WO2012098782A1 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
WO2012098782A1
WO2012098782A1 PCT/JP2011/078574 JP2011078574W WO2012098782A1 WO 2012098782 A1 WO2012098782 A1 WO 2012098782A1 JP 2011078574 W JP2011078574 W JP 2011078574W WO 2012098782 A1 WO2012098782 A1 WO 2012098782A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
output
converter
voltage comparison
unit
Prior art date
Application number
PCT/JP2011/078574
Other languages
English (en)
French (fr)
Inventor
利郎 伊地知
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2012098782A1 publication Critical patent/WO2012098782A1/ja
Priority to US13/932,474 priority Critical patent/US9041368B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • H02M1/0035Control circuits allowing low power mode operation, e.g. in standby mode using burst mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power supply apparatus that can maintain a power output for a certain time after the power input is turned off.
  • the current general switching power supply configuration is mainly a two-converter system that obtains a DC output voltage by connecting a PFC (Power Factor Controller) to the input stage and a DC-DC converter to the subsequent stage. ing. These two converters are started and stopped independently.
  • PFC Power Factor Controller
  • this switching power supply uses a smoothing capacitor in the PFC output section, and thus becomes a so-called capacitor input type input voltage for the subsequent DC-DC converter. If the subsequent DC-DC converter continues to operate in this input state, it will continue to operate without power factor improvement, so the DC-DC converter increases the harmonic current and increases the burden on the input capacitor. Will occur. As a result, the input capacitor may be damaged, and other devices connected to the same AC power source may be adversely affected.
  • the present invention is a two-converter type power supply device used for medical devices and the like, which can keep a necessary power output for a certain time after the power input is stopped. Is intended to provide.
  • a power supply device includes a first converter that converts an input voltage to a first voltage and outputs the first voltage, and the first voltage output from the first converter to a second voltage.
  • a second converter that converts and outputs, the first voltage output from the first converter, a voltage comparison unit that compares a predetermined reference voltage, and the voltage comparison unit, the first voltage Until it is determined that the voltage is larger than the predetermined reference voltage, the second signal is output after the first voltage is determined to be larger than the predetermined reference voltage.
  • the second converter When the first signal is output from the voltage comparison result output unit to be held and the voltage comparison result output unit, the second converter is controlled to stop, and from the voltage comparison result output unit, When the signal of 2 is output, It includes a converter control unit for controlling to operate the second converter, the.
  • FIG. 1 is a circuit diagram showing a configuration of a power supply device according to a first embodiment of the present invention.
  • the circuit diagram which shows the structure which added the auxiliary
  • the circuit diagram which shows another example of the voltage comparison result output part in the power supply device of 1st Embodiment.
  • the circuit diagram which shows another example of the voltage comparison result output part in the power supply device of 1st Embodiment.
  • FIG. 6 is a circuit diagram showing another example of a DC-DC converter in the power supply device of the second embodiment.
  • FIG. 1 shows a configuration of a power supply device according to a first embodiment of the present invention.
  • a power supply device 10 includes a commercial AC power supply (hereinafter referred to as AC power supply) 1, a full-wave rectifier circuit 2 such as a diode bridge, a capacitor 21, a PFC 3 as a first converter, and a second converter.
  • DC-DC converter 4 and a load circuit 5 such as a processor.
  • Such a two-converter type power supply device constitutes a switching power supply device having a PFC and a DC-DC converter.
  • the PFC 3 is a non-insulated step-up chopper type switching power supply, and is used for power factor improvement.
  • the PFC 3 converts the voltage input from the full-wave rectifier circuit 2 and the capacitor 21 into a first voltage and outputs the first voltage.
  • the PFC 3 includes a boost choke coil 31, a boost choke coil auxiliary winding 31 a, an FET 32 as a switching element, a PFC control IC 33, a commutation diode 34, and an output smoothing capacitor (hereinafter referred to as an output capacitor) 35.
  • the PFC control IC 33 supplies a switching pulse to the gate of the switching FET 32, boosts the AC input voltage from the AC power source 1 to a voltage (setting voltage) higher than the maximum peak value of the AC input voltage, and outputs the output capacitor. 35 is controlled to generate a DC output voltage.
  • the FET 32 When the FET 32 is on, energy is stored in the boost choke coil 31, and when the FET 32 is off, the diode 34 is conducted, and the energy stored in the coil 31 is released toward the output capacitor 35. At this time, the voltage generated in the boost choke coil 31 is added in series to the output voltage of the capacitor 21 after full-wave rectification (in other words, the input voltage of the first converter). The voltage is higher than the voltage.
  • the DC-DC converter 4 converts the first voltage output from the PFC 3 into a second voltage and outputs the second voltage.
  • the DC-DC converter 4 includes a transformer 41 that outputs a secondary voltage that is voltage-converted to the secondary side according to a switching operation on the primary side, an FET 42 as a switching element provided on the primary side of the transformer 41, It has a voltage comparison unit 46, a voltage comparison result output unit 47, a converter control unit 48 including a DC-DC unit control IC 43, a secondary side rectifying diode 44, and a secondary side output smoothing capacitor 45.
  • the voltage comparison unit 46 compares the voltage output from the PFC 3 as the first converter with a predetermined reference voltage (zener voltage) based on the Zener diode ZD.
  • the voltage comparison unit 46 is configured by connecting a Zener diode ZD1 for detecting the operation (ON) of the DC-DC converter 4 in series with a resistor R11 and a resistor R12. This series circuit is connected to the output capacitor 35 on the PFC side. Connected in parallel.
  • the voltage comparison result output unit 47 outputs a first signal (for example, L level) until the voltage comparison unit 46 determines that the first voltage output from the PFC 3 is greater than the predetermined reference voltage. Then, after it is determined that the first voltage is higher than the predetermined reference voltage, the output of the second signal (for example, H level) is held.
  • a first signal for example, L level
  • the voltage comparison result output unit 47 inputs the voltage obtained at the connection point between the resistor R11 and the resistor R12 of the voltage comparison unit 46 to the + input terminal of the comparator CP1, and the ⁇ input terminal receives the Zener diode ZD0 that provides the reference voltage. Is connected to ground GND.
  • the output terminal of the comparator CP1 is connected to the ground GND via the resistor R5.
  • the comparison output at the output terminal is input to the base of the transistor Tr1 of the converter control unit 48 in the next stage, while the comparator CP1 is connected via the diode D1. Feedback is provided to the + input terminal.
  • the feedback diode D11 provides the comparator CP1 with a latch function.
  • the converter control unit 48 connects a series circuit of a resistor R3 and a resistor R4 in parallel with the output capacitor 35 of the PFC3.
  • the output terminal of the comparator CP1 is connected to the base of the transistor Tr1, the emitter of Tr1 is connected to the ground (reference potential point) GND, and the collector of Tr1 is connected to the connection point of the resistors R3 and R4.
  • the base of the transistor Tr2 is connected to the connection point of the resistor R3 and the resistor R4, the emitter of the Tr2 is connected to the ground GND, the collector of the Tr2 is connected to the output point of the DC-DC unit control IC 43, and the collector is switched.
  • the structure is connected to the gate of the FET 42 for use.
  • the voltage comparison unit 46 is used to detect the PFC operation with the reference voltage based on ZD1 when the power switch (not shown) is turned on, and to start the DC-DC converter, and the voltage comparison result output unit 47, the function of maintaining the output for a certain period of time even after the power switch is turned off or the AC cord is disconnected can be realized.
  • the voltage comparison result output unit 47 stops the operation detection function after detecting that the PFC 3 is activated by the voltage comparison unit 46, that is, cancels the operation detection by the voltage comparison unit 46.
  • the power switch is disposed on the power line between the AC power source 1 and the full-wave rectifier circuit 2.
  • the DC-DC converter 4 operates and manages using the charge (voltage) stored in the output capacitor 35 of the PFC 3. It becomes possible. As a result, it is possible to realize a function of maintaining the power output for a certain time even after the power switch is turned off or the AC cord is disconnected.
  • FIG. 2 shows a configuration in which an auxiliary winding is added to FIG. 2, the internal power supply 6 using the auxiliary winding 61 formed concentrically with the switching transformer 41 is clearly shown in the circuit diagram of FIG.
  • the internal power supply 6 includes an auxiliary winding 61 and a rectifier circuit that is connected in parallel to the auxiliary winding 61 and includes a rectifying diode 62 and a smoothing capacitor 63, and a connection point between the diode 62 and the capacitor 63. From the output terminal 64 connected to the circuit, necessary circuit power is generated and outputted to each part of the circuit of the PFC 3 and the DC-DC converter 4. Specifically, it has a function of supplying a DC voltage of about 15 V to the PFC control IC 33, the DC-DC unit control IC 43, and the comparator CP1.
  • a Zener is generated when an output voltage (hereinafter, PFC output voltage) charged in the output capacitor 35 of the PFC 3 exceeds a predetermined reference voltage (for example, 390 V) of the voltage comparison unit 46.
  • the diode ZD1 is turned on.
  • the output of the comparator CP1 becomes H level, and the H level state is maintained by the feedback diode D1. That is, the H level state maintained by the latch function of the voltage comparison result output unit 47 is that the power switch (not shown) is turned off or the AC code is disconnected, and the PFC output voltage gradually decreases, and the predetermined reference voltage A certain amount of time is maintained even when the value falls below.
  • the output voltage of the internal power supply 6 including the auxiliary winding 61 decreases to near 0 V, thereby causing the PFC 3 and the DC-DC converter.
  • the necessary power is not supplied to the internal circuit 4, and the operation of the power supply device 10 is completely stopped at that time.
  • the output maintaining time of the power supply device 10 from that time becomes a time determined based on the PFC output voltage, that is, the discharging time of the charged charge of the capacitor 35. That is, the length of the output maintaining time can be set according to the capacity of the output capacitor 35 of the PFC 3.
  • FIG. 3 shows another embodiment of the voltage comparison result output unit and the converter control unit in the power supply device of FIG.
  • a power supply device 10A shown in FIG. 3 includes a voltage comparison result output unit 47A and a converter control unit 48A that are different from the power supply device 10 of FIG. Other configurations are the same as those in FIG.
  • the voltage comparison result output unit 47A is a circuit using a thyristor SCR1.
  • the voltage comparison result output unit 47A connects the gate of the thyristor SCR1 to the connection point between the resistor R11 and the resistor R12 in the voltage comparison unit 46, connects the cathode of the SCR1 to the ground GND, and connects the anode of the SCR1 to the converter control unit 48A. This is connected to the connection point between the resistor R3 and the resistor R4.
  • the converter control unit 48A includes a series circuit of a resistor R3 and a resistor R4 connected in parallel to the output capacitor 35 in the PFC3.
  • the anode of the thyristor SCR1 is connected to the connection point of the resistors R3 and R4, the base of the transistor Tr2 is connected to the connection point of the resistors R3 and R4, the emitter of the Tr2 is connected to the ground GND,
  • the collector is connected to the output point of the DC-DC unit control IC 43 and the collector is connected to the gate of the switching FET 42.
  • the thyristor SCR1 is an element in which the anode-cathode becomes conductive (ON) when the gate becomes H level, and continues to be kept on until the anode-cathode current becomes 0 even if the gate becomes L level. It is.
  • FIG. 4 shows another example of the voltage comparison result output unit in the power supply device of FIG.
  • the power supply device 10B shown in FIG. 4 includes a voltage comparison result output unit 47B that is different from the power supply device 10 of FIG.
  • the voltage comparison result output unit 47B is a circuit using an RS flip-flop FF1.
  • the voltage comparison result output unit 47B connects the connection point between the resistor R11 and the resistor R12 in the voltage comparison unit 46 to the set input terminal S of the RS flip-flop FF1 via the buffer amplifier BF, and reset input of the RS flip-flop FF1.
  • the terminal R is connected to the ground GND via a resistor R21, and the output terminal Q of the RS flip-flop FF1 is connected to the base of Tr1 in the converter control unit 48.
  • Converter control unit 48 has the same configuration as in FIG.
  • the R input of the RS flip-flop FF1 is fixed at the L level, when the S input becomes the H level, the output Q becomes the H level. Since the R input is fixed at the L level, the output Q is maintained at the H level until the power supply voltage of the internal power supply 6 (see FIG. 2) (not shown) is 0, that is, until the RS flip-flop FF1 is powered off.
  • the PFC output voltage starts to drop, and when it falls below the predetermined reference voltage, ZD1 is turned off.
  • the R input is fixed at the L level
  • the output Q of the RS flip-flop FF1 is at the H level.
  • the state is maintained, Tr1 is on, Tr2 is off, and the output of the DC-DC converter 4B is maintained.
  • the switching operation of the DC-DC converter 4B is stopped.
  • the activation of the PFC is detected and the subsequent DC-DC converter is activated.
  • the power switch is turned off or when the AC cord is disconnected, a certain time, A function of maintaining the power output can be provided.
  • FIG. 5 shows a configuration of a power supply device according to the second embodiment of the present invention.
  • a power supply device 10C shown in FIG. 5 has a configuration in which another voltage comparison unit 50 different from the voltage comparison unit 46 is added to the DC-DC converter 4 in the power supply device 10 of FIG.
  • Other configurations are the same as those in FIG.
  • Another voltage comparison unit 50 connects a series circuit of a Zener diode ZD2, a resistor R31, and a resistor R32 in parallel with the output capacitor 35 of the PFC3, and in parallel with the output capacitor 35 of the PFC3, the resistors R34 and R35. Connect a series circuit.
  • the base of the transistor Tr3 is connected to the connection point between the resistors R31 and R32, the emitter of the Tr3 is connected to the ground GND, the collector of the Tr3 is connected to the connection point between the resistors R34 and R35, and the resistor R34
  • the base of the transistor Tr4 is connected to the connection point of the resistor R35, the emitter of Tr4 is connected to the ground GND, the collector of Tr4 is connected to the cathode of the diode D2, and the anode of the diode D2 is connected to the resistor R11 in the voltage comparator 46.
  • a resistor R12. Note that between the operating voltages of the Zener diode ZD1 and Zener diode ZD2, when the respective Zener voltages are expressed as ZD1 and ZD2, ZD1> ZD2 is set.
  • the Zener diode ZD1 defines only the timing for turning on the DC-DC converter 4, 4A or 4B when the power switch is on.
  • the Zener diode ZD2 is used to define the timing for turning off the DC-DC converter 4C when the power switch is turned off.
  • the diode D2 becomes conductive (turns on), and the + input of the comparator CP1 is set to L level via the diode D2.
  • the output of the comparator CP1 becomes L level, the transistor Tr1 is turned off, the Tr2 is turned on, and the switching operation of the FET 42 of the DC-DC converter 4C is stopped.
  • the timing for turning off the operation of the DC-DC converter 4C can be controlled by appropriately selecting (specifying) the operation voltage of the Zener diode ZD2. With this mechanism, it is possible to arbitrarily set the output maintaining time after the power switch is turned off or after the AC cord is disconnected.
  • the switching power supply ON operation at 390 V and by defining the switching power supply OFF operation at 200 V for example, it is possible to detect a decrease in the PFC output voltage when the previous PFC fails. It is also possible to prevent the PFC power factor improving operation from continuing to operate in a bad state.
  • FIG. 6 shows another example of the DC-DC converter in the power supply device of the second embodiment.
  • the power supply device 10D shown in FIG. 6 schematically has a configuration in which another voltage comparison unit 51 different from the voltage comparison unit 46 is added to the DC-DC converter 4B in the power supply device 10B of FIG. It has become. Accordingly, the wiring of the voltage comparison result output unit 47C is slightly different from that in FIG. Other configurations are the same as those in FIG.
  • Another voltage comparison unit 50 connects a series circuit of a Zener diode ZD2, a resistor R31, and a resistor R32 in parallel with the output capacitor 35 of the PFC 3, and connects an inverter (inverting circuit) INV at a connection point between the resistor R31 and the resistor R32.
  • the voltage comparison result output unit 47C is connected to the reset input terminal R of the RS flip-flop FF1. Note that between the operating voltages of the Zener diode ZD1 and Zener diode ZD2, when the respective Zener voltages are expressed as ZD1 and ZD2, ZD1> ZD2 is set.
  • the timing for turning off the operation of the DC-DC converter 4D can be controlled by appropriately selecting (specifying) the operating voltage of the Zener diode ZD2. With this mechanism, it is possible to arbitrarily set the output maintaining time after the power switch is turned off or after the AC cord is disconnected.
  • the power switch when the power switch is turned off, it has a mechanism for controlling the operation of the DC-DC converter with a reference voltage different from that when the power switch is turned on. It is possible to realize the function of maintaining

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

電源装置は、入力電圧から第1の電圧へ変換する第1のコンバータと、該第1のコンバータからの第1の電圧を第2の電圧へ変換する第2のコンバータと、第1のコンバータから出力される第1の電圧と所定の基準電圧とを比較する電圧比較部と、該電圧比較部により第1の電圧が所定の基準電圧より大きいとされるまでは第1の信号を出力し、第1の電圧が所定の基準電圧より大きいとされた後は第2の信号の出力を保持する電圧比較結果出力部と、該電圧比較結果出力部から第1の信号が出力されている時、第2のコンバータを停止するよう制御し、電圧比較結果出力部から第2の信号が出力されている時、第2のコンバータを動作させるよう制御するコンバータ制御部とを備える。

Description

電源装置
 本発明は、電源入力がオフした後も一定時間、電源出力を維持することを可能にした電源装置に関する。
 現在の一般的なスイッチング電源の構成は、入力段にPFC(力率改善コンバータ:Power Factor Controller)、その後段にDC-DCコンバータを接続する構成で直流出力電圧を得る2コンバータ方式が主流となっている。この2つのコンバータはそれぞれ独立して起動・停止を行っている。
 しかし、例えば何らかの理由でPFCが停止した場合、このスイッチング電源は、PFC出力部に平滑コンデンサを用いているために、後段のDC-DCコンバータに対してはいわゆるコンデンサインプット型の入力電圧となる。この入力状態で後段のDC-DCコンバータが動作し続けると、力率改善が行われないまま動作しつづけることになるため、DC-DCコンバータは、高調波電流の増大、入力コンデンサの負担の増大が発生する事態となる。その結果、入力コンデンサの破損や、同じAC電源に接続される他の機器への悪影響を引き起こす可能性がある。
 この問題を解決するために、PFCのオン及びオフ動作の検知を行い、このPFCのオン及びオフ動作の検知結果に対応して後段のDC-DCコンバータの起動及び停止を制御する方式が提案されている(例えば、日本国特開2003-319655号公報参照)。
 一方で、医療用の機器のプロセッサ用電源のように、電源オフ後にデータを保存するため、「電源入力のオフ後、一定時間、電源出力を維持する機能」を要求されることもある。
 しかしながら、上記日本国特開2003-319655号公報の方式では、例えば、電源スイッチをオフするとPFCの動作が停止(オフ)し、PFCのオフ動作に対応して後段のDC-DCコンバータも停止するため、「電源入力がオフした後、一定時間電源出力を維持する」要求を実現できないという問題がある。
 そこで、本発明は上記の問題に鑑み、医療用等の機器に用いられる2コンバータ方式の電源装置において、電源入力が停止した後、一定時間必要な電源出力を保持し続けることが可能な電源装置を提供することを目的とするものである。
 本発明による電源装置は、入力される電圧から、第1の電圧へ変換して出力する第1のコンバータと、前記第1のコンバータから出力される前記第1の電圧を、第2の電圧へ変換して出力する第2のコンバータと、前記第1のコンバータから出力される前記第1の電圧と、所定の基準電圧を比較する電圧比較部と、前記電圧比較部により、前記第1の電圧が前記所定の基準電圧より大きいと判断されるまでは、第1の信号を出力し、前記第1の電圧が前記所定の基準電圧より大きいと判断された後は、第2の信号の出力を保持する電圧比較結果出力部と、前記電圧比較結果出力部から前記第1の信号が出力されている時、前記第2のコンバータを停止するように制御し、前記電圧比較結果出力部から前記第2の信号が出力されている時、前記第2のコンバータを動作させるように制御するコンバータ制御部と、を備える。
本発明の第1の実施形態の電源装置の構成を示す回路図。 図1に補助巻線を追加した構成を示す回路図。 第1の実施形態の電源装置における電圧比較結果出力部の別の例を示す回路図。 第1の実施形態の電源装置における電圧比較結果出力部のもう1つの別の例を示す回路図。 本発明の第2の実施形態の電源装置の構成を示す回路図。 第2の実施形態の電源装置におけるDC-DCコンバータの別の例を示す回路図。
 以下、本発明の実施の形態について図面を参照して詳細に説明する。 
[第1の実施形態]
 図1は本発明の第1の実施形態の電源装置の構成を示している。 
 図1において、電源装置10は、商用交流電源(以下、AC電源)1と、ダイオードブリッジ等の全波整流回路2と、コンデンサ21と、第1のコンバータとしてのPFC3と、第2のコンバータとしてのDC-DCコンバータ4と、プロセッサ等の負荷回路5とを有する。
 このような2コンバータ式の電源装置は、PFCとDC-DCコンバータを有したスイッチング電源装置を構成している。
 PFC3は、非絶縁型の昇圧チョッパ式スイッチング電源であって、力率改善用として用いられる。 
 PFC3は、全波整流回路2及びコンデンサ21から入力される電圧より、第1の電圧へ変換して出力する。
 PFC3は、昇圧チョークコイル31と、昇圧チョークコイル用補助巻線31aと、スイッチング素子としてのFET32と、PFC制御IC33と、転流ダイオード34と、出力用の平滑コンデンサ(以下、出力コンデンサ)35とを有する。 
 PFC制御IC33は、スイッチング用FET32のゲートにスイッチングパルスを供給して、AC電源1からの交流入力電圧を、この交流入力電圧の最大波高値より高い電圧(設定電圧)まで昇圧して、出力コンデンサ35に直流出力電圧を生成するための制御を行う。
 FET32がオンしているときに昇圧チョークコイル31にエネルギーを蓄え、FET32がオフ時に、ダイオード34が導通し、コイル31に蓄えたエネルギーを出力コンデンサ35に向けて放出する。この時、昇圧チョークコイル31に発生する電圧は全波整流後のコンデンサ21の出力電圧(言い換えれば、第1のコンバータの入力電圧)に直列に加算されるので、出力コンデンサ35の出力電圧は入力電圧より高い電圧となる。
 DC-DCコンバータ4は、PFC3から出力される第1の電圧を、第2の電圧へ変換して出力する。 
 DC-DCコンバータ4は、1次側のスイッチング動作に応じて2次側に電圧変換された2次電圧を出力するトランス41と、トランス41の1次側に設けられるスイッチング素子としてのFET42と、電圧比較部46と、電圧比較結果出力部47と、DC-DC部制御IC43を含むコンバータ制御部48と、2次側整流用ダイオード44と、2次側出力用平滑コンデンサ45とを有する。
 電圧比較部46は、第1のコンバータであるPFC3から出力される電圧と、ツェナーダイオードZDに基づく所定の基準電圧(ツェナー電圧)を比較する。 
 電圧比較部46は、DC-DCコンバータ4の動作(オン)を検知するツェナーダイオードZD1と、抵抗R11及び抵抗R12とを直列接続して構成され、この直列回路はPFC側の出力コンデンサ35に対して並列接続される。
 電圧比較結果出力部47は、電圧比較部46により、PFC3から出力される前記第1の電圧が前記所定の基準電圧より大きいと判断されるまでは、第1の信号(例えばLレベル)を出力し、前記第1の電圧が前記所定の基準電圧より大きいと判断された後は、第2の信号(例えばHレベル)の出力を保持する。
 電圧比較結果出力部47は、電圧比較部46の抵抗R11と抵抗R12との接続点に得られる電圧をコンパレータCP1の+入力端に入力し、その-入力端は基準電圧を与えるツェナーダイオードZD0を介してグランドGNDに接続している。コンパレータCP1の出力端は抵抗R5を介してグランドGNDに接続されており、その出力端の比較出力を、次段のコンバータ制御部48のトランジスタTr1のベースに入力する一方ダイオードD1を介してコンパレータCP1の+入力端にフィードバックしている。このフィードバック用ダイオードD11によりコンパレータCP1にラッチ機能を持たせている。
 コンバータ制御部48は、PFC3の出力コンデンサ35に対して並列に、抵抗R3と抵抗R4の直列回路を接続している。そして、コンパレータCP1の出力端をトランジスタTr1のベースに接続し、Tr1のエミッタをグランド(基準電位点)GNDに接続し、Tr1のコレクタを抵抗R3と抵抗R4の接続点に接続している。更に、抵抗R3と抵抗R4の接続点にトランジスタTr2のベースを接続し、Tr2のエミッタをグランドGNDに接続し、Tr2のコレクタをDC-DC部制御IC43の出力点に接続しかつ該コレクタをスイッチング用FET42のゲートに接続した構成となっている。
 上記の構成において、電圧比較部46を用いて、電源スイッチ(図示略)のオン時にPFC動作をZD1に基づく基準電圧にて検知し、DC-DCコンバータを起動する機能と、電圧比較結果出力部47を用いて、電源スイッチのオフ後又はACコード外れ後も一定時間出力を維持する機能とを実現できる。電圧比較結果出力部47により、電源スイッチのオン時に、電圧比較部46によってPFC3が起動したことを検出した以降の動作検出機能を止める、即ち電圧比較部46による動作検知をキャンセルする。なお、電源スイッチはAC電源1と全波整流回路2との間の電源ライン上に配置されている。
 (1)電源スイッチのオン時は、ツェナーダイオードZD1にてDC-DCコンバータ4の入力電圧を検知し、DC-DCコンバータ4の入力電圧が一定値以上になった時、コンパレータCP1の+入力がHレベルとなり、コンパレータCP1の出力がHレベルに切り替わる。
 (2)その結果、トランジスタTr1がオン、Tr2がオフするので、DC-DC部制御IC43からのスイッチングパルスがスイッチング用FET42に供給され、FET42のスイッチング動作を開始する。
 (3)一方、コンパレータCP1の出力はダイオードD1を介し、コンパレータの+入力端にフィードバックされる。この配線により、一度コンパレータCP1の出力がHレベルになると、コンパレータCP1の電源が無くならない限りはその状態を維持する。
 上記動作により、電源スイッチのオフ後又はACコード外れ後、PFC3の動作が停止した後も、PFC3の出力コンデンサ35に蓄えられた電荷(電圧)を利用しDC-DCコンバータ4は動作し統けることが可能となる。その結果、電源スイッチのオフ後又はACコード外れ後も一定時間、電源出力を維持する機能を実現できる。
 なお、電源スイッチのオフ後又はACコード外れ後のように、電源入力が完全に停止した後、すなわちPFC3の動作が停止した後には、PFC3の出力コンデンサ35の充電された平滑電圧のみで後段のDC-DCコンバータが動作するので、一定時間維持される電源出力に力率の悪化を生じない。
 図2は図1に補助巻線を追加した構成を示している。 
 図2では、図1の回路図に対して、スイッチング用トランス41に同芯的に形成された補助巻線61を用いた内部電源6を明記したものである。
 内部電源6は、補助巻線61と、その補助巻線61に並列に接続された、整流用ダイオード62と平滑用コンデンサ63で構成される整流回路とを備え、ダイオード62とコンデンサ63の接続点に接続した出力端子64より、前記PFC3及び前記DC-DCコンバータ4の回路各部に必要な回路電源を生成して出力する。具体的には、PFC制御IC33、DC-DC部制御IC43、及びコンパレータCP1へ15V程度の直流電圧を供給する機能を有する。
 図1の構成では、AC電源が投入されたとき、PFC3の出力コンデンサ35に充電された出力電圧(以下、PFC出力電圧)が電圧比較部46の所定の基準電圧(例えば390V)を超えるとツェナーダイオードZD1がオンし、結果としてコンパレータCP1の出力はHレベルとなり、そのHレベル状態はフィードバック用ダイオードD1により維持される。即ち、電圧比較結果出力部47のラッチ機能により維持されたHレベル状態は、図示しない電源スイッチがオフされたり或いはACコード外れたりして、PFC出力電圧が徐々に下降し、前記所定の基準電圧を下回ったときにも、ある時間は維持される。しかしながら、その後PFC出力電圧がさらに下がって例えば100乃至80V以下に下降してくると、補助巻線61を含む内部電源6の出力電圧は0V近くにまで下降することによって、PFC3及びDC-DCコンバータ4の内部回路に必要な電源が供給されなくなり、その時点で電源装置10の動作は完全に停止することになる。
 従って、電源スイッチがオフしたり或いはACコードが外れたりした場合、その時点からの電源装置10の出力維持時間は、PFC出力電圧即ちコンデンサ35の充電電荷の放電時間に基づいて決まる時間となる。つまり、PFC3の出力コンデンサ35の容量によって出力維持時間の長短を設定できることになる。
 図3は図1の電源装置における電圧比較結果出力部及びコンバータ制御部の別の実施例を示している。 
 図3に示す電源装置10Aは、図1の電源装置10とは異なった電圧比較結果出力部47A及びコンバータ制御部48Aを備えている。その他の構成は、図1と同様である。 
 図3において、電圧比較結果出力部47Aは、サイリスタSCR1を用いた回路となっている。 
 電圧比較結果出力部47Aは、サイリスタSCR1のゲートを前記電圧比較部46における抵抗R11と抵抗R12との接続点に接続し、SCR1のカソードをグランドGNDに接続し、SCR1のアノードをコンバータ制御部48Aにおける抵抗R3と抵抗R4との接続点に接続した構成となっている。
 コンバータ制御部48Aは、PFC3における出力コンデンサ35に対して並列に接続された、抵抗R3と抵抗R4の直列回路を備えている。そして、前記サイリスタSCR1のアノードを抵抗R3と抵抗R4の接続点に接続し、該抵抗R3と抵抗R4の接続点にトランジスタTr2のベースを接続し、Tr2のエミッタをグランドGNDに接続し、Tr2のコレクタをDC-DC部制御IC43の出力点に接続しかつ該コレクタをスイッチング用FET42のゲートに接続した構成となっている。
 サイリスタSCR1は、そのゲートがHレベルになると、アノード・カソード間が導通(オン)になり、その後ゲートがLレベルになっても、アノード・カソードンの電流が0になるまでオン状態を保ち続ける素子である。
 次に動作を説明する。 
 電源スイッチのオン後、PFC出力電圧が電圧比較部46におけるZD1の所定の基準電圧を超えると、ツェナーダイオードZD1がオンし、抵抗R11と抵抗R12との接続点の電位即ちSCR1のゲート電位がHレベルになり、SCR1がオン、Tr2がオフし、DC-DCコンバータ4Aのスイッチング動作を開始する。
 また、電源スイッチのオフ後、PFC出力電圧が下がり始め、前記所定の基準電圧を下回ると、ZD1がオフしてSCR1のゲート電位は0となるが、SCR1はオン状態を維持し、Tr2がオフを維持して、DC-DCコンバータ4Aの出力が維持される。
 そして、PFC出力電圧がが更に下降し、コンバータ制御部48Aの抵抗R3と抵抗R4の接続点の電位が0に近くなると、SCR1のアノード・カソード間の電流は0となり、DC-DC部制御IC43への電源供給も無くなり、DC-DCコンバータ4Aのスイッチング動作を停止する。
 図4は図1の電源装置における電圧比較結果出力部のもう1つの別の実施例を示している。 
 図4に示す電源装置10Bは、図1の電源装置10とは異なった電圧比較結果出力部47Bを備えている。その他の構成は、図1と同様である。 
 図4において、電圧比較結果出力部47Bは、RSフリップフロップFF1を用いた回路となっている。 
 電圧比較結果出力部47Bは、前記電圧比較部46における抵抗R11と抵抗R12との接続点をバッファアンプBFを介してRSフリップフロップFF1のセット入力端Sに接続し、RSフリップフロップFF1のリセット入力端Rを抵抗R21を介してグランドGNDに接続し、RSフリップフロップFF1の出力端Qを前記コンバータ制御部48におけるTr1のベースに接続した構成となっている。なお、コンバータ制御部48は図1と同様の構成になっている。
 RSフリップフロップFF1は、そのR入力はLレベルに固定されているので、S入力がHレベルになると、出力QはHレベルとなる。R入力はLレベル固定なので、図示しない内部電源6(図2参照)の電源電圧が0即ちRSフリップフロップFF1の電源が無くなるまで出力QはHレベルの状態に維持される。
 次に動作を説明する。 
 電源スイッチのオン後、PFC出力電圧が電圧比較部46におけるZD1の所定の基準電圧を超えると、ツェナーダイオードZD1がオンし、RSフリップフロップFF1のS入力がHレベルになり出力QもHレベルとなる。その結果、Tr1がオン、Tr2がオフし、DC-DCコンバータ4Bのスイッチング動作を開始する。
 電源スイッチのオフ後、PFC出力電圧が下がり始め、前記所定の基準電圧を下回ると、ZD1がオフするが、R入力はLレベルに固定されているので、RSフリップフロップFF1の出力QはHレベル状態を維持し、Tr1はオン、Tr2はオフを維持してDC-DCコンバータ4Bの出力が維持される。
 そして、PFC出力電圧が更に下降し、RSフリップフロップFF1の電源が無くなると、DC-DCコンバータ4Bのスイッチング動作を停止する。
 第1の実施形態によれば、電源入力のオン時は、PFCの起動を検知して、後段のDC-DCコンバータを起動し、電源スイッチのオフ時やACコードの外れ時は、一定時間、電源出力を維持する機能を持たせることができる。
 従って、医療用等の機器に用いられる2コンバータ方式の電源装置において、電源入力が停止した後、一定時間必要な電源出力を保持し続けることが可能な電源装置を実現することが可能となる。
[第2の実施形態]
 図5は本発明の第2の実施形態の電源装置の構成を示している。 
 図5に示す電源装置10Cは、図1の電源装置10におけるDC-DCコンバータ4に対して、電圧比較部46とは別のもう1つの電圧比較部50を追加した構成となっている。その他の構成は、図1と同様である。
 別の電圧比較部50は、PFC3の出力コンデンサ35に並列に、ツェナーダイオードZD2と抵抗R31と抵抗R32との直列回路を接続し、かつPFC3の出力コンデンサ35に並列に、抵抗R34と抵抗R35の直列回路を接続する。そして、抵抗R31と抵抗R32との接続点にトランジスタTr3のベースを接続し、Tr3のエミッタをグランドGNDに接続し、Tr3のコレクタを抵抗R34と抵抗R35の接続点に接続し、該抵抗R34と抵抗R35の接続点にトランジスタTr4のベースを接続し、Tr4のエミッタをグランドGNDに接続し、Tr4のコレクタをダイオードD2のカソードに接続し、該ダイオードD2のアノードを前記電圧比較部46における抵抗R11と抵抗R12との接続点に接続した構成となっている。なお、ツェナーダイオードZD1及びツェナーダイオードZD2の動作電圧間には、それぞれのツェナー電圧をZD1及びZD2と表記したとき、ZD1>ZD2 となるように設定されている。
 図1乃至図4に示した第1の実施形態では、ツェナーダイオードZD1は電源スイッチのオン時のDC-DCコンバータ4,4A又は4Bをオンさせるタイミングだけを規定しているのに対して、図5に示す第2の実施形態では、ツェナーダイオードZD2を用いて、電源スイッチのオフ時のDC-DCコンバータ4Cをオフさせるタイミングも規定している。
 次に動作を説明する。 
 電源スイッチのオン時の動作は、第1の実施形態と同様である。ただ、2つのツェナーダイオードZD1及びZD2の動作電圧(=ツェナー電圧)間に、ZD1>ZD2 の関係があるので、電源スイッチのオン後に前段のPFC出力電圧が上昇していく過程でツェナー電圧ZD1を超える前にツェナー電圧ZD2に達する(例えば200V)。このため、PFC出力電圧の上昇過程で、新たな別の電圧比較部50のツェナーダイオードZD2が先ずオンすることになるが、このZD2のオンに基づき、Tr3がオン、Tr4がオフし、ダイオードD2は非導通(オフ)となる。このため、新たに追加した別の電圧比較部50はも後段の回路部とは切断された状態に置かれる。その結果、新たな別の電圧比較部50は、電圧比較部46以降の回路部には何ら影響を与えることがない。
 そして、電源スイッチがオンした時に、PFC出力電圧がツェナー電圧ZD2を超えて上昇し、更にツェナー電圧ZD1を超えるまでに上昇した(例えば390V)後の動作は、ZD1がオンして図1での動作と全く同様となる。
 次に電源スイッチのオフ時の動作の流れを以下に示す。 
 (1)電源スイッチのオフ時又はACコード外れ時は、PFC出力電圧が放電して徐々に電圧低下していくが、PFC出力電圧がツェナーダイオードZD2の所定の基準電圧(例えば200V)よりも低下すると、ZD2はオフ(即ちDC-DCコンバータの入力電圧低下を検知)する。(PFC出力電圧が電圧比較部46におけるツェナーダイオードZD1に基づく所定の基準電圧より下降した場合は、第1の実施形態で説明したようにツェナーダイオードZD1による検知動作はコンパレータCP1のラッチ機能により、キャンセルされている。)
 (2)DC-DCコンバータ4Cの入力電圧が一定値以下になった時、トランジスタTr3をオフ、Tr4をオンする。
 (3)その結果、ダイオードD2が導通(オン)し、ダイオードD2を介してコンパレータCP1の+入力をLレベルにする。 
 (4)コンパレータCP1の出力がLレベルとなり、トランジスタTr1がオフ、Tr2がオンし、DC-DCコンバータ4CのFET42のスイッチング動作を停止する。
 上記動作により、ツェナーダイオードZD2の動作電圧を適宜に選択(規定)することで、DC-DCコンバータ4Cの動作をオフさせるタイミングを制御できる。この機構により、電源スイッチのオフ後又はACコード外れ後における、出力維持時間を任意に設定できる。
 更に、例えば390Vでスイッチング電源のオン動作を規定し、また例えば200Vでスイッチング電源のオフ動作を規定することによって、前段のPFCが故障したときのPFC出力電圧の低下をも検知できるようになるので、PFCの力率改善動作が悪い状態で動作し続けるのを防止することも可能となる。
 図6は第2の実施形態の電源装置におけるDC-DCコンバータの別の実施例を示している。 
 図6に示す電源装置10Dは、概略的には、図4の電源装置10BにおけるDC-DCコンバータ4Bに対して、電圧比較部46とは別のもう1つの電圧比較部51を追加した構成となっている。これに伴い、電圧比較結果出力部47Cの配線が図4と若干異なっている。その他の構成は、図4と同様である。
 別の電圧比較部50は、PFC3の出力コンデンサ35に並列に、ツェナーダイオードZD2と抵抗R31と抵抗R32との直列回路を接続し、抵抗R31と抵抗R32の接続点をインバータ(反転回路)INVを介して電圧比較結果出力部47CのRSフリップフロップFF1のリセット入力端Rに接続した構成となっている。なお、ツェナーダイオードZD1及びツェナーダイオードZD2の動作電圧間には、それぞれのツェナー電圧をZD1及びZD2と表記したとき、ZD1>ZD2 となるように設定されている。
 図6に示す構成では、電源入力が投入された後、PFC出力電圧がある電圧まで達するとツェナーダイオードZD1がオンとなり、そしてRSフリップフロップFF1のS入力がHレベルになると、出力QもHレベルとなり、Tr1がオン、Tr2がオフし、DC-DCコンバータ4Dのスイッチング動作を開始する。
 また、電源入力がオフとなり、PFC出力電圧がある電圧まで低下すると、ツェナーダイオードZD2がオフとなり、R入力がHレベルとなる。このときZD1>ZD2なので、S入力はすでにLレベルとなっているため、出力QはLレベルとなり、Tr1がオフ、Tr2がオンし、DC-DCコンバータ4Dのスイッチング動作を停止する。
 図6の構成においても、図5と同様な動作を実現することができる。 
 つまり、ツェナーダイオードZD2の動作電圧を適宜に選択(規定)することで、DC-DCコンバータ4Dの動作をオフさせるタイミングを制御できる。この機構により、電源スイッチのオフ後又はACコード外れ後における、出力維持時間を任意に設定できる。
 第2の実施形態によれば、電源スイッチのオフ時に、電源スイッチのオン時と異なる基準電圧にて、DC-DCコンバータの動作を制御する機構を有することで、予め決めた任意の時間、出力を維持する機能を実現することができる。
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。上記の実施形態やその変形は、本発明の範囲や要旨に含まれるものである。
 本出願は、2011年1月20日に日本国に出願された特願2011-010129号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲に引用されるものである。

Claims (7)

  1.  入力される電圧から、第1の電圧へ変換して出力する第1のコンバータと、
     前記第1のコンバータから出力される前記第1の電圧を、第2の電圧へ変換して出力する第2のコンバータと、
     前記第1のコンバータから出力される前記第1の電圧と、所定の基準電圧を比較する電圧比較部と、
     前記電圧比較部により、前記第1の電圧が前記所定の基準電圧より大きいと判断されるまでは、第1の信号を出力し、前記第1の電圧が前記所定の基準電圧より大きいと判断された後は、第2の信号の出力を保持する電圧比較結果出力部と、
     前記電圧比較結果出力部から前記第1の信号が出力されている時、前記第2のコンバータを停止するように制御し、前記電圧比較結果出力部から前記第2の信号が出力されている時、前記第2のコンバータを動作させるように制御するコンバータ制御部と、
     を備えることを特徴とする電源装置。
  2.  更に、前記第1の電圧を、前記所定の基準電圧より低い、別の基準電圧と比較する別の電圧比較部を備え、
     前記電圧比較結果出力部は、前記第2の信号の出力を保持している時、前記別の電圧比較部により、前記第1の電圧が前記別の基準電圧より低いと判断された時、前記第1の信号を出力することを特徴とする請求項1に記載の電源装置。
  3.  前記電圧比較結果出力部は、コンパレータと、該コンパレータの一方の入力端に該コンパレータの出力をフィードバックするダイオードとを備えた回路で構成され、
     前記一方の入力端に前記電圧比較部からの出力を入力し、もう一方の入力端に基準となる電圧を入力し、前記コンパレータの出力端から電圧比較結果を出力することを特徴とする請求項1に記載の電源装置。
  4.  前記電圧比較結果出力部は、サイリスタを用いた回路で構成され、
     該サイリスタのゲートに前記電圧比較部からの出力を入力し、カソードをグランドに接続し、アノードから電圧比較結果を出力することを特徴とする請求項1に記載の電源装置。
  5.  前記電圧比較結果出力部は、RSフリップフロップを用いた回路で構成され、
     S入力として前記電圧比較部からの出力を入力し、R入力をグランドレベルに固定し、Q出力として電圧比較結果を出力することを特徴とする請求項1に記載の電源装置。
  6.  前記電圧比較結果出力部は、コンパレータと、該コンパレータの一方の入力端に該コンパレータの出力をフィードバックするダイオードとを備えた回路で構成され、
     前記一方の入力端に前記電圧比較部からの出力を入力し、もう一方の入力端に基準となる電圧を入力し、前記コンパレータの出力端から電圧比較結果を出力し、
     前記別の電圧比較部は、前記第1のコンバータの出力が前記別の基準電圧より高いときは該別の電圧比較部の出力として前記第2の信号を出力して前記電圧比較部の出力点に与え、前記第1のコンバータの出力が前記別の基準電圧より低いときは該別の電圧比較部の出力として前記第1の信号を出力して前記電圧比較部の出力点に与えることを特徴とする請求項2に記載の電源装置。
  7.  前記電圧比較結果出力部は、RSフリップフロップを用いた回路で構成され、
     S入力として前記電圧比較部からの出力を入力し、R入力として前記別の電圧比較部からの出力を反転して入力し、Q出力として電圧比較結果を出力することを特徴とする請求項2に記載の電源装置。
PCT/JP2011/078574 2011-01-20 2011-12-09 電源装置 WO2012098782A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/932,474 US9041368B2 (en) 2011-01-20 2013-07-01 Power supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011010129A JP2012152066A (ja) 2011-01-20 2011-01-20 電源装置
JP2011-010129 2011-01-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/932,474 Continuation US9041368B2 (en) 2011-01-20 2013-07-01 Power supply device

Publications (1)

Publication Number Publication Date
WO2012098782A1 true WO2012098782A1 (ja) 2012-07-26

Family

ID=46515419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078574 WO2012098782A1 (ja) 2011-01-20 2011-12-09 電源装置

Country Status (3)

Country Link
US (1) US9041368B2 (ja)
JP (1) JP2012152066A (ja)
WO (1) WO2012098782A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631565B (zh) * 2017-03-21 2020-04-28 赤多尼科两合股份有限公司 两级式开关电源

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413898B2 (ja) * 1985-07-08 1992-03-11 Kogyo Gijutsuin
JP2003169479A (ja) * 2001-12-03 2003-06-13 Sanken Electric Co Ltd スイッチング電源装置及びその駆動方法
JP2004096869A (ja) * 2002-08-30 2004-03-25 Fujitsu Access Ltd 直流電源装置
JP2006333634A (ja) * 2005-05-26 2006-12-07 Mitsubishi Electric Corp スイッチング電源装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818273A (en) * 1971-03-26 1974-06-18 Yokogawa Electric Works Ltd Barrier isolator device employing an overload protection circuit
JP3307814B2 (ja) * 1995-12-15 2002-07-24 株式会社日立製作所 直流電源装置
US6169391B1 (en) * 1999-07-12 2001-01-02 Supertex, Inc. Device for converting high voltage alternating current to low voltage direct current
JP4013898B2 (ja) 2002-02-08 2007-11-28 サンケン電気株式会社 電源装置起動方法、電源装置の起動回路及び電源装置
JP4190795B2 (ja) 2002-04-19 2008-12-03 日本電気通信システム株式会社 電源回路
JPWO2009013834A1 (ja) * 2007-07-26 2010-09-30 富士通株式会社 給電システムおよび電圧安定化方法
US7787271B2 (en) * 2008-01-08 2010-08-31 Dell Products, Lp Power supply start-up and brown-out inrush management circuit
TW200937828A (en) * 2008-02-22 2009-09-01 Macroblock Inc Electricity -extraction circuit of AC/DC converter take

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413898B2 (ja) * 1985-07-08 1992-03-11 Kogyo Gijutsuin
JP2003169479A (ja) * 2001-12-03 2003-06-13 Sanken Electric Co Ltd スイッチング電源装置及びその駆動方法
JP2004096869A (ja) * 2002-08-30 2004-03-25 Fujitsu Access Ltd 直流電源装置
JP2006333634A (ja) * 2005-05-26 2006-12-07 Mitsubishi Electric Corp スイッチング電源装置

Also Published As

Publication number Publication date
US20130286690A1 (en) 2013-10-31
US9041368B2 (en) 2015-05-26
JP2012152066A (ja) 2012-08-09

Similar Documents

Publication Publication Date Title
JP6421047B2 (ja) スイッチング電源装置
JP5554108B2 (ja) 過電流防止式電源装置及びそれを用いた照明器具
JP6070164B2 (ja) スイッチング電源装置
US9083241B2 (en) Power factor correction circuit for providing protection against overvoltage
TWM513378U (zh) 輸入掉電輸出維持電路
JP2011205868A (ja) 過電流防止式電源装置及びそれを用いた照明器具
US10470268B2 (en) Light emitting diode driving circuit and light emitting diode lighting device
JP6210936B2 (ja) 自励共振型力率改善回路および光源駆動装置
JP6344045B2 (ja) Led点灯回路及びled照明装置
JP6032749B2 (ja) スイッチング電源装置
JP2015041571A (ja) Led電源装置及びled照明装置
JP2017004735A (ja) 調光点灯回路及び照明器具
JP6187024B2 (ja) Led電源装置及びled照明装置
JP5976064B2 (ja) 改良型電源モジュール内蔵手術装置
JP6323149B2 (ja) 停電補償機能付き照明用電源装置及び照明装置
JP2020036419A (ja) 非常用照明装置
JP5811329B2 (ja) 電源装置
JP2018073742A (ja) 照明用電源装置及び照明装置
JP2015088344A (ja) 停電灯用バックアップ電源及び停電灯ユニット
JP2018060731A (ja) Led点灯装置及びled照明装置
WO2012098782A1 (ja) 電源装置
JP6282147B2 (ja) Led電源装置及びled照明装置
JP2017112782A (ja) スイッチング電源装置
JP6900830B2 (ja) Led点灯回路及びled照明装置
JP5478347B2 (ja) 光源点灯装置及び照明器具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856479

Country of ref document: EP

Kind code of ref document: A1