または乳成分を含まない半合成培地等、種々の培地を使用することが可能である。具体的には、例えば、脱脂乳を還元して加熱滅菌した還元脱脂乳培地、酵母エキスを添加した脱脂粉乳培地、MRS培地またはGAM培地等を挙げることができる。
 培養方法は、静地培養、pHを一定にした中和培養、回転培養または連続培養等、当該ラクトバチルス・ラムノーサスが良好に生育する条件であれば特に制限はない。ラクトバチルス・ラムノーサスKO3株の詳細な菌学的性質は、実施の形態8において後述する新規乳酸菌株ラクトバチルス・ラムノーサスKO1株の詳細な菌学的性質とほぼ同様である。
 なお、培養工程においてカンジダ属の菌の死菌を添加すると、より大量にKog1およびKog2を得ることができる為、好ましい(実施例6参照)。
 (ラクトバチルス・ラムノーサスKO1株)
 ラクトバチルス・ラムノーサスKO1株(独立行政法人製品評価技術基盤機構特許微生物寄託センターに2011年1月24日に寄託申請し受託番号NITE P-1065として受託)は、本発明者によってヒトの口腔内から新規に分離同定された乳酸菌株である。なお、ラクトバチルス・ラムノーサスKO1株は、ラクトバチルス・ラムノーサスKO3株と同様、Kog1およびKog2を産生するラクトバチルス属ラムノーサス種に分類されるが、種々のタンパク質の発現量およびゲノム情報が異なる新規な乳酸菌株である。
 ラクトバチルス・ラムノーサスKO1株は、16S rRNAの塩基配列がラクトバチルス・ラムノーサスstrainIDCC3201の塩基配列と1443/1443の間で100%の相同性を示し、グラム染色後の顕微鏡下においてグラム陽性桿菌の様相を呈することから、ラクトバチルス属ラムノーサス種であると同定された。当該ラクトバチルス・ラムノーサスKO1株の菌学的性質は、グラム陽性乳酸桿菌、ホモ型乳酸発酵、カタラーゼ陰性、芽胞形成能無し、好気条件下でも培養可能、菌体外多糖類を形成することを特徴とする。
 実施の形態7において前述したとおり、本実施の形態8に係る新規乳酸菌株ラクトバチルス・ラムノーサスKO1株を培養することにより、培養によって得られた菌体培養物から、前述の実施の形態1に係る塩基性抗菌ペプチドKog1およびKog2を容易にかつ大量に抽出することが可能となるため効果的である。
 以下、実施例を用いて本発明をより詳細に説明するが、実施例は本発明を限定するものではない。
 (調製例)
 本調製例では、被験菌株の調製・培養方法について説明する。
 カンジダ菌、う蝕菌および歯周病菌としては、カンジダ・アルビカンスGDH18株、ストレプトコッカス・ソブリナスB-13株、ストレプトコッカス・ミュータンスNCTC10449株、ストレプトコッカス・ミュータンスIngbritt株、ポルフィロモナス・ジンジバリスHudoi001株、および、アグリゲイティバクター・アクチノミセテムコミタンスHudoe001株を使用し、各被験菌株は日本国国立大学法人広島大学歯学部および歯科病院において提供を受けた。
 カンジダ・アルビカンスGDH18株は、SD培地(Difco社)を用い、37度で24時間好気条件下で前培養を行った。ストレプトコッカス・ソブリナスB-13株、ストレプトコッカス・ミュータンスNCTC10449株およびストレプトコッカス・ミュータンスIngbritt株は、5%の酵母エキス(Difco社)を添加したTSB培地(Difco社)を用い、37度で24時間好気条件下で前培養を行った。ポルフィロモナス・ジンジバリスHudoi001株、および、アグリゲイティバクター・アクチノミセテムコミタンスHudoe001株は、ヘミン(5mg/L)およびビタミンK3(1mg/L)を添加したBHI培地(Difco社)を用い、37度で96時間Anaero Pack System(三菱ガス化学株式会社)を使用した嫌気条件下で前培養を行った。
 培養後、これらのカンジダ菌、う蝕菌および歯周病菌は、1000×gでの遠心分離において集菌し、1mM、pH6.8のリン酸塩緩衝液を用いて二回洗浄し、最終濃度が1×10cfu/mlまたは1×10cells/mlとなるよう懸濁した。ストレプトコッカス属の菌株の懸濁には超音波処理も行った。
 (実施例1)
 本実施例1は、Kog1およびKog2の合成に関する。
 まず、バクテリオシンとしての機能を確認する為、配列番号1に記載のアミノ酸配列を有するKog1、および、配列番号2に記載のアミノ酸配列を有するKog2を、9-フルオレニルメチルオキシカルボニルを保護基、p-ベンゾイルオキシベンジルアルコールを樹脂として用いたティーバッグ法(Helmerhorstらの方法(1999))にて合成した。塩基性抗菌ペプチド完成後、5%チオアニソール、5%フェノール、5%精製水および85%トリフルオロ酢酸の混合物を用い、樹脂からの切断および側鎖での脱保護基を行った。
 合成後のKog1およびKog2の等電点(pI)および分子量(MW)を測定すると、Kog1はpI=12.90、MW=5485.5であり、Kog2はpI=12.38、MW=4686.6であった。抗菌ペプチドにおいて、hBD2(ヒトβ-ディフェンシン-2(Eur J.、2002、Oral Sci.(109)、121-124参照))が、塩基性の抗菌ペプチドとして有名であり、等電点は10程度である。しかし、本実施例2に係るKog1およびKog2の等電点は、当該hBD2の等電点よりも高く、哺乳類由来の抗菌ペプチドにより近似しており、すなわち細胞毒性が小さいということが確認された。
 なお、合成後のペプチドの精製および純度の分析は、高速液体クロマトグラフィーおよび逆相クロマトグラフィーによって行った。さらに、分子量の確認は質量分析計(MALDI-TOF)によって行った。
 (実施例2)
 本実施例2は、カンジダ・アルビカンスGDH18株に対するKog1およびKog2の抗菌力の分析に関する。
 抗菌活性の評価は、Edgertonらの方法(1998)にいくらかの変更を加えた方法において行った。前述の調製例に記載の方法において培養・調製しておいたカンジダ・アルビカンスGDH18株の懸濁液20μlを、前述の実施例1において合成したKog1またはKog2を0から25μM含ませた1mMリン酸塩緩衝液20mlに混合し、振動させながら37度において90分間インキュベートした。なお、コントロールとしては、1mMリン酸塩緩衝液20mlのみのものを用いた。反応を360mlのYNB培地(Difco社)を加える事によって停止させ、形成されるコロニー(colony forming units;CFUs)をコントロールのものと共にカウントすることによって、生存する菌のパーセンテージとした。すなわち、(Kog1またはKog2を含む懸濁液のCFUs/コントロールの懸濁液のCFUml-1)×100の式を用い、パーセンテージを算出した。
 図1は、実施例2に係る0.39から25μMにおけるKog1のカンジダ・アルビカンスGDH18株に対する抗菌力を示す図である。図2は、実施例2に係る0.39から12μMにおけるKog2のカンジダ・アルビカンスGDH18株に対する抗菌力を示す図である。図1および図2に示すように、Kog1およびKog2とも、いずれも0.39μMのペプチド濃度において、カンジダ・アルビカンスGDH18株を100%死滅させていた。
 同方法および同条件下において、抗真菌剤であるアンホテリシンB、牛乳由来抗菌ペプチドであるラクトフェリシンB(配列番号5に記載のアミノ酸配列を有する)、ヒト唾液由来抗菌ペプチドであるヒスタチン5(配列番号6に記載のアミノ酸配列を有する)、および、特許第3472821号の抗菌ペプチドであるJH8194(配列番号7に記載のアミノ酸配列を有する)の抗菌力を測定したところ、それぞれ、5μMで100%、5μMで100%、100μMで100%、2.5μMで100%死滅させていた。なお、いずれも実施例1と同様にティーバッグ法でペプチド合成を行った。
 この結果から、抗菌ペプチドKog1およびKog2は、これらいずれの抗真菌剤および抗菌ペプチドよりも低濃度において、すなわち少量でカンジダ菌を死滅させることができるということが証明された。
 (実施例3)
 本実施例3は、ストレプトコッカス・ソブリナスB-13株に対するKog1およびKog2の抗菌力の分析に関する。具体的には、hBD2およびリゾチームタンパク(Lysozyme)と抗菌力を比較した実施例を示す。
 ストレプトコッカス・ソブリナスB-13株は、調製例にて述べた方法において培養、調製しておいた。抗菌力の評価方法は、前述の実施例2と同様の方法を用いて評価した。なお、各抗菌ペプチドの濃度が0から100μMの場合について評価した。
 図3は、実施例3に係るKog1、Kog2および他の抗菌ペプチドのストレプトコッカス・ソブリナスB-13株に対する抗菌力を示す図である。なお、図3の横軸のペプチド濃度(Concentration of peptide)については、対数軸で示されている。図3に示すように、hBD2は、濃度が3.125μMでストレプトコッカス・ソブリナスB-13株を100%死滅させていた。リゾチームタンパクは、完全にストレプトコッカス・ソブリナスB-13株を死滅させることはできなかった。一方、Kog1は濃度が1.56μMで、Kog2は濃度が0.39μMで、ストレプトコッカス・ソブリナスB-13株を100%死滅させていた。従って、被験菌株がストレプトコッカス・ソブリナスB-13株の場合でも、低濃度で死滅可能ということが証明された。
 (実施例4)
 本実施例4は、ストレプトコッカス・ミュータンス菌に係るKog1およびKog2の抗菌力の分析に関する。具体的には、前述の実施例3と同様に、hBD2およびリゾチームタンパクと抗菌力を比較した実施例を示す。
 ストレプトコッカス・ミュータンスNCTC10449株およびストレプトコッカス・ミュータンスIngbritt株は、前述の調製例の方法において培養、調製しておいた。抗菌力の評価方法は、前述の実施例3と同様の方法を用いて評価、比較した。なお、いずれのミュータンス菌についても、抗菌ペプチドの濃度が0から100μMの場合について評価、比較した。
 図4は、実施例4に係るKog1、Kog2および他の抗菌ペプチドのストレプトコッカス・ミュータンスNCTC10449株に対する抗菌力を示す図である。図5は、実施例4に係るKog1、Kog2および他の抗菌ペプチドのストレプトコッカス・ミュータンスIngbritt株に対する抗菌力を示す図である。図4および図5の横軸のペプチド濃度(Concentration of peptide)については、対数軸で示されている。図4および図5に示すように、やはり、ミュータンス菌に関しても、他の抗菌ペプチドと比べると、Kog1およびKog2は比較的低濃度において多量のミュータンス菌を死滅させることができると評価される。
 また、図示していないが、Kog1およびKog2はポルフィロモナス・ジンジバリスHudoi001株に対しても抗菌力を発揮することが評価された。この結果は、本発明者の発見したラクトバチルス・ラムノーサスKO3株が、ポルフィロモナス・ジンジバリスHudoi001株についても抗菌力を発揮することが特許文献1の実施例により評価、記載されていることからも示唆されることである。すなわち、特許文献1に記載の実施例を考慮すると、ラクトバチルス・ラムノーサスKO3株がKog1およびKog2を発現し、該Kog1およびKog2がポルフィロモナス・ジンジバリスHudoi001株に対する抗菌力を発揮していたと推測される。これらを踏まえると、Kog1およびKog2は、他のポルフィロモナス属ジンジバリス種の菌株(歯周病菌等)に対しても同様の抗菌力を発揮することが示唆される。
 (実施例5)
 さらに、本発明者はその他の歯周病菌に対する抗菌力についても分析した。本実施例5は、歯周病菌アグリゲイティバクター・アクチノミセテムコミタンスHudoe001株に係るバクテリオシンKog1およびKog2の抗菌力の分析に関する。具体的には、前述と同様のhBD2およびヒスタチン5、さらにラクトフェリシンBおよびラクトフェリシンH(ヒト由来ラクトフェリシン)と抗菌力を比較した実施例を示す。
 アグリゲイティバクター・アクチノミセテムコミタンスHudoe001株は、前述の調製例の方法において培養、調製しておいた。抗菌力の評価方法は、前述の実施例3と同様の方法を用いて評価、比較した。なお、それぞれの抗菌ペプチドの濃度が0から50μMの場合について評価、比較した。
 図6は、実施例5に係るKog1、Kog2および他の抗菌ペプチドのアグリゲイティバクター・アクチノミセテムコミタンスHudoe001株に対する抗菌力を示す図である。なお、図6の横軸のペプチド濃度(Concentration of peptide)については、対数軸で示されている。図6に示すように、Kog1が3.13μM、Kog2が1.56μMにおいて、歯周病菌アグリゲイティバクター・アクチノミセテムコミタンスHudoe001株を100%死滅させた。これは、ラクトフェリシンBまたはhBD2と同等か、それ以上の抗菌性である。
 (実施例6)
 本実施例6は、カンジダの死菌を添加しながらのラクトバチルス・ラムノーサスKO1株の培養に関する。具体的には、カンジダ・アルビカンスGDH18株の死菌の非存在下および存在下において、ラクトバチルス・ラムノーサスKO1株を培養し、Kog1およびKog2の発現量をDNAマイクロアレイシステムによって測定した。
 まず、0、2、4および6μgのカンジダ・アルビカンスGDH18株の死菌を含む5mlのMRS培地の中に、20μlのラクトバチルス・ラムノーサスKO1株懸濁液を接種し、37℃において48時間インキュベートした。インキュベート後、菌をすぐに100mlのRNAprotect reagent(Qiagen)および900mlのリファピン(25mg/mlメタノール)(Sigma-Aldrich)の中へ懸濁した。その後、ボルテックスによって15分間混合し、室温において10分間インキュベートした。これらの処理の後、遠心分離により菌を集菌し、上清を廃棄し、-20℃において保存しておいたペレットからRNA抽出キットによって精製した。このように前処理を行い、その後、マイクロアレイデータの統計分析をNimbleGenマイクロアレイ解析用ソフトウェアを用い、分析を行った。
 図7は、実施例6に係るカンジダの死菌を添加したラクトバチルス・ラムノーサスKO1株における、DNAマイクロアレイでのKog1の発現量を示す図である。図8は、実施例6に係るカンジダの死菌を添加したラクトバチルス・ラムノーサスKO1株における、DNAマイクロアレイでのKog2の発現量を示す図である。図7および図8のいずれにおいても、左端のKO1株のみの培養に比べ、カンジダ(CaGDH18)の死菌を共存させて培養した場合の方が、その量に依存し(左から2、4および6μg)、Kog1およびKog2とも発現量が増加していた。
 これらの実施例の結果から、新規乳酸菌株ラクトバチルス・ラムノーサスKO1株、ならびに同様にKog1およびKog2を産生するラクトバチルス・ラムノーサスKO3株を培養することにより、抗菌スペクトルが広く(う蝕菌、歯周病菌およびカンジダ菌)、その上耐性菌の生じる可能性が低い等電点12以上のバクテリオシンKog1およびKog2を、容易にかつ大量に産生することが可能であることが証明された。さらに、ラクトバチルス属ラムノーサス種の他の菌株においても、バクテリオシンKog1およびKog2を容易にかつ大量に産生することが可能であることが示唆される。また、これらの結果から、当該バクテリオシンKog1またはKog2をコードする遺伝子を組み込んで得られる組み換え発現ベクターで形質転換させた乳酸菌または大腸菌等の細菌を培養することによっても、優れた抗菌力を有するバクテリオシンKog1またはKog2を容易にかつ大量に産生することができることは、当該技術分野の当業者にとって当然である。
 (実施例7)
 本実施例7では、実施例1ないし6において証明された、バクテリオシンKog1およびKog2の抗菌スペクトルの広さ、および塩基性の等電点による耐性菌の生じ難さについて検討した。なお、本発明者は、バクテリシオンKog1およびKog2が、歯周病菌等のグラム陰性菌の持つLPSを不活性化しているのではないかと予測し、LPSとバクテリオシンKog1およびKog2との関係について分析した。
 まず、培地には、10%FBS(Fetal Bovine Serum)(Biological industries, Haemek, Israel)、1%抗生物質、および1%L-グルタミンを添加したRPMI 1640培地を使用した。24-well plateに、それぞれ前述の培地400μlずつを添加し、マウス由来RAW264.7マクロファージ様細胞を、100,000cells/well播種しておいた。
 なお、バクテリオシンKog1またはKog2は、実施例1と同様のものを使用し、エッペンチューブにおいて、次の四つの条件で、Porphyromonas gingivalis LPS(InvivoGen社製)(以下、P.g-LPS)と、前述と同様の培地と共に、37度、5%CO気相下において2時間インキュベートを行った。(1)100ng/ml P.g-LPS positive control、(2)100ng/ml P.g-LPS+5μMKog1またはKog2、(3)100ng/ml P.g-LPS+10μMKog1またはKog2、(4)100ng/ml P.g-LPS+20μMKog1またはKog2。
 最初に述べたそれぞれの24-well plateの培地をピペットマンを用いて吸った後、前述の四つの条件のそれぞれのエッペンチューブの培地を入れて、well plateの細胞と共に、37度、5%CO気相下において12時間培養した。その後、培養上清を回収し、ELISA法で培地中に分泌されたケモカインのccl2の量、またはサイトカインのTNF-αの量を、吸光度450nmマイクロプレートリーダーを用いて定量した。これらはいずれも炎症の形成に関与する為、内毒素であるLPSと、バクテリオシンKog1およびKog2との関係を分析することができる。
 図9は、実施例7に係るLPSとKog1の量との関係によるccl2の分泌量を示す図である。すなわち、LPSとKog1とを用いて2時間のインキュベートを行った際の、分泌されたケモカインのccl2の量(Kog1が0μMの場合を100%とする)を示す(LPS+kog1→cell ccl2)。図9では、*(有意水準)=p<0.05、**(有意水準)=p<0.01であり、n=3である。図9に示すように、Kog1の添加量が増加するほど、分泌されたケモカインのccl2の量が減少していた。すなわち、バクテリオシンKog1は、LPSの不活性化作用を有するということが解った。
 図10は、実施例7に係るLPSとKog1の量との関係によるTNF-αの分泌量を示す図である。すなわち、LPSとKog1とを用いて2時間のインキュベートを行った際の、分泌されたサイトカインのTNF-αの量(Kog1が0μMの場合を100%とする)を示す(LPS+kog1→cell TNF-α)。図10では、**(有意水準)=p<0.01であり、n=3である。図10に示すように、Kog1の添加量が増加するほど、分泌されたサイトカインのTNF-αの量が減少していた。すなわち、図9に示す結果と同様に、バクテリオシンKog1は、LPSの不活性化作用を有するということが解った。
 図11は、実施例7に係るLPSとKog2の量との関係によるccl2の分泌量を示す図である。すなわち、LPSとKog2とを用いて2時間のインキュベートを行った際の、分泌されたケモカインのccl2の量(Kog2が0μMの場合を100%とする)を示す(LPS+kog2→cell ccl2)。図11では、*(有意水準)=p<0.05、**(有意水準)=p<0.01であり、n=3である。図11に示すように、Kog2の添加量が少量の場合(5μM)は分泌されたケモカインのccl2の量は増加してしまうが、添加量がある一定量を超えると、添加量が増加するほどccl2の量が減少していくことが示唆される。すなわち、Kog2も、多量を添加することによって、LPSの不活性化作用を有するということが解った。
 図12は、実施例7に係るLPSとKog2の量との関係によるTNF-αの分泌量を示す図である。すなわち、LPSとKog2とを用いて2時間のインキュベートを行った際の、分泌されたサイトカインのTNF-αの量(Kog2が0μMの場合を100%とする)を示す(LPS+kog2→cell TNF-α)。図12では、**(有意水準)=p<0.01であり、n=3である。図12に示すように、Kog2の添加量が少量の場合(5μM)は分泌されたサイトカインのTNF-αの量は増加してしまうが、添加量がある一定量を超えると、添加量が増加するほどTNF-αの量が減少していくことが示唆される。すなわち、図11に示す結果と同様に、多量を添加することによって、LPSの不活性化作用を有するということが解った。
 このように図9ないし図12の結果から、バクテリオシンKog1およびKog2の優れた抗菌力等は、少なくともバクテリオシンKog1およびKog2が有するLPSの不活性化作用に関連していることが解った。また、バクテリオシンKog1およびKog2がLPSの不活性化作用を有するということは、これまでに解明されている、内毒素であるLPSが関連するその他の疾患等の予防、または治療法に利用できることが示唆される。このような疾患には、口腔内疾患以外にも、骨吸収、慢性炎症の助長、肝障害、糖尿病および動脈硬化等を挙げることができる。図13は、LPSが原因となる種々の疾患等との関係を示す図である。図13に示すように、内毒素であるLPSは様々な物質を経由し、多くの疾患または治療機構に関与している。
 (実施例8)
 そこで、本発明者は、口腔内疾患以外にも、Kog2が骨芽細胞の分化に影響を与えるか否かをreal-time quantitative RT(Reverse transcriptase)-PCRによって調べた。
 細胞は、マウス由来骨芽細胞様細胞のMC3T3-E1細胞を使用した。当該MC3T3-E1細胞を、10%FBS(Biological industries, Haemek, Israel)、L-グルタミン、抗生物質混合物(Invitrogen)、50μg/mlアスコルビン酸(Sigma)、および、Kog2を0nM、250nM、500nMまたは1000nMを含有したα変法イーグル培地(α-MEM)中において、37度、5%COの下、プラスチック上またはチタン上において培養した。このように培養したMC3T3-E1細胞から、TRIzol reagent(Invitrogen)を用いて全RNAを抽出し、ReverTra Ace reverse transcriptase(東洋紡)を用いてcDNAを作製した。その後、作製したcDNAを用い、real-time quantitative RT-PCRによって、骨芽細胞の分化マーカーであるType-I collagenと、内在性コントロールであるβ-アクチンの発現を解析した。
 real-time quantitative RT-PCRにおいて、Type-I collagenでは配列番号8に記載のフォワードプライマー、配列番号9に記載のリバースプライマー、配列番号10に記載のプローブを使用した。β-アクチンでは、配列番号11に記載のフォワードプライマー、配列番号12に記載のリバースプライマー、配列番号13に記載のプローブを使用した。
 図14は、実施例8に係るreal-time quantitative RT-PCRのType I collagen/β-アクチンの値を示す図である。図14に示すように、Kog2を250nM添加した場合が、全くKog2を添加していない場合(ctrl(0μM))と比較して、3倍近くType I collagen/β-アクチンの値が増加していた。今回の実験においては、Kog2を250nM程度添加した場合、骨芽細胞の分化が最も促進されるということが判った。すなわち、バクテリオシンKog2は、種々の骨疾患にも利用できることが充分に示唆される。
 (実施例9)
 さらに、本発明者は、バクテリオシンKog1およびKog2が加熱された場合でも同様の抗菌力を有するか否かを煮沸実験によって調べた。
 本実施例9では、カンジダ・アルビカンスMYA274株を対象として抗菌力を調べた。まず、カンジダ・アルビカンスMYA274株をサブロー・ブドウ糖液状培地(Sabouraud Dextrose Broth)(Difco)を用いて37度で24時間前培養し、MQ水で2回洗浄後、OD600で0.3(1.0×10cells/ml)となるよう調製しておいた。
 なお、本実施例9では、バクテリオシンKog1もしくはKog2、またはラクトバチルス・ラムノーサスKO1株もしくはKO3株を直接使用せず、ラクトバチルス・ラムノーサスKO3株が含まれた乳酸菌培地である、8020ヨーグルト(ドリンクタイプ)を使用して実験を行った。具体的には、当該8020ヨーグルト(ドリンクタイプ)は、15%脱脂乳+3%ブドウ糖培地に、ラクトバチルス・ラムノーサスKO3株1%とYF-L811スターター1%とを添加し、35度で二日間培養したものである。より詳細には、その他の原材料として、果糖ブドウ糖液糖、乳製品、砂糖、安定剤(ペクチン)、酸味料および香料を含み、Brixが17.4%、乳酸酸度が0.57%、pHが3.96、無脂乳固形分が3.0%に調製されているものである。
 実験には、このような8020ヨーグルト(ドリンクタイプ)を遠沈し、乳酸菌を除去した上清(以下、上清B)と、当該上清Bを100度20分間で煮沸したもの(以下、上清Boil)とを使用した。なお、これまでの実施例の結果から、上清Bにはラクトバチルス・ラムノーサスKO3株より抽出されたバクテリオシンKog1およびKog2が含有されているものと考えられる。
 煮沸による抗菌力の変化を調べるため、24-well plateを用い、以下に述べる三種類の試料を注入し、37度24時間後のATPの値(pmol/L)を測定した。三種類の試料は、1)サブロー液状培地(Sabouraud Broth)1ml、上清B1mlおよび前述のカンジダ・アルビカンスMYA274株調製液50μlを含むものと、2)サブロー液状培地(Sabouraud Broth)1ml、上清Boil1mlおよび前述のカンジダ・アルビカンスMYA274株調製液50μlを含むものと、3)コントロールとしてのサブロー液状培地(Sabouraud Broth)1ml、15%脱脂乳+3%ブドウ糖培地1mlおよび前述のカンジダ・アルビカンスMYA274株調製液50μlを含むものである。
 図15は、実施例9に係る煮沸実験による耐熱データの結果を示す図である。当該耐熱データは、各々の試料を四つずつ作製し、平均値±SDを算出したものである。図15に示すように、100度20分間煮沸した上清Boilでも上清Bと同様のATPの量が測定されているため、煮沸した上清Boilでも上清Bと同様の高い抗菌性を有することが確認された。すなわち、バクテリオシンKog1およびKog2が加熱された場合でも同様の抗菌力を有することが確認された。
 本発明は、上記発明の実施の形態および実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
 本明細書の中で明示した論文および公開特許公報等の内容は、その全ての内容を援用によって引用することとする。
 本出願は、2011年2月10日に出願された日本国特許出願2011-27882号および2011年8月26日に出願された日本国特許出願2011-184655号に基づく。本明細書中に、日本国特許出願2011-27882号および日本国特許出願2011-184655号の、明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
 本発明者らは、ラクトバチルス・ラムノーサスKO3株(独立行政法人製品評価技術基盤機構特許微生物寄託センターに2009年6月10日に寄託申請し受託番号NITE BP-771として受託)において、配列番号1に記載のアミノ酸配列を有するKog1および配列番号2に記載のアミノ酸配列を有するKog2が、抗菌スペクトルが広く、低濃度において抗菌力が高く、その上耐性菌の生じる可能性が低いバクテリオシンとして機能していることを発見した。さらに、同様にKog1およびKog2を産生する新規乳酸菌株ラクトバチルス・ラムノーサスKO1株(独立行政法人製品評価技術基盤機構特許微生物寄託センターに2011年1月24日に寄託申請し受託番号NITE P-1065として受託)の分離同定にも成功した。
 そこで、本発明によれば、容易にかつ大量に産生することが可能であり、抗菌スペクトルが広く、その上耐性菌の生じる可能性が低いバクテリオシン、該バクテリオシン(薬学的に許容される誘導体等を含む)を有効成分とする口腔内疾患の予防、改善および/または治療用組成物、該バクテリオシンをコードする遺伝子、該遺伝子を組み込んで得られる組み換え発現ベクター、該組み換え発現ベクターを保有する宿主細胞、該組み換え発現ベクターにより形質転換された形質転換体、ならびに、該バクテリオシンの生産方法を提供することができる。また、該バクテリオシンを産生する新規乳酸菌ラクトバチルス・ラムノーサスKO1株も提供することができる。更に、本発明に係るバクテリオシンは耐熱性が高いため、工業加工が容易となる。特に、グミゼリー、トローチ、タブレット、キャンディーまたはチューインガム等は、成形加工時に熱を伴うため、耐熱性を有する本発明に係るバクテリオシンを用いる際に、抗菌効果を落とすことなく加工することが可能となる。また、例えば、ご飯またはスープ等の調理を行う食品に添加しても当該バクテリオシンの効果を失うことはないため、様々な用途に繋がることが期待される。
[規則26に基づく補充 18.04.2012] 
Figure WO-DOC-TABLE-

Claims (13)

  1.  配列表の配列番号1もしくは配列番号2に示すアミノ酸配列、または、配列表の配列番号1もしくは配列番号2に示すアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換、挿入および/もしくは付加され抗菌活性をもたらすアミノ酸配列を有し、かつ等電点が12以上であることを特徴とする、バクテリオシン。
  2.  前記バクテリオシンは、う蝕菌、歯周病菌およびカンジダ菌の全てに対して抗菌性を有することを特徴とする、請求項1に記載のバクテリオシン。
  3.  請求項1または2に記載のバクテリオシン、または、前記バクテリオシンにおいて薬学的に許容される誘導体もしくは薬学的に許容される塩類を有効成分とすることを特徴とする、口腔内疾患の予防、改善および/または治療用組成物。
  4.  前記口腔内疾患の予防、改善および/または治療用組成物は、う蝕菌、歯周病菌および/またはカンジダ菌の増殖抑制剤であることを特徴とする、請求項3に記載の口腔内疾患の予防、改善および/または治療用組成物。
  5.  請求項1または2に記載のバクテリオシンをコードすることを特徴とする、遺伝子。
  6.  請求項5に記載の遺伝子を組み込んで得られることを特徴とする、組み換え発現ベクター。
  7.  請求項6に記載の組み換え発現ベクターを保有することを特徴とする、宿主細胞。
  8.  請求項6に記載の組み換え発現ベクターにより形質転換されたことを特徴とする、形質転換体。
  9.  前記形質転換体は、細菌であることを特徴とする、請求項8に記載の形質転換体。
  10.  ラクトバチルス・ラムノーサス(Lactobacillus rhamnosus)を培養する培養工程と、
     前記培養工程によって得られた菌体培養物から、請求項1または2に記載のバクテリオシンを抽出する抽出工程と、
     を含むことを特徴とする、バクテリオシンの生産方法。
  11.  前記ラクトバチルス・ラムノーサス(Lactobacillus rhamnosus)は、ラクトバチルス・ラムノーサス(Lactobacillus rhamnosus)KO1株(独立行政法人製品評価技術基盤機構特許微生物寄託センターに2011年1月24日に寄託申請し受託番号NITE P-1065として受託)、および/または、ラクトバチルス・ラムノーサス(Lactobacillus rhamnosus)KO3株(独立行政法人製品評価技術基盤機構特許微生物寄託センターに2009年6月10日に寄託申請し受託番号NITE BP-771として受託)であることを特徴とする、請求項10に記載のバクテリオシンの生産方法。
  12.  前記培養工程において、カンジダ菌の死菌を添加することを特徴とする、請求項10または11に記載のバクテリオシンの生産方法。
  13.  独立行政法人製品評価技術基盤機構特許微生物寄託センターに2011年1月24日に寄託申請し受託番号NITE P-1065として受託されたことを特徴とする、ラクトバチルス・ラムノーサス(Lactobacillus rhamnosus)KO1株。
PCT/JP2012/053020 2011-02-10 2012-02-09 ラクトバチルス・ラムノーサス由来のバクテリオシン WO2012108518A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DK12745195.3T DK2682463T3 (en) 2011-02-10 2012-02-09 BACTERIOCIN DERIVATED BY LACTOBACILLUS RHAMNOSUS
EP12745195.3A EP2682463B1 (en) 2011-02-10 2012-02-09 Bacteriocin derived from lactobacillus rhamnosus
JP2012556935A JP5907490B2 (ja) 2011-02-10 2012-02-09 ラクトバチルス・ラムノーサス由来のバクテリオシン
CN201280008481.XA CN103748220B (zh) 2011-02-10 2012-02-09 来源于鼠李糖乳杆菌的细菌素
KR1020137023858A KR101675525B1 (ko) 2011-02-10 2012-02-09 락토바실러스 람노서스 유래의 박테리오신
ES12745195T ES2698421T3 (es) 2011-02-10 2012-02-09 Bacteriocina derivada de lactobacillus rhamnosus
US13/984,783 US20140128314A1 (en) 2011-02-10 2012-02-09 Bacteriocin Derived from Lactobacillus Rhamnosus
US14/707,956 US9314498B2 (en) 2011-02-10 2015-05-08 Bacteriocin derived from Lactobacillus rhamnosus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-027882 2011-02-10
JP2011027882 2011-02-10
JP2011-184655 2011-08-26
JP2011184655 2011-08-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/984,783 A-371-Of-International US20140128314A1 (en) 2011-02-10 2012-02-09 Bacteriocin Derived from Lactobacillus Rhamnosus
US14/707,956 Continuation US9314498B2 (en) 2011-02-10 2015-05-08 Bacteriocin derived from Lactobacillus rhamnosus

Publications (1)

Publication Number Publication Date
WO2012108518A1 true WO2012108518A1 (ja) 2012-08-16

Family

ID=46638730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053020 WO2012108518A1 (ja) 2011-02-10 2012-02-09 ラクトバチルス・ラムノーサス由来のバクテリオシン

Country Status (8)

Country Link
US (2) US20140128314A1 (ja)
EP (1) EP2682463B1 (ja)
JP (1) JP5907490B2 (ja)
KR (1) KR101675525B1 (ja)
CN (1) CN103748220B (ja)
DK (1) DK2682463T3 (ja)
ES (1) ES2698421T3 (ja)
WO (1) WO2012108518A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103766217A (zh) * 2013-12-11 2014-05-07 柳州赛特生物科技研发中心 一种蝴蝶兰专用组织培养培养基
US9314498B2 (en) 2011-02-10 2016-04-19 Hiroshima University Bacteriocin derived from Lactobacillus rhamnosus
JP2018100228A (ja) * 2016-12-19 2018-06-28 国立大学法人広島大学 抗菌用組成物、食品、及び菌体若しくは菌体培養物又はこれらの抽出物の製造方法
CN117801080A (zh) * 2024-01-24 2024-04-02 东北农业大学 一种干酪乳杆菌细菌素及其应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104726360A (zh) * 2014-11-14 2015-06-24 北京农学院 一种大肠杆菌和乳酸杆菌穿梭载体的构建及应用
CN108048347B (zh) * 2017-12-06 2020-06-02 河北一然生物科技有限公司 鼠李糖乳杆菌、鼠李糖乳杆菌制剂及其用途
WO2019155002A1 (en) * 2018-02-08 2019-08-15 Institut Pasteur Anti-prevotella bacteriocin methods and compositions
CN108148789B (zh) * 2018-03-06 2021-05-25 河南科技学院 一种鼠李糖乳杆菌及其在制备细菌素中的应用
CN109266568A (zh) * 2018-08-19 2019-01-25 东北农业大学 一种具有高产细菌素的益生功能鼠李糖乳杆菌及其应用
CN114874296B (zh) * 2022-04-30 2023-09-08 浙江工商大学 抗耐药性金黄色葡萄球菌的细菌素的分离纯化方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007584A1 (ja) 2009-07-16 2011-01-20 国立大学法人広島大学 口腔内疾患の予防、改善又は治療剤

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281225A (ja) * 2004-03-30 2005-10-13 Japan Science & Technology Agency 新規塩基性抗菌ペプチド及びその利用
JP5459534B2 (ja) 2009-06-25 2014-04-02 株式会社Ihi 回転機械支持装置
DK2682463T3 (en) 2011-02-10 2018-12-03 Univ Hiroshima BACTERIOCIN DERIVATED BY LACTOBACILLUS RHAMNOSUS

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007584A1 (ja) 2009-07-16 2011-01-20 国立大学法人広島大学 口腔内疾患の予防、改善又は治療剤

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Eur J.", ORAL SCI., 2002, pages 121 - 124
AYA HIYAMA ET AL.: "Koku Yurai Nyusankinkabu ni yoru mutans streptococci Oyobi Candida no Soshi Sayo", THE JOURNAL OF HIROSHIMA UNIVERSITY DENTAL SOCIETY, vol. 41, no. 1, 2009, pages 93 - 94, XP008158817 *
KANKAINEN, M. ET AL.: "Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein.", PROC. NATL. ACAD. SCI. U.S.A., vol. 106, no. 40, 2009, pages 17193 - 17198, XP002579059 *
MORITA, H. ET AL.: "Complete genome sequence of the probiotic Lactobacillus rhamnosus ATCC 53103.", J. BACTERIOL., vol. 191, no. 24, 2009, pages 7630 - 7631, XP055120243 *
R. DIMITRIJEVIC; M. STOJANOVIC; 1. PETERSEN; R. M. JANKOV; L. DIMITRIJEVIC; M. GAVROVIC-JANKULOVIC, JOURNAL OF APPLIED MICROBIOLOGY, 2009, pages 2108 - 2115
TODOROV, S.D. ET AL.: "Screening for bacteriocin-producing lactic acid bacteria from boza, a traditional cereal beverage from Bulgaria Comparison of the bacteriocins", PROCESS. BIOCHEM., vol. 41, no. 1, 2006, pages 11 - 19, XP027983945 *
TOSHIYA SHIOKAWA ET AL.: "Hito Koku Yurai Lactobacillus-zoku Kin kara no Kokin Busshitsu Seisankin no Tansaku", NICHIDAI KOKU KAGAKU, vol. 32, no. 3/4, 2006, pages 3, 5, XP008170753 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9314498B2 (en) 2011-02-10 2016-04-19 Hiroshima University Bacteriocin derived from Lactobacillus rhamnosus
CN103766217A (zh) * 2013-12-11 2014-05-07 柳州赛特生物科技研发中心 一种蝴蝶兰专用组织培养培养基
CN103766217B (zh) * 2013-12-11 2015-10-28 柳州赛特生物科技研发中心 一种蝴蝶兰专用组织培养培养基
JP2018100228A (ja) * 2016-12-19 2018-06-28 国立大学法人広島大学 抗菌用組成物、食品、及び菌体若しくは菌体培養物又はこれらの抽出物の製造方法
CN117801080A (zh) * 2024-01-24 2024-04-02 东北农业大学 一种干酪乳杆菌细菌素及其应用

Also Published As

Publication number Publication date
KR20130119979A (ko) 2013-11-01
US20150238565A1 (en) 2015-08-27
EP2682463B1 (en) 2018-08-29
ES2698421T3 (es) 2019-02-04
JP5907490B2 (ja) 2016-04-26
DK2682463T3 (en) 2018-12-03
CN103748220A (zh) 2014-04-23
US20140128314A1 (en) 2014-05-08
US9314498B2 (en) 2016-04-19
EP2682463A1 (en) 2014-01-08
JPWO2012108518A1 (ja) 2014-07-03
KR101675525B1 (ko) 2016-11-11
CN103748220B (zh) 2020-06-12
EP2682463A4 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5907490B2 (ja) ラクトバチルス・ラムノーサス由来のバクテリオシン
Nishizawa et al. Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in Microcystis spp
US8444998B2 (en) Probiotic strain and antimicrobial peptide derived therefrom
WO2002060931A2 (en) A fimbria-like gene in bifidobacteria
US20010018048A1 (en) Novel adherence factors of non pathogenic microorganisms and applications thereof for screening microorganisms for specific probiotic properties; novel pharmaceutical compositions and food additives comprising such microorganisms and adherence factors
He et al. Design and activity of a ‘dual-targeted’antimicrobial peptide
EP3565582B1 (en) Microbial lysozyme for use in the treatment of irritable bowel syndrome or inflammatory bowel disease
CN112760253A (zh) 一种植物乳杆菌、抗菌肽及其应用
KR20170110076A (ko) 유산균, 그 유산균 유래의 자연 면역 활성화제, 감염증 예방 치료제 및 음식품
Huo et al. Selective activities of STAMPs against Streptococcus mutans
KR102617297B1 (ko) 클로스트리디움 디피실리 감염의 치료 또는 예방용 조성물
US20030165505A1 (en) Nucleic acid and corresponding protein entitled 161P2F10B useful in treatment and detection of cancer
AU2017296061B2 (en) Lantibiotic variants and uses thereof
EP1606309A2 (en) Antimicrobial agents from streptococcus mitis and streptococcus oralis
KR101779262B1 (ko) 항생제 내성을 갖는 슈도모나스 균속을 용균하는 박테리오파지
EP0857213A1 (en) Novel adherence factors of non pathogenic microorganisms and applications thereof for screening miroorganisms for specific probiotic properties; novel pharmaceutical compositions and food additives comprising such microorganisms and adherence factors
KR102637772B1 (ko) 위건강과 구강질환 관련 미생물 및 병원성 미생물에 대한 항균활성을 갖는 산삼 유래 락토바실러스 플란타럼 wg.q7 균주 및 이의 용도
KR102353992B1 (ko) 항균 및 항바이러스 활성을 갖는 락토바실러스 플란타룸 nibr k9 균주, 동 균주에서 분리된 항균 및 항바이러스 펩타이드, 및 이의 용도
CN114163536B (zh) 一种基于乳酸菌LPxTG基序重组蛋白的构建及应用
US20230381249A1 (en) Probiotic strain for countering caries pathogens
KR100585269B1 (ko) Halobacterium salinarum에서 분리된 항산화 활성을 갖는 티오레독신
KR20190006390A (ko) 안전성이 향상된 푸자리시딘 고생산 균주 및 이의 제작방법
CN114230672A (zh) 一种牛乳铁蛋白肽融合蛋白、编码基因及其在海鲜保鲜和/或防腐中的应用
OHK et al. Purification and characterization of cell wall hydrolase from alkalophilic Bacillus mutanolyticus YU5215
WO2005095445A1 (ja) 新規塩基性抗菌ペプチド及びその利用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12745195

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2012556935

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13984783

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137023858

Country of ref document: KR

Kind code of ref document: A