CN114874296B - 抗耐药性金黄色葡萄球菌的细菌素的分离纯化方法 - Google Patents

抗耐药性金黄色葡萄球菌的细菌素的分离纯化方法 Download PDF

Info

Publication number
CN114874296B
CN114874296B CN202210476584.4A CN202210476584A CN114874296B CN 114874296 B CN114874296 B CN 114874296B CN 202210476584 A CN202210476584 A CN 202210476584A CN 114874296 B CN114874296 B CN 114874296B
Authority
CN
China
Prior art keywords
lactobacillus rhamnosus
bacteriocin
zfm216
zfm
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210476584.4A
Other languages
English (en)
Other versions
CN114874296A (zh
Inventor
顾青
戴梦笛
周青青
郦萍
吴丹丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Gongshang University
Original Assignee
Zhejiang Gongshang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Gongshang University filed Critical Zhejiang Gongshang University
Priority to CN202210476584.4A priority Critical patent/CN114874296B/zh
Publication of CN114874296A publication Critical patent/CN114874296A/zh
Priority to US18/054,546 priority patent/US11999769B2/en
Application granted granted Critical
Publication of CN114874296B publication Critical patent/CN114874296B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/335Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Lactobacillus (G)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/3526Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明公开了一种鼠李糖乳杆菌ZFM216(Lactobacillus rhamnosus ZFM216)细菌素的分离纯化方法,包括如下步骤:鼠李糖乳杆菌ZFM216发酵上清液的制备;选用大孔树脂吸附法处理发酵上清液,得蛋白质粗提液;蛋白质粗提液经凝胶层析分离,获得蛋白质初步纯化液;再经反相高效液相色谱纯化,获得鼠李糖乳杆菌ZFM216细菌素溶液。本发明还同时提供了上述鼠李糖乳杆菌细菌素在抗金黄色葡萄球菌中的应用。

