JP7041158B2 - 高速エネルギースイッチング - Google Patents

高速エネルギースイッチング Download PDF

Info

Publication number
JP7041158B2
JP7041158B2 JP2019536182A JP2019536182A JP7041158B2 JP 7041158 B2 JP7041158 B2 JP 7041158B2 JP 2019536182 A JP2019536182 A JP 2019536182A JP 2019536182 A JP2019536182 A JP 2019536182A JP 7041158 B2 JP7041158 B2 JP 7041158B2
Authority
JP
Japan
Prior art keywords
plate
particle beam
energy
particle
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019536182A
Other languages
English (en)
Other versions
JP2020503139A (ja
Inventor
ゲリット・タウンセンド・ズワート
マーク・アール・ジョーンズ
ジェームズ・クーリー
アダム・モルザーン
Original Assignee
メビオン・メディカル・システムズ・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/399,250 external-priority patent/US10675487B2/en
Application filed by メビオン・メディカル・システムズ・インコーポレーテッド filed Critical メビオン・メディカル・システムズ・インコーポレーテッド
Publication of JP2020503139A publication Critical patent/JP2020503139A/ja
Application granted granted Critical
Publication of JP7041158B2 publication Critical patent/JP7041158B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1083Robot arm beam systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1043Scanning the radiation beam, e.g. spot scanning or raster scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1045X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1081Rotating beam systems with a specific mechanical construction, e.g. gantries
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • G21K1/046Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers varying the contour of the field, e.g. multileaf collimators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/10Scattering devices; Absorbing devices; Ionising radiation filters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/02Synchrocyclotrons, i.e. frequency modulated cyclotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/001Arrangements for beam delivery or irradiation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1095Elements inserted into the radiation path within the system, e.g. filters or wedges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/001Arrangements for beam delivery or irradiation
    • H05H2007/002Arrangements for beam delivery or irradiation for modifying beam trajectory, e.g. gantries
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/001Arrangements for beam delivery or irradiation
    • H05H2007/004Arrangements for beam delivery or irradiation for modifying beam energy, e.g. spread out Bragg peak devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/001Arrangements for beam delivery or irradiation
    • H05H2007/007Arrangements for beam delivery or irradiation for focusing the beam to irradiation target
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • H05H2007/046Magnet systems, e.g. undulators, wigglers; Energisation thereof for beam deflection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/12Arrangements for varying final energy of beam
    • H05H2007/122Arrangements for varying final energy of beam by electromagnetic means, e.g. RF cavities

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Robotics (AREA)
  • Radiation-Therapy Devices (AREA)

Description

関連出願の相互参照
本出願は、2013年12月13日に出願した、「Collimator and Energy Degrader」という表題の米国特許出願第14/137,854号の一部継続出願であり、その優先権を主張するものである。米国特許出願第14/137,854号は、参照により本明細書に組み込まれている。
本開示は、一般的に、粒子ビームのエネルギーを変化させるように構成可能であるエネルギーデグレーダに関する。
粒子治療システムは、加速器を使用して、腫瘍などの苦痛を治療するための粒子ビームを発生する。動作時に、粒子は、磁場の存在下で空洞内の軌道に沿って加速され、引き出しチャネルを通して空洞から取り出される。磁場再生器は、空洞の外側の近くに磁場バンプを生成して幾つかの軌道のピッチおよび角度を歪め、これらの軌道が引き出しチャネルの方へ歳差運動をし、最終的に引き出しチャネル内に入るようにする。粒子からなるビームは、引き出しチャネルを出る。
走査システムは、引き出しチャネルのビーム下流側(down-beam)にある。この文脈において、「ビーム下流側」は、照射ターゲットに(ここでは、引き出しチャネルに対して)より近いことを意味する。走査システムは、ビームを照射ターゲットの少なくとも一部にわたって動かし、照射ターゲットの様々な部分をビームに曝す。例えば、腫瘍を治療するために、粒子ビームが腫瘍の異なる断面の上で「走査」され得る。エネルギーデグレーダは、腫瘍の異なる断面に到達するように粒子ビームのエネルギーを変化させる。
米国特許出願第13/907,601号(米国特許第8,791,656号) 米国特許出願第13/916,401号(米国特許公開第2014/0371511号) 米国特許出願第11/948,662号(米国特許第8,581,523号) 米国特許出願第11/948,359号(米国特許第8,933,650号) 米国特許出願第14/937,048号
例示的な粒子治療システムは、粒子ビームを出力するための粒子加速器と、粒子ビームを照射ターゲットに通すように制御可能であるエネルギーデグレーダとを備える。エネルギーデグレーダの少なくとも一部は、照射ターゲットへの粒子ビームの通過中に移動するように制御可能であり得る。例示的な粒子治療システムは、以下の特徴のうちの1つまたは複数を、単独で、または組み合わせて含み得る。
エネルギーデグレーダは、移動可能であるプレート(例えば、複数のプレート)を備え得る。複数のプレートは、粒子ビームの通過中に移動するように制御可能である第1のプレートと第2のプレートとを備え得る。第2のプレートは、移動中に第1のプレートの後を追うように制御可能であり得るか、または第1のプレートは、移動中に第2のプレートの後を追うように制御可能であり得る。
例示的な粒子治療システムは、照射ターゲットに関して1つまたは複数の次元で粒子ビームを移動するように制御可能であるスキャナを備え得る。エネルギーデグレーダまたはスキャナのうちの少なくとも一方は、第1のプレートおよび第2のプレートの移動中に、粒子ビームが第1のプレートを通過するが第2のプレートを通過しないか、または第2のプレートを通過するが第1のプレートを通過しないように制御可能であるものとしてよい。エネルギーデグレーダまたはスキャナのうちの少なくとも一方は、第1のプレートおよび第2のプレートの移動中に、粒子ビームが第1のプレートおよび第2のプレートの両方を通過するように制御可能であるものとしてよい。複数のプレートのうちの1つのプレートを横切る粒子ビームの移動は、プレートの縁から所定の距離の外側の移動に制限され得る。
エネルギーデグレーダは、粒子ビームの通過中に移動するように制御可能である第1のプレートと第2のプレートとを備える複数のプレートを具備し得る。第1のプレートおよび第2のプレートの移動中に、第1のプレートおよび第2のプレートは、開始位置から終了位置まで移動し得る。粒子ビームは、粒子ビームが第1のプレートおよび第2のプレートの両方を通過するか、または第1のプレートもしくは第2のプレートのうちの一方のみを通過するようにある配置から終了位置の方へ移動するように制御可能であるものとしてよい。粒子ビームは、粒子ビームが第1のプレートおよび第2のプレートの両方を通過するか、または第1のプレートもしくは第2のプレートのうちの一方のみを通過するようにある配置から開始位置の方へ移動するように制御可能であるものとしてよい。
エネルギーデグレーダの複数のプレートは、1つまたは複数の第1のプレートと1つまたは複数の第2のプレートとを備えを得る。1つまたは複数の第1のプレートおよび1つまたは複数の第2のプレートは、粒子ビームに関して移動するように制御可能であるものとしてよい。1つまたは複数の第1のプレートの各々は、1つまたは複数の第2のプレートの厚さより薄い厚さを有していてもよい。1つまたは複数の第1のプレートのうちの1つの第1のプレートは、1つまたは複数の第2のプレートの各々の厚さの数分の一である厚さを有していてもよい。例えば、第1のプレートは、1つまたは複数の第2のプレートの各々の厚さの半分である厚さを有していてもよい。
エネルギーデグレーダの複数のプレートの移動の制御は、照射ターゲットの複数の層の各々が粒子ビームに曝されるように複数のプレートの移動を順序付けることを含み得る。複数のプレートの移動の制御は、照射ターゲットの複数の層が粒子ビームにより非順次的に治療されるように複数のプレートの移動を順序付けることを含み得る。複数のプレートの移動の制御は、粒子ビームのエネルギーが照射ターゲットの複数の層の各々の配置に対応するように複数のプレートの移動を順序付けることを含み得る。
例示的粒子治療は、粒子ビームのスポットをトリミングするように制御可能である開口を備え得る。開口は、照射ターゲットとエネルギーデグレーダとの間にあるものとしてよい。エネルギーデグレーダは、粒子ビームの通過中に照射ターゲットに関して移動可能である1つまたは複数のプレートを備え得る。1つまたは複数のプレートの各々は、放射場のサイズより小さいサイズを有していてもよい。
例示的な粒子治療システムは、粒子ビームを発生するためのシンクロサイクロトロンと、照射ターゲットに関して1つまたは複数の次元で粒子ビームを移動するためのスキャナと、スキャナと照射ターゲットとの間にあるエネルギーデグレーダとを備え得る。エネルギーデグレーダは、粒子ビームの経路に関して移動可能である複数のプレートを備え得る。複数のプレートは、粒子ビームの経路内にある間、および粒子ビームの移動中に、移動するように各々制御可能であるものとしてよい。開口は、エネルギーデグレーダと照射ターゲットとの間にあるものとしてよい。開口は、粒子ビームが照射ターゲットに到達する前に粒子ビームをトリミングするように制御可能であるものとしてよい。例示的な粒子治療システムは、以下の特徴のうちの1つまたは複数を、単独で、または組み合わせて含み得る。
例示的な粒子治療システムは、シンクロサイクロトロンが装着され、シンクロサイクロトロンを照射ターゲットの周りで少なくとも部分的に移動するように構成されている、外部ガントリーと、外部ガントリーの掃引範囲内にあり、エネルギーデグレーダが装着されるノズルを備え、外部ガントリーの移動に基づきエネルギーデグレーダを移動するように構成されている、内部ガントリーとを備え得る。
複数のプレートは、粒子ビームの通過中に第1の方向および第2の方向に移動するように制御可能である第1のプレートと第2のプレートとを備え得る。第1の方向は、開始位置から終了位置への方向であってよく、第2の方向は、終了位置から開始位置への方向であってよい。スキャナまたはエネルギーデグレーダのうちの少なくとも一方は、第1の方向への第1のプレートおよび第2のプレートの移動中に、粒子ビームが第1のプレートのみもしくは第2のプレートのみのいずれかを通過するか、または第1のプレートおよび第2のプレートの両方を通過するように制御可能であるものとしてよい。スキャナまたはエネルギーデグレーダのうちの少なくとも一方は、第2の方向への第1のプレートおよび第2のプレートの移動中に、粒子ビームが第1のプレートのみもしくは第2のプレートのみのいずれかを通過するか、または第1のプレートおよび第2のプレートの両方を通過するように制御可能であるものとしてよい。
第1のプレートおよび第2のプレートは、粒子ビームの印加中に別々に移動するように制御可能であるものとしてよい。第2のプレートは、移動中に第1のプレートの後を追うように制御可能であり得るか、または第1のプレートは、移動中に第2のプレートの後を追うように制御可能であり得る。エネルギーデグレーダまたはスキャナのうちの少なくとも一方は、第1のプレートおよび第2のプレートの移動中に粒子ビームの移動が、粒子ビームが第1のプレートを通過するが第2のプレートを通過しないか、または第2のプレートを通過するが第1のプレートを通過しないような移動であるように制御可能であるものとしてよい。エネルギーデグレーダまたはスキャナのうちの少なくとも一方は、第1のプレートおよび第2のプレートの移動中に粒子ビームの移動が、粒子ビームが第1のプレートおよび第2のプレートの両方を通過するような移動であるように制御可能であるものとしてよい。複数のプレートのうちの1つのプレートを横切る粒子ビームの移動は、プレートの縁からある距離の外側の移動に制限され得る。
第1のプレートおよび第2のプレートの移動中に、第1のプレートおよび第2のプレートは、開始位置から終了位置まで移動し得る。スキャナは、粒子ビームが第1のプレートおよび第2のプレートの両方を通過するか、または第1のプレートもしくは第2のプレートのうちの一方のみを通過するようにある配置から終了位置の方へ粒子ビームを移動するように制御可能であるものとしてよい。スキャナは、粒子ビームが第1のプレートおよび第2のプレートの両方を通過するか、または第1のプレートもしくは第2のプレートのうちの一方のみを通過するようにある配置から開始位置の方へ粒子ビームを移動するように制御可能であるものとしてよい。複数のプレートは、1つまたは複数の第1のプレートと1つまたは複数の第2のプレートとを備え、1つまたは複数の第1のプレートおよび1つまたは複数の第2のプレートは粒子ビームの印加中に移動するように制御可能であり、1つまたは複数の第1のプレートの各々は1つまたは複数の第2のプレートの厚さより薄い厚さを有する、ものとしてよい。複数のプレートの各々は、放射(またはビーム)場のサイズより小さいサイズを有していてもよい。
例示的な粒子治療システムは、粒子ビームを照射ターゲットに印加するように構成され得る。例示的な粒子治療システムは、照射ターゲットに関して1つまたは複数の次元で粒子ビームを移動するためのスキャナと、粒子ビームの移動中に移動するように制御可能である要素を備えるエネルギーデグレーダとを具備する。エネルギーデグレーダは、粒子ビームを照射ターゲットに印加する前に粒子ビームを通すためのものである。例示的な粒子治療システムは、以下の特徴のうちの1つまたは複数を、単独で、または組み合わせて含み得る。
これらの要素は、照射ターゲットの異なる層が粒子ビームに曝されるように粒子ビームのエネルギーを変化させるために順に移動するように制御可能であるプレートを備え得る。これらの要素は第1のプレートと第2のプレートとを備えるものとしてよく、第1のプレートおよび第2のプレートは両方とも粒子ビームの移動中に移動するように制御可能である。エネルギーデグレーダまたはスキャナのうちの少なくとも一方は、第1のプレートおよび第2のプレートの移動の少なくとも一部の間、粒子ビームが第1のプレートを通過するが第2のプレートを通過しないか、または第2のプレートを通過するが第1のプレートを通過しないように制御可能であるものとしてよい。エネルギーデグレーダまたはスキャナのうちの少なくとも一方は、第1のプレートおよび第2のプレートの移動の少なくとも一部の間、粒子ビームが第1のプレートおよび第2のプレートの両方を通過するように制御可能であるものとしてよい。エネルギーデグレーダまたはスキャナのうちの少なくとも一方は、粒子ビームが要素のうちの少なくとも1つの縁から少なくともある距離内を通るように制御可能であるものとしてよい。この距離は、それらの要素のうちの少なくとも1つのところで粒子ビームの断面を表すスポット内の粒子の分布に基づくものとしてよい。
これらの要素は、粒子ビームの移動中に第1の方向または第2の方向のうちの少なくとも一方に移動するように制御可能であるものとしてよく、第1の方向は要素の開始位置から要素の終了位置への方向であり、第2の方向は終了位置から開始位置への方向である。これらの要素のうちの少なくとも幾つかは、粒子ビームの移動中に別々に移動するように制御可能であるものとしてよい。これらの要素のうちの少なくとも幾つかは、粒子ビームの移動中に一緒に移動するように制御可能であるものとしてよい。複数の要素の各々は、放射場のサイズより小さいサイズを有していてもよい。
例示的な粒子治療システムは、粒子ビームを出力する粒子加速器と、粒子ビームを照射ターゲットの少なくとも一部にわたって走査させる粒子加速器用の走査システムとを備える。走査システムは粒子ビームを粒子ビームの方向に対してある角度を成す2次元内で走査するように構成される。構造体が縁を画成する。構造体は、構造体の少なくとも一部が粒子ビームの少なくとも一部と照射ターゲットとの間にあるように照射ターゲットに対して2次元内で移動するように制御可能である。構造体は、粒子ビームの透過を抑制する材料を含む。例示的な粒子治療システムは、以下の特徴のうちの1つまたは複数を、単独で、または組み合わせて含み得る。
構造体は、縁が照射ターゲットの異なる部分と粒子ビームとの間で移動され得るように少なくとも2次元内で回転可能であり得る。縁は、構造体の少なくとも一方の側で変化する半径を有する湾曲部を備え得る。湾曲部は、雲形定規の形であり得る。構造体は、開口を画成することができ、縁は、開口の縁を含み得る。構造体は、粒子ビームの方向を辿るように移動可能であり得る。構造体は、縁のサイズを変化させるように調整可能である複数の要素を備え得る。複数の要素は、照射ターゲットに対して個別に移動可能であるフィンガを備え得る。
構造体は、コリメータシステムの一部であってよい。構造体は、コリメータシステム内の第1の構造体を含むものとしてよく、縁は、第1の縁を含むものとしてよい。コリメータシステムは、第2の縁を含む第2の構造体を備え得る。第1の縁および第2の縁は、照射ターゲットの異なる縁に沿って移動するように制御可能であり得る。
走査システムは、粒子ビームの移動を制御して粒子ビームを走査するための少なくとも1つの磁石を備え得る。少なくとも1つの磁石は、印加される電流に応答して磁場を発生するためのものであってよい。磁場は、移動に影響を及ぼし得る。
走査システムは、照射ターゲットの縁よりも、照射ターゲットの内側部分においてより速く粒子ビームを走査するように構成され得る。粒子ビームは、構造体の配置のところの平面の領域の範囲内で移動可能であるものとしてよい。構造体は、平面の領域未満の領域を有し得る。構造体は、平面の領域の半分未満の領域を有し得る。構造体は、平面の領域の1/4未満の領域を有し得る。構造体は、平面の領域の1/8未満の領域を有し得る。構造体は、粒子ビームの断領域の10倍未満の領域を有し得る。
走査システムは、異なる入射角から粒子ビームを走査するように構成され得る。構造体は、粒子ビームが異なる入射角から走査されるときの粒子ビームの移動に基づき移動するように制御可能であるものとしてよい。走査システムは、粒子ビームを照射ターゲットの少なくとも一部にわたって走査するように粒子ビームの方向に影響を及ぼす磁石と、粒子ビームを照射ターゲットに出力する前にビームのエネルギーを変えるデグレーダであって、粒子加速器に対して磁石のビーム下流側にある、デグレーダとを備え得る。粒子加速器は、可変エネルギーデバイスとすることができる。
粒子加速器は、高周波(RF)電圧を空洞に印加してプラズマ柱からの粒子を加速するための電圧源であって、空洞は、プラズマ柱から加速された粒子が空洞内で軌道上を移動することを引き起こす磁場を有する、電圧源と、プラズマ柱から加速された粒子を受け、受けた粒子を空洞から出力する引き出しチャネルと、空洞内に磁場バンプを設け、それによりプラズマ柱から加速される粒子の連続的軌道を変化させ、最終的に、粒子が引き出しチャネルに出力されるようにする、再生器とを備え得る。磁場は、4テスラ(T)から20Tの間とすることができ、また磁場バンプは、最大2テスラである。
例示的な粒子治療システムは、粒子ビームを出力するための粒子加速器と、粒子加速器から粒子ビームを受け、粒子ビームで照射ターゲットの少なくとも一部の走査を実行するための走査システムとを備える。走査システムは、縁を画成する構造体を備える。構造体は、縁が粒子ビームの少なくとも一部と照射ターゲットとの間にあるように2次元内で移動し、また粒子ビームの移動に基づき移動するように制御可能である。構造体は、粒子ビームの透過を抑制する材料を含む。例示的なシステムは、粒子加速器および走査システムが取り付けられているガントリーも備える。ガントリーは、粒子加速器および走査システムを照射ターゲットの周りで移動するように構成され得る。
例示的な粒子治療システムは、粒子ビームを出力するためのシンクロサイクロトロンと、粒子ビームを照射ターゲットの断面にわたって移動するように粒子ビームの方向に影響を及ぼす磁石と、粒子ビームを照射ターゲットの断面にわたって移動する前に粒子ビームのエネルギーを変えるデグレーダであって、シンクロサイクロトロンに対して磁石のビーム下流側にある、デグレーダと、デグレーダが照射平面のところで粒子ビームの移動を少なくとも部分的に辿るようにデグレーダの移動を制御するための1つまたは複数の処理デバイスとを備える。例示的な粒子治療システムは、以下の特徴のうちの1つまたは複数を、単独で、または組み合わせて含み得る。
粒子ビームは、デグレーダの配置のところの平面の領域の範囲内で移動可能であるものとしてよい。デグレーダは、平面の領域未満の領域を有し得る。デグレーダは、複数の個別部品を備えるものとしてよく、各個別部品はビームエネルギー吸収材料からなり、各個別部品は粒子ビームの経路内に移動可能である。1つまたは複数の処理デバイスは、照射ターゲットに印加する粒子ビームのエネルギーを受け、ビームエネルギー吸収材料の個別部品の1つまたは複数を粒子ビームの経路内に移動して粒子ビームのその結果得られるエネルギーが照射ターゲットに印加する粒子ビームのエネルギーに近くなるようにプログラムされ得る。1つまたは複数の処理デバイスは、粒子ビームの移動を少なくとも部分的に移動するようにビームエネルギー吸収材料の1つまたは複数の個別部品の移動を制御するようにプログラムされ得る。
デグレーダは、平面の領域の半分未満の領域を有し得る。デグレーダは、平面の領域の1/4未満の領域を有し得る。粒子ビームは、デグレーダの配置のところでスポットサイズを有し、デグレーダは、スポットサイズの領域の10倍未満の領域を有し得る。デグレーダは、スポットサイズの領域の2倍未満の領域を有し得る。
粒子治療システムは、治療計画を記憶するためのメモリを備え得る。治療計画は、照射ターゲットに対する走査パターンを定義するための情報を含み得る。走査パターンは、デグレーダが粒子ビームの移動を少なくとも部分的に辿るように2次元における粒子ビームの移動およびデグレーダの移動を定義することができる。
シンクロサイクロトロンは、高周波(RF)電圧を空洞に印加してプラズマ柱からの粒子を加速するための電圧源であって、空洞はプラズマ柱から加速された粒子が空洞内で軌道上を移動することを引き起こす磁場を有する、電圧源と、プラズマ柱から加速された粒子を受け、粒子ビームの一部として受けた粒子を空洞から出力する引き出しチャネルと、空洞内に磁場バンプを設け、それによりプラズマ柱から加速される粒子の連続的軌道を変化させ、最終的に、粒子が引き出しチャネルに出力されるようにする、再生器とを備え得る。磁場は、4テスラ(T)から20Tの間とすることができ、また磁場バンプは、最大2テスラであってよく、シンクロサイクロトロンは、可変エネルギーデバイスとすることができる。
磁石およびデグレーダは、走査システムの一部であってよい。粒子治療システムは、シンクロサイクロトロンおよび走査システムが取り付けられているガントリーを備えるものとしてよい。ガントリーは、シンクロサイクロトロンおよび走査システムを照射ターゲットの周りで移動するように構成され得る。
走査システムは、ラスター走査システム、スポット走査システム、または任意の他の種類の走査システムであってよい。
例示的な粒子治療システムは、粒子ビームを出力する粒子加速器と、シンクロサイクロトロンから粒子ビームを受け、粒子ビームで照射ターゲットの少なくとも一部の走査を実行するための走査システムとを備え得る。走査システムは、照射ターゲットの少なくとも一部を走査する前に粒子ビームのエネルギーを変えるデグレーダを備え得る。デグレーダは、シンクロサイクロトロンに対して磁石のビーム下流側にあるものとしてよい。例示的な粒子治療システムは、デグレーダが移動中粒子ビームの移動を少なくとも部分的に辿るようにデグレーダの移動を制御するための1つまたは複数の処理デバイスと、粒子加速器および走査システムが取り付けられているガントリーとを備えることができる。ガントリーは、シンクロサイクロトロンおよび走査システムを照射ターゲットの周りで移動するように構成され得る。例示的な粒子治療システムは、以下の特徴のうちの1つまたは複数を、単独で、または組み合わせて含み得る。
粒子ビームは、デグレーダの配置のところの平面の領域の範囲内で移動可能であるものとしてよい。デグレーダは、平面の領域未満の領域を有し得る。デグレーダは、複数の個別部品を備えるものとしてよく、各個別部品はビームエネルギー吸収材料からなり、各個別部品は粒子ビームの経路内に移動可能である。1つまたは複数の処理デバイスは、照射ターゲットに印加する粒子ビームのエネルギーを受け、ビームエネルギー吸収材料の個別部品の1つまたは複数を粒子ビームの経路内に移動して粒子ビームのその結果得られるエネルギーが照射ターゲットに印加する粒子ビームのエネルギーに近くなるようにプログラムされ得る。1つまたは複数の処理デバイスは、粒子ビームの移動を少なくとも部分的に移動するようにビームエネルギー吸収材料の1つまたは複数の個別部品の移動を制御するようにプログラムされ得る。
デグレーダは、平面の領域の半分未満の領域を有し得る。デグレーダは、平面の領域の1/4未満の領域を有し得る。粒子ビームは、デグレーダの配置のところでスポットサイズを有し、デグレーダは、スポットサイズの領域の10倍未満の領域を有し得る。デグレーダは、スポットサイズの領域の2倍未満の領域を有し得る。粒子加速器は、可変エネルギーシンクロサイクロトロンとすることができる。
例示的な陽子治療システムは、前述の粒子加速器および走査システムと、粒子加速器および走査システムが取り付けられているガントリーとを備え得る。ガントリーは、患者の位置に対して回転可能である。陽子は、実質的に粒子加速器から走査システムを通じて患者などの照射ターゲットの位置に直接出力される。粒子加速器は、シンクロサイクロトロンであってよい。
発明の概要の節で説明されているものを含む、本開示で説明されている特徴のうちの2つまたはそれ以上を組み合わせることで、本明細書では具体的に説明されていない実施例を形成することができる。
本明細書で説明されている様々なシステム、またはその一部の制御は、1つまたは複数の非一時的機械可読記憶媒体に記憶され、1つまたは複数の処理デバイス上で実行可能である命令を収めたコンピュータプログラム製品を介して実装され得る。本明細書で説明されているシステム、またはその一部は、1つまたは複数の処理デバイスおよび述べられている機能の制御を実装する実行可能命令を記憶するためのメモリを含み得る装置、方法、または電子システムとして実装され得る。
1つまたは複数の実施例の詳細が、添付した図面および以下の説明で記述される。他の特徴、目的、および利点は、説明と図面、さらには特許請求の範囲から明らかになるであろう。
粒子治療システムにおいて使用するための例示的なシンクロサイクロトロン構成の断面図である。 粒子治療システムにおいて使用するための例示的なシンクロサイクロトロン構成の断面図である。 例示的な走査システムの側面図である。 スポットサイズ変化のための散乱材料を除く、例示的な走査システムの構成要素の斜視図である。 図3および図4に示されている種類の走査システムで使用するための例示的な磁石の正面図である。 図3および図4に示されている種類の走査システムで使用するための例示的な磁石の斜視図である。 図3および図4に示されている種類の走査システムで使用するための例示的なエネルギーデグレーダ(飛程変調装置)の斜視図である。 粒子ビームの経路内でエネルギーデグレーダのプレートを移動させるためのプロセスの斜視図である。 例示的な粒子ビームおよびコリメータの側面図である。 照射ターゲットの例示的な断面、断面の縁に沿って移動可能である例示的なコリメータ、および照射ターゲットの内側に沿って経路を走査する例示的なビームを示す上面図である。 例示的なコリメータの上面図である。 例示的なコリメータの構成要素の上面図である。 例示的なコリメータを形成するために組み合わされた図12の構成要素を示す上面図である。 照射ターゲットの例示的な断面と粒子ビーム走査中に断面の縁に沿って移動可能である例示的な多葉コリメータとを示す上面図である。 照射ターゲットの例示的な断面と粒子ビーム走査中に断面の縁に沿って移動可能であり回転可能である例示的な直線状コリメータとを示す上面図である。 照射ターゲットの例示的な断面、粒子ビーム走査中に断面の縁に沿って移動可能である例示的なマルチパートコリメータ(multi-part collimator)、および照射ターゲットの内側に沿って経路を走査する例示的なビームを示す上面図である。 例示的な湾曲コリメータの上面図である。 照射ターゲットの例示的な断面の一例と、照射ターゲット上で強度変調陽子治療が実施される仕方の一例とを示す上面図である。 粒子ビーム走査システムの例示的な照射場の斜視図である。 照射ターゲットへのビーム経路内の例示的なエネルギーデグレーダの複数の個別部品の斜視図である。 粒子ビームの走査を辿るためのエネルギーデグレーダの個別部品の移動を示す斜視図である。 粒子ビームの走査を辿るために、エネルギーデグレーダの個別部品の移動が必要である、および必要でない状況を示す斜視図である。 例示的な治療システムの斜視図である。 粒子治療システムにおいて使用するための例示的なシンクロサイクロトロンの構成要素の分解斜視図である。 例示的なシンクロサイクロトロンの断面図である。 例示的なシンクロサイクロトロンの斜視図である。 シンクロサイクロトロンにおいて使用するための例示的なイオン源の断面図である。 シンクロサイクロトロンにおいて使用するための例示的なディープレートおよび例示的なダミーディーの斜視図である。 治療室内の例示的な粒子治療システムの例示的な内部ガントリーの中に位置決めされた患者を示す図である。 可変エネルギー粒子加速器を使用することができる例示的な粒子治療システムの概念図である。 磁場および粒子加速器内の距離の変動に対するエネルギーおよび電流を示す例示的なグラフである。 粒子ビームのそれぞれのエネルギー準位について一定の周波数範囲にわたってディープレート上で電圧を掃引し、粒子ビームエネルギーが変化するときに周波数範囲を変化させるための例示的な構造体の側面図である。 可変エネルギー粒子加速器で使用され得る例示的な磁石システムの分解斜視図である。 スイッチングエネルギーデグレーダを備える例示的な粒子治療システムを示すブロック図である。 粒子治療によって治療されるべき層を含む、例示的な照射ターゲットの斜視図である。 同じ厚さを有するスイッチングエネルギーデグレーダの例示的なプレートの斜視図である。 異なる厚さを有するスイッチングエネルギーデグレーダの例示的なプレートの斜視図である。 順方向に走査している間に別々に移動する例示的なエネルギーデグレーダのプレートを示す斜視図である。 順方向に走査している間に第1の位置にある例示的なエネルギーデグレーダのプレートを示す斜視図である。 順方向に走査している間に第2の位置にある例示的なエネルギーデグレーダのプレートを示す斜視図である。 粒子ビームスポットのガウス分布を示すグラフである。 順方向に走査している間に別々に移動する例示的なエネルギーデグレーダのプレートを示す斜視図である。 逆方向に走査している間に一緒に移動する例示的なエネルギーデグレーダのプレートを示す斜視図である。 順方向に走査している間に一緒に移動する例示的なエネルギーデグレーダのプレートを示す斜視図である。 逆方向に走査している間に別々に移動する例示的なエネルギーデグレーダのプレートを示す斜視図である。 順方向に走査している間に一緒に移動する例示的なエネルギーデグレーダのプレートを示す斜視図である。 逆方向に走査している間に別々に移動する例示的なエネルギーデグレーダのプレートを示す斜視図である。 順方向に走査している間に一緒に移動する例示的なエネルギーデグレーダのプレートを示す斜視図である。 照射ターゲット内の層に当たるように、組み合わされ、走査時に移動する、プレートを示す斜視図である。 センサを収容するプレートの上面斜視図である。 プレートの2次元走査を例示するプレートの上面斜視図である。
様々な図面内の類似の参照記号は、類似の要素を示す。
本明細書では、陽子またはイオン治療システムなどのシステムにおいて使用するための粒子加速器の一例について説明する。例示的な粒子治療システムは、ガントリー上に取り付けられた粒子加速器--この例では、シンクロサイクロトロン--を備える。ガントリーは、以下に詳述するように、加速器を患者の位置の周りに回転させることを可能にする。幾つかの実施例では、ガントリーは鋼製であり、患者の両側に配設された2つの軸受それぞれに回転するように取り付けられた2つの脚部を有する。粒子加速器は、患者が横たわる治療領域を跨設するのに十分に長い鉄骨トラスによって支持されており、鉄骨トラスは、その両端においてガントリーの回転式脚部に取り付けられている。患者の周りをガントリーが回転する結果、粒子加速器も回転する。
例示的な一実施例において、粒子加速器(例えば、シンクロサイクロトロン)は、磁場(B)を発生する電流を各々伝導するための、1つまたは複数の超電導コイルを保持する低温保持装置を備える。この例では、低温保持装置は、各コイルを超電導温度、例えば、4°ケルビン(K)に維持するために液体ヘリウム(He)を使用する。磁気ヨークまたはより小さい磁極片は、低温保持装置の内側に配置され、粒子が加速される空洞を画成する。
この例示的な実施例では、粒子加速器は、プラズマ柱を空洞に供給するために粒子源(例えば、ペニングイオンゲージ--PIG源)を備える。水素ガスは電離されてプラズマ柱を生成する。電圧源は、高周波(RF)電圧を空洞に印加して粒子のパルスをプラズマ柱から加速する。
指摘されているように、一例では、粒子加速器はシンクロサイクロトロンである。したがって、プラズマ柱から粒子を加速するときに、粒子に対する相対論的効果(例えば、粒子質量が増加する)を考慮してRF電圧が一定範囲の周波数にわたって掃引される。超電導コイルに電流を流すことよって発生した磁場により、プラズマ柱から加速された粒子は空洞内の軌道上で加速する。他の実施例では、シンクロサイクロトロン以外の粒子加速器が使用され得る。例えば、サイクロトロン、シンクロトロン、直線加速器などは、本明細書で説明されているシンクロサイクロトロンの代替えとなり得る。
シンクロサイクロトロンにおいて、磁場再生器(「再生器」)は、空洞の外側の近く(例えば、その内縁)に位置しており、空洞の内側の既存の磁場を調整し、これにより、プラズマ柱から加速された粒子の連続的な軌道の位置(例えば、ピッチおよび角度)を変更し、最終的に、粒子は低温保持装置を通る引き出しチャネルに出力される。再生器は、空洞内のある地点における磁場を増大し(例えば、空洞のある領域において磁場「バンプ」を作り出し)、これにより、その地点の粒子のそれぞれの連続的軌道が引き出しチャネルの入口点の方へ外向きに、引き出しチャネルに到達するまで歳差運動し得る。引き出しチャネルは、プラズマ柱から加速された粒子を受け、粒子ビームとして受けた粒子を空洞から出力する。
超電導(「主」)コイルは、比較的高い磁場を発生することができる。主コイルによって生成される磁場は、4Tから20Tまたはそれ以上の範囲内にあり得る。例えば、主コイルは、4.0T、4.1T、4.2T、4.3T、4.4T、4.5T、4.6T、4.7T、4.8T、4.9T、5.0T、5.1T、5.2T、5.3T、5.4T、5.5T、5.6T、5.7T、5.8T、5.9T、6.0T、6.1T、6.2T、6.3T、6.4T、6.5T、6.6T、6.7T、6.8T、6.9T、7.0T、7.1T、7.2T、7.3T、7.4T、7.5T、7.6T、7.7T、7.8T、7.9T、8.0T、8.1T、8.2T、8.3T、8.4T、8.5T、8.6T、8.7T、8.8T、8.9T、9.0T、9.1T、9.2T、9.3T、9.4T、9.5T、9.6T、9.7T、9.8T、9.9T、10.0T、10.1T、10.2T、10.3T、10.4T、10.5T、10.6T、10.7T、10.8T、10.9T、11.0T、11.1T、11.2T、11.3T、11.4T、11.5T、11.6T、11.7T、11.8T、11.9T、12.0T、12.1T、12.2T、12.3T、12.4T、12.5T、12.6T、12.7T、12.8T、12.9T、13.0T、13.1T、13.2T、13.3T、13.4T、13.5T、13.6T、13.7T、13.8T、13.9T、14.0T、14.1T、14.2T、14.3T、14.4T、14.5T、14.6T、14.7T、14.8T、14.9T、15.0T、15.1T、15.2T、15.3T、15.4T、15.5T、15.6T、15.7T、15.8T、15.9T、16.0T、16.1T、16.2T、16.3T、16.4T、16.5T、16.6T、16.7T、16.8T、16.9T、17.0T、17.1T、17.2T、17.3T、17.4T、17.5T、17.6T、17.7T、17.8T、17.9T、18.0T、18.1T、18.2T、18.3T、18.4T、18.5T、18.6T、18.7T、18.8T、18.9T、19.0T、19.1T、19.2T、19.3T、19.4T、19.5T、19.6T、19.7T、19.8T、19.9T、20.0T、20.1T、20.2T、20.3T、20.4T、20.5T、20.6T、20.7T、20.8T、20.9T、もしくはそれ以上のうちの1つまたは複数の大きさの、またはこれらを超える大きさの磁場を発生するために使用され得る。さらに、主コイルは、上に特には挙げられていない4Tから20T(またはそれ以上、またはそれ以下)の範囲内にある磁場を発生するために使用され得る。
図1および図2に示されている例などの、幾つかの実施例では、大型の強磁性磁気ヨークは、超電導コイルによって生成される漂遊磁場に対する帰還として働く。例えば、幾つかの実施例では、超電導磁石は、例えば、4Tまたはそれ以上の比較的高い磁場を発生することができ、その結果、かなりの漂遊磁場が生じる。図1および図2に示されているような幾つかのシステムでは、比較的大型の強磁性帰還ヨーク100は、超電導コイルによって生成される磁場に対する帰還として使用される。磁気シールドがヨークを囲む。帰還ヨークおよびシールドは、一緒になって漂遊磁場を散逸させ、それによって、漂遊磁場が加速器の動作に悪影響を及ぼす確率を低減する。
幾つかの実施例では、帰還ヨークおよびシールドは、能動的帰還システムによって置き換えられるか、または増強され得る。例示的な一能動的帰還システムは、主超電導コイルを通る電流と反対の方向に電流を流す1つまたは複数の能動的帰還コイルを備える。幾つかの例示的な実施例では、それぞれの超電導コイルに対して能動的帰還コイルがある、例えば、2つの能動的帰還コイル--それぞれの超電導コイルに対して1つ--がある(「主コイル」と称される)。それぞれの能動的帰還コイルは、対応する主超電導コイルの外側を囲む超電導コイルであってもよい。
電流は、主コイルを通過する電流の方向と反対の方向で能動的帰還コイルを通過する。これにより、能動的帰還コイルを通過する電流は、主コイルによって生成される磁場と極性が反対である磁場を発生する。その結果、能動的帰還コイルによって生成される磁場は、対応する主コイルから結果として生じる比較的強い漂遊磁場の少なくとも一部を散逸することができる。幾つかの実施例では、それぞれの能動的帰還は、2.5Tから12Tまたはそれ以上の磁場を発生するために使用され得る。使用され得る能動的帰還システムの一例は、その内容が参照により本明細書に組み込まれている、2013年5月31日に出願した米国特許出願第13/907,601号(米国特許第8,791,656号)で説明されている。
図3を参照すると、粒子加速器105(図1および図2に示されている構成を有するものとしてよい)の引き出しチャネル102の出力のところに、照射ターゲットの少なくとも一部にわたって粒子ビームを走査するために使用され得る例示的な一走査システム106がある。図4は、走査システムの構成要素の例を示している。これらは、限定はしないが、走査磁石108、電離箱109、およびエネルギーデグレーダ110を含む。走査システム内に組み込まれ得る他の構成要素は、図4には示されていないが、例えば、ビームスポットサイズを変えるための1つまたは複数の散乱体を含む。
例示的な動作において、走査磁石108は、2次元内で制御可能であり(例えば、直交座標のXY次元)、これにより、粒子ビームを照射ターゲットの一部(例えば、断面)に導く。電離箱109では、ビームの線量を検出し、その情報を制御システムにフィードバックしてビーム移動を調整する。エネルギーデグレーダ110は、材料を粒子ビームの経路内におよび経路外に移動させて、粒子ビームのエネルギー、したがって粒子ビームが照射ターゲットを貫通する深さを変化させるように制御可能である。
図5および図6は、例示的な走査磁石108を示している。走査磁石108は、X方向の粒子ビーム移動を制御する2つのコイル111と、Y方向の粒子ビーム移動を制御する2つのコイル112とを備える。制御は、幾つかの実施例では、一方のコイルの組または両方の組を通る電流を変化させ、それによって、発生する磁場を変化させることによって達成される。磁場を適切に変化させることによって、粒子ビームは、照射ターゲット全体にわたってXおよび/またはY方向に移動することができる。幾つかの実施例では、走査磁石は、粒子加速器に対して物理的に移動可能でない。他の実施例では、走査磁石は、加速器に対して移動可能であるものとしてよい(例えば、ガントリーによってもたらされる移動に加えて)。幾つかの実施例では、走査磁石は、粒子ビームを連続的に移動するように制御可能であるものとしてよい。他の実施例では、走査磁石は、間隔を置いて、または特定の時刻に制御可能である。幾つかの実施例では、Xおよび/またはY方向のビームの移動を制御するために異なる走査磁石があり得る。幾つかの実施例では、Xおよび/またはY方向のいずれかのビームの部分的な移動を制御するために異なる走査磁石があり得る。
幾つかの実施例では、電離箱109は、入射放射線によって引き起こされるガス内に形成されるイオン対の数を検出することによって粒子ビームによって印加される線量を検出する。イオン対の数は、粒子ビームによってもたらされる線量に対応する。その情報は、粒子治療システムの動作を制御するコンピュータシステムにフィードバックされる。コンピュータシステム(図示せず)は、メモリおよび1つまたは複数の処理デバイスを備えるものとしてよく、電離箱によって検出された線量が意図された線量であるかどうかを判定する。その線量が意図された通りでない場合、コンピュータシステムは、加速器を制御して、粒子ビームの発生および/または出力を中断し、および/または走査磁石を制御して照射ターゲットへの粒子ビームの出力を妨げることができる。例えば、粒子ビームの出力を妨げるか、または修正するために、コンピュータシステムは、イオン源をオフ/オンする、RF掃引の周波数を変更する、1つまたは複数のメカニズム(高速キッカーマグネット(図示せず)など)をアクティブ化してビームを吸収体材料に逸らし、それによってビーム出力を防ぐなどのことを行うことができる。
図7は、エネルギーデグレーダ110の例示的な一実施例である、飛程変調装置115を示している。図7に示されているような幾つかの実施例では、飛程変調装置は、一連のプレート116を備える。これらのプレートは、ポリカーボネート、炭素、ベリリウム、または低原子番号の他の材料のうちの1つまたは複数から作ることができる。しかしながら、これらの例示的な材料の代わりに、またはそれに加えて、他の材料も使用され得る。
これらのプレートのうちの1つまたは複数は、ビーム経路内に移動可能であるか、または経路から外に移動可能であり、それによって、粒子ビームのエネルギーに、したがって照射ターゲット内への粒子ビームの浸透深さに影響を及ぼす。例えば、粒子ビームの経路内に移動するプレートが多ければ多いほど、プレートによって吸収されるエネルギーが多くなり、粒子ビームが帯びるエネルギーは少なくなる。逆に、粒子ビームの経路内に移動するプレートが少なければ少ないほど、プレートによって吸収されるエネルギーは少なくなり、粒子ビームが帯びるエネルギーは多くなる。エネルギーが高い粒子ビームは、エネルギーが低い粒子ビームよりも照射ターゲット内により深く浸透する。この文脈において、「より高い」および「より低い」は、相対語としての意味であり、いかなる特定の数値的な含意も有するわけではない。
プレートは、粒子ビームの経路内におよび経路外へ物理的に移動される。例えば、図8に示されているように、プレート116aは、粒子ビームの経路内の位置と粒子ビームの経路外の位置との間の矢印117の方向に沿って移動する。プレートは、コンピュータ制御される。一般的に、粒子ビームの経路内に移動するプレートの数は、照射ターゲットの走査が行われるべき深さに対応する。例えば、照射ターゲットは、幾つかの断面に分割され、それぞれの断面は照射深さに対応するものとしてよい。飛程変調装置の1つまたは複数のプレートは、照射ターゲットへのビーム経路内にまたはビーム経路外へ移動することができ、これにより、照射ターゲットの断面のそれぞれを照射する適切なエネルギーを得ることができる。従来、飛程変調装置は、粒子ビームの経路内におよび経路外に移動する粒子を除き、照射ターゲットの一部(例えば、断面)の走査中に粒子ビームに対して静止していた。
幾つかの実施例では、図7および図8の飛程変調装置は、少なくともときには、粒子ビームの移動を辿る飛程変調装置で置き換えられ得る。この種類のエネルギーデグレーダは、以下でより詳しく説明される。幾つかの実施例では、レンジモジュレータはエネルギースイッチングレンジモジュレータであってよく、その例は図35から図49に関して説明されている。
幾つかの実施例では、粒子加速器は、参照により本明細書に組み込まれている、2013年6月12日に出願した米国特許出願第13/916,401号(米国特許公開第2014/0371511号)で説明されている例示的な粒子加速器などの、可変エネルギー粒子加速器とされる場合がある。可変エネルギー粒子加速器が使用される例示的なシステムでは、粒子ビームのエネルギー準位が粒子加速器によって制御され得るので、本明細書で説明されている種類のエネルギーデグレーダが必要になることは少ないと思われる。例えば、可変エネルギー粒子加速器を採用する幾つかのシステムでは、エネルギーデグレーダが必要とされない場合がある。可変エネルギー粒子加速器を採用する幾つかのシステムでは、エネルギーデグレーダは、それでも、ビームエネルギー準位を変えるために使用されることがある。
幾つかの実施例では、照射ターゲットを治療する前に治療計画が立てられる。治療計画では、特定の照射ターゲットに対し走査をどのように実行すべきかを指定することができる。幾つかの実施例では、治療計画で指定する情報は、走査の種類(例えば、スポット走査またはラスター走査)、走査配置(例えば、走査すべきスポットの配置)、走査配置当たりの磁石電流、スポット当たりの線量、スポットサイズ、照射ターゲット断面の配置(例えば、深さ)、断面当たりの粒子ビームエネルギー、それぞれの粒子ビームエネルギーに対するビーム経路内に移動するプレートまたは他の種類の個別部品、などである。一般的に、スポット走査は、照射ターゲット上の飛び飛びのスポットに照射を行うことを伴い、ラスター走査は、照射ターゲットの端から端まで照射スポットを移動することを伴う。したがって、スポットサイズのコンセプトは、ラスター走査とスポット走査の両方に適用される。
幾つかの実施例では、照射ターゲットの治療計画全体は、照射ターゲットの異なる断面に対する異なる治療計画を含む。異なる断面に対する治療計画は、上で与えられているような、同じ情報または異なる情報を含み得る。
幾つかの実施例では、走査システムは、粒子ビームを平行光線にするコリメータ120(図3)を備えるものとしてよく、これは粒子ビームの範囲を制限し、それによって照射ターゲットに適用されるスポットの形状を変化させるために照射ターゲットに対して配置可能である開口を備えるものとしてよい。例えば、コリメータは、エネルギーデグレーダのビーム下流側の、粒子ビームが照射ターゲットに当たる前の、ビーム経路内に配置され得る。コリメータは、粒子ビームが通過する領域(例えば、穴または透過材料)および粒子ビームの通過を抑制するか、または妨げる穴の周りの他の材料(例えば、真鍮)を含み得る。
幾つかの実施例では、コリメータは、縁を画成する構造体を備え得る。構造体は、粒子ビームの透過を抑制する、真鍮などの材料を含み得る。構造体は、構造体の少なくとも一部が粒子ビームの少なくとも一部と照射ターゲットとの間にあるように照射ターゲットに対して2次元内で移動するように制御可能であるものとしてよい。例えば、構造体は、粒子ビームと交差し、治療される照射ターゲットの断面に平行である、または実質的に平行である平面のXおよびY方向に移動可能であり得る。このようにしてコリメータを使用することは、患者に到達する粒子ビームの断面形状をカスタマイズし、それによって照射ターゲットを超えて伸長する粒子ビームの量を制限するために使用することができるという点で有益であり得る。例えば、図9に示されているように、コリメータ内の構造体220は、粒子ビーム222の一部分221がターゲット224に到達するのを妨げ、それによって、ビームを照射ターゲットに制限し、健常組織225の放射線被曝を低減する。縁のある構造体を粒子ビームの一部と患者との間に置くことによって、例示的なコリメータは、また、患者に到達する粒子ビーム部分への定められたまたは鋭い縁を与え、それによってより正確な線量適用を推進する。
コリメータの位置決めおよび移動は、本明細書で説明されている粒子治療システムの他の特徴を制御する制御コンピュータシステムによって制御され得る。例えば、コリメータは、照射ターゲットの少なくとも一部にわたって粒子ビームの運動を辿る(例えば、追随する)ように治療計画に従って制御され得る。幾つかの実施例では、コリメータの軌跡は、照射ターゲットに対する粒子ビームのすべての運動を辿るように制御される。例えば、幾つかの実施例では、コリメータは、照射ターゲットの全体を通して、例えば、照射ターゲットの縁および照射ターゲットの内側の両方で、粒子ビームの運動を辿るように制御され得る。幾つかの実施例では、コリメータは、照射ターゲットに対する粒子ビームの一部の運動のみを辿るように制御される。例えば、コリメータは、粒子ビームが照射ターゲットの縁に到達したときに対して照射ターゲットの縁に沿ってのみ粒子ビームの移動を辿るように制御され得る。
図10を参照すると、例えば、粒子ビームは、矢印付き線230によって示されている照射ターゲット229内の経路に従うものとしてよい。コリメータ231は、照射ターゲット229の内側233上の粒子ビームの運動を辿り得ない。しかし、コリメータ231は、照射ターゲットの縁にのみ沿って(例えば、おおよそ矢印232に沿って)粒子ビームの運動を辿るものとしてよい。例えば、粒子ビームが照射ターゲットの縁234に到達する毎に、コリメータは移動し得るか、またはすでに移動している可能性があり、縁のところで粒子ビームをインターセプトし、それによって、周辺組織235のビームへの被爆を制限することができる。コリメータがいつどれだけ移動するかは、粒子ビーム断面(スポット)のサイズ、および粒子ビームがスキャンする速度に依存し得る。この例では、照射ターゲットの内側で粒子ビームへの被曝を制限する必要はなく、したがって、コリメータは、内側でビームを辿る必要はない。
コリメータの移動は、様々な方法で制御され得る。例えば、磁石108中を流れる電流は、磁石による粒子ビームの偏向に、したがって、照射ターゲット上の粒子ビームスポットの配置に対応し得る。したがって、例えば、磁石中を流れる電流および磁石に対する照射ターゲットの配置を知ることで、走査システムの動作を制御するコンピュータシステムは、放射スポットの投射配置を決定することができる。および、本明細書で説明されているように、放射スポットの配置を知ることで、コンピュータシステムは、走査システム、特にコリメータを制御して、運動のすべてまたは一部に沿って照射スポットの移動を辿ることができる。幾つかの実施例では、コンピュータシステムは、走査システム、特にコリメータを制御することを、以下でより詳しく説明されているように、コリメータが粒子ビームスポットが配置に届く前にその配置に届くように行うことができる。
上で説明されているような、コリメータの使用には都合のよい点があり得る。例えば、幾つかの場合において、粒子ビーム走査の目標は、照射ターゲットの縁のところでの精度および照射ターゲットの内側の線量または被覆率の均一さを達成することを含み得る。コリメータの使用は、比較的大きい粒子ビームスポットを走査のために使用することを可能にすることによってこれらの目標を推進するのに役立ち得る。この文脈において、スポットサイズは、照射ターゲットの領域の指定されたパーセンテージ範囲内にある領域を有する場合に「大きい」と考えられ得る。このパーセンテージは、典型的には、2.5%であり得るが、例えば、0.25%から25%の間の値も使用することが可能である。比較的大きいスポットサイズを使用する走査は、各ビームパルスに対する照射ターゲットの分数領域被覆率(fractional areal coverage)を高める。典型的には、このスポットのサイズが大きければ大きいほど、ターゲット(患者)の運動によりターゲットの均一さに及ぼされる悪影響は小さい。しかしながら、縁では、コリメータは、側方半影を低減することによって大きいスポットからの照射が照射ターゲットの外側の組織(例えば、健常組織)に影響を及ぼす確率を低減する。従来、より小さいスポットサイズが好まれたが、それは、より大きいスポットサイズに比べて、縁においてより正確な投与を可能にするからであった。しかし、平行にされた縁と比較して、それらのより小さいスポットサイズは結果として、与えられた治療容積に対する治療時間が遅延し、縁における解像度の低下および半影の増加のせいで縁における正角性が小さくなり得る。
コリメータは、任意の数の異なる形状または構成を有することができ、1つまたは複数の可動部分を含む、または含み得ない。例示的な一実施例では、コリメータは、真鍮および/または他の放射線遮蔽材からなり、数センチメートル程度の厚さを有する。しかしながら、異なるコリメータは、異なる組成および厚さを有し得る。
例示的な実施例では、コリメータは、1つまたは複数の画成された縁を有する構造体である。例えば、コリメータは、開口を含む構造体、すなわち穴であってよい。図11は、この種類のコリメータ239の一例を示している。コリメータ239は、開口が中にある、適切な任意の形状を有するものとしてよい。開口の縁は、例えば図9に示されているように、粒子ビームの印加を制限するために使用されるものとしてよく、それによって、ビーム222を照射ターゲット224に印加することを許し、他の何らかの形でビーム経路内にあるコリメータ220によって被覆される組織に印加することを許さない。上で説明されているように、開口は、走査動作の全体を通してまたは一部において粒子ビームを辿り得る(例えば、追随し得る)。例えば、開口は、照射ターゲットの縁でのみまたは粒子ビームの運動全体を通して粒子ビームの移動を辿り得る。すなわち、コリメータそれ自体が、照射ターゲットの縁に沿って移動し、粒子ビームの移動を辿り得る(例えば、それにより、コリメータの配置が、粒子ビームが照射ターゲットの縁に到達したときに粒子ビームと一致する)。
幾つかの実施例では、コリメータは、重なり合い、それによって特定のサイズをもたらすように制御される2つまたはそれ以上の開口を備え得る。例えば、図12に示されているように、開口244および245は、それぞれの構造体246および247の一部である。構造体は、図13に示されているように互いに対して移動し、それによって、開口244、245が重なり合い、サイズを変え、幾つかの場合において、粒子ビームが通過することを許されるその結果得られる穴248の形状を変えることを引き起こす。図示されているもの以外の形状も、使用され得る。
幾つかの実施例では、コリメータは、照射ターゲットの内側での粒子ビームの運動における粒子ビームの移動を辿ることができる。例えば、幾つかの実施例では、開口は、粒子ビームスポットの直径未満の直径を有し得る。幾つかのシステムでは、すべての照射位置(照射ターゲットの内側の位置を含む)で特定の直径を有するスポットを使用することが望ましい場合がある。したがって、これらのシステムでは、開口は、治療に適切な粒子ビームスポット直径を達成するために粒子ビームのすべての移動を辿り得る。幾つかの実施例では、コリメータの開口は、サイズおよび/または形状が異なり得る。例えば、コリメータは、1つまたは複数の可動部分を有し、開口のサイズおよび形状を変化させることができる(例えば、その直径、表面積、または同様のものを縮小する)。
例示的な実施例では、コリメータは、1つまたは複数の真っ直ぐな縁を有する構造体であってよい。例えば、コリメータは、正方形、矩形、または実質的に直線状の構造体を備え、各々粒子ビームの経路内に配置され得る少なくとも1つの縁を有する。
真っ直ぐな縁を使用する例示的な一実施例では、コリメータは、図14のように、多葉構造体を有し得る。図14では、コリメータ250は、照射ターゲット251の縁に沿って移動を辿る。フィンガ252は、上もしくは下、または照射ターゲットの方へ、もしくは照射ターゲットから遠ざかって移動し、照射ターゲットの縁の形状と実質的にマッチし、粒子ビームを健常組織(または照射されるべきでない組織)に到達しないよう遮蔽する縁の形状253を形成し得る。例えば、各フィンガは、上もしくは下に移動されるか、または伸長され、引っ込められるか、または縁の形状に実質的にマッチするそのような移動の組合せがなされ得る。コリメータそれ自体は、照射ターゲット251の縁に沿って(例えば、おおよそ矢印255の方向に)移動し、粒子ビームの移動を辿り得る(例えば、それにより、コリメータの配置が、粒子ビームが照射ターゲットの縁に到達したときに粒子ビームと一致する)。幾つかの実施例では、コリメータ250は、走査動作中に照射ターゲットの内側内に移動することも、移動しないこともあり得る。
従来の多葉コリメータは、照射ターゲットに対して静止し、互いに向き合い互いに対して移動して適切な平行を実現する2セットのフィンガを備える。このようなコリメータに使用されるフィンガは数十個、数百個、さらには数千個もあり得、そのサイズは、照射場それ自体と同程度の大きさであるものとしてよい。幾つかの実施例では、照射場は、平面によって画成されるものとしてよく、これはビームに対してある角度を成し、粒子ビームが照射ターゲットに対してXおよびY方向に移動することができる最大の範囲を定める。しかしながら、本明細書で説明されている例示的な実施例では、コリメータは、照射ターゲットに対して移動し(例えば、照射ターゲットの縁に沿って辿るかまたは移動し)、スポットがその点に当たる、また当たるときの照射ターゲットの点のところで定められた縁をもたらすだけでよい。したがって、多葉コリメータは、従来のその対応物に比べてかなり小さくされ得る。例えば、本明細書で説明されている多葉コリメータは、10個以下(例えば、2、3、4、5、6、7、8、または9個)のフィンガ(または必要ならばそれ以上)を備え得る。
図15に示されているように、真っ直ぐな縁を使用する例示的な一実施例では、コリメータ260は、形状が矩形で、照射ターゲット261の縁に沿って移動するものとしてよい。コリメータ260は、照射ターゲットの縁に沿って移動し、粒子ビームの移動を辿り得る(例えば、それにより、コリメータの配置が、粒子ビームが照射ターゲットの縁に到達したときに粒子ビームと一致する)。照射ターゲットの縁に沿って運動しているときに、コリメータ260は、2または3次元内で、例えば、矢印262のXY次元内、またZ次元内でも回転し得る。この回転は、コリメータ260の縁の少なくとも一部が照射ターゲットの縁と比較的よくマッチすることを可能にする。したがって、コリメータ260は、粒子ビームが照射ターゲットの縁に到達したときに、コリメータが縁を越えて伸長する組織を遮蔽する。その結果、コリメータは、照射ターゲットに対して定められた放射線縁(radiation edge)をもたらし、隣接する組織を放射線粒子ビームから保護する。照射ターゲットの縁上の適切な点へのコリメータの移動は、粒子ビームの移動と一致するか、または粒子ビームの移動に先行するものとしてよい。
幾つかの実施例では、コリメータは、図15に示されているように、1つまたは複数の真っ直ぐな縁を有する単一構造体を含み得る。他の実施例では、コリメータは、図16に示されているように、照射ターゲットの異なる(例えば、対向する)縁のところで2つまたはそれ以上のそのような構造体を備え得る。そこでは、コリメータは、2つの構造体265、266を備える。構造体265および266の各々は、粒子ビームの移動を辿る。すなわち、構造体265は、構造体265の配置が、粒子ビームが照射ターゲットの縁269に到達したときに粒子ビームと一致するように移動し、構造体266は、構造体266の配置が、粒子ビームが照射ターゲットの縁270に到達したときに粒子ビームと一致するように移動する。照射ターゲットの縁上の適切な点への各構造体の移動は、粒子ビームの移動と一致するか、または粒子ビームの移動に先行するものとしてよい。例えば、構造体266は、スポットが矢印271の方向に走査されるときに移動されるものとしてよく、したがって、構造体266は、スポットが縁270に戻ったときに適切な配置にあり、構造体265は、スポットが矢印272の方向に走査されるときに移動されるものとしてよく、したがって、構造体265は、スポットが縁269に戻ったときに適切な配置にある。構造体265および266は、同時に、異なる時刻に移動し得るか、またはその移動の時間に重なりがあり得る。この種類の配置構成は、粒子ビームが照射ターゲットの縁から縁まで移動されることを可能にし、コリメータは両方の縁において定められた照射場を可能にする。そして、コリメータは、複数の構造体からなるので、走査速度は、コリメータの移動を待って著しく低速にされる必要はない。幾つかの実施例では、コリメータは、図16に示されている種類および動作の2つよりも多い(例えば、3、4つなど)構造体を備え得る。幾つかの実施例では、コリメータを構成する2つまたはそれ以上の構造体は、図11に示されているものなどの、穴を備える構造体であってよい。2構造体コリメータの動作は、さもなければ上で説明されている通りである。
幾つかの実施例では、コリメータは、図17に示されているように、真っ直ぐな縁を有する必要はなく、むしろ、その縁は湾曲していてもよい。コリメータは、ただ1つのそのような構造体または2つもしくはそれ以上のそのような構造体を備え得る。幾つかの実施例では、コリメータを構成する2つまたはそれ以上の構造体は、湾曲した縁を備える構造体であってよい。例えば、図17に示されている種類の2つの構造体は、図16の2つの構造体を置き換え得る。2構造体コリメータの動作は、さもなければ上で説明されている通りである。
この点で、例示的な実施例では、コリメータは、その縁に沿って連続的に変化する曲率半径を有する湾曲した形状を有する構造体であってよく、それによって、縁の少なくとも一部が直接的に、または縁を適切な角度に回転させることによって、のいずれかで、照射ターゲットの縁とよくマッチするようにできる。この例では、コリメータ275は、部分的にまたは完全に、のいずれかで、ビームを辿るように移動され得る、また照射ターゲットに対して2または3次元内で回転させて粒子ビームの印加を制御することができる雲形定規の形状をとる。適切な湾曲を有する構造体が、コリメータ内に備えられ得る。上記の場合と同様に、コリメータ275は、照射ターゲットの縁に沿って移動し、粒子ビームの移動を辿ることしかできない(例えば、それにより、コリメータの配置が、粒子ビームが照射ターゲットの縁に到達したときに粒子ビームと一致する)。上記の場合と同様に、コリメータは、照射ターゲットの内側で粒子ビームの移動を辿る場合も辿らない場合もある。
コリメータは、図17に示されている種類のただ1つの構造体を含み得るか、またはコリメータは、2つまたはそれ以上のそのような構造体を含み得る。例えば、図17に示されている種類の2つの構造体は、図16の2つの構造体を置き換え得る。2構造体コリメータの動作は、さもなければ上で説明されている通りである。
幾つかの実施例では、治療計画システムは、照射ターゲットの内側での走査速度(例えば、粒子ビームスポットが照射ターゲットを横断する速度)が照射ターゲットの縁での走査速度と異なるように設計され得る。例えば、走査速度は、照射ターゲットの縁のところに比べて、照射ターゲットの内側でより高速であり得る。この配置構成は、照射ターゲットの内側と比べて、照射ターゲットの縁のところでの走査精度をより高くすることができる。この種類の可変速度走査は、本明細書で説明されているものを含む、適切な任意の種類のコリメータを使用して実装され得るか、またはこの種類の可変速度走査は、いかなるコリメータをも使用することなく実装され得る。いずれの場合も、照射ターゲットの縁のところでの速度を遅くすることは、そこでのより正確な走査を可能にし、それにより、粒子ビームが照射ターゲットの外側に影響を及ぼす確率を低減することができる。
幾つかの実施例では、本明細書で説明されているコリメータは、強度変調陽子治療プロセスにおいて使用され得る。そのようなプロセスでは、陽子ビームは、線量全体のうちのあるパーセンテージの線量が各方向から送達されるように異なる方向から照射ターゲットに投射される。その結果、照射ターゲットの外側の容積部に送達される線量の量は、低減され得る。例えば、図18は、3つの異なる角度から照射ターゲット281に印加される粒子ビーム280を示している。この例では、全線量の1/3が、1つの角度から印加されるものとしてよく、全線量の1/3が、別の角度から印加されるものとしてよく、全線量の1/3が、さらに別の角度から印加されるものとしてよい。すなわち、粒子ビームは、水平285に対して角度282で走査され、線量の1/3を印加するものとしてよく、粒子ビームは、角度283で走査され、線量の1/3を印加するものとしてよく、粒子ビームは、角度284で走査され、線量の1/3を印加するものとしてよい。その結果、周辺組織287に印加される放射線の量は、適切な角度で広げられ、それによって、周辺組織が有害な量の放射線に曝される確率を低減する。任意の適切な数の角度および角度当たりの適切な線量が使用され得る。
腫瘍などの照射ターゲットは、典型的には対称的でない。したがって、粒子ビームの異なる印加角度に対して異なるビーム平行が典型的には必要である。本明細書で説明されている例示的なコリメータは、照射の角度が与えられた場合に照射ターゲットの縁(上で説明されているような)に沿った適切な配置に位置決めされ、適切な平行をもたらし得る。幾つかの実施例では、例示的なコリメータは、照射ターゲットの縁でのみ、またはすべての印加角度での粒子ビームの運動の一部(または全部)全体にわたって、のいずれかで、粒子ビームの運動を辿ることができる。
幾つかの実施例では、本明細書で説明されている例示的なコリメータは、粒子ビームを遮蔽することによって周辺組織への粒子ビームの透過を防ぐ。幾つかの実施例では、例示的なコリメータは、粒子ビームの部分的透過を可能にし、それによって、結果として、周辺組織への放射線レベルを照射ターゲットへの放射線レベルよりも低くすることができる。本明細書で説明されている例示的なコリメータはどれも、このように生産され得る。
本明細書で説明されている例示的なコリメータは、1つまたは複数のコンピュータ制御ロボットアームまたは他の構造体に取り付けられ、それにより、照射ターゲットに対するその移動を制御することができる。コリメータは、走査システムそれ自体にも取り付けられ得る。典型的には、コリメータは、粒子ビーム走査システムの他の要素に対して本特許に最も近い位置に取り付けられる(例えば、走査システムの他の要素のビーム下流側)。コリメータが複数の個別部品を備える実施例では(例えば、図16)、治療計画に従ってコリメータの異なる個別部品を独立制御するため複数のロボットアームまたは他の構造体があり得る。幾つかの実施例では、単一のロボットアームが、コリメータの異なる個別部品を制御するか、または事前に組み立てられた個別部品の組合せを制御するように構成され得る。
幾つかの実施例では、エネルギーデグレーダも、粒子ビームの運動を辿るように構成され得る。この点で、図7および図8に関して説明されている例示的な実施例などの、幾つかの実施例では、エネルギーデグレーダは、ビームのエネルギーの量を制御し、それによってビーム粒子が照射ターゲットを貫通する深さを制御するように粒子ビームの経路内に移動可能である複数のプレートを備え得る。この方法で、エネルギーデグレーダは、照射ターゲット内の深さ走査(ビーム粒子の方向またはZ方向)を実行するために使用される。典型的には、各プレートは、一定量の粒子ビームのエネルギーを吸収する。したがって、粒子ビームの前に置かれるプレートが多ければ多いほど、ビームが有するエネルギーが少なくなり、ビームが照射ターゲット内に貫通する深さはより小さくなる。逆に、粒子ビームの前に置かれるプレートが少なければ少ないほど、ビームが有するエネルギーが大きくなり(プレートによって吸収されるエネルギーが少ないので)、ビームが照射ターゲット内に貫通する深さはより大きくなる。幾つかの実施例では、各プレートは、ほぼ同じ厚さを有し、したがって、ほぼ同じ量のビームエネルギーを吸収する。他の実施例では、異なるプレートは、異なる厚さを有する可能性があり、プレートの厚さはプレートが吸収するエネルギーの量に対応する。
幾つかの実施例では、プレートは各々、照射場のほぼサイズである表面積を有する。この文脈において、照射場は、粒子ビームが照射ターゲットに対してXおよびY方向に移動することができる最大の範囲を定める平面によって画成され得る。例えば、図19は、照射ターゲット291の前にある照射場290(ビーム場または照射場とも称される)を示している。物理的なシステム制限により、粒子ビームは、照射場を画成する平面にわたって、ただし、それを超えることなく、移動可能である。したがって、エネルギーデグレーダが照射場内の任意の配置に施され得ることを確実にするために、幾つかの実施例では、エネルギーデグレーダ内のプレートは各々、少なくとも照射場のサイズ程度の大きさ、および場合によってはそれを超える大きさの表面積を有する。しかしながら、この構成は、結果として、大きい(場合によっては1平方メートルまたは数平方メートルの)、および重く、比較的移動が遅いプレートをもたらし得る。プレートの低速移動は、結果として、治療を遅くする可能性がある。
幾つかの実施例では、エネルギーデグレーダは、照射場のサイズよりも小さく、粒子ビームの運動の少なくとも一部を辿り得る。その結果、エネルギーデグレーダは、比較的軽く、それにより、粒子ビームの経路内のエネルギーデグレーダプレートを位置決めするのに要する時間を短縮することができ、したがって治療時間を短縮することができる。エネルギーデグレーダは、2つの方向(例えば、XY)または3つの方向(例えば、XYZ)で粒子ビームを辿ることができる。すなわち、エネルギーデグレーダは、粒子ビームに垂直な平面内で移動し得るか、またはエネルギーデグレーダは、粒子ビームに垂直な平面内で、粒子ビームの縦方向に沿って移動し得る。この点で、本明細書で説明されているどのコリメータも、粒子ビームに垂直な平面内で移動し得るか、または本明細書で説明されているどのコリメータも、粒子ビームに垂直な平面内で、粒子ビームの縦方向に沿って移動し得る。コリメータおよびエネルギーデグレーダの移動は、独立しているか、または調整され得る。
例えば、エネルギーデグレーダは、複数の個別部品からなるものとしてよく、これは治療中に粒子ビームエネルギーを吸収するように製作されたプレートまたは他の構造体とすることができる。各個別部品は、同じ面積(XY)および厚さ(Z)を有するか、または異なる個別部品は、異なる面積および厚さを有し得る。図20を参照すると、同じまたは異なる厚さを有する2つまたはそれ以上の個別部品294は、特定の量のエネルギー吸収を達成するために粒子ビーム293の経路内の照射ターゲット295の前に配置され得る。代替的に、指定された厚さを有する単一個別部品は、特定の量のエネルギー吸収を達成するためにビームの前に配置され得る。さらに、特定のエネルギー吸収が必要な場合、制御コンピュータは、その吸収を達成するために適切な厚さを有する個別部品を選択し得る。
2つまたはそれ以上の個別部品がビームの前に配置される例では、これらの個別部品は、配置の前に組み立てられるか、または配置のときに動的に組み立てられ得る。例えば、制御コンピュータは、2つの個別部品を選択し、それらを配置構成し、次いで、2つの個別部品の組合せをビーム経路内に移動することができる。代替的に、制御コンピュータは、2つの個別部品を選択し、次いで、それら2つの個別部品の組合せをビーム経路内に同時に移動するが、組み合わせては移動し得ない(例えば、各々が別のロボットアームで移動され得る)。
エネルギーデグレーダは、またはその個別部品は、照射場の少なくとも一部にわたって粒子ビームの移動を辿り、照射ターゲット上の様々な点で、適切なエネルギー吸収、したがってビーム深さ貫通(beam depth penetration)を達成し得る。治療計画では、エネルギーデグレーダが治療中の特定の時刻にどこにある必要があるかを指定することができ、また電離箱からのフィードバックが、必要ならば、位置決めおよび位置補正に使用され得る。幾つかの実施例では、エネルギーでグレーが粒子ビームを辿る際の必要とされる精度は、デグレーダのサイズと、粒子ビームがエネルギーデグレーダと交差する点における粒子ビームのスポットサイズとに基づいている。
より具体的には、幾つかの例では、エネルギーデグレーダの表面積が小さければ小さいほど、粒子ビームの移動を辿るべきエネルギーデグレーダの移動はより精密になる。逆に、他の例では、エネルギーデグレーダの表面積が大きければ大きいほど、粒子ビームの移動を辿る必要のあるエネルギーデグレーダの移動はあまり精密でなくなる。例えば、図21を参照すると、エネルギーデグレーダ299が、粒子ビームがエネルギーデグレーダと交差する点においてスポット300の表面積に近い表面積を有する場合、エネルギーデグレーダは、エネルギーデグレーダが治療中の適切な時刻に照射ターゲット301に対して粒子ビームの前にあることを確実にするために粒子ビームの運動をかなり精密に辿るべきである。例えば、配置302から配置303への粒子ビーム304の運動も、スポットおよびデグレーダの面積が比較的近いサイズであるので、エネルギーデグレーダ299が矢印305の方向に移動し、ビーム経路内に留まることを必要とする。指示されているように、粒子ビームの運動は、治療計画によって指定され、電離箱の使用および制御コンピュータへのフィードバックを通じて検出され得る。この情報も、エネルギーデグレーダの移動を制御するために使用され得る。
幾つかの実施例では、移動可能なエネルギーデグレーダは、粒子ビームスポットよりもかなり大きいものとしてよい。これらの場合、エネルギーデグレーダは、エネルギーデグレーダが治療中の適切な時刻において粒子ビームの前にあることを確実にするために粒子ビームの運動を精密に辿る必要はない。実際、エネルギーデグレーダのサイズによっては、エネルギーデグレーダは、粒子ビームが移動する幾つかの場合において全く移動する必要はない。すなわち、粒子ビームの一部の運動について、エネルギーデグレーダは、静止したままであってよく、粒子ビームの他の運動については、エネルギーデグレーダは、粒子ビームをインターセプトするようにも移動する。例えば、図22は、エネルギーデグレーダ310が、粒子ビームがエネルギーデグレーダと交差する点において粒子ビームスポット311よりもかなり大きい場合を示している。粒子ビームが点314aから点314bに移動するときに、エネルギーデグレーダは、エネルギーデグレーダが移動していなくてもビーム経路内に留まる。制御コンピュータシステムは、デグレーダのサイズおよび2つのスポット位置を知って、この場合にはエネルギーデグレーダを移動しない。したがって、この場合に、エネルギーデグレーダは、粒子ビームスポットの移動を辿る必要はない。しかしながら、スポットが点314cに移動したときに、エネルギーデグレーダ(またはその個別部品)は、ビーム経路内に留まるように、移動してビームを辿りインターセプトする。したがって、ビームスポットに対するエネルギーデグレーダのサイズは、いつ、どれだけ、エネルギーデグレーダが走査中に移動することが要求されるかを決定する際の一要因である。
幾つかの実施例では、エネルギーデグレーダは、複数の部分または個別部品を含み得る。例えば、照射ターゲットの一部にわたって粒子ビームの移動を辿るために一方の部分または個別部品が使用されるものとしてよく(例えば、照射ターゲットの頂部から印加される照射)、照射ターゲットの別の部分にわたって粒子ビームの移動を辿るために別の部分または個別部品が使用され得る(例えば、ターゲットの底部から印加される照射)。
エネルギーデグレーダ(またはその個別部品)は、任意の形状、例えば、正方形、矩形、円形、長円形、不規則な形状、規則正しい形状、多角形、球形、立方体、四面体などの形状を有し得る。エネルギーデグレーダ(またはその個別部品)は、任意の適切なサイズを有し得る。例えば、エネルギーデグレーダ(またはその個別部品)は、照射場の面積未満、照射場の面積の3/4未満、照射場の面積の1/2未満、照射場の面積の1/3未満、照射場の面積の1/4未満、照射場の面積の1/5未満、などの表面積を有し得る。エネルギーデグレーダ(またはその個別部品)は、照射場における粒子ビームスポットの面積の20倍未満、照射場における粒子ビームスポットの面積の15倍未満、照射場における粒子ビームスポットの面積の10倍未満、照射場における粒子ビームスポットの面積の9倍未満、照射場における粒子ビームスポットの面積の8倍未満、照射場における粒子ビームスポットの面積の7倍未満、照射場における粒子ビームスポットの面積の6倍未満、照射場における粒子ビームスポットの面積の5倍未満、照射場における粒子ビームスポットの面積の4倍未満、照射場における粒子ビームスポットの面積の3倍未満、または照射場における粒子ビームスポットの面積の2倍未満、表面積を有し得る。幾つかの実施例では、エネルギーデグレーダ(またはその個別部品)は、スポットサイズの倍数、例えば、スポットサイズの2倍、スポットサイズの3倍、スポットサイズの5倍、スポットサイズの10倍、などの表面積を有し得る。
幾つかの実施例では、各個別部品(例えば、複数の層からなる層)は、同じサイズ、形状、厚さ、および組成を有する。他の実施例では、異なる個別部品は、異なるサイズ、形状、厚さ、および組成を有し得る。
本明細書で説明されている例示的なエネルギーデグレーダの移動は、様々な方法で制御され得る。例えば、磁石108中を流れる電流は、磁石による粒子ビームの偏向に、したがって、照射ターゲット上の粒子ビームスポットの配置に対応し得る。したがって、例えば、磁石中を流れる電流および磁石に対する照射ターゲットの配置を知ることで、走査システムの動作を制御するコンピュータシステムは、照射スポットの投射配置を決定することができる。および、本明細書で説明されているように、放射スポットの配置、およびスポットサイズに対するエネルギーデグレーダのサイズを知ることで、コンピュータシステムは、エネルギーデグレーダを制御して、その運動の全部または一部に沿って照射スポットの移動を(必要ならば)辿ることができる。
本明細書で説明されている例示的な移動可能なエネルギーデグレーダは、走査システムの要素も含む1つまたは複数のコンピュータ制御ロボットアームまたは他の構造体に取り付けられ、それにより、照射ターゲットに対する移動を制御することができる。エネルギーデグレーダが複数の個別部品(例えば、多数の個別部品またはプレート)を備える実施例では、治療計画に従ってエネルギーデグレーダの異なる個別部品を独立制御するため複数のロボットアームがあり得る。幾つかの実施例では、単一のロボットアームは、異なる個別部品を独立制御するように構成され得る。
照射ターゲットの異なる断面は、異なる治療計画に従って走査され得る。上で説明されているように、走査深さを制御するためにエネルギーデグレーダが使用される。幾つかの実施例では、粒子ビームは、エネルギーデグレーダの構成時に中断されるか、または向きを変えられ得る。他の実施例では、これは必ずしもその場合である必要はない。
本明細書では、照射ターゲットの断面を治療する例が説明されている。これらは、粒子ビームの方向に対しておおよそ垂直である断面であり得る。しかしながら、本明細書で説明されている概念は、粒子ビームの方向に対して垂直である断面ではない照射ターゲットの他の部分を治療するステップにも等しく適用可能である。例えば、照射ターゲットは、球体、立方体、または他の形状の容積部にセグメント分割され、それらの容積部は本明細書で説明されている例示的なプロセス、システム、および/またはデバイスを使用して治療され得る。
本明細書で説明されているプロセスは単一の粒子加速器とともに使用され、本明細書で説明されているこれらの特徴の任意の2つまたはそれ以上は単一の粒子加速器とともに使用され得る。粒子加速器は、任意の種類の医療または非医療用途に使用され得る。使用することができる粒子治療システムの一例が、以下に提示されている。とりわけ、本明細書で説明されている概念は、特には説明されていない他のシステムでも使用され得る。
図23を参照すると、荷電粒子線治療システム401の例示的な実施例は、ビーム発生粒子加速器402を備えており、ビーム発生粒子加速器402の重量および大きさは、ビーム発生粒子加速器402の出力が加速器ハウジングから患者406に向かう直線方向に(すなわち、実質的に直接)方向づけられている状態において、回転式ガントリー404に取り付け可能とされる大きさである。粒子加速器402は、本明細書で説明されている種類の走査システムも備え、これは図3から図22および図34から図49に関して説明されているように動作し得る。
幾つかの実施例では、鋼製ガントリーは、2つの脚部408、410を有しており、2つの脚部408、410は、患者の両側に配設された2つの軸受412、414それぞれに回転するように取り付けられている。加速器は、患者が横たわる治療領域418を跨設するのに十分に長い(患者の所望のターゲット領域をビームライン上に維持した状態で空間内において背の高いヒトを完全に回転させることができるように、例えば当該ヒトの身長の2倍の長さとされる)鉄骨トラス416によって支持されており、その両端においてガントリーの回転式脚部に安定に取り付けられている。
幾つかの実施例では、ガントリー404の回転が360°未満の範囲420、例えば、約180°に制限され、これにより、治療システムを収納するボールト424の壁から患者治療領域内部に至るまで床422を延在させることができる。また、ガントリー404の回転範囲420が制限されることによって、患者治療領域の外側に居る人々を放射線から遮蔽するための壁のうちの幾つかの壁(ビームと直接的には整列されない、例えば、壁430)の必要な厚さを薄くすることができる。ガントリー404の回転範囲420を180°とすれば、すべての治療アプローチ角に対応するのに十分であるが、移動範囲を拡大することは優位である。例えば、回転範囲420は、180°~330°としても、依然として治療のための床面積に対するクリアランスを確保することができる。他の実施例では、回転は、上で説明されているように制限されない。
ガントリー404の水平回転軸線432は、患者と療法士とが治療システムをインタラクティブに操作する場所の床より公称1メートル上方に配置されている。この床は、荷電粒子線治療システム401を遮蔽しているボールト424の最下床より約3メートル上方に位置決めされている。ビーム発生粒子加速器402は、治療ビームを回転軸線の下方から照射するために高床の下方において旋回可能とされる。患者用カウチは、ガントリー404の回転軸線432に対して略平行とされる水平面内において移動および回転する。カウチは、このような構成によって水平面内において約270°の範囲434にわたって回転可能とされる。ガントリー404および患者の回転範囲420、434と自由度との組合せによって、療法士は、ビームについての任意のアプローチ角を実質的に選択することができる。必要に応じて、患者を反対の向きでカウチに載置することによって、想定し得るすべての角度が利用可能となる。
幾つかの実施例では、加速器は、高磁界超電導電磁構造体を有しているシンクロサイクロトロンを利用する。所定の運動エネルギーを具備する荷電粒子の曲率半径は、当該荷電粒子に印加される磁場の増大に正比例して小さくなるので、高磁界磁場超電導磁気構造体を利用することによって、加速器を小型かつ軽量にすることができる。シンクロサイクロトロンは、回転角度が一様とされる磁場であって、半径が大きくなるに従って強度が低下する磁場を利用する。このような磁場形状は、磁場の規模に関係なく実現されるので、シンクロサイクロトロン内で利用可能とされる磁場の強度(ひいては、固定された半径において結果として得られる粒子エネルギー)についての上限は理論上存在しない。
シンクロサイクロトロンは、ビームが患者に対して直接生成されるようにガントリーに支持されている。ガントリーは、患者の体内の点または患者の近傍の点(アイソセンター440)を含む水平回転軸線を中心としてシンクロサイクロトロンを回転させることができる。水平回転軸線に対して平行とされる分割式トラスが、シンクロサイクロトロンをその両側で支持している。
幾つかの例示的な実施例ではガントリーの回転範囲は制限されているので、患者支持領域は、等角点の周りの広い領域内に収容され得る。アイソセンターを中心として広範囲にわたって床を延在させることができるので、患者支持台は、アイソセンターを通過する垂直軸線442に対して相対的に移動するように、かつ垂直軸線442を中心として回転するように位置決めされ、ガントリーの回転と患者支持台の移動および回転との組合せによって、患者の任意の部位に向けて任意の角度でビームを方向づけることができる。幾つかの実施例では、2つのガントリーアームは、背の高い患者の身長の2倍を超える長さで離隔されているので、高床の上方に位置する水平面内において、患者を乗せたカウチを回転および並進運動させることができる。
ガントリーの回転角度を制限することによって、治療室を囲む壁のうちの少なくとも1つの壁の厚さを低減することができる。一般にコンクリートから構成された厚肉の壁によって、治療室の外に居るヒトは放射線から防護される。陽子ビームを阻止するための下流側の壁は、同等のレベルの防護を実現するために、治療室の反対側の壁の約2倍の厚さとされる場合がある。ガントリーの回転を制限することによって、治療室を3つの側面においてアースグレード(earth grade)より低く設定することができる一方、占有領域を最も薄肉の壁に隣接させることができるので、治療室を建築するコストを低減することができる。
図23に示されている例示的な実施例では、超電導シンクロサイクロトロン402は、シンクロサイクロトロンの磁極間隙において8.8テスラのピーク磁場で動作する。シンクロサイクロトロンは、250MeVのエネルギーを有する陽子ビームを発生する。幾つかの実施例では、シンクロサイクロトロンは、可変エネルギー機械であり、異なるエネルギーを有する陽子ビームを出力することができる。幾つかの実施例では、シンクロサイクロトロンは、固定されたエネルギーを有するビームを発生することができる。幾つかの実施例では、場の強度は、4Tから20Tの範囲内とすることが可能であり、陽子エネルギーは、150から300MeVの範囲内とすることが可能である。
この例で説明されている放射線治療システムは陽子放射線治療に使用されるが、同じ原理および詳細は、重イオン(イオン)治療システムで使用するための類似のシステムにおいて適用され得る。
図1、図2、図24、図25、および図26に示されているように、例示的なシンクロサイクロトロン10(例えば、図23の402)は、粒子源190を収容する磁石システム122、高周波駆動システム191、およびビーム引き出しシステム138を含む。この例では、磁石システムによって確立される磁場は、環状超電導コイル140、142の分割されたペアと成形された強磁性(例えば、低炭素鋼)磁極面144、146のペアとの組合せを使用して、内部に存在する陽子ビームの集束を維持するのに適切な形状を有する。
2つの超電導磁気コイルは、共通軸147を中心とし、この軸に沿って相隔てて並ぶ。コイルは、撚り合わせたケーブルインチャネル導体形態で配設される直径0.8mmのNbSn系超電導線(最初に、銅シースによって囲まれているニオブスズコアを備える)から形成され得る。7本の個別の線がまとめられてケーブルにされた後、これらは加熱され、ワイヤ状の最終(脆い)超電導体を形成する反応を引き起こす。材料が反応した後、ワイヤは銅チャネル(外径3.18×2.54mmおよび内径2.08×2.08mm)内にハンダ付けされ、絶縁体(この例では、ガラス繊維織布)で覆われる。次いで、ワイヤを収容する銅チャネルコイル状に巻き取られ、これは矩形の断面を有する。次いで、この巻きコイルは、エポキシ化合物で真空含浸される。完成したコイルは、環状ステンレスリバースボビン上に取り付けられる。ヒーターブランケットは間隔をあけて巻線の層内に入れられ、磁石クエンチが生じた場合にアセンブリを保護し得る。
次いで、コイル全体を銅板で覆って熱伝導性および機械的安定性を付与し、次いで、追加エポキシ層内に収容する。コイルの事前圧縮は、ステンレス製リバースボビンを加熱し、コイルをリバースボビン内に嵌め込むことによって行われ得る。リバースボビンの内径は、質量全体が4Kまで冷却されたときに、リバースボビンがコイルと接触したままになり、ある程度の圧縮をもたらすように選択される。ステンレス製のリバースボビンを約50℃に加熱し、コイルを100度のケルビン温度でコイルを嵌合すると、これが達成され得る。
コイルの幾何学的形状は、コイルを矩形「リバース」ボビン156内に取り付けて、コイルが通電されたときに発生する歪みを起こす力に抗して作用する復元力を与えることによって維持される。図25に示されているように、幾つかの実施例では、コイル位置は、一組の高温-低温支持ストラップ402、404、406を使用して対応する磁極片および低温保持装置に対して維持される。低温質量を細いストラップで支持することにより、剛体支持システムによって低温質量に与えられる熱漏洩が低減される。ストラップは、磁石が搭載された状態でガントリーを回転するときにコイルにかかる変化する重力に耐えるように構成される。これらは、重力と、磁気ヨークに対して完全対称位置から摂動したときにコイルによって生じる大きな偏心力との複合効果に耐える。それに加えて、リンクは、位置が変わった場合にガントリーが加減速する際にコイルに与えられる動的な力を低減する働きをする。それぞれの高温-低温支持体は、1つのS2ガラス繊維リンクと1つの炭素繊維リンクとを含み得る。炭素繊維リンクは、高温のヨークと中間温度(50~70K)との間のピン上で支持され、S2ガラス繊維リンク409は、中間温度ピンおよび低温質量に取り付けられたピン上で支持される。それぞれのピンは、高張力ステンレス鋼から作ることができる。
図1を参照すると、半径の関数としての場の強度プロファイルは、大部分がコイルの幾何学的形状および磁極面の形状の選択によって決定され、透磁性ヨーク材料の磁極面144、146は、磁場の形状を微調整して加速時に粒子ビームの収束を確実に保つように、起伏が付けられ得る。
超電導コイルは、限定された一組の支持点171、173を除き、コイル構造体の周りに自由空間を設ける真空にされた環状アルミニウムまたはステンレス製低温保持槽170(低温保持装置)の内側にコイルアセンブリ(コイルおよびボビン)を封じ込めることによって絶対零度近くの温度(例えば、約4ケルビン)に維持される。代替的バージョン(例えば、図2)において、低温保持装置の外壁は、低炭素鋼で作られ、磁場に対する追加の帰還磁路をもたらすことができる。
幾つかの実施例では、絶対零度近くの温度は、1つの単段ギフォードマクマホン冷凍機と3つの2段ギフォードマクマホン冷凍機とを使用して達成され、維持される。それぞれの2段冷凍機は、ヘリウム蒸気を液体ヘリウムに再凝縮する凝縮器に取り付けられた第2段低温端部を有する。幾つかの実施例では、液体ヘリウムを収容する冷却チャネル(図示せず)を使用して絶対零度に近い温度が達成され、維持されるが、この冷却チャネルは超電導コイル支持構造体(例えば、リバースボビン)の内側に形成され、チャネル内の液体ヘリウムと対応する超電導コイルとの間の熱的接続部を含む。
幾つかの実施例では、コイルアセンブリおよび低温保持槽は、ピルボックス形状の磁石ヨーク100の2つの半分181、183内に取り付けられ、完全に封じ込められる。ヨーク100は、帰還磁束184に対する経路となり、磁極面144、146の間の容積部186を磁気遮蔽して外部からの磁気的影響がその容積部内の磁場の形状を摂動するのを防ぐ。ヨークは、加速器の付近の漂遊磁場を減少させる働きもする。他の実施例では、コイルアセンブリおよび低温保持槽は、非磁気エンクロージャ内に取り付けられ、それによって完全に封じ込められ、帰還磁束は、能動的帰還システムを使用して実装され、その一例は上で説明されている。
図1および図27に示されているように、シンクロサイクロトロンは、磁気構造体182の幾何学的中心192の近くに配置されているペニングイオンゲージ形態の粒子源190を含む。粒子源は、以下に説明されている通りであるか、または粒子源は、参照により本明細書に組み込まれている米国特許出願第11/948,662号(米国特許第8,581,523号)で説明されている種類のものであってよい。
粒子源190は、水素の供給部399からガス管路393および気体水素を送達する管394を通して供給される。電気ケーブル294は電流源から電流を運び、磁場400の方向に揃えられた陰極392、390からの電子の放出を刺激する。
この例では、放出される電子は、管394から小さな穴を通して出て来るガスを電離し、磁石構造体と1つのダミーディープレートとによって囲まれた空間の半分にかかる1つの半円形(ディー形状)高周波プレートによって加速する陽イオン(陽子)の供給部を形成する。遮断された粒子源の場合(その一例は、米国特許出願第11/948,662号で説明されている)、プラズマを収容する管の全部(または実質的な部分、例えば大半)が加速領域で取り除かれる。
図28に示されているように、ディープレート500は、磁石構造体によって囲まれた空間の周りの回転の半分において陽子が加速される空間507を囲む2つの半円形表面503、505を有する中空金属構造体である。空間507内に開いているダクト509は、エンクロージャ(例えば、ヨークまたは磁極片)を通り、真空ポンプが取り付けられ得る外部の場所に延在し、これにより、空間507および、加速が行われる真空槽内の空間の残り部分を真空にする。ダミーディー502は、ディープレートの露出されている縁の近くに間隔をあけて並ぶ矩形の金属リングを備える。ダミーディーは、真空槽および磁気ヨークに接地される。ディープレート500は、高周波伝送路の終端部に印加される高周波信号によって駆動され、電場を空間507内に発生させる。高周波電場は、加速された粒子ビームが幾何学的中心からの距離を増やすにつれ時間に対して変化させられる。高周波電場は、参照により本明細書に組み込まれている米国特許出願第11/948,359号(米国特許第8,933,650号)、名称「Matching A Resonant Frequency Of A Resonant Cavity To A Frequency Of An Input Voltage」で説明されているように制御され得る。
ビームが中央に配置された粒子源から現れて粒子源構造体をクリアし、外向きに螺旋を描き始めると、高い電圧差が高周波プレート上に印加され得る。高周波プレートに20,000Vが印加される。幾つかのバージョンでは、8,000から20,000ボルトが高周波プレートに印加され得る。この高い電圧を駆動するために必要な電力を低減するために、磁石構造体は、高周波プレートと接地との間の静電容量を減らすように構成される。これは、高周波構造から外側ヨークおよび低温保持装置ハウジングまで十分な間隔をあけて穴を形成し、磁極面の間に十分な空間を確保することによって行われ得る。
ディープレートを駆動するこの高電圧の交流電位は加速サイクルにおいて、陽子の増大する相対論的質量と減少する磁場とを考慮して、周波数が低くなるように掃引される。ダミーディーは、真空槽壁と共に接地電位にあるので中空半円筒形構造体を必要としない。基本周波数の異なる位相または倍数の周波数で駆動される加速電極の複数のペアなどの、他のプレート構成も使用することが可能である。RF構造は、例えば、互いにかみ合う回転および静止ブレードを有する回転コンデンサを使用することによって、必要な周波数掃引においてQを高く保つように調整することができる。ブレードのかみ合い毎に、静電容量が増加し、したがって、RF構造の共振周波数が下がる。ブレードは、必要な正確な周波数掃引がもたらされる形状に成形され得る。回転コンデンサ用の駆動モータは、正確な制御を行うためにRF発生器に位相固定され得る。一群の粒子が、回転コンデンサのブレードのかみ合い毎に加速され得る。
加速が行われる真空槽は、中央が薄く、縁が厚い、一般的に円筒形の容器である。真空槽は、RFプレートおよび粒子源を封じ込め、真空ポンプによって真空にされる。高真空を維持することで、加速するイオンが気体分子との衝突で失われる確率が低減され、アーク地絡を生じることなくRF電圧をより高いレベルに保つことが可能になる。
陽子(または他のイオン)は、粒子源から始まる一般的に螺旋状の軌道経路を横断する。螺旋経路のそれぞれのループの半分において、陽子は、RF電場を通過するときにエネルギーを獲得する。陽子がエネルギーを獲得すると、螺旋経路のそれぞれの連続するループの中心軌道の半径は、ループ半径が磁極面の最大半径に達するまで前のループより大きくなる。その位置で、磁場および電場摂動は陽子を磁場が急速に減少する領域内に導き、陽子は高い磁場の領域から出て、本明細書では引き出しチャネルと称される真空管に通され、シンクロサイクロトロンから出る。磁場摂動を変えて陽子の向きを決めるために磁気再生器が使用され得る。出て来る陽子は、シンクロサイクロトロンの周りの部屋内に存在する著しく減少する磁場の領域に入ると分散する傾向を有する。引き出しチャネル138(図25)内のビーム成形要素607、609は、陽子が空間的広がりを制限された真っ直ぐなビーム状態を保つように陽子の向きを変える。
ビームが引き出しチャネルから出るときに、ビームは本明細書で説明されている種類の走査システムを備え得る、ビーム形成システム525(図25)を通過する。ビーム形成システム525は、ビームの印加を制御する内側ガントリーと共に使用され得る。
シンクロサイクロトロンから出る漂遊磁場は、磁石ヨーク(シールドとしても働く)と別の磁気シールド514(例えば、図1)の両方によって制限され得る。別の磁気シールドは、空間516によって隔てられる、ピルボックスヨークを囲む強磁性体(例えば、鋼または鉄)の層517を含む。ヨーク、空間、およびシールドのサンドイッチを含むこの構成は、より低い重量で所定の漏れ磁場に対する適切な遮蔽を形成する。上で説明されているように、幾つかの実施例では、能動的帰還システムが、磁気ヨークおよびシールドの動作の代わりに、または増強するために使用され得る。
図23を参照すると、ガントリーは、シンクロサイクロトロンを水平回転軸線432を中心として回転させる。トラス構造体416は、2つの略平行なスパン480、482を有する。シンクロサイクロトロンは、脚部と脚部との間における略中央にかつスパン580、582の間に配設されている。ガントリーは、トラスの反対側に位置する脚部の端部に取り付けられた釣合いおもり622、624を利用することによって軸受を中心として回転するようにバランスされている。
ガントリー404は電気モータによって回転駆動され、電気モータはガントリー404の少なくとも1つの脚部に取り付けられており、駆動歯車を介して軸受ハウジングに接続されている。ガントリー404の回転位置は、ガントリー404の駆動モータおよび駆動歯車に組み込まれた軸角エンコーダによって付与される信号から導き出される。
イオンビームがシンクロサイクロトロンから出る位置において、ビーム形成システム525はイオンビームに作用し、患者治療に適した特性をそれに与える。例えば、ビームを拡散させ、ビームの貫入深さを変化させることによって、所定の目標体積に対して均一に放射することができる。ビーム形成システムは、本明細書で説明されているような能動的走査要素を備え得る。
シンクロサイクロトロンの能動的システムのすべて(例えば、電流駆動超電導コイル、RF駆動プレート、真空加速室および超電導コイル冷却室用の真空ポンプ、電流駆動粒子源、水素ガス源、およびRFプレート冷却装置)は、例えば、メモリからの命令を実行して制御を行う1つまたは複数の処理デバイスを含むものとしてよい、適切なシンクロサイクロトロン制御電子機器(図示せず)によって制御され得る。
上で説明されているように、図29のシステム602を参照すると、ビーム発生粒子加速器が、この場合シンクロサイクロトロン604(本明細書で説明されている任意のおよびすべての特徴を含み得る)が回転式ガントリー605に取り付けられ得る。回転式ガントリー605は、本明細書で説明されている種類のものであり、患者支持体606の周りで角度的に回転することができる。この特徴は、シンクロサイクロトロン604が様々な角度から粒子ビームを患者に本質的に直接照射することを可能にする。例えば、図29にあるように、シンクロサイクロトロン604が患者支持体606の上方に位置している場合には、粒子ビームは患者に向かって下方に方向づけられている。代替的には、シンクロサイクロトロン604が患者支持体606の下方に位置している場合には、粒子ビームは患者に向かって上方に方向づけられている。中間ビーム経路指定機構が必要ないという意味では、粒子ビームは患者に本質的に直接印加される。本発明では、成形またはサイズ決定機構がビームの経路変更をするのではなく、同一かつ一般的なビーム軌道を維持しつつビームのサイズおよび/または形状を決定するという点において、中間ビーム経路指定機構は成形またはサイズ決定機構と相違する。
本明細書で説明されている例示的な粒子治療システムおよび例示的な走査システムにおいて使用される粒子加速器は、可変エネルギー粒子加速器であるものとしてよく、その一例は以下で説明される。
引き出される粒子ビーム(加速器から出力される粒子ビーム)のエネルギーは、治療時の粒子ビームの使用に影響を及ぼし得る。幾つかの機械では、粒子ビーム(または粒子ビーム中の粒子)のエネルギーは、引き出し後に増加しない。しかし、エネルギーは、引き出し後と治療前に治療の必要性に基づき低減され得る。図30を参照すると、例示的な治療システム910は、加速器912、例えば、シンクロサイクロトロンを備え、そこから可変エネルギーを有する粒子(例えば、陽子)ビーム914が引き出され、身体922のターゲット容積部924に照射される。適宜、走査ユニット916もしくは散乱ユニット916、1つまたは複数の監視ユニット918、およびエネルギーデグレーダ920などの、1つまたは複数の追加のデバイスが、照射方向928に沿って置かれる。これらのデバイスは、引き出されたビーム914の断面をインターセプトし、治療用の引き出されたビーム1つまたは複数の特性を変える。
治療のため粒子ビームを照射されるターゲット容積部(照射ターゲット)は、典型的には、3次元構成を有する。幾つかの例では、治療を実施するために、ターゲット容積部は、照射が層毎に行われるように粒子ビームの照射方向に沿って幾つかの層に分割される。陽子などの幾つかの種類の粒子について、ターゲット容積部内の貫入深さ(またはビームが到達する層)は、もっぱら、粒子ビームのエネルギーによって決定される。所定のエネルギーの粒子ビームは、そのエネルギーに対する対応する貫入深さを実質的に超えて到達することはない。ターゲット容積部の一方の層から他方の層にビーム照射を移動するために、粒子ビームのエネルギーが変えられる。
図30に示されている例において、ターゲット容積部924は、照射方向928に沿って9つの層926a~926iに分割される。例示的なプロセスにおいて、照射は、最も深い層926iから始まり、1回に層1つずつ徐々により浅い層に進み、最も浅い層926aで終わる。身体922に印加する前に、粒子ビーム914のエネルギーは、実質的に身体またはターゲット容積部、例えば、層926e~926iの中にさらに、または身体のさらに奥深くまで貫入することなく、粒子ビームが所望の層、例えば、層926dで停止できるレベルに制御される。幾つかの例では、粒子ビーム914の所望のエネルギーは、治療層が粒子加速に対して浅くなって行くにつれ減少する。幾つかの例では、ターゲット容積部924の隣接する層を治療するためのビームエネルギーの差は、約3MeVから約100MeV、例えば、約10MeVから約80MeVであるけれども、他の差も、例えば、層の厚さおよびビームの特性に応じて可能である。
ターゲット容積部924の異なる層を治療するためのエネルギー変化は、幾つかの実施例では、加速器912から粒子ビームが引き出された後に追加のエネルギー変化が不要になるように加速器912において実行され得る(例えば、加速器側でエネルギーを変化させることができる)。したがって、治療システム10内のオプションのエネルギーデグレーダ920は、システムから排除され得る。幾つかの実施例では、加速器912は、約100MeVから約300MeVまでの間、例えば、約115MeVから約250MeVまでの間で変化するエネルギーを有する粒子ビームを出力することができる。変化は、連続的または非連続的、例えば、1回1ステップずつであってよい。幾つかの実施例では、連続的な、または非連続的な変化は、比較的高い率、例えば、毎秒約50MeVまでまたは毎秒約20MeVまでの率で生じ得る。非連続的変化は、約10MeVから約90MeVのステップサイズで1回に1ステップずつ実行され得る。
1つの層で照射が完了すると、加速器912は、次の層を照射するために、例えば、数秒以内、または1秒未満の間に、粒子ビームのエネルギーを変化させることができる。幾つかの実施例では、ターゲット容積部924の治療は、実質的な中断なしで、またはいかなる中断も伴わずに、継続することができる。幾つかの状況において、非連続的エネルギー変化のステップサイズは、ターゲット容積部924の2つの隣接する層を照射するために必要とされるエネルギーの差に対応するように選択される。例えば、ステップサイズは、エネルギーの差と同じであるか、または何分の1かであってよい。
幾つかの実施例では、加速器912およびデグレーダ920は、一体となって、ビーム914のエネルギーを変化させる。例えば、加速器912で粗調整を行い、デグレーダ920で微調整を行う、またはその逆を行う。この例では、加速器912は、約10~80MeVの変化ステップでエネルギーを変化させる粒子ビームを出力することができ、デグレーダ920は、約2~10MeVの変化ステップでビームのエネルギーを調整する(例えば、低減する)。
飛程変調装置などの、エネルギーデグレーダの使用を減らす(か、または使用しない)ことで、加速器からの出力ビームの特性および品質、例えば、ビーム強度を維持しやすくできる。粒子ビームの制御は、加速器で実行され得る。副作用、例えば、粒子ビームがデグレーダ920を通るときに発生する中性子からの副作用が低減されるか、または排除され得る。
粒子ビーム914のエネルギーは、ターゲット容積部924における治療の完了後に別の身体または身体部分922’内の別のターゲット容積部930を治療するように調整され得る。ターゲット容積部924、930は、同じ身体(または患者)内にあるか、または異なる患者にあってもよい。身体922’の表面からのターゲット容積部930の深さDは、パレット容積部924の深さと異なることがあり得る。デグレーダ920によって何らかのエネルギー調整が実行され得るが、デグレーダ912は、ビームエネルギーを低減するだけであって、ビームエネルギーを増大させることはあり得ない。
この点で、幾つかの場合において、ターゲット容積部930を治療するのに必要なビームエネルギーは、ターゲット容積部924を治療するのに必要なビームエネルギーより大きい。このような場合に、加速器912は、ターゲット容積部924を治療した後、ターゲット容積部930を治療する前に、出力ビームエネルギーを増大させることができる。他の場合には、ターゲット容積部930を治療するのに必要なビームエネルギーは、ターゲット容積部924を治療するのに必要なビームエネルギーより小さい。デグレーダ920は、エネルギーを低減し得るけれども、加速器912は、デグレーダ920の使用を減らすか、または排除するためにより低いビームエネルギーを出力するように調整することができる。ターゲット容積部924、930の幾つかの層への分割は、異なることも、同じであることもあり得る。ターゲット容積部930は、ターゲット容積部924の治療と層毎に類似の仕方で治療され得る。
同じ患者の異なるターゲット容積部924、930の治療は、実質的に連続的である、例えば、停止時間を2つの容積部が約30分以内より長くない、例えば、25分以内、20分以内、15分以内、10分以内、5分以内、または1分以内となるものとしてよい。本明細書で説明されているように、加速器912は、移動可能なガントリー上に取り付けることができ、ガントリーの移動で、加速器を異なるターゲット容積部を目指して移動させることができる。幾つかの状況において、加速器912は、治療システムがターゲット容積部924の治療を完了した後、およびターゲット容積部930の治療を開始する前に(ガントリーを移動するなどの)調整を行っているときに出力ビーム914のエネルギー調整を完了することができる。加速器とターゲット容積部930との整列の後、治療は調整された所望のビームエネルギーで開始することができる。異なる患者に対するビームエネルギー調整は、比較的効率よく完了させることもできる。幾つかの例において、ビームエネルギーを増大/低減するステップおよび/またはガントリーを移動するステップを含む、すべての調整は、約30分以内、例えば、約25分以内、約20分以内、約15分以内、約10分以内、または約5分以内に行われる。
容積部の同じ層において、走査ユニット916を使用してビームを層の2次元表面の端から端まで移動する(走査ビームとも称される)ことによって照射線量が印加され得る。あるいは、層は、散乱ユニット16の1つまたは複数の散乱体に引き出されたビーム(散乱ビームとも称される)を通すことによって照射を受けるものとしてよい。
エネルギーおよび強度などの、ビーム特性は、治療前に選択され得るか、または治療中に、加速器912および/または、走査ユニット/散乱体916、デグレーダ920、および図示されていない他のものなどの、他のデバイスを制御することによって調整され得る。例示的な実施例では、システム910は、システム内の1つまたは複数のデバイスと通信する、コンピュータなどの制御装置932を備える。制御は、1つまたは複数のモニター918によって実行される監視、例えば、ビーム強度、線量、ターゲット容積部内のビーム配置、などの監視の結果に基づくものとしてよい。モニター918は、デバイス916とデグレーダ920との間にあるものとして図示されているけれども、1つまたは複数のモニターをビーム照射経路に沿った他の適切な配置に置くことができる。制御装置932は、(同じ患者および/または異なる患者の)1つまたは複数のターゲット容積部に対する治療計画を格納することもできる。治療計画は治療が開始する前に決定され、ターゲット容積部の形状、照射層の数、それぞれの層に対する照射線量、それぞれの層が照射を受ける回数、などのパラメータを備えることができる。システム910内のビーム特性の調整は、治療計画に基づき実行され得る。追加の調整は、治療時、例えば、治療計画からの逸脱が検出されたときに実行され得る。
幾つかの実施例では、加速器912は、粒子ビームが加速される磁場を変化させることによって出力粒子ビームのエネルギーを変化させるように構成される。例示的な一実施例では、1つまたは複数のコイルセットが、変動電流を受けて、空洞内に変動磁場を発生する。幾つかの例では、1つのコイルセットが固定電流を受けるが、1つまたは複数の他のコイルセットはコイルセットが受ける全電流が変化するように変動電流を受ける。幾つかの実施例では、すべてのコイルセットが超電導である。他の実施例では、固定電流に対するセットなどの幾つかのコイルセットは、超電導であるが、変動電流に対する1つまたは複数のセットなどの他のコイルセットは、非超電導である。幾つかの例では、すべてのコイルセットが非超電導である。
一般的に、磁場の大きさは、電流の大きさと共に一定の比率で増減し得る。コイルの全電流を所定の範囲内に調整することで、対応する所定の範囲内で変化する磁場を発生させることができる。幾つかの例では、電流の連続的調整により、磁場の連続的変動および出力ビームエネルギーの連続的変動を引き起こすことができる。あるいは、コイルに印加される電流が、非連続的な段階的様式で調整される場合、磁場および出力ビームエネルギーも、それに応じて非連続的な(段階的)様式で変化する。磁場を電流に応じて一定の比率で増減させることにより、ビームエネルギーを比較的正確に変化させることができるけれども、ときには、入力電流以外の微調整を実施することができる。
幾つかの実施例では、可変エネルギーを有する粒子ビームを出力するために、加速器912は、それぞれの範囲が異なる出力ビームエネルギーに対応する、異なる周波数範囲にわたって掃引するRF電圧を印加するように構成される。例えば、加速器912が、3つの異なる出力ビームエネルギーを発生するように構成されている場合、RF電圧は、3つの異なる周波数範囲にわたって掃引することができる。別の例では、連続的ビームエネルギー変化に対応することで、RF電圧は、連続的に変化する周波数範囲にわたって掃引する。異なる周波数範囲は、異なる下限周波数境界および/または上限周波数境界を有することができる。
引き出しチャネルは、可変エネルギー粒子加速器によってもたらされる異なるエネルギーの範囲に適応するように構成され得る。例えば、引き出しチャネルは、粒子加速器によって生成される最高および最低のエネルギーを支える十分に大きいものとしてよい。すなわち、引き出しチャネルは、エネルギーのその範囲内で粒子を受け、透過するようなサイズであり得るか、またはそのように他の何らかの形で構成され得る。異なるエネルギーを有する粒子ビームは、単一のエネルギーを有する粒子ビームを引き出すために使用される再生器の特徴を変えることなく加速器912から引き出され得る。他の実施例では、可変粒子エネルギーに適応するために、再生器を移動して上で説明されている様式で異なる粒子軌道を乱し(例えば、変化させて)、および/または鉄製ロッド(磁気シム)を加えるか、または取り外して再生器によってもたらされる磁場バンプを変化させることができる。より具体的には、異なる粒子エネルギーは、典型的には、空洞内で異なる粒子軌道にある。再生器を移動することによって、粒子軌道を指定されたエネルギーのところでインターセプトし、それによって、指定されたエネルギーにおける粒子が引き出しチャネルに到達するようにその軌道の正しい摂動をもたらすことが可能である。幾つかの実施例では、再生器の移動(および/または磁気シムの追加/取り外し)は、加速器によって出力される粒子ビームエネルギーのリアルタイムの変化とリアルタイムで一致するように実行される。他の実施例では、粒子エネルギーは、治療毎に調整され、再生器の移動(および/または磁気シムの追加/取り外し)は、治療の前に実行される。いずれの場合も、再生器の移動(および/または磁気シムの追加/取り外し)は、コンピュータ制御され得る。例えば、コンピュータは、再生器および/または磁気シムの移動を引き起こす1つまたは複数のモータを制御することができる。
幾つかの実施例では、再生器は、適切な配置に移動するように制御可能である1つまたは複数の磁気シムを使用して実装される。
例えば、Table 1(表1)は、例示的な加速装置912が粒子ビームを出力することができる3つの例示的なエネルギー準位を示している。3つのエネルギー準位を生成するための対応するパラメータも一覧に挙げてある。この点で、磁石電流は、加速器912内の1つまたは複数のコイルセットに印加される全電流を指しており、最高および最低周波数は、RF電圧が掃引する範囲を定義し、「r」は、場所から粒子が加速される空洞の中心までの径方向距離である。
Figure 0007041158000001
可変エネルギーを有する荷電粒子を生成する例示的な粒子加速器に含まれ得る細部について以下で説明する。加速器はシンクロサイクロトロンであり、粒子は陽子であるものとしてよい。粒子は、パルスビームとして出力され得る。粒子加速器から出力されるビームのエネルギーは、患者体内の一方のターゲット容積部を治療している間、または同じ患者もしくは異なる患者の異なるターゲット容積部の治療から次の治療までの間に、変化させることができる。幾つかの実施例では、加速器のセッティングは、加速器からビーム(または粒子)が出力されないときにビームエネルギーを変化させるように変更される。エネルギー変化は、所望の範囲にわたって連続的または非連続的であってよい。
図1に示されている例を参照すると、上で説明されている粒子加速器912のような可変エネルギー粒子加速器であってよい、粒子加速器(例えば、シンクロサイクロトロン)は、可変エネルギーを有する粒子ビームを出力するように構成され得る。可変エネルギーの範囲は、約200MeVから約300MeV以上、例えば、200MeV、約205MeV、約210MeV、約215MeV、約220MeV、約225MeV、約230MeV、約235MeV、約240MeV、約245MeV、約250MeV、約255MeV、約260MeV、約265MeV、約270MeV、約275MeV、約280MeV、約285MeV、約290MeV、約295MeV、または約300MeV以上である上限境界を有することができる。この範囲は、約100MeV以下から約200MeVまで、例えば、約100MeV以下、約105MeV、約110MeV、約115MeV、約120MeV、約125MeV、約130MeV、約135MeV、約140MeV、約145MeV、約150MeV、約155MeV、約160MeV、約165MeV、約170MeV、約175MeV、約180MeV、約185MeV、約190MeV、約195MeV、約200MeVである下限境界も有することができる。
幾つかの例では、この変化は、非連続的であり、変化ステップは、約10MeV以下、約15MeV、約20MeV、約25MeV、約30MeV、約35MeV、約40MeV、約45MeV、約50MeV、約55MeV、約60MeV、約65MeV、約70MeV、約75MeV、または約80MeV以上のサイズを有することができる。エネルギーを1ステップサイズだけ変化させるのに要する時間は、30分以内、例えば、約25分以内、約20分以内、約15分以内、約10分以内、約5分以内、約1分以内、または約30秒以内であり得る。他の例では、この変化は、連続的であり、加速器は粒子ビームのエネルギーを比較的高い率、例えば、毎秒最大約50MeVまで、毎秒最大約45MeVまで、毎秒最大約40MeVまで、毎秒最大約35MeVまで、毎秒最大約30MeVまで、毎秒最大約25MeVまで、毎秒最大約20MeVまで、毎秒最大約15MeVまで、または毎秒最大約10MeVまでに調整することができる。加速器は、粒子エネルギーを、連続的にも、非連続的にも調整するように構成され得る。例えば、連続的変化と非連続的変化の組合せを、一方のターゲット容積部の治療に、または異なるターゲット容積部の治療に使用することができる。柔軟な治療計画および柔軟な治療が実現され得る。
可変エネルギーを有する粒子ビームを出力する粒子加速器は、照射治療を正確にすることができ、また治療に使用される追加のデバイス(加速器以外)の数を減らすことができる。例えば、治療の全部または一部について出力粒子ビームのエネルギーを変化させるためのデグレーダの使用が低減されるか、または使用しないようにできる。強度、集束などの粒子ビームの特性は、粒子加速器側で制御され、粒子ビームは、追加のデバイスからの実質的な妨害を受けることなくターゲット容積部に到達することができる。ビームエネルギーの比較的高い変化率は、治療時間を短縮し、治療システムの効率的な使用を可能にし得る。
幾つかの実施例では、図1のシンクロサイクロトロンなどの、加速器は、加速器内の磁場を変化させることによって粒子または粒子ビームを可変エネルギー準位まで加速するが、これは、磁場を発生させるためにコイルに印加される電流を変化させることによって実現され得る。上で説明されているように、例示的なシンクロサイクロトロン(例えば、図1)は、粒子源を収容する磁石システム、高周波駆動システム、およびビーム引き出しシステムを備える。図33は、可変エネルギー加速器で使用され得る磁石システム1010の一例を示している。この例示的な実施例では、磁石システム1012によって確立される磁場は、2つのコイルセット40aと40b、および42aと42bが発生することができる磁場の最大値の約5%から約35%まで変化し得る。磁石システムによって確立される磁場は、2つのコイルセットと成形された強磁性(例えば、低炭素鋼)構造体のペアとの組合せを使用して収容されている陽子ビームの集束を維持するのに適切な形状を有し、その例は上に提示されている。
それぞれのコイルセットは、電流を受けるための環状コイルの分割ペアであってよい。幾つかの状況において、両方のコイルセットが超電導である。他の状況では、ただ1つのコイルセットのみが超電導であり、他のセットは非超電導または常電導である(以下でさらに説明されているように)。また、両方のコイルセットが非超電導であることも可能である。コイルに使用するのに適した超電導体は、ニオブ3スズ(NbSn)および/またはニオブチタンを含む。他の常電導体は、銅を含むことができる。コイルセットの作製例について以下でさらに説明する。
2つのコイルセットは、直列または並列に電気的に接続され得る。幾つかの実施例では、2つのコイルセットが受ける全電流は、約200万アンペア回数から約1000万アンペア回数、例えば、約250万から約750万アンペア回数、または約375万アンペア回数から約500万アンペア回数までを含み得る。幾つかの例では、一方のコイルセットは、全可変電流の固定(または一定)部分を受けるように構成され、他方のコイルセットは、全電流の可変部分を受けるように構成される。2つのコイルセットの全電流は、一方のコイルセット内の電流の変化と共に変化する。他の状況では、両方のコイルセットに印加される電流は変化し得る。2つのコイルセット内の可変全電流は、変化する大きさを有する磁場を発生することができ、次いで、これは、粒子の加速経路を変化させ、可変エネルギーを有する粒子を発生する。
一般的に、コイルによって生成される磁場の大きさは、コイルに印加される全電流の大きさに応じて一定の比率で増減し得る。この一定の比率の増減に基づき、幾つかの実施例では、磁場強度の直線的変化はコイルセットの全電流を直線的に変化させることによって実現され得る。全電流は比較的高速で調整することができ、これにより、磁場およびビームエネルギーが比較的高速で調整される。
上記のTable 1(表1)に反映されている例では、コイルリングの幾何学的中心における電流の値と磁場の値との比は、1990:8.7(約228.7:1)、1920:8.4(約228.6:1)、1760:7.9(約222.8:1)である。したがって、超電導コイルに印加される全電流の大きさを調整することで、磁場の大きさを比例調整することができる(比に基づき)。
Table 1(表1)の例における全電流に対する磁場の一定の比率の増減も、図31のプロットに示されており、Bzは、Z方向に沿った磁場であり、Rは、Z方向に垂直な方向に沿ったコイルリングの幾何学的中心から測定された径方向距離である。磁場は、幾何学的中心に最高値を有し、距離Rが増大するにつれ減少する。曲線1035、1037は、それぞれ1760アンペアおよび1990アンペアである異なる全電流を受ける同じコイルセットによって生成される磁場を表す。引き出される粒子の対応するエネルギーは、それぞれ、211MeVおよび250MeVである。2つの曲線1035、1037は、実質的に同じ形状を有し、曲線1035、1037の異なる部分は、実質的に平行である。結果として、曲線1035または曲線1037のいずれかが、他方の曲線と実質的に一致するように直線的にシフトされるものとしてよく、これは磁場がコルセットに印加される全電流に応じて一定の比率で増減し得ることを示す。
幾つかの実施例では、全電流に対する磁場の一定の比率の増減は、完全でない場合がある。例えば、磁場とTable 1(表1)に示されている例に基づき計算された電流との間の比は一定でない。また、図31に示されているように、一方の曲線を直線的にシフトさせても、他方の曲線と完全には一致し得ない。幾つかの実施例では、全電流は、一定の比率の増減が完全であるという仮定の下でコイルセットに印加される。ターゲット磁場(一定の比率の増減が完全であるという仮定の下)は、それに加えてコイルの特徴、例えば、幾何学的形状を、一定の比率の増減の不完全さを相殺するように変えることによって生成され得る。一例では、強磁性体(例えば、鉄)のロッド(磁気シム)を磁気構造体(例えば、ヨーク、磁極片など)の一方または両方から挿入するか、または取り出すことができる。コイルの特徴は、一定の比率の増減が完全であり電流のみを調整すればよいという状況と比較して磁場調整の速度が実質的な影響を受けないように比較的高速に変えることができる。鉄製ロッドの例では、ロッドは、秒または分の時間尺度、例えば、5分以内、1分以内、30秒未満、または1秒未満の時間で追加または取り外しを行うことができる。
幾つかの実施例では、コイルセットに印加される電流などの、加速器のセッティングは、コイルセット内の全電流に対する磁場の一定の比率の実質的な増減に基づき選択され得る。
一般的に、所望の範囲内で変化する全電流を発生させるために、2つのコイルセットに印加される電流の適切な組合せが使用され得る。一例において、コイルセット42a、42bは、磁場の所望の範囲の下限境界に対応する固定された全電流を受けるように構成され得る。Table 1(表1)に示されている例では、固定された電流は、1760アンペアである。それに加えて、コイルセット40a、40bは、磁場の所望の範囲の上限境界と下限境界との間の差に対応する上限境界を有する可変電流を受けるように構成され得る。Table 1(表1)に示されている例では、コイルセット40a、40bは、0アンペアと230アンペアとの間で変化する電流を受けるように構成される。
別の例では、コイルセット42a、42bは、磁場の所望の範囲の上限境界に対応する固定された電流を受けるように構成され得る。Table 1(表1)に示されている例では、固定された電流は、1990アンペアである。それに加えて、コイルセット40a、40bは、磁場の所望の範囲の下限境界と上限境界との間の差に対応する上限境界を有する可変電流を受けるように構成され得る。Table 1(表1)に示されている例では、コイルセット40a、40bは、-230アンペアと0アンペアとの間で変化する電流を受けるように構成される。
粒子を加速するための可変全電流によって生成される全可変磁場は、4テスラより大きい、例えば5テスラより大きい、6テスラより大きい、7テスラより大きい、8テスラより大きい、9テスラより大きい、または10テスラより大きく、最大約20テスラまで、例えば、最大約18テスラまで、最大約15テスラまで、または最大約12テスラまでの、最大の大きさを有するものとしてよい。幾つかの実施例では、コイルセット内の全電流の変化により、磁場は約0.2テスラから約4.2テスラ以上、例えば、約0.2テスラから約1.4テスラまたは約0.6テスラから約4.2テスラだけ変化し得る。幾つかの状況において、磁場の変化量は、最大の大きさに比例し得る。
図32は、粒子ビームのそれぞれのエネルギー準位について一定のRF周波数範囲にわたってディープレート500上で電圧を掃引し、粒子ビームエネルギーが変化するときに周波数範囲を変化させるための例示的なRF構造体を示している。ディープレート500の半円形表面503、505は、内部導体1300に接続され、外部導体1302内に収納される。電源を内部導体に結合する電力結合デバイス1304を通して電源(図示せず、例えば、振動する電圧入力)から高電圧がディープレート500に印加される。幾つかの実施例では、結合デバイス1304は、内部導体1300上に位置し、電源からディープレート500への電力伝送を行う。それに加えて、ディープレート500は可変リアクタンス素子1306、1308に結合されており、それぞれの粒子エネルギー準位についてRF周波数掃引を実行し、異なる粒子エネルギー準位についてRF周波数範囲を変更する。
可変リアクタンス素子1306は、モータ(図示せず)によって回転可能である複数のブレード1310を有する回転コンデンサであってよい。RF掃引のそれぞれのサイクルにおいてブレード1310をかみ合わせるか、またはかみ合わせを外すことによって、RF構造体のキャパシタンスが変化し、そのため、RF構造体の共振周波数が変化する。幾つかの実施例では、モータの1/4サイクル毎に、ブレード1310は互いにかみ合う。RF構造体のキャパシタンスが大きくなり、共振周波数が下がる。このプロセスは、ブレード1310のかみ合わせが外れるときに逆転する。結果として、ディープレート103に印加される高電圧を発生させるために要求される、またビームを加速するために必要な電力を、大幅に減らすことができる。幾つかの実施例では、ブレード1310の形状を、時間に対する共振周波数の必要な依存性を生じるように機械加工する。
RF周波数の発生は、共振器内のRF電圧の位相を感知し、RF空洞の共振周波数の近くでディープレート上の交流電圧を維持することによってブレード回転と同期する。(ダミーディーは、接地されるが、図32には示されていない)。
可変リアクタンス素子1308は、プレート1312と内部導体1300の表面1316とによって形成されるコンデンサであるものとしてよい。プレート1312は、表面1316に向かう、または表面1316から遠ざかる方向1314に沿って移動可能である。コンデンサのキャパシタンスは、プレート1312と表面1316との間の距離Dが変化すると変化する。1つの粒子エネルギーについて掃引されるそれぞれの周波数範囲について、距離Dは設定値にあり、周波数範囲を変化させるために、プレート1312は出力ビームのエネルギーの変化に応じて移動される。
幾つかの実施例では、内部導体1300および外部導体1302は、銅、アルミニウム、または銀などの、金属材料から形成される。ブレード1310およびプレート1312も、導体1300、1302と同じ、または異なる金属材料から形成され得る。結合デバイス1304は、導電体とすることができる。可変リアクタンス素子1306、1308は他の形態を有することができ、他の方法でディープレートに結合し、それによりRF周波数掃引および周波数範囲変更を実行することができる。幾つかの実施例では、単一の可変リアクタンス素子は、両方の可変リアクタンス素子1306、1308の機能を実行するように構成され得る。他の実施例では、2つよりも多い可変リアクタンス素子が使用され得る。
再び図3を参照し、また図34も参照すると、粒子加速器3401(図1、図2に示されている構成を有するものとしてよい)の抽出チャネルの出力のところに、走査磁石などの、走査コンポーネント3402からなるスキャナがある。図3に関して説明されているように、例示的な動作において、走査磁石は、1つまたは複数の(例えば、少なくとも2つの)次元(例えば、直交座標系のXY次元)内で制御可能であり、これにより、粒子ビームを照射ターゲットの一部(例えば、断面)を横切って導く。電離箱では、ビームの線量を検出し、その情報を制御システムにフィードバックしてビーム移動を調整する。エネルギーデグレーダは、1つまたは複数の要素--例えば、プレート--を粒子ビームの経路内におよび経路外に移動させて、粒子ビームのエネルギー、したがって粒子ビームが照射ターゲットを貫通する深さ(Z方向)を変化させるように制御可能である。例えば、エネルギーデグレーダは、1つのプレートまたは複数のプレートを順次ビーム場内に押し込み、その1つのプレートまたは複数のプレートをビーム場から引っ込める1つまたは複数のコンピュータ制御モータを備え得る。幾つかの実施例では、ビーム場は、粒子ビームが例えば図19に示されているような照射ターゲットの上の指定された方向に、例えば直交座標系のXY平面内で、移動し得る最大横方向範囲に対応する。
本明細書で説明されているように、粒子ビームの走査は、プレートが適所に移動するのを待たないが、むしろ、粒子ビームの走査がプレート移動中に実行され得る。走査はプレート移動中に実行され得るけれども、走査は、また、プレートが静止しているか、または存在していないときにも実行され得る。例えば、幾つかの場合において、ターゲットの最も深い層に到達するために、プレートが粒子ビームの経路内に移動される必要はない。そして、幾つかの場合において、すべてのプレートは、走査が行われている間に位置決めされ、静止しているものとしてよい。幾つかの実施例では、エネルギーデグレーダは、以下で説明されている、図36から図49に関して説明されているような構成および動作を有し得る。
図34を参照すると、図36から図49の構成および動作を有し得る、エネルギーデグレーダ3403は、粒子加速器3401と照射ターゲット3405(例えば、患者体内の腫瘍)との間に配置される。例えば、エネルギーデグレーダ3403は、内部ガントリー601(図29)のノズル610上に配置されるものとしてよく、粒子治療システムの他のコンポーネントの動作も制御するコンピュータシステムによって制御され得る。本明細書で説明されている粒子治療法、およびその変更形態を実装するために、エネルギーデグレーダ3403の動作は、走査コンポーネント、粒子加速器、ならびに本明細書で説明されている内部および外部ガントリーの動作と協調させられ、それとともに制御され得る。
幾つかの実施例では、ビームがエネルギーデグレーダを通過する結果、さらなるビーム発散が生じ得る。したがって、開口3404は、エネルギーデグレーダと照射ターゲットとの間に位置決めされるものとしてよい。開口は、本明細書で説明されているように、ビームをさらに整形するように制御可能であるものとしてよい。
一例において、粒子ビーム経路内に配置されているエネルギーデグレーダの各プレートは、粒子ビーム内の一定量のエネルギーを吸収する。したがって、粒子ビームの経路内に置かれるプレートが多ければ多いほど、ビームが有するエネルギーが少なくなり、ビームが照射ターゲット内に貫通する深さはより小さくなる。逆に、粒子ビームの前に置かれるプレートが少なければ少ないほど、ビームが有するエネルギーが大きくなり(プレートによって吸収されるエネルギーが少ないので)、ビームが照射ターゲット内に貫通する深さはより大きくなる。したがって、エネルギーデグレーダの所与のプレートに対して、そのプレートに入射する粒子ビームのエネルギーは、プレートを通過した後の粒子ビームのエネルギーを超える。幾つかの実施例では、これらのプレートは、ポリカーボネート、炭素、ベリリウム、または低原子番号の他の材料の例示的な材料のうちの1つまたは複数から作られるものとしてよい。しかしながら、これらの例示的な材料の代わりに、またはそれに加えて、他の材料も使用され得る。本明細書で説明されているように、治療計画では、治療中の特定の時刻におけるエネルギーデグレーダの構成を指示するものとしてよく、電離箱からのフィードバックが粒子ビームの位置決めおよび位置補正に使用され得る。
エネルギーデグレーダは高速エネルギースイッチングレンジシフターであってよい。一例において、この種類のエネルギーデグレーダは、走査中の粒子ビームの移動中に移動する1つまたは複数の要素、例えば、1つまたは複数のプレートを備える。例えば、プレートは、開始位置から終了位置の方へ移動するものとしてよく、プレートが移動する間、粒子ビームはプレートの表面を横切って1つまたは複数の次元で移動される。例えば、粒子ビームはプレートの表面を横切って1つの次元で、2つの次元で、または3つの次元で、最終的に照射ターゲットを横切って移動され得る。例えば、図49は、例示的なプレート4901の上面斜視図を示している。粒子ビームのスポット4902は、4903a、4903b、4903c、4903d、および4903eというラベルを付けられた例示的な2次元経路内で走査される。走査中のスポット4902の例示的な将来の位置は、4902a、4902b、4902c、4902d、および4902eというラベルを付けられるけれども、スポットは2次元経路に沿ってすべての配置に出現することに留意されたい。
移動方向でのビームの移動速度は、移動方向のプレートの移動速度と同じであるか、それより遅いか、またはそれより速いものとしてよい(ビームがプレート表面上に留まっている限り)。幾つかの実施例では、ビームがプレートより速く移動する場合、ビームは停止してプレートが来るのを待つものとしてよい。本明細書において説明されているように、プレートと粒子ビームの同時移動は、幾つかの既知のエネルギーデグレーダに関して治療時間を短縮する。
幾つかの実施例では、プレートの各々は、図36に示されているように、均一な厚さを有する。すなわち、そのような実施例では、各プレートを横切って厚さの変動はほとんどまたは全くない。幾つかの実施例では、エネルギーデグレーダのプレートは、「ステップサイズ」として定義される、同じ厚さを各々有するものとしてよい。この文脈において、ステップサイズは、治療されるべきターゲットの2つの層の間の距離を指す。すなわち、厚さは、例えば、照射ターゲットの個別の層に当たるために必要なビームエネルギーに対応し得る。幾つかの実施例では、照射ターゲットの最も深い層に到達するために使用されるプレートはない。例えば、エネルギーデグレーダは、いかなるプレートも粒子ビームの経路内にないように、また粒子ビームが単純に、エネルギー変化を生じることなく、照射ターゲットに伝えられるように構成され得る。次いで、プレートが、他のより浅い層に到達するように追加される。すなわち、照射ターゲットのより浅い層に到達するために、プレートがビーム場/治療領域内に、および粒子ビームの経路内に移動される。
例として、図35を参照すると、例示的な照射ターゲット3500は、10個の層3499、3501、3502、3503、3504、3505、3506、3507、3508、および3509(ステップとも称される)に分割され、これらの各々がその層を横切って粒子ビームを走査することによって治療されるべきである。層3499は、ターゲットの深い端部3510のところにあり、当たるのに最大のエネルギーが必要であるが、層3509はターゲットの浅い端部3511のところにあり、当たるのに必要とするエネルギーは最小である。したがって、この例示的な実施例では、層3499に当たるために粒子ビームの経路内に移動されるプレートはない。すなわち、粒子ビームは、エネルギー変化を生じることなく、エネルギーデグレーダを通過する。したがって、例示的な動作において、単一のステップ(例えば、層のエネルギー準位)に対応する厚さを有するプレートを使用することで、単一のプレートがビーム経路内に移動されると、ビームが層3501に当たるようにビームのエネルギーを変化させ、2つのプレートがビーム経路内に移動されると、ビームが層3502に当たるようにビームのエネルギーを変化させ、3つのプレートがビーム経路内に移動されると、ビームが層3503に当たるようにビームのエネルギーを変化させ、すべての層が治療されるまで以下同様に続くものとしてよい。本明細書で説明されているように、粒子ビームは、プレートがビーム場を横切って移動するとプレートを横切って(およびしたがって、最終的に、対応する層を横切って)移動し、それによって治療にこれまで使用されていなかった時間に照射ターゲットを治療する。
幾つかの実施例では、エネルギーデグレーダ内の異なるプレートは、異なる厚さを有し得る。例えば、幾つかの実施例では、図37に示されているように、エネルギーデグレーダは第1の厚さを有する第1のプレートと、各々が第1の厚さと異なる第2の厚さを有する複数の追加のプレートとを収容し得る。一例では、第1のプレートは、照射ターゲットの個別の層に当たるために必要なビームエネルギーに対応する厚さ(例えば、単一のステップサイズ)を有し得る。追加のプレートは、各々第1のプレートより厚いものとしてよい。例えば、各追加のプレートは2ステップサイズまたは第1のプレートの2倍の厚さである厚さを有し、それにより、第1のプレートと他のプレートとの組合せが照射ターゲット内のすべての層に当たるのに必要なビームエネルギーを発生することを可能にし得る。図35を参照すると、例示的な一実施例では、ターゲット3500は、第1のプレートと追加のプレートとを使用して次のように治療されるものとしてよい。層3499を治療するために、すべてのプレートがビーム経路の外に移動され得る。層3501を治療するために、第1のプレートがビーム経路内に移動され得る。層3502を治療するために、第1のプレートはビーム経路から引っ込められ、追加のプレート(第1のプレートの厚さの2倍の厚さを有する)がビーム経路内に移動され得る。層3503を治療するために、単一ステップ厚さを有する第1のプレートおよび2ステップ厚さを有する追加のプレートは両方とも、ビーム経路内に移動されるものとしてよい。層3504を治療するために、第1のプレートはビーム経路から取り除かれ、各々2ステップ厚さを有する2つの追加のプレートがビーム経路内に置かれるものとしてよい。このプロセスは、ゼロ、1つ、または複数の第2のプレートと奇数番号の層に対する第1のプレートとを導入することと、最も深い層3499(例えば、この例では層3501、3503、3505、3507、および3509)を除外することと、偶数番号の層(例えば、この例では層3502、3504、3506、および3508)に対する第1のプレートを引っ込めることとを含み、ターゲットのすべての層が治療されてしまうまで実行されるものとしてよい。本明細書で説明されているように、粒子ビームは、プレートがビーム場を横切って移動するとプレートを横切って(およびしたがって、最終的に、照射ターゲットの対応する層を横切って)移動し、それによって治療にこれまで使用されていなかった時間に照射ターゲットを治療する。
幾つかの実施例では、個別のプレートは、本明細書で説明されている厚さと異なる厚さを有し得る。例えば、プレートは2つより多い異なる厚さを有していてもよく、照射ターゲットのすべての層に当たるように適切に順序付けられ得る。例えば、エネルギーデグレーダは、単一ステップサイズを有する第1のプレートと第1のプレートより厚い追加のプレートとを収容し得る。例えば、幾つかの追加のプレートは2ステップサイズの厚さを有し得るが、他のプレートは3ステップサイズの厚さ、4ステップサイズの厚さ、8ステップサイズの厚さ、などの厚さを有する。例えば、図35を参照すると、ターゲット3500は、第1のプレートと追加のプレートとを使用して次のように治療されるものとしてよい。層3499を治療するために、すべてのプレートがビーム経路の外に移動され得る。層3501を治療するために、第1のプレートがビーム経路内に移動され得る。層3502を治療するために、第1のプレートはビーム経路から取り除かれ、第2の追加のプレート(第1のプレートの厚さの2倍の厚さを有する)がビーム経路内に移動され得る。層3503を治療するために、第1のプレートおよび第2のプレートはビーム経路から取り除かれ、第3の追加のプレート(第1のプレートの厚さの3倍の厚さを有する)がビーム経路内に移動され得る。層3504を治療するために、第3の追加のプレート(3ステップの厚さを有する)はビーム経路内に残され、第1のプレート(1ステップの厚さを有する)はビーム経路内に移動され得る。層3505を治療するために、第3の追加のプレートはビーム経路内に残され、第1のプレートはビーム経路から取り除かれ、第2の追加のプレート(2ステップの厚さを有する)はビーム経路内に移動され得る。このプロセスは、異なるプレートを望ましいエネルギー準位に基づき異なる回数だけビーム経路内に移動することを含み、ターゲットのすべての層が治療されてしまうまで実行され得る。本明細書で説明されているように、粒子ビームは、プレートがビーム場を横切って移動するとプレートを横切って移動し、それによって治療にこれまで使用されていなかった時間に照射ターゲットを治療する。
幾つかの実施例では、層は深さに関する順序で治療されてよいが、必ずしもそうする必要はない。この点に関して、図35を参照すると、エネルギーデグレーダのプレートは、層3499が最初に治療され、次に層3501が治療され、次に層3502が治療され、次に層3503が治療され、というように、すべての層が順に治療されるまで層の治療が行われるように、または層3509が最初に治療され、次に層3508が治療され、次に層3507が治療され、というように、すべての層が順に治療されるまで層の治療が行われるように順序付けられ得る。しかしながら、幾つかの実施例では、エネルギーデグレーダのプレートは、層が深さに関する順序で治療されないように、例えば、層3503が最初に治療され、次に層3508が治療され、次に層3501が治療され、次いですべての層が治療されるまで他の層が治療されるように順序付けられ得る。層が治療される順序は、治療計画によって決定されるものとしてよく、これは少なくとも一部はエネルギーデグレーダの構成に基づくものとしてよい。
幾つかの実施例では、使用するプレートの数を減らすことで、エネルギーデグレーダ内の可動部品の数を減らし、それによって、エネルギーデグレーダの機械的故障を起こしにくくし得る。プレートの数が少なければ少ないほど、エネルギーデグレーダのサイズも縮小され、それによってエネルギーデグレーダを治療を受ける患者に比較的近い位置に配置することを可能にし得る。プレートをビーム経路内に移動したり、外に移動したりすることで騒音を発生する可能性がある。異なる厚さを有するプレートを使用することで、ビーム経路内に移動される必要のあるプレートの数が減り、幾つかの場合において治療時に生じる騒音が低減され得る。
図36は複数のプレートを有する例示的なエネルギーデグレーダ3600を示しており、各々は単一のステップに対応している。図37は、これもまた複数のプレートを有する例示的なエネルギーデグレーダ3700を示しており、1つのプレート3701は単一のステップに対応し、複数の他のプレート3702は各々2つのステップに対応している(言い換えると、この例では、プレート3701はプレート3702の各々の厚さの半分である)。エネルギーデグレーダ3700は、ターゲットのすべての層に当たるためにエネルギーデグレーダ3600よりも少ないプレートの移動を必要とするものとしてよく、したがって幾つかの場合において騒音が小さくなり、小型化され、機械的故障の影響を受けにくくなり得る。幾つかの実施例では、エネルギーデグレーダ3700は、プレート3701のような複数の単一ステッププレートと、プレート3702のような複数のより厚いプレートとを備え得る。幾つかの実施例では、エネルギーデグレーダ3700は、プレート3702のような単一のより厚いプレートと、プレート3701のような複数の単一ステッププレートとを備え得る。
本明細書で説明されている例示的なエネルギーデグレーダにおいて、個別のプレートは粒子ビームの経路内に、およびその外へ移動可能であり、その移動を走査中に粒子ビームが移動されるときに続行し得る。より具体的には、幾つかの既知のエネルギーデグレーダにおいて、プレートは粒子ビームの走査前に位置決めされる。位置決めした後、走査が実行され、次いでプレートが再位置決めされると停止される。治療時間は、これらなどのシステムにおいて長引くことがあり得る。本明細書で説明されているように、プレートの移動中に粒子ビームを移動することによって、例示的なエネルギーデグレーダは、既知のシステムを使用した結果の治療時間に関して治療時間を短縮し得る。これは、粒子ビームおよびプレートが両方とも同時に移動するからである。したがって、以前には患者治療の前にプレートを移動するために使われていた時間が、実際の治療に使用することができる。
幾つかの実施例では、エネルギーデグレーダを制御する同じコンピュータシステムも、走査時に粒子ビームの移動を制御する。幾つかの実施例では、異なるコンピュータシステムが、エネルギーデグレーダの動作と、粒子ビームの移動とを制御する。いずれかの場合において、エネルギーデグレーダおよび/またはスキャナの動作は、粒子ビームが所望の治療層に対する適切な数のプレートを、それらのプレートがビーム場の少なくとも一部を横切って動いている間に通過するように協調され得る。幾つかの実施例では、エネルギーデグレーダの動作は、また、本明細書でも説明されているように、粒子ビームを動きが停止しているプレートに通過させることを含む。
図38を参照すると、例示的な動作において、エネルギーデグレーダのプレート3801、3802は、同じ方向(この例では、矢印3803の方向)に、同時に、走査中に粒子ビーム3804の移動中に、移動するように制御可能である。図38の例では、プレートの移動中の粒子ビーム3804の移動は、矢印3806によって表されている。図38の例およびその後に提示されている他の図では、移動に続く、今後の配置における粒子ビームは、破線で表されている。図38の例およびその後に提示されている他の図では、移動に続く、今後の配置におけるエネルギーデグレーダのプレートは、破線で表されている。今後の配置におけるプレートの一部のみが表され得るが(図38の場合のように)、それは、プレートの現在および今後の配置が重なり合うことがあり、現在のプレート配置は実線で表されている。
例示的な動作において、粒子ビーム3804は、対応するプレートは動いている間にエネルギーデグレーダのプレート(例えば、少なくとも一部)のうちの1つまたは複数を通過する。例えば、図38は、第1のプレート3801および第2のプレート3802を示しており、両方とも例示的なエネルギーデグレーダの一部である。第1のプレート3801および第2のプレート3802は、矢印3803の方向に移動するように制御可能である。この例では、粒子ビームはプレートに直交するが、幾つかの実施例ではそうである必要はない。例えば、粒子ビームは、図18に関して説明されている強度変調陽子治療の場合のようにプレートに直交していなくてもよい。粒子ビームは、粒子ビームが入射するプレート(ここでは、プレート3802)上のスポット3807によって表される。
例示的な動作において、プレート3802は、矢印3803の方向でビーム場3809の方へ/中に移動し始める。走査は、プレート3802がビーム場内に入った後の任意の適切な時点から始まり得る。走査がいつ始まるかは治療計画によって決定され、エネルギーデグレーダのプレートに関する放射ターゲットの配置を識別する。本明細書において説明されているように、走査は、任意のプレートがビーム場内に入る前にビーム場内で始まり得る。例えば、幾つかの実施例では、ターゲットの最も深い層を走査するために、ビームエネルギーの変化は必要なく、したがって、いかなるプレートもビームの経路内にない。しかしながら、プレートは、最も深い層が走査されているときを含めて、走査が開始する前または開始した後の任意の適切な時点においてビーム場の方へ、およびその中へ移動することを開始するものとしてよく、プレートはビーム場内に移動され得るが、ビーム経路の後を追うものとしてよい。
幾つかの実施例では、プレート3802を横切る粒子ビームの移動は、プレート3802の縁3810から所定の距離の外側の移動に制限される。例えば、エネルギーデグレーダおよび/または走査システムは、粒子ビームが縁3810の近くを通らないように制御され得る。これは、図39に示されているように、プレート3802に入射するスポットが粒子のガウス分布3900を有するからである。したがって、スポットをプレート3802の縁3810の近く(例えば、一定距離内)に適用することは、幾つかの粒子が妨げられることなく患者に故意でなく通ることを引き起こし得る。したがって、走査システムおよび/またはエネルギーデグレーダの動作は、スポットがプレートの少なくとも1つの、および幾つかの場合においてすべての、縁から離れた場所に適用されるように制御され得る。幾つかの実施例では、スポットとプレートの縁との間の最小距離は、2σから2.5σの範囲内にあり、σはスポット内の粒子の分布を表すガウス曲線の一標準偏差である。しかしながら、本明細書において説明されている実施例は、2σから2.5σの範囲内の距離に限定されない。
再び図38を参照すると、プレート3802を横切る粒子ビームの移動は、照射ターゲット3814に印加されるエネルギー低減粒子ビーム3799を発生する。すなわち、粒子ビームはプレート3802を通過し、それによって粒子ビームのエネルギーを変化させ(例えば、減少させ)、粒子ビームが照射ターゲットの対応するエネルギー層(ステップ)に当たることを可能にする。この例では、プレート3802の動きが始まった後の何らかの時点において、またプレート3802が動いており、粒子ビームの移動が続いている間、プレート3801も、この例では、矢印3803の方向に移動することを開始する。動いている間に、プレート3801は部分的にプレート3802に重なり、プレート3802の後を追い、両方のプレートが少なくともある期間にわたって同時に移動し続ける。幾つかの実施例では、プレート3802の縁3810は、プレート3801が移動し始める前にプレート3801の縁3812に関して少なくとも2σから2.5σの距離だけ移動し得るが、しかしながら、他の実施例では、異なる基準が使用されてもよい。幾つかの実施例では、後を追うプレートはない。例えば、図38において、プレート3801は、プレート3802がその終了位置に到達するまで、またはプレート3802がその終了位置に移動され、次いで開始位置に引っ込められるまで移動を開始し得ない(例えば、プレート3801はプレート3802の後を追わないものとしてよい)。
図38Aおよび図38Bは、照射ターゲット3814の走査中の異なる地点における破線なしの図38のプレートを示している。
いつかプレート3802を横切る粒子ビーム移動は完了する--例えば、プレート3802のステップに対応する層全体が走査され得る。その後、照射ターゲットの次の層に対する走査が開始し得る。この文脈において、「次」は、図35に示されているような深さの順序の次の層を必ずしも意味せず、むしろ、治療計画に従って走査されるべき次の層を意味する。上で説明されているように、その次の層は、前に走査された層に関して深さに関する順序の層である必要はない。次の層には、この例では、粒子ビームを移動することによって、プレート3801および3802の両方を横切って通って到達し得る。プレート3801はすでに移動を開始しているので、プレート3801は、次の層に対する走査動作を開始するために、適所にあるか、またはそうでなければプレート3801が移動を開始していなかったならその場合よりも近い場所にあるものとしてよい。
図40および図41の例を参照すると、粒子ビームは、次に、組み合わされたプレート3801および3802を横切ってある地点から開始位置の方へ(逆方向)またはある地点から終了位置の方へ(順方向)移動され得る。この点に関して、例示的な動作において、エネルギーデグレーダの各プレートは、開始位置4000から終了位置4001まで移動する。幾つかの実施例では、走査システムは、開始位置に近い地点で組み合わされたプレートを通して粒子ビームを走査することを開始し、終了位置に近いある地点の方へ進むものとしてよい(それぞれの地点は治療計画に基づき決定される)。これは、順方向の走査と称される。幾つかの実施例では、走査システムは、終了位置に近い地点で粒子ビームを走査することを開始し、開始位置に近いある地点の方へ進むものとしてよい(ここでもまた、それぞれの地点は治療計画に基づき決定される)。これは、逆方向の走査と称される。走査方向は、治療計画において指定されるものとしてよく、プレートの配置、ビームの状態、などの適切な要因に基づくものとしてよい。
例として、プレートが適切に位置決めされている場合に、走査は順方向に(例えば、終了位置の方へ)実行され、次いで、逆方向に(例えば、開始位置の方へ)実行され得る。しかしながら、図40に示されているような、幾つかの場合において、プレート3802が走査された後、例えば、プレートが終了位置4001に到達した後に、後を追うプレート3801は、逆方向に両方のプレートを通って走査するために適切な位置にまだ置かれていないことがある。幾つかの場合において、終了位置の方へ走査するためにビームを開始位置の近くに再位置決めすることに比べて、後を追うプレート3801が逆方向走査を行うのに適切な位置に到達するのを待つ方が、時間を要する場合ある。したがって、そのような場合に、粒子ビームは、開始位置4000の方へ適切な位置4003に再位置決めされ、両方のプレートを通って走査することは、プレート3801が終了位置4001の方へ移動し続ける間(プレート3802はこの地点で移動を停止している)矢印3803の順方向に進む。ここでもまた、プレート3801はすでにビーム場を横切って適所にあるので、開始するためにそのプレートが両方のプレートを通って走査するのに適切に位置決めされるのを待つ必要はない。さらに、走査が進行している間、プレート3801は、矢印3803の方向で終了位置4001の方へ移動し続ける。プレート3802はこの地点で静止しているものとしてよい。
幾つかの場合において、図41に示されているように、両方のプレートを通って逆方向(矢印4100の方向)に走査するために、プレート3802が走査された後、後を追うプレート3801は適切な位置にあり得るか、またはそのような位置が適切な時点において到達可能であり得る。したがって、これらの場合において、走査は逆方向に進行し、プレート3801はその移動方向を反転するものとしてよい。粒子ビームが開始位置の方へ走査されるときに、プレート3801および/または3802の一方もしくは両方は引っ込められ得る、すなわち、開始位置の方へ移動されるものとしてよく、それにより、プレートの異なる構成が次の走査のためにビーム場内に移動され得る。図41に示されている例において、両方のプレートが引っ込められるが、必ずしもそうである必要はない。
図40および図41の例において、単一のプレート3802をビーム経路内に移動することによってターゲット内のより深い層が最初に走査され、次に別のプレート3801をビーム経路内に移動することによってターゲット内のより浅い層が走査され、それによりビームがプレート3801および3802の両方を通過する。幾つかの実施例では、2つまたはそれ以上のプレートが、ビーム経路内に最初に移動されるものとしてよく(それによって、より浅い層を治療する)、その後走査中にプレートが引っ込められ得る。例えば、図42を参照すると、例示的な動作において、2つ(またはそれ以上)のプレート3801、3802が粒子ビーム場内で開始位置4000から終了位置4001の方へ同時に動きを開始し得る。プレートの移動中に、粒子ビームは、順方向(矢印3803によって表される)にプレートを横切って移動され、それによって適切なエネルギーを有する粒子ビーム3805を発生するように粒子ビームが両方のプレート3801および3802を通過することを引き起こし得る。図43を参照すると、プレートが終了位置4001に到達した後、粒子ビームは、プレート3802などのプレートが最初に開始位置4000の方へ引っ込められるときに逆方向(矢印4301によって表される)に走査され得る。すなわち、プレート3802は図示されているように粒子ビームがプレート3801のみを横切って移動するように最初に引っ込められる。プレート3801は、また、図示されているように、粒子ビームがプレート3801を横切って移動するときに引っ込められ得る。走査コンポーネントおよびエネルギーデグレーダは、矢印4301の方向に移動しているときに粒子ビームがプレート3802を追うが、通過しないように制御され、それによって、粒子ビームはプレート3801のみを通過し適切なエネルギーを有する粒子ビーム3799を発生することを引き起こし得る。
適切な数の(例えば、1つ、2つ、またはそれ以上の)プレートが、本明細書で説明されているように粒子ビームが順方向または逆方向のいずれかで照射ターゲットを横切って走査される間にビーム場を横切って移動され得る。プレートの数および順序、ならびに走査方向は、適宜、治療計画において指定され得る。それに加えて、本明細書で説明されているように、異なるプレートは異なる厚さを有し得る。プレートの厚さは、プレートの移動の仕方に影響を及ぼし得る。
プレートの移動は、粒子ビームが治療中にオフにされないように、または粒子ビームのオフ時間が短縮されないように順序付けられるものとしてよい。例えば、粒子ビームを走査する速度、プレートの厚さ、およびプレートの移動は、治療中に逆方向走査が順方向走査に直ちに、または素早く追随するように選択され得る。例えば、図44から図46を参照すると、例示的なエネルギーデグレーダは、順方向4404に同時に治療場内に移動され得る単一の厚さ(「1X」)のプレート4402と2倍の厚さ(「2X」)のプレート4401とを備え、粒子ビーム4405は、プレート移動中に粒子ビームが順方向4404に走査されるときに両方とも一緒に通過し、エネルギー低減粒子ビーム4405aを発生し得る。図45を参照すると、両方のプレートが終了位置4407に到達した後、2Xのプレート4401は、最初に引っ込められる(逆方向4409に移動される)ものとしてよく、その一方で、粒子ビームは逆方向に走査され、1Xのプレート4402のみを通過し、エネルギー低減粒子ビーム4405bを発生する。粒子ビームが逆方向に走査されている間に、1Xのプレート4402は、また、図示されているように、逆方向に移動され得る。上で説明されているように、粒子ビームはビーム場を横切って、各プレートの縁から適切な距離のところで1つまたは複数のプレートを通って走査される。図46を参照すると、粒子ビーム走査が開始位置に到達し、プレート4402が完全に引っ込められた後、別の2Xのプレート4410が適切な位置に移動されるものとしてよく、2Xのプレート4401および4410の両方が、粒子ビームが順方向に捜査されるときに矢印4404の順方向に移動され、エネルギー低減粒子ビーム4405cを発生するものとしてよい。様々なプレートの順序付けは、適宜、ターゲットのすべての層が治療されるまで続行し得る。
上で指摘されているように、エネルギーデグレーダの例示的な実施例は、各々2Xの厚さを有する複数のプレートと、1Xの厚さを有する単一のプレートまたは複数のプレートとを収容するものとしてよい。これらのような実施例では、プレートは、ターゲットの各層を治療するように順序付けられる。例えば、図47に示されているように、ゼロ、1つ、または複数の2Xのプレートと一緒に、1Xのプレート4701がビーム場内に移動されてすべての奇数層4702から4705がビーム4700によって治療され、ビーム場から外に移動されてすべての偶数層4706から4709が治療され得る。本明細書で説明されているように、ターゲット内の層は、治療計画に応じて、順不同に、または順に治療され得る。
幾つかの実施形態において、指摘されているように、プレートはすべて、同じ厚さを有していてもよい。したがって、例えば、最初の単一のプレートは、ビーム場内に通されて移動され、粒子ビームはプレートの移動中にビーム場を横切って走査され、それにより、適切な層に到達するのに十分なエネルギー準位を有する粒子ビームを発生するものとしてよい。第2のプレートは、第1のプレートが終了位置に到達する前または到達した後に動きを開始するものとしてよく、粒子ビームは、第1のプレートを適切な位置に残しながら開始位置の近くから始まり動きに追随し、ビーム場を横切って、第2のプレートを通り走査されるものとしてよい。走査中に、ビームは第1のプレートおよび第2のプレートの両方を通過し、それによって、エネルギーをしかるべく変化させる。第3のプレートは、第2のプレートが終了位置に到達する前または到達した後に動きを開始するものとしてよく、粒子ビームは、第1のプレートおