WO2012108223A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2012108223A1
WO2012108223A1 PCT/JP2012/050388 JP2012050388W WO2012108223A1 WO 2012108223 A1 WO2012108223 A1 WO 2012108223A1 JP 2012050388 W JP2012050388 W JP 2012050388W WO 2012108223 A1 WO2012108223 A1 WO 2012108223A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
ignition timing
supercharging
pressure
Prior art date
Application number
PCT/JP2012/050388
Other languages
English (en)
French (fr)
Inventor
露木 毅
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to KR1020137021717A priority Critical patent/KR101497861B1/ko
Priority to US13/983,632 priority patent/US9677499B2/en
Priority to EP12745386.8A priority patent/EP2674596B1/en
Priority to CN201280004998.1A priority patent/CN103299049B/zh
Publication of WO2012108223A1 publication Critical patent/WO2012108223A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • F02D43/04Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment using only digital means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/02Controlling engines characterised by their being supercharged the engines being of fuel-injection type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1504Digital data processing using one central computing unit with particular means during a transient phase, e.g. acceleration, deceleration, gear change
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1516Digital data processing using one central computing unit with means relating to exhaust gas recirculation, e.g. turbo
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device for ignition timing and valve timing of an internal combustion engine with a turbocharger.
  • JP 63-249773A discloses a configuration in which, in the low supercharging region during acceleration, the exhaust gas temperature is raised by correcting the ignition timing to change the combustion state to the afterburning state, thereby improving the supercharging efficiency. Has been.
  • JP2008-101502A the valve timing is controlled so that a scavenging effect is achieved in which fresh air is blown into the exhaust system, and the air-fuel ratio when fresh air blown into the exhaust system is afterburned in the exhaust system is determined by the afterburning.
  • the structure which raises supercharging efficiency by controlling so that exhaust temperature becomes the maximum is indicated.
  • JP63-248973A improves the supercharging efficiency only in the low supercharging region
  • JP2008-101502A improves the supercharging efficiency only in the high supercharging region where scavenging can occur.
  • JP63-248973A does not describe any valve timing control
  • JP2008-101502A does not describe any ignition timing control.
  • an object of the present invention is to provide a control device capable of suppressing turbo lag and improving the total acceleration performance from the low supercharging region to the high supercharging region.
  • the present invention provides a valve timing for controlling a variable valve mechanism in a control device for an internal combustion engine comprising a supercharger driven by exhaust energy and a variable valve mechanism capable of changing the valve timing.
  • the ignition timing retardation correction is completed, a valve overlap is provided, and an air-fuel ratio in which the mixture of scavenging gas and exhaust gas easily burns in the exhaust passage And an acceleration control means for changing the fuel injection amount.
  • FIG. 1 is a configuration diagram showing an example of a system to which the present invention is applied.
  • FIG. 2 is a diagram for explaining the scavenging effect.
  • FIG. 3 is a flowchart showing a control routine for ignition timing and valve timing executed by the control unit during acceleration.
  • FIG. 4 is a flowchart showing a control routine for setting scavenging valve timing executed by the control unit.
  • FIG. 5 is a time chart when the control of the present invention is executed.
  • FIG. 1 is a system configuration diagram of an internal combustion engine to which the present embodiment is applied.
  • a throttle chamber 4 for adjusting the amount of air flowing into the internal combustion engine 1 is provided at the inlet of the intake manifold 2 of the internal combustion engine 1, and an intake passage 6 is connected upstream thereof.
  • a compressor 5A of the supercharger 5 is installed on the upstream side of the throttle chamber 4 in the intake passage 6, and an air flow meter 8 for detecting the intake air amount is installed further upstream.
  • a fuel injection valve 15 that directly injects fuel into the cylinder is disposed in each cylinder of the internal combustion engine 1.
  • a turbine 5 ⁇ / b> B of the supercharger 5 is installed in the exhaust passage 7.
  • the supercharger 5 is a so-called turbocharger, and a compressor 5A and a turbine 5B are connected via a shaft 5C. For this reason, when the turbine 5B is rotated by the exhaust energy of the internal combustion engine 1, the compressor 5A is also rotated, and the intake air is pumped downstream.
  • An exhaust gas purification catalyst 18 is disposed downstream of the turbine 5B.
  • a three-way catalyst or the like is used as the exhaust catalyst 18.
  • variable valve mechanism 14 can change the intake valve closing timing (IVC) so that an overlap period in which both the exhaust valve and the intake valve are opened occurs.
  • IVC intake valve closing timing
  • a generally known variable valve mechanism such as one that changes the rotational phase of the intake camshaft relative to the crankshaft or one that changes the operating angle of the intake valve can be used.
  • a similar variable valve mechanism 14 may be provided on the exhaust valve side to variably control the valve timing of the intake valve and the exhaust valve.
  • the control unit 12 includes an intake air amount detected by the air flow meter 8, an accelerator opening detected by the accelerator opening sensor 13, a collector pressure detected by the intake pressure sensor 19, and an engine speed detected by a crank angle sensor (not shown).
  • the parameters relating to the operating state are read, and the ignition timing, valve timing, air-fuel ratio, and the like are controlled based on these parameters.
  • valve timing control and air-fuel ratio control performed by the control unit 12 during acceleration will be described.
  • control unit 12 When the pressure in the intake manifold 2 is higher than the pressure in the exhaust manifold 3, the control unit 12 is a variable valve operation so that a valve overlap period during which the intake valve and the exhaust valve are open occurs. Actuate mechanism 14.
  • FIG. 2 shows the stroke order of an in-line four-cylinder internal combustion engine in which the ignition order is the first cylinder, the third cylinder, the fourth cylinder, and the second cylinder.
  • the hatched portion in the figure indicates the valve overlap period.
  • the exhaust manifold 3 joins the exhaust gas discharged from the cylinder during the exhaust stroke and the scavenging gas of the other cylinders during the intake stroke at that time.
  • the exhaust gas exhausted in the exhaust stroke # 3ex of the third cylinder in FIG. 2 and the scavenged gas scavenged in the valve overlap period # 1sc of the first cylinder, which is the intake stroke at that time merge.
  • the amount of gas introduced into the turbine 5B increases when there is no valve overlap period, that is, when there is no scavenging.
  • the rotational speed of the turbine 5B increases, the supercharging pressure by the compressor 5A increases, and the collector pressure increases.
  • the scavenging discharges the residual gas in the cylinder together with the fresh air gas, the efficiency of filling the fresh air in the cylinder is increased as a result.
  • the supercharging pressure is obtained by subtracting the atmospheric pressure from the collector pressure, if the collector pressure is detected, the supercharging pressure is indirectly detected.
  • the energy for rotating the turbine 5B is further increased, and the supercharging efficiency is improved. For this reason, before the mixture of the exhaust gas exhausted from a certain cylinder during the exhaust stroke and the scavenged gas scavenged from the cylinder that is in the intake stroke at the same time during the valve overlap period flows into the turbine 5B.
  • the fuel injection amount is set so that the air-fuel ratio is easy to burn.
  • the air-fuel ratio in the cylinder is made richer than the stoichiometric air-fuel ratio, exhaust gas containing unburned hydrocarbons is exhausted, and this exhaust gas and scavenging gas are mixed to facilitate combustion.
  • the fuel injection amount is set so that the stoichiometric air-fuel ratio is obtained.
  • the exhaust gas discharged in the exhaust stroke # 3ex of the third cylinder and the valve overlap of the first cylinder A fuel injection amount is set such that the mixture of scavenging gas discharged in the period # 1sc has an air-fuel ratio at which it is easy to burn. That is, when focusing on the air-fuel ratio in the cylinder of the third cylinder, the air-fuel ratio becomes richer than the stoichiometric air-fuel ratio, and exhaust gas including unburned fuel is discharged in the exhaust stroke.
  • the fuel injection amount set as described above is all injected by one fuel injection per stroke.
  • the fuel injection timing is after the valve overlap period during the intake stroke, that is, after the exhaust valve is closed, or during the compression stroke.
  • the fuel that becomes unburned hydrocarbons in the exhaust gas changes from higher hydrocarbons with long carbon chains to lower hydrocarbons with short carbon chains by receiving the heat of combustion during the expansion stroke. , More combustible.
  • the air-fuel ratio in the cylinder becomes richer than the stoichiometric air-fuel ratio, it approaches the output air-fuel ratio, so that the output can be improved as compared with the case of operating at the stoichiometric air-fuel ratio.
  • the inside of the cylinder is cooled by the latent heat of vaporization when the fuel is vaporized in the cylinder, it contributes to the improvement of the charging efficiency.
  • the valve overflow is set according to the acceleration state so that the scavenging amount does not exceed the combustion limit. Set the lap period. If the relationship between the scavenging amount and the valve overlap period is obtained in advance according to the specifications of the internal combustion engine to be applied, the valve overlap period can be easily set based on the scavenging amount.
  • the scavenging effect is obtained after the supercharging pressure exceeds several [kPa], that is, after the collector pressure exceeds atmospheric pressure + several [kPa].
  • the turbocharging efficiency is improved by retarding the ignition timing until reaching the supercharging pressure at which the scavenging effect is obtained from the start of acceleration.
  • retarding refers to retarding what is normally set to the optimal ignition timing (MBT).
  • MBT optimal ignition timing
  • the ignition is delayed from the case of MBT, and if combustion continues even after the exhaust valve is opened, higher temperature exhaust gas is discharged into the exhaust passage 7. As the exhaust gas becomes higher in temperature, the energy for rotating the turbine 5B increases, and as a result, the rotation of the compressor 5A becomes faster, so that the supercharging efficiency is improved.
  • the ignition timing is set to MBT, and in the low supercharging area after supercharging work is started, the ignition timing is retarded, so that full-scale supercharging work is performed.
  • the ignition timing is returned to MBT and the valve timing is controlled so that the scavenging effect is obtained.
  • FIG. 3 is a flowchart showing a control routine for ignition timing and valve timing during acceleration. This routine is repeatedly executed at intervals of about 10 milliseconds, for example.
  • step S100 the control unit 12 determines whether the torque fluctuation is an acceleration request from the non-supercharged state to the supercharged state, that is, whether the effect of using the scavenging effect or the like is large. For example, it determines based on the magnitude
  • the control unit 12 executes the process of step S110 if the determination result is yes, and ends this routine if the determination result is no. When the determination result is no and this routine is terminated, for example, an increase in the fuel injection amount according to the accelerator opening is executed, as in the general control of the internal combustion engine.
  • processing after step S110 may be executed whenever there is an acceleration request. However, when the torque fluctuation for satisfying the acceleration request is small, the effect of executing the processing after step S110 is also small.
  • step S110 the control unit 12 detects that the collector pressure detected by the intake pressure sensor 19 is a pressure corresponding to the throttle chamber fully opened when the internal combustion engine 1 is a natural intake internal combustion engine (hereinafter referred to as a natural intake upper limit equivalent pressure). It is determined whether or not it has been reached. This determination is to determine whether or not the supercharger 5 is performing supercharging work.
  • a natural intake upper limit equivalent pressure a pressure corresponding to the throttle chamber fully opened when the internal combustion engine 1 is a natural intake internal combustion engine (hereinafter referred to as a natural intake upper limit equivalent pressure). It is determined whether or not it has been reached. This determination is to determine whether or not the supercharger 5 is performing supercharging work.
  • the natural intake upper limit equivalent pressure seems to be atmospheric pressure because it is the collector pressure before the throttle chamber 4 is fully opened and supercharging is started. Does not rise and becomes a pressure lower than atmospheric pressure. That is, when the collector pressure reaches atmospheric pressure, the supercharger 5 is performing supercharging work although it is small. Therefore, the criterion is not the “atmospheric pressure” but the natural intake upper limit equivalent pressure.
  • the control unit 12 executes the process of step S120 if the determination result in step S110 is yes, and ends this routine if the determination result is no.
  • step S120 the control unit 12 sets a retard amount with respect to MBT as the reference ignition timing.
  • a value is set so as not to cause a stagnation in the torque change of the internal combustion engine 1.
  • the specific retard amount varies depending on the specifications of the internal combustion engine 1 and the supercharger 5, but is the largest when the ignition timing retard is started, and the retard amount gradually decreases with time. To.
  • the rotational speed of the turbine 5B is still low. Therefore, by increasing the retardation amount, the exhaust temperature increases, and the turbine rotational speed can be quickly increased.
  • the turbine rotation speed increases and the boost pressure increases, the amount of exhaust discharged from the internal combustion engine increases. Therefore, the turbine rotation speed can be increased without increasing the supply energy to the turbine 5B due to the exhaust temperature increase. It becomes easy to rise. Therefore, by gradually reducing the ignition timing retard amount, it is possible to reduce the amount of torque reduction while rapidly increasing the turbine rotation speed.
  • turbo lag Such a decrease in acceleration that occurs until the finally obtained acceleration is reached is referred to as a turbo lag.
  • the ignition timing is retarded when the natural intake upper limit equivalent pressure is reached, so the upper limit torque in the natural intake region is lower than when the ignition timing is not retarded and enters the supercharging region.
  • the drop in the acceleration is also reduced.
  • the turbine rotation speed is rapidly increased by the ignition timing retardation, the period during which the torque increase stagnates is shortened. That is, since the acceleration drop width can be reduced and the drop period can be shortened, the turbo lag is reduced.
  • step S130 the control unit 12 calculates an ignition timing retarded by the retard amount calculated in step S120 from the MBT as the reference ignition timing.
  • step S140 the control unit 12 determines whether or not it is time to end the retard of the ignition timing, and executes the process of step S150 when the end timing is reached. finish.
  • the timing for ending the ignition timing retarding can provide a scavenging effect that can increase the turbine rotational speed by providing valve overlap even if the control for increasing the supply energy to the turbine 5B by the ignition timing retarding is terminated. It is the timing when it becomes ready. Specifically, this is the timing when the supercharging work starts and the supercharging pressure starts to rise significantly.
  • a collector pressure at which a target scavenging amount is obtained is set in advance as a target collector pressure, and when the collector pressure reaches the target collector pressure, it is determined that the end timing is reached.
  • the “target scavenging amount” means that the exhaust gas including the scavenged gas is combusted in the exhaust manifold 3 even after the increase control of the supply energy to the turbine 5B by the ignition timing retardation is completed.
  • the scavenging amount that can increase the rotation speed for example, a value that is 2 to 3% or more in terms of scavenging rate is set.
  • the scavenging rate for example, a map in which the scavenging rate is assigned to the differential pressure between the collector pressure and the exhaust pressure and the valve overlap amount is created for each engine speed and stored in the control unit 12. It can be calculated by searching. Therefore, in step S140, the scavenging rate can be used for determination.
  • step S140 the collector pressure after the operation delay time is predicted based on the change rate of the collector pressure, and the change of the valve timing may be started when the predicted value reaches the target collector pressure. Thereby, when the actual collector pressure reaches the target collector pressure, the change of the valve timing is completed.
  • step S150 the control unit 12 ends the ignition timing retardation.
  • step S160 the control unit 12 executes a subroutine for setting the valve timing for scavenging.
  • FIG. 4 is a flowchart showing a control routine for setting the scavenging valve timing executed by the control unit 12. With this control routine, the valve timing is changed according to the acceleration state, and the air-fuel mixture in the exhaust manifold 3 including the scavenged gas is controlled to be easily combusted.
  • step S200 the control unit 12 reads the operating state, for example, the collector pressure, the engine speed, the intake air temperature, the atmospheric pressure, the basic injection pulse, and the like.
  • step S210 the control unit 12 calculates a scavenging amount upper limit value obtained from the operation state.
  • the scavenging amount upper limit is determined in order to suppress the deterioration of the exhaust catalyst 18. That is, when the fuel injection is performed so that the air-fuel ratio in the exhaust manifold 3 including the scavenging amount becomes the stoichiometric air-fuel ratio, and the mixture of the exhaust gas and the scavenging gas is burned in the exhaust manifold 3, the scavenging amount is large. Indeed, the temperature increase of the exhaust catalyst 18 due to combustion increases. The exhaust catalyst 18 causes deterioration of exhaust purification performance when the temperature rises excessively. Therefore, an upper limit value of the scavenging amount for suppressing the temperature rise of the exhaust catalyst 18 is set.
  • the collector pressure, engine rotation speed, basic injection pulse, intake air temperature, and atmospheric pressure are read.
  • a catalyst upper limit temperature that is an upper limit temperature at which the exhaust catalyst 18 does not deteriorate in performance and an estimated scavengeless catalyst temperature that is an estimated temperature of the exhaust catalyst 18 when the mixture of scavenging gas and exhaust gas is not burned in the current operating state is calculated.
  • the temperature rise of the exhaust catalyst 18 can be allowed during the scavenging by the permissible value for the catalyst temperature rise during the scavenging.
  • the scavenging amount that rises by the scavenging catalyst temperature rise allowable value when burned is the scavenging amount upper limit. Therefore, the scavenging amount upper limit value is calculated by searching a map prepared in advance from the scavenging catalyst temperature increase allowable value and the air-fuel ratio in the cylinder of the internal combustion engine 1.
  • step S220 the control unit 12 determines the valve overlap period based on the scavenging amount obtained in step S210. If the scavenging amount and the valve overlap period are obtained in advance according to the specifications of the internal combustion engine to be applied, the valve overlap period can be easily set based on the scavenging amount.
  • step S230 the control unit 12 determines the conversion angle of the variable valve mechanism 14 for realizing the valve overlap period determined in step S220. If the relationship between the valve overlap period and the conversion angle is obtained in advance in accordance with the profile of the intake cam and exhaust cam of the internal combustion engine 1 to be applied, the conversion angle can be easily determined in accordance with the valve overlap period. Can do.
  • step S240 the control unit 12 corrects the fuel injection amount so that the air-fuel ratio in the exhaust manifold 3 including the scavenging amount becomes the stoichiometric air-fuel ratio.
  • FIG. 5 is a time chart showing a result of executing the control of FIGS. 3 and 4 described above.
  • the solid line in the figure shows the case where ignition timing retard and scavenging switching control (hereinafter referred to as the main control) is executed, and the broken line shows the normal acceleration case where these controls are not executed.
  • the ignition timing deviation chart shows deviation from MBT as the reference ignition timing.
  • MBT changes every moment according to the driving
  • the torque peak in the natural intake region is lower than that in normal acceleration, thereby lowering the acceleration peak.
  • the present control ends the ignition timing retard and switches to the valve timing control for the scavenging effect.
  • the mixture of the scavenging gas and the exhaust gas burns in the exhaust manifold 3 and the energy supplied to the turbine 5B increases, and the torque increase speed increases.
  • the torque peak in the natural intake region is lowered by the ignition timing retardation as compared with the case of normal acceleration. Further, since the exhaust gas temperature is increased by retarding the ignition timing, the energy applied to the turbine 5B is increased by increasing the exhaust gas volume, and the rotational speed of the turbine 5B is increased rapidly. Further, the torque increase is smoothed by gradually decreasing the retard amount of the ignition timing as the turbine rotational speed increases. As a result, both suppression of the turbo lag and quick rise of the supercharging pressure can be achieved.
  • the air-fuel mixture including the scavenged gas can be burned in the exhaust manifold 3 to further increase the torque.
  • the ignition timing is retarded in the low supercharging region, so the acceleration peak in the natural intake region is lowered, and the increase in the turbine rotation speed is accelerated by the rise in the exhaust temperature, and the turbo lag is suppressed.
  • the In the high supercharging region the ignition timing retardation correction is completed, a valve overlap is provided, and the fuel injection amount is set so that the air-fuel mixture in the exhaust manifold 3 including the scavenging gas becomes the stoichiometric air-fuel ratio.
  • the torque rises rapidly due to the energy of afterburning of the mixture of scavenging gas and exhaust gas. That is, it is possible to achieve both suppression of the turbo lag and quick rise of torque.
  • the ignition timing is retarded at the timing when the supercharging is started, and if the valve overlap is provided, the ignition timing is retarded at the timing when the supercharging pressure at which the scavenging effect is obtained is obtained. It is possible to reduce the feeling of stagnation until the torque starts to increase significantly after supercharging work starts.
  • the retard correction amount of the ignition timing is the largest at the start of the retard correction, and gradually decreases as the turbocharger speed increases. That is, the exhaust gas temperature is increased more greatly as the exhaust gas flow rate is smaller, the increase in the exhaust gas temperature is reduced as the exhaust gas flow rate is increased, and the amount of torque reduction due to the ignition timing retardation is reduced. Thereby, a torque can be raised smoothly and rapidly after supercharging start.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

排気エネルギにより駆動する過給機と、可変動弁機構と、を備える内燃機関の制御装置において、可変動弁機構を制御するバルブタイミング変更手段と、点火時期変更手段と、燃料噴射量変更手段と、加速要求検知手段と、過給圧検出手段と、加速要求を検知した場合に、過給圧が所定値より低い低過給領域では点火時期を遅角補正し、過給圧が所定値以上の高過給領域では、点火時期の遅角補正を終了してバルブオーバーラップを設け、排気通路内で掃気ガスと排気ガスの混合気が燃焼し易い空燃比になるよう燃料噴射量を変更する加速制御手段と、を備える。

Description

内燃機関の制御装置
 本発明は、ターボ過給機付き内燃機関の点火時期及びバルブタイミングの制御装置に関する。
 近年、環境性能向上等の観点から内燃機関の排気量を縮小し、小排気量化による出力低下を補うためにターボ過給機を備える車両が注目されている。このような車両で、大排気量の自然吸気内燃機関を搭載した車両のような加速感を得るためには、過給効率を高めて高トルクを発生させ、かつ、いわゆるターボラグを抑制する必要がある。
 JP63-248973Aには、加速時の低過給域において、点火時期を遅角補正して燃焼状態を後燃え状態にすることによって排気温度を上昇させ、これによって過給効率を向上させる構成が開示されている。
 また、JP2008-101502Aには、新気が排気系へ吹抜ける掃気効果が得られるバルブタイミングに制御し、排気系へ吹き抜けた新気が排気系で後燃えするときの空燃比を、後燃えによる排気温度が最大となるように制御することによって過給効率を高める構成が開示されている。
 ところで、JP63-248973Aの制御で過給効率が改善するのは低過給域のみであり、JP2008-101502Aの制御で過給効率が向上するのは、掃気が起こり得る高過給領域だけである。また、JP63-248973Aにはバルブタイミングの制御について何ら記載されておらず、JP2008-101502Aには点火時期の制御について何ら記載されていない。
 したがって、JP63-248973A及び2に記載された制御を組み合わせたところで、過給効率を向上させるための制御を、点火時期の遅角補正制御から掃気用のバルブタイミング制御へ切り換えるのに好適なタイミングが不明であり、低過給域から高過給域までのトータルの加速性能を向上させることはできない。
 また、いわゆるターボラグを抑制することについて、いずれの特許文献にも記載されていない。
 本発明の目的は、したがって、ターボラグを抑制し、かつ低過給域から高過給域までのトータルの加速性能を向上させ得る制御装置を提供することである。
 上記目的を達成するため、本発明は、排気エネルギにより駆動する過給機と、バルブタイミングを変更し得る可変動弁機構とを備える内燃機関の制御装置において、可変動弁機構を制御するバルブタイミング変更手段と、点火時期変更手段と、燃料噴射量変更手段と、運転者の加速要求を検知する加速要求検知手段と、過給機による過給圧を検出する過給圧検出手段とを備える。また、加速要求を検知した場合に、過給圧が所定値より低い低過給領域では点火時期を遅角補正する。そして、過給圧が所定値以上の高過給領域では、点火時期の遅角補正を終了してバルブオーバーラップを設け、排気通路内で掃気ガスと排気ガスの混合気が燃焼し易い空燃比になるよう燃料噴射量を変更する加速制御手段とを備えることを特徴とする。
 この発明の詳細並びに他の特徴や利点は、明細書の以降の記載の中で説明されるとともに、添付された図面に示される。
図1は、本発明を適用するシステムの一例を示す構成図である。 図2は、掃気効果について説明するための図である。 図3は、コントロールユニットが加速時に実行する点火時期及びバルブタイミングの制御ルーチンを示すフローチャートである。 図4は、コントロールユニットが実行する、掃気用のバルブタイミングを設定するための制御ルーチンを示すフローチャートである。 図5は、本発明の制御を実行した場合のタイムチャートである。
 図1は本実施形態を適用する内燃機関のシステム構成図である。
 内燃機関1の吸気マニホールド2の入口には、内燃機関1に流入する空気量を調整するためのスロットルチャンバ4が設けられ、その上流には吸気通路6が接続されている。吸気通路6のスロットルチャンバ4より上流側には、過給機5のコンプレッサ5Aが設置され、更にその上流には、吸入空気量を検出するエアフローメータ8が設置されている。
 内燃機関1の各シリンダには燃料をシリンダ内に直接噴射する燃料噴射弁15が配置されている。排気通路7には、過給機5のタービン5Bが設置されている。
 過給機5は、いわゆるターボ式過給機であり、コンプレッサ5Aとタービン5Bがシャフト5Cを介して接続されている。このため、タービン5Bが内燃機関1の排気エネルギにより回転すると、コンプレッサ5Aも回転し、吸入空気を下流側に圧送する。
 タービン5Bの下流側には、排気浄化用の排気触媒18が配置される。排気触媒18としては、三元触媒等が用いられる。
 可変動弁機構14は、排気弁と吸気弁のいずれもが開弁したオーバーラップ期間が生ずるように、吸気弁閉時期(IVC)を変化させ得るものであれば足りる。例えば、クランクシャフトに対する吸気カムシャフトの回転位相を変化させるものや、吸気バルブの作動角を変化させるもの等、一般的に知られている可変動弁機構を用いることができる。なお、排気弁側にも同様の可変動弁機構14を設けて、吸気弁及び排気弁のバルブタイミングを可変制御するようにしてもよい。
 コントロールユニット12は、エアフローメータ8で検出する吸入空気量、アクセル開度センサ13で検出するアクセル開度、吸気圧センサ19で検出するコレクタ圧、その他図示しないクランク角センサで検出するエンジン回転速度等といった運転状態に関するパラメータを読み込み、これらに基づいて点火時期、バルブタイミング、空燃比等の制御を行う。
 次に、コントロールユニット12が加速時に行うバルブタイミング制御及び空燃比制御について説明する。
 コントロールユニット12は、吸気マニホールド2内の圧力が排気マニホールド3内の圧力より高い場合には、吸気弁及び排気弁が開弁しているバルブオーバーラップ期間が生ずるバルブタイミングとなるように可変動弁機構14を作動させる。
 これは、バルブオーバーラップ期間中に、吸気マニホールド2から流入した新気が掃気ガスとしてそのまま排気マニホールド3へ吹き抜ける、いわゆる掃気効果を利用して、タービン5Bの回転速度を高め、シリンダ内への充填効率を高めるためである。
 この効果について図2を用いて具体的に説明する。図2は点火順序が1番気筒-3番気筒-4番気筒-2番気筒である直列4気筒内燃機関の行程順序について示したものである。図中の斜線を付した部分はバルブオーバーラップ期間を示す。
 バルブオーバーラップ期間を設けると、排気マニホールド3では排気行程中の気筒から排出される排気ガスと、そのとき吸気行程中である他の気筒の掃気ガスが合流する。例えば、図2の3番気筒の排気行程#3exで排気される排気ガスと、そのとき吸気行程である1番気筒のバルブオーバーラップ期間#1scに掃気される掃気ガスが合流する。
 このため、バルブオーバーラップ期間が無い場合、つまり掃気が無い場合に比べてタービン5Bに導入されるガス量が増加する。これによりタービン5Bの回転速度が高まり、コンプレッサ5Aによる過給圧が上昇してコレクタ圧が高まる。また、掃気によって新気ガスとともにシリンダ内の残留ガスも排出されるので、結果的にシリンダの新気の充填効率が高まる。
 なお、過給圧はコレクタ圧から大気圧を差し引いたものなので、コレクタ圧を検出すれば、間接的に過給圧を検出することになる。
 さらに、排気マニホールド3で合流した排気ガスと掃気ガスの混合気をタービン5Bに流入する前に燃焼させることによって、タービン5Bを回転させるためのエネルギがより増大し、過給効率が向上する。このために、あるシリンダから排気行程中に排気される排気ガスと、同時期に吸気行程となるシリンダからバルブオーバーラップ期間中に掃気される掃気ガスの混合気が、タービン5Bに流入する前に燃焼し易い空燃比となるように燃料噴射量を設定する。すなわち、シリンダ内の空燃比を理論空燃比よりもリッチな空燃比にして、未燃炭化水素を含んだ排気ガスを排出させ、この排気ガスと掃気ガスとが混合することで燃焼し易い空燃比、例えば理論空燃比になるような燃料噴射量を設定する。
 例えば、図2の3番気筒の吸気行程#3inで吸入した空気量に対する燃料噴射量を設定する場合は、3番気筒の排気行程#3exで排出される排気ガスと1番気筒のバルブオーバーラップ期間#1scで排出される掃気ガスの混合気が燃焼し易い空燃比となるような燃料噴射量を設定する。つまり、3番気筒のシリンダ内の空燃比に着目すると、理論空燃比よりリッチな空燃比となり、排気行程では未燃燃料を含む排気ガスが排出される。
 上記のように設定した燃料噴射量は、1行程あたり1回の燃料噴射によってすべて噴射する。燃料噴射時期は、吸気行程中のバルブオーバーラップ期間終了後、つまり排気弁閉弁後、又は圧縮行程中とする。
 このように燃料噴射すると、排気ガス中の未燃炭化水素となる燃料は、膨張行程中の燃焼熱を受けることで炭素鎖の長い高級炭化水素から炭素鎖が短い低級炭化水素へと変化して、より燃焼性が高くなる。また、シリンダ内の空燃比が理論空燃比よりリッチになることで、出力空燃比に近づくので、理論空燃比で運転する場合より出力を向上させ得る。さらに、燃料がシリンダ内で気化する際の気化潜熱によってシリンダ内が冷却されるので、充填効率の向上に寄与する。
 なお、掃気量が増大するほど、排気管内空燃比を所望の空燃比にするために必要な燃料量も増大し、これに伴ってシリンダ内の空燃比もよりリッチ化する。そこで、排気管内空燃比を所望の空燃比にするための燃料噴射量としたときに、シリンダ内の空燃比が燃焼限界を超えないような掃気量となるように、加速状態に応じてバルブオーバーラップ期間を設定する。適用する内燃機関の仕様に応じて、掃気量とバルブオーバーラップ期間との関係を予め求めておけば、掃気量に基づいて容易にバルブオーバーラップ期間を設定することができる。
 ところで、掃気効果が得られるのは過給圧が数[kPa]を超えてから、つまりコレクタ圧が大気圧+数[kPa]を超えてからである。
 そこで、加速開始から掃気効果が得られる過給圧に達するまでは、点火時期遅角によって過給効率を向上させる。ここでいう「遅角」とは、通常は最適点火時期(MBT)に設定されているものを、遅角させることをいう。点火時期遅角によって過給効率が向上するメカニズムは次の通りである。
 点火時期を遅角することによって、着火をMBTの場合より遅らせ、排気弁が開弁しても燃焼が続いている状態にすると、より高温の排気が排気通路7に排出されることになる。排気が高温になるほどタービン5Bを回転させるエネルギが大きくなり、結果的にコンプレッサ5Aの回転がより速くなるので、過給効率が向上する。
 ただし、点火時期を遅角することでMBTの場合よりも出力は低下するので、過給機5が過給仕事を始める前に点火時期を遅角させると、かえって加速性能が低下するおそれがある。
 そこで、加速開始から過給機5が過給仕事を開始するまでは点火時期をMBTとし、過給仕事を開始した後の低過給領域では点火時期を遅角し、本格的な過給仕事が始まってバルブオーバーラップを設ければ掃気効果が得られる程度まで過給圧が上昇したら点火時期をMBTに戻し、バルブタイミングを掃気効果が得られるよう制御する。この制御の具体例について、図3を参照して説明する。
 図3は加速時における点火時期及びバルブタイミングの制御ルーチンを示すフローチャートである。本ルーチンは例えば10ミリ秒程度の間隔で繰り返し実行する。
 ステップS100で、コントロールユニット12は、トルク変動が非過給状態から過給状態にわたる加速要求か否か、つまり掃気効果等を利用する効果が大きいか否かを判定する。例えば、アクセル開度の大きさや、その継続時間に基づいて判定し、所定以上のアクセル開度が所定時間以上継続したらyesと判定する。コントロールユニット12は、判定結果がyesの場合はステップS110の処理を実行し、noの場合は本ルーチンを終了する。判定結果がnoとなり本ルーチンを終了した場合は、一般的な内燃機関の制御と同様に、例えばアクセル開度に応じた燃料噴射量の増量等を実行する。
 なお、加速要求があった場合には常にステップS110以降の処理を実行するようにしても構わない。ただし、加速要求を満足する為のトルク変動が小さい場合には、ステップS110以降の処理を実行することによる効果も小さくなる。
 ステップS110で、コントロールユニット12は、吸気圧センサ19により検出したコレクタ圧が、内燃機関1を自然吸気内燃機関とした場合におけるスロットルチャンバ全開時相当の圧力(以下、自然吸気上限相当圧力という)に達しているか否かを判定する。この判定は、過給機5が過給仕事をしているか否かを判定するものである。
 自然吸気上限相当圧力は、スロットルチャンバ4が全開で、かつ過給が始まる前のコレクタ圧であるから、大気圧になるようにも思われるが、実際には充填効率等の影響で大気圧までは上昇せず大気圧より低い圧力となる。すなわち、コレクタ圧が大気圧に達したときには、過給機5は少ないながらも過給仕事をしていることになる。そこで、判定基準を「大気圧」ではなく自然吸気上限相当圧力とした。
 ただし、以下の説明においては、コレクタ圧が大気圧になるまでを自然吸気領域、大気圧を超えたら過給領域とよぶこととする。
 コントロールユニット12は、ステップS110の判定結果がyesの場合はステップS120の処理を実行し、noの場合は本ルーチンを終了する。
 ステップS120で、コントロールユニット12は、基準点火時期としてのMBTに対する遅角量を設定する。ここでは、点火時期遅角による排気温度上昇効果、トルク低下効果、およびタービン回転速度上昇効果の3つの要素に基づいて、内燃機関1のトルク変化に停滞感が生じないような値を設定する。
 具体的な遅角量は内燃機関1や過給機5の仕様に応じて異なるが、点火時期遅角を開始するときが最も大きく、時間の経過に伴って徐々に遅角量が小さくなる特性にする。
 点火時期遅角を開始するタイミングでは、タービン5Bの回転速度がまだ低いので、より大きな遅角量にすることで排気温度の上昇代が大きくなり、タービン回転速度を速やかに上昇させることができる。
 一方、タービン回転速度が上昇して過給圧が高まると、内燃機関から排出される排気の量が増加するので、排気温度上昇によってタービン5Bへの供給エネルギを増大させなくてもタービン回転速度は上昇しやすくなる。そこで、点火時期遅角量を徐々に小さくすることで、タービン回転速度を速やかに上昇させつつトルクの低下量を低減することができる。
 また、一般的なターボ過給機付き内燃機関では、自然吸気領域の上限までトルクが増加したときにタービン回転速度が十分に高まっておらず、過給領域に入ってから過給圧が高まるまでの間でトルク上昇の停滞が生じ、加速度が落ち込む。このような、最終的に得られる加速度に到達するまでに生じる、加速度の落ち込みのことをターボラグという。
 これに対して本実施形態では、自然吸気上限相当圧力になったら点火時期を遅角するので、点火時期を遅角させない場合に比べて自然吸気領域の上限トルクが低くなり、過給領域に入ったときの加速度の落ち込み幅も小さくなる。また、点火時期遅角によってタービン回転速度を速やかに上昇させるので、トルク上昇が停滞する期間が短くなる。すなわち、加速度の落ち込み幅を小さく、かつ落ち込む期間を短くできるので、ターボラグが小さくなる。
 ステップS130で、コントロールユニット12は、基準点火時期としてのMBTからステップS120で算出した遅角量だけ遅角した点火時期を算出する。
 ステップS140で、コントロールユニット12は、点火時期の遅角を終了するタイミングになったか否かを判定し、終了タイミングになったらステップS150の処理を実行し、終了タイミングになっていなければ本ルーチンを終了する。
 点火時期遅角を終了するタイミングは、点火時期遅角によるタービン5Bへの供給エネルギの増大制御を終了しても、バルブオーバーラップを設けることによってタービン回転速度が上昇し得るだけの掃気効果が得られる状態になるタイミングである。具体的には、本格的な過給仕事が始まって過給圧が大きく上昇し始めるタイミングである。
 判定方法は、例えば、バルブオーバーラップを設ければ目標掃気量が得られるコレクタ圧を目標コレクタ圧として予め設定しておき、コレクタ圧が目標コレクタ圧に達したら、終了タイミングであると判定する。
 ここでいう「目標掃気量」とは、点火時期遅角によるタービン5Bへの供給エネルギの増大制御を終了しても、掃気分を含めた排気を排気マニホールド3内で燃焼させることにより十分にタービン回転速度を上昇させることができる掃気量であり、例えば、掃気率換算で2~3%以上となる値を設定する。
 なお、掃気率は、例えば、掃気率をコレクタ圧と排気圧力との差圧及びバルブオーバーラップ量に割り付けたマップを、エンジン回転速度毎に作成してコントロールユニット12に格納しておき、このマップを検索することで算出することができる。したがって、ステップS140において、掃気率を用いて判定することもできる。
 また、後述するステップS160でバルブタイミングを変更するが、このとき所望のバルブタイミングになるまでに可変動弁機構14の動作遅れ時間が生じる。そこで、ステップS140を、コレクタ圧の変化速度等に基づいて動作遅れ時間後のコレクタ圧を予想し、この予想値が目標コレクタ圧に達したらバルブタイミングの変更を開始するようにしてもよい。これにより、実際のコレクタ圧が目標コレクタ圧に達したときに、バルブタイミングの変更が終了することになる。
 ステップS150で、コントロールユニット12は、点火時期遅角を終了する。
 ステップS160で、コントロールユニット12は、掃気用のバルブタイミングを設定するサブルーチンを実行する。
 図4は、コントロールユニット12が実行する、掃気用のバルブタイミングを設定する制御ルーチンを示すフローチャートである。本制御ルーチンにより、加速状態に応じてバルブタイミングが変更され、掃気分を含めた排気マニホールド3内の混合気が燃焼し易い混合気に制御される。
 ステップS200で、コントロールユニット12は、運転状態、例えば、コレクタ圧、エンジン回転速度、吸気温度、大気圧、基本噴射パルス等を読み込む。
 ステップS210で、コントロールユニット12は、上記運転状態から求まる掃気量上限値を算出する。
 掃気量上限値を定めるのは、排気触媒18の劣化を抑制するためである。すなわち、掃気分を含めた排気マニホールド3内の空燃比が理論空燃比となるように燃料噴射をして、排気マニホールド3内で排気ガスと掃気ガスの混合気を燃焼させる場合、掃気量が多くなるほど燃焼による排気触媒18の温度上昇代が大きくなる。そして、排気触媒18は、温度が過剰に上昇すると排気浄化性能の劣化を引き起こす。そこで、排気触媒18の温度上昇を抑制するための掃気量の上限値を設定する。
 ここで、掃気量上限値算出方法の一例を説明する。まず、コレクタ圧、エンジン回転速度、基本噴射パルス、吸気温度、及び大気圧を読み込む。そして、排気触媒18が性能劣化しない上限温度である触媒上限温度と、現在の運転状態で掃気ガスと排気ガスとの混合気を燃焼させない場合の排気触媒18の推定温度である掃気無し触媒推定温度とを算出し、さらに触媒上限温度と掃気無し触媒推定温度との温度差(掃気時触媒昇温許容値)を算出する。この掃気時触媒昇温許容値分だけ、掃気時に排気触媒18の昇温を許容し得ることになる。すなわち、燃焼させたときに掃気時触媒昇温許容値だけ昇温する掃気量が掃気量上限値となる。そこで、掃気時触媒昇温許容値と内燃機関1のシリンダ内の空燃比とから、予め作成したマップを検索することによって、掃気量上限値を算出する。
 ステップS220で、コントロールユニット12は、ステップS210で求めた掃気量に基づいてバルブオーバーラップ期間を決定する。適用する内燃機関の仕様に応じて、掃気量とバルブオーバーラップ期間を予め求めておけば、掃気量に基づいて容易にバルブオーバーラップ期間を設定することができる。
 ステップS230で、コントロールユニット12は、ステップS220で決定したバルブオーバーラップ期間を実現するための可変動弁機構14の変換角を決定する。適用する内燃機関1の吸気カム、排気カムのプロフィール等に応じて、バルブオーバーラップ期間と変換角との関係を予め求めておけば、バルブオーバーラップ期間に応じて容易に変換角を決定することができる。
 ステップS240で、コントロールユニット12は、掃気分を含めた排気マニホールド3内の空燃比が理論空燃比となるように燃料噴射量を補正する。
 図5は、上述した図3、図4の制御を実行した結果を示すタイムチャートである。図中の実線は点火時期遅角と掃気の切り換え制御(以下、本制御という)を実行した場合を、破線はこれらの制御を実行しない通常加速の場合を示す。
 また、点火時期偏差のチャートは、基準点火時期としてのMBTからの偏差を示している。MBTは運転状態に応じて刻々と変化するものであるが、偏差を示すチャートなので一定値として示されている。
 タイミングt1で掃気利用加速が成立する程度にアクセルが踏みこまれたとする。コレクタ圧が自然吸気上限相当圧に達するタイミングt2までは、本制御を実行した場合と通常加速の場合で差異はない。
 本制御ではタイミングt2で点火時期を遅角するので、その後のトルク上昇が緩やかになり、加速度はタイミングt2でピークを迎えた後低下する。これに対し通常加速では点火時期を遅角しないので、本制御の場合よりも速やかにトルク上昇し、加速度はタイミングt2以降も上昇し続け、自然吸気領域が終了するタイミングt3でピークを迎えた後に低下する。
 すなわち、本制御では、通常加速の場合よりも自然吸気領域でのトルクピークが低くなり、これにより加速度ピークが低くなる。
 その後、過給領域に入ると、本制御では点火時期遅角によってタービン5Bに与えるエネルギを増大させているのでタービン回転速度が速やかに上昇し、また、タービン回転速度の上昇に応じて遅角量を小さくしているので、トルクは滑らかに上昇している。
 これに対して通常加速では、点火時期を遅角していないため過給領域に入ったときのトルクは本制御の場合よりも大きいが、タービン5Bに供給されるエネルギが小さいので、タービン回転速度が低く、またタービン回転速度の上昇も遅くなり、トルク上昇が停滞している。
 その結果、過給領域に入ったときの加速度の落ち込み幅は、通常加速の場合の方が大きくなっている。つまり、本制御の方が、ターボラグが小さくなっている。
 なお、t2-t4間では、本制御の場合の方がトルクは小さいが、タービン回転速度は高い。本制御の方が小トルクなのは、タービン回転速度が高い分だけ吸気量も多くなっているにもかかわらず、点火時期の遅角によりトルクを発生しにくくなっているためである。
 そして、本格的な過給仕事が開始されるタイミング、つまり点火時期遅角終了タイミングt4において、本制御は点火時期遅角を終了して、掃気効果用のバルブタイミング制御に切り換える。これにより、掃気ガスと排気ガスの混合気が排気マニホールド3内で燃焼してタービン5Bへ供給されるエネルギが増大し、トルクの上昇速度が増大している。
 これに対して通常加速では、タイミングt4以降もしばらくトルク上昇が停滞し、本制御の場合より遅れてトルク上昇速度が増大している。
 上述したように、点火時期遅角によって自然吸気領域のトルクピークが通常加速の場合に比べて引き下げられる。また、点火時期遅角によって排気温度が上昇するので、排気のガスボリュームが増大することによってタービン5Bに与えるエネルギが増大し、タービン5Bの回転速度上昇が早まる。さらに、点火時期の遅角量をタービン回転速度の上昇に応じて徐々に小さくすることによって、トルク上昇が滑らかになる。その結果、ターボラグの抑制と、過給圧の速やかな立ち上がりを両立できる。
 また、本格的な過給仕事が始まった後は、掃気分を含めた混合気を排気マニホールド3内で燃焼させることにより、さらにトルク上昇を早めることができる。
 すなわち、速やかに高トルクを発生させることで加速終了までの時間を短縮し、かつ、運転者には滑らかな加速感を与えることができる。
 以上のように本実施形態によれば、次の効果が得られる。
 加速要求を検知した場合に、低過給領域では点火時期を遅角補正するので、自然吸気領域の加速度ピークが低くなり、かつ排気温度の上昇によりタービン回転速度の上昇が早まり、ターボラグが抑制される。そして高過給領域では、点火時期の遅角補正を終了してバルブオーバーラップを設け、掃気ガスを含めた排気マニホールド3内の混合気を理論空燃比になるよう燃料噴射量を設定するので、掃気ガスと排気ガスの混合気の後燃えによるエネルギによりトルクが速やかに上昇する。すなわち、ターボラグの抑制と、トルクの速やかな立ち上がりを両立することができる。
 点火時期の遅角を、過給が開始されるタイミングで開始し、バルブオーバーラップを設ければ掃気効果が得られる過給圧に達するタイミングで点火時期の遅角を終了するので、本格的な過給仕事が始まってトルクが大きく上昇し始めるまでの停滞感を小さくすることができる。
 点火時期の遅角を、非過給状態から過給状態へ移行する必要があるような加速要求があった場合に実行するので、トルクの急激な変化とターボラグを含む領域で問題となるトルク上昇の停滞感を小さくすることができる。
 点火時期の遅角補正量を、遅角補正開始時に最も大きく、過給機の回転速度の上昇に伴って徐々に小さくする。つまり、排気流量が少ないときほど排気温度を大きく上昇させ、排気流量の増加にともなって排気温度の上昇代を小さくし、点火時期遅角によるトルク低下量を低減する。これにより、過給開始後にトルクを滑らかかつ速やかに上昇させることができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2011年2月7日に日本国特許庁に出願された特願2011-23880に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (5)

  1.  排気エネルギにより駆動する過給機(5)と、
     バルブタイミングを変更し得る可変動弁機構(14)と、
    を備える内燃機関の制御装置において、
     前記可変動弁機構(14)を制御するバルブタイミング変更手段(12)と、
     点火時期変更手段(12)と、
     燃料噴射量変更手段(12)と、
     運転者の加速要求を検知する加速要求検知手段(13)と、
     前記過給機(5)による過給圧を検出する過給圧検出手段(19)と、
     加速要求を検知した場合に、前記過給圧が所定値より低い低過給領域では点火時期を遅角補正し、過給圧が所定値以上の高過給領域では、点火時期の遅角補正を終了してバルブオーバーラップを設け、排気通路(7)内で掃気ガスと排気ガスの混合気が燃焼し易い空燃比になるよう燃料噴射量を変更する加速制御手段(12)と、
    を備える内燃機関の制御装置。
  2.  請求項1に記載の内燃機関の制御装置であって、
     前記加速制御手段(12)は、前記点火時期の遅角補正を前記過給機(5)による過給が開始されるタイミングで開始し、バルブオーバーラップを設ければ掃気効果が得られる過給圧に達するタイミングで終了する内燃機関の制御装置。
  3.  請求項2に記載の内燃機関の制御装置であって、
     前記過給圧検出手段(19)は、前記過給機(5)のコンプレッサ(5A)より下流の吸気通路内圧力であるコレクタ圧を検出することで間接的に過給圧を検出し、
     前記加速制御手段は、前記コレクタ圧に基づいて前記バルブオーバーラップを設ければ掃気効果が得られる過給圧に達するタイミングを判定する内燃機関の制御装置。
  4.  請求項1から3のいずれかに記載の内燃機関の制御装置であって、
     前記加速制御手段は、前記過給機(5)が非過給状態から過給状態へ移行する必要がある加速要求があった場合に、前記点火時期の遅角補正を実行する内燃機関の制御装置。
  5.  請求項1から4のいずれかに記載の内燃機関の制御装置であって、
     前記点火時期の遅角補正量を、遅角補正開始時に最も大きく、前記過給機(5)の回転速度の上昇に伴って徐々に小さくする内燃機関の制御装置。
     
PCT/JP2012/050388 2011-02-07 2012-01-11 内燃機関の制御装置 WO2012108223A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137021717A KR101497861B1 (ko) 2011-02-07 2012-01-11 내연 기관의 제어 장치
US13/983,632 US9677499B2 (en) 2011-02-07 2012-01-11 Control device of internal combustion engine
EP12745386.8A EP2674596B1 (en) 2011-02-07 2012-01-11 Control device for internal combustion engine
CN201280004998.1A CN103299049B (zh) 2011-02-07 2012-01-11 内燃机的控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-023880 2011-02-07
JP2011023880A JP5772025B2 (ja) 2011-02-07 2011-02-07 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2012108223A1 true WO2012108223A1 (ja) 2012-08-16

Family

ID=46638442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050388 WO2012108223A1 (ja) 2011-02-07 2012-01-11 内燃機関の制御装置

Country Status (6)

Country Link
US (1) US9677499B2 (ja)
EP (1) EP2674596B1 (ja)
JP (1) JP5772025B2 (ja)
KR (1) KR101497861B1 (ja)
CN (1) CN103299049B (ja)
WO (1) WO2012108223A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8731762B1 (en) * 2013-04-24 2014-05-20 GM Global Technology Operations LLC Method and system of controlling a powertrain system to reduce turbo lag in a hybrid vehicle
WO2016080067A1 (ja) * 2014-11-19 2016-05-26 日立オートモティブシステムズ株式会社 燃料噴射装置の駆動装置
JP6332149B2 (ja) * 2015-06-01 2018-05-30 トヨタ自動車株式会社 内燃機関
CA2991234C (en) * 2015-07-02 2018-07-03 Nissan Motor Co., Ltd. Control method and control device for internal combustion engine
KR101766076B1 (ko) 2015-12-08 2017-08-07 현대자동차주식회사 내연기관의 제어 장치 및 제어 방법
DE102016212945B4 (de) * 2016-07-15 2022-02-24 Vitesco Technologies GmbH Verfahren und Vorrichtung zum Steuern eines Verbrennungsmotors mit einem Abgasturbolader
DE102016212946A1 (de) * 2016-07-15 2018-01-18 Continental Automotive Gmbh Verfahren zur Steuerung und gemäß diesem Verfahren gesteuerter Verbrennungsmotor mit einem Abgasturbolader
JP6397518B2 (ja) * 2017-01-27 2018-09-26 本田技研工業株式会社 内燃機関の制御装置
WO2019043902A1 (ja) * 2017-09-01 2019-03-07 日産自動車株式会社 内燃機関のトルク推定方法及び内燃機関のトルク推定装置
US10221794B1 (en) * 2017-11-07 2019-03-05 Fca Us Llc Measurement, modeling, and estimation of scavenging airflow in an internal combustion engine
DE102018219318A1 (de) 2018-11-13 2020-05-14 Ford Global Technologies, Llc Abgasnachbehandlungsvorrichtung für einen Verbrennungsmotor mit einem Turbolader
DE102018219319A1 (de) 2018-11-13 2020-05-14 Ford Global Technologies, Llc Abgasnachbehandlungsvorrichtung für einen Verbrennungsmotor mit einem Turbolader
US11060435B2 (en) 2018-11-13 2021-07-13 Ford Global Technologies, Llc Methods and systems for an exhaust system
EP3924610A1 (en) * 2019-04-02 2021-12-22 Cummins, Inc. Intake manifold pressure control strategy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090425A (ja) * 2003-09-19 2005-04-07 Daihatsu Motor Co Ltd 内燃機関の制御方法
JP2006299992A (ja) * 2005-04-22 2006-11-02 Toyota Motor Corp 内燃機関の制御システム
JP2009138733A (ja) * 2007-11-13 2009-06-25 Toyota Motor Corp 内燃機関の制御装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187922A (ja) * 1984-10-08 1986-05-06 Mazda Motor Corp 過給機付エンジン
DE3539168C2 (de) * 1984-11-08 1994-06-23 Volkswagen Ag Brennkraftmaschine für Fahrzeuge mit einem Abgasturbolader
JP2530647B2 (ja) 1987-04-03 1996-09-04 マツダ株式会社 過給機付エンジンの点火時期制御装置
DE3714192A1 (de) * 1987-04-29 1988-11-10 Bosch Gmbh Robert Verfahren zur steuerung eines abgasturboladers
KR0177204B1 (ko) * 1993-12-28 1999-03-20 나까무라 히로까즈 희박연소 엔진의 제어장치 및 제어방법
JPH08114166A (ja) * 1994-10-18 1996-05-07 Hitachi Ltd エンジン制御装置
JPH09125994A (ja) * 1995-11-08 1997-05-13 Nippon Soken Inc 排気ガスタービン式過給機付内燃機関の可変バルブタイミング制御装置
US6607467B2 (en) * 2000-07-11 2003-08-19 Toyota Jidosha Kabushiki Kaisha Apparatus for controlling vehicle drive system including engine with turbocharger, and lock-up clutch
JP2002276439A (ja) * 2001-03-19 2002-09-25 Unisia Jecs Corp 内燃機関の制御装置
JP2004060479A (ja) * 2002-07-26 2004-02-26 Hitachi Ltd エンジンの燃料制御装置,エンジンの燃料制御方法
JP2005188334A (ja) * 2003-12-24 2005-07-14 Toyota Motor Corp エンジンの燃料噴射制御装置
JP2005264864A (ja) * 2004-03-19 2005-09-29 Hitachi Ltd 内燃機関の制御装置
DE102004026180B4 (de) * 2004-05-28 2014-09-18 Robert Bosch Gmbh Verfahren zum Betreiben eines Verbrennungsmotors
US7320307B2 (en) * 2005-09-12 2008-01-22 Ford Global Technologies, Llc Manifold pressure control for a variable event valvetrain
JP4244979B2 (ja) * 2005-09-22 2009-03-25 トヨタ自動車株式会社 内燃機関の過給圧制御装置
JP4253339B2 (ja) * 2006-09-21 2009-04-08 株式会社日立製作所 内燃機関の制御装置
JP2008101502A (ja) * 2006-10-18 2008-05-01 Toyota Motor Corp 過給機付き内燃機関の制御装置
JP4375387B2 (ja) * 2006-11-10 2009-12-02 トヨタ自動車株式会社 内燃機関
JP4823948B2 (ja) * 2007-03-23 2011-11-24 富士重工業株式会社 エンジンの制御装置
US7801664B2 (en) * 2007-07-12 2010-09-21 Ford Global Technologies, Llc Cylinder charge temperature control for an internal combustion engine
US8209109B2 (en) * 2007-07-13 2012-06-26 Ford Global Technologies, Llc Method for compensating an operating imbalance between different banks of a turbocharged engine
US20100229806A1 (en) * 2007-11-08 2010-09-16 Kemeny Zoltan A Internal combustion engines with surcharging and supraignition systems
US20090145398A1 (en) * 2007-11-08 2009-06-11 Kemeny Zoltan A Internal combustion engines with surcharging and supraignition systems
DE102007056216B4 (de) * 2007-11-22 2016-02-04 Robert Bosch Gmbh Verfahren und Steuergerät zum beschleunigten Aufheizen eines Katalysators im Abgassystem eines aufgeladenen Verbrennungsmotors mit variabler Ventilsteuerung
JP5262910B2 (ja) * 2008-06-04 2013-08-14 日産自動車株式会社 内燃機関
JP4816785B2 (ja) * 2009-02-20 2011-11-16 マツダ株式会社 ターボ過給機付きエンジンの制御方法および制御装置
US8135535B2 (en) * 2009-06-09 2012-03-13 Ford Global Technologies, Llc Modeling catalyst exotherm due to blowthrough
US8112218B2 (en) * 2011-03-10 2012-02-07 Ford Global Technologies, Llc Method for controlling an engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090425A (ja) * 2003-09-19 2005-04-07 Daihatsu Motor Co Ltd 内燃機関の制御方法
JP2006299992A (ja) * 2005-04-22 2006-11-02 Toyota Motor Corp 内燃機関の制御システム
JP2009138733A (ja) * 2007-11-13 2009-06-25 Toyota Motor Corp 内燃機関の制御装置

Also Published As

Publication number Publication date
EP2674596A1 (en) 2013-12-18
EP2674596A4 (en) 2018-04-11
JP2012163039A (ja) 2012-08-30
KR20130117854A (ko) 2013-10-28
US9677499B2 (en) 2017-06-13
KR101497861B1 (ko) 2015-03-02
JP5772025B2 (ja) 2015-09-02
EP2674596B1 (en) 2019-06-19
US20130311069A1 (en) 2013-11-21
CN103299049B (zh) 2016-01-27
CN103299049A (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5772025B2 (ja) 内燃機関の制御装置
US10794317B2 (en) Control device for compression-ignition engine
JP5668763B2 (ja) 多気筒内燃機関の制御装置
US20140298802A1 (en) Control Device for Internal Combustion Engine
US9255534B2 (en) Control device for internal combustion engine with turbo-supercharger
US20100300383A1 (en) Methods and Systems for Engine Control
US20140331651A1 (en) Control apparatus for internal combustion engine
JP4172319B2 (ja) エンジンの可変バルブタイミング制御装置
WO2012108287A1 (ja) 過給機付き内燃機関の制御装置
CN109973279B (zh) 内燃机的控制装置
JP7088049B2 (ja) 圧縮着火式エンジンの制御装置
JP2009085175A (ja) ガソリンエンジンの制御装置
US20210172397A1 (en) Control device for compression self-ignition engine
JP2015200294A (ja) エンジン
JP4238741B2 (ja) 圧縮着火内燃機関の燃料噴射制御装置
JP3771101B2 (ja) 内燃機関の制御装置
JP3984463B2 (ja) ターボ過給機付筒内噴射エンジンの制御装置
JP2005256691A (ja) 可変ノズル機構ターボチャージャ付ガソリン機関の制御装置
JP7359221B2 (ja) 車両用内燃機関の触媒暖機運転制御方法および触媒暖機運転制御装置
JP7155962B2 (ja) エンジンの制御装置
JP2004346905A (ja) エンジンのノック制御装置
JP6432548B2 (ja) エンジンの制御装置
JP2010261358A (ja) 内燃機関の制御装置
JP2023133802A (ja) 内燃機関の制御装置
JP2009197652A (ja) ガソリンエンジンの運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12745386

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012745386

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13983632

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137021717

Country of ref document: KR

Kind code of ref document: A