Description

抗耐药性金黄色葡萄球菌的细菌素的分离纯化方法
技术领域
本发明属于食品生物技术领域,具体涉及一种有效抑制耐药性金黄色葡萄球菌D48的鼠李糖乳杆菌细菌素及其分离纯化的方法。
背景技术
金黄色葡萄球菌是一种易感病原体,能引起机体炎症,甚至全身感染。果蔬、乳制品及肉类的腐败均是金黄色葡萄球菌引起的食源性疾病的潜在来源。金黄色葡萄球菌D48是一种耐甲氧西林抗生素的葡萄球菌,属于食源性致病微生物,其产生的毒素会引发食物中毒。金黄色葡萄球菌能在较宽的温度范围(7-48℃)和酸碱度(pH 4-10)中存活,耐受较低的水分活度(aw 0.83-0.86)和非常高的盐浓度(15-20%)。为了防止金黄色葡萄球菌污染及在食品中的繁殖,常用的方法是添加食品防腐剂,但是人体过量或长期摄入化学防腐剂后容易毒性积累,损害身体。因此,安全、抗耐性致病微生物的新型天然生物防腐剂的研制迫在眉睫。
乳酸菌细菌素是由乳酸菌产生的一种具有抑菌作用的蛋白质或多肽,可作为生物防腐剂,减少食源性病原体的污染,降低食品腐败造成的经济损失、提高食品的安全性,且不会改变食物的质量和风味。到目前为止,乳酸菌细菌素在食品工业开发中很少,唯一得到广泛应用的仅有乳酸链球菌素,而针对抑制耐药性金黄色葡萄球菌的乳酸菌细菌素产品更是未曾出现在食品工业商业应用中。因此,开发新型乳酸菌细菌素作为天然的食品抗菌添加剂来控制食品中的金黄色葡萄球菌污染,对人类健康和社会经济具有重要意义。
发明内容
为解决上述技术问题,本发明提供一种经过分离纯化得到鼠李糖乳杆菌ZFM216(Lactobacillus rhamnosus ZFM216)细菌素的方法,及揭示其抗金黄色葡萄球菌D48的功效。
为了解决上述问题,本发明提供一种鼠李糖乳杆菌ZFM216(Lactobacillusrhamnosus ZFM216)细菌素的分离纯化方法,包括如下步骤:
1)、鼠李糖乳杆菌ZFM216发酵上清液的制备:
鼠李糖乳杆菌ZFM216(Lactobacillus rhamnosus ZFM216)接种至MRS液体培养基进行发酵,所得的发酵液离心,获得发酵上清液;
鼠李糖乳杆菌ZFM216(Lactobacillus rhamnosus ZFM216)的保藏编号为:CCTCCM2020325;
2)、选用大孔树脂吸附法处理发酵上清液,得蛋白质粗提液;
3)、蛋白质粗提液经凝胶层析分离,获得蛋白质初步纯化液;再经反相高效液相色谱纯化,获得鼠李糖乳杆菌ZFM216细菌素溶液。
作为本发明的鼠李糖乳杆菌ZFM216(Lactobacillus rhamnosus ZFM216)细菌素的分离纯化方法的改进,步骤1)为:
将培养至生长对数期的鼠李糖乳杆菌ZFM216(Lactobacillus rhamnosusZFM216),以2%(v/v)接种量接种到pH为6.4的MRS液体培养基中,于37℃静置培养21h;所得的发酵液离心(8000rpm、4℃离心30min),获得发酵上清液。
作为本发明的鼠李糖乳杆菌ZFM216(Lactobacillus rhamnosus ZFM216)细菌素的分离纯化方法的进一步改进,步骤2)为:
选用XAD-16大孔树脂吸附发酵上清液,20%乙醇洗脱,所得洗脱液为蛋白质粗提液。
作为本发明的鼠李糖乳杆菌ZFM216(Lactobacillus rhamnosus ZFM216)细菌素的分离纯化方法的进一步改进,步骤2)为:
将1L的鼠李糖乳杆菌ZFM216的发酵上清液以2mL/min的流速流过XAD-16大孔树脂,先用2L的超纯水冲洗;再依次用500mL的20%、30%、40%、60%、80%、100%的乙醇以2mL/min的流速进行洗脱,收集20%乙醇对应的洗脱液作为蛋白质粗提液。
作为本发明的鼠李糖乳杆菌ZFM216(Lactobacillus rhamnosus ZFM216)细菌素的分离纯化方法的进一步改进,步骤3)的凝胶层析分离为:
将蛋白质粗提液进行Sephadex LH-20凝胶层析,以超纯水作为洗脱液按照1mL/min流速洗脱;收集215nm/280nm吸光度下第一个吸收峰对应的洗脱液;得蛋白质初步纯化液。
作为本发明的鼠李糖乳杆菌ZFM216(Lactobacillus rhamnosus ZFM216)细菌素的分离纯化方法的进一步改进,步骤3)的反相高效液相色谱纯化为:
