WO2012096456A2 - 고강도 고전기전도도 나노결정립 다층 동합금 판재 및 이의 제조방법 - Google Patents

고강도 고전기전도도 나노결정립 다층 동합금 판재 및 이의 제조방법 Download PDF

Info

Publication number
WO2012096456A2
WO2012096456A2 PCT/KR2011/010073 KR2011010073W WO2012096456A2 WO 2012096456 A2 WO2012096456 A2 WO 2012096456A2 KR 2011010073 W KR2011010073 W KR 2011010073W WO 2012096456 A2 WO2012096456 A2 WO 2012096456A2
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
copper alloy
plate
dlp
ofc
Prior art date
Application number
PCT/KR2011/010073
Other languages
English (en)
French (fr)
Other versions
WO2012096456A3 (ko
Inventor
김형욱
임차용
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to JP2013549357A priority Critical patent/JP2014514434A/ja
Priority to EP11855697.6A priority patent/EP2664407A2/en
Priority to US13/979,467 priority patent/US9296064B2/en
Publication of WO2012096456A2 publication Critical patent/WO2012096456A2/ko
Publication of WO2012096456A3 publication Critical patent/WO2012096456A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/24Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/42Alternating layers, e.g. ABAB(C), AABBAABB(C)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • Y10T428/1291Next to Co-, Cu-, or Ni-base component

Definitions

  • the present invention relates to a high-strength high-conductivity nanocrystalline multilayer copper alloy sheet material and a method for manufacturing the same, which simultaneously improve the strength and electrical conductivity by rolling and joining a copper alloy having a high strength and a copper alloy having a high electrical conductivity.
  • Cumulative Roll-Bonding (ARB) method is one of the rigid plastic processing methods to improve the mechanical properties by minimizing the grain size of the metal material to submicron (Submicron).
  • a copper alloy sheet prepared by adding an alloying element capable of increasing strength is thinned by rolling or the like to manufacture a copper alloy sheet.
  • the ARB method has been applied to steel and aluminum (Al) materials, which are representative of structural materials, but from the viewpoint of practical use, existing reinforcement methods such as solid solution strengthening method and precipitation strengthening method are achieved only by achieving high strength. There is not much advantage compared to that.
  • Korean Patent Laid-Open Publication No. 2006-0013211 discloses a method for producing a high strength copper sheet material by a repeat overlap rolling process.
  • the surface-treated copper plate material of a certain length is superimposed and then rolled and bonded, and the bonded copper plate material is cut, but by repeating the above process a number of times, it is configured to produce a copper plate material laminated in multiple layers. .
  • An object of the present invention is to solve the problems of the prior art as described above, high strength high conductivity conductivity nanocrystalline multi-layer copper alloy sheet material and its manufacturing method to improve the strength and electrical conductivity at the same time by repeatedly rolling a heterogeneous copper alloy Is to provide.
  • the high-strength high-conductivity nano-crystal multi-layer copper alloy sheet according to the present invention comprises an OFC (Oxygen Free Copper) alloy and a DLP (Deoxidized Low-Phosphorous copper) alloy. It is characterized in that the plastic working by the method has an electrical conductivity of 85IACS (%) or more and a tensile strength of 400 MPa or more.
  • the multilayer copper alloy sheet material is characterized in that the OFC alloy layer and the DLP alloy layer alternately overlap.
  • the multilayer copper alloy sheet material it characterized in that it comprises two or more layers OFC alloy layer and DLP alloy layer.
  • the method of manufacturing a high strength high conductivity conductive nanocrystalline multilayer copper alloy plate according to the present invention includes a material preparation step of preparing a plate made of OFC (Oxygen Free Copper) alloy and DLP (Deoxidized Low-Phosphorous copper) alloy, and surface treatment of the plate. And a plate forming step of forming a high strength high conductivity conductive nanocrystalline multi-layer copper alloy sheet having an electrical conductivity of 85IACS (%) or more and a tensile strength of 500 MPa by rolling-bonding the plate repeatedly. It is characterized by.
  • OFC Orthoxygen Free Copper
  • DLP Deoxidized Low-Phosphorous copper
  • the surface treatment step degreasing to degrease the outer surface of the plate ( Iii) and an activation process for activating by wire brushing the outer surface of the plate.
  • the sheet forming step is repeated a plurality of times, when the two or more times are characterized in that a plurality of multi-layer copper alloy sheet material is plastically processed by repeated overlap welding method.
  • the high-strength high-conductivity nano-crystal multi-layer copper alloy sheet material according to the present invention was formed by repeatedly laminating and rolling a copper alloy having a high strength and a copper alloy having a high electrical conductivity.
  • FIG. 1 is a longitudinal sectional view showing a high strength high conductivity conductive nanocrystalline multilayer copper alloy sheet material according to the present invention.
  • Figure 2 is a process flow chart showing a method for producing a high strength high conductivity conductive nanocrystalline multilayer copper alloy sheet material according to the present invention.
  • FIG. 3 is a process flowchart showing in detail a surface treatment step which is one step in the manufacturing method of the high-strength high-conductivity nanocrystalline multilayer copper alloy sheet material according to the present invention.
  • Figure 4 is a perspective view showing the external configuration of the roll bonding apparatus employed in the preferred embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing in detail the internal configuration of the roll bonding apparatus employed in the preferred embodiment of the present invention.
  • Figure 6 is a longitudinal sectional view of another embodiment of a high strength high conductivity conductive nanocrystalline multilayer copper alloy sheet material according to the present invention.
  • FIG. 7 is a graph showing the change in strength according to the number of times the plate forming step in the high-strength high-conductivity nanocrystalline multilayer copper alloy sheet according to the present invention.
  • FIG. 8 is a graph showing a change in tensile strength and elongation according to the number of times the plate forming step is performed in the high strength high conductivity conductive nanocrystalline multilayer copper alloy sheet according to the present invention.
  • FIG. 9 is a graph showing the electrical conductivity change of the OFC plate and DLP plate according to the number of times the plate forming step in the high-strength high-conductivity nanocrystalline multilayer copper alloy plate according to the present invention.
  • FIG. 10 is a graph showing the strength and electrical conductivity changes when the high-strength high-conductivity nanocrystalline multilayer copper alloy sheet material and the comparative material according to the present invention were manufactured by the same method.
  • copper alloy sheet material 10 is a longitudinal cross-sectional view showing a high-strength high-conductivity high-molecular conductivity nanocrystalline multilayer copper alloy sheet material (hereinafter referred to as "copper alloy sheet material 10") according to the present invention.
  • the copper alloy plate 10 is formed by repeatedly rolling a different type of copper alloy, OFC (Oxygen Free Copper) alloy 12 and DLP (Deoxidized Low-Phosphorous copper) in the embodiment of the present invention
  • the alloy 14 is repeatedly rolled (Accumulative Roll-Bonding (ARB)) to have an electrical conductivity of 85IACS (%) or more and a tensile strength of 500 MPa or more.
  • the copper alloy sheet 10 is manufactured by forming four layers as shown in FIG. 1 by repeatedly overlap-rolling rolling to overlap the OFC alloy 12 and the DLP alloy 14 to form two layers, and then stacking them in multiple layers. can do.
  • the OFC (Oxygen Free Copper) alloy 12 and the DLP (Deoxidized Low-Phosphorous copper) alloy 14 are alternately stacked so that the electrical conductivity and strength may be simultaneously improved.
  • Figure 2 is a process flow chart showing a method of manufacturing a high strength high conductivity nanoparticle multilayer copper alloy plate material 10 according to the present invention
  • Figure 3 is a work in the method of manufacturing a high strength high conductivity metal nanocrystal multilayer copper alloy plate material 10 according to the present invention.
  • Process flow chart showing in detail the surface treatment step (S200) is a step.
  • the copper alloy sheet 10 the material preparation step (S100) for preparing a plate consisting of an Oxygen Free Copper (OFC) alloy 12 and a DLP (Deoxidized Low-Phosphorous copper) alloy (14),
  • OFC Oxygen Free Copper
  • DLP Deoxidized Low-Phosphorous copper
  • OFC alloy 12 and DLP alloy 14 prepared in the material preparation step (S100) is subjected to a surface treatment step.
  • the surface treatment step (S200) is a process for facilitating the bonding of the OFC alloy 12 and the DLP alloy 14 during repeated overlapping rolling, degreasing to degrease the outer surface of the alloy ( Iii) the process (S220), and the activation process (S240) for activating by wire brushing (Wire brushing) the outer surface of the alloy.
  • the plate forming step (S300) is carried out.
  • the sheet forming step (S300) is repeatedly performed a plurality of times, and when the two or more times are carried out, a plurality of multi-layer copper alloy sheet 10 is plastically processed by the rolling bonding method 1.
  • the repeated overlap bonding rolling bonding apparatus (hereinafter, referred to as 'rolling bonding apparatus 100') for continuously performing the activation process (S240) and the sheet forming step (S300). It explains in detail.
  • Figure 4 is a perspective view showing the external configuration of the roll bonding apparatus employed in the preferred embodiment of the present invention
  • Figure 5 is a schematic diagram showing the internal configuration of the roll bonding apparatus employed in the preferred embodiment of the present invention in detail.
  • the roll bonding device 100 is a device for manufacturing the copper alloy sheet material 10 by rolling and receiving the OFC alloy 12 and the DLP alloy 14 continuously in the form of a plate, the left side OFC alloy Uncoiled means 110 for storing the 12 and the DLP alloy 14 in a wound state is provided.
  • the uncoiled means 110 is stored in a state in which the OFC alloy 12 and the DLP alloy 14 on a long plate having a predetermined width are wound and are selectively rotated and wound to the OFC alloy 12 and the DLP.
  • the roll bonding device 100 is a device for rolling the OFC alloy 12 and the DLP alloy 14, the OFC alloy 12 and DLP alloy (
  • the uncoiler 110 is composed of a plurality so that 14) can be supplied independently.
  • the uncoil means 110 has a roller shape on which the rotation center is located on the same vertical line and the outer surfaces are spaced apart from each other.
  • a surface treatment means 120 is provided on the left side of the plurality of uncoil means 110.
  • the surface treatment means 120 is a structure for surface treatment by wire brushing one surface of the outer surface of the OFC alloy 12 and the DLP alloy 14, the number corresponding to the uncoil means 110 Surface treatment of the OFC alloy 12 and the DLP alloy 14 provided from each of the uncoiled means 110 is provided.
  • the rolling means 130 is provided in the substantially center of the roll bonding device 100.
  • the rolling means 130 is configured to press and roll while passing the OFC alloy 12 and the DLP alloy 14 between a pair of rolling rollers, OFC alloy 12 rolled through the rolling means 130 And the DLP alloy 14 are roll-bonded to form a copper alloy sheet 10.
  • the first guide 140 is provided between the rolling means 130 and the uncoiling means 110.
  • the first guide 140 is a configuration for guiding the surface-treated OFC alloy 12 and the DLP alloy 14 through the surface treatment means 120 to the rolling means 130 through the inside, the OFC The alloy 12 and the DLP alloy 14 are configured to gradually reduce the separation distance upon transfer in the right direction.
  • Recoil means 150 is provided on the right side of the rolling means 130.
  • the recoil means 150 is a configuration for winding and storing the overlap-bonded copper alloy sheet 10 while passing through the rolling means 130, and the rotational speed is controlled in consideration of the transfer speed of the copper alloy sheet 10. Do.
  • a second guide 160 is provided between the recoil means 150 and the rolling means 130.
  • the second guide 160 is a configuration for guiding the copper alloy sheet 10 rolled through the rolling means 130 to the recoil means 150, and at the same time serves to improve the straightness of the copper alloy sheet 10. Perform.
  • Figure 5 is a schematic diagram showing in detail the internal configuration of the repeatable overlap welding apparatus employed in the preferred embodiment of the present invention.
  • the outer surface of the uncoiled means 110, OFC alloy 12 and DLP alloy 14 to be bonded to each other are wound in opposite directions, respectively, through the rolling means 130 copper alloy plate ( 10) are supplied stored and of sufficient length so that they can be manufactured.
  • the surface treatment means 120 is the OFC alloy 12 in order to facilitate the overlap bonding of the OFC alloy 12 and the DLP alloy 14 during rolling through the rolling means 130, The surfaces of the surfaces facing each other among the two surfaces of the DLP alloy 14 are brushed.
  • the opposing surfaces of the OFC alloy 12 and the DLP alloy 14 surface treated by the surface treatment means 120 are activated to increase the bonding force when rolling through the rolling means 130.
  • the first guide 140 is guided so that the surface-treated OFC alloy 12 and DLP alloy 14 can be collected in the center of the pair of rollers when transported to the rolling means 130.
  • the first guide 140 includes a plurality of upper rollers 142 and a plurality of lower rollers 144.
  • the upper roller 142 guides the OFC alloy 12 located in the upper direction to the right, and the lower roller 144 guides the DLP alloy 14 located in the lower direction to the right.
  • the upper roller 142 and the lower roller 144 are configured to be close to each other when the OFC alloy 12 and the DLP alloy 14 are transferred in the right direction.
  • the OFC alloy 12 and the DLP alloy 14 passed between the upper roller 142 and the lower roller 144 are pressed by the rolling means 130, where the OFC alloy 12 and the DLP When the separation distance of the alloy 14 enters a large state, it is difficult to manufacture the uniform copper alloy plate 10.
  • the upper roller 142 and the lower roller 144 is controlled to reduce the separation distance when the OFC alloy 12 and the DLP alloy 14 is transported, for this purpose the upper roller 142 and the lower roller 144 is preferably configured to be different from each other in the position of the rotation center.
  • the three upper rollers 142 are configured to have a lower rotational center toward the right side, and the three lower rollers 144 are configured to have a higher rotational center toward the right side of the OFC alloy 12. And the separation distance between the DLP alloy 14 can be controlled to be narrowed.
  • the first guide 140 is configured by the upper roller 142 and the lower roller 144 as an embodiment, but can be controlled so that the separation distance between the OFC alloy 12 and the DLP alloy 14 is narrowed. As long as the range can be changed, various changes can be made.
  • the second guide 160 is provided with a guide roller 162 to guide the transfer of the copper alloy plate 10 using a rotational movement, the guide roller 162 increases the straightness of the copper alloy plate 10. To help improve quality.
  • the top of the outer circumferential surface of the guide roller 162 is configured to be located at the center of the rolling means 130, that is, on the same line as the copper alloy sheet 10, the copper alloy sheet exiting the rolling means 130 It is possible to obtain the copper alloy sheet material 10 having a uniform structure by preventing (10) from being sharply bent.
  • the uncoiled means 110 is degreasing ( OF) OFC alloy (12) and DLP alloy (14) from which oil and foreign substances are removed through the process are wound and stored in opposite directions.
  • the OFC alloy 12 and the DLP alloy 14 is released by the rotation of the uncoil means 110, the surface is activated by the surface treatment means 120.
  • the OFC alloy 12 and the DLP alloy 14 is a surface to be in contact with each other surface can be more easily bonded.
  • OFC alloy 12 and DLP alloy 14 surface-treated by the surface treatment means 120 is supplied to the inner center of the rolling means 130 by narrowing the separation distance while passing through the first guide 140.
  • the upper OFC alloy 12 in contact with the upper roller 142 is gradually inclined in the right downward direction by the upper roller 142
  • the lower DLP alloy in contact with the lower roller 144 ( 14 is gradually guided by the lower roller 144 to be inclined upward in the right direction to be in close proximity to each other.
  • the OFC alloy 12 and the DLP alloy 14 adjacent to each other are rolled and joined while passing through the rolling means 130 to form a copper alloy sheet 10.
  • the copper alloy plate 10 is transferred in parallel with the direction discharged from the rolling means 130 by the second guide 160, the straightness is increased.
  • the copper alloy plate 10 wound on the recoil means 150 is prepared by installing a plurality of each in the uncoil means 110, and repeating the above process in a number of cycles, copper alloy plate consisting of a plurality of layers Production of (10) is possible.
  • the copper alloy sheet 10 is repeatedly rolled and bonded several times, such that the OFC alloy 12 and the DLP alloy 14 are alternately formed with 8 layers, 16 layers, 32 layers, and 64. It may be configurable to be layered.
  • Figure 7 is a graph showing the change in strength according to the number of times of the plate forming step in the high strength high-conductivity nano-crystal multi-layer copper alloy sheet according to the present invention
  • Figure 8 is a plate forming in high-strength high-conductivity nanocrystalline multilayer copper alloy plate according to the present invention It is a graph showing the change in tensile strength and elongation according to the number of times the step is performed.
  • the OFC alloy 12 and the DLP alloy 14 are repeatedly provided twice, three times, four times, five times, six times, and overlapping a plurality of copper alloy plate materials 10 each provided with one layer. Comparing the hardness change of the formed copper alloy sheet 10 with the comparative example (DLP alloy and OFC alloy without rolling bonding), the copper alloy sheet 10 repeatedly rolled showed a hardness of 120 Hv or more to 50Hv It confirmed that it was 2 times or more higher than the comparative example which showed the hardness of the grade.
  • the comparative example in which the sheet forming step (S300) was not performed showed a tensile strength of 180 MPa and an elongation of 60%, but the preferred embodiment in which the sheet forming step (S300) was performed was 500 MPa.
  • the above tensile strength and elongation of 8% or less were shown.
  • the copper alloy plate 10 may be optionally carried out an annealing step (S400) to improve the physical properties such as electrical conductivity and tensile strength.
  • S400 annealing step
  • FIG. 9 is a graph showing the electrical conductivity change of the OFC alloy 12 and DLP alloy 14 according to the number of times of the plate forming step (S300) in the high strength high conductivity conductive nanocrystalline multilayer copper alloy sheet material 10 according to the present invention. .
  • the OFC alloy 12 exhibited an electrical conductivity close to 100IACS (%), and the DLP alloy 14 exhibited an electrical conductivity of about 80IACS (%). .
  • the copper alloy sheet 10 manufactured by performing the sheet forming step (S300) exhibited an electrical conductivity of 85IACS (%) or more, and the electrical conductivity of the OFC alloy 12 and the electrical conductivity of the DLP alloy 14 were different from each other. A tendency to approach is shown.
  • the present invention is prepared in contrast to the OFC alloy 12 having high conductivity and low strength and the DLP alloy 14 having low electrical conductivity and high strength.
  • Copper alloy sheet 10 according to has a physical property complementary to the strength and electrical conductivity.
  • the copper alloy sheet 10 has a higher tensile strength and lower electrical conductivity than the OFC alloy 12, and a little lower tensile strength but higher electrical conductivity than the DLP alloy 14.
  • the copper alloy plate 10 can be controlled to have various electrical conductivity and strength according to the number of times of the plate forming step (S300).
  • the high-strength high-conductivity nanocrystalline multi-layer copper alloy sheet material and its manufacturing method according to the present invention can improve the strength and the electrical conductivity at the same time, the conventional electrical conductivity is lowered when the strength is improved, or the strength is lowered when the electrical conductivity is improved Loss can be solved and applied to various industries.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Metal Rolling (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

본 발명에 의한 고강도 고전기전도도 나노결정립 다층 동합금 판재는, OFC(Oxygen Free Copper)합금과 DLP(Deoxidized Low-Phosphorous copper)합금을 반복적으로 압연접합(Roll-Bonding)하여 85IACS(%)이상의 전기전도도와 400㎫ 이상의 인장강도를 갖는 것을 특징으로 한다. 본 발명에 의한 고강도 고전기전도도 나노결정립 다층 동합금 판재의 제조방법은, OFC(Oxygen Free Copper)합금과 DLP(Deoxidized Low-Phosphorous copper)합금으로 이루어진 판재를 준비하는 재료준비단계와, 상기 판재를 표면처리하는 표면처리단계와, 상기 판재를 반복적으로 압연접합(Roll-Bonding)하여 85IACS(%)이상의 전기전도도와 400㎫ 이상의 인장강도를 갖는 고강도 고전기전도도 나노결정립 다층 동합금 판재를 성형하는 판재성형단계로 이루어지는 것을 특징으로 한다.

Description

고강도 고전기전도도 나노결정립 다층 동합금 판재 및 이의 제조방법
본 발명은 높은 강도를 가지는 동합금과 높은 전기전도도를 가지는 동합금을 반복적으로 압연접합함으로써 강도와 전기전도도가 동시에 향상되도록 한 고강도 고전기전도도 나노결정립 다층 동합금 판재 및 이의 제조방법에 관한 것이다.
반복겹침접합압연(Accumulative Roll-Bonding; ARB)법은 금속소재의 결정립도(結晶粒度)를 서브마이크론(Submicron)까지 초미세화시킴으로써 기계적 특성을 향상시키는 강소성가공법 중의 하나이다.
일반적으로 강도와 전기전도성이 높은 동합금 판재를 제조하기 위하여 강도를 증가시킬수 있는 합금원소를 첨가하여 제조한 동합금을 압연 등의 방법으로 박판화하여 동합금 판재를 제조하여 왔다.
그러나, 강도 향상을 목적으로 합금의 함량을 증가시키는 경우 전기전도성 및 압연성이 저하되어 고강도 및 고전기전도성을 동시에 얻기에 한계에 이르고 있다.
즉, 압연(
Figure 58d3
延)이나 압출(
Figure 58d3
出) 등 기존의 소성가공법들은 가공량을 증가시키면 대상재료의 형상(단면적) 변화가 불가피하여 소재 내에 변형에너지를 축적시키는데 한계가 있을 수 밖에 없다. 그러므로, 기존의 소성가공법들은 금속재료의 결정립미세화(結晶粒微細化) 및 고강도화(高强度化)에 큰 효과를 발휘하지 못하고 있는 실정이다.
이에 따라 반복겹침접합압연(ARB)법을 이용하여 연속적인 압연 가공을 실시함으로써 결정립을 수백 나노미터크기로 미세화하여 강도를 증가시키는 방법이 사용되고 있다.
즉, 반복겹침접합압연(ARB)법은 구조재료의 대표격인 철강 및 알루미늄(Al) 소재 등에 적용되어 왔으나, 실용화 관점에서 볼 때 고강도화를 달성하는 것만으로는 고용체강화법, 석출강화법 등과 같은 기존의 강화법들에 비해 그다지 큰 이점이 존재한다고 할 수 없다.
따라서, 기존의 반복겹침접합압연(ARB)법의 특성을 최대한 발휘하여 실용화를 앞당기기 위해서는 결정립미세화 및 고강도화를 동시에 달성하기 위한 반복겹침접합압연법에 대하여 많은 연구 및 개발이 진행되고 있다.
예를 들면 대한민국 특허청 공개번호 2006-0013211 에는 반복겹침접합 압연공정에 의한 고강도 구리판재 제조방법이 개시되어 있다.
간략히 살펴보면, 표면처리된 일정 길이의 구리판재를 겹쳐 고정한 후 압연하여 접합하고, 접합된 구리판재는 절단하되, 상기와 같은 과정을 다수회 반복함으로써 다수 층으로 겹쳐진 구리판재를 제조할 수 있도록 구성된다.
그러나 순동합금판재에 결정립 미세화에 의한 강도 증가에는 한계가 있다.
또한, 강도 증가를 위해 기존의 고강도 동합금 판재를 반복겹침접합압연하는 경우 접합 압연시 다수의 균열이 발생하며 접합되지 않아 건전한 판재의 제작이 불가능하다.
뿐만 아니라, 고강도 동합금 판재를 사용시에는 전기 전도도가 현저히 낮아지는 문제점을 야기하게 된다.
본 발명의 목적은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 이종(異種) 동합금을 반복적으로 압연접합함으로써 강도와 전기전도도가 동시에 향상되도록 한 고강도 고전기전도도 나노결정립 다층 동합금 판재 및 이의 제조방법을 제공하는 것에 있다.
상기한 목적을 달성하기 위한 본 발명에 의한 고강도 고전기전도도 나노결정립 다층 동합금 판재는, OFC(Oxygen Free Copper)합금과 DLP(Deoxidized Low-Phosphorous copper)합금을 반복겹침접합압연(Accumulative Roll-Bonding; ARB)법으로 소성 가공하여 85IACS(%)이상의 전기전도도와 400㎫ 이상의 인장강도를 갖는 것을 특징으로 한다.
상기 다층 동합금 판재는, OFC 합금층과 DLP 합금층이 교번하여 겹쳐지는 것을 특징으로 한다.
상기 다층 동합금 판재에서, OFC 합금층과 DLP 합금층을 2층 이상 포함하는 것을 특징으로 한다.
본 발명에 의한 고강도 고전기전도도 나노결정립 다층 동합금 판재의 제조방법은, OFC(Oxygen Free Copper)합금과 DLP(Deoxidized Low-Phosphorous copper)합금으로 이루어진 판재를 준비하는 재료준비단계와, 상기 판재를 표면처리하는 표면처리단계와, 상기 판재를 반복적으로 압연접합(Roll-Bonding)하여 85IACS(%)이상의 전기전도도와 500㎫ 이상의 인장강도를 갖는 고강도 고전기전도도 나노결정립 다층 동합금 판재를 성형하는 판재성형단계로 이루어지는 것을 특징으로 한다.
상기 표면처리단계는, 상기 판재의 외면을 탈지하는 탈지(
Figure 812b
脂)과정과, 상기 판재의 외면을 와이어브러싱(Wire brushing)하여 활성화하는 활성화과정으로 이루어지는 것을 특징으로 한다.
상기 판재성형단계는, 다수 회 반복실시되며, 2회 이상 실시시에는 다층 동합금 판재 다수 개가 반복겹침접합압연법으로 소성 가공되는 것을 특징으로 한다.
본 발명에 의한 고강도 고전기전도도 나노결정립 다층 동합금 판재는, 높은 강도를 가지는 동합금과 높은 전기전도도를 가지는 동합금을 반복적으로 겹침 압연하여 접합하였다.
따라서, 강도와 전기전도도가 동시에 향상되는 이점이 있다.
도 1 은 본 발명에 의한 고강도 고전기전도도 나노결정립 다층 동합금 판재를 나타낸 종단면도.
도 2 는 본 발명에 의한 고강도 고전기전도도 나노결정립 다층 동합금 판재의 제조방법을 나타낸 공정 순서도.
도 3 은 본 발명에 의한 고강도 고전기전도도 나노결정립 다층 동합금 판재의 제조방법에서 일단계인 표면처리단계를 세부적으로 나타낸 공정 순서도.
도 4 는 본 발명의 바람직한 실시예에 채용된 압연접합장치의 외관 구성을 보인 사시도.
도 5 는 본 발명의 바람직한 실시예에 채용된 압연접합장치의 내부 구성을 세부적으로 나타낸 개요도.
도 6 은 본 발명에 의한 고강도 고전기전도도 나노결정립 다층 동합금 판재의 다른 실시예의 종단면도.
도 7 은 본 발명에 의한 고강도 고전기전도도 나노결정립 다층 동합금 판재에서 판재성형단계의 실시횟수 변화에 따른 강도 변화를 나타낸 그래프.
도 8 은 본 발명에 의한 고강도 고전기전도도 나노결정립 다층 동합금 판재에서 판재성형단계의 실시횟수 변화에 따른 인장강도 및 연신율 변화를 나타낸 그래프.
도 9 는 본 발명에 의한 고강도 고전기전도도 나노결정립 다층 동합금 판재에서 판재성형단계의 실시횟수 변화에 따른 OFC판재와 DLP판재의 전기전도도 변화를 나타내 그래프.
도 10 은 본 발명에 의한 고강도 고전기전도도 나노결정립 다층 동합금판재와 비교재를 동일한 방법으로 제조하였을 때 강도 및 전기전도도 변화를 비교하여 나타낸 그래프.
이하 첨부된 도 1을 참조하여 본 발명에 의한 고강도 고전기전도도 나노결정립 다층 동합금 판재의 구성을 설명한다.
도 1은 본 발명에 의한 고강도 고전기전도도 나노결정립 다층 동합금 판재(이하 '동합금 판재(10)라 칭함)를 나타낸 종단면도이다.
도면과 같이, 상기 동합금 판재(10)는 이종(異種)의 동합금이 반복적으로 압연접합되어 형성된 것으로, 본 발명의 실시예에서 OFC(Oxygen Free Copper)합금(12)과 DLP(Deoxidized Low-Phosphorous copper)합금(14)을 반복적으로 접합압연(Accumulative Roll-Bonding; ARB)하여 85IACS(%)이상의 전기전도도와 500㎫ 이상의 인장강도를 갖는다.
즉, 상기 동합금판재(10)는 OFC합금(12)과 DLP합금(14)을 겹쳐 2층을 형성하도록 반복겹침접합압연한 후, 이것을 다수층으로 겹쳐 접합 압연함으로써 도 1과 같이 4층으로 제조할 수 있다.
그리고, 상기 OFC(Oxygen Free Copper)합금(12)과 DLP(Deoxidized Low-Phosphorous copper)합금(14)은 교번하여 적층됨으로써 전기전도도와 강도를 동시에 향상시킬 수 있도록 구성됨이 바람직하다.
이하 첨부된 도 2 및 도 3을 참조하여 상기와 같이 구성되는 동합금 판재(10)를 제조하는 방법을 설명한다.
도 2는 본 발명에 의한 고강도 고전기전도도 나노결정립 다층 동합금 판재(10)의 제조방법을 나타낸 공정 순서도이고, 도 3은 본 발명에 의한 고강도 고전기전도도 나노결정립 다층 동합금 판재(10)의 제조방법에서 일단계인 표면처리단계(S200)를 세부적으로 나타낸 공정 순서도이다.
이들 도면과 같이, 상기 동합금 판재(10)는, OFC(Oxygen Free Copper)합금(12)과 DLP(Deoxidized Low-Phosphorous copper)합금(14)으로 이루어진 판재를 준비하는 재료준비단계(S100)와, 상기 판재를 표면처리하는 표면처리단계(S200)와, 상기 판재를 반복적으로 접합압연(Roll-Bonding)하여 85IACS(%)이상의 전기전도도와 500㎫ 이상의 인장강도를 갖는 고강도 고전기전도도 나노결정립 다층 동합금 판재(10)를 성형하는 판재성형단계(S300)를 순차적으로 실시하여 제조된다.
상기 재료준비단계(S100)에서 OFC(Oxygen Free Copper)합금(12)은 동합금 판재(10)의 전기전도도를 높이기 위한 구성이며, 상기 DLP(Deoxidized Low-Phosphorous copper)합금(14)은 동합금 판재(10)의 강도를 높이기 위한 구성이다.
상기 재료준비단계(S100)에서 준비된 OFC합금(12)과 DLP합금(14)은 표면처리단계를 거치게 된다.
상기 표면처리단계(S200)는 반복겹침 접합압연시에 OFC합금(12)과 DLP합금(14)의 접합이 용이하도록 하는 과정으로, 상기 합금의 외면을 탈지하는 탈지(
Figure 812b
脂)과정(S220)과, 상기 합금의 외면을 와이어브러싱(Wire brushing)하여 활성화하는 활성화과정(S240)으로 이루어진다.
상기 표면처리단계(S200) 이후에는 판재성형단계(S300)가 실시된다. 상기 판재성형단계(S300)는, 다수 회 반복실시되며, 2회 이상 실시시에는 다층 동합금 판재(10) 다수 개가 압연접합법1으로 소성 가공된다.
이하 첨부된 도 4 및 도 5를 참조하여 상기 활성화과정(S240)과 판재성형단계(S300)를 연속적으로 실시하기 위한 반복겹침접합 압연접합장치(이하 '압연접합장치(100)'라 칭함)를 상세히 설명한다.
도 4는 본 발명의 바람직한 실시예에 채용된 압연접합장치의 외관 구성을 보인 사시도이고, 도 5는 본 발명의 바람직한 실시예에 채용된 압연접합장치의 내부 구성을 세부적으로 나타낸 개요도이다.
도면과 같이, 상기 압연접합장치(100)는 OFC합금(12)과 DLP합금(14)을 판 형태로 연속적으로 공급받아 압연접합함으로써 동합금 판재(10)를 제조하기 위한 장치로서, 좌측에는 OFC합금(12)과 DLP합금(14)을 권취한 상태로 보관하기 위한 언코일수단(110)이 구비된다.
상기 언코일수단(110)은 일정 폭을 가지고 길이가 긴 판 상의 OFC합금(12)과 DLP합금(14)을 권취한 상태로 보관하며, 선택적으로 회전하여 권취되어 있던 OFC합금(12)과 DLP합금(14)을 공급하는 역할을 수행하는 것으로, 상기 압연접합장치(100)가 OFC합금(12)과 DLP합금(14)을 압연접합하기 위한 장치이므로, 상기 OFC합금(12)과 DLP합금(14)이 독립적으로 공급될 수 있도록 상기 언코일수단(110)은 다수로 구성된다.
본 발명의 실시예에서 상기 언코일수단(110)은 동일 수직선 상에 회전 중심이 위치하고 외면이 서로 이격된 롤러 형상을 갖도록 하였으며, 한 쌍으로 구성하여 서로 반대방향으로 회전함으로써 각각의 언코일수단(110)이 권취되어 있던 OFC합금(12)과 DLP합금(14)이 이송 강제될 수 있도록 하였다.
그리고, 상기 다수의 언코일수단(110)의 좌측에는 표면처리수단(120)이 구비된다.
상기 표면처리수단(120)은 OFC합금(12)과 DLP합금(14)의 외면 중 일면을 와이어브러싱(Wire brushing)하여 표면처리하기 위한 구성으로, 상기 언코일수단(110)과 대응되는 개수만큼 구비되어 각각의 언코일수단(110)으로부터 공급받은 OFC합금(12)과 DLP합금(14)을 각각 표면처리하게 된다.
상기 압연접합장치(100)의 대략 중앙에는 압연수단(130)이 구비된다. 상기 압연수단(130)은 한 쌍의 압연롤러 사이로 OFC합금(12)과 DLP합금(14)을 통과시키면서 가압하여 압연하기 위한 구성으로, 상기 압연수단(130)을 거쳐 압연된 OFC합금(12)과 DLP합금(14)은 압연접합되어 동합금 판재(10)가 된다.
상기 압연수단(130)과 언코일수단(110)의 사이에는 제1가이드(140)가 구비된다. 상기 제1가이드(140)는 표면처리수단(120)을 경유하면서 표면처리된 OFC합금(12)과 DLP합금(14)을 내부로 통과시켜 압연수단(130)으로 안내하기 위한 구성으로, 상기 OFC합금(12)과 DLP합금(14)이 우측 방향으로 이송시에 점차적으로 이격 거리를 감소시킬 수 있도록 구성된다.
상기 압연수단(130)의 우측에는 리코일수단(150)이 구비된다. 상기 리코일수단(150)은 압연수단(130)을 통과하면서 겹침접합된 동합금 판재(10)를 권취하여 보관하기 위한 구성으로, 상기 동합금 판재(10)의 이송 속도를 감안하여 회전속도가 조절됨이 바람직하다.
상기 리코일수단(150)과 압연수단(130) 사이에는 제2가이드(160)가 구비된다. 상기 제2가이드(160)는 압연수단(130)을 통해 압연된 동합금 판재(10)를 리코일수단(150)으로 안내하기 위한 구성으로, 상기 동합금 판재(10)의 직진도를 향상시키는 역할도 동시에 수행한다.
이하 첨부된 도 5를 참조하여 상기와 같이 구성되는 압연접합장치(100)의 세부 구성을 살펴본다.
도 5는 본 발명의 바람직한 실시예에 채용된 반복겹침접합 암연장치의 내부 구성을 세부적으로 나타낸 개요도이다.
도면과 같이, 상기 언코일수단(110)의 외면에는 서로 접합될 OFC합금(12)과 DLP합금(14)이 각각 서로 반대방향으로 권취되어 있으며, 압연수단(130)을 통해 연속적으로 동합금 판재(10)가 제조될 수 있도록 충분한 길이로 보관되어 공급된다.
그리고, 상기 표면처리수단(120)은 압연수단(130)을 통해 OFC합금(12)과 DLP합금(14)이 압연시에 겹침접합이 보다 용이하게 이루어질 수 있도록 하기 위하여, 상기 OFC합금(12)과 DLP합금(14) 각각의 양면 중 서로 마주보는 면의 표면을 브러싱하게 된다.
따라서, 상기 표면처리수단(120)에 의해 표면처리된 OFC합금(12)과 DLP합금(14)의 마주보는 표면은 활성화되어 압연수단(130)을 통해 압연될 때 접합력이 높아질 수 있게 된다.
상기 제1가이드(140)는 표면처리된 OFC합금(12)과 DLP합금(14)이 압연수단(130)으로 이송할 때 한 쌍의 롤러 중앙으로 모아질 수 있도록 안내하게 된다.
이를 위해 상기 제1가이드(140)는 다수의 상부롤러(142)와 다수의 하부롤러(144)를 포함하여 구성된다.
따라서, 상기 상부롤러(142)는 상측에 위치한 OFC합금(12)을 우측방향으로 안내하며, 상기 하부롤러(144)는 하측에 위치한 DLP합금(14)을 우측 방향으로 안내하게 된다.
그리고, 상기 상부롤러(142)와 하부롤러(144)는 OFC합금(12)과 DLP합금(14)이 우측 방향으로 이송할 때 서로 근접시킬 수 있도록 구성된다.
즉, 상기 상부롤러(142)와 하부롤러(144) 사이를 통과한 OFC합금(12)과 DLP합금(14)은 압연수단(130)에 의해 가압되어 압연되는데, 이때 OFC합금(12)과 DLP합금(14)의 이격 거리가 큰 상태로 진입하게 되면, 균일한 동합금 판재(10)의 제조가 어렵다.
따라서, 상기 상부롤러(142)와 하부롤러(144)는 OFC합금(12)과 DLP합금(14)이 이송될 때 이격 거리가 작아지도록 제어하게 되며, 이를 위해 상기 상부롤러(142)와 하부롤러(144)는 회전 중심의 위치가 서로 상이하게 구성됨이 바람직하다.
예컨대, 첨부된 도 5와 같이 3개의 상부롤러(142)는 우측으로 갈수록 회전중심이 낮아지도록 구성하고, 3개의 하부롤러(144)는 우측으로 갈수록 회전중심이 높아지도록 구성하여 OFC합금(12)과 DLP합금(14)의 이격 거리가 좁아지도록 제어할 수 있다.
본 발명의 실시예에서 제1가이드(140)는 상부롤러(142)와 하부롤러(144)를 실시예로 구성하였으나, OFC합금(12)과 DLP합금(14)의 이격 거리가 좁아지도록 제어할 수 있는 범위 내라면, 다양하게 변경 실시가 가능함은 물론이다.
상기 제2가이드(160)는 가이드롤러(162)를 구비하여 회전운동을 이용하여 동합금 판재(10)의 이송을 안내하게 되며, 상기 가이드롤러(162)는 동합금 판재(10)의 직진도를 높임으로써 품질이 향상될 수 있도록 돕게 된다.
보다 구체적으로 살펴보면, 상기 가이드롤러(162)의 외주면 상단은 압연수단(130)의 중앙 즉, 동합금 판재(10)와 동일한 선상에 위치하도록 구성되어 있어서, 상기 압연수단(130)을 빠져나온 동합금 판재(10)가 급격하게 굴곡되지 않도록 함으로써 균일한 조직의 동합금 판재(10)를 얻을 수 있도록 한다.
이하 상기와 같이 구성되는 압연접합장치(100)를 이용하여 OFC합금(12)과 DLP합금(14)을 겹침접합하는 과정을 첨부된 도 5를 참조하여 설명한단.
먼저, 상기 언코일수단(110)에는 탈지(
Figure 812b
脂)과정을 거쳐 기름 및 이물이 제거된 OFC합금(12)과 DLP합금(14)이 서로 반대 방향으로 권취되어 보관된다.
그리고, 상기 OFC합금(12)과 DLP합금(14)은 언코일수단(110)의 회전에 의해 풀리면서 표면처리수단(120)에 의해 표면이 활성화된다.
이때, 상기 OFC합금(12)과 DLP합금(14)은 서로 접촉하게 될 면이 표면처리되어 보다 용이한 접착이 될 수 있게 된다.
상기 표면처리수단(120)에 의해 표면처리된 OFC합금(12)과 DLP합금(14)은 제1가이드(140)를 통과하면서 이격 거리가 좁아져 압연수단(130) 내부 중앙으로 공급된다.
즉, 상기 상부롤러(142)와 접촉하는 상측의 OFC합금(12)은 상부롤러(142)에 의해 점차적으로 우측 하방향으로 경사지게 안내되고, 상기 하부롤러(144)와 접촉하는 하측의 DLP합금(14)은 하부롤러(144)에 의해 점차적으로 우측 상방향으로 경사지게 안내되어 서로 근접하게 된다.
이후 서로 근접한 OFC합금(12)과 DLP합금(14)은 압연수단(130)을 통과하면서 압연 접합되어 동합금 판재(10)가 된다.
상기 동합금 판재(10)는 제2가이드(160)에 의해 압연수단(130)으로부터 배출되는 방향과 평행하게 이송하게 되며, 직진도가 높아지게 된다.
이후 상기 제2가이드(160)에 의해 이송 방향이 안내된 동합금 판재(P)는 리코일수단(150)에 권취되어 보관됨으로써 동합금 판재(10)의 연속적인 제조는 완료된다.
상기 리코일수단(150)에 권취된 동합금 판재(10)는 다수개를 준비하여 상기 언코일수단(110)에 각각 설치하고, 상기와 같은 과정을 다수회의 사이클로 반복함으로써, 다수의 층으로 이루어진 동합금 판재(10)의 제조가 가능하다.
이러한 실시예로서 첨부된 도 6을 참조하면, 상기 동합금 판재(10)를 다수회 반복하여 압연접합하여 OFC합금(12)과 DLP합금(14)이 교번하면서 8층, 16층, 32층, 64층으로 이루어지도록 구성가능할 것이다.
이하 첨부된 도 7 및 도 8을 참조하여 본 발명에 의한 동합금 판재(10)의 물성을 살펴본다.
도 7은 본 발명에 의한 고강도 고전기전도도 나노결정립 다층 동합금 판재에서 판재성형단계의 실시횟수 변화에 따른 강도 변화를 나타낸 그래프이고, 도 8은 본 발명에 의한 고강도 고전기전도도 나노결정립 다층 동합금 판재에서 판재성형단계의 실시횟수 변화에 따른 인장강도 및 연신율 변화를 나타낸 그래프이다.
먼저 도 7과 같이, 상기 OFC합금(12)과 DLP합금(14)이 각각 1층씩 구비된 동합금 판재(10) 다수 개를 겹쳐 2회, 3회, 4회, 5회, 6회 반복적으로 실시하여 성형된 동합금 판재(10)의 경도 변화를 비교예(압연접합을 실시하지 않은 DLP합금과 OFC합금)와 비교해보면, 반복적으로 압연접합을 실시한 동합금 판재(10)의 경우 120Hv 이상의 경도를 나타내어 50Hv 정도의 경도를 나타낸 비교예보다 2배 이상 높은 것을 확인하였다.
그리고, 도 8과 같이 상기 판재성형단계(S300)를 실시하지 않은 비교예는 180㎫의 인장강도와 60%의 연신율을 나타냈으나, 판재성형단계(S300)가 실시된 바람직한 실시예는 500㎫ 이상의 인장강도와, 8% 이하의 연신율을 나타내었다.
또한, 상기 판재성형단계(S300)의 실시횟수가 증가함에 따라 연신율과 인장강도도 증가하는 것을 확인하였다.
한편, 상기 동합금 판재(10)는 전기전도도와 인장강도 등의 물성을 향상시키기 위해 어닐링단계(S400)가 선택적으로 실시될 수 있다.
첨부된 도 9 를 참조하여 판재성형단계(S300) 실시 여부와 판재성형단계(S300)의 실시 횟수에 따른 전기전도도 변화를 설명한다.
도 9는 본 발명에 의한 고강도 고전기전도도 나노결정립 다층 동합금 판재(10)에서 판재성형단계(S300)의 실시횟수 변화에 따른 OFC합금(12)와 DLP합금(14)의 전기전도도 변화를 나타내 그래프이다.
도면과 같이, 상기 판재성형단계(S300)를 실시하기 전 OFC합금(12)은 100IACS(%)에 가까운 전기전도도를 나타내었고, DLP합금(14)은 80IACS(%) 정도의 전기전도도를 나타내었다.
그러나, 상기 판재성형단계(S300)를 실시하여 제조된 동합금 판재(10)는 85IACS(%) 이상의 전기전도도를 나타냈으며, OFC합금(12)의 전기전도도와 DLP합금(14)의 전기전도도는 서로 근접하는 경향을 나타내었다.
상기와 같은 실험 결과를 종합하여 첨부된 도 10을 참조하여 정리하면, 전도성이 높고 강도가 낮은 OFC합금(12)과, 전기전도도가 낮고 강도가 상대적으로 높은 DLP합금(14)에 대비하여 본 발명에 따른 동합금 판재(10)는 강도와 전기전도도가 보완된 물성을 가진다.
즉, 상기 동합금 판재(10)는 OFC합금(12)보다 인장강도는 높고 전기전도도는 낮게 나타났으며, DLP합금(14)과 대비하면 인장강도는 조금 낮으나 전기전도도가 높게 나타났다.
따라서, 상기 동합금 판재(10)는 판재성형단계(S300)의 실시횟수에 따라 다양한 전기전도도 및 강도를 갖도록 제어할 수 있음을 알 수 있다.
이러한 본 발명의 범위는 상기에서 예시한 실시예에 한정하지 않고, 상기와 같은 기술범위 안에서 당업계의 통상의 기술자에게 있어서는 본 발명을 기초로 하는 다른 많은 변형이 가능할 것이다.
본 발명에 따른 고강도 고전기전도도 나노결정립 다층 동합금 판재 및 이의 제조방법은, 강도와 전기전도도를 동시에 향상시킬 수 있게 되므로, 종래에 강도 향상시에 전기전도도가 낮아지거나, 전기전도도 향상시에 강도가 낮아지는 문제점을 해소하여 다양한 산업 분야에 적용될 수 있다.

Claims (6)

  1. OFC(Oxygen Free Copper)합금과 DLP(Deoxidized Low-Phosphorous copper)합금을 반복적으로 압연접합(Roll-Bonding)하여 85IACS(%)이상의 전기전도도와 500㎫ 이상의 인장강도를 갖는 것을 특징으로 하는 고강도 고전기전도도 나노결정립 다층 동합금 판재.
  2. 제 1 항에 있어서, 상기 다층 동합금 판재는,
    OFC 합금층과 DLP 합금층이 교번하여 겹쳐지는 것을 특징으로 하는 고강도 고전기전도도 나노결정립 다층 동합금 판재.
  3. 제 2 항에 있어서, 상기 다층 동합금 판재에서,
    OFC 합금층과 DLP 합금층을 2층 이상 포함하는 것을 특징으로 하는 고강도 고전기전도도 나노결정립 다층 동합금 판재.
  4. OFC(Oxygen Free Copper)합금과 DLP(Deoxidized Low-Phosphorous copper)합금으로 이루어진 판재를 준비하는 재료준비단계와,
    상기 판재를 표면처리하는 표면처리단계와,
    상기 판재를 반복적으로 압연접합(Roll-Bonding)하여 85IACS(%)이상의 전기전도도와 400㎫ 이상의 인장강도를 갖는 고강도 고전기전도도 나노결정립 다층 동합금 판재를 성형하는 판재성형단계로 이루어지는 것을 특징으로 하는 고강도 고전기전도도 나노결정립 다층 동합금 판재의 제조방법.
  5. 제 4 항에 있어서, 상기 표면처리단계는,
    상기 판재의 외면을 탈지하는 탈지(
    Figure 812b
    脂)과정과,
    상기 판재의 외면을 와이어브러싱(Wire brushing)하여 활성화하는 활성화과정으로 이루어지는 것을 특징으로 하는 고강도 고전기전도도 나노결정립 다층 동합금 판재의 제조방법.
  6. 제 4 항에 있어서, 상기 판재성형단계는,
    다수 회 반복실시되며, 2회 이상 실시시에는 다층 동합금 판재 다수 개가 반복겹침접합압연법으로 소성 가공되는 것을 특징으로 하는 고강도 고전기전도도 나노결정립 다층 동합금 판재의 제조방법.
PCT/KR2011/010073 2011-01-12 2011-12-26 고강도 고전기전도도 나노결정립 다층 동합금 판재 및 이의 제조방법 WO2012096456A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013549357A JP2014514434A (ja) 2011-01-12 2011-12-26 高強度高電気伝導度のナノ結晶粒多層銅合金板材及びこれの製造方法
EP11855697.6A EP2664407A2 (en) 2011-01-12 2011-12-26 Nano-grained multilayer copper alloy sheet having high strength and high electrical conductivity, and method for manufacturing same
US13/979,467 US9296064B2 (en) 2011-01-12 2011-12-26 Nano-grained multilayer copper alloy sheet having high strength and high electrical conductivity, and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110002941A KR101227014B1 (ko) 2011-01-12 2011-01-12 고강도 고전기전도도 나노결정립 다층 동합금 판재 및 이의 제조방법
KR10-2011-0002941 2011-01-12

Publications (2)

Publication Number Publication Date
WO2012096456A2 true WO2012096456A2 (ko) 2012-07-19
WO2012096456A3 WO2012096456A3 (ko) 2012-09-07

Family

ID=46507535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/010073 WO2012096456A2 (ko) 2011-01-12 2011-12-26 고강도 고전기전도도 나노결정립 다층 동합금 판재 및 이의 제조방법

Country Status (5)

Country Link
US (1) US9296064B2 (ko)
EP (1) EP2664407A2 (ko)
JP (1) JP2014514434A (ko)
KR (1) KR101227014B1 (ko)
WO (1) WO2012096456A2 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9397343B1 (en) 2015-10-15 2016-07-19 Chang Chun Petrochemical Co., Ltd. Copper foil exhibiting anti-swelling properties
CN108441666B (zh) * 2018-03-09 2020-07-31 盐城工学院 一种Ti2AlC颗粒增强铜基复合材料的制备方法
CN109174965B (zh) * 2018-08-17 2019-11-01 中南大学 一种制备极薄高性能多层铜/铜铝金属间化合物/铝复合箔材的方法
CN112391563B (zh) * 2019-08-19 2021-11-09 南京理工大学 一种层状纳米异构铝镁合金块体材料制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001184788A (ja) 1999-12-22 2001-07-06 Matsushita Electric Ind Co Ltd データ出力装置
KR20060013211A (ko) 2004-08-06 2006-02-09 한국기계연구원 반복겹침접합압연공정에 의한 고강도 구리판재 제조방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284869A (ja) * 1990-03-30 1991-12-16 Sumitomo Special Metals Co Ltd リードフレーム用クラッド材料
JPH0623571A (ja) * 1992-07-08 1994-02-01 Hitachi Cable Ltd クラッド条材およびその製造方法
KR20030096234A (ko) * 2000-11-13 2003-12-24 도요 고한 가부시키가이샤 중공 적층체 및 그것을 사용한 히트싱크
JP2003001302A (ja) * 2001-06-19 2003-01-07 Hitachi Cable Ltd アルミナ分散強化銅の製造方法
KR100453939B1 (ko) * 2002-03-13 2004-10-26 주식회사 한국클래드텍 클래드판의 연속 제조 장치
JP2005029829A (ja) * 2003-07-10 2005-02-03 Sumitomo Metal Ind Ltd 金属薄帯
JP2005225063A (ja) * 2004-02-12 2005-08-25 Furukawa Electric Co Ltd:The 金属多層材料とその製造方法
JP4637601B2 (ja) * 2005-02-09 2011-02-23 Jx日鉱日石金属株式会社 高強度高導電性銅合金の製造方法及び高強度高導電性銅合金
KR100807847B1 (ko) * 2006-11-23 2008-02-27 한국조폐공사 주화용 적층 클래드판 및 그 제조방법
KR100894076B1 (ko) * 2007-04-10 2009-04-21 주식회사 풍산 고전도성, 고강도 및 고가공성을 갖는 전기 및 전자부품용동합금 및 그 제조방법
KR20090025941A (ko) * 2007-09-07 2009-03-11 한국기계연구원 3층반복겹침접합압연공정을 이용한 인탈산동판재 제조방법
JP2010013691A (ja) * 2008-07-03 2010-01-21 Kanazawa Univ 高強度及び高導電性銅合金板材

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001184788A (ja) 1999-12-22 2001-07-06 Matsushita Electric Ind Co Ltd データ出力装置
KR20060013211A (ko) 2004-08-06 2006-02-09 한국기계연구원 반복겹침접합압연공정에 의한 고강도 구리판재 제조방법

Also Published As

Publication number Publication date
KR101227014B1 (ko) 2013-01-28
WO2012096456A3 (ko) 2012-09-07
US20150037609A1 (en) 2015-02-05
KR20120081688A (ko) 2012-07-20
JP2014514434A (ja) 2014-06-19
US9296064B2 (en) 2016-03-29
EP2664407A2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
WO2012096456A2 (ko) 고강도 고전기전도도 나노결정립 다층 동합금 판재 및 이의 제조방법
CN111702008B (zh) 一种多辊轧机轧制三层复合极薄带的方法
WO2016006879A1 (ko) 제본 완성품의 적재장치
KR101647573B1 (ko) 전선 이재 장치
US9673349B2 (en) Stringing device and stringing method as well as photovoltaic module manufacturing device and manufacturing method
DE202009018761U1 (de) Werkzeug und Anlage zur Herstellung eines Kabelbaums
CN103030026A (zh) 线条体卷绕卷筒、线条体卷取方法以及线条体卷取装置
JP3604337B2 (ja) 絶縁電線の製造方法
JP2009504409A5 (ko)
JP2013040366A (ja) 電着金属の剥ぎ取り装置および電着金属の剥ぎ取り方法
CN101236804A (zh) 一种连续轧制铜包铝排型材的生产方法
KR102608771B1 (ko) 라미네이팅 및 제트 폴딩 스택 시스템 및 라미네이팅 및 제트 폴딩 스택 방법
CN216335887U (zh) 一种电线电缆用辅助铺设装置
CN1251843C (zh) 金属环放入取出装置
CN2884812Y (zh) 电子零件自动载台供料机
KR101270983B1 (ko) 연속 압연접합 장치
EP2822044A1 (en) Method for eliminating and device for eliminating conductor member curl
WO2015026016A1 (ko) 티그 용접용 용가재 성형 송급 장치
CN1214873C (zh) 金属软质管的制造方法及制造装置
CN110224190B (zh) 电池预充装置及电池预充系统
JP6835015B2 (ja) プレス装置
KR20060013211A (ko) 반복겹침접합압연공정에 의한 고강도 구리판재 제조방법
KR20220169700A (ko) 이차전지 극판과 분리막 동시 적층장치
CN108735382B (zh) 一种漆包线移动夹持装置
JP2002272068A (ja) レーベル転位導体製造装置及び製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855697

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013549357

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011855697

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011855697

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13979467

Country of ref document: US