WO2012096189A1 - 集電体 - Google Patents

集電体 Download PDF

Info

Publication number
WO2012096189A1
WO2012096189A1 PCT/JP2012/000168 JP2012000168W WO2012096189A1 WO 2012096189 A1 WO2012096189 A1 WO 2012096189A1 JP 2012000168 W JP2012000168 W JP 2012000168W WO 2012096189 A1 WO2012096189 A1 WO 2012096189A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
layer
conductive particles
derivatives
electrode
Prior art date
Application number
PCT/JP2012/000168
Other languages
English (en)
French (fr)
Inventor
仁 横内
大森 将弘
彬史 武田
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN2012800018610A priority Critical patent/CN102971897A/zh
Priority to US13/979,741 priority patent/US20130295458A1/en
Priority to EP12734419.0A priority patent/EP2665117A4/en
Priority to JP2012552693A priority patent/JPWO2012096189A1/ja
Priority to KR1020127034249A priority patent/KR20130043122A/ko
Publication of WO2012096189A1 publication Critical patent/WO2012096189A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/16Layered products comprising a layer of metal next to a particulate layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles

Definitions

  • the present invention relates to a current collector.
  • this invention is a fuel cell (refer patent document 6), electrochemical elements, such as a secondary battery and an electrical double layer capacitor, a solar cell (refer patent document 3), a touch panel (refer patent document 4 or 5),
  • the present invention relates to a current collector used in a sensor (see Patent Document 7).
  • an electrode of an electrochemical element includes a current collector and an electrode active material layer.
  • the electrode is usually produced by applying a coating liquid containing an electrode active material, a binder, and a solvent to a current collector and drying it.
  • Patent Document 1 discloses a non-aqueous electrolyte secondary battery having a conductive material layer between a positive electrode mixture and a metal current collector.
  • the conductive material layer includes a conductive material and carboxymethyl cellulose.
  • a foil-shaped current collector having two surfaces, an anchor layer formed on at least one of the two surfaces of the current collector, and formed on the anchor layer
  • An electrode layer for an electrical storage element wherein the anchor layer contains conductive carbon and a binder, and the electrode layer contains an active material, wherein the maximum thickness of the anchor layer is R max ,
  • the minimum thickness of the anchor layer is R min
  • an object of the present invention is to provide a current collector having a low penetration resistance value that can significantly reduce the internal resistance and impedance of an electrochemical element.
  • the penetration resistance value of the current collector fluctuates significantly depending on the arrangement state of the conductive particles and the composition ratio of the conductive particles and the binder, and there is a high resistance condition range that is inconvenient for reducing internal resistance and impedance.
  • the coverage of the conductive particles is adjusted to a specific range, and the thickness of the layer a is adjusted. It was found that the internal resistance and impedance are remarkably lowered by setting the specific range.
  • the present invention has been completed by further studies based on these findings.
  • the present invention includes the following aspects. ⁇ 1> A layer a containing conductive particles and a binder is provided on one side or both sides of a metal foil, the coverage of the conductive particles is 50 to 100%, and the thickness of the layer a is 5 ⁇ m or less. A current collector. ⁇ 2> The current collector according to ⁇ 1>, wherein the binder includes one or more selected from the group consisting of polysaccharides and derivatives thereof. ⁇ 3> The current collector according to ⁇ 1>, wherein the binder contains one or more selected from the group consisting of chitosan, chitin, cellulose, and derivatives thereof.
  • ⁇ 4> The current collector according to any one of ⁇ 1> to ⁇ 3>, wherein the conductive particles are carbonaceous particles.
  • the layer a further contains one or more selected from the group consisting of organic acids and derivatives thereof.
  • the organic acid and its derivative are at least one selected from the group consisting of trimellitic anhydride, pyromellitic anhydride, and 1,2,3,4-butanetetracarboxylic acid .
  • ⁇ 7> The current collector according to any one of ⁇ 1> to ⁇ 6>, wherein the amount of conductive particles contained in the layer a is 30 to 90% by mass.
  • ⁇ 8> A step of applying a coating liquid containing conductive particles, a binder, and a dispersion medium and not containing an electrode active material to one or both sides of a metal foil, and then performing a heat treatment to remove the dispersion medium
  • the coating solution further includes one or more selected from the group consisting of organic acids and derivatives thereof.
  • the amount of the dispersion medium remaining in the layer a at the end of the heat treatment step is 0.1% by mass or less.
  • ⁇ 11> The production method according to any one of ⁇ 8> to ⁇ 10>, wherein the dispersion medium contains alcohols.
  • ⁇ 12> The production method according to any one of ⁇ 8> to ⁇ 11>, wherein hot air drying is used in the heat treatment step.
  • ⁇ 13> An electrode in which a layer b containing an electrode active material is provided on a surface having the layer a of the current collector according to any one of ⁇ 1> to ⁇ 7>.
  • ⁇ 14> An electrochemical element (or power storage element) having the electrode according to ⁇ 13>.
  • a power supply system having the electrochemical element (or power storage element) according to ⁇ 14>.
  • the current collector according to the present invention has a low penetration resistance value as compared with the conventional current collector.
  • an electrode having the current collector is used, an electrochemical element having a low internal resistance and impedance; a solar cell; a touch panel and the like can be obtained.
  • the current collector according to the present invention comprises a metal foil and a layer a provided on one or both surfaces of the metal foil.
  • Metal foil As the metal foil used in the present invention, not only a foil having no holes, but also a punched metal foil, a foil having holes such as a net, and a porous foil can be used. Further, the metal foil may have a smooth surface, or may be a foil roughened by performing an electrical or chemical etching process, that is, an etching foil.
  • the thickness of the metal foil is not particularly limited, but is preferably 5 ⁇ m to 200 ⁇ m. By setting it to such a thickness, the ratio of the current collector in the predetermined volume of the electrochemical element or the like can be suppressed to a certain level, and sufficient strength is given to the current collector and the electrode to improve the handling property. can do.
  • the material of the metal foil can be appropriately selected according to the use of the current collector.
  • a metal having high electrical conductivity and high electrochemical corrosion resistance can be used.
  • an aluminum or aluminum alloy foil is preferably used.
  • the aluminum foil include pure aluminum-based A1085 material and A3003 material.
  • the foil of copper or a copper alloy is used preferably.
  • the copper foil include a rolled copper foil and an electrolytic copper foil.
  • the layer a contains conductive particles and a binder.
  • the conductive particles used in the layer a are not particularly limited as long as they are electrically conductive particles, but are preferably those containing a carbon element as a main component, that is, carbonaceous particles.
  • carbonaceous particles carbon black, graphite, vapor grown carbon fiber, carbon nanotube, carbon nanofiber and the like are suitable. Examples of carbon black include acetylene black and furnace black. Commercial products such as ketjen black can also be used. These carbonaceous particles can be used alone or in combination of two or more.
  • metal powders such as gold, silver, copper, nickel, and aluminum, a mixture of these metal powders and carbonaceous particles, or the surface of carbonaceous particles is coated with metal powder. Can be mentioned.
  • the conductive particles may be spherical, scale-like, lump-like, or irregularly-shaped particles, or may be anisotropically-shaped particles such as needles, rods, or fibers.
  • the conductive particles having a spherical shape, a scale shape, a lump shape, or an irregular shape preferably have an average primary particle size of 10 nm to 5 ⁇ m, and more preferably 10 nm to 100 nm.
  • the average primary particle size of these conductive particles is calculated by measuring the particle size of 500 to 1000 particles using an electron microscope and averaging them on a number basis.
  • the maximum particle diameter (longest diameter) is used as the particle diameter, and similarly, the average particle diameter is obtained by averaging these on a number basis.
  • Anisotropic conductive particles have a large surface area per mass and a large contact area with the metal foil or electrode active material, so even when added in a small amount, between the metal foil and the electrode active material or between the electrode active materials. The electrical conductivity of can be increased.
  • Particularly effective anisotropic conductive particles include vapor grown carbon fiber, carbon nanotube, or carbon nanofiber.
  • the vapor grown carbon fiber, carbon nanotube or carbon nanofiber has an average fiber diameter of usually 0.001 to 0.5 ⁇ m, preferably 0.003 to 0.2 ⁇ m, and an average fiber length from the viewpoint of improving conductivity. Usually, it is 1 to 100 ⁇ m, preferably 1 to 30 ⁇ m.
  • the average fiber diameter and the average fiber length are calculated by measuring the fiber diameter and fiber length of 500 to 1000 fibers using an electron microscope and averaging them on the basis of several numbers.
  • the conductive particles preferably have a powder electric resistance of 5.0 ⁇ 10 ⁇ 1 ⁇ ⁇ cm or less measured in accordance with JIS K1469.
  • the conductive particles are preferably contained in the layer a in an amount of 30 to 90% by mass, more preferably 40 to 85% by mass, and still more preferably 60 to 80% by mass. As a result, it is possible to obtain a current collector having a layer a having a low penetration resistance value and excellent adhesion to a metal foil or an electrode active material layer.
  • the binder used for the layer a is not particularly limited as long as it can bind the metal foil and the conductive particles.
  • the polysaccharide is excellent in adhesion to the metal foil and ion permeability.
  • a polysaccharide is a polymer compound in which a number of monosaccharides or derivatives thereof are polymerized by glycosidic bonds.
  • a polymer obtained by polymerizing 10 or more monosaccharides or derivatives thereof is generally called a polysaccharide, but even a polymer obtained by polymerizing 10 or less monosaccharides can be used.
  • the monosaccharide constituting the polysaccharide may be a normal monosaccharide such as glucose having only a hydroxyl group as a basic skeleton, a uronic acid having a carboxyl group, or an amino sugar having an amino group or an acetylamino group.
  • the polysaccharide may be either a homopolysaccharide or a heteropolysaccharide.
  • polysaccharides include agarose, amylose, amylopectin, alginic acid, inulin, carrageenan, chitin, glycogen, glucomannan, keratan sulfate, colominic acid, chondroitin sulfate, cellulose, dextran, starch, hyaluronic acid, pectin, pectic acid, Examples include heparan sulfate, levan, lentinan, chitosan, pullulan and curdlan. Of these, chitin, chitosan, and cellulose are preferable because of their high ion permeability.
  • polysaccharide derivatives include hydroxyalkylated polysaccharides, carboxyalkylated polysaccharides, sulfated polysaccharides, and the like.
  • hydroxyalkylated polysaccharides are preferable because they can be highly dispersible in a solvent.
  • the hydroxyalkylated polysaccharide can be produced by a known method.
  • Examples of hydroxyalkyl chitosan include hydroxyethyl chitosan, hydroxypropyl chitosan, glycerylated chitosan and the like.
  • examples of hydroxyalkyl cellulose include hydroxyethyl cellulose and hydroxypropyl cellulose.
  • carboxyalkyl chitosan include carboxymethyl chitosan and carboxyethyl chitosan.
  • Examples of carboxyalkyl cellulose include carboxymethyl cellulose and carboxyethyl cellulose.
  • binders other than polysaccharides include the following. Fluoropolymer: polyvinylidene fluoride, polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, ethylene-tetrafluoroethylene copolymer, etc .; Poly (olefin oxide): polyethylene oxide, polypropylene oxide, polyethylene oxide-propylene oxide copolymer, etc .; Elastomer: styrene butadiene block copolymer, acrylic acid-modified SBR resin, gum arabic, etc .; Hydroxyl group-containing resin: polyvinyl acetal, ethylene-vinyl alcohol copolymer, optionally modified polyvinyl alcohol, etc .;
  • the binder used for the layer a has a weight average molecular weight of preferably 1.0 ⁇ 10 4 to 2.0 ⁇ 10 5 , more preferably 5.0 ⁇ 10 4 to 2.0 ⁇ 10 5 .
  • the weight average molecular weight is within this range, the performance of dispersing the conductive particles is high, so that the coating property of the coating liquid is good and the strength of the resulting layer a is high.
  • a weight average molecular weight can be calculated
  • the amount of the binder used is preferably 20 to 300 parts by mass, more preferably 40 to 200 parts by mass, and still more preferably 60 to 100 parts by mass with respect to 100 parts by mass of the conductive particles.
  • the layer a preferably further contains one or more selected from the group consisting of organic acids such as carboxylic acid and sulfonic acid and derivatives thereof.
  • the organic acid or a derivative thereof acts as a cross-linking agent for the polysaccharide or the derivative thereof, and the conductive particles can be disposed more firmly on the metal foil.
  • the organic acid or a derivative thereof one having a valence of 2 or more, more preferably a valence of 3 or more is preferably used from the viewpoint of a high crosslinking effect.
  • carboxylic acid or its derivative is used preferably.
  • carboxylic acids and derivatives thereof include aromatic carboxylic acids, chain aliphatic carboxylic acids, alicyclic carboxylic acids, and derivatives thereof. From the viewpoint of thermal stability, an aromatic carboxylic acid or a derivative thereof is preferable. From the viewpoint of solubility in water, a chain aliphatic carboxylic acid or a derivative thereof is preferable.
  • organic acid derivatives include esters, acid chlorides, and acid anhydrides. An acid anhydride is preferable because the crosslinking reaction easily proceeds and there are few by-products.
  • aromatic carboxylic acids and derivatives thereof divalent aromatic carboxylic acids such as phthalic acid, isophthalic acid and terephthalic acid and derivatives thereof; trimellitic acid, pyromellitic acid, biphenyltetracarboxylic acid, benzophenonetetracarboxylic acid, etc.
  • trimellitic anhydride or pyromellitic anhydride is preferred.
  • alicyclic carboxylic acids and derivatives thereof include divalent alicyclic carboxylic acids such as tetrahydrophthalic acid, hexahydrophthalic acid, methyl nadic acid, and hydrogenated methyl nadic acid; and cyclohexane 1,2,4- Examples thereof include trivalent or higher alicyclic carboxylic acids such as tricarboxylic acid and cyclohexane 1,2,4,5-tetracarboxylic acid, and derivatives thereof.
  • chain aliphatic carboxylic acids and derivatives thereof include divalent chain aliphatic carboxylic acids and derivatives thereof such as succinic acid, maleic acid, tartaric acid, malic acid, glutaric acid, itaconic acid, and adipic acid; citric acid, 1 , 2,3,4-butanetetracarboxylic acid and other trivalent or higher chain aliphatic carboxylic acids and derivatives thereof.
  • chain aliphatic carboxylic acids and derivatives thereof 1,2,3,4-butanetetracarboxylic acid is preferred.
  • These organic acids and derivatives of organic acids can be used singly or in combination of two or more.
  • the amount of these organic acids and derivatives thereof used is preferably 30 to 300 parts by mass, more preferably 35 to 120 parts by mass, and still more preferably 40 to 85 parts by mass with respect to 100 parts by mass of the polysaccharide and derivatives thereof. .
  • the layer a may be provided on a part of the surface of the metal foil, or may be provided uniformly on the entire surface.
  • a form provided on a part of the surface of the metal foil a form provided in the central part excluding the edge part of the metal foil, a form provided in a pattern such as a dot shape, a stripe shape, a net shape, a lattice (grid) shape, a nested shape, a spiral shape, etc. Can be mentioned.
  • Ratio A R of the area of the layer a to the area of the metal foil is preferably 50 to 100%, more preferably from 60 to 100%, particularly preferably 70 to 100%. Determination of the ratio A R of the area of the layer a to the area of the metal foil are as follows.
  • the pattern of the layer a on the current collector is observed from the normal direction through a microscope or the like at a low magnification, and the observation images are photographed at three or more visual fields. Binarizing the photographic by an image analysis process to obtain the area S b of the portion not reflected the area S a and the layer a portion that is reflected the layer a.
  • a layer a in a simple and big pattern may be determined by calculating the area ratio A R of the measured layer a length using calipers and the like.
  • the area of the metal foil is the area of both surfaces when the layer a is provided on both surfaces of the metal foil, and the area of the one surface when the layer a is provided on one surface of the metal foil.
  • the amount of layer a provided on the metal foil is preferably 0.2 to 5 g / m 2 , more preferably 0.5 to 3 g / m 2 , most preferably 1 to 2 g / m 2 .
  • the penetration resistance value of the current collector is significantly reduced.
  • the thickness of the layer a is 5 ⁇ m or less, more preferably 4 ⁇ m or less, and even more preferably 3 ⁇ m or less.
  • the lower limit of the thickness of the layer a is not particularly limited as long as the function of the layer a is exhibited, but is preferably 0.1 ⁇ m.
  • the current collector of the present invention has a coverage of conductive particles of 50 to 100%, more preferably 60 to 100%, and still more preferably 70 to 100%. By making the said coverage into the said range, the penetration resistance value of an electrical power collector becomes small, and the internal resistance and impedance of the electrochemical element obtained using this electrical power collector can be made small.
  • the coverage of the conductive particles is calculated as follows. First, a portion where the current collector layer a is provided is observed from a normal direction through a microscope or the like at a high magnification, and an observation image is photographed with three or more visual fields. The magnification is adjusted so that the number of conductive particles is preferably 100 or more, more preferably 200 or more, and still more preferably 300 or more in one field of view.
  • the amount of light is adjusted so that the boundary between particles is clear and halation does not occur. Care must be taken particularly when a material that easily reflects light, such as aluminum foil, is used.
  • the photograph is binarized by image analysis processing, and an area S 1 where the conductive particles are reflected and an area S 0 where the conductive particles are not reflected are obtained.
  • the gray level of the photographic image is digitized to 0 to 255, for example, the threshold is set to 110, 0 to 109 are determined as “black”, and 110 to 255 are determined as “white”.
  • the threshold is set to 110
  • 0 to 109 are determined as “black”
  • 110 to 255 are determined as “white”.
  • the area of the white portion is the area of the conductive particles.
  • the coverage can be controlled by changing the amount of the dispersion medium used when forming the layer a, the preparation method of the coating liquid, the coating method of the coating liquid, and the like.
  • the penetration resistance value of the current collector according to the present invention is preferably 150 m ⁇ or less, more preferably 100 m ⁇ or less at 25 ° C.
  • the penetration resistance value of the current collector is measured as follows. Two current collectors are cut into strips of a predetermined size, and the layers a are combined and fixed so that the contact surface has a predetermined area and shape. Each end where the current collectors were not in contact with each other was coupled to an AC milliohm meter, the AC resistance of the current collector was measured, and the measured value was taken as the penetration resistance value.
  • a coating liquid containing conductive particles, a binder, and a dispersion medium and not containing an electrode active material is applied to one or both sides of a metal foil, and then the dispersion medium is applied. Including a step of performing a heat treatment for removal.
  • the coating liquid preferably further contains one or more selected from the group consisting of organic acids and derivatives thereof.
  • the dispersion medium used in the coating liquid is not particularly limited as long as it can disperse conductive particles, a binder, and an organic acid or a derivative thereof contained as necessary.
  • Water or an organic solvent is preferably used as the dispersion medium.
  • the organic solvent include aprotic polar solvents and protic polar solvents.
  • the aprotic polar solvent include ethers, carbonates, amides, esters and the like. Of these, amides and esters are preferred.
  • the aprotic polar solvent is preferably one that evaporates at a temperature equal to or lower than the heat treatment temperature after coating. Specifically, the boiling point at normal pressure is preferably 50 to 300 ° C., more preferably 100 to 220 ° C.
  • the concentration of the coating solution is unlikely to change during the coating operation, so that a layer a having a predetermined thickness or coating amount can be easily obtained. Further, the dispersion medium can be sufficiently removed by heat treatment.
  • the aprotic polar solvent having the boiling point as described above include N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-pyrrolidone, and ⁇ -butyrolactone. Of these, N-methyl-2-pyrrolidone is preferred.
  • examples of the protic polar solvent include alcohols and polyhydric alcohols.
  • the coating solution contains a protic polar solvent, the wettability of the coating solution with respect to the current collector can be improved, and the coverage can be made uniform within the above range.
  • the protic polar solvent evaporates at a temperature lower than the heat treatment temperature after coating.
  • the protic polar solvent preferably has a boiling point of 100 ° C. or less at normal pressure.
  • Preferred protic polar solvents include alcohols. More preferred protic polar solvents include ethanol, isopropyl alcohol, and n-propyl alcohol.
  • the amount of the dispersion medium in the coating liquid is preferably 20 to 99% by mass, more preferably 65 to 98% by mass, and still more preferably 80 to 95% by mass.
  • the amount of the protic polar solvent is not particularly limited, but is preferably 1 to 20% by mass based on the total mass of the dispersion medium.
  • the viscosity of the coating solution is preferably 100 to 50000 mPa ⁇ s, more preferably 100 to 10000 mPa ⁇ s, and still more preferably 100 to 5000 mPa ⁇ s at room temperature. Viscosity is measured using a B-type viscometer by selecting a rotor and rotation speed suitable for the viscosity range to be measured. For example, when measuring the viscosity of a coating solution of several hundred mPa ⁇ s, the rotor No. 2, 60 rpm. In addition, when a highly volatile dispersion medium or a low-viscosity dispersion medium is used, there is a case where the agglomeration of conductive particles occurs in the heat treatment described later.
  • additives include propylene glycol monomethyl ether, ethyl lactate, butyl lactate, dipropylene glycol, dipropylene glycol monomethyl ether, propylene glycol, propylene glycol monopropyl ether, ethylene glycol, diethylene glycol monomethyl ether, and the like. Of these, propylene glycol or ethylene glycol is preferable, and propylene glycol is particularly preferable.
  • the coating liquid used in the present invention includes a dispersing agent, a thickener, an anti-settling agent, an anti-skinning agent, an antifoaming agent, a static agent, in addition to the above-described conductive particles, binder, and organic acid and derivatives thereof.
  • Additives such as an electropaintability improver, a sagging inhibitor, a leveling agent, a repellency inhibitor, and a crosslinking catalyst may be contained. Any known additive can be used, and the additive amount is 10 parts by mass or less with respect to 100 parts by mass of the total amount of the conductive particles, the binder, the organic acid and the derivative thereof. It is preferable.
  • the coating liquid can be produced by mixing conductive particles, a binder, a dispersion medium, and an organic acid or an additive added as necessary using a mixer.
  • the mixer include a ball mill, a sand mill, a pigment disperser, a pulverizer, an ultrasonic disperser, a homogenizer, a planetary mixer, and a Hobart mixer.
  • the mixing order of the components contained in the coating liquid is not particularly limited, but from the viewpoint of easily obtaining a uniform coating liquid, a liquid prepared by mixing a binder such as a polysaccharide and a dispersion medium is first prepared. However, it is preferable to add and mix conductive particles.
  • a disperser using a mechanical share such as shear force, impact force, shear stress, etc.
  • a disintegrator, a pulverizer, or a disperser using ultrasonic irradiation, etc. can be adopted.
  • the conductive particles may be processed by a dry method, or the conductive particles may be dispersed in an appropriate dispersion medium and processed by a wet method. Moreover, it can also process in the state of a coating liquid.
  • the method for applying the coating liquid to the metal foil is not particularly limited.
  • a casting method, a bar coater method, a dip method, a printing method, and the like can be given.
  • a bar coat, gravure coat, gravure reverse coat, roll coat, Meyer bar coat, blade coat, knife coat, air knife coat, comma coat, slot diamond coat, A slide die coat and a dip coat are preferred.
  • Measures to adjust the coverage include pattern design of gravure coater coating rolls and the use of stencil type and wire mesh type masks.
  • the gravure coater is preferable because it is excellent in coating uniformity and productivity, and the transfer amount (application amount) and application position of the coating liquid can be easily changed by designing the concave portion (cell) of the coating roll.
  • the design of the cell of the coating roll is not particularly limited, and the shape, arrangement, depth and volume can be adjusted so as to achieve the desired coverage and application amount.
  • the shape of the cell there are a pyramid type, a lattice type, a diagonal type, a trapezoidal type, a turtle shell type, a rotoflow type, etc., and one or more of these are combined and arranged on the coating roll. It can also be arranged regularly or irregularly.
  • the applied range or coverage can be adjusted by designing the width and depth of the grid grooves.
  • the layer a can be provided by a single coating, or can be provided by a plurality of coatings. When coating a plurality of times, it is possible to change the coating pattern by changing the coating roll.
  • the coating liquid can be applied to one side or both sides of the metal foil. Application to both sides of the metal foil can be performed sequentially on each side, or can be performed simultaneously on both sides.
  • the heat treatment is performed to remove the dispersion medium.
  • the method of heat treatment is not particularly limited, but a method using hot air is more preferable.
  • the heat treatment temperature is preferably 100 to 300 ° C, more preferably 120 to 250 ° C.
  • the heating time is preferably 10 seconds to 10 minutes.
  • the amount of the dispersion medium remaining in the layer a is preferably 0.1% by mass or less.
  • a method for measuring the remaining amount of the dispersion medium is not particularly limited, but quantitative detection is possible by using a column suitable for a specific dispersion medium by gas chromatography. For example, in the case of N-methyl-2-pyrrolidone, a current collector sample with a known mass is charged into a headspace sampler (Turbomatrix ATD manufactured by PerkinElmer), and heated at 250 ° C. for 30 minutes to vaporize the remaining dispersion medium.
  • a predetermined amount of vaporized gas is sampled from the headspace sampler, introduced into a column (Varian VF-WAXms) set in gas chromatography (Perkin Elmer Clarus500GC / MS), and heated to 240 ° C. Quantitative analysis.
  • the electrode of the present invention is formed by providing a layer b containing an electrode active material on the surface of the current collector having the layer a.
  • a layer b containing an electrode active material there are no particular limitations on the material used for the electrode active material layer b and the method for forming the electrode active material layer b, and known materials and methods used in the manufacture of lithium ion secondary batteries, electric double layer capacitors, hybrid capacitors, and the like. Can be adopted.
  • the current collector may be used for electrodes of electrochemical elements other than those described above, and may be used for electrodes of solar cells, touch panels, sensors, and the like.
  • Electrochemical element (or electricity storage element) of the present invention has the above-described electrode.
  • the electrochemical element usually further includes a separator and an electrolyte.
  • the electrode in the electrochemical device both the positive electrode and the negative electrode may be the electrode according to the present invention, either one may be the electrode according to the present invention, and the other may be an electrode other than the present invention.
  • the separator is not particularly limited as long as it is used in a secondary battery such as a lithium ion battery, an electric double layer capacitor, a hybrid capacitor, or the like, and may be omitted when a solid electrolyte is used as an electrolyte.
  • the electrolyte is not particularly limited as long as it is used in a secondary battery such as a lithium ion battery, an electric double layer capacitor, a hybrid capacitor, etc., and is not limited, and may be an electrolytic solution, a gel electrolyte, a polymer electrolyte, an inorganic solid electrolyte, or a molten salt. Any of electrolytes may be used.
  • Electrochemical elements can be applied to power supply systems.
  • this power supply system includes automobiles; transport equipment such as railways, ships and airplanes; portable equipment such as mobile phones, personal digital assistants and portable electronic computers; office equipment; solar power generation systems, wind power generation systems, fuel cell systems, etc. It can be applied to the power generation system.
  • the present invention will be described more specifically with reference to examples and comparative examples.
  • the scope of the present invention is not limited by this embodiment.
  • the current collector, electrode, electrochemical element, power supply system, touch panel, and solar cell according to the present invention can be implemented with appropriate modifications within a range that does not change the gist of the present invention.
  • the characteristics of the current collector were measured by the following method.
  • (Penetration resistance value) Two current collectors were cut out with a width of 20 mm and a length of 100 mm. The two cut out pieces were brought into contact so that the coated surfaces face each other. The contact surface was adjusted to 20 mm ⁇ 20 mm and placed on a vinyl chloride plate. A load of 1 kg / cm 2 was applied to the portion where the two current collectors were in contact to fix the contact portion. Each end portion where the current collectors were not in contact with each other was coupled to an AC milliohm meter, and the penetration resistance value (AC resistance) of the current collector was measured.
  • AC resistance penetration resistance
  • the current collector was cut out at about 5 mm square.
  • a photograph (100 or more particles) was taken at a magnification of 2000 times through a microscope (manufactured by Keyence Corporation, product name VHX-900). The amount of light was adjusted so that the boundaries of the particles became clear and no halation occurred.
  • the photograph was binarized with image analysis software (manufactured by Keyence Corporation, product name: particle analysis application VH-H1G1), and the area of the conductive particles was divided by the area of the entire image to obtain the coverage. .
  • the gray level of the photographic image was digitized to 0 to 255, 110 was set as the threshold value, 0 to 109 were determined as “black”, and 110 to 255 were determined as “white”. In this way, the area of the “white” portion was obtained. In the present example, the area of the “white” portion is the area of the conductive particles.
  • the thickness of the layer a was calculated
  • Example 1 Manufacture of coating liquid and current collector (Examples 1 to 6)
  • the raw materials were put into a dissolver type stirrer according to the formulation shown in Table 1, and mixed at a rotation speed of 300 rpm for 10 minutes. Subsequently, it processed at 20000 rpm for 30 seconds using the homogenizer (the product name PRO200 by Ieda Trading Co., Ltd.), and obtained the coating liquid by which the electroconductive particle etc. were disperse
  • Example 5 A coating solution was obtained in the same manner as in Example 1 except that the raw material formulation was changed to that shown in Table 2, and current collectors a to e were obtained using the coating solution. Table 2 shows the characteristics of the obtained current collector.
  • Example 6 The raw material formulation was changed to the one shown in Table 2, and a coating solution was obtained in the same manner as in Example 1 except that the homogenizer treatment was not performed. A current collector f was obtained using the coating solution. Table 2 shows the characteristics of the obtained current collector.
  • the current collector according to the present invention has a low penetration resistance value and is suitable as a current collector for an electrochemical element.
  • This slurry was applied to both sides of the electrolytic copper foil having a thickness of 10 ⁇ m (excluding the tab attachment portion), dried and pressed to form a negative electrode active material layer having a thickness of 55 ⁇ m on one side. This was used as a negative electrode.
  • Separators (manufactured by POLYPORE International, Inc., trade name Celgard 2500) were incorporated between the positive electrode and the negative electrode, and the required number of sheets was alternately stacked for a design capacity of 1 Ah.
  • An aluminum tab electrode was attached to the non-coated portion of the positive electrode, and a nickel tab electrode was attached to the non-coated portion of the negative electrode with an ultrasonic welder. These were put into a bag-like aluminum laminate packaging material, and water was removed with a vacuum dryer at 60 ° C. Thereafter, a LiPF 6 solution (manufactured by Kishida Chemical Co., Ltd.) was injected as an organic electrolyte and impregnated in a vacuum atmosphere for 24 hours. A lithium ion secondary battery was manufactured by sealing the opening of the aluminum laminate packaging material with a vacuum sealer.
  • the internal resistance of the obtained lithium ion secondary battery was measured at a measurement frequency of 1 kHz by an AC impedance method using an impedance meter.
  • the cycle characteristics of the obtained lithium ion secondary battery were evaluated by the following method. Using a charge / discharge device (manufactured by Toyo System Co., Ltd.), the current rate was sequentially changed to 0.2C, 2C, and 20C, and the capacity after 200 cycles in each was measured. The capacity retention rate at 2C and 20C was calculated based on the capacity at 0.2C. Note that the cut voltage was 2.7 to 4.2 V and the SOC was 100%. The results are shown in Table 3.
  • the lithium ion secondary battery manufactured using the current collector of the present invention has low internal resistance and excellent cycle characteristics.
  • This paste was applied to the current collectors obtained in Examples 1 to 6 and Comparative Examples 1 to 6, dried, and pressed to form an electrode layer having a thickness of 80 ⁇ m on one side.
  • Two electrodes for an electric double layer capacitor were punched out with a diameter of 20 mm ⁇ .
  • Two electrodes were stacked with a separator (trade name TF40, manufactured by Nippon Kogyo Paper Industries Co., Ltd.) in between, and placed in an evaluation capacitor container.
  • An organic electrolyte (trade name LIPASTE-P / EAFIN (1 mol / liter) manufactured by Toyama Pharmaceutical Co., Ltd.) was poured into the container, and the electrodes and the like were immersed therein. Finally, the container was covered to produce an electric double layer capacitor for evaluation.
  • the impedance of the obtained electric double layer capacitor was measured under the condition of 1 kHz using an impedance measuring device (trade name PAN110-5AM, manufactured by Kikusui Electronics Co., Ltd.).
  • the electric capacity of the obtained electric double layer capacitor was measured as follows. Using a charge / discharge test apparatus (trade name HJ-101SM6, manufactured by Hokuto Denko Co., Ltd.), charge and discharge were performed at 0 to 2.5 V at a current density of 1.59 mA / cm 2 .
  • the electric capacity (F / cell) per cell of the electric double layer capacitor was calculated from the discharge curve measured at the second constant current discharge.
  • the capacity retention rate (%) was calculated as (electric capacity at the 50th cycle) / (electric capacity at the second cycle) ⁇ 100.
  • Table 4 The results are shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

アルミニウム箔や銅箔などの金属箔の片面または両面に、導電性カーボンなどの導電性粒子と、キトサンやキチンなどの結着剤と、無水トリメリット酸や無水ピロメリット酸や1,2,3,4-ブタンテトラカルボン酸などの有機酸とを含む層aが設けられて成る、導電性粒子の被覆率が50~100%で且つ層aの厚さが5μm以下である集電体。該集電体の層aを有する面に、電極活物質を含む層bが設けられて成る電極。該電極を有する電気化学素子。

Description

集電体
 本発明は、集電体に関する。より詳細に、本発明は、燃料電池(特許文献6参照)、二次電池や電気二重層キャパシタなどの電気化学素子、太陽電池(特許文献3参照)、タッチパネル(特許文献4または5参照)、センサ(特許文献7参照)などに用いられる集電体に関する。
 広義の電気化学素子として、リチウムイオン二次電池やニッケル水素電池などの二次電池、および電気二重層キャパシタやハイブリッドキャパシタなどのキャパシタが知られている。電気化学素子の電極は一般に、集電体と電極活物質層とからなる。該電極は、電極活物質とバインダーと溶媒とを含む塗工液を集電体に塗布し乾燥させることによって、通常、製造される。
 このような二次電池や電気二重層キャパシタなどの内部抵抗もしくはインピーダンスを下げるために、集電体と電極活物質層との間に導電性材料を含む層を設けることが提案されている。例えば、特許文献1には、正極合剤と金属製集電体との間に導電材層を有する非水電解質二次電池が開示されている。該導電材層は導電材とカルボキシルメチルセルロースを含む。特許文献2には、二つの表面を有する箔状の集電体と、該集電体の二つの表面のうち少なくとも一方の表面に形成されたアンカー層と、該アンカー層の上に形成された電極層とを備え、前記アンカー層が導電性カーボンとバインダーとを含有し、前記電極層が活物質を含有する蓄電素子用電極体であって、 前記アンカー層の最大厚さをRmax、前記アンカー層の最小厚さをRminとしたとき、前記アンカー層の最大厚さと最小厚さとの差R(R=Rmax-Rmin)を0.5μm≦R≦16μmとし、且つ前記アンカー層の最大厚さと最小厚さとを加算した値に0.5を乗じた値d(d=(Rmax+Rmin)/2)を0.5μm≦d≦20μmとしたことを特徴とする蓄電素子用電極体が記載されている。
特開2002-042888号公報 特開2010-108703号公報 特開2002-314108号公報 特開平6-175769号公報 特開平7-211208号公報 特開2005-285599号公報 特開2011-195394号公報
 上記の通り、導電性カーボンなどの導電性粒子とバインダーとを含む導電性層を集電体の表面に設けると、内部抵抗若しくはインピーダンスをある程度低下させることができる。しかし、高充電容量で良好なサイクル特性を有する電気化学素子などを製造する要求が高まっており、内部抵抗若しくはインピーダンスをさらに低下させることが必要である。
 そこで、本発明の目的は、電気化学素子の内部抵抗やインピーダンスを大幅に低くすることができる、低い貫通抵抗値を有する集電体を提供することである。
 本発明者らは、上記目的を達成するために鋭意検討した。その結果、導電性粒子の配置状態や導電性粒子とバインダーの組成比により集電体の貫通抵抗値が著しく変動し、内部抵抗やインピーダンスを低くするには不都合な高抵抗な条件範囲があることを見出した。さらに、金属箔の片面または両面に導電性粒子と結着剤とを含む層aが設けられて成る集電体において、導電性粒子の被覆率を特定範囲に調整し且つ層aの厚さを特定範囲にすることによって、内部抵抗やインピーダンスが著しく低くなることを見出した。本発明は、これらの知見に基づいて、さらに検討を重ねることによって、完成するに至ったものである。
 すなわち、本発明は、以下の態様を含む。
〈1〉金属箔の片面または両面に導電性粒子と結着剤とを含む層aが設けられて成る、導電性粒子の被覆率が50~100%で且つ層aの厚さが5μm以下である集電体。
〈2〉結着剤が多糖類およびその誘導体からなる群より選ばれる一種以上を含むものである〈1〉に記載の集電体。
〈3〉結着剤がキトサン、キチン、セルロースおよびそれらの誘導体からなる群より選ばれる一種以上を含むものである〈1〉に記載の集電体。
〈4〉導電性粒子が炭素質粒子である〈1〉~〈3〉のいずれかひとつに記載の集電体。
〈5〉層aが有機酸およびその誘導体からなる群より選ばれる一種以上をさらに含む〈1〉~〈4〉のいずれかひとつに記載の集電体。
〈6〉有機酸およびその誘導体が無水トリメリット酸、無水ピロメリット酸および1,2,3,4-ブタンテトラカルボン酸からなる群より選ばれる一種以上である〈5〉に記載の集電体。
〈7〉層aに含まれる導電性粒子の量が30~90質量%である〈1〉~〈6〉のいずれかひとつに記載の集電体。
〈8〉導電性粒子、結着剤および分散媒を含み、電極活物質を含まない塗工液を、金属箔の片面または両面に塗布し、 次いで該分散媒を除去するための熱処理をする工程を含む〈1〉~〈4〉のいずれかひとつに記載の集電体の製造方法。
〈9〉前記塗工液が有機酸およびその誘導体からなる群より選ばれる一種以上をさらに含む〈8〉に記載の製造方法。
〈10〉前記熱処理工程終了時に、層aに残存する分散媒の量が0.1質量%以下である〈8〉または〈9〉に記載の製造方法。
〈11〉分散媒がアルコール類を含む、〈8〉~〈10〉のいずれかひとつに記載の製造方法。
〈12〉前記熱処理工程において熱風乾燥を用いる〈8〉~〈11〉のいずれかひとつに記載の製造方法。
〈13〉前記〈1〉~〈7〉のいずれかひとつに記載の集電体の層aを有する面に、電極活物質を含む層bが設けられて成る電極。
〈14〉前記〈13〉に記載の電極を有する電気化学素子(または蓄電素子)。
(15)前記〈14〉に記載の電気化学素子(または蓄電素子)を有する電源システム。
 本発明に係る集電体は、従来の集電体に比べ貫通抵抗値が低い。該集電体を有する電極を用いると内部抵抗やインピーダンスが低い電気化学素子;太陽電池;タッチパネルなどが得られる。
〈集電体〉
 本発明に係る集電体は、金属箔と、該金属箔の片面または両面に設けられた層aとから成るものである。
(金属箔)
 本発明に用いられる金属箔としては、孔の開いていない箔だけでなく、パンチングメタル箔や網のような孔の開いた箔や多孔質の箔も用いることができる。また、金属箔は、表面が平滑なものであってもよいし、電気的または化学的なエッチング処理などを行うことによって粗面化された箔、すなわちエッチング箔であってもよい。
 金属箔の厚さは、特に制限はないが、好ましくは5μm~200μmである。このような厚さとすることで、電気化学素子などの所定体積中に占める集電体の割合を一定以下に抑えることができ、且つ集電体や電極に十分な強度を与えハンドリング性を良好にすることができる。
 金属箔の材質は集電体の用途に応じて適宜選択できる。集電体を電気化学素子に用いる場合には、高い電気伝導性と高い電気化学的耐食性を有する金属を用いることができる。例えば、リチウムイオン二次電池の正極や電気二重層キャパシタの電極に用いる場合には、アルミニウムやアルミニウム合金の箔が好ましく用いられる。アルミニウム箔の例としては、純アルミ系のA1085材、A3003材などの箔を挙げることができる。また、リチウムイオン二次電池の負極に用いる場合には、銅や銅合金の箔が好ましく用いられる。銅箔の例としては、圧延銅箔や電解銅箔を挙げることができる。
 層aは導電性粒子と結着剤とを含むものである。
(導電性粒子)
 層aに用いられる導電性粒子は、電気伝導性を有する粒子であれば、特に制限されないが、炭素元素を主構成成分とするもの、すなわち炭素質粒子であることが好ましい。炭素質粒子としては、カーボンブラック、グラファイト、気相法炭素繊維、カーボンナノチューブ、カーボンナノファイバーなどが好適である。カーボンブラックの例としては、アセチレンブラックやファーネスブラックなどが挙げられる。また、ケッチェンブラックなどの市販品を用いることができる。これらの炭素質粒子は1種単独でまたは2種以上を組み合わせて用いることができる。炭素質粒子以外の導電性粒子としては、金、銀、銅、ニッケル、アルミニウムなどの金属の粉末、これら金属粉末と炭素質粒子を混合したもの、または炭素質粒子の表面に金属粉末をコーティングして成るものなどを挙げることができる。
 導電性粒子は、球状、鱗片状、塊状、不定形状などの粒子であってもよいし、針状、棒状、繊維状などの異方形状粒子であってもよい。
 球状、鱗片状、塊状、不定形状などの導電性粒子は、平均一次粒径が10nm~5μmのものが好ましく、10nm~100nmのものがより好ましい。これら導電性粒子の平均一次粒径は、電子顕微鏡を用いて500~1000個の粒子の粒径を計測し、これらを数基準で平均することによって算出される。なお、球状以外の形状の場合は、最大径(最長径)をもって粒径とし、同様にこれらを数基準で平均することで平均粒径とする。
 異方形状の導電性粒子は質量あたりの表面積が大きく、金属箔や電極活物質などとの接触面積が大きくなるので、少量の添加でも金属箔と電極活物質との間もしくは電極活物質同士間の導電性を高くすることができる。特に効果的な異方形状の導電性粒子としては、気相法炭素繊維、カーボンナノチューブ若しくはカーボンナノファイバーが挙げられる。気相法炭素繊維、カーボンナノチューブ若しくはカーボンナノファイバーは、導電性向上の観点から、平均繊維径が通常0.001~0.5μm、好ましくは0.003~0.2μmであり、平均繊維長が通常1~100μm、好ましくは1~30μmである。なお、平均繊維径および平均繊維長は、電子顕微鏡を用いて500~1000個の繊維の繊維径および繊維長を計測し、これらを数基準で平均することによって算出される。
 導電性粒子は、JIS K1469に準拠して測定した粉体電気抵抗が5.0×10-1Ω・cm以下のものが好ましい。
 導電性粒子は、層aの中に、好ましくは30~90質量%、より好ましくは40~85質量%、さらに好ましくは60~80質量%含まれる。これにより、貫通抵抗値が低く、金属箔や電極活物質層との密着性に優れた層aを備えた集電体を得ることができる。
(結着剤)
 層aに用いられる結着剤は、金属箔と導電性粒子とを結着させることができるものであれば特に限定されないが、金属箔との密着性やイオン透過性に優れることから、多糖類およびその誘導体からなる群より選ばれる一種以上を含むものが好ましい。多糖類は、単糖類またはその誘導体が、グリコシド結合によって多数重合した高分子化合物である。通常10以上の単糖類またはその誘導体が重合したものを多糖類と言うが、10以下の単糖類が重合したものであっても、使用することができる。多糖類を構成する単糖類は、基本骨格として水酸基のみを有するグルコースのような通常の単糖類の他、カルボキシル基を有するウロン酸や、アミノ基またはアセチルアミノ基を有するアミノ糖であっても良い。多糖類はホモ多糖、ヘテロ多糖のいずれでもよい。
 多糖類の具体例としては、アガロース、アミロース、アミロペクチン、アルギン酸、イヌリン、カラギーナン、キチン、グリコーゲン、グルコマンナン、ケラタン硫酸、コロミン酸、コンドロイチン硫酸、セルロース、デキストラン、デンプン、ヒアルロン酸、ペクチン、ペクチン酸、ヘパラン硫酸、レバン、レンチナン、キトサン、プルラン、カードランが挙げられる。これらのうち、キチン、キトサン、セルロースはイオン透過性が高いので好ましい。
 多糖類の誘導体の例としては、ヒドロキシアルキル化された多糖類、カルボキシアルキル化された多糖類、硫酸エステル化された多糖類などが挙げられる。特にヒドロキシアルキル化された多糖類は、溶媒への分散性を高くできることから好ましい。ヒドロキシアルキル化多糖類は、公知の方法で製造することができる。
 ヒドロキシアルキルキトサンの例としては、ヒドロキシエチルキトサン、ヒドロキシプロピルキトサン、グリセリル化キトサンなどを挙げることができる。
 ヒドロキシアルキルセルロースの例としては、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどを挙げることができる。
 カルボキシアルキルキトサンの例としては、カルボキシメチルキトサン、カルボキシエチルキトサンなどを挙げることができる。
 カルボキシアルキルセルロースの例としては、カルボキシメチルセルロース、カルボキシエチルセルロースなどを挙げることができる。
 多糖類以外の結着剤の例としては以下のものを挙げることができる。
 含フッ素重合体:ポリビニリデンフルオライド、ポリテトラフルオロエチレン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、エチレン-テトラフルオロエチレン共重合体など;
 ポリ(オレフィンオキサイド):ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリエチレンオキサイド-プロピレンオキサイド共重合体など;
 エラストマー:スチレンブタジエンブロック共重合体、アクリル酸変性SBR樹脂、アラビアゴムなど;
 水酸基含有樹脂:ポリビニルアセタール、エチレン-ビニルアルコール共重合体、変性されていてもよいポリビニルアルコールなど;
 層aに用いられる結着剤は、重量平均分子量が、好ましくは1.0×104~2.0×105、より好ましくは5.0×104~2.0×105である。重量平均分子量がこの範囲内にあると、導電性粒子を分散させる性能が高くなるので、塗工液の塗布性が良好で、得られる層aの強度が高くなる。重量平均分子量は、ゲルパーミエーションクロマトグラフィーを用いて、プルランなどの標準サンプルに換算した値として求めることができる。
 結着剤の使用量は、導電性粒子100質量部に対して、好ましくは20~300質量部、より好ましくは40~200質量部、さらに好ましくは60~100質量部である。
(有機酸)
 結着剤として多糖類またはその誘導体を用いる場合、層aはカルボン酸やスルホン酸などの有機酸およびその誘導体からなる群より選ばれる一種以上をさらに含むことが好ましい。有機酸またはその誘導体は、多糖類またはその誘導体の架橋剤として働き、金属箔に導電性粒子をより強固に配置することができる。有機酸またはその誘導体として、好ましくは2価以上のもの、より好ましくは3価以上のものが、高い架橋効果の観点から、用いられる。また、金属箔から金属を溶出させ難いことからカルボン酸またはその誘導体が好ましく用いられる。カルボン酸およびその誘導体としては、芳香族カルボン酸、鎖状脂肪族カルボン酸、脂環式カルボン酸およびそれらの誘導体が挙げられる。熱安定性の観点からは芳香族カルボン酸またはその誘導体が好ましい。水への溶解性の観点からは鎖状脂肪族カルボン酸またはその誘導体が好ましい。有機酸の誘導体としては、エステル、酸クロライド、酸無水物などが挙げられる。架橋反応が進行しやすいことや副生物が少ないことから酸無水物が好ましい。
 芳香族カルボン酸およびその誘導体としては、フタル酸、イソフタル酸、テレフタル酸などの2価の芳香族カルボン酸およびその誘導体;トリメリット酸、ピロメリット酸、ビフェニルテトラカルボン酸、ベンゾフェノンテトラカルボン酸などの3価以上の芳香族カルボン酸およびその誘導体が挙げられる。これら芳香族カルボン酸およびその誘導体のうち、無水トリメリット酸若しくは無水ピロメリット酸が好ましい。
 脂環式カルボン酸およびその誘導体としては、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルナジック酸、水素化メチルナジック酸などの2価の脂環式カルボン酸およびその誘導体;シクロヘキサン1,2,4-トリカルボン酸、シクロヘキサン1,2,4,5-テトラカルボン酸などの3価以上の脂環式カルボン酸およびその誘導体が挙げられる。
 鎖状脂肪族カルボン酸およびその誘導体としては、こはく酸、マレイン酸、酒石酸、リンゴ酸、グルタル酸、イタコン酸、アジピン酸などの2価の鎖状脂肪族カルボン酸およびその誘導体;クエン酸、1,2,3,4-ブタンテトラカルボン酸などの3価以上の鎖状脂肪族カルボン酸およびその誘導体が挙げられる。鎖状脂肪族カルボン酸およびその誘導体のうち、1,2,3,4-ブタンテトラカルボン酸が好ましい。
 これらの有機酸および有機酸の誘導体は、一種単独でまたは二種以上を組み合わせて用いることができる。
 これら有機酸およびその誘導体の使用量は、多糖類およびその誘導体100質量部に対して、好ましくは30~300質量部、より好ましくは35~120質量部、さらに好ましくは40~85質量部である。
 層aは、金属箔表面の一部分に設けてもよいし、全面に一様に設けてもよい。金属箔表面の一部分に設ける形態としては、金属箔の縁部分を除いた中央部に設ける形態、ドット状、ストライプ状、網状、格子(グリッド)状、入れ子状、渦巻き状などのパターンで設ける形態を挙げることができる。金属箔の面積に対する層aの面積の割合ARは、好ましくは50~100%、より好ましく60~100%、特に好ましくは70~100%である。
 金属箔の面積に対する層aの面積の割合ARの求め方は次のとおりである。
 集電体上の層aのパターンを法線方向から顕微鏡等を通して低倍率で観察し、3ヶ所以上の視野で観察像を写真撮影する。該写真を画像解析処理にて二値化し、層aが写っている部分の面積Saと層aが写っていない部分の面積Sbを求める。式: AR=(Sa)/(Sa+Sb)×100にて、金属箔の面積に対する層aの面積の割合ARを算出する。また、単純で大柄のパターンで層aを設けた場合は、ノギス等を用いて長さを測定し層aの面積割合ARを計算で求めてもよい。なお、ここで金属箔の面積は、層aを金属箔両面に設けたとき当該両面の面積であり、層aを金属箔片面に設けたとき当該片面の面積である。
 金属箔に設けられた層aの量は、好ましくは0.2~5g/m2、より好ましくは0.5~3g/m2、最も好ましくは1~2g/m2である。このような量にすると、集電体の貫通抵抗値が大幅に低くなり、この集電体を用いることによって内部抵抗やインピーダンスが低い電気化学素子などを製造することができる。
(層aの厚さ)
 層aの厚さは、5μm以下、より好ましくは4μm以下、さらに好ましくは3μm以下である。層aの厚さの下限は、層aの機能が発揮される範囲であれば特に限定されないが、好ましくは0.1μmである。層aの厚さを上記範囲にすると、層aの貫通抵抗値が小さくなるので、本発明の集電体を用いて得られる電気化学素子などの内部抵抗およびインピーダンスを小さくすることができる。
(被覆率)
 本発明の集電体は、導電性粒子の被覆率が、50~100%、より好ましくは60~100%、さらに好ましくは70~100%である。当該被覆率を上記範囲にすることによって、集電体の貫通抵抗値が小さくなり、この集電体を用いて得られる電気化学素子の内部抵抗やインピーダンスを小さくすることができる。
 導電性粒子の被覆率は、次のようにして算出する。
 まず、集電体の層aが設けられている部分を法線方向から顕微鏡等を通して、高倍率で観察し、3ヶ所以上の視野で観察像を写真撮影する。導電性粒子が、一視野に、好ましくは100個以上、より好ましくは200個以上、さらに好ましくは300個以上、写るように倍率を調整する。なお、粒子の境界が明確になるように、またハレーションが生じないように光量を調節する。特にアルミニウム箔などの光を反射しやすい材料を用いている場合には注意を要する。該写真を画像解析処理にて二値化し、導電性粒子が写っている部分の面積S1と導電性粒子が写っていない部分の面積S0を求める。層aの面積に対する導電性粒子の面積の割合S1を導電性粒子の被覆率(=(S1)/(S1+S0)×100)とした。二値化処理では、写真画像の濃淡レベルを0~255にデジタル値化し、例えば、閾値を110と定めて、0~109を「黒」、110~255を「白」と判定した。導電性粒子の種類によって、写真像において白く写るものと、黒く写るものとがある。例えば、白く写る導電性粒子を用いた場合には、白の部分の面積が導電性粒子の面積となる。
 被覆率は、後述するように、層aを形成する際の分散媒の使用量、塗工液の調製方法、塗工液の塗布方法などを変更することによって制御することができる。
(貫通抵抗値)
 本発明に係る集電体の貫通抵抗値は、25℃において、好ましくは150mΩ以下、より好ましくは100mΩ以下である。
 なお、集電体の貫通抵抗値は以下のようにして測定する。集電体を所定の大きさの短冊状に2枚切り出し、その層a同士を合わせて接触面が所定の面積、形状になるように固定する。集電体同士が接触していない各々の端部をACミリオームメーターに結合し、集電体の交流抵抗を測定し、その測定値を貫通抵抗値とした。
〈集電体の製造方法〉
 本発明の集電体の製造方法は、導電性粒子、結着剤および分散媒を含み、電極活物質を含まない塗工液を、金属箔の片面または両面に塗布し、次いで該分散媒を除去するための熱処理をする工程を含む。前記塗工液は、有機酸およびその誘導体からなる群より選ばれる一種以上をさらに含んでいることが好ましい。
 塗工液に用いられる分散媒は、導電性粒子、結着剤および必要に応じて含有させられる有機酸若しくはその誘導体を分散させることができるものであれば特に制限されない。当該分散媒として水や有機溶剤が好ましく使用される。
 有機溶剤としては非プロトン性極性溶媒やプロトン性極性溶媒が挙げられる。
 非プロトン性極性溶媒としては、エーテル類、カーボネート類、アミド類、エステル類などが挙げられる。これらのうち、アミド類、エステル類が好ましい。
 非プロトン性極性溶媒は、塗布後、熱処理の温度以下で蒸発するものが望ましい。具体的には、常圧での沸点が50~300℃のものが好ましく、100~220℃のものがより好ましい。このような沸点を持つ非プロトン性極性溶媒を用いると、塗工作業中に塗工液の濃度が変化し難いので、所定の厚さまたは塗布量を有する層aを得やすい。また、熱処理により分散媒を十分に除去することができる。上記のような沸点を有する非プロトン性極性溶媒としては、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-ピロリドン、γ-ブチロラクトンが挙げられる。これらのうち、N-メチル-2-ピロリドンが好ましい。
 一方、プロトン性極性溶媒としては、アルコール類、多価アルコール類が挙げられる。塗工液にプロトン性極性溶媒を含むと、塗工液の集電体に対する濡れ性を向上させ、被覆率を上述の範囲内で均一なものとすることができる。プロトン性極性溶媒は塗布後、熱処理の温度以下で蒸発するものが望ましい。具体的にプロトン性極性溶媒は、常圧での沸点が100℃以下であることが好ましい。好ましいプロトン性極性溶媒としては、アルコール類が挙げられる。より好ましいプロトン性極性溶媒としては、エタノール、イソプロピルアルコール、n-プロピルアルコールが挙げられる。
 塗工液中の分散媒の量は、好ましくは20~99質量%、より好ましくは65~98質量%、さらに好ましくは80~95質量%である。プロトン性極性溶媒の量は、特に制限はないが、分散媒の総質量を基準にして、好ましくは1~20質量%である。分散媒の組成をこのような値とすることにより、塗工液が適度な粘度となるので、塗工作業性に優れ、塗布量、層aの厚さならびに被覆率を上記範囲内に調整しやすく、また塗布面内で均一にすることができる。なお、分散媒の使用量を増やすと被覆率および厚さが小さくなり、分散媒の使用量を減らすと被覆率および厚さが大きくなる。
 塗工液の粘度は、常温で、好ましくは100~50000mPa・s、より好ましくは100~10000mPa・s、さらに好ましくは100~5000mPa・sである。粘度の測定は、B型粘度計を用いて、測定する粘度レンジに適したロータ、回転数を選択して行う。例えば数百mPa・s程度の塗工液の粘度を測定する場合、ロータNo.2、60rpmである。
 また、高揮発性の分散媒または低粘性の分散媒を用いたときに、後述の熱処理において、導電性粒子の急激な凝集が起きる場合がある。そのような場合には、分散効果がある添加剤を加えることによって、凝集を抑制し、また被覆率を所定の範囲に調整することができる。係る添加剤としては、プロピレングリコールモノメチルエーテル、乳酸エチル、乳酸ブチル、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、プロピレングリコール、プロピレングリコールモノプロピルエーテル、エチレングリコール、ジエチレングリコールモノメチルエーテルなどが挙げられる。これらのうち、プロピレングリコールまたはエチレングリコールが好ましく、プロピレングリコールが特に好ましい。
 本発明に用いられる塗工液は、上述の導電性粒子、結着剤ならびに有機酸およびその誘導体の他に、分散剤、増粘剤、沈降防止剤、皮張り防止剤、消泡剤、静電塗装性改良剤、タレ防止剤、レベリング剤、ハジキ防止剤、架橋触媒などの添加剤が含まれていてもよい。これらの添加剤はいずれも公知のものを用いることができ、その添加量は導電性粒子と結着剤と有機酸およびその誘導体との合計量100質量部に対して、10質量部以下であることが好ましい。
 塗工液は、導電性粒子、結着剤、分散媒、ならびに必要に応じて添加される有機酸または添加剤を、混合機を用いて混合することによって製造できる。混合機の例としては、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサーなどが挙げられる。塗工液に含有される各成分の混合順序は特に制限されないが、均一な塗工液を容易に得やすいという観点から、多糖類などの結着剤と分散媒とを混合した液を先ず調製し、これに導電性粒子を加えて混合することが好ましい。
 塗工液中の導電性粒子が凝集していると、被覆率の調整や、塗工厚さを均一にするのが困難になりやすい。そこで、導電性粒子の凝集を少なくするために、せん断力、衝撃力、ズリ応力などの機械的シェアを利用した分散機、解砕機、粉砕機など、または超音波照射を利用した分散機などを採用することができる。このとき、導電性粒子のみを乾式で処理してもよいし、導電性粒子を適当な分散媒に分散させて、湿式で処理してもよい。また、塗工液の状態で処理することもできる。
 塗工液の金属箔への塗布方法は、特に限定されない。例えば、キャスト法、バーコーター法、ディップ法、印刷法などが挙げられる。これらのうち、塗布膜の厚さを制御しやすい点から、バーコート、グラビアコート、グラビアリバースコート、ロールコート、マイヤーバーコート、ブレードコート、ナイフコート、エアーナイフコート、コンマコート、スロットダイヤコート、スライドダイコート、ディップコートが好ましい。
 被覆率を調整するための手法として、グラビアコーターのコーティングロールのパターン設計、ステンシルタイプやワイヤーメッシュタイプのマスクの使用などが挙げられる。特にグラビアコーターは塗工均一性および生産性に優れ、コーティングロールの凹部(セル)の設計により、簡単に塗工液の転写量(塗布量)や塗布位置を変えることができるので、好ましい。コーティングロールのセルの設計は特に制限はなく、目的の被覆率や塗布量になるように、形状、配列、深さおよび容積の調整ができる。例えば、セルの形状に関しては、ピラミッド型、格子型、斜線型、台形型、亀甲型、ロトフロー型などが挙げられ、これらの中から1種または2種以上を複合して、コーティングロールに配列させることができ、また規則的あるいは不規則に配列させることもできる。例えば、格子状のセルにおいては、格子溝の幅や深さを設計することによって、塗布される範囲または被覆率を調整できる。
 また、グラビアコーターの印刷方式に特に制限はなく、ダイレクト方式、リバース方式、オフセット方式などが挙げられる。さらに、層aは、1回の塗工で設けることができるし、複数回の塗工で設けることもできる。複数回塗工する際は、コーティングロールを変えて塗工パターンを変えることも可能である。
 塗工液の塗布は、金属箔の片面もしくは両面に行うことができる。金属箔両面への塗布は、片面づつ順次行うことができるし、両面同時に行うこともできる。
 熱処理は、分散媒を除去するために行われる。熱処理の方法は特に制限されないが、熱風による方法がより好ましい。熱処理温度は、好ましくは100~300℃、より好ましくは120~250℃である。加熱時間は、好ましくは10秒間~10分間である。このような条件で加熱すると、生産性を維持しつつ、架橋反応が十分に進行しなかったり、塗工液中の有機成分が分解したりする恐れを減らし、また層aの塗布量、厚さ、被覆率の面内均一性を向上させることができる。さらに、このような条件で加熱することにより、層a中に残存する分散媒を減らし、集電体の貫通抵抗値に悪影響を及ぼさないようにすることができる。熱処理時において層aをロールや平板でプレスしてもよい。
 層aに残存する分散媒の量は、好ましくは0.1質量%以下である。分散媒の残量の測定方法は特に制限されないが、ガスクロマトグラフィーにより、特定の分散媒に適したカラムを用いることで定量検出が可能である。たとえば、N-メチル-2-ピロリドンの場合、ヘッドスペースサンプラー(パーキンエルマー製 TurbomatrixATD)に質量既知の集電体サンプルを仕込み、250℃で30分間加熱することで残存分散媒を気化させる。次にヘッドスペースサンプラーから所定量の気化ガスをサンプリングして、ガスクロマトグラフィー(パーキンエルマー製 Clarus500GC/MS)内にセットされたカラム(バリアン製 VF-WAXms)に導入し、240℃まで昇温することで定量分析する。
《電極》
 本発明の電極は、前述の集電体の層aを有する面に、電極活物質を含む層bが設けられて成るものである。
 電極活物質層bに用いられる材料および電極活物質層bの形成方法に特に制限はなく、リチウムイオン二次電池、電気二重層キャパシタ、ハイブリッドキャパシタなどの製造において用いられている公知の材料および方法を採用することができる。
 集電体は上記以外の電気化学素子の電極に用いてもよいし、太陽電池、タッチパネル、センサなどの電極に用いることもできる。
《電気化学素子(または蓄電素子)》
 本発明の電気化学素子(または蓄電素子)は、前述の電極を有するものである。該電気化学素子は、通常、セパレータおよび電解質をさらに有する。電気化学素子における電極は、正極および負極の両方が本発明に係る電極であってもよいし、どちらか一方が本発明に係る電極であり、他方が本発明以外の電極であってもよい。セパレータは、リチウムイオンバッテリーなどの二次電池、電気二重層キャパシタ、ハイブリッドキャパシタなどにおいて使用されるものであれば特に制限されず、電解質として固体電解質を用いる場合は省くこともできる。電解質としては、リチウムイオンバッテリーなどの二次電池、電気二重層キャパシタ、ハイブリッドキャパシタなどにおいて使用されるものであれば特に制限されず、電解液、ゲル電解質、ポリマー電解質、無機固体電解質、あるいは溶融塩電解質のいずれであってもよい。
 電気化学素子は、電源システムに適用することができる。そして、この電源システムは、自動車;鉄道、船舶、航空機などの輸送機器;携帯電話、携帯情報端末、携帯電子計算機などの携帯機器;事務機器;太陽光発電システム、風力発電システム、燃料電池システムなどの発電システム;などに適用することができる。
 次に実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、本実施例によってその範囲が制限されるものではない。本発明に係る集電体、電極、電気化学素子、電源システム、タッチパネルおよび太陽電池は、本発明の要旨を変更しない範囲において適宜変更して実施することができる。
 集電体の特性を以下の方法で測定した。
(貫通抵抗値)
 集電体を幅20mm、長さ100mmのサイズで2枚切り出した。切り出した2枚を塗工面同士が向かいあうように接触させた。その接触面が20mm×20mmになるよう調整し、塩化ビニル板上に置いた。2枚の集電体が接触している部分に荷重1kg/cm2を加えて該接触部分を固着させた。集電体同士が接触していない各々の端部をACミリオームメーターに結合し、集電体の貫通抵抗値(交流抵抗)を測定した。
(被覆率)
 集電体を5mm角程度で切り出した。マイクロスコープ(キーエンス社製、製品名VHX-900)を通して倍率2000倍で、粒子が100個以上写った写真を撮影した。なお、粒子の境界が明確になるように、またハレーションが生じないように光量を調節した。該写真を画像解析ソフト(キーエンス社製、製品名:粒子解析アプリケーションVH-H1G1)で二値化処理を行い、導電性粒子の面積を画像全体の面積で除することで、被覆率を求めた。なお、二値化処理では、写真画像の濃淡レベルを0~255にデジタル値化し、110を閾値と定めて、0~109を「黒」、110~255を「白」と判定した。このようにして「白」の部分の面積を求めた。本実施例においては、「白」の部分の面積が導電性粒子の面積である。
(厚さ)
 層aが設けられている部分と層aが設けられていない部分とを、マイクロメーターでそれぞれ測定し、その差分を求めることで、層aの厚さを求めた。
(塗工液および集電体の製造)
(実施例1~6)
 表1に示す処方に従って原材料をディゾルバータイプの撹拌機に入れて、回転数300rpmで10分間混ぜ合わせた。次いで、ホモジナイザー(家田貿易(株)製、製品名PRO200)を用いて20000rpmで30秒間処理し、分散媒中に導電性粒子等が均一に分散された塗工液を得た。
 アルカリ洗浄されたA1085材からなる厚さ30μmのアルミニウム箔を用意した。アプリケーターを用いて、該アルミニウム箔の両面〔タブ取り付け部を除く〕に、上記の塗工液をキャスト法によって塗工した。その後、180℃にて3分間熱処理し乾燥させて、集電体1~6を得た。得られた集電体の特性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(比較例1~5)
 原材料処方を表2に示すものに変えた以外は実施例1と同じ手法で塗工液を得、該塗工液を用いて集電体a~eを得た。得られた集電体の特性を表2に示す。
(比較例6)
 原材料処方を表2に示すものに変え、ホモジナイザー処理を行わなかったこと以外は実施例1と同じ手法で塗工液を得、該塗工液を用いて集電体fを得た。得られた集電体の特性を表2に示す。
 表1および2に示すように、本発明に係る集電体は、貫通抵抗値が低く、電気化学素子用の集電体として好適であることがわかる。
Figure JPOXMLDOC01-appb-T000002
(リチウムイオン電池の製造および評価)
(実施例7~12、比較例7~12)
 実施例1~6および比較例1~6で得られた集電体を10cm×10cmの大きさに切り出した。コバルト酸リチウム(日本化学工業(株)製、商品名セルシードC)95質量部、アセチレンブラック(電気化学工業(株)製、商品名デンカブラック(粉状品))2質量部、ポリフッ化ビニリデン((株)クレハ製、商品名KFポリマー#1120)3質量部、およびN-メチル-2-ピロリドン(工業用グレード)95質量部を混合してスラリーを得た。このスラリーを切り出した集電体の両面〔タブ取り付け部を除く〕に塗布した。その後、乾燥させ、プレスして片面50μm厚の正極活物質層を形成させた。これを正極とした。
 一方、人造黒鉛(昭和電工(株)製、商品名SCMG-AR)94質量部、アセチレンブラック(電気化学工業(株)製、商品名デンカブラック(粉状品))1質量部、ポリフッ化ビニリデン((株)クレハ製、商品名KFポリマー#9130)5質量部、およびN-メチル-2-ピロリドン(工業用グレード)94質量部を混合してスラリーを得た。このスラリーを10μm厚の電解銅箔の両面〔タブ取り付け部を除く〕に、塗布し、乾燥させ、プレスして片面55μm厚の負極活物質層を形成させた。これを負極とした。
 正極と負極との間にセパレータ(POLYPORE International, Inc.製、商品名Celgard2500)を組み込み、設計容量1Ahに必要な枚数を交互に積層した。正極の非塗工部にアルミタブ電極を、負極の非塗工部にニッケルタブ電極をそれぞれ超音波溶接機で取り付けた。これらを袋状のアルミラミネート包材に入れ、60℃の真空乾燥機で水分を除去した。その後、有機電解液としてLiPF6溶液(キシダ化学製)を注入し、真空雰囲気で24時間含浸させた。アルミラミネート包材の開口部を真空シーラーで封止することでリチウムイオン二次電池を製造した。
 得られたリチウムイオン二次電池の内部抵抗を、インピーダンスメーターを用いてACインピーダンス法で測定周波数1kHzにて測定した。
 得られたリチウムイオン二次電池のサイクル特性を次のような手法で評価した。充放電装置(東洋システム(株)製)を用いて、電流レートを0.2C、2C、20Cと順じ変えて、それぞれにおける200サイクル後の容量を測定した。0.2Cにおける容量を基準として、2Cおよび20Cにおける容量維持率を算出した。なお、カット電圧は2.7~4.2VでSOCは100%として測定した。結果を表3に示す。
 表3に示すように、本発明の集電体を用いて製造されたリチウムイオン二次電池は内部抵抗が小さく、サイクル特性も優れることが判る。
Figure JPOXMLDOC01-appb-T000003
(電気二重層キャパシタの製造および評価)
(実施例13~18、比較例13~18)
 活性炭(クラレケミカル(株)製、商品名YP-50F)100質量部、アセチレンブラック(電気化学工業(株)製、商品名デンカブラック(粉状品))5質量部、スチレンブタジエンゴム(日本エイアンドエル(株)製、商品名ナルスターSR-103)7.5質量部、カルボキシメチルセルロース(ダイセルファインケム(株)製、商品名CMC DN-10L)2質量部、および純水200質量部を混合してペーストを得た。このペーストを、実施例1~6および比較例1~6で得られた集電体に、塗布し、乾燥させ、プレスして、片面厚さ80μmの電極層を形成させた。これを電気二重層キャパシタ用電極とした。
 電気二重層キャパシタ用電極を直径20mmφで2枚打ち抜いた。セパレータ(ニッポン高度紙工業(株)製、商品名TF40)を間に挟んで2枚の電極を重ね合わせ、評価用キャパシタ容器に収めた。有機電解液(富山薬品工業(株)製商品名LIPASTE-P/EAFIN(1モル/リットル))を該容器に注ぎ入れ、電極などを浸漬させた。最後に容器に蓋をして、評価用の電気二重層キャパシタを作製した。
 得られた電気二重層キャパシタのインピーダンスは、インピーダンス測定器(菊水電子工業(株)製、商品名PAN110-5AM)を用いて、1kHzの条件で測定した。
 得られた電気二重層キャパシタの電気容量は次のようにして測定した。充放電試験装置(北斗電工(株)製、商品名HJ-101SM6)を用い、電流密度1.59mA/cm2で0~2.5Vで充放電を行った。2回目の定電流放電時に測定した放電曲線から電気二重層キャパシタのセルあたりの電気容量(F/セル)を算出した。容量保持率(%)を(50サイクル目の電気容量)/(2サイクル目の電気容量)×100として算出した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、本発明の集電体を用いて作製された電気二重層キャパシタは、インピーダンスが低く、サイクル特性に優れることが判る。

Claims (15)

  1.  金属箔の片面または両面に導電性粒子と結着剤とを含む層aが設けられて成る、導電性粒子の被覆率が50~100%で且つ層aの厚さが5μm以下である集電体。
  2.  結着剤が多糖類およびその誘導体からなる群より選ばれる一種以上を含むものである請求項1に記載の集電体。
  3.  結着剤がキトサン、キチン、セルロースおよびそれらの誘導体からなる群より選ばれる一種以上を含むものである請求項1に記載の集電体。
  4.  導電性粒子が炭素質粒子である請求項1~3のいずれかひとつに記載の集電体。
  5.  層aが有機酸およびその誘導体からなる群より選ばれる一種以上をさらに含む請求項1~4のいずれかひとつに記載の集電体。
  6.  有機酸およびその誘導体が無水トリメリット酸、無水ピロメリット酸および1,2,3,4-ブタンテトラカルボン酸からなる群より選ばれる一種以上である請求項5に記載の集電体。
  7.  層aに含まれる導電性粒子の量が30~90質量%である請求項1~6のいずれかひとつに記載の集電体。
  8.  導電性粒子、結着剤および分散媒を含み、電極活物質を含まない塗工液を、金属箔の片面または両面に塗布し、 次いで該分散媒を除去するための熱処理をする工程を含む請求項1~4のいずれかひとつに記載の集電体の製造方法。
  9.  前記塗工液が有機酸およびその誘導体からなる群より選ばれる一種以上をさらに含む請求項8に記載の製造方法。
  10.  前記熱処理工程終了時に、層aに残存する分散媒の量が0.1質量%以下である請求項8または9に記載の製造方法。
  11.  分散媒がアルコール類を含む、請求項8~10のいずれかひとつに記載の製造方法。
  12.  前記熱処理工程において熱風乾燥を用いる請求項8~11のいずれかひとつに記載の製造方法。
  13.  請求項1~7のいずれかひとつに記載の集電体の層aを有する面に、電極活物質を含む層bが設けられて成る電極。
  14.  請求項13に記載の電極を有する電気化学素子。
  15.  請求項14に記載の電気化学素子を有する電源システム。
PCT/JP2012/000168 2011-01-14 2012-01-13 集電体 WO2012096189A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2012800018610A CN102971897A (zh) 2011-01-14 2012-01-13 集电体
US13/979,741 US20130295458A1 (en) 2011-01-14 2012-01-13 Current collector
EP12734419.0A EP2665117A4 (en) 2011-01-14 2012-01-13 PANTOGRAPHS
JP2012552693A JPWO2012096189A1 (ja) 2011-01-14 2012-01-13 集電体
KR1020127034249A KR20130043122A (ko) 2011-01-14 2012-01-13 집전체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-006405 2011-01-14
JP2011006405 2011-01-14

Publications (1)

Publication Number Publication Date
WO2012096189A1 true WO2012096189A1 (ja) 2012-07-19

Family

ID=46507092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000168 WO2012096189A1 (ja) 2011-01-14 2012-01-13 集電体

Country Status (6)

Country Link
US (1) US20130295458A1 (ja)
EP (1) EP2665117A4 (ja)
JP (1) JPWO2012096189A1 (ja)
KR (1) KR20130043122A (ja)
CN (1) CN102971897A (ja)
WO (1) WO2012096189A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140137395A (ko) * 2012-04-09 2014-12-02 쇼와 덴코 가부시키가이샤 전기 화학 소자용 집전체의 제조 방법, 전기 화학 소자용 전극의 제조 방법, 전기 화학 소자용 집전체, 전기 화학 소자 및 전기 화학 소자용 집전체를 제작하기 위한 도공액
CN104662713A (zh) * 2012-09-26 2015-05-27 昭和电工株式会社 二次电池用负极和二次电池
US20150349345A1 (en) * 2014-05-29 2015-12-03 Semiconductor Energy Laboratory Co., Ltd. Method for forming electrode, electrode, storage battery, and electric device
EP2892103A4 (en) * 2012-08-29 2016-07-20 Showa Denko Kk ELECTRIC POWER STORAGE DEVICE AND METHOD FOR PRODUCING THE SAME
JP2017042750A (ja) * 2015-08-28 2017-03-02 トヨタ車体株式会社 熱転写用シートの製造方法
JP2019133838A (ja) * 2018-01-31 2019-08-08 トヨタ自動車株式会社 燃料電池用セパレータ

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6485359B2 (ja) * 2013-12-26 2019-03-20 日本ゼオン株式会社 電気化学素子電極用複合粒子
RU2572840C2 (ru) * 2014-05-22 2016-01-20 Мсд Текнолоджис Частная Компания С Ограниченной Ответственностью Металлическая фольга с проводящим слоем и способ ее изготовления
JP2016036829A (ja) * 2014-08-07 2016-03-22 Jx日鉱日石金属株式会社 圧延銅箔及びそれを用いた二次電池用集電体
CN104347278A (zh) * 2014-11-14 2015-02-11 深圳市今朝时代新能源技术有限公司 一种超级电容器用涂层铝箔的制备方法
KR102351833B1 (ko) * 2015-06-04 2022-01-17 닛산 가가쿠 가부시키가이샤 에너지 저장 디바이스 전극용 언더코트박
KR20190087536A (ko) * 2016-12-02 2019-07-24 닛산 가가쿠 가부시키가이샤 에너지 저장 디바이스용 언더코트층 및 에너지 저장 디바이스 전극용 언더코트박
JPWO2018101307A1 (ja) * 2016-12-02 2018-11-29 日産化学株式会社 エネルギー貯蔵デバイス電極用アンダーコート箔
CN109997264A (zh) * 2016-12-02 2019-07-09 日产化学株式会社 含有碳纳米管的薄膜
KR102120735B1 (ko) * 2017-04-21 2020-06-09 단국대학교 천안캠퍼스 산학협력단 금속 기재 층 및 cnt/키토산 나노 하이브리드 코팅층을 포함하는 멤브레인 및 이를 포함하는 정전식 집진 시스템
CN110265665B (zh) * 2019-05-24 2020-11-17 宁德时代新能源科技股份有限公司 正极集流体、正极极片及电化学装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06175769A (ja) 1992-09-11 1994-06-24 Hitachi Aic Inc タッチパネル用基板
JPH07211208A (ja) 1994-01-25 1995-08-11 Hitachi Aic Inc タッチパネル用基板
JPH11250916A (ja) * 1998-02-26 1999-09-17 Nippon Zeon Co Ltd 集電体被覆用材料、集電体、リチウムイオン二次電池用電極とその製造方法、及び電池
JP2001357854A (ja) * 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd 非水系二次電池
JP2002042888A (ja) 2000-07-21 2002-02-08 Gs-Melcotec Co Ltd 非水電解質二次電池
JP2002314108A (ja) 2001-04-13 2002-10-25 Seiko Epson Corp 太陽電池
JP2004200062A (ja) * 2002-12-19 2004-07-15 Sony Corp 集電体およびそれを用いた電池
JP2005285599A (ja) 2004-03-30 2005-10-13 Masayuki Takashima 燃料電池用集電体及びそれを用いた電解質複合体
JP2010108703A (ja) 2008-10-29 2010-05-13 Asahi Kasei Corp 蓄電素子用電極体および非水系リチウム型蓄電素子ならびに蓄電素子用電極体の製造方法
JP2010135338A (ja) * 2005-02-10 2010-06-17 Showa Denko Kk 二次電池用集電体、二次電池用正極、二次電池用負極、二次電池及びそれらの製造方法
JP2010238588A (ja) * 2009-03-31 2010-10-21 Daikin Ind Ltd リチウム二次電池の集電積層体
JP2011195394A (ja) 2010-03-19 2011-10-06 National Institute Of Advanced Industrial Science & Technology 大孔径ナノ空間を有する遷移金属酸化物の透明薄膜、その製造方法及び色素増感型デバイス電極

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4055642B2 (ja) * 2003-05-01 2008-03-05 日産自動車株式会社 高速充放電用電極および電池
TWI483446B (zh) * 2005-02-10 2015-05-01 Showa Denko Kk A battery collector, a battery positive electrode, a battery negative electrode, a battery, and a manufacturing method
TWI467840B (zh) * 2005-09-02 2015-01-01 A123 Systems Inc 奈米組成電極以及其相關裝置
CN101174685A (zh) * 2007-10-26 2008-05-07 中南大学 一种锂离子电池正极或负极极片及其涂布方法
CN102046742A (zh) * 2008-06-02 2011-05-04 大日精化工业株式会社 涂敷液、电极板制造用涂敷液、底涂剂及其用途
JP2010027262A (ja) * 2008-07-16 2010-02-04 Toyota Motor Corp 燃料電池用セパレータ及び燃料電池

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06175769A (ja) 1992-09-11 1994-06-24 Hitachi Aic Inc タッチパネル用基板
JPH07211208A (ja) 1994-01-25 1995-08-11 Hitachi Aic Inc タッチパネル用基板
JPH11250916A (ja) * 1998-02-26 1999-09-17 Nippon Zeon Co Ltd 集電体被覆用材料、集電体、リチウムイオン二次電池用電極とその製造方法、及び電池
JP2001357854A (ja) * 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd 非水系二次電池
JP2002042888A (ja) 2000-07-21 2002-02-08 Gs-Melcotec Co Ltd 非水電解質二次電池
JP2002314108A (ja) 2001-04-13 2002-10-25 Seiko Epson Corp 太陽電池
JP2004200062A (ja) * 2002-12-19 2004-07-15 Sony Corp 集電体およびそれを用いた電池
JP2005285599A (ja) 2004-03-30 2005-10-13 Masayuki Takashima 燃料電池用集電体及びそれを用いた電解質複合体
JP2010135338A (ja) * 2005-02-10 2010-06-17 Showa Denko Kk 二次電池用集電体、二次電池用正極、二次電池用負極、二次電池及びそれらの製造方法
JP2010108703A (ja) 2008-10-29 2010-05-13 Asahi Kasei Corp 蓄電素子用電極体および非水系リチウム型蓄電素子ならびに蓄電素子用電極体の製造方法
JP2010238588A (ja) * 2009-03-31 2010-10-21 Daikin Ind Ltd リチウム二次電池の集電積層体
JP2011195394A (ja) 2010-03-19 2011-10-06 National Institute Of Advanced Industrial Science & Technology 大孔径ナノ空間を有する遷移金属酸化物の透明薄膜、その製造方法及び色素増感型デバイス電極

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2665117A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140137395A (ko) * 2012-04-09 2014-12-02 쇼와 덴코 가부시키가이샤 전기 화학 소자용 집전체의 제조 방법, 전기 화학 소자용 전극의 제조 방법, 전기 화학 소자용 집전체, 전기 화학 소자 및 전기 화학 소자용 집전체를 제작하기 위한 도공액
EP2838145A4 (en) * 2012-04-09 2015-11-25 Showa Denko Kk METHOD FOR THE PRODUCTION OF A COLLECTOR FOR ELECTROCHEMICAL ELEMENTS, METHOD FOR THE PRODUCTION OF AN ELECTRODE FOR ELECTROCHEMICAL ELEMENTS, COLLECTOR FOR ELECTROCHEMICAL ELEMENTS, ELECTROCHEMICAL ELEMENT AND COATING FLUID FOR FORMING THE COLLECTOR FOR ELECTROCHEMICAL ELEMENTS
KR101658297B1 (ko) 2012-04-09 2016-09-22 쇼와 덴코 가부시키가이샤 전기 화학 소자용 집전체의 제조 방법, 전기 화학 소자용 전극의 제조 방법, 전기 화학 소자용 집전체, 전기 화학 소자 및 전기 화학 소자용 집전체를 제작하기 위한 도공액
EP2892103A4 (en) * 2012-08-29 2016-07-20 Showa Denko Kk ELECTRIC POWER STORAGE DEVICE AND METHOD FOR PRODUCING THE SAME
US9478366B2 (en) 2012-08-29 2016-10-25 Showa Denka K.K. Electric storage device and method for producing the same
CN104662713A (zh) * 2012-09-26 2015-05-27 昭和电工株式会社 二次电池用负极和二次电池
EP2903059A4 (en) * 2012-09-26 2016-04-13 Showa Denko Kk POSITIVE ELECTRODE FOR SECONDARY BATTERIES AND SECONDARY BATTERY
US20150349345A1 (en) * 2014-05-29 2015-12-03 Semiconductor Energy Laboratory Co., Ltd. Method for forming electrode, electrode, storage battery, and electric device
US11735738B2 (en) 2014-05-29 2023-08-22 Semiconductor Energy Laboratory Co., Ltd. Method for forming electrode, electrode, storage battery, and electric device
JP2017042750A (ja) * 2015-08-28 2017-03-02 トヨタ車体株式会社 熱転写用シートの製造方法
JP2019133838A (ja) * 2018-01-31 2019-08-08 トヨタ自動車株式会社 燃料電池用セパレータ

Also Published As

Publication number Publication date
EP2665117A4 (en) 2014-08-13
KR20130043122A (ko) 2013-04-29
JPWO2012096189A1 (ja) 2014-06-09
EP2665117A1 (en) 2013-11-20
US20130295458A1 (en) 2013-11-07
CN102971897A (zh) 2013-03-13

Similar Documents

Publication Publication Date Title
WO2012096189A1 (ja) 集電体
EP2838145B1 (en) Method for producing collector for electrochemical elements, method for producing electrode for electrochemical elements, collector for electrochemical elements, electrochemical element, and coating liquid for forming collector for electrochemical elements
WO2013005739A1 (ja) リチウム二次電池用電極、リチウム二次電池及びリチウム二次電池用電極の製造方法
TWI451615B (zh) Electrode plating apparatus for electrode plate, electrode plate for power storage device, manufacturing method for electrode plate for power storage device, power storage device, and current collector
EP2665072B1 (en) Collector for electric double layer capacitor
JP5039872B1 (ja) 集電体
WO2014007330A1 (ja) 電気化学素子の使用方法
JP5871302B2 (ja) 二次電池用負極および二次電池
JPWO2012147761A1 (ja) 二次電池
JP7010230B2 (ja) 非水系二次電池正極用スラリー組成物、非水系二次電池用正極および非水系二次電池
WO2012029328A2 (en) Coating solution, electric collector, and method for producing electric collector
JP2012072396A (ja) 塗工液、集電体および集電体の製造方法
JP2012074369A (ja) 集電体および集電体の製造方法
JP2022167301A (ja) リチウムイオン二次電池用正極

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001861.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12734419

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127034249

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012552693

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13979741

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012734419

Country of ref document: EP