蛋白质初步纯化液先过0.22μm滤膜,采用制备型C18反相高效液相色谱(waters2998,美国)进行精细纯化,色谱柱选用SunfireTM Prep C18(5μm,10×100mm),进样体积为5mL;
在超纯水中加入占超纯水体积含量0.05%TFA作为流动相A,在乙腈中加入占乙腈体积含量0.05%TFA作为流动相B;梯度洗脱程序如下表:
收集280nm吸光度下第3个吸收峰对应的洗脱液;命名为峰3洗脱液,所述峰3洗脱液中含有鼠李糖乳杆菌ZFM216细菌素。
TFA为三氟乙酸。
作为本发明的鼠李糖乳杆菌ZFM216(Lactobacillus rhamnosus ZFM216)细菌素的分离纯化方法的进一步改进:将5mL的峰3洗脱液冷冻干燥后(于-20℃冷冻干燥至恒重)得到鼠李糖乳杆菌ZFM216细菌素,用1mL超纯水复溶,得峰3复溶液,所述峰3复溶液为鼠李糖乳杆菌ZFM216细菌素溶液。
本发明还同时提供了利用上述任一方法制备而得的鼠李糖乳杆菌细菌素在抗金黄色葡萄球菌中的应用。
说明:本发明的“耐药性”是耐甲氧西林抗生素的意思。
本发明的鼠李糖乳杆菌ZFM216细菌素,可有效抑制金黄色葡萄球菌D48,最小抑菌浓度为0.50mg/mL,抗菌作用模式为破坏细胞膜;经细菌素处理的金黄色葡萄球菌D48细胞内ATP水平在5min内迅速降低。经细菌素处理的金黄色葡萄球菌D48菌悬液电导率在5min内升高至最高值。经细菌素处理的金黄色葡萄球菌D48菌悬液荧光强度迅速增强。通过扫描电镜和透射观察经细菌素处理的金黄色葡萄球菌D48,其细胞结构被严重破坏、菌体表面发生皱缩、膜孔洞形成、细胞质流出。
与现有技术相比,本发明具有如下技术优势:
1.本发明应用“大孔树脂—凝胶层析—反相高效液相色谱”三步法从鼠李糖乳杆菌ZFM216发酵上清液中获得鼠李糖乳杆菌ZFM216细菌素,对金黄色葡萄球菌D48具有抗性。
2.本发明应用胞内ATP水平变化、胞外电导率、细胞膜电势差、细胞微观结构观察,明确鼠李糖乳杆菌ZFM216细菌素对金黄色葡萄球菌D48的抑菌作用模式为细胞膜破裂。
综上所述,本发明通过建立一种分离纯化技术方法获得新型的鼠李糖乳杆菌ZFM216细菌素,确定其对耐甲氧西林抗生素的金黄色葡萄球菌D48的抗菌作用模式,具有应用于食品防腐的潜力。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细说明。
图1为细菌素的纯化及鉴定:
图1中:a大孔树脂洗脱液抑菌活性;b为凝胶过滤层析洗脱液紫外吸收峰;c为凝胶洗脱峰抑菌活性;d为制备型HPLC纯化色谱图;e为分析型高效液相色谱图;f为鼠李糖乳杆菌ZFM216细菌素的SDS-PAGE图谱,其中标记M为蛋白Marker,1为纯化后的鼠李糖乳杆菌ZFM216细菌素。
图2为鼠李糖乳杆菌ZFM216细菌素对指示菌ATP水平的影响。
图3为鼠李糖乳杆菌ZFM216细菌素对指示菌电导率的影响。
图4为鼠李糖乳杆菌ZFM216细菌素对指示菌细胞膜电势差的影响。
图5为鼠李糖乳杆菌ZFM216细菌素处理前后金黄色葡萄球菌D48的扫描电镜图、透射电镜图。
图5中:
a为未经处理的金黄色葡萄球菌D48扫描电镜图;b为鼠李糖乳杆菌ZFM216细菌素处理1h后的金黄色葡萄球菌D48扫描电镜图;c为未经处理的金黄色葡萄球菌D48透射电镜图;d为鼠李糖乳杆菌ZFM216细菌素处理1h后的金黄色葡萄球菌D48透射电镜图。
具体实施方式
以下结合具体实施例进一步描述本发明,本发明的优点和特点将会随着描述而更为清楚。但这些实例仅是范例性的,并不对本发明的范围构成任何限制。
本发明中的鼠李糖乳杆菌(Lactobacillus rhamnosus)的保藏信息如下:
保藏名称:鼠李糖乳杆菌ZFM216 Lactobacillus rhamnosus ZFM216,保藏单位:中国典型培养物保藏中心,保藏地址:中国武汉武汉大学,保藏编号为:CCTCC NO:M2020325,保藏时间2020年7月17日。
实施例1:鼠李糖乳杆菌ZFM216细菌素的分离纯化
(1)、鼠李糖乳杆菌ZFM216发酵上清液的制备
将保藏在-80℃鼠李糖乳杆菌ZFM216划线于MRS固体培养基平板上,置于37℃的温度下进行培养,待其长出单菌落后挑取单菌落于10mL的MRS液体培养基中,培养至其生长对数期,以2%(v/v)接种量接种到20mL的MRS液体培养基中,传代培养至对数期,得到接种液。将接种液按最佳培养条件2%(v/v)的接种量接种于pH为6.4的MRS液体培养基中,37℃下静置培养21h。所得的发酵液在8000rpm离心30min(4℃),获得发酵上清液。
(2)、大孔树脂吸附法分离
将1L的鼠李糖乳杆菌ZFM216的发酵上清液以2mL/min的流速流过XAD-16大孔树脂,用约2L的超纯水冲洗未吸附的上清液。再依次用500mL的20%、30%、40%、60%、80%、100%的乙醇洗脱液以2mL/min的流速流过大孔树脂,收集各梯度下的洗脱液。以金黄色葡萄球菌D48为指示菌进行抑菌试验结果如图1a。由图可以看出20%乙醇洗脱液具有良好抑菌效果,所以选择20%乙醇洗脱液进行后续试验。
(3)、凝胶层析法分离
将步骤(2)所得到20%乙醇洗脱液作为具有抑菌活性的蛋白质粗提液,取20mL蛋白质粗提液进行Sephadex LH-20凝胶层析,以超纯水作为洗脱液1mL/min流速洗脱。检测得知:洗脱液在280nm/215nm的吸光度,出现两个单独的吸收峰(图1c)。收集两个组分对应洗脱液(即,收集第21~第26管为峰1对应的洗脱液;收集第36~第45管为峰2对应的洗脱液,每管3ml),浓缩后进行牛津杯法抑菌试验(以金黄色葡萄球菌D48为指示菌),结果显示峰1组分具有良好抑菌活性(图1b),收集组分1进行后续试验。
(4)、反相高效液相色谱
将步骤(3)所得的峰1对应的洗脱液进行收集(即,收集第21~第26管的洗脱液),共得到约18mL的洗脱液(即,收集的凝胶层析活性峰1),作为蛋白质初步纯化液。将蛋白质初步纯化液过0.22μm滤膜后,于4℃备用;采用制备型C18反相高效液相色谱(waters 2998,美国)进行精细纯化,色谱柱选用SunfireTM Prep C18(5μm,10×100mm);洗脱程序如表1所示,过滤后洗脱液的进样体积为5mL,流动相A为超纯水(含0.05%TFA,v/v),流动相B为乙腈(含0.05%TFA,v/v)。纯化结果如图1d,可以看到经高效液相色谱纯化后,在280nm的吸光度下得到是四个单峰,收集各个单峰用点样法进行抑菌活性测定(以金黄色葡萄球菌D48为指示菌),发现峰3有较好的的抑菌活性。
即,具体为:收集280nm吸光度下第3个吸收峰对应的洗脱液;命名为峰3洗脱液,所述峰3洗脱液中含有鼠李糖乳杆菌ZFM216细菌素。
表1、流动相洗脱梯度
(5)、分析型HPLC对细菌素纯度鉴定
将5mL的峰3洗脱液(即上述步骤4所得的由制备型HPLC纯化所得的具有较好抑菌活性的峰3收集物)冷冻干燥后(于-20℃冷冻干燥至恒重)得到鼠李糖乳杆菌ZFM216细菌素,用1mL超纯水复溶,得峰3复溶液,即鼠李糖乳杆菌ZFM216细菌素溶液;分析型HPLC(高效液相色谱仪waters 2998,美国)进行纯度检测,色谱柱选用SunfireTM Prep C18(5μm,4.6×250mm)。洗脱程序如表2所示,流动相同实施例1步骤(4),峰3复溶液进样体积为30μL。色谱图如图1e可见,280nm的吸光度下,16.34min出现单一色谱峰,表明细菌素得到了较好的纯化。
表2、流动相洗脱梯度
(6)Tricine-SDS-PAGE对细菌素分子量预估
将步骤(5)所得的鼠李糖乳杆菌ZFM216细菌素的溶液,使用SDS-PAGE电泳估测细菌素的分子量。结果如图1f所示,鼠李糖乳杆菌ZFM216细菌素的分子量大小约为13kDa。
(7)BCA试剂盒法测蛋白质含量
采用BCA试剂盒法测定蛋白质含量,其原理是在碱性的条件下蛋白质可以将二价铜离子还原成一价铜离子,独特的BCA Solution A(含有BCA)和一价铜离子相互作用产生敏感的颜色反应。两分子的BCA螯合一个铜离子,形成紫色的反应复合物。该水溶性的复合物在562nm处显示强烈的吸光性,吸光度和蛋白浓度在广泛范围内有良好的线性关系,因此根据吸光值可以推算出蛋白浓度。
本实验采用BCA试剂进行测定,首先按照100:1混合BCA Reagent A和BCA ReagentB配制成工作液;用BCA蛋白标准液和去离子配制梯度为2000μg/mL、1500μg/mL、1000μg/mL、750μg/mL、500μg/mL、250μg/mL、150μg/mL、0μg/mL的蛋白标准品。取25μL稀释后的蛋白标准液加入96孔板中,每个浓度取两组平行,加入200μL工作液立即均匀。37℃水浴30min后冷却至室温,使用酶标仪在562nm处测量吸光度。根据蛋白浓度为横坐标,吸光度为纵坐标的标准曲线,得到得到线性方程y=0.0017x+0.4019,线性相关系数R2=0.9936。
取2.5μL步骤(5)中制得的鼠李糖乳杆菌ZFM216细菌素溶液稀释10倍后,加入200μL工作液立即均匀。37℃水浴30min后冷却至室温,用酶标仪在562nm处测量吸光度。通过方程计算鼠李糖乳杆菌ZFM216细菌素溶液11.3mg/mL。
(8)细菌素活力测定
称取nisin(效价为1000IU/mg)0.04g溶解于0.02M的稀盐酸,得到效价为4000IU/mL的工作液。用0.02M的稀盐酸对工作液进行稀释,得到浓度梯度为4000、2000、1000、500、250、100、50、0IU/mL的nisin标准溶液;以金黄色葡萄球菌采用牛津杯琼脂扩散法进行抑菌试验,牛津杯孔洞中加入100μL nisin标准溶液;测量抑菌圈的直径,以抑菌直径为纵坐标,nisin溶液效价的对数值为横坐标绘制标准曲线。得到线性回归方程y=4.005x+6.5668,线性相关系数R2=0.9974。
在牛津杯孔洞中加入100μL鼠李糖乳杆菌ZFM216细菌素溶液,测量抑菌圈的直径,根据方程计算鼠李糖乳杆菌ZFM216细菌素溶液总活力为8805.38IU,比活力为778.23IU/mg。
实施例2:鼠李糖乳杆菌ZFM216细菌素对金黄色葡萄球菌D48最小抑菌浓度(MIC)测定:
挑选金黄色葡萄球菌D48单菌落接种至10mL LB培养基中,培养至OD600=0.6后,按1%接种量接种至LB液体培养基中;将实施例1所得的冻干的鼠李糖乳杆菌ZFM216细菌素用超纯水重溶稀释,按50μL体积加入到相应的96孔板中,形成终浓度梯度:2.00mg/mL、1.5mg/mL、1.00mg/mL、7.5mg/mL、0.50mg/mL、0.25mg/mL、0.125mg/mL、0.0625mg/mL、0.031mg/mL、0mg/mL;依次向96孔板中加入200μL指示菌液;培养12h后,在600nm波长下测定吸光度,以不含细菌素的菌液为对照。结果显示,鼠李糖乳杆菌ZFM216细菌素对金黄色葡萄球菌D48的最小抑菌浓度为0.50mg/mL。
实施例3:鼠李糖乳杆菌ZFM216细菌素对金黄色葡萄球菌D48 ATP水平影响的测定
将金黄色葡萄球菌D48在37℃下10mL LB液体培养至OD600=0.6,5000rpm离心20min,获得菌体;用5mM HEPES缓冲液清洗并重溶至10mL,得到菌悬液。将50μL 10mM葡萄糖溶液、100μL菌悬液与50μL细菌素溶液混合,使细菌素在混合液中终浓度为0.50mg/mL;阳性对照加入与细菌素等体积1%Triton X-100溶液(一种表面活性剂);阴性对照加等体积超纯水。每组各8个样品,每隔5min取一管于12000rpm/min,离心2min,弃上清;加入25μL ATP检测裂解液,100μL的ATP检测试剂工作液,重悬。用多功能酶标仪检测菌液荧光强度。结果如图2所示,经鼠李糖乳杆菌ZFM216细菌素处理的金黄色葡萄球菌D48的ATP水平在5min内迅速降低,与阳性对照组趋势一致,而阴性对照组ATP水平基本保持不变。说明鼠李糖乳杆菌ZFM216细菌素使金黄色葡萄球菌D48细胞表面受损,质子驱动力消失,导致细胞无法合成ATP,细胞内能量代谢紊乱。
说明:ATP检测裂解液、ATP检测试剂工作液来自ATP检测试剂盒,货号S0026。购自上海碧云天生物技术有限公司。
实施例4:鼠李糖乳杆菌ZFM216细菌素对金黄色葡萄球菌D48电导率水平影响的测定
金黄色葡萄球菌D48菌悬液制备方法同实施例3。将电导率仪电极探头插入菌悬液中,记录初始电导率。在实验组中迅速加入1×MIC终浓度的细菌素溶液;阳性对照组中加入等体积1%Triton X-100溶液,阴性对照组加等体积HEPES缓冲液。每隔1min读数一次,直到数值稳定。结果如图3所示,加入鼠李糖乳杆菌ZFM216细菌素后,金黄色葡萄球菌D48菌悬液电导率在5min内升高至最高值并保持平缓,与阳性对照组趋势一致,而阴性对照组ATP水平基本保持不变。说明鼠李糖乳杆菌ZFM216细菌素对金黄色葡萄球菌D48的细胞膜造成破坏,使胞内电解质外流。
实施例5:鼠李糖乳杆菌ZFM216细菌素对金黄色葡萄球菌D48膜电势差影响的测定
金黄色葡萄球菌D48菌体获得方法同实施例3,用5mM荧光泄露缓冲液洗涤并重悬至5mL,获得菌悬液。设定荧光探针DiSC2(5)激发波长650nm,发射波长670nm。扫描间隔定为Ex slit:5nm,Em slit:5nm,扫描时间15min。荧光比色皿中加入2mL荧光泄露缓冲液,20μL菌悬液,3μL 0.1mM探针DiSC2(5),混匀检测。待荧光响应值趋于稳定后,在实验组中迅速加入1×MIC终浓度的鼠李糖乳杆菌ZFM216细菌素溶液,在对照组中分别加入等体积的荧光泄露缓冲液和5%Triton X-100溶液。结果如图4所示,加入鼠李糖乳杆菌ZFM216细菌素的金黄色葡萄球菌D48菌悬液中荧光强度随着时间的推移而加强;阳性对照组经TritonX-100处理的金黄色葡萄球菌D48的荧光强度迅速升高至最高值,阴性对照组荧光强度保持不变。说明鼠李糖乳杆菌ZFM216细菌素对金黄色葡萄球菌D48的细胞膜造成了破坏,造成胞内荧光探针泄露。
说明:荧光泄露缓冲液配制方法为准确称取0.7455g氯化钾、0.2463g七水硫酸镁溶液;量取22.5mL 20%葡萄糖溶液、10mL磷酸缓冲液,超纯水定容至100mL后调节pH为7,4℃保存备用。
实施例6:鼠李糖乳杆菌ZFM216细菌素对金黄色葡萄球菌D48细胞微观结构的影响观察(扫描电镜和透射电镜)
(1)扫描电镜观察
将金黄色葡萄球菌D48培养至OD600=0.6,加入3×MIC终浓度的鼠李糖乳杆菌ZFM216细菌素溶液,对照组中加入等体积的pH 7.0磷酸缓冲液,37℃孵育1h。菌液在6000rpm条件下离心15min,弃上清。用0.1M pH 7.0的磷酸缓冲液漂洗后用2.5%的戊二醛溶液在4℃固定12h。用0.1M磷酸缓冲液漂洗,6000rpm/min离心15min,弃上清。再用1%锇酸溶液固定样品2h,获得已双固定菌体。用30%-100%乙醇溶液(10%递增)依次对双固定菌体进行脱水处理15min,弃上清。100%乙醇处理20min,离心弃上清。临界点干燥,镀膜,观察样品。如图5a,是未经处理的金黄色葡萄球菌D48,其细胞结构完整、细胞膜表面平滑圆润。如图5b,经鼠李糖乳杆菌ZFM216细菌素处理的金黄色葡萄球菌D48出现菌体表面皱缩、菌体破裂、部分细胞完全溶解的现象。
(2)透射电镜观察
已双固定菌体的获得方法同实施例6(1)。用30%-95%乙醇溶液(10%递增)依次对双固定菌体进行脱水处理,各15min,弃上清。再用100%乙醇处理20min,最后用纯丙酮处理20min,弃上清。分别用体积比分别为1:1、3:1的包埋剂与丙酮混合液处理样品1h、3h,并用纯包埋剂处理样品过夜。包埋后样品70℃加热12h,冷却。获得70-90nm厚度的切片,经柠檬酸铅溶液和醋酸双氧铀溶液各染色5-10min,观察样品。如图5c,未经处理的金黄色葡萄球菌D48菌体具有完整细胞结构,有典型且完整的细胞壁、膜结构,细胞质分布均匀密实。而如图5d,经鼠李糖乳杆菌ZFM216细菌素处理的细胞结构被严重破坏,细胞膜和细胞壁均有一定程度的破坏,细胞质流出。
对比例1、大孔树脂吸附法分离时,取消选择20%乙醇对应的洗脱液,而改成收集30%、40%、60%、80%、100%的乙醇对应的洗脱液。结果显示:对金黄色葡萄球菌基本无抑菌效果。
对比例2、凝胶层析法分离时,取消收集组分1对应洗脱液,即改成选择组分2进行后续操作。结果显示:对金黄色葡萄球菌基本无抑菌效果。
对比例3、反相高效液相色谱法分离时,取消收集峰3对应洗脱液,改成峰1、峰2、峰4对应洗脱液。结果显示:对金黄色葡萄球菌基本无抑菌效果。
最后,还需要注意的是,以上列举的仅是本发明的若干个具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。

Claims (4)

1.鼠李糖乳杆菌ZFM216(Lactobacillus rhamnosus ZFM216)细菌素的分离纯化方法,其特征在于包括如下步骤:
1)、鼠李糖乳杆菌ZFM216发酵上清液的制备:
鼠李糖乳杆菌ZFM216(Lactobacillus rhamnosus ZFM216)接种至MRS液体培养基进行发酵,所得的发酵液离心,获得发酵上清液;
鼠李糖乳杆菌ZFM216(Lactobacillus rhamnosus ZFM216)的保藏编号为:CCTCC M2020325;
2)、选用大孔树脂吸附法处理发酵上清液,得蛋白质粗提液:
选用XAD-16 大孔树脂吸附发酵上清液,20%乙醇洗脱,所得洗脱液为蛋白质粗提液;
3)、蛋白质粗提液经凝胶层析分离,获得蛋白质初步纯化液;再经反相高效液相色谱纯化,获得鼠李糖乳杆菌ZFM216细菌素溶液;
凝胶层析分离为:
将蛋白质粗提液进行Sephadex LH-20凝胶层析,以超纯水作为洗脱液按照1 mL/min流速洗脱;收集215 nm /280 nm吸光度下第一个吸收峰对应的洗脱液;得蛋白质初步纯化液;
反相高效液相色谱纯化为:
蛋白质初步纯化液先过0.22 μm滤膜,采用制备型C18反相高效液相色谱进行精细纯化,色谱柱选用SunfireTM Prep C18,进样体积为5 mL;
在超纯水中加入占超纯水体积含量0.05% TFA作为流动相A,在乙腈中加入占乙腈体积含量0.05% TFA作为流动相B;梯度洗脱程序如下表:
收集280 nm吸光度下第3个吸收峰对应的洗脱液;命名为峰3洗脱液,所述峰3洗脱液中含有鼠李糖乳杆菌ZFM216细菌素。
2.根据权利要求1所述的鼠李糖乳杆菌ZFM216(Lactobacillus rhamnosus ZFM216)细菌素的分离纯化方法,其特征在于所述步骤1)为:
将鼠李糖乳杆菌ZFM216(Lactobacillus rhamnosus ZFM216),以2%的体积比接种量接种到pH为6.4的MRS液体培养基中,于37℃静置培养21 h;所得的发酵液离心,获得发酵上清液。
3.根据权利要求2所述的鼠李糖乳杆菌ZFM216(Lactobacillus rhamnosus ZFM216)细菌素的分离纯化方法,其特征在于所述步骤2)为:
将1 L的鼠李糖乳杆菌ZFM216的发酵上清液以2 mL/min的流速流过XAD-16大孔树脂,先用2 L的超纯水冲洗;再依次用500 mL的20%、30%、40%、60%、80%、100%的乙醇以2 mL/min的流速进行洗脱,收集20%乙醇对应的洗脱液作为蛋白质粗提液。
4.根据权利要求1~3任一所述的鼠李糖乳杆菌ZFM216(Lactobacillus rhamnosus ZFM216)细菌素的分离纯化方法,其特征在于:将5 mL的峰3洗脱液冷冻干燥后得到鼠李糖乳杆菌ZFM216细菌素,用1 mL超纯水复溶,得峰3复溶液,所述峰3复溶液为鼠李糖乳杆菌ZFM216细菌素溶液。
CN202210476584.4A 2022-04-30 2022-04-30 抗耐药性金黄色葡萄球菌的细菌素的分离纯化方法 Active CN114874296B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210476584.4A CN114874296B (zh) 2022-04-30 2022-04-30 抗耐药性金黄色葡萄球菌的细菌素的分离纯化方法
US18/054,546 US11999769B2 (en) 2022-04-30 2022-11-11 Method for isolating and purifying bacteriocin against drug-resistant Staphylococcus aureus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210476584.4A CN114874296B (zh) 2022-04-30 2022-04-30 抗耐药性金黄色葡萄球菌的细菌素的分离纯化方法

Publications (2)

Publication Number Publication Date
CN114874296A CN114874296A (zh) 2022-08-09
CN114874296B true CN114874296B (zh) 2023-09-08

Family

ID=82674180

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210476584.4A Active CN114874296B (zh) 2022-04-30 2022-04-30 抗耐药性金黄色葡萄球菌的细菌素的分离纯化方法

Country Status (2)

Country Link
US (1) US11999769B2 (zh)
CN (1) CN114874296B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6476209B1 (en) * 2000-11-28 2002-11-05 Genesis Research & Development Corporation Ltd. Polynucleotides, materials incorporating them, and methods for using them
CN108148789A (zh) * 2018-03-06 2018-06-12 河南科技学院 一种鼠李糖乳杆菌及其在制备细菌素中的应用
CN111154676A (zh) * 2020-01-11 2020-05-15 浙江工商大学 鼠李糖乳杆菌胞外多糖及其制备方法和所用菌
CN112080445A (zh) * 2020-08-20 2020-12-15 浙江工商大学 植物乳杆菌zj316和在抑制幽门螺旋杆菌方面的应用
WO2021114659A1 (zh) * 2019-12-12 2021-06-17 石家庄君乐宝乳业有限公司 有益口腔健康的鼠李糖乳杆菌x253、其分离纯化方法及应用
CN113025518A (zh) * 2021-01-19 2021-06-25 西南大学 一种产细菌素的发酵乳杆菌及其在抑制发酵食品产白膜中的应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108518A1 (ja) * 2011-02-10 2012-08-16 国立大学法人広島大学 ラクトバチルス・ラムノーサス由来のバクテリオシン
CN102618456B (zh) * 2012-02-28 2013-08-21 江南大学 一种能够缓解慢性酒精性肝损伤的鼠李糖乳杆菌及其用途
KR102039844B1 (ko) * 2015-10-28 2019-11-01 미쓰이금속광업주식회사 프린트 배선판의 제조 방법
CN111285925B (zh) 2019-12-24 2021-02-23 顾容铖 副干酪乳杆菌zfm54细菌素的分离纯化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6476209B1 (en) * 2000-11-28 2002-11-05 Genesis Research & Development Corporation Ltd. Polynucleotides, materials incorporating them, and methods for using them
CN108148789A (zh) * 2018-03-06 2018-06-12 河南科技学院 一种鼠李糖乳杆菌及其在制备细菌素中的应用
WO2021114659A1 (zh) * 2019-12-12 2021-06-17 石家庄君乐宝乳业有限公司 有益口腔健康的鼠李糖乳杆菌x253、其分离纯化方法及应用
CN111154676A (zh) * 2020-01-11 2020-05-15 浙江工商大学 鼠李糖乳杆菌胞外多糖及其制备方法和所用菌
CN112080445A (zh) * 2020-08-20 2020-12-15 浙江工商大学 植物乳杆菌zj316和在抑制幽门螺旋杆菌方面的应用
CN113025518A (zh) * 2021-01-19 2021-06-25 西南大学 一种产细菌素的发酵乳杆菌及其在抑制发酵食品产白膜中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
The Extraction, Functionalities and Applications of Plant Polysaccharides in Fermented Foods: A Review;Theoneste Niyigaba et al;《Foods》;第10卷(第3004期);1-23 *

Also Published As

Publication number Publication date
US11999769B2 (en) 2024-06-04
US20230348544A1 (en) 2023-11-02
CN114874296A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
Wang et al. Antibacterial mechanism of plantaricin LPL-1, a novel class IIa bacteriocin against Listeria monocytogenes
Lv et al. Purification, characterization and action mechanism of plantaricin JY22, a novel bacteriocin against Bacillus cereus produced by Lactobacillus plantarum JY22 from golden carp intestine
Jacobsen et al. Viability staining and flow cytometric detection of Listeria monocytogenes
Zhijing et al. Screening beneficial bacteriostatic lactic acid bacteria in the intestine and studies of bacteriostatic substances
CN114874937B (zh) 清酒乳杆菌产细菌素的分离纯化及抗菌用途和所用乳酸菌
WO2023010820A1 (zh) 植物乳酸菌发酵上清中纯化吲哚-3-乳酸的方法
CN114874296B (zh) 抗耐药性金黄色葡萄球菌的细菌素的分离纯化方法
CN112094323B (zh) 一种植物乳杆菌源广谱抗菌肽及其应用
CN109652482B (zh) 一种抗菌肽及其制备方法与应用
CN116478256B (zh) 一种发酵乳杆菌产生的细菌素及应用
CN110511896A (zh) 一株产多细菌素的植物乳杆菌、细菌素及其提取方法和应用
CN115124603B (zh) 一种细菌素rsq01及其应用
CN110746488A (zh) 一种具有食品防腐保鲜作用的细菌素pe-zyb1及其应用
CN110982745B (zh) 一种戊糖片球菌z-1、戊糖片球菌细菌素z-1及戊糖片球菌细菌素z-1的生产方法
CN112575100B (zh) 含有特异性分子靶标的银白色葡萄球菌标准参考菌株及其检测和应用
CN117801080B (zh) 一种干酪乳杆菌细菌素及其应用
CN110790823A (zh) 一种解淀粉芽孢杆菌产抑菌活性物质的方法
CN117965348B (zh) 一种具有抑菌活性的副干酪乳酪杆菌ProSci-92及其用途
Zhang et al. New insight into the regulation of classⅡ bacteriocin production by quorum sensing in Lactobacillus pentosus 31-1
CN117683675B (zh) 一种产细菌素的植物乳杆菌w3-2、细菌素及其应用
CN114805343B (zh) 化合物及其制备方法和应用以及产生该化合物的微生物
LU502581B1 (en) Lactobacillus fermentum TY-S07 and application thereof
CN116063416A (zh) 一种具有抗菌防腐作用的格氏乳杆菌素及其应用
CN113373084B (zh) 一种抗菌且产胞外多糖的弯曲乳杆菌及其应用
CN117986329B (zh) 戊糖乳植物杆菌细菌素gfeb226及在食品保鲜中应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant