WO2012090614A1 - エネルギーデグレーダ、及びそれを備えた荷電粒子照射システム - Google Patents

エネルギーデグレーダ、及びそれを備えた荷電粒子照射システム Download PDF

Info

Publication number
WO2012090614A1
WO2012090614A1 PCT/JP2011/076440 JP2011076440W WO2012090614A1 WO 2012090614 A1 WO2012090614 A1 WO 2012090614A1 JP 2011076440 W JP2011076440 W JP 2011076440W WO 2012090614 A1 WO2012090614 A1 WO 2012090614A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
attenuation
charged particles
axial direction
degrader
Prior art date
Application number
PCT/JP2011/076440
Other languages
English (en)
French (fr)
Inventor
上田 隆正
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP2012518339A priority Critical patent/JP5638606B2/ja
Priority to KR1020127011842A priority patent/KR101307200B1/ko
Priority to CN201180004541.6A priority patent/CN102763169B/zh
Priority to EP11835319.2A priority patent/EP2660825B1/en
Priority to US13/455,754 priority patent/US8618519B2/en
Publication of WO2012090614A1 publication Critical patent/WO2012090614A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1043Scanning the radiation beam, e.g. spot scanning or raster scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/12Arrangements for varying final energy of beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1095Elements inserted into the radiation path within the system, e.g. filters or wedges
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/10Scattering devices; Absorbing devices; Ionising radiation filters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/001Arrangements for beam delivery or irradiation
    • H05H2007/004Arrangements for beam delivery or irradiation for modifying beam energy, e.g. spread out Bragg peak devices

Definitions

  • the present invention relates to an energy degrader that attenuates the energy of charged particles, and a charged particle irradiation system including the energy degrader.
  • a facility for treating cancer by irradiating a patient with charged particles such as a proton beam is known.
  • This type of equipment includes a cyclotron that accelerates charged particles generated by the ion source, a transport line that transports charged particles accelerated by the cyclotron, and a rotatable irradiation that irradiates the patient with charged particles from any direction.
  • a device rotating gantry
  • a pair of attenuating materials for attenuating the energy of a charged particle beam are formed in a wedge shape, and the wedge-shaped attenuating materials are arranged so that the inclined surfaces of the attenuating materials face each other.
  • This pair of damping materials can be moved forward and backward in one axial direction so as to approach and separate from each other, and the amount of energy attenuation can be adjusted by adjusting the thickness of the damping material through which the charged particle beam passes. ing.
  • An object of the present invention is to solve the above-described problems, and an energy degrader capable of adjusting the attenuation of charged particle energy and adjusting the expansion of the diameter of the charged particle beam (scattering of the beam). And a charged particle irradiation system including the same.
  • the present invention is an energy degrader provided with an attenuation material that attenuates the energy of incident charged particles, an attenuation material that attenuates energy by an attenuation amount that differs depending on the incident position of the charged particle, and the incident position of the charged particle.
  • the damping material is different from the first axial direction.
  • An energy degrader comprising: a beam diameter adjusting driving means for driving in an axial direction.
  • the attenuation material for attenuating the energy of the charged particles is driven in the first axial direction by the energy adjusting drive means, thereby changing the incident position of the charged particles with respect to the attenuation material.
  • the amount of particle attenuation can be adjusted.
  • the energy degrader includes a beam diameter adjusting drive unit that drives the attenuation material in a second axial direction different from the first axial direction, and passes the attenuation material by changing the position of the attenuation material. Since it becomes possible to adjust the path length of the charged particle later, the enlargement of the beam diameter of the charged particle beam can be adjusted.
  • the energy degrader is disposed upstream or downstream of the attenuation material in the traveling direction of the charged particles, and a second attenuation material that attenuates energy by a different attenuation amount according to the incident position of the charged particles, and the charged particles
  • second energy adjusting drive means for driving the second damping material in the first axial direction.
  • the second damping material is provided, and only the damping material is driven in the second axial direction, and the gap between the damping material and the second damping material is narrowed, so that the charged particles The beam diameter expansion of the beam can be adjusted.
  • the attenuation material is disposed upstream of the second attenuation material in the traveling direction of the charged particles. Accordingly, when the gap between the damping material and the second damping material is narrowed, it is only necessary to drive only the upstream damping material in the second axial direction, and the beam path of the downstream second damping material. There is no need to change the top position.
  • the present invention is a charged particle irradiation system that includes the energy degrader and irradiates charged particles, wherein the energy is attenuated by the accelerator that accelerates the charged particles introduced into the energy degrader and the energy degrader.
  • a charged particle irradiation system comprising: an irradiation device that irradiates the charged particles.
  • the charged particle irradiation system includes an energy degrader that attenuates the energy of incident charged particles.
  • the attenuation material for attenuating the energy of the charged particles is driven in the first axial direction by the energy adjusting drive means, thereby changing the incident position of the charged particles with respect to the attenuation material, thereby attenuating the charged particles.
  • the amount can be adjusted.
  • the energy degrader includes a beam diameter adjusting drive unit that drives the attenuation material in a second axial direction different from the first axial direction, and passes the attenuation material by changing the position of the attenuation material.
  • the enlargement of the beam diameter of the charged particle beam can be adjusted. Then, it is possible to irradiate charged particles whose energy has been attenuated by the energy degrader, and it is possible to adjust the irradiation depth in the irradiated object according to the energy of the charged particles.
  • an energy degrader capable of adjusting the attenuation amount of charged particle energy and adjusting the expansion of the diameter of the charged particle beam, and a charged particle irradiation system including the energy degrader. it can.
  • FIG. 1 is a layout view of a particle beam therapy system according to an embodiment of the present invention. It is the schematic which shows the energy degrader which concerns on embodiment of this invention. It is a block diagram which shows the control part which performs drive control of a damping material. It is the schematic which shows arrangement
  • the particle beam therapy system is applied to, for example, cancer therapy, and is a device that irradiates a tumor (irradiation target) in a patient's body with a proton beam (charged particles).
  • a particle beam therapy system 1 includes a cyclotron (particle accelerator) 2 that accelerates anions of hydrogen generated by an ion source (not shown) and then removes electrons as a proton beam.
  • a rotatable rotating gantry (irradiation device) 3 for irradiating a patient with a proton beam from an arbitrary direction and a transport line 4 for transporting the proton beam accelerated by the cyclotron 2 to the rotating gantry 3 are provided.
  • the proton beam accelerated by the cyclotron 2 is routed along the transport line 4 and transported to the rotating gantry 3.
  • the transport line 4 is provided with a deflecting magnet for changing the path of the proton beam.
  • the transport line 4 is provided with an energy degrader 10 that attenuates the energy of charged particles (details will be described later).
  • the rotating gantry 3 includes a treatment table on which a patient lies and an irradiation unit that irradiates a proton beam toward the patient.
  • the charged particles whose energy has been attenuated by the energy degrader 10 are emitted from the irradiation unit and irradiated onto the target site of the patient.
  • FIG. 2 is a schematic diagram illustrating an energy degrader according to an embodiment of the present invention.
  • the energy degrader 10 shown in FIG. 2 is provided on the proton beam path, and attenuates the energy of the proton beam.
  • the energy degrader 10 includes a pair of attenuating materials (first attenuating material and second attenuating material) 11 and 12 that attenuate the energy of the transmitted proton beam.
  • the damping material 11 corresponds to the damping material described in the claims.
  • the attenuating material 11 is disposed upstream of the attenuating material 12 (the entrance side of the energy degrader 10) in the traveling direction of the proton beam B.
  • the attenuating material 11 has a wedge shape, and has an incident surface 11a that is a surface orthogonal to the proton beam B, and an inclined surface 11b that is arranged to be inclined with respect to the proton beam B and emits the proton beam B. .
  • the attenuation material 11 is configured to have different thicknesses in the direction intersecting with the proton beam B.
  • the damping member 11 may have a shape not wedge-shaped.
  • Incident surface 11a may be a surface inclined with respect to the proton beam B.
  • the surface on the emission side may be arranged so as to be orthogonal to the proton beam B.
  • the damping material 11 is made of, for example, carbon (C) or beryllium (Be).
  • the attenuating material 11 attenuates the energy of the proton beam B by a different amount of attenuation depending on the incident position of the proton beam B on the attenuating material 11.
  • the proton beam B is decelerated at a different deceleration depending on the thickness of the transmitted attenuation material 11, and the kinetic energy is reduced.
  • the attenuation material 11 may be made of a plurality of different materials instead of a single material. A configuration may be used in which the amount of energy attenuation is changed by transmitting different materials according to the incident position.
  • the damping material 12 corresponds to the second damping material described in the claims.
  • the attenuating material 12 is disposed downstream of the attenuating material 11 (on the exit 13 side of the energy degrader 10) in the traveling direction of the proton beam B.
  • the attenuating material 12 has a wedge shape, faces the exit 13 side of the energy degrader 10 and faces the proton beam B, and is disposed so as to be inclined with respect to the proton beam B. and an incident surface 12b that enters the.
  • the attenuation material 12 is configured to have different thicknesses in the direction intersecting with the proton beam B.
  • the attenuation material 12 may have a shape other than a wedge shape.
  • Output surface 11a may be a surface inclined with respect to the proton beam B. Further, the incident side surface may be arranged so as to be orthogonal to the proton beam B.
  • the damping material 12 is made of, for example, carbon (C) or beryllium (Be).
  • the attenuating material 12 attenuates the energy of the proton beam B by a different attenuation amount according to the incident position of the proton beam B on the attenuating material 12.
  • the proton beam B is decelerated at a different deceleration depending on the thickness of the transmitted attenuation material 12, and the kinetic energy is reduced.
  • the attenuation member 12 may be made of a plurality of different materials instead of a single material. A configuration may be used in which the amount of energy attenuation is changed by transmitting different materials according to the incident position.
  • the pair of attenuation members 11 and 12 are arranged such that the inclined surfaces 11b and 12b face each other, and the incident surface 11a and the emission surface 12a are parallel to each other.
  • the inclined surfaces 11b and 12b of a pair of attenuation materials 11 and 12 may be arrange
  • damping materials 11 and 12 are the same shapes, a mutually different shape may be sufficient as them. Further, in addition to the damping materials 11 and 12, another damping material may be further provided.
  • the attenuating material 11 is a first axial direction X which is a direction for adjusting the energy attenuation amount of the proton beam B, and a first direction which is a direction for adjusting the beam diameter size (beam width) of the proton beam B.
  • the energy degrader 10 changes the incident position of the proton beam B on the attenuation material 11, energy adjusting drive means for driving the attenuation material 11 in the first axial direction X, and the beam diameter of the proton beam B.
  • a beam diameter adjusting driving means for driving the attenuation member 11 in the second axial direction Y is provided. That is, the damping material 11 is configured to be drivable in two axial directions, ie, a first axial direction X and a second axial direction Y.
  • the attenuation member 12 is configured to be movable in the first axial direction X that adjusts the energy attenuation amount of the proton beam B.
  • the energy degrader 10 includes energy adjustment driving means for driving the attenuation material 12 in the first axial direction X in order to change the incident position of the proton beam B on the attenuation material 12. That is, the damping member 12 is configured to be driven in one axial direction of the first axial direction X.
  • FIG. 3 is a block diagram showing a control unit for controlling the drive of the damping material.
  • the energy degrader 10 includes a control unit 20, drive motors 22A, 22B, and 23A, energy adjustment drive shafts 24A and 24B, and a beam diameter adjustment drive shaft 25A.
  • the control unit 20 is incorporated in, for example, a proton beam therapy apparatus control terminal that controls the operation of the particle beam therapy system 1.
  • This proton beam therapy apparatus terminal includes a CPU that performs arithmetic processing, a ROM and a RAM that are storage units, an input signal circuit, an output signal circuit, a power supply circuit, and the like.
  • the drive motors 22A, 22B, and 23A are electric motors that operate according to a command signal from the control unit 20.
  • the drive motor 22A applies a driving force to the energy adjusting drive shaft 24A extending in the first axial direction X.
  • the support portion supported by the energy adjusting drive shaft 24 ⁇ / b> A moves in the first axial direction X
  • the damping material 11 moves in the first axial direction X.
  • the drive motor 22B applies a driving force to the energy adjusting drive shaft 24B extending in the first axial direction X.
  • the support portion supported by the energy adjusting drive shaft 24 ⁇ / b> B moves in the first axial direction X
  • the damping material 12 moves in the first axial direction X.
  • the drive motor 23A applies a driving force to the beam diameter adjusting drive shaft 25A extending in the second axial direction X.
  • the drive motor 23A and the beam diameter adjusting drive shaft 25A are fixed to a support portion provided on the energy adjusting drive shaft 24 and move in the first axial direction X. Then, using the driving force of the drive motor 23A, the support portion supported by the beam diameter adjusting drive shaft 25A moves in the second axial direction Y, and the damping material 11 moves in the second axial direction Y.
  • the drive motor 22A and the energy adjustment drive shaft 24A function as an energy adjustment drive unit that drives the damping material 11 in the first axial direction X.
  • the drive motor 22B and the energy adjustment drive shaft 24A function as an energy adjustment drive unit that drives the damping material 12 in the first axial direction X.
  • the energy adjustment drive shaft 24A and the energy adjustment drive shaft 24B may be the same drive shaft.
  • the drive motor 23A and the beam diameter adjusting drive shaft 25A function as beam diameter adjusting driving means for driving the attenuation member 11 in the second axial direction Y.
  • other drive means such as a hydraulic cylinder may be used instead of the drive motor.
  • it may replace with drive shaft 24A, 24B, 25A, and the structure provided with another guide rail etc. may be sufficient.
  • the proton beam is accelerated by the cyclotron 2, and the accelerated proton beam is introduced into the energy degrader 10.
  • the proton beam introduced into the energy degrader 10 passes through the attenuation material 12 and the attenuation material 11 in this order.
  • the proton beam passes through the attenuating material 12 and the attenuating material 11 and is decelerated to reduce the energy by a predetermined attenuation amount.
  • the beam diameter of the proton beam B is enlarged according to the distance between the pair of attenuation members 11 and 12 and the beam diameter is enlarged according to the distance between the exit surface 12a of the attenuation member 12 and the outlet 13.
  • the proton beam B whose energy has been attenuated by the energy degrader 10 is transported by the transport line 4 and introduced into the rotating gantry 3.
  • the proton beam B introduced into the rotating gantry 3 is irradiated to the target site of the patient. And according to the energy of the proton beam B, the irradiation depth from the patient's body surface is adjusted.
  • FIG. 2B shows a state where the damping members 11 and 12 are driven.
  • the damping members 11 and 12 are disposed so as to be separated from each other in the first axial direction X and the second axial direction Y.
  • the damping material 11 can be moved in the first axial direction X and can be moved in the second axial direction Y.
  • the damping material 12 can be moved in the first axial direction X.
  • the distance between the attenuation members 11 and 12 in the traveling direction of the proton beam B is widened as compared with the state shown in FIG. Further, in the state shown in FIG. 2B, the attenuation material 11 is set so that the length of the proton beam B passing through the inside of the attenuation materials 11 and 12 is shorter than that in the state shown in FIG. , 12 are arranged.
  • the energy of the proton beam B is attenuated from, for example, 235 MeV to 230 MeV.
  • the plurality of attenuation members 11 and 12 are provided, and the energy of the proton beam B incident on the attenuation members 11 and 12 is attenuated.
  • the damping material 11 can be driven in the first axial direction X and the second axial direction Y, so that it is possible to adjust the amount of energy attenuation and between the damping materials 11 and 12. By adjusting the gap, the enlargement of the beam diameter can be adjusted.
  • the beam diameter of the proton beam B can be adjusted.
  • the beam diameter can be positively increased by widening the gap between the attenuation members 11 and 12.
  • the beam diameter is expanded in the space between the exit surface 12a and the outlet 13 by making the distance between the downstream damping member 12 and the degrader outlet 13 constant. It can be constant.
  • the beam diameter can be adjusted by adjusting only the attenuation member 11 in the Y direction. If the attenuation member 12 is movable in the Y direction and the attenuation member 12 is moved closer to the outlet 13, the distance between the attenuation member 11 and the attenuation member 12 becomes longer. Must be moved.
  • FIG. 4 and 5 are schematic views showing the arrangement of the energy degrader according to the modification
  • FIG. 6 is a schematic view showing the damping material according to the modification.
  • the energy degrader 10 may be configured such that the beam diameter can be adjusted by moving the damping material (second damping material) 12 in the second axial direction Y. Thereby, both the damping materials 11 and 12 are moved to the 2nd axial direction Y, the space
  • the surfaces orthogonal to the proton beam B of the attenuation members 11 and 12 may be arranged to face each other.
  • the energy degrader 10 may be configured such that the damping material can be moved along the inclined surface (third axial direction Z). Thereby, the amount of energy attenuation can be adjusted by moving the damping material in the third axial direction Z, and the expansion of the beam diameter for adjusting the gap between the damping materials 11 and 12 is adjusted. Can do.
  • the pair of attenuation members 11 and 12 may be driven obliquely (Z direction) with respect to the traveling direction of the proton beam B, and only one of the attenuation members 11 and 12 is driven in the Z direction. May be.
  • the shape of the damping material is not limited to the wedge shape, and for example, as shown in FIG. 6, it may be a shape having a step surface instead of the inclined surface.
  • the attenuation of the beam can be adjusted by arranging the attenuation material so that the proton beam B and the emission surface are orthogonal to each other and moving the attenuation material 11 in the Y direction. it can.
  • the energy degrader 10 is configured to include the damping materials 11 and 12, but may be configured to include only the damping material 11. In the above embodiment, the upstream damping material 11 is driven in the Y direction and the downstream damping material 12 is not driven in the Y direction.
  • the upstream damping material is driven in the Y direction.
  • the downstream damping material may be driven in the Y direction.
  • the damping material driven in the Y direction corresponds to the damping material described in the claims
  • the damping material arranged on the upstream side and not driven in the Y direction is the second damping material described in the claims. It corresponds to.
  • the energy degrader may be configured to be capable of rotating the attenuation material around a predetermined axis extending in the traveling direction of the beam B and moving the attenuation material in the traveling direction of the beam B.
  • the damping material is formed so as to have different thicknesses in the rotation direction.
  • the arrangement of the energy degrader 10 is not limited to the position immediately after the cyclotron 2, and the energy degrader 10 may be provided in the irradiation nozzle installed in the rotating gantry 3.
  • the accelerator is not limited to the cyclotron 2 and may be another accelerator such as a synchrocyclotron.
  • a drive mechanism (energy adjustment drive means, beam diameter adjustment drive means) for moving the damping material 11 in the X direction and the Y direction is guided by the first rail 31 extending in the X direction and the first rail 31.
  • a first stage 32 that moves in the X direction
  • a second rail 33 that is attached to the first stage 32 and extends in the Y direction
  • a second stage that is guided by the second rail 33 and moves in the Y direction.
  • the damping material 11 is attached to the second stage 34.
  • a known screw feed, roller, linear motor, or the like may be used as a mechanism for moving the first stage 32 along the first rail 31 and a mechanism for moving the second stage 34 along the second rail 33. It can.
  • the second stage 34 and the damping material 11 move in the X direction.
  • the damping material 11 moves in the Y direction.
  • the attenuation material 11 can be moved to a X direction and a Y direction.
  • a drive mechanism that moves the damping material 12 in the X direction and the Y direction includes a first rail 41 extending in the X direction and a first rail 41.
  • the first stage 42 guided and moved in the X direction, the second rail 43 attached to the first stage 42 and extending in the Y direction, and guided by the second rail 43 and moved in the Y direction.
  • a second stage 44 The damping material 12 is attached to the second stage 44.
  • a known screw feed, roller, linear motor, or the like may be used as a mechanism for moving the first stage 42 along the first rail 41 and a mechanism for moving the second stage 44 along the second rail 43. It can.
  • the second stage 44 and the damping material 12 move in the X direction.
  • the damping material 12 moves in the Y direction.
  • the attenuation material 12 can be moved to a X direction and a Y direction.
  • the energy degrader of the present invention and the charged particle irradiation system including the energy degrader can adjust the attenuation amount of the energy of the charged particles and can adjust the expansion of the beam diameter of the charged particle beam.
  • SYMBOLS 1 Particle beam therapy system (charged particle irradiation system), 2 ... Cyclotron (particle accelerator), 3 ... Rotating gantry, 4 ... Transport line, 10 ... Energy degrader, 11 ... Damping material, 11a ... Incident surface, 11b ... Inclination 12, damping material (second damping material), 12 a, emitting surface, 12 b, emitting surface, 13, outlet of energy degrader, 20, damping material drive control unit, 22 A, 22 B, driving motor (for energy adjustment) Drive means), 23A ... drive motor (drive means for adjusting beam diameter), 24A, 24B ... drive shaft for adjusting energy (drive means for adjusting energy), 25A ... drive shaft for adjusting beam diameter (drive control means for adjusting beam diameter) ).

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Surgery (AREA)
  • Otolaryngology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

荷電粒子のエネルギの減衰量を調節可能であると共に、荷電粒子ビームのビーム径の拡大を調節可能なエネルギーデグレーダ、及びそれを備えた荷電粒子照射システムを提供する。エネルギーデグレーダ(10)において、減衰材(11)を備える構成とし、減衰材に入射した荷電粒子を減速させてエネルギを減衰させる。減衰材11を第1の軸線方向Xに駆動するエネルギ調整用駆動手段を設け、第1の減衰材に対する荷電粒子の入射位置を変更することで、荷電粒子の減衰量を調節可能とする。さらに、減衰材(11)を第2の軸線方向Yに駆動するビーム径調整用駆動手段を設け、荷電粒子ビームの進行方向における減衰材11の位置を変更することで、ビーム径の拡大を調節する。

Description

エネルギーデグレーダ、及びそれを備えた荷電粒子照射システム
 本発明は、荷電粒子のエネルギを減衰させるエネルギーデグレーダ、及びそれを備えた荷電粒子照射システムに関する。
 陽子ビームなどの荷電粒子を患者に照射してがん治療を行う設備が知られている。この種の設備は、イオン源で生成された荷電粒子を加速させるサイクロトロン、サイクロトロンで加速された荷電粒子を輸送する輸送ライン、及び患者に対して任意の方向から荷電粒子を照射する回転自在の照射装置(回転ガントリ)を備えている。
 下記特許文献1に記載の技術では、荷電粒子ビームのエネルギを減衰させる一対の減衰材が楔形を成すように形成され、楔形の減衰材の斜面同士が互いに向き合うように配置されている。この一対の減衰材は、互いに接近、離間するように、一軸方向に進退移動可能な構成とされ、荷電粒子ビームが通過する減衰材の厚さを調節することで、エネルギの減衰量を調節している。
特表平8-511978号公報
 しかしながら、特許文献1に記載の技術では、荷電粒子ビームのエネルギの減衰量を少なくするために、荷電粒子ビームが通過する減衰材の長さを短くすべく、減衰材同士を離間させると、荷電粒子ビームが通過する経路において、減衰材の斜面同士の間隔が大きくなってしまう。斜面同士の間隔が大きくなると、荷電粒子ビームが空間中を通過する経路が長くなり、荷電粒子が空気中で発散し、その結果、ビーム径が大きくなってしまうという問題がある。
 本発明は、以上の課題を解決することを目的としており、荷電粒子のエネルギの減衰量を調節可能であると共に、荷電粒子ビームのビーム径の拡大(ビームの散乱)を調節可能なエネルギーデグレーダ、及びそれを備えた荷電粒子照射システムを提供することを目的とする。
 本発明は、入射した荷電粒子のエネルギを減衰させる減衰材を備えたエネルギーデグレーダであって、荷電粒子の入射位置に応じて異なる減衰量でエネルギを減衰させる減衰材と、荷電粒子の入射位置を変更するために、第1の軸線方向に減衰材を駆動するエネルギ調整用駆動手段と、荷電粒子のビーム径を調節するために、減衰材を、第1の軸線方向とは異なる第2の軸線方向に駆動するビーム径調整用駆動手段と、を備えるエネルギーデグレーダを提供する。
 本発明に係るエネルギーデグレーダでは、荷電粒子のエネルギを減衰させる減衰材を、エネルギ調整用駆動手段によって第1の軸方向に駆動することで、減衰材に対する荷電粒子の入射位置を変更し、荷電粒子の減衰量を調節することができる。そして、エネルギーデグレーダは、第1の軸線方向とは異なる第2の軸線方向に減衰材を駆動するビーム径調整用駆動手段を備え、減衰材の位置を変更することで、減衰材を通過した後の荷電粒子の経路長さを調節することが可能となるため、荷電粒子ビームのビーム径の拡大を調節することができる。
 また、エネルギーデグレーダは、荷電粒子の進行方向において減衰材の上流側または下流側に配置され、荷電粒子の入射位置に応じて異なる減衰量でエネルギを減衰させる第2の減衰材と、荷電粒子の入射位置を変更するために、第1の軸線方向に第2の減衰材を駆動する第2のエネルギ調整用駆動手段と、を更に備えることが好適である。これにより、減衰材の他に、第2の減衰材を備え、減衰材のみを第2の軸線方向に駆動する構成とし、減衰材と第2の減衰材との隙間を狭めることで、荷電粒子ビームのビーム径の拡大を調節することができる。
 また、減衰材は、荷電粒子の進行方向において第2の減衰材より上流側に配置されていることが好適である。これにより、減衰材と第2の減衰材との隙間を狭める場合には、上流側の減衰材のみを第2の軸線方向に駆動するだけでよく、下流側の第2の減衰材のビーム経路上の位置を変更する必要がない。
 また、本発明は、上記のエネルギーデグレーダを備え、荷電粒子を照射する荷電粒子照射システムであって、エネルギーデグレーダに導入される荷電粒子を加速する加速器と、エネルギーデグレーダによってエネルギが減衰された荷電粒子を、照射する照射装置と、を備える荷電粒子照射システムを提供する。
 本発明に係る荷電粒子照射システムは、入射した荷電粒子のエネルギを減衰させるエネルギーデグレーダを備えている。このエネルギーデグレーダでは、荷電粒子のエネルギを減衰させる減衰材を、エネルギ調整用駆動手段によって第1の軸方向に駆動することで、減衰材に対する荷電粒子の入射位置を変更し、荷電粒子の減衰量を調節することができる。そして、エネルギーデグレーダは、第1の軸線方向とは異なる第2の軸線方向に減衰材を駆動するビーム径調整用駆動手段を備え、減衰材の位置を変更することで、減衰材を通過した後の荷電粒子の経路長さを調節することが可能となるため、荷電粒子ビームのビーム径の拡大を調節することができる。そして、エネルギーデグレーダによってエネルギが減衰された荷電粒子を照射することができ、荷電粒子のエネルギに応じて、被照射体における照射深さを調整することが可能となる。
 本発明によれば、荷電粒子のエネルギの減衰量を調節可能であると共に、荷電粒子ビームのビーム径の拡大を調節可能なエネルギーデグレーダ、及びそれを備えた荷電粒子照射システムを提供することができる。
本発明の実施形態に係る粒子線治療システムの配置図である。 本発明の実施形態に係るエネルギーデグレーダを示す概略図である。 減衰材の駆動制御を行う制御部を示すブロック図である。 変形例に係るエネルギーデグレーダの減衰材の配置を示す概略図である。 変形例に係るエネルギーデグレーダの減衰材の配置を示す概略図である。 変形例に係る減衰材を示す概略図である。 減衰材の駆動機構の実施例を示す概略図である。
 以下、本発明に係るエネルギーデグレーダ、及びそれを備えた荷電粒子照射システムの好適な実施形態について図面を参照しながら説明する。本実施形態では、荷電粒子照射システムを粒子線治療システムとした場合について説明する。
 (荷電粒子照射システム)
 粒子線治療システムは、例えばがん治療に適用されるものであり、患者の体内の腫瘍(照射目標物)に対して、陽子ビーム(荷電粒子)を照射する装置である。
 図1に示すように、粒子線治療システム1は、イオン源(図示せず)で生成した水素の陰イオンを加速させた上で電子をはぎとって陽子ビームとして取り出すサイクロトロン(粒子加速器)2、患者に対して任意の方向から陽子ビームを照射する回転自在の回転ガントリ(照射装置)3、サイクロトロン2で加速された陽子ビームを回転ガントリ3まで輸送する輸送ライン4を備えている。
 サイクロトロン2で加速された陽子ビームは、輸送ライン4に沿って経路が変更され、回転ガントリ3に輸送される。輸送ライン4には、陽子ビームの経路を変更させるための偏向磁石が設けられている。また、輸送ライン4には、荷電粒子のエネルギを減衰させるエネルギーデグレーダ10が設けられている(詳しくは後述する)。
 回転ガントリ3は、患者が横たわる治療台、患者に向けて陽子ビームを照射する照射部を備えている。エネルギーデグレーダ10によってエネルギが減衰された荷電粒子は、照射部から出射され、患者の対象部位に照射される。
 (エネルギーデグレーダ)
 図2は、本発明の実施形態に係るエネルギーデグレーダを示す概略図である。図2に示すエネルギーデグレーダ10は、陽子ビームの経路上に設けられ、陽子ビームのエネルギを減衰させるものである。エネルギーデグレーダ10は、透過する陽子ビームのエネルギを減衰させる一対の減衰材(第1の減衰材、第2の減衰材)11,12を備えている。
 (第1の減衰材)
 減衰材11は、請求項に記載の減衰材に相当するものである。減衰材11は、陽子ビームBの進行方向において、減衰材12よりも上流側(エネルギーデグレーダ10の入口側)に配置されている。減衰材11は、くさび形を成し、陽子ビームBに対して直交する面である入射面11aと、陽子ビームBに対して傾斜して配置され陽子ビームBを出射する傾斜面11bとを有する。減衰材11は、陽子ビームBと交差する方向において、異なる厚さを有する構成とされている。なお、減衰材11は、くさび形ではない形状でもよい。入射面11aは、陽子ビームBに対して傾斜する面でもよい。また、出射側の面が、陽子ビームBと直交するように配置されていてもよい。
 減衰材11は、例えば、炭素(C)やベリリウム(Be)などによって製作されている。減衰材11は、陽子ビームBの減衰材11への入射位置に応じて異なる減衰量で陽子ビームBのエネルギを減衰させるものである。陽子ビームBは、透過する減衰材11の厚さに応じて異なる減速度で減速されて、運動エネルギが減少する。なお、減衰材11は、単一の材質からではなく異なる複数の材質から製作されているものでもよい。入射位置に応じて異なる材質を透過させることで、エネルギ減衰量を変化させる構成でもよい。
 (第2の減衰材)
 減衰材12は、請求項に記載の第2の減衰材に相当するものである。減衰材12は、陽子ビームBの進行方向において、減衰材11よりも下流側(エネルギーデグレーダ10の出口13側)に配置されている。減衰材12は、くさび形を成し、エネルギーデグレーダ10の出口13側と対面し陽子ビームBと直交する面である出射面12aと、陽子ビームBに対して傾斜して配置され陽子ビームBを入射する入射面12bとを有する。減衰材12は、陽子ビームBと交差する方向において、異なる厚さを有する構成とされている。なお、減衰材12は、くさび形ではない形状でもよい。出射面11aは、陽子ビームBに対して傾斜する面でもよい。また、入射側の面が、陽子ビームBと直交するように配置されていてもよい。
 減衰材12は、例えば、炭素(C)やベリリウム(Be)などによって製作されている。減衰材12は、陽子ビームBの減衰材12への入射位置に応じて異なる減衰量で陽子ビームBのエネルギを減衰させるものである。陽子ビームBは、透過する減衰材12の厚さに応じて異なる減速度で減速されて、運動エネルギが減少する。なお、減衰材12は、単一の材質からではなく異なる複数の材質から製作されているものでもよい。入射位置に応じて異なる材質を透過させることで、エネルギ減衰量を変化させる構成でもよい。
 そして、一対の減衰材11,12は、互いの傾斜面11b,12b同士が対面し、入射面11a及び出射面12aが平行となるように配置されている。なお、一対の減衰材11,12の傾斜面11b,12bは、平行に配置されていてもよく、異なる角度で配置されていてもよい。また、減衰材11,12は、同一の形状であることが好ましいが、互いに異なる形状でもよい。また、減衰材11,12の他に、他の減衰材を更に備える構成でもよい。
 (第1の減衰材の駆動)
 ここで、減衰材11は、陽子ビームBのエネルギ減衰量を調節する方向である第1の軸方向Xと、陽子ビームBのビーム径の大きさ(ビームの幅)を調節する方向である第2の軸方向Yとに移動可能な構成とされている。エネルギーデグレーダ10は、陽子ビームBの減衰材11への入射位置を変更するために、減衰材11を第1の軸方向Xに駆動するエネルギ調整用駆動手段と、陽子ビームBのビーム径を調節するために、減衰材11を第2の軸方向Yに駆動するビーム径調整用駆動手段とを備えている。すなわち、減衰材11は、第1の軸方向Xと、第2の軸方向Yとの2軸方向に駆動可能な構成とされている。
 (第2の減衰材の駆動)
 また、減衰材12は、陽子ビームBのエネルギ減衰量を調節する第1の軸方向Xに移動可能な構成とされている。エネルギーデグレーダ10は、陽子ビームBの減衰材12への入射位置を変更するために、減衰材12を第1の軸方向Xに駆動するエネルギ調整駆動手段を備えている。すなわち、減衰材12は、第1の軸方向Xの1軸方向に駆動可能な構成とされている。
 (減衰材駆動制御部)
 図3は、減衰材の駆動制御を行う制御部を示すブロック図である。エネルギーデグレーダ10は、制御部20、駆動モータ22A,22B,23A、エネルギ調整用駆動軸24A,24B、及びビーム径調整用駆動軸25Aを備えている。
 制御部20は、例えば、粒子線治療システム1の動作を制御する陽子線治療装置制御端末に組み込まれている。この陽子線治療装置端末は、演算処理を行うCPU、記憶部となるROM及びRAM、入力信号回路、出力信号回路、電源回路などにより構成されている。
 駆動モータ22A,22B,23Aは、制御部20からの指令信号に従い作動する電動モータである。駆動モータ22Aは、第1の軸方向Xに延在するエネルギ調整用駆動軸24Aに駆動力を付与する。これにより、エネルギ調整用駆動軸24Aに支持された支持部が第1の軸方向Xに移動し、減衰材11を第1の軸方向Xに移動させる。駆動モータ22Bは、第1の軸方向Xに延在するエネルギ調整用駆動軸24Bに駆動力を付与する。これにより、エネルギ調整用駆動軸24Bに支持された支持部が第1の軸方向Xに移動し、減衰材12を第1の軸方向Xに移動させる。
 駆動モータ23Aは、第2の軸方向Xに延在するビーム径調整用駆動軸25Aに駆動力を付与する。駆動モータ23A及びビーム径調整用駆動軸25Aは、エネルギ調整用駆動軸24に設けられた支持部に固定されて、第1の軸線方向Xに移動する。そして、駆動モータ23Aによる駆動力を用いて、ビーム径調整用駆動軸25Aに支持された支持部が第2の軸方向Yに移動し、減衰材11を第2の軸方向Yに移動させる。
 そして、駆動モータ22A及びエネルギ調整用駆動軸24Aが、第1の軸線方向Xに減衰材11を駆動するエネルギ調整用駆動部として機能する。駆動モータ22B及びエネルギ調整用駆動軸24Aが、第1の軸線方向Xに減衰材12を駆動するエネルギ調整用駆動部として機能する。なお、エネルギ調整用駆動軸24A及びエネルギ調整用駆動軸24Bは、同一の駆動軸でも良い。
 また、駆動モータ23A及びビーム径調整用駆動軸25Aが、第2の軸線方向Yに減衰材11を駆動するビーム径調整用駆動手段として機能する。なお、駆動モータに代えて、油圧シリンダなど他の駆動手段を用いてもよい。また、駆動軸24A,24B,25Aに代えて、その他の案内レールなどを備える構成でもよい。
 (エネルギーデグレーダ及粒子線治療システムの作用)
 粒子線治療システム1では、サイクロトロン2によって陽子ビームが加速され、加速された陽子ビームは、エネルギーデグレーダ10に導入される。エネルギーデグレーダ10に導入された陽子ビームは、減衰材12、減衰材11をこの順に通過する。陽子ビームは、減衰材12及び減衰材11を通過して、減速されて所定の減衰量で、エネルギが減速される。また、陽子ビームBは、一対の減衰材11,12の間隔に応じて、ビーム径が拡大されると共に、減衰材12の出射面12aと出口13との距離に応じて、ビーム径が拡大される。
 エネルギーデグレーダ10によってエネルギが減衰された陽子ビームBは、輸送ライン4によって輸送されて、回転ガントリ3に導入される。回転ガントリ3に導入された陽子ビームBは、患者の対象部位に照射される。そして、陽子ビームBのエネルギに応じて、患者の体表からの照射深さが調整される。
 図2(b)では、減衰材11,12が駆動された状態を示している。図2(b)に示す状態では、減衰材11,12は、第1の軸方向X及び第2の軸方向Yにおいて互いに離間するように配置されている。エネルギーデグレーダ10では、減衰材11を第1の軸方向Xに移動すると共に第2の軸方向Yに移動することができる。また、エネルギーデグレーダ10では、減衰材12を第1の軸方向Xに移動することができる。
 図2(b)に示す状態では、図2(a)に示す状態と比較して、陽子ビームBの進行方向における、減衰材11,12同士の間隔が広げられている。また、図2(b)に示す状態では、図2(a)に示す状態と比較して、減衰材11,12の内部を通過する陽子ビームBの長さが短くなるように、減衰材11,12が配置されている。エネルギーデグレーダ10を通過することで、陽子ビームBのエネルギは、例えば、235MeVから230MeVへ減衰される。
 このような本実施形態のエネルギーデグレーダ及びそれを備えた粒子線治療システムによれば、複数の減衰材11,12を備え、これらの減衰材11,12に入射する陽子ビームBのエネルギを減衰させることができる。エネルギーデグレーダ10では、減衰材11を第1の軸方向X及び第2の軸方向Yに駆動することができるため、エネルギ減衰量を調節することが可能であると共に、減衰材11,12間の隙間を調節することで、ビーム径の拡大を調節することができる。すなわち、減衰材11,12間の隙間を狭めることで、減衰材11と減衰材12との間の空間での陽子の発散を抑制し、陽子ビームBのビーム径の拡大を調節することができる。また、ビーム径の大きな陽子ビームBの照射が必要な場合には、減衰材11,12間の隙間を広げることで、積極的にビーム径を大きくすることもできる。
 また、本実施形態のエネルギーデグレーダ10では、下流側の減衰材12とデグレーダ出口13との距離を一定とすることで、出射面12aと出口13との間の空間でのビーム径の拡大を一定とすることが可能である。ビーム径の拡大が最小限となるように予め出射面12aと出口13との距離を設定することで、減衰材11のみをY方向に調整することでビーム径の拡大を調節することができる。なお、減衰材12をY方向に可動とし、減衰材12を出口13に近づけるように移動させると、減衰材11と減衰材12との距離が長くなってしまうため、減衰材11もY方向に移動させる必要がある。
 以上、本発明をその実施形態に基づき具体的に説明したが、本発明は、上記実施形態に限定されるものではない。図4及び図5は、変形例に係るエネルギーデグレーダの配置を示す概略図、図6は、変形例に係る減衰材を示す概略図である。
 図4(a)に示すように、エネルギーデグレーダ10は、減衰材(第2の減衰材)12を第2の軸方向Yに移動させることで、ビーム径を調節可能な構成としてもよい。これにより、減衰材11,12の両方を第2の軸方向Yに移動し、減衰材11,12間の間隔を変更し、ビーム径の拡大を調節することができる。
 また、図4(b)に示すように、減衰材11,12の陽子ビームBと直交する面同士を対面させて配置してもよい。
 また、図5に示すように、エネルギーデグレーダ10は、減衰材を傾斜面(第3の軸方向Z)に沿って、移動可能な構成としてもよい。これにより、減衰材を第3の軸方向Zに移動させることで、エネルギ減衰量を調節することができると共に、減衰材11,12の隙間が一定であるためのビーム径の拡大を調節することができる。図5に示すように一対の減衰材11,12を、陽子ビームBの進行方向に対して斜め(Z方向)に駆動させてもよく、減衰材11,12の一方のみをZ方向に駆動してもよい。
 また、減衰材の形状は、くさび形に限定されず、例えば図6に示すように、傾斜面に代えて、段差面を有する形状とすることも可能である。階段状の段差面を有する構成であれば、陽子ビームBと出射面とが直交するように、減衰材を配置し、減衰材11をY方向に移動させることでビームの拡大を調節することができる。また、上記エネルギーデグレーダ10では、減衰材11,12を備える構成としているが、減衰材11のみを備える構成でもよい。また、上記実施形態では、上流側の減衰材11をY方向に駆動し、下流側の減衰材12をY方向に駆動しない構成とされているが、上流側の減衰材をY方向に駆動せず、下流側の減衰材のみをY方向に駆動する構成としてもよい。このような構成の場合、Y方向に駆動される減衰材が請求項に記載の減衰材に相当し、上流側に配置されY方向に駆動されない減衰材が請求項に記載の第2の減衰材に相当する。
 また、エネルギーデグレーダは、ビームBの進行方向に延在する所定の軸周りに減衰材を回転移動可能であると共に、ビームBの進行方向に減衰材を移動可能である構成としてもよい。この場合には、回転方向において、厚さが異なるように減衰材を形成する。これにより、減衰材を所定の軸周りに回転させることで、エネルギ減衰量を調節すると共に、減衰材をビームBの進行方向に移動させることで、ビーム径の拡大を調節することができる。
 また、エネルギーデグレーダ10の配置は、サイクロトロン2の直後に限定されず、回転ガントリ3に設置された照射ノズル中にエネルギーデグレーダ10が設けられている構成でもよい。
 また、加速器は、サイクロトロン2に限定されず、例えば、シンクロサイクロトロンなど、他の加速器でもよい。
 次に図7を参照して、減衰材11,12の駆動機構の一実施例について説明する。減衰材11をX方向及びY方向に移動させる駆動機構(エネルギ調整用駆動手段、ビーム径調整用駆動手段)は、X方向に延在する第1レール31と、第1レール31に案内されて、X方向に移動する第1ステージ32と、第1ステージ32に取り付けられて、Y方向に延在する第2レール33と、第2レール33に案内されて、Y方向に移動する第2ステージ34とを備えている。減衰材11は、第2ステージ34に取り付けられている。
 第1ステージ32を第1レール31に沿って移動させる機構、及び、第2ステージ34を第2レール33に沿って移動させる機構としては、公知のネジ送り、ローラー、リニアモーターなどを用いることができる。
 そして、第1ステージ32がX方向に移動することで第2ステージ34及び減衰材11がX方向に移動する。第2ステージ34がY方向に移動することで減衰材11がY方向に移動する。これにより、減衰材11をX方向及びY方向に移動させることができる。
 同様に、減衰材12をX方向及びY方向に移動させる駆動機構(エネルギ調整用駆動手段、ビーム径調整用駆動手段)は、X方向に延在する第1レール41と、第1レール41に案内されて、X方向に移動する第1ステージ42と、第1ステージ42に取り付けられて、Y方向に延在する第2レール43と、第2レール43に案内されて、Y方向に移動する第2ステージ44とを備えている。減衰材12は、第2ステージ44に取り付けられている。
 第1ステージ42を第1レール41に沿って移動させる機構、及び、第2ステージ44を第2レール43に沿って移動させる機構としては、公知のネジ送り、ローラー、リニアモーターなどを用いることができる。
 そして、第1ステージ42がX方向に移動することで第2ステージ44及び減衰材12がX方向に移動する。第2ステージ44がY方向に移動することで減衰材12がY方向に移動する。これにより、減衰材12をX方向及びY方向に移動させることができる。
 本発明のエネルギーデグレーダ、及びそれを備えた荷電粒子照射システムは、荷電粒子のエネルギの減衰量を調節可能であると共に、荷電粒子ビームのビーム径の拡大を調節することができる。
 1…粒子線治療システム(荷電粒子照射システム)、2…サイクロトロン(粒子加速器)、3…回転ガントリ、4…輸送ライン、10…エネルギーデグレーダ、11…減衰材、11a…入射面、11b…傾斜面、12…減衰材(第2の減衰材)、12a…出射面、12b…出射面、13…エネルギーデグレーダの出口、20…減衰材駆動制御部、22A,22B…駆動モータ(エネルギ調整用駆動手段)、23A…駆動モータ(ビーム径調整用駆動手段)、24A,24B…エネルギ調整用駆動軸(エネルギ調整用駆動手段)、25A…ビーム径調整用駆動軸(ビーム径調整用駆動制御手段)。

Claims (4)

  1.  入射した荷電粒子のエネルギを減衰させる減衰材を備えたエネルギーデグレーダであって、
     前記荷電粒子の入射位置に応じて異なる減衰量でエネルギを減衰させる前記減衰材と、
     前記荷電粒子の前記入射位置を変更するために、第1の軸線方向に前記減衰材を駆動するエネルギ調整用駆動手段と、
     前記荷電粒子のビーム径を調節するために、前記減衰材を、前記第1の軸線方向とは異なる第2の軸線方向に駆動するビーム径調整用駆動手段と、
    を備えることを特徴とするエネルギーデグレーダ。
  2.  前記荷電粒子の進行方向において前記減衰材の上流側または下流側に配置され、前記荷電粒子の入射位置に応じて異なる減衰量でエネルギを減衰させる第2の減衰材と、
     前記荷電粒子の前記入射位置を変更するために、第1の軸線方向に前記第2の減衰材を駆動する第2のエネルギ調整用駆動手段と、
    を更に備えることを特徴とする請求項1記載のエネルギーデグレーダ。
  3.  前記減衰材は、前記荷電粒子の進行方向において前記第2の減衰材より上流側に配置されていることを特徴とする請求項2記載のエネルギーデグレーダ。
  4.  請求項1~3の何れか一項に記載のエネルギーデグレーダを備え、前記荷電粒子を照射する荷電粒子照射システムであって、
     前記エネルギーデグレーダに導入される前記荷電粒子を加速する加速器と、
     前記エネルギーデグレーダによってエネルギが減衰された前記荷電粒子を、照射する照射装置と、
    を備える荷電粒子照射システム。
PCT/JP2011/076440 2010-12-27 2011-11-16 エネルギーデグレーダ、及びそれを備えた荷電粒子照射システム WO2012090614A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012518339A JP5638606B2 (ja) 2010-12-27 2011-11-16 エネルギーデグレーダ、及びそれを備えた荷電粒子照射システム
KR1020127011842A KR101307200B1 (ko) 2010-12-27 2011-11-16 에너지 디그레이더, 및 이를 구비한 하전입자 조사시스템
CN201180004541.6A CN102763169B (zh) 2010-12-27 2011-11-16 降能器及具备该降能器的带电粒子照射系统
EP11835319.2A EP2660825B1 (en) 2010-12-27 2011-11-16 Energy degrader and charged-particle irradiation system provided with same
US13/455,754 US8618519B2 (en) 2010-12-27 2012-04-25 Energy degrader and charged particle irradiation system including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010289719 2010-12-27
JP2010-289719 2010-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/455,754 Continuation US8618519B2 (en) 2010-12-27 2012-04-25 Energy degrader and charged particle irradiation system including the same

Publications (1)

Publication Number Publication Date
WO2012090614A1 true WO2012090614A1 (ja) 2012-07-05

Family

ID=46382734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076440 WO2012090614A1 (ja) 2010-12-27 2011-11-16 エネルギーデグレーダ、及びそれを備えた荷電粒子照射システム

Country Status (7)

Country Link
US (1) US8618519B2 (ja)
EP (1) EP2660825B1 (ja)
JP (1) JP5638606B2 (ja)
KR (1) KR101307200B1 (ja)
CN (1) CN102763169B (ja)
TW (1) TWI450279B (ja)
WO (1) WO2012090614A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016189909A (ja) * 2015-03-31 2016-11-10 住友重機械工業株式会社 荷電粒子線治療装置
JP2020503139A (ja) * 2017-01-05 2020-01-30 メビオン・メディカル・システムズ・インコーポレーテッド 高速エネルギースイッチング

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7931784B2 (en) 2008-04-30 2011-04-26 Xyleco, Inc. Processing biomass and petroleum containing materials
US20140264065A1 (en) 2013-03-15 2014-09-18 Varian Medical Systems, Inc. Energy degrader for radiation therapy system
JP6855240B2 (ja) 2013-09-27 2021-04-07 メビオン・メディカル・システムズ・インコーポレーテッド 粒子ビーム走査
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) * 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
ES2620670T3 (es) * 2014-12-16 2017-06-29 Ion Beam Applications S.A. Degradador de energía
DE102015106246A1 (de) * 2015-04-23 2016-10-27 Cryoelectra Gmbh Strahlführungssystem, Teilchenstrahl-Therapieanlage und Verfahren
CN106552323B (zh) * 2015-09-30 2018-05-15 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
EP3203815A1 (en) * 2016-02-04 2017-08-09 Ion Beam Applications Rotating energy degrader
JP7059245B2 (ja) 2016-07-08 2022-04-25 メビオン・メディカル・システムズ・インコーポレーテッド 治療計画の決定
CN106304606A (zh) * 2016-07-29 2017-01-04 中国原子能科学研究院 一种双直排插入式降能器及其使用方法
CN106406216B (zh) * 2016-10-24 2018-02-16 合肥中科离子医学技术装备有限公司 一种用于粒子束流降能器的控制装置及其控制方法
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
EP3645111A1 (en) 2017-06-30 2020-05-06 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
CN109104809A (zh) * 2018-08-22 2018-12-28 西北核技术研究所 一种用于加速器终端实验站的降能器及降能方法
TW202039026A (zh) 2019-03-08 2020-11-01 美商美威高能離子醫療系統公司 藉由管柱之輻射遞送及自其產生治療計劃
CN111741587A (zh) * 2020-05-25 2020-10-02 中国原子能科学研究院 一种真空环境束流能量在线调节装置
CN111885809A (zh) * 2020-06-30 2020-11-03 中国原子能科学研究院 一种宽能大束斑电子加速器
KR20220047094A (ko) 2020-10-08 2022-04-15 한국원자력연구원 패러데이 장치
RU2765830C1 (ru) * 2021-04-26 2022-02-03 Объединенный Институт Ядерных Исследований (Оияи) Способ изменения конечной энергии протонного пучка, используемого для флэш-терапии

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05200126A (ja) * 1992-01-27 1993-08-10 Hitachi Medical Corp 定位的放射線治療装置
JPH08511978A (ja) 1993-07-02 1996-12-17 エフ. モイヤーズ,マイケル 荷電粒子ビーム散乱システム
JPH11408A (ja) * 1997-06-12 1999-01-06 Mitsubishi Electric Corp 荷電粒子照射装置およびそのビーム照射方法
JP2000354637A (ja) * 1999-06-15 2000-12-26 Mitsubishi Electric Corp 荷電粒子照射装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5440133A (en) * 1993-07-02 1995-08-08 Loma Linda University Medical Center Charged particle beam scattering system
US6256591B1 (en) * 1996-11-26 2001-07-03 Mitsubishi Denki Kabushiki Kaisha Method of forming energy distribution
CN2366129Y (zh) * 1998-08-13 2000-03-01 深圳奥沃国际科技发展有限公司 一种源强调节装置
DE19907098A1 (de) * 1999-02-19 2000-08-24 Schwerionenforsch Gmbh Ionenstrahl-Abtastsystem und Verfahren zum Betrieb des Systems
US6777700B2 (en) * 2002-06-12 2004-08-17 Hitachi, Ltd. Particle beam irradiation system and method of adjusting irradiation apparatus
EP1703537B9 (en) * 2005-03-17 2008-10-22 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Analysing system and charged particle beam device
JP2006280457A (ja) * 2005-03-31 2006-10-19 Hitachi Ltd 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法
JP4474549B2 (ja) * 2005-06-15 2010-06-09 独立行政法人放射線医学総合研究所 照射野形成装置
JP4797140B2 (ja) * 2007-01-18 2011-10-19 独立行政法人国立がん研究センター 荷電粒子線照射装置
CN101126814B (zh) * 2007-05-26 2011-04-06 中国科学院近代物理研究所 重离子及质子治疗中Bragg峰展宽的旋转降能装置
DE102007054919B4 (de) * 2007-08-24 2009-07-30 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Schnelle Regelung der Reichweite von hochenergetischen Ionenstrahlen für Präzisionsbestrahlungen von bewegten Zielvolumina
JP4739358B2 (ja) * 2008-02-18 2011-08-03 住友重機械工業株式会社 ターゲット装置
US8466428B2 (en) * 2009-11-03 2013-06-18 Mitsubishi Electric Corporation Particle beam irradiation apparatus and particle beam therapy system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05200126A (ja) * 1992-01-27 1993-08-10 Hitachi Medical Corp 定位的放射線治療装置
JPH08511978A (ja) 1993-07-02 1996-12-17 エフ. モイヤーズ,マイケル 荷電粒子ビーム散乱システム
JPH11408A (ja) * 1997-06-12 1999-01-06 Mitsubishi Electric Corp 荷電粒子照射装置およびそのビーム照射方法
JP2000354637A (ja) * 1999-06-15 2000-12-26 Mitsubishi Electric Corp 荷電粒子照射装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2660825A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016189909A (ja) * 2015-03-31 2016-11-10 住友重機械工業株式会社 荷電粒子線治療装置
JP2020503139A (ja) * 2017-01-05 2020-01-30 メビオン・メディカル・システムズ・インコーポレーテッド 高速エネルギースイッチング
JP7041158B2 (ja) 2017-01-05 2022-03-23 メビオン・メディカル・システムズ・インコーポレーテッド 高速エネルギースイッチング

Also Published As

Publication number Publication date
TWI450279B (zh) 2014-08-21
US20120267544A1 (en) 2012-10-25
US8618519B2 (en) 2013-12-31
KR101307200B1 (ko) 2013-09-11
JPWO2012090614A1 (ja) 2014-06-05
CN102763169B (zh) 2015-07-22
TW201241839A (en) 2012-10-16
JP5638606B2 (ja) 2014-12-10
KR20120100979A (ko) 2012-09-12
EP2660825A4 (en) 2014-07-30
CN102763169A (zh) 2012-10-31
EP2660825A1 (en) 2013-11-06
EP2660825B1 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5638606B2 (ja) エネルギーデグレーダ、及びそれを備えた荷電粒子照射システム
JP5726644B2 (ja) エネルギーデグレーダ、及びそれを備えた荷電粒子線照射システム
JP5726541B2 (ja) エネルギーデグレーダ、及びそれを備えた荷電粒子照射システム
JP4115468B2 (ja) 粒子線治療装置
JP4691576B2 (ja) 粒子線治療システム
EP3035776B1 (en) Energy degrader
JP2011224342A5 (ja)
JP2020000779A (ja) 荷電粒子ビーム照射装置
JP4335290B2 (ja) 粒子線治療装置
JP2008264062A (ja) レンジシフタ及び粒子線照射装置
JP4639401B2 (ja) 荷電粒子線照射装置
JP4959434B2 (ja) 粒子線照射システム
JP2011050660A (ja) 粒子線治療システム及び粒子線照射方法
JP6787771B2 (ja) 荷電粒子線治療装置
JP3681382B2 (ja) 粒子線照射装置及び荷電粒子ビーム照射装置の調整方法
JP7165499B2 (ja) 荷電粒子線治療装置
TWI622418B (zh) 粒子射線治療裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004541.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012518339

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011835319

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127011842

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE