WO2012098817A1 - Fe基非晶質合金粉末、及び前記Fe基非晶質合金粉末を用いた圧粉コア、ならびにコイル封入圧粉コア - Google Patents

Fe基非晶質合金粉末、及び前記Fe基非晶質合金粉末を用いた圧粉コア、ならびにコイル封入圧粉コア Download PDF

Info

Publication number
WO2012098817A1
WO2012098817A1 PCT/JP2011/080364 JP2011080364W WO2012098817A1 WO 2012098817 A1 WO2012098817 A1 WO 2012098817A1 JP 2011080364 W JP2011080364 W JP 2011080364W WO 2012098817 A1 WO2012098817 A1 WO 2012098817A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous alloy
based amorphous
addition amount
alloy powder
powder
Prior art date
Application number
PCT/JP2011/080364
Other languages
English (en)
French (fr)
Inventor
景子 土屋
岡本 淳
寿人 小柴
Original Assignee
アルプス・グリーンデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス・グリーンデバイス株式会社 filed Critical アルプス・グリーンデバイス株式会社
Priority to EP11856342.8A priority Critical patent/EP2666881B1/en
Priority to CN201180064764.1A priority patent/CN103298966B/zh
Priority to KR1020137018689A priority patent/KR101503199B1/ko
Priority to JP2012553592A priority patent/JP5458452B2/ja
Publication of WO2012098817A1 publication Critical patent/WO2012098817A1/ja
Priority to US13/942,579 priority patent/US8854173B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/02Amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F2017/048Fixed inductances of the signal type  with magnetic core with encapsulating core, e.g. made of resin and magnetic powder

Definitions

  • the present invention relates to an Fe-based amorphous alloy powder applied to a dust core such as a transformer or a power choke coil and a coil-embedded dust core, for example.
  • the stress strain at the time of powder formation of the Fe-based amorphous alloy powder and the stress strain at the time of compacting the core are compared with the powder core in which the Fe-based amorphous alloy powder is formed into the target shape by the binder.
  • heat treatment is performed after the core molding.
  • the heat treatment temperature actually applied to the core compact cannot be set to a very high temperature in consideration of the heat resistance of the coated conductor or the binder, so the glass transition temperature of the Fe-based amorphous alloy powder ( It was necessary to keep Tg) low. At the same time, it was necessary to improve corrosion resistance and to have excellent magnetic properties.
  • JP 2007-231415 A Japanese Patent Laid-Open No. 2008-520832 JP 2009-174034 A JP 2005-307291 A JP 2009-54615 A JP 2009-293099 A JP 63-117406 A US Patent Application Publication No. 2007/0258842
  • the present invention is to solve the above-described conventional problems, and in particular, a dust core or a coil-enclosed dust core having a low glass transition temperature (Tg) and excellent corrosion resistance and high magnetic permeability and low core loss.
  • An object of the present invention is to provide an Fe-based amorphous alloy powder for use.
  • the Fe-based amorphous alloy powder in the present invention is Composition formula, represented by (Fe 100-abcxyzt Ni a Sn b Cr c P x C y B z Si t) 100- ⁇ M ⁇ , 0at% ⁇ a ⁇ 10at%, 0at% ⁇ b ⁇ 3at%, 0at% ⁇ c ⁇ 6 at%, 6.8 at% ⁇ x ⁇ 10.8 at%, 2.2 at% ⁇ y ⁇ 9.8 at%, 0 at% ⁇ z ⁇ 4.2 at%, 0 at% ⁇ t ⁇ 3.9 at%
  • the metal element M is selected from at least one of Ti, Al, Mn, Zr, Hf, V, Nb, Ta, Mo, and W, and the addition amount ⁇ of the metal element M is 0.04 wt% ⁇ ⁇ ⁇ 0.6 wt%.
  • the additive amount z of B is 0 at% ⁇ z ⁇ 2 at%
  • the additive amount t of Si is 0 at% ⁇ t ⁇ 1 at%
  • the additive amount z of B and the additive amount t of Si are
  • the added z + t is preferably 0 at% ⁇ z + t ⁇ 2 at%.
  • the addition amount z of B is larger than the addition amount t of Si.
  • Tg glass transition temperature
  • the addition amount ⁇ of the metal element M is preferably 0.1 wt% ⁇ ⁇ ⁇ 0.6 wt%. Thereby, it is possible to stably obtain a high magnetic permeability ⁇ .
  • the metal element M preferably contains at least Ti. Thereby, an effective thin passive layer can be stably formed on the powder surface, and excellent magnetic properties can be obtained.
  • the metal element M can also be made into the form containing Ti, Al, and Mn.
  • the addition amount a of Ni is preferably in the range of 0 at% ⁇ a ⁇ 6 at%.
  • the Sn addition amount b is preferably in the range of 0 at% ⁇ b ⁇ 2 at%. Increasing the amount of Sn increases the O 2 concentration of the powder and causes a decrease in corrosion resistance. Therefore, in order to suppress the decrease in corrosion resistance and increase the ability to form amorphous, the additive amount b of Sn is 2 at% or less It is preferable that
  • the addition amount c of Cr is preferably in the range of 0 at% ⁇ c ⁇ 2 at%.
  • Tg glass transition temperature
  • the addition amount x of P is preferably in the range of 8.8 at% ⁇ x ⁇ 10.8 at%.
  • the aspect ratio of the powder is greater than 1 and 1.4 or less. Thereby, the magnetic permeability ⁇ of the core can be increased.
  • the powder aspect ratio is preferably 1.2 or more and 1.4 or less.
  • the magnetic permeability ⁇ of the core can be stably increased.
  • the concentration of the metal element M is preferably higher in the powder surface layer than in the powder.
  • the metal element M can aggregate on the powder surface layer to form a passive layer.
  • the concentration of the metal element M in the powder surface layer is higher than the concentration of Si.
  • the addition amount ⁇ of the metal element M is zero or the addition amount ⁇ is less than that of the present invention, the Si concentration is increased on the powder surface. At this time, the thickness of the passive layer tends to be thicker than that of the present invention.
  • the amount of Si added is reduced to 3.9 at% or less (addition amount in Fe—Ni—Cr—PC—Si), and the highly active metal element M is alloyed with the alloy powder.
  • the metal element M can be agglomerated on the powder surface to form a thin passive layer together with Si and O, and has excellent magnetic properties. It becomes possible to obtain.
  • the powder core in the present invention is characterized in that the powder of the Fe-based amorphous alloy powder described above is solidified and formed with a binder.
  • the stress strain can be appropriately mitigated at a heat treatment temperature lower than the heat resistance temperature of the binder, Since the magnetic permeability ⁇ of the core can be increased and the core loss can be reduced at the same time, a desired high inductance can be obtained with a small number of turns, and heat generation and copper loss of the exothermic dust core can be suppressed.
  • the coil-embedded dust core in the present invention has a dust core formed by solidifying and molding the powder of the Fe-based amorphous alloy powder described above with a binder, and a coil covered with the dust core. It is characterized by being formed.
  • the optimum heat treatment temperature of the core can be lowered, and the core loss can be reduced.
  • an edgewise coil an edgewise coil having a large cross-sectional area of the coil conductor can be used, so that the DC resistance RDc can be reduced, and heat generation and copper loss can be suppressed.
  • the Fe-based amorphous alloy powder of the present invention has high magnetic properties with excellent corrosion resistance as well as low glass transition temperature (Tg).
  • the optimum heat treatment temperature of the core can be lowered, the magnetic permeability ⁇ is improved, and the core loss is reduced. Reduction can be achieved.
  • FIG. 2A is a longitudinal sectional view of the coil-embedded dust core cut along the line AA shown in FIG.
  • An image diagram of a cross section of the Fe-based amorphous alloy powder in the present embodiment XPS analysis result of Fe-based amorphous alloy powder of comparative example (Ti amount is 0.035 wt%), XPS analysis result of Fe-based amorphous alloy powder of Example (Ti amount is 0.25 wt%), Depth profile of AES in Fe-based amorphous alloy powder of comparative example (Ti amount is 0.035 wt%), Depth profile of AES in Fe-based amorphous alloy powder of Example (Ti content is 0.25 wt%), A graph showing the relationship between the amount of Ti added to the Fe-based amorphous alloy powder and the aspect ratio of the powder, A graph showing the relationship between the addition amount of Ti in the Fe-based amorphous alloy powder and the
  • the composition formula is represented by (Fe 100-abcxyzt Ni a Sn b Cr c P x C y B z Si t) 100- ⁇ M ⁇ , 0at% ⁇ a ⁇ 10at %, 0 at% ⁇ b ⁇ 3 at%, 0 at% ⁇ c ⁇ 6 at%, 6.8 at% ⁇ x ⁇ 10.8 at%, 2.2 at% ⁇ y ⁇ 9.8 at%, 0 at% ⁇ z ⁇ 4.2 at %, 0 at% ⁇ t ⁇ 3.9 at%, and the metal element M is made of at least one selected from Ti, Al, Mn, Zr, Hf, V, Nb, Ta, Mo, W, The addition amount ⁇ of the element M is 0.04 wt% ⁇ ⁇ ⁇ 0.6 wt%.
  • the Fe-based amorphous alloy powder of the present embodiment includes Fe as a main component and Ni, Sn, Cr, P, C, B, Si (however, Ni, Sn, Cr, B, Si Is a soft magnetic alloy formed by adding the metal element M.
  • the Fe-based amorphous alloy powder of the present embodiment has a main phase amorphous phase and ⁇ -Fe by heat treatment during core forming in order to increase the saturation magnetic flux density and adjust the magnetostriction.
  • a mixed phase structure with a crystal phase may be formed.
  • the ⁇ -Fe crystal phase has a bcc structure.
  • the addition amount of B and the addition amount of Si are reduced as much as possible to reduce Tg, and the corrosion resistance that deteriorates due to the decrease in the addition amount of Si is improved by the addition of a small amount of highly active metal element M. Is.
  • the addition amount of Fe contained in the Fe-based amorphous alloy powder of the present embodiment is (100-ab-) in the Fe-Ni-Sn-Cr-PCB-Si in the above composition formula.
  • in the range of about 65.9 at% to 77.4 at% in Fe—Ni—Sn—Cr—P—C—B—Si. is there.
  • high magnetization can be obtained by the addition amount of Fe being high.
  • the addition amount a of Ni contained in Fe—Ni—Sn—Cr—PCB—Si is defined within a range of 0 at% ⁇ a ⁇ 10 at%.
  • the glass transition temperature (Tg) can be lowered, and the converted vitrification temperature (Tg / Tm) and Tx / Tm can be maintained at high values.
  • Tm is a melting point
  • Tx is a crystallization start temperature.
  • Amorphous can be obtained even if the Ni addition amount a is increased to about 10 at%.
  • the addition amount a of Ni exceeds 6 at%, the converted vitrification temperature (Tg / Tm) and Tx / Tm decrease, and the amorphous forming ability decreases.
  • the amount a is preferably in the range of 0 at% ⁇ a ⁇ 6 at%. Furthermore, if the amount a is in the range of 4 at% ⁇ a ⁇ 6 at%, the glass transition temperature (Tg) is stably reduced and high conversion is achieved. It is possible to obtain the vitrification temperature (Tg / Tm) and Tx / Tm.
  • the addition amount b of Sn contained in Fe—Ni—Sn—Cr—PCB—Si is defined within a range of 0 at% ⁇ b ⁇ 3 at%. Even when the Sn addition amount b is increased to about 3 at%, an amorphous state can be obtained. However, the addition of Sn increases the oxygen concentration in the alloy powder, and the addition of Sn tends to lower the corrosion resistance. Therefore, the amount of Sn added is minimized. Further, when the Sn added amount b is about 3 at%, Tx / Tm is greatly reduced and the amorphous forming ability is lowered. Therefore, the preferable range of the Sn added amount b is set to 0 ⁇ b ⁇ 2 at%. Alternatively, the addition amount b of Sn is more preferably in the range of 1 at% ⁇ b ⁇ 2 at%, since it is possible to secure high Tx / Tm.
  • Ni and Sn it is preferable not to add both Ni and Sn to the Fe-based amorphous alloy powder, or to add only one of Ni or Sn.
  • Tg low glass transition temperature
  • Tg / Tm high conversion vitrification temperature
  • the addition amount c of Cr contained in Fe—Ni—Sn—Cr—PCB—Si is defined within a range of 0 at% ⁇ c ⁇ 6 at%.
  • Cr can promote the formation of a passive layer on the powder surface and can improve the corrosion resistance of the Fe-based amorphous alloy powder.
  • the glass transition temperature (Tg) is increased by addition of Cr and the saturation magnetization Is is lowered.
  • the addition amount c of Cr is effective to keep the addition amount c of Cr to the minimum necessary.
  • the addition amount c of Cr within a range of 1 at% ⁇ c ⁇ 2 at%.
  • the glass transition temperature (Tg) can be kept low, and high magnetization can be maintained.
  • the addition amount x of P contained in Fe—Ni—Sn—Cr—PCB—Si is defined within a range of 6.8 at% ⁇ x ⁇ 10.8 at%.
  • the addition amount y of C contained in Fe—Ni—Sn—Cr—P—C—B—Si is defined within the range of 2.2 at% ⁇ y ⁇ 9.8 at%. Amorphous can be obtained by defining the addition amount of P and C within the above range.
  • the glass transition temperature (Tg) of the Fe-based amorphous alloy powder is lowered, and at the same time, the converted vitrification temperature (Tg / Tm) serving as an index of the amorphous forming ability is increased.
  • the converted vitrification temperature (Tg / Tm) serving as an index of the amorphous forming ability is increased.
  • Tg transition temperature
  • Tm melting point
  • the melting point (Tm) can be effectively lowered by adjusting the addition amount x of P in the range of 8.8 at% ⁇ x ⁇ 10.8 at%, and the converted vitrification temperature (Tg / Tm) can be increased.
  • P is known as an element that tends to lower the magnetization in the semimetal, and the addition amount needs to be reduced to some extent in order to obtain high magnetization.
  • the addition amount x of P is 10.8 at%, it is in the vicinity of the eutectic composition (Fe 79.4 P 10.8 C 9.8 ) of the Fe—PC—ternary alloy, so P exceeds 10.8 at%. Addition of this causes an increase in melting point (Tm). Therefore, it is desirable that the upper limit of the addition amount of P is 10.8 at%.
  • Tm melting point
  • Tg / Tm converted vitrification temperature
  • the addition amount y of C within a range of 5.8 at% ⁇ y ⁇ 8.8 at%.
  • the melting point (Tm) can be effectively lowered, the conversion vitrification temperature (Tg / Tm) can be increased, and the magnetization can be maintained at a high value.
  • the addition amount z of B contained in Fe—Ni—Sn—Cr—PCB—Si is defined within the range of 0 at% ⁇ z ⁇ 4.2 at%. Further, the addition amount t of Si contained in Fe—Ni—Sn—Cr—PCB—Si is defined within a range of 0 at% ⁇ t ⁇ 3.9 at%.
  • the addition of Si and B helps improve the amorphous forming ability, but the glass transition temperature (Tg) is likely to rise. Therefore, in this embodiment, in order to make the glass transition temperature (Tg) as low as possible, Si, The amount of addition of B and Si + B is to be minimized. Specifically, the glass transition temperature (Tg) of the Fe-based amorphous alloy powder is set to 740 K (Kelvin) or less.
  • the additive amount z of B is set in a range of 0 at% ⁇ z ⁇ 2 at%
  • the additive amount t of Si is set in a range of 0 at% ⁇ t ⁇ 1 at%
  • the glass transition temperature (Tg) can be suppressed to 710 K or less.
  • the addition amount z of B is larger than the addition amount t of Si within the above composition range.
  • Tg glass transition temperature
  • the amount of Si added is kept as low as possible in order to promote the lowering of Tg, but the corrosion resistance deteriorated by this is improved by adding a small amount of the metal element M.
  • metal element M at least one selected from Ti, Al, Mn, Zr, Hf, V, Nb, Ta, Mo, and W is selected.
  • the addition amount ⁇ of the metal element M is represented by (Fe—Ni—Sn—Cr—P—C—B—Si) 100- ⁇ M ⁇ in the composition formula, and the addition amount ⁇ is 0.04 wt% or more and 0.6 wt%. The following is preferable.
  • the aspect ratio of the powder can be set larger than 1 and 1.4 or less, preferably 1.1 or more and 1.4 or less.
  • the aspect ratio is indicated by the ratio (d / e) of the major axis d to the minor axis e in the powder shown in FIG.
  • the aspect ratio (d / e) is obtained from a two-dimensional projection view of the powder.
  • the major axis d is the longest part
  • the minor axis e is the shortest part in the direction perpendicular to the major axis d.
  • the aspect ratio is reduced to 0 based on the experimental results described later. It was set larger (preferably 1.1 or more) and 1.4 or less. Thereby, the magnetic permeability ⁇ at 100 MHz of the core can be set to 60 or more, for example.
  • the addition amount ⁇ of the metal element M is preferably in the range of 0.1 wt% to 0.6 wt%.
  • the aspect ratio of the powder can be set to 1.2 or more and 1.4 or less, whereby a magnetic permeability ⁇ of 60 or more can be stably obtained at 100 MHz.
  • the metal element M preferably contains at least Ti.
  • An effective thin passive layer can be stably formed on the powder surface, the aspect ratio of the powder can be appropriately adjusted within the range of more than 1 and 1.4 or less, and excellent magnetic properties can be obtained.
  • the metal element M can include Ti, Al, and Mn.
  • the concentration of the metal element M is higher in the powder surface layer 6 than in the powder interior 5 shown in FIG.
  • the metal element M aggregates in the powder surface layer 6 and can form a passive layer together with Si and O.
  • the metal element M is set in a range of 0.04 wt% or more and 0.6 wt% or less, but the addition amount of the metal element M is zero or the addition amount of the metal element M is less than 0.04 wt%. Then, it is known from experiments described later that the Si concentration is higher than that of the metal element M in the powder surface layer 6. At this time, the thickness of the passive layer is likely to be thicker than in the present embodiment. On the other hand, in this embodiment, the amount of Si added (in Fe—Ni—Sn—Cr—P—C—B—Si) is 3.9 at% or less, and the highly active metal element M is 0.04 wt% or more.
  • the metal element M can be aggregated in the powder surface layer 6 more than Si.
  • the metal element M forms a passive layer on the powder surface layer 6 together with Si and O, but in this embodiment, the passive layer can be formed thinner than when the metal element M is less than 0.04 wt%, It becomes possible to obtain excellent magnetic properties.
  • composition of the Fe-based amorphous alloy powder in this embodiment can be measured by an ICP-MS (high frequency inductively coupled mass spectrometer) or the like.
  • the Fe-based amorphous alloy having the above composition formula is weighed and dissolved, and the molten metal is dispersed and rapidly solidified by a water atomization method or the like to obtain an Fe-based amorphous alloy powder.
  • a thin passive layer can be formed on the powder surface layer 6 of the Fe-based amorphous alloy powder, a part of the metal component is corroded in the powder manufacturing process, and the powder and this are compacted. Thus, it is possible to suppress the deterioration of the characteristics of the dust core.
  • the Fe-based amorphous alloy powder in the present embodiment is applied to, for example, the annular dust core 1 shown in FIG. 1 and the coil-enclosed dust core 2 shown in FIG.
  • a coil-encapsulated core (inductor element) 2 shown in FIGS. 2A and 2B includes a dust core 3 and a coil 4 covered with the dust core 3.
  • binder examples include epoxy resins, silicone resins, silicone rubbers, phenol resins, urea resins, melamine resins, PVA (polyvinyl alcohol), acrylic resins, and other liquid or powder resins, rubbers, water glass ( Na 2 O—SiO 2 ), oxide glass powder (Na 2 O—B 2 O 3 —SiO 2 , PbO—B 2 O 3 —SiO 2 , PbO—BaO—SiO 2 , Na 2 O—B 2 O 3 —ZnO, CaO—BaO—SiO 2 , Al 2 O 3 —B 2 O 3 —SiO 2 , B 2 O 3 —SiO 2 ), glassy substances produced by the sol-gel method (SiO 2 , Al 2 O 3 , ZrO 2 and TiO 2 as main components).
  • the lubricant zinc stearate, aluminum stearate, or the like can be used.
  • the mixing ratio of the binder is 5% by mass or less, and the addition amount of the lubricant is about 0.1% by mass to 1% by mass.
  • the glass transition temperature (Tg) of the Fe-based amorphous alloy powder can be lowered. Therefore, the optimum heat treatment temperature of the core can be lowered as compared with the conventional case.
  • the “optimal heat treatment temperature” is a heat treatment temperature for the core molded body that can effectively relieve stress strain on the Fe-based amorphous alloy powder and minimize the core loss. For example, in an inert gas atmosphere such as N 2 gas or Ar gas, the rate of temperature rise is 40 ° C./min, and when the predetermined heat treatment temperature is reached, the heat treatment temperature is maintained for 1 hour, and the core loss W is minimized. The heat treatment temperature is recognized as the optimum heat treatment temperature.
  • the heat treatment temperature T1 to be applied after the compacting core molding is set to a low temperature below the optimum heat treatment temperature T2 in consideration of the heat resistance of the resin and the like.
  • the heat treatment temperature T1 can be adjusted to about 300 ° C. to 400 ° C.
  • the optimum heat treatment temperature T2 can be made lower than before, so that (optimum heat treatment temperature T2—heat treatment temperature T1 after core molding) can be made smaller than before.
  • the stress strain of the Fe-based amorphous alloy powder can be effectively reduced by the heat treatment at the heat treatment temperature T1 applied after the core forming as compared with the conventional case, and the Fe-based amorphous in the present embodiment. Since the alloy powder maintains high magnetization, it can secure desired inductance, reduce core loss (W), and obtain high power efficiency ( ⁇ ) when mounted on a power source. .
  • the glass transition temperature (Tg) can be set to 740 K or less, and preferably 710 K or less.
  • conversion vitrification temperature (Tg / Tm) can be set to 0.52 or more, Preferably it can set to 0.54 or more, More preferably, it can set to 0.56 or more.
  • the saturation magnetization Is can be set to 1.0 T or more.
  • the optimum heat treatment temperature can be set to 693.15 K (420 ° C.) or less, preferably 673.15 K (400 ° C.) or less.
  • the core loss W can be set to 90 (kW / m 3 ) or less, preferably 60 (kW / m 3 ) or less.
  • the coil 4 can be an edgewise coil.
  • An edgewise coil refers to a coil wound vertically with the short side of a rectangular wire as the inner diameter surface.
  • the stress strain can be appropriately relaxed at a heat treatment temperature lower than the heat resistant temperature of the binder, and the powder core 3 Since the magnetic permeability ⁇ can be increased and the core loss can be reduced, a desired high inductance L can be obtained with a small number of turns.
  • the edgewise coil with a large cross-sectional area of the conductor in each turn can be used for the coil 4, the direct current resistance Rdc can be reduced, and heat generation and copper loss can be suppressed.
  • Fe-based amorphous alloy powder made of 100- ⁇ Ti ⁇ was produced by a water atomization method. Note that the addition amount of each element in Fe—Cr—P—C—B—Si is at%.
  • the molten metal temperature (temperature of the melted alloy) at the time of obtaining the powder was 1500 ° C., and the water ejection pressure was 80 MPa. The above atomizing conditions were the same in the experiments described later other than this experiment.
  • FIGS. 4 shows the experimental results for the comparative Fe-based amorphous alloy powder
  • FIG. 5 shows the experimental results for the Fe-based amorphous alloy powder of the example.
  • FIG. 6 is a depth profile by Auger electron analysis optical method (AES) performed using the Fe-based amorphous alloy powder of the above comparative example
  • FIG. 7 is the Fe-based amorphous alloy powder of the above-described example. It is a depth profile by the Auger electron analysis optical method (AES) performed using this.
  • the leftmost of the horizontal axis in each figure is the analysis result on the powder surface, and the analysis result at the position where the powder enters the powder (toward the center of the powder) toward the right side.
  • the Ti concentration did not change much from the powder surface to the inside of the powder and was low overall.
  • the Si concentration was higher than the Ti concentration on the surface side of the powder. It was found that the Si concentration gradually decreased toward the inside of the powder, and the difference from the Ti concentration was reduced. It was found that O aggregated on the powder surface side, and the concentration inside the powder was very small. It was also found that the concentration of Fe gradually increased from the powder surface toward the inside of the powder, and the concentration was almost constant from a certain depth. It was found that the Cr concentration did not change much from the powder surface to the inside of the powder.
  • the Ti concentration was high on the powder surface side and gradually decreased toward the inside of the powder.
  • the Ti concentration was higher than the Si concentration, resulting in a concentration distribution result different from the comparative example of FIG.
  • O agglomerates on the powder surface side, and this is the same in FIGS. 6 and 7, but in the embodiment of FIG. 7, the depth position until the maximum concentration of O is halved as compared with the comparative example of FIG. 7 is closer to the powder surface, that is, it was found that the film thickness of the passive layer can be formed thinner in the example of FIG. 7 than in the comparative example of FIG.
  • the Fe concentration change in the example of FIG. 7 gradually increases from the powder surface toward the inside of the powder as compared with the comparative example of FIG. It was found that the Cr concentration in the example of FIG. 7 is not much different from that of the comparative example of FIG.
  • Fe-based amorphous alloy powder made of 100- ⁇ Ti ⁇ was produced by a water atomization method. Note that the addition amount of each element in Fe—Cr—P—C—B—Si is at%. In addition, each Fe-based amorphous material having an addition amount ⁇ of Ti of 0.035 wt%, 0.049 wt%, 0.094 wt%, 0.268 wt%, 0.442 wt%, 0.595 wt%, and 0.805 wt% Alloy powder was used.
  • the aspect ratio of the powder gradually increased as the additive amount ⁇ of Ti was increased.
  • a ratio (d / e) between the major axis d and the minor axis e in the two-dimensional projection diagram of the powder shown in FIG.
  • the film can be formed in an irregular shape having an aspect ratio larger than that of 1).
  • the specific numerical values of the aspect ratio obtained in FIG. 8 are 1.08, 1.13, 1.16, 1.24, 1.27, 1.39, 1.39 in order of increasing Ti addition amount ⁇ . 47.
  • each Fe-based amorphous alloy powder having a different additive amount ⁇ of Ti was mixed with resin (acrylic resin); 3% by mass, lubricant (zinc stearate); 0.3% by mass, at a press pressure of 600 MPa, an outer diameter of 20 mm, an inner diameter of 12 mm, with the toroidal 6.5mm angle of height 6.8 mm, height to form the core molding of 3.3 mm, further N 2 gas atmosphere, the temperature
  • the dust core was molded at a temperature rate of 0.67 K / sec (40 ° C./min), a heat treatment temperature within a range of 300 ° C. to 400 ° C. and a holding time of 1 hour.
  • the above-mentioned core manufacturing conditions were the same in the experiments described later other than this experiment.
  • the magnetic permeability ⁇ was measured at a frequency of 100 KHz using an impedance analyzer. As shown in FIG. 9, a high magnetic permeability ⁇ of about 60 or more can be secured until the Ti addition amount ⁇ is about 0.6 wt%, but the magnetic permeability ⁇ is less than 60 when the Ti addition amount ⁇ is further increased. I understood it.
  • the magnetic permeability ⁇ can be gradually increased until the aspect ratio of the powder is larger than 1 to about 1.3. However, when the aspect ratio exceeds about 1.3, the magnetic permeability ⁇ is gradually increased. It was found that when the aspect ratio exceeded 1.4 and the aspect ratio exceeded 1.4, the permeability ⁇ started to decrease rapidly due to the decrease in the core density and was below 60.
  • the additive amount ⁇ of Ti was set to 0.04 wt% or more and 0.6 wt% or less.
  • the aspect ratio of the powder was set to be larger than 1 and 1.4 or less, preferably 1.1 or more and 1.4 or less. Thereby, a magnetic permeability ⁇ of 60 or more can be obtained.
  • the preferable range of the addition amount ⁇ of Ti is 0.1 wt% or more and 0.6 wt% or less.
  • the aspect ratio of the preferable powder was 1.2 or more and 1.4 or less.
  • the "optimum heat treatment temperature” shown in Table 1 is the core loss of the dust core when the temperature rise rate is 0.67 K / sec (40 ° C / min) and the holding time is 1 hour with respect to the dust core. It refers to an ideal heat treatment temperature at which W) can be reduced most.
  • the evaluation of the core loss (W) of the dust core shown in Table 1 was performed using a SY-8217 BH analyzer manufactured by Iwadori Measurement Co., Ltd. with a frequency of 100 kHz and a maximum magnetic flux density of 25 mT. As shown in Table 1, 0.25 wt% Ti was added to each sample.
  • FIG. 12 is a graph showing the relationship between the optimum heat treatment temperature and the core loss (W) of the dust core shown in Table 1. As shown in FIG. 12, in order to set the core loss (W) to 90 kW / m 3 or less, it was found that the optimum heat treatment temperature must be set to 693.15 K (420 ° C.) or less.
  • FIG. 13 is a graph showing the relationship between the glass transition temperature (Tg) of the Fe-based amorphous alloy powder and the optimum heat treatment temperature of the dust core shown in Table 1. As shown in FIG. 13, it was found that the glass transition temperature (Tg) needs to be set to 740 K (466.85 ° C.) or lower in order to set the optimum heat treatment temperature to 693.15 K (420 ° C.) or lower.
  • the application range of the glass transition temperature (Tg) of this example was set to 740 K (466.85 ° C.) or less.
  • a glass transition temperature (Tg) of 710 K (436.85 ° C.) or less was set as a preferable application range.
  • Fe-based amorphous alloy powders having the respective compositions shown in Table 2 below were produced. Each sample is formed in a ribbon shape by a liquid quenching method.
  • the glass transition temperature (Tg) can be set to 740 K (466.85 ° C.) or lower.
  • the glass transition temperature (Tg) can be more effectively reduced by setting the additive amount z of B within the range of 0 at% to 2 at%. It was also found that the glass transition temperature (Tg) can be more effectively reduced by setting the addition amount t of Si within the range of 0 at% to 1 at%.
  • the addition amount z of B is set within a range of 0 at% to 2 at%
  • the addition amount t of Si is set to 0 at% to 1 at%
  • (addition amount of B z + addition amount t of Si) is It was found that the glass transition temperature (Tg) can be set to 710 K (436.85 ° C.) or lower by setting it within the range of 0 at% to 2 at%.
  • sample No. which is a comparative example shown in Table 2. 16 and 17, the glass transition temperature (Tg) was higher than 740 K (466.85 ° C.).
  • Fe-based amorphous alloy powders having the respective compositions shown in Table 3 below were produced. Each sample is formed in a ribbon shape by a liquid quenching method.
  • FIG. 14 is a graph showing the relationship between the Ni addition amount of Fe-based amorphous alloy and glass transition temperature (Tg), and FIG. 15 is the Ni addition amount of Fe-based amorphous alloy and crystallization start temperature (Tx).
  • FIG. 16 is a graph showing the relationship between the amount of Ni added to the Fe-based amorphous alloy and the converted vitrification temperature (Tg / Tm), and
  • FIG. 17 is a graph showing the relationship between Ni in the Fe-based amorphous alloy. It is a graph which shows the relationship between addition amount and Tx / Tm.
  • the range of the Ni addition amount a is set to 0 at. % To 10 at%, and a preferable range was set to 0 at% to 6 at%.
  • the Ni addition amount a is set within the range of 4 at to 6 at%, the glass transition temperature (Tg) can be lowered, and a high converted vitrification temperature (Tg / Tm) and Tx / Tm can be obtained stably. I understood.
  • FIG. 18 is a graph showing the relationship between the Sn addition amount of the Fe-based amorphous alloy and the glass transition temperature (Tg), and FIG. 19 shows the Sn addition amount of the Fe-based amorphous alloy and the crystallization start temperature (Tx).
  • FIG. 20 is a graph showing the relationship between the amount of Sn added to the Fe-based amorphous alloy and the converted vitrification temperature (Tg / Tm), and
  • FIG. 21 is a graph showing the relationship between the Sn-based Fe alloy and Sn. It is a graph which shows the relationship between addition amount and Tx / Tm.
  • the addition amount b of Sn is in the range of 0 at% to 3 at%, and 0 at% to 2 at% is a preferable range. did.
  • Tx / Tm decreases as described above, but the converted vitrification temperature (Tg / Tm) can be increased.
  • the glass transition temperature (Tg) could be 740K (466.85 degreeC) or less, and the conversion vitrification temperature (Tg / Tm) could be 0.52 or more.
  • FIG. 22 is a graph showing the relationship between the addition amount x of P and the melting point (Tm) of the Fe-based amorphous alloy
  • FIG. 23 shows the addition amount C and melting point (Tm) of C in the Fe-based amorphous alloy. It is a graph which shows the relationship.
  • a glass transition temperature (Tg) of 740 K (466.85 ° C.) or less, preferably 710 K (436.85 ° C.) or less can be obtained.
  • Tg glass transition temperature
  • the additive amount x of P is set within the range of 8.8 at% to 10.8 at%, the melting point (Tm) can be effectively reduced, and thus the conversion vitrification temperature (Tg / Tm) can be increased. I knew it was possible.
  • Each Fe-based amorphous alloy powder was produced from each sample having the composition shown in Table 6 below. Each sample is formed in a ribbon shape by a liquid quenching method.
  • FIG. 24 is a graph showing the relationship between the Cr addition amount of the Fe-based amorphous alloy and the glass transition temperature (Tg), and FIG. 25 shows the Cr addition amount of the Fe-based amorphous alloy and the crystallization temperature (Tx).
  • FIG. 26 is a graph showing the relationship between the amount of Cr added to the Fe-based amorphous alloy and the saturation magnetization Is.
  • the Cr addition amount c is in the range of 0 at% to 6 at% so that the glass transition temperature (Tg) is low and the saturation magnetization Is is 1.0 T or more.
  • the preferable addition amount c of Cr was set in the range of 0 at% to 2 at%.
  • the glass transition temperature (Tg) can be set to a low value regardless of the Cr amount by setting the addition amount c of Cr within the range of 0 at% to 2 at%.
  • the corrosion resistance can be improved, a low glass transition temperature (Tg) can be stably obtained, and a higher magnetization is maintained. It turns out that it is possible.
  • the metal element M As shown in Table 7, Ti, Al, and Mn were added as the metal element M.
  • the amount of Al added is in a range greater than 0 wt% and less than 0.005 wt%.
  • all the constituent elements other than the M element in the table are all represented by the composition formula Fe 71.4 Ni 6 Cr 2 P 10.8 C 7.8 B 2 , so these elements are omitted.
  • the addition amount of the metal element M is defined as being in the range of 0.04 wt% or more and 0.6 wt% or less, but all the examples in Table 7 are within this range.
  • the metal element M can be agglomerated on the powder surface to form a thin passive layer.
  • Si and B it becomes possible to obtain low corrosion resistance, high magnetic permeability and low core loss by addition of the metal element M, as well as low Tg.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

組成式が、(Fe100-a-b-c-x-y-z-tNiaSnbCrcPxCyBzSit100-α Mαで示され、0at%≦a≦10at%、0at%≦b≦3at%、0at%≦c≦6at%、6.8at%≦x≦10.8at%、2.2at%≦y≦9.8at%、0at%≦z≦4.2at%、0at%≦t≦3.9at%であり、金属元素M は、Ti、Al、Mn、Zr、Hf、V、Nb、Ta、Mo、W のうち少なくとも1 種が選択されてなり、金属元素M の添加量αが、0.04wt%≦α≦0.6wt%であることにより、低Tg 化とともに、優れた耐食性及び高い磁気特性を有する圧粉コアやコイル封入圧粉コア用としてのFe 基非晶質合金粉末を提供する。

Description

Fe基非晶質合金粉末、及び前記Fe基非晶質合金粉末を用いた圧粉コア、ならびにコイル封入圧粉コア
 本発明は、例えば、トランスや電源用チョークコイル等の圧粉コア及びコイル封入圧粉コアに適用するFe基非晶質合金粉末に関する。
 電子部品等に適用される圧粉コアやコイル封入圧粉コアには、近年の高周波化や大電流化に伴い、優れた直流重畳特性や低いコアロスが要求される。
 ところで、Fe基非晶質合金粉末が結着材により目的の形状に成形された圧粉コアに対し、Fe基非晶質合金粉末の粉末形成時の応力歪みや圧粉コア成形時の応力歪みを緩和すべく、コア成形後に熱処理が施される。
 コア成形体に対して実際に施される熱処理温度は、被覆導線や結着材等の耐熱性を考慮して、それほど高い温度に設定できないため、Fe基非晶質合金粉末のガラス遷移温度(Tg)を低く抑えることが必要であった。それとともに、耐食性を向上させて優れた磁気特性を備えることが必要であった。
特開2007-231415号公報 特開2008-520832号公報 特開2009-174034号公報 特開2005-307291号公報 特開2009-54615号公報 特開2009-293099号公報 特開昭63-117406号公報 米国特許出願公開第2007/0258842号明細書
 そこで本発明は、上記の従来課題を解決するためのものであり、特に、低いガラス遷移温度(Tg)及び優れた耐食性を備え高い透磁率と低いコアロスを有する圧粉コアやコイル封入圧粉コア用としてのFe基非晶質合金粉末を提供することを目的とする。
 本発明におけるFe基非晶質合金粉末は、
 組成式が、(Fe100-a-b-c-x-y-z-tNiaSnbCrcxyzSit100-αMαで示され、0at%≦a≦10at%、0at%≦b≦3at%、0at%≦c≦6at%、6.8at%≦x≦10.8at%、2.2at%≦y≦9.8at%、0at%≦z≦4.2at%、0at%≦t≦3.9at%であり、金属元素Mは、Ti,Al,Mn,Zr,Hf,V,Nb,Ta,Mo,Wのうち少なくとも1種が選択されてなり、金属元素Mの添加量αは、0.04wt%≦α≦0.6wt%であることを特徴とするものである。
 低いガラス遷移温度(Tg)を得るためには、SiやBの添加量を低く抑えることが必要である。その一方でSi量の低下により耐食性が低下しやすくなるため、本発明では、活性の高い金属元素Mを少量、添加することで、粉末表面に薄い不動態層を安定して形成でき、耐食性を向上させ、優れた磁気特性を得ることができる。本発明では、金属元素M量を添加することにより粉末の粒子形状を球状(アスペクト比=1)よりアスペクト比を大きくすることができ、コアの透磁率μを効果的に向上させることができる。以上により本発明では、低いガラス遷移温度(Tg)とともに、優れた耐食性を備え高い透磁率と低いコアロスを有するFe基非晶質合金粉末にできる。
 本発明では、Bの添加量zは、0at%≦z≦2at%であり、Siの添加量tは、0at%≦t≦1at%であり、Bの添加量zとSiの添加量tを足したz+tは、0at%≦z+t≦2at%であることが好ましい。これにより、より効果的に、ガラス遷移温度(Tg)の低下を図ることが可能である。
 また本発明では、BとSiの双方が添加されている場合においては、Bの添加量zのほうがSiの添加量tより大きいことが好ましい。これにより、効果的に、ガラス遷移温度(Tg)の低下を図ることができる。
 また本発明では、金属元素Mの添加量αは、0.1wt%≦α≦0.6wt%であることが好ましい。これにより、安定して高い透磁率μを得ることが出来る。
 また本発明では、金属元素Mは少なくともTiを含むことが好ましい。これにより、粉末表面に効果的に薄い不動態層を安定して形成でき、優れた磁気特性を得ることができる。
 あるいは本発明では、金属元素Mは、Ti、Al及びMnを含む形態にすることも出来る。
 また本発明では、NiとSnのうち、どちらか一方のみが添加されることが好ましい。
 また本発明では、Niの添加量aは、0at%≦a≦6at%の範囲内であることが好ましい。これにより、安定して高い換算ガラス化温度(Tg/Tm)及びTx/Tmを得ることができ、非晶質形成能を高めることができる。
 また本発明では、Snの添加量bは、0at%≦b≦2at%の範囲内であることが好ましい。Sn量を増やすと、粉末のO2濃度を増加させ耐食性の低下を招くため、耐食性の低下を抑制し、且つ非晶質性形成能を高めるために、Snの添加量bは、2at%以下とすることが好ましい。
 また本発明では、Crの添加量cは、0at%≦c≦2at%の範囲内であることが好ましい。これにより効果的にガラス遷移温度(Tg)を安定して低く出来る。
 また本発明では、Pの添加量xは、8.8at%≦x≦10.8at%の範囲内であることが好ましい。これにより、融点(Tm)を低くすることができ、低Tg化によっても、換算ガラス化温度(Tg/Tm)を高くでき、非晶質性形成能を高めることができる。
 また本発明では、0at%≦a≦6at%、0at%≦b≦2at%、0at%≦c≦2at%、8.8at%≦x≦10.8at%、2.2at%≦y≦9.8at%、0at%≦z≦2at%、0at%≦t≦1at%、0at%≦z+t≦2at%、0.1wt%≦α≦0.6wt%を満たすことが好ましい。
 また本発明では、粉末のアスペクト比が、1より大きく1.4以下であることが好ましい。これにより、コアの透磁率μを高めることが出来る。
 また本発明では、粉末のアスペクト比が、1.2以上で1.4以下であることが好ましい。これにより、コアの透磁率μを安定して高くすることが出来る。
 また本発明では、金属元素Mの濃度は、粉末内部より粉末表面層にて高くなっていることが好ましい。本発明では、活性の高い金属元素Mを少量添加したことで、金属元素Mは粉末表面層に凝集して不動態層を形成することができる。
 また本発明では、組成元素にSiを含む場合は、前記粉末表面層での金属元素Mの濃度は、Siの濃度よりも高くなっていることが好適である。金属元素Mの添加量αがゼロ、あるいは添加量αが本発明より少ない形態であると、Si濃度が粉末表面で高くなる。このとき、不動態層の厚さは本発明より厚くなりやすい。これに対して本発明では、Siの添加量を3.9at%以下(Fe-Ni-Cr-P-C-Si中での添加量)に抑えたうえで活性の高い金属元素Mを合金粉末中、0.04wt%以上0.6wt%以下の範囲内で添加することで、金属元素Mを粉末表面に凝集させSiやOとともに薄い不動態層を形成することができ、優れた磁気特性を得ることが可能になる。
 また本発明における圧粉コアは、上記に記載のFe基非晶質合金粉末の粉末が結着材によって固化成形されてなることを特徴とするものである。
 本発明では、前記圧粉コアにおいて、Fe基非晶質合金粉末の最適熱処理温度を低くすることができるため、結着材の耐熱温度未満の熱処理温度で応力歪が適切に緩和でき、圧粉コアの透磁率μを高くでき、併せてコアロスも低くできるため、少ないターン数にて所望の高いインダクタンスを得ることができ、発熱圧粉コアの発熱や銅損も抑制することが可能である。
 また本発明におけるコイル封入圧粉コアは、上記に記載のFe基非晶質合金粉末の粉末が結着材によって固化成形されてなる圧粉コアと、前記圧粉コアに覆われるコイルとを有してなることを特徴とするものである。本発明では、コアの最適熱処理温度を低くでき、コアロスの低減を図ることが可能である。この場合、コイルはエッジワイズコイルを使用すると好ましい。エッジワイズコイルを使用すると、コイル導体の断面積の大きいエッジワイズコイルを用いることができるため、直流抵抗RDcを小さくでき、発熱及び銅損を抑制することが可能となる。
 本発明のFe基非晶質合金粉末によれば、低いガラス遷移温度(Tg)とともに、優れた耐食性を備え高い磁気特性を有する。
 また本発明の前記Fe基非晶質合金粉末の粉末を用いた圧粉コアやコイル封入圧粉コアによれば、コアの最適熱処理温度を低くでき、また、透磁率μを向上させ、コアロスの低減を図ることができる。
圧粉コアの斜視図、 コイル封入圧粉コアの平面図、 図2(a)に示すA-A線に沿って切断し矢印方向から見たコイル封入圧粉コアの縦断面図、 本実施形態におけるFe基非晶質合金粉末の断面のイメージ図、 比較例(Ti量が0.035wt%)のFe基非晶質合金粉末のXPS分析結果、 実施例(Ti量が0.25wt%)のFe基非晶質合金粉末のXPS分析結果、 比較例(Ti量が0.035wt%)のFe基非晶質合金粉末におけるAESのデプスプロファイル、 実施例(Ti量が0.25wt%)のFe基非晶質合金粉末におけるAESのデプスプロファイル、 Fe基非晶質合金粉末中に占めるTiの添加量と粉末のアスペクト比との関係を示すグラフ、 Fe基非晶質合金粉末中に占めるTiの添加量とコアの透磁率μとの関係を示すグラフ、 図8に示すFe基軟磁性合金粉末のアスペクト比と図9に示すコアの透磁率μとの関係を示すグラフ、 Fe基非晶質合金粉末に占めるTiの添加量と合金の飽和磁化(Is)との関係を示すグラフ、 圧粉コアの最適熱処理温度とコアロスWとの関係を示すグラフ、 Fe基非晶質合金のガラス遷移温度(Tg)と圧粉コアの最適熱処理温度との関係を示すグラフ、 Fe基非晶質合金のNi添加量とガラス遷移温度(Tg)との関係を示すグラフ、 Fe基非晶質合金のNi添加量と結晶化開始温度(Tx)との関係を示すグラフ、 Fe基非晶質合金のNi添加量と換算ガラス化温度(Tg/Tm)との関係を示すグラフ、 Fe基非晶質合金のNi添加量とTx/Tmとの関係を示すグラフ、 Fe基非晶質合金のSn添加量とガラス遷移温度(Tg)との関係を示すグラフ、 Fe基非晶質合金のSn添加量と結晶化開始温度(Tx)との関係を示すグラフ、 Fe基非晶質合金のSn添加量と換算ガラス化温度(Tg/Tm)との関係を示すグラフ、 Fe基非晶質合金のSn添加量とTx/Tmとの関係を示すグラフ、 Fe基非晶質合金のP添加量と融点(Tm)との関係を示すグラフ、 Fe基非晶質合金のC添加量と融点(Tm)との関係を示すグラフ、 Fe基非晶質合金のCr添加量とガラス遷移温度(Tg)との関係を示すグラフ、 Fe基非晶質合金のCr添加量と結晶化開始温度(Tx)との関係を示すグラフ、 Fe基非晶質合金のCr添加量と飽和磁化Isとの関係を示すグラフ。
 本実施形態におけるFe基非晶質合金粉末は、組成式が、(Fe100-a-b-c-x-y-z-tNiaSnbCrcxyzSit100-αMαで示され、0at%≦a≦10at%、0at%≦b≦3at%、0at%≦c≦6at%、6.8at%≦x≦10.8at%、2.2at%≦y≦9.8at%、0at%≦z≦4.2at%、0at%≦t≦3.9at%であり、金属元素Mは、Ti,Al,Mn,Zr,Hf,V,Nb,Ta,Mo,Wのうち少なくとも1種が選択されてなり、金属元素Mの添加量αは、0.04wt%≦α≦0.6wt%である。
 上記のように、本実施形態のFe基非晶質合金粉末は、主成分としてのFeと、Ni、Sn、Cr、P、C、B、Si(ただし、Ni、Sn、Cr、B、Siの添加は任意)及び金属元素Mとを添加してなる軟磁性合金である。
 また、本実施形態のFe基非晶質合金粉末は、飽和磁束密度をより高くしたり、磁歪を調整するために、コア成形時の熱処理により、主相の非晶質相と、α-Fe結晶相との混相組織が形成されていても良い。α-Fe結晶相はbcc構造である。
 本実施形態では、Bの添加量及びSiの添加量をできる限り少なくして低Tg化を図るとともに、Siの添加量の低下により劣化する耐食性を活性の高い金属元素Mの少量添加により向上させるものである。
 以下では、まずFe-Ni-Sn-Cr-P-C-B-Si中に占める各組成元素の添加量について説明する。
 本実施形態のFe基非晶質合金粉末に含まれるFeの添加量は、上記した組成式では、Fe-Ni-Sn-Cr-P-C-B-Si中、(100-a-b-c-x-y-z-t)で示され、後述の実験では、Fe-Ni-Sn-Cr-P-C-B-Si中、65.9at%~77.4at%程度の範囲内である。このようにFeの添加量が高いことで高い磁化を得ることができる。
 Fe-Ni-Sn-Cr-P-C-B-Si中に含まれるNiの添加量aは、0at%≦a≦10at%の範囲内で規定される。Niの添加によりガラス遷移温度(Tg)を低く、且つ換算ガラス化温度(Tg/Tm)、Tx/Tmを高い値に維持できる。ここでTmは融点、Txは、結晶化開始温度である。Niの添加量aを10at%程度まで大きくしても非晶質を得ることができる。ただし、Niの添加量aが6at%を超えると、換算ガラス化温度(Tg/Tm)及び、Tx/Tmが低下し、非晶質形成能が低下するので、本実施形態では、Niの添加量aは、0at%≦a≦6at%の範囲内であることが好ましく、さらに、4at%≦a≦6at%の範囲内とすれば、安定して低いガラス遷移温度(Tg)と、高い換算ガラス化温度(Tg/Tm)及びTx/Tmを得ることが可能である。
 Fe-Ni-Sn-Cr-P-C-B-Si中に含まれるSnの添加量bは、0at%≦b≦3at%の範囲内で規定される。Snの添加量bを3at%程度まで大きくしても非晶質を得ることができる。ただし、Snの添加により合金粉末中の酸素濃度が増加し、Snの添加により耐食性が低下しやすい。そのためSnの添加量は必要最小限に抑える。またSnの添加量bを3at%程度とするとTx/Tmが大きく低下し、非晶質形成能が低下することからSnの添加量bの好ましい範囲を0≦b≦2at%に設定した。あるいは、Snの添加量bは1at%≦b≦2at%の範囲内であることが高いTx/Tmを確保できてより好ましい。
 ところで本実施形態では、Fe基非晶質合金粉末に、NiとSnの双方を添加しないか、あるいはNiあるいはSnのどちらか一方のみを添加することが好適である。これにより低いガラス遷移温度(Tg)、及び高い換算ガラス化温度(Tg/Tm)のみならず、より効果的に、磁化を高くし且つ耐食性を向上させることが可能になる。
 Fe-Ni-Sn-Cr-P-C-B-Si中に含まれるCrの添加量cは、0at%≦c≦6at%の範囲内で規定される。Crは、粉末表面に不動態層の形成を促進でき、Fe基非晶質合金粉末の耐食性を向上できる。例えば、水アトマイズ法を用いてFe基非晶質合金粉末を作製する際において、合金溶湯が直接水に触れたとき、更には水アトマイズ後のFe基非晶質合金粉末の乾燥工程において生じる腐食部分の発生を防ぐことができる。一方、Crの添加によりガラス遷移温度(Tg)が高くなり、また飽和磁化Isが低下するので、Crの添加量cは必要最小限に抑えることが効果的である。特に、Crの添加量cを0at%≦c≦2at%の範囲内に設定すると、ガラス遷移温度(Tg)を低く維持できるので好適である。
 さらにCrの添加量cを1at%≦c≦2at%の範囲内で調整することがより好ましい。良好な耐食性とともに、ガラス遷移温度(Tg)を低く維持でき、且つ高い磁化を維持することができる。
 Fe-Ni-Sn-Cr-P-C-B-Si中に含まれるPの添加量xは、6.8at%≦x≦10.8at%の範囲内で規定される。また、Fe-Ni-Sn-Cr-P-C-B-Si中に含まれるCの添加量yは、2.2at%≦y≦9.8at%の範囲内で規定される。P及びCの添加量を上記範囲内に規定したことで非晶質を得ることが出来る。
 また本実施形態では、Fe基非晶質合金粉末のガラス遷移温度(Tg)を低くし、同時に、非晶質形成能の指標となる換算ガラス化温度(Tg/Tm)を高くするが、ガラス遷移温度(Tg)の低下により、換算ガラス化温度(Tg/Tm)を高くするためには融点(Tm)を低くすることが必要である。
 本実施形態では、特に、Pの添加量xを8.8at%≦x≦10.8at%の範囲内に調整することで融点(Tm)を効果的に低くすることができ、換算ガラス化温度(Tg/Tm)を高くすることが出来る。
 一般に、Pは半金属の中で磁化を低下させやすい元素として知られており、高い磁化を得るためには添加量はある程度少なくする必要がある。加えて、Pの添加量xを10.8at%とすると、Fe-P-Cの三元合金の共晶組成(Fe79.410.89.8)付近となるため、Pを10.8at%を超えて添加することは融点(Tm)の上昇を招く。従って、Pの添加量の上限は10.8at%とすることが望ましい。一方、上記のように融点(Tm)を効果的に低下させ、換算ガラス化温度(Tg/Tm)を高くするためには、Pを8.8at%以上添加することが好ましい。
 また、Cの添加量yを5.8at%≦y≦8.8at%の範囲内に調整することが好適である。これにより、効果的に、融点(Tm)を低くでき、換算ガラス化温度(Tg/Tm)を高くすることが出来、磁化を高い値で維持出来る。
 Fe-Ni-Sn-Cr-P-C-B-Si中に含まれるBの添加量zは、0at%≦z≦4.2at%の範囲内で規定される。また、Fe-Ni-Sn-Cr-P-C-B-Si中に含まれるSiの添加量tは、0at%≦t≦3.9at%の範囲内で規定される。
 Si及びBの添加は非晶質形成能の向上に役立つが、ガラス遷移温度(Tg)が上昇しやすくなるため、本実施形態では、ガラス遷移温度(Tg)をできる限り低くすべく、Si、B及びSi+Bの添加量を必要最小限に抑えることとしている。具体的には、Fe基非晶質合金粉末のガラス遷移温度(Tg)を740K(ケルビン)以下に設定する。
 また本実施形態では、Bの添加量zを0at%≦z≦2at%の範囲内に設定し、また、Siの添加量tを0at%≦t≦1at%の範囲内に設定し、さらに、(Bの添加量z+Siの添加量t)を、0at%≦z+t≦2at%の範囲内とすることで、ガラス遷移温度(Tg)を710K以下に抑えることが出来る。
 Fe基非晶質合金粉末にBとSiの双方が添加されている実施形態では、上記した組成範囲内において、Bの添加量zのほうがSiの添加量tより大きいことが好ましい。これより、安定して低いガラス遷移温度(Tg)を得ることができる。
 このように本実施形態では、低Tg化を促進すべく、Siの添加量をできる限り低く抑えるが、これにより劣化する耐食性を、金属元素Mを少量添加することで向上させている。
 金属元素Mは、Ti,Al,Mn,Zr,Hf,V,Nb,Ta,Mo,Wのうち少なくとも1種が選択されてなる。
 金属元素Mの添加量αは、組成式中、(Fe-Ni-Sn-Cr-P-C-B-Si)100-αMαで示され、添加量αは0.04wt%以上0.6wt%以下であることが好ましい。
 活性の高い金属元素Mを少量添加することで、水アトマイズ法での作製の際、粉末が球状になる前に、粉末表面に不動態層が形成され、球状(アスペクト比=1)よりもアスペクト比の大きい状態で固まる。このように粉末を球状とは異なるアスペクト比の若干大きい形状で形成することができるため、コアの透磁率μを高くすることが可能になる。具体的には本実施形態では、粉末のアスペクト比を1より大きく1.4以下、好ましくは1.1以上で1.4以下に設定できる。
 ここでアスペクト比とは、図3に示す粉末にて長径dと短径eとの比(d/e)で示される。例えば粉末の二次元投影図によりアスペクト比(d/e)を求める。長径dは最も長い部分、短径eは、長径dに直交する方向であって、最も短い部分である。
 アスペクト比はあまり大きくなりすぎても、コアに占めるFe基非晶質合金粉末の密度が小さくなり、その結果、透磁率μが低下するため、本実施形態では後述する実験結果によりアスペクト比を0より大きく(好ましくは1.1以上で)1.4以下に設定した。これにより、コアの100MHzにおける透磁率μを例えば60以上にできる。
 また金属元素Mの添加量αは0.1wt%以上で0.6wt%以下の範囲内であることが好ましい。粉末のアスペクト比を1.2以上で1.4以下に設定でき、これにより、100MHzにおいて60以上の透磁率μを安定して得ることができる。
 金属元素Mは少なくともTiを含むことが好適である。粉末表面に効果的に薄い不動態層を安定して形成でき、粉末のアスペクト比を1より大きく1.4以下の範囲内に適切に調整でき、優れた磁気特性を得ることができる。
 あるいは金属元素Mは、Ti,Al及びMnを含む構成にすることも出来る。
 本実施形態では金属元素Mの濃度は、図3に示す粉末内部5よりも粉末表面層6にて高くなっている。本実施形態では、活性の高い金属元素Mを少量添加したことで、金属元素Mは粉末表面層6に凝集し、SiやOとともに不動態層を形成することができる。
 本実施形態では、金属元素Mを0.04wt%以上0.6wt%以下の範囲内に設定したが、金属元素Mの添加量をゼロ、あるいは金属元素Mの添加量を0.04wt%未満にすると、Si濃度が粉末表面層6で金属元素Mより高くなることが後述する実験によりわかっている。このとき不動態層の膜厚は、本実施形態よりも厚くなりやすい。これに対し本実施形態では、Siの添加量(Fe-Ni-Sn-Cr-P-C-B-Si中)を3.9at%以下とし、活性の高い金属元素Mを0.04wt%以上0.6wt%以下の範囲内で添加することで、金属元素MをSiよりも多く粉末表面層6に凝集させることができる。金属元素Mは、Si,Oとともに粉末表面層6に不動態層を形成するが、本実施形態では、金属元素Mを0.04wt%未満とした場合に比べて不動態層を薄く形成でき、優れた磁気特性を得ることが可能になる。
 なお本実施形態におけるFe基非晶質合金粉末の組成は、ICP-MS(高周波誘導結合質量分析装置)等で測定することが可能である。
 本実施形態では、上記の組成式から成るFe基非晶質合金を秤量、溶解し、水アトマイズ法等で溶湯を分散、急冷凝固させてFe基非晶質合金粉末を得る。本実施形態では、Fe基非晶質合金粉末の粉末表面層6に薄い不動態層を形成することができるため、粉末製造工程で金属成分の一部が腐食し、粉末及びこれを圧粉成形してなる圧粉磁心の特性劣化を抑制することができる。
 そして本実施形態におけるFe基非晶質合金粉末は、例えば結着材により固化成形された図1に示す円環状の圧粉コア1や図2に示すコイル封入圧粉コア2に適用される。
 図2(a)(b)に示すコイル封入コア(インダクタ素子)2は、圧粉コア3と、前記圧粉コア3に覆われるコイル4とを有して構成される。Fe基非晶質合金粉末は、コア中に多数個存在し、各Fe基非晶質合金粉末間が前記結着材にて絶縁された状態となっている。
 また、前記結着材としては、エポキシ樹脂、シリコーン樹脂、シリコーンゴム、フェノール樹脂、尿素樹脂、メラミン樹脂、PVA(ポリビニルアルコール)、アクリル樹脂等の液状又は粉末状の樹脂あるいはゴムや、水ガラス(Na2O-SiO2)、酸化物ガラス粉末(Na2O-B23-SiO2、PbO-B23-SiO2、PbO-BaO-SiO2、Na2O-B23-ZnO、CaO-BaO-SiO2、Al23-B23-SiO2、B23-SiO2)、ゾルゲル法により生成するガラス状物質(SiO2、Al23、ZrO2、TiO2等を主成分とするもの)等を挙げることができる。
 また潤滑剤としては、ステアリン酸亜鉛、ステアリン酸アルミニウム等を用いることが出来る。結着材の混合比は5質量%以下、潤滑剤の添加量は0.1質量%~1質量%程度である。
 圧粉コアをプレス成形した後、Fe基非晶質合金粉末の応力歪みを緩和すべく熱処理を施すが、本実施形態では、Fe基非晶質合金粉末のガラス遷移温度(Tg)を低くでき、したがってコアの最適熱処理温度を従来に比べて低くできる。ここで「最適熱処理温度」とは、Fe基非晶質合金粉末に対して効果的に応力歪みを緩和でき、コアロスを最小限に小さくできるコア成形体に対する熱処理温度である。例えば、N2ガス、Arガス等不活性ガス雰囲気において、昇温速度を40℃/minとし、所定の熱処理温度に到達したらその熱処理温度に1時間保持し、そしてコアロスWが最も小さくなるときの前記熱処理温度を最適熱処理温度と認定する。
 圧粉コア成形後に施す熱処理温度T1は樹脂の耐熱性等を考慮して、最適熱処理温度T2以下の低い温度に設定される。本実施形態では、熱処理温度T1を300℃~400℃程度に調整することができる。そして本実施形態では、最適熱処理温度T2を従来よりも低くすることができるから、(最適熱処理温度T2-コア成形後の熱処理温度T1)を従来に比べて小さくすることができる。このため、本実施形態では、コア成形後に施す熱処理温度T1の熱処理によっても従来に比べてFe基非晶質合金粉末の応力歪みを効果的に緩和でき、また本実施形態におけるFe基非晶質合金粉末は高い磁化を維持しているために、所望のインダクタンスを確保できるとともに、コアロス(W)の低減を図ることができ、電源に実装した際に高い電源効率(η)を得ることが出来る。
 具体的には本実施形態では、Fe基非晶質合金粉末において、ガラス遷移温度(Tg)を740K以下に設定でき、好ましくは710K以下に設定できる。また換算ガラス化温度(Tg/Tm)を0.52以上に設定でき、好ましくは0.54以上に設定でき、より好ましくは0.56以上に設定できる。また飽和磁化Isを1.0T以上に設定できる。
 またコア特性としては、最適熱処理温度を693.15K(420℃)以下、好ましくは673.15K(400℃)以下に設定できる。また、コアロスWを90(kW/m3)以下、好ましくは60(kW/m3)以下に設定できる。
 本実施形態では、図2(b)のコイル封入圧粉コア2に示すように、コイル4には、エッジワイズコイルを用いることが出来る。エッジワイズコイルとは平角線の短辺を内径面として縦に巻いたコイルを示す。
 本実施形態によれば、Fe基非晶質合金粉末の最適熱処理温度を低くすることができるため、結着材の耐熱温度未満の熱処理温度で応力歪が適切に緩和でき、圧粉コア3の透磁率μを高く、コアロスを小さくすることができるため、少ないターン数にて所望の高いインダクタンスLを得ることが可能になる。このように本実施形態では、コイル4に各ターンにおける導体の断面積が大きいエッジワイズコイルを用いることができるため、直流抵抗Rdcを小さくでき、発熱及び銅損を抑制することが可能である。
 (粉末表面分析の実験)
 (Fe77.4Cr28.88.82Si1100-αTiαからなるFe基非晶質合金粉末を水アトマイズ法により製造した。なお、Fe-Cr-P-C-B-Si中における各元素の添加量はat%である。粉末を得る際の溶湯温度(溶解された合金の温度)1500℃、水の噴出圧は80MPaであった。
 なお、上記のアトマイズ条件は、この実験以外の後述する実験においても同じとした。
 実験では、Tiの添加量αを0.035wt%(比較例)としたFe基非晶質合金粉末と、Tiの添加量αを0.25wt%(実施例)としたFe基非晶質合金粉末とを製造した。
 X線光電子分析装置(XPS)による表面分析結果が図4及び図5に示されている。図4は比較例のFe基非晶質合金粉末に対する実験結果、図5は、実施例のFe基非晶質合金粉末に対する実験結果を示す。
 図4(a)~(c),図5(a)~(c)に示すように、粉末表面にはFe、P、Siの酸化物が形成されていることがわかった。
 また図4の比較例ではTiの添加量αが少なすぎて、粉末表面におけるTiの状態を分析することが出来なかったが、図5(d)に示すように実施例では、粉末表面にTiの酸化物が形成されることがわかった。
 次に、図6が上記の比較例のFe基非晶質合金粉末を用いて行ったオージェ電子分析光法(AES)によるデプスプロファイル、図7が上記の実施例のFe基非晶質合金粉末を用いて行ったオージェ電子分析光法(AES)によるデプスプロファイルである。各図の横軸の最も左が粉末表面での分析結果であり、右側に向うほど粉末内部(粉末の中心方向)に進入した位置での分析結果である。
 図6の比較例に示すように、Tiの濃度は粉末表面から粉末内部に向けてあまり変化がなく且つ全体的に低いことがわかった。これに対してSiの濃度は粉末の表面側でTi濃度よりも高くなっていることがわかった。そしてSiの濃度は、粉末内部に向けて徐々に小さくなり、Ti濃度との差が小さくなることがわかった。Oは粉末表面側に凝集し、粉末内部での濃度は非常に小さくなっていることがわかった。またFeは、粉末表面から粉末内部に向けて濃度が徐々に大きくなり、ある程度の深さ位置から濃度がほぼ一定の状態になっていることがわかった。Crの濃度は、粉末表面から粉末内部に向けてあまり変化がないことがわかった。
 これに対して図7の実施例では、Tiの濃度が粉末表面側で高く、粉末内部に向けて徐々に小さくなっていることがわかった。粉末表面側で見ると、Tiの濃度がSiの濃度よりも大きくなっており、図6の比較例と異なる濃度分布結果になった。また、Oは粉末表面側に凝集し、この点、図6,図7も同様であるが、図7の実施例では図6の比較例よりOの最大濃度が半分になるまでの深さ位置が粉末表面により近く、すなわち不動態層の膜厚を図7の実施例のほうが図7の比較例より薄く形成できることがわかった。また図7の実施例でのFeの濃度変化は図6の比較例に比べて粉末表面から粉末内部に向けて緩やかに上昇することがわかった。図7の実施例でのCrの濃度は、図6の比較例とあまり変わらないことがわかった。
 (Tiの添加量とアスペクト比、透磁率との関係の実験)
 (Fe71.4Ni6Cr210.87.82100-αTiαからなるFe基非晶質合金粉末を水アトマイズ法により製造した。なお、Fe-Cr-P-C-B-Si中における各元素の添加量はat%である。また、Tiの添加量αは0.035wt%、0.049wt%、0.094wt%、0.268wt%、0.442wt%、0.595wt%、0.805wt%とした各Fe基非晶質合金粉末とした。
 図8に示すようにTiの添加量αを大きくすると、徐々に粉末のアスペクト比が大きくなることがわかった。ここでアスペクト比とは、図3に示す粉末の二次元投影図にて長径dと短径eとの比(d/e)で示される。アスペクト比=1は球状である。このように、活性の高いTiの添加により、水アトマイズ法での作製の際、粉末が球状になる前に、図7に示すように粉末表面に薄い不動態層を形成でき、球状(アスペクト比=1)よりもアスペクト比の大きい異形状で形成できることがわかった。なお、図8において得られたアスペクト比の具体的な数値はTiの添加量αが低い順に1.08、1.13、1.16、1.24、1.27、1.39、1.47であった。
 次に実験では、Tiの添加量αが異なる各Fe基非晶質合金粉末に、樹脂(アクリル樹脂);3質量%、潤滑剤(ステアリン酸亜鉛);0.3質量%を夫々混合し、プレス圧600MPaにて、外径20mm、内径12mm、高さ6.8mmのトロイダル状6.5mm角で、高さが3.3mmのコア成形体を形成し、さらにN2ガス雰囲気下で、昇温速度を0.67K/sec(40℃/min)、熱処理温度を300℃~400℃以下の範囲内で保持時間を1時間として圧粉コアを成形した。
 なお、上記のコア作製条件は、この実験以外の後述する実験においても同じとした。
 そして、各Tiの添加量αと、コアの透磁率μ及び飽和磁束密度Bsとの関係を調べた。透磁率μは、インピーダンスアナライザを用いて周波数100KHzで測定した。図9に示すように、Tiの添加量αが0.6wt%程度までは、約60以上の高い透磁率μを確保できるが、Tiの添加量αが更に大きくなると透磁率μは60を下回ることがわかった。
 図10に示すように、粉末のアスペクト比が1より大きく1.3程度までは徐々に透磁率μを大きくすることが出来るが、アスペクト比が約1.3を越えると透磁率μは徐々に低下し始め、アスペクト比が1.4を越えると、コア密度の低下により透磁率μが急激に減少し始め、60を下回ることがわかった。
 なお図11に示すように、Tiの添加量による飽和磁化(Is)の低下は見られなかった。
 図4ないし図11に示す実験により、Tiの添加量αを0.04wt%以上0.6wt%以下に設定した。また粉末のアスペクト比を1より大きく1.4以下、好ましくは1.1以上で1.4以下に設定した。これにより60以上の透磁率μを得ることができる。
 またTiの添加量αの好ましい範囲を0.1wt%以上で0.6wt%以下とした。また好ましい粉末のアスペクト比を1.2以上で1.4以下とした。これにより、安定して高いコアの透磁率μを得ることが出来る。
(ガラス遷移温度(Tg)の適用範囲に関する実験)
 以下の表1に示すNo.1~No.8のFe基軟磁性合金を液体急冷法によりリボン状で製造し、更に各Fe非晶質合金の粉末を用いて圧粉コアを作製した。
Figure JPOXMLDOC01-appb-T000001
 表1の各試料が非晶質であることは、XRD(X線回折装置)により確認した。また、キュリー温度(Tc)、ガラス遷移温度(Tg)、結晶化開始温度(Tx)、融点(Tm)を、DSC(示差走査熱量計)により測定した(昇温速度はTc、Tg、Txが0.67K/sec、Tmは0.33K/sec)。
 表1に示す「最適熱処理温度」は圧粉コアに対して昇温速度を0.67K/sec(40℃/min)、保持時間1時間にて熱処理を施すときに、圧粉コアのコアロス(W)を最も低減できる理想的な熱処理温度を指す。
 表1に示す圧粉コアのコアロス(W)の評価は、岩通計測(株)製SY-8217 BHアナライザを用いて周波数100kHz、最大磁束密度25mTとして求めた。
 表1に示すように各試料ともにTiを0.25wt%添加した。
 図12は、表1の圧粉コアの最適熱処理温度とコアロス(W)との関係を示すグラフである。図12に示すように、コアロス(W)を90kW/m3以下に設定するには最適熱処理温度を693.15K(420℃)以下に設定することが必要であるとわかった。
 また図13は、Fe基非晶質合金粉末のガラス遷移温度(Tg)と表1の圧粉コアの最適熱処理温度との関係を示すグラフである。図13に示すように、最適熱処理温度を693.15K(420℃)以下に設定するにはガラス遷移温度(Tg)を740K(466.85℃)以下に設定することが必要とわかった。
 また、図12から、コアロス(W)を60kW/m3以下に設定するには最適熱処理温度を673.15K(400℃)以下に設定することが必要であるとわかった。また図13から、最適熱処理温度を673.15K(400℃)以下に設定するにはガラス遷移温度(Tg)を710K(436.85℃)以下に設定することが必要とわかった。
 以上のように表1、図12及び図13の実験結果から、本実施例のガラス遷移温度(Tg)の適用範囲を740K(466.85℃)以下に設定した。また本実施例において、710K(436.85℃)以下のガラス遷移温度(Tg)を好ましい適用範囲とした。
(B添加量及びSi添加量の実験)
 以下の表2に示す各組成から成る各Fe基非晶質合金粉末を製造した。各試料は、液体急冷法によりリボン状で形成されたものである。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように各試料ともにTiを0.25wt%添加した。
 表2に示す試料No.3、4、9~No.15(いずれも実施例)では、Fe-Cr-P-C-B-Si中に占めるFeの添加量、Crの添加量及びPの添加量を固定し、Cの添加量、Bの添加量及びSiの添加量を夫々変化させた。また試料No.2(実施例)では、Fe量を、試料No.9~No.15のFe量よりもやや小さくした。試料No.16,17(比較例)では、試料No.2と組成が近いが、試料No.2に比べてSiが多く添加されている。
 表2に示すように、Bの添加量zを0at%~4.2at%の範囲内、及びSiの添加量tを0at%~3.9at%の範囲内に設定することで、非晶質を形成できるとともに、ガラス遷移温度(Tg)を740K(466.85℃)以下に設定できることがわかった。
 また表2に示すようにBの添加量zを、0at%~2at%の範囲内に設定することで、ガラス遷移温度(Tg)をより効果的に低減できることがわかった。また、Siの添加量tを0at%~1at%の範囲内に設定することで、ガラス遷移温度(Tg)をより効果的に低減できることがわかった。
 また、Bの添加量zを、0at%~2at%の範囲内に設定し、Siの添加量tを0at%~1at%に設定し、さらに(Bの添加量z+Siの添加量t)を、0at%~2at%の範囲内に設定することで、ガラス遷移温度(Tg)を710K(436.85℃)以下に設定できることがわかった。
 一方、表2に示す比較例である試料No.16,17では、ガラス遷移温度(Tg)が740K(466.85℃)よりも大きくなった。
(Niの添加量の実験)
 以下の表3に示す各組成から成る各Fe基非晶質合金粉末を製造した。各試料は、液体急冷法によりリボン状で形成されたものである。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように各試料ともにTiを0.25wt%添加した。
 表3に示す試料No.18~No.25(いずれも実施例)では、Fe-Cr-P-C-B-Si中に占めるCr,P,C,B,Siの添加量を固定し、Feの添加量、Niの添加量を変化させた。表3に示すように、Niの添加量aを10at%まで大きくしても、非晶質が得られることがわかった。また、いずれの試料も、ガラス遷移温度(Tg)が720K(446.85℃)以下、換算ガラス化温度(Tg/Tm)が0.54以上であった。
 図14は、Fe基非晶質合金のNi添加量とガラス遷移温度(Tg)との関係を示すグラフ、図15は、Fe基非晶質合金のNi添加量と結晶化開始温度(Tx)との関係を示すグラフ、図16は、Fe基非晶質合金のNi添加量と換算ガラス化温度(Tg/Tm)との関係を示すグラフ、図17は、Fe基非晶質合金のNi添加量とTx/Tmとの関係を示すグラフである。
 図14,図15に示すようにNiの添加量aを増やすと、徐々に、ガラス遷移温度(Tg)及び結晶化開始温度(Tx)が低下することがわかった。
 また図16,図17に示すように、Ni添加量aを6at%程度まで大きくしても、高い換算ガラス化温度(Tg/Tm)及びTx/Tmを維持できるが、Ni添加量aが6at%を越えると、急激に、換算ガラス化温度(Tg/Tm)及びTx/Tmが低下することがわかった。
 本実施例では、ガラス遷移温度(Tg)の低下とともに、換算ガラス化温度(Tg/Tm)を大きくして非晶質形成能を高めることが必要であるため、Ni添加量aの範囲を0at%~10at%とし、好ましい範囲を0at%~6at%に設定した。
 またNi添加量aを4at~6at%の範囲内に設定すれば、ガラス遷移温度(Tg)を低くできるとともに、安定して高い換算ガラス化温度(Tg/Tm)及びTx/Tmが得られることがわかった。
(Snの添加量の実験)
 以下の表4に示す各組成から成る各Fe基非晶質合金粉末を製造した。各試料は、液体急冷法によりリボン状で形成されたものである。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように各試料ともにTiを0.25wt%添加した。
 表4に示す試料No.26~No.29では、Fe-Cr-P-C-B-Si中に占めるCr,P,C,B,Siの添加量を固定し、Feの添加量及びSnの添加量を変化させた。Snの添加量を3at%まで大きくしても非晶質が得られることがわかった。
 ただし表4に示すように,Snの添加量bを増やすとFe基非晶質合金中に含まれる酸素濃度が増加し耐食性が低下することが分かる。そのため、添加量bは必要最小限に抑えることが必要であるとわかった。
 図18は、Fe基非晶質合金のSn添加量とガラス遷移温度(Tg)との関係を示すグラフ、図19は、Fe基非晶質合金のSn添加量と結晶化開始温度(Tx)との関係を示すグラフ、図20は、Fe基非晶質合金のSn添加量と換算ガラス化温度(Tg/Tm)との関係を示すグラフ、図21は、Fe基非晶質合金のSn添加量とTx/Tmとの関係を示すグラフである。
 図18に示すようにSnの添加量bを増やすと、ガラス遷移温度(Tg)が低下する傾向が見られた。
 また図21に示すように、Snの添加量bを3at%にすると、Tx/Tmが低下し、非晶質形成能が悪化することがわかった。
 したがって本実施例では、耐食性の低下を抑制し、且つ高い非晶質形成能を維持するため、Snの添加量bを0at%~3at%の範囲内とし、0at%~2at%を好ましい範囲とした。
 なおSnの添加量bを2at%~3at%とすると、上記のようにTx/Tmは小さくなるが、換算ガラス化温度(Tg/Tm)は高くできる。
(Pの添加量及びCの添加量の実験)
 以下の表5に示す各組成から成る各Fe基非晶質合金粉末を製造した。各試料は、液体急冷法によりリボン状で形成されたものである。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように各試料ともにTiを0.25wt%添加した。
 表5の試料No9,10,12,14,15,31~35(いずれも実施例)では、Fe-Cr-P-C-B-Si中に占めるFe,Crの添加量を固定し、P,C,B,Siの添加量を変化させた。
 表5に示すように、Pの添加量xを、6.8at%~10.8at%の範囲内、Cの添加量yを2.2at%~9.8at%の範囲内で調整すれば、非晶質を得ることができるとわかった。またいずれの実施例でもガラス遷移温度(Tg)を740K(466.85℃)以下にでき、換算ガラス化温度(Tg/Tm)を0.52以上にできた。
 図22は、Fe基非晶質合金のPの添加量xと融点(Tm)との関係を示すグラフ、図23は、Fe基非晶質合金のCの添加量yと融点(Tm)との関係を示すグラフである。
 本実施例では、740K(466.85℃)以下、好ましくは710K(436.85℃)以下のガラス遷移温度(Tg)を得ることができるが、ガラス遷移温度(Tg)の低下により、Tg/Tmで示される非晶質形成能を高めるには融点(Tm)を低くすることが必要である。なお、図22,図23に示すように融点(Tm)は、C量よりP量に対する依存性が高いと考えられる。
 特に、Pの添加量xを8.8at%~10.8at%の範囲内に設定すれば、融点(Tm)を効果的に低減でき、したがって換算ガラス化温度(Tg/Tm)を高めることができるとわかった。
(Crの添加量の実験)
 以下の表6に示す組成の各試料から各Fe基非晶質合金粉末を製造した。各試料は、液体急冷法によりリボン状で形成されたものである。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように各試料ともにTiを0.25wt%添加した。
 表6の各試料では、Fe-Cr-P-C-B-Si中に占めるNi,P,C,B,Siの添加量を固定し、Fe,Crの添加量を変化させた。表6に示すように、Crの添加量を増やすと、Fe基非晶質合金の酸素濃度が徐々に低下し、耐食性が向上することがわかった。
 図24は、Fe基非晶質合金のCrの添加量とガラス遷移温度(Tg)との関係を示すグラフ、図25は、Fe基非晶質合金のCrの添加量と結晶化温度(Tx)との関係を示すグラフ、図26は、Fe基非晶質合金のCrの添加量と飽和磁化Isとの関係を示すグラフである。
 図24に示すように、Crの添加量を増やすと、ガラス遷移温度(Tg)が徐々に大きくなることがわかった。また表6及び図26に示すように、Crの添加量を増やすことにより飽和磁化Isが徐々に低下することがわかった。なお、飽和磁化IsはVSM(振動試料型磁力計)で測定した。
 図24、図26及び表6に示すようにガラス遷移温度(Tg)が低く、且つ、飽和磁化Isが1.0T以上得られるようにCrの添加量cを0at%~6at%の範囲内に設定した。また、Crの好ましい添加量cを、0at%~2at%の範囲内に設定した。図24に示すように、Crの添加量cを0at%~2at%の範囲内に設定することで、ガラス遷移温度(Tg)を、Cr量に関わらず低い値に設定できる。
 さらにCrの添加量cを、1at%~2at%の範囲内とすることで、耐食性を向上でき、且つ、安定して低いガラス遷移温度(Tg)を得ることができ、さらに高い磁化を維持することが可能であることがわかった。
(金属元素MとしてTi、Al、Mnを添加したFe基非晶質合金粉末の作製)
 (Fe71.4Ni6Cr210.87.82100-αMαからなる複数のFe基非晶質合金粉末を水アトマイズ法により製造した。
Figure JPOXMLDOC01-appb-T000007
 なお表1~表6では、Fe-Cr-P-C-B-Si中における各元素の添加量をat%で示しているが、表7では各元素を全てwt%で示した。
 表7に示すように、金属元素MとしてTi、Al及びMnを添加した。Alの添加量は0wt%より大きく0.005wt%よりも小さい範囲内である。また、表中M元素以外の他の構成元素は全て組成式Fe71.4Ni6Cr210.87.82で表されるものであるので、これらの元素は記載を省いている。本実施形態では金属元素Mの添加量を0.04wt%以上0.6wt%以下の範囲内と規定したが、表7の各実施例は全てこの範囲内に収まっている。
 Al及びMnはTiと同様に活性の高い元素であることから、Ti、Al及びMnを夫々少量添加することで、金属元素Mを粉末表面に凝集させて薄い不動態層を形成することができ、Si,Bの添加量の低減により低Tg化とともに、金属元素Mの添加により優れた耐食性及び高い透磁率と低いコアロスを得ることが可能になる。
 1,3 圧粉コア
 2 コイル封入圧粉コア
 4 コイル(エッジワイズコイル)
 5 粉末内部
 6 粉末表面層

Claims (19)

  1.  組成式が、(Fe100-a-b-c-x-y-z-tNiaSnbCrcxyzSit100-αMαで示され、0at%≦a≦10at%、0at%≦b≦3at%、0at%≦c≦6at%、6.8at%≦x≦10.8at%、2.2at%≦y≦9.8at%、0at%≦z≦4.2at%、0at%≦t≦3.9at%であり、金属元素Mは、Ti,Al,Mn,Zr,Hf,V,Nb,Ta,Mo,Wのうち少なくとも1種が選択されてなり、金属元素Mの添加量αは、0.04wt%≦α≦0.6wt%であることを特徴とするFe基非晶質合金粉末。
  2.  Bの添加量zは、0at%≦z≦2at%であり、Siの添加量tは、0at%≦t≦1at%であり、Bの添加量zとSiの添加量tを足したz+tは、0at%≦z+t≦2at%である請求項1記載のFe基非晶質合金粉末。
  3.  BとSiの双方が添加されており、Bの添加量zのほうがSiの添加量tより大きい請求項1又は2に記載のFe基非晶質合金粉末。
  4.  金属元素Mの添加量αは、0.1wt%≦α≦0.6wt%である請求項1ないし3のいずれか1項に記載のFe基非晶質合金粉末。
  5.  金属元素Mは少なくともTiを含む請求項1ないし4のいずれか1項に記載のFe基非晶質合金粉末。
  6.  金属元素Mは、Ti、Al及びMnを含む請求項1ないし4のいずれか1項に記載のFe基非晶質合金粉末。
  7.  NiとSnのうち、どちらか一方のみが添加される請求項1ないし6のいずれか1項に記載のFe基非晶質合金粉末。
  8.  Niの添加量aは、0at%≦a≦6at%の範囲内である請求項1ないし7のいずれか1項に記載のFe基非晶質合金粉末。
  9.  Snの添加量bは、0at%≦b≦2at%の範囲内である請求項1ないし8のいずれか1項に記載のFe基非晶質合金粉末。
  10.  Crの添加量cは、0at%≦c≦2at%の範囲内である請求項1ないし9のいずれか1項に記載のFe基非晶質合金粉末。
  11.  Pの添加量xは、8.8at%≦x≦10.8at%の範囲内である請求項1ないし10のいずれか1項に記載のFe基非晶質合金粉末。
  12.  0at%≦a≦6at%、0at%≦b≦2at%、0at%≦c≦2at%、8.8at%≦x≦10.8at%、2.2at%≦y≦9.8at%、0at%≦z≦2at%、0at%≦t≦1at%、0at%≦z+t≦2at%、0.1wt%≦α≦0.6wt%を満たす請求項1記載のFe基非晶質合金粉末。
  13.  粉末のアスペクト比が、1より大きく1.4以下である請求項1ないし12のいずれか1項に記載のFe基非晶質合金粉末。
  14.  粉末のアスペクト比が、1.2以上で1.4以下である請求項13記載のFe基非晶質合金粉末。
  15.  金属元素Mの濃度は、粉末内部より粉末表面層にて高くなっている請求項1ないし14のいずれか1項に記載のFe基非晶質合金粉末。
  16.  組成元素にSiを含み、前記粉末表面層での金属元素Mの濃度は、Siの濃度よりも高くなっている請求項15記載のFe基非晶質合金粉末。
  17.  請求項1ないし16のいずれか1項に記載のFe基非晶質合金粉末の粉末が結着材によって固化成形されてなることを特徴とする圧粉コア。
  18.  請求項1ないし16のいずれか1項に記載のFe基非晶質合金粉末の粉末が結着材によって固化成形されてなる圧粉コアと、前記圧粉コアに覆われるコイルとを有してなることを特徴とするコイル封入圧粉コア。
  19.  前記コイルは、エッジワイズコイルである請求項18記載のコイル封入圧粉コイル。
PCT/JP2011/080364 2011-01-17 2011-12-28 Fe基非晶質合金粉末、及び前記Fe基非晶質合金粉末を用いた圧粉コア、ならびにコイル封入圧粉コア WO2012098817A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11856342.8A EP2666881B1 (en) 2011-01-17 2011-12-28 Fe-BASED AMORPHOUS ALLOY POWDER, DUST CORE USING THE Fe-BASED AMORPHOUS ALLOY POWDER, AND COIL-EMBEDDED DUST CORE
CN201180064764.1A CN103298966B (zh) 2011-01-17 2011-12-28 Fe基非晶质合金粉末及使用所述Fe基非晶质合金粉末的压粉磁芯、以及线圈内嵌式压粉磁芯
KR1020137018689A KR101503199B1 (ko) 2011-01-17 2011-12-28 Fe 기 비정질 합금 분말 및 상기 Fe 기 비정질 합금 분말을 사용한 압분 코어, 그리고 코일 봉입 압분 코어
JP2012553592A JP5458452B2 (ja) 2011-01-17 2011-12-28 Fe基非晶質合金粉末、及び前記Fe基非晶質合金粉末を用いた圧粉コア、ならびにコイル封入圧粉コア
US13/942,579 US8854173B2 (en) 2011-01-17 2013-07-15 Fe-based amorphous alloy powder, dust core using the same, and coil-embedded dust core

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011006770 2011-01-17
JP2011-006770 2011-01-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/942,579 Continuation US8854173B2 (en) 2011-01-17 2013-07-15 Fe-based amorphous alloy powder, dust core using the same, and coil-embedded dust core

Publications (1)

Publication Number Publication Date
WO2012098817A1 true WO2012098817A1 (ja) 2012-07-26

Family

ID=46515454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080364 WO2012098817A1 (ja) 2011-01-17 2011-12-28 Fe基非晶質合金粉末、及び前記Fe基非晶質合金粉末を用いた圧粉コア、ならびにコイル封入圧粉コア

Country Status (7)

Country Link
US (1) US8854173B2 (ja)
EP (1) EP2666881B1 (ja)
JP (1) JP5458452B2 (ja)
KR (1) KR101503199B1 (ja)
CN (1) CN103298966B (ja)
TW (1) TWI441929B (ja)
WO (1) WO2012098817A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103887031A (zh) * 2012-12-19 2014-06-25 阿尔卑斯绿色器件株式会社 Fe基软磁性粉末、使用了其的复合磁性粉末及使用了上述复合磁性粉末的压粉磁芯
JP2015167183A (ja) * 2014-03-04 2015-09-24 Necトーキン株式会社 ナノ結晶軟磁性合金粉末およびそれを用いた圧粉磁芯
JP2018022916A (ja) * 2014-01-29 2018-02-08 アルプス電気株式会社 電子部品および電子機器
JP2019071433A (ja) * 2014-08-30 2019-05-09 太陽誘電株式会社 コイル部品
JP2020511601A (ja) * 2017-02-15 2020-04-16 シーアールエス ホールディングス, インコーポレイテッドCrs Holdings, Incorporated Fe基軟磁性合金
US10748694B2 (en) 2014-08-30 2020-08-18 Taiyo Yuden Co., Ltd. Coil component

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5505563B2 (ja) * 2011-07-28 2014-05-28 アルプス・グリーンデバイス株式会社 Fe基非晶質合金、及びFe基非晶質合金粉末を用いた圧粉磁心
US8723629B1 (en) * 2013-01-10 2014-05-13 Cyntec Co., Ltd. Magnetic device with high saturation current and low core loss
JP6262504B2 (ja) * 2013-11-28 2018-01-17 アルプス電気株式会社 軟磁性粉末を用いた圧粉コアおよび該圧粉コアの製造方法
CN104073749B (zh) * 2014-06-18 2017-03-15 安泰科技股份有限公司 一种元素分布均匀的铁基非晶软磁合金及其制备方法
CN109070205A (zh) * 2016-04-06 2018-12-21 新东工业株式会社 铁基金属玻璃合金粉末
JP6926421B2 (ja) * 2016-09-08 2021-08-25 スミダコーポレーション株式会社 複合磁性材料、その複合磁性材料を熱硬化して得られる複合磁性成形体、その複合磁性成形体を用いて得られる電子部品、およびそれらの製造方法
CN107009048B (zh) * 2017-04-24 2019-01-25 南昌航空大学 一种双丝电弧堆焊用铁基非晶焊接材料
EP3425650B1 (en) * 2017-07-04 2021-09-01 Infineon Technologies Austria AG Module and circuit for dc-dc power conversion
JP6338004B1 (ja) * 2017-10-06 2018-06-06 Tdk株式会社 軟磁性合金および磁性部品
US11127524B2 (en) * 2018-12-14 2021-09-21 Hong Kong Applied Science and Technology Research Institute Company Limited Power converter
CN113474106B (zh) * 2019-02-22 2023-04-18 阿尔卑斯阿尔派株式会社 压粉磁芯及其制造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117406A (ja) 1986-11-06 1988-05-21 Hitachi Metals Ltd アモルフアス合金圧粉磁心
JP2004156134A (ja) * 2002-09-11 2004-06-03 Alps Electric Co Ltd 非晶質軟磁性合金粉末及びそれを用いた圧粉コア及び電波吸収体
JP2005307291A (ja) 2004-04-22 2005-11-04 Alps Electric Co Ltd 非晶質軟磁性合金粉末及びそれを用いた圧粉コアと電波吸収体
JP2007231415A (ja) 2006-02-02 2007-09-13 Nec Tokin Corp 非晶質軟磁性合金、非晶質軟磁性合金部材、非晶質軟磁性合金薄帯、非晶質軟磁性合金粉末、及びそれを用いた磁芯ならびにインダクタンス部品
US20070258842A1 (en) 2005-11-16 2007-11-08 Zhichao Lu Fe-based amorphous magnetic powder, magnetic powder core with excellent high frequency properties and method of making them
JP2008520832A (ja) 2004-11-22 2008-06-19 キョンポク ナショナル ユニバーシティ インダストリー−アカデミック コーオペレイション ファウンデーション 鉄系多元素非晶質合金組成物
JP2008169466A (ja) * 2006-12-15 2008-07-24 Alps Electric Co Ltd Fe基非晶質磁性合金及び磁気シート
JP2009054615A (ja) 2007-08-23 2009-03-12 Alps Electric Co Ltd 圧粉コア及びその製造方法
JP2009174034A (ja) 2008-01-28 2009-08-06 Hitachi Metals Ltd アモルファス軟磁性合金、アモルファス軟磁性合金薄帯、アモルファス軟磁性合金粉末およびそれを用いた磁心並びに磁性部品
JP2009293099A (ja) 2008-06-06 2009-12-17 Nec Tokin Corp 高耐食非晶質合金
JP2009299108A (ja) * 2008-06-11 2009-12-24 Alps Electric Co Ltd Fe基非晶質合金及びそれを用いた磁気シート

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62277703A (ja) * 1986-05-26 1987-12-02 Hitachi Metals Ltd Fe−Ni系合金圧粉磁心
JP4828229B2 (ja) * 2003-08-22 2011-11-30 Necトーキン株式会社 高周波用磁心及びそれを用いたインダクタンス部品
US7504924B2 (en) * 2003-10-23 2009-03-17 Kabushiki Kaisha Toshiba Inductive device and method for manufacturing same
JP4528058B2 (ja) * 2004-08-20 2010-08-18 アルプス電気株式会社 コイル封入圧粉磁心
KR101222127B1 (ko) * 2007-02-28 2013-01-14 신닛테츠스미킨 카부시키카이샤 연자기 특성이 우수한 Fe계 비정질 합금
JP4422773B2 (ja) * 2008-04-18 2010-02-24 トヨタ自動車株式会社 圧粉磁心用粉末とその製造方法
WO2011016275A1 (ja) 2009-08-07 2011-02-10 アルプス・グリーンデバイス株式会社 Fe基非晶質合金、及び前記Fe基非晶質合金を用いた圧粉コア、ならびにコイル封入圧粉コア

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117406A (ja) 1986-11-06 1988-05-21 Hitachi Metals Ltd アモルフアス合金圧粉磁心
JP2004156134A (ja) * 2002-09-11 2004-06-03 Alps Electric Co Ltd 非晶質軟磁性合金粉末及びそれを用いた圧粉コア及び電波吸収体
JP2005307291A (ja) 2004-04-22 2005-11-04 Alps Electric Co Ltd 非晶質軟磁性合金粉末及びそれを用いた圧粉コアと電波吸収体
JP2008520832A (ja) 2004-11-22 2008-06-19 キョンポク ナショナル ユニバーシティ インダストリー−アカデミック コーオペレイション ファウンデーション 鉄系多元素非晶質合金組成物
US20070258842A1 (en) 2005-11-16 2007-11-08 Zhichao Lu Fe-based amorphous magnetic powder, magnetic powder core with excellent high frequency properties and method of making them
JP2007231415A (ja) 2006-02-02 2007-09-13 Nec Tokin Corp 非晶質軟磁性合金、非晶質軟磁性合金部材、非晶質軟磁性合金薄帯、非晶質軟磁性合金粉末、及びそれを用いた磁芯ならびにインダクタンス部品
JP2008169466A (ja) * 2006-12-15 2008-07-24 Alps Electric Co Ltd Fe基非晶質磁性合金及び磁気シート
JP2009054615A (ja) 2007-08-23 2009-03-12 Alps Electric Co Ltd 圧粉コア及びその製造方法
JP2009174034A (ja) 2008-01-28 2009-08-06 Hitachi Metals Ltd アモルファス軟磁性合金、アモルファス軟磁性合金薄帯、アモルファス軟磁性合金粉末およびそれを用いた磁心並びに磁性部品
JP2009293099A (ja) 2008-06-06 2009-12-17 Nec Tokin Corp 高耐食非晶質合金
JP2009299108A (ja) * 2008-06-11 2009-12-24 Alps Electric Co Ltd Fe基非晶質合金及びそれを用いた磁気シート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2666881A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103887031A (zh) * 2012-12-19 2014-06-25 阿尔卑斯绿色器件株式会社 Fe基软磁性粉末、使用了其的复合磁性粉末及使用了上述复合磁性粉末的压粉磁芯
CN103887031B (zh) * 2012-12-19 2016-09-07 阿尔卑斯绿色器件株式会社 Fe基软磁性粉末、使用了其的复合磁性粉末及使用了上述复合磁性粉末的压粉磁芯
JP2018022916A (ja) * 2014-01-29 2018-02-08 アルプス電気株式会社 電子部品および電子機器
JP2018022918A (ja) * 2014-01-29 2018-02-08 アルプス電気株式会社 電子部品および電子機器
JP2018022917A (ja) * 2014-01-29 2018-02-08 アルプス電気株式会社 インダクタンス素子および電子機器
JP2015167183A (ja) * 2014-03-04 2015-09-24 Necトーキン株式会社 ナノ結晶軟磁性合金粉末およびそれを用いた圧粉磁芯
JP2019071433A (ja) * 2014-08-30 2019-05-09 太陽誘電株式会社 コイル部品
US10748694B2 (en) 2014-08-30 2020-08-18 Taiyo Yuden Co., Ltd. Coil component
JP2020511601A (ja) * 2017-02-15 2020-04-16 シーアールエス ホールディングス, インコーポレイテッドCrs Holdings, Incorporated Fe基軟磁性合金

Also Published As

Publication number Publication date
TW201237190A (en) 2012-09-16
KR101503199B1 (ko) 2015-03-16
CN103298966B (zh) 2015-04-22
EP2666881A4 (en) 2016-10-26
JP5458452B2 (ja) 2014-04-02
KR20130109205A (ko) 2013-10-07
TWI441929B (zh) 2014-06-21
JPWO2012098817A1 (ja) 2014-06-09
US20130300531A1 (en) 2013-11-14
US8854173B2 (en) 2014-10-07
CN103298966A (zh) 2013-09-11
EP2666881A1 (en) 2013-11-27
EP2666881B1 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
JP5458452B2 (ja) Fe基非晶質合金粉末、及び前記Fe基非晶質合金粉末を用いた圧粉コア、ならびにコイル封入圧粉コア
JP5419302B2 (ja) Fe基非晶質合金、及び前記Fe基非晶質合金を用いた圧粉コア、ならびにコイル封入圧粉コア
JP6309149B1 (ja) 軟磁性粉末、圧粉磁芯、磁性部品及び圧粉磁芯の製造方法
US8282745B2 (en) Fe-based soft magnetic alloy and dust core using fe-based soft magnetic alloy
WO2018139563A1 (ja) 軟磁性粉末、Fe基ナノ結晶合金粉末、磁性部品及び圧粉磁芯
US9558871B2 (en) Fe-based amorphous alloy and dust core made using Fe-based amorphous alloy powder
JPWO2020026949A1 (ja) 軟磁性粉末、Fe基ナノ結晶合金粉末、磁性部品、および圧粉磁芯
WO2017154561A1 (ja) Fe基合金組成物、軟磁性材料、磁性部材、電気・電子関連部品および機器
JP2021027327A (ja) 軟磁性金属粉末及び電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856342

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553592

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137018689

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011856342

Country of ref document: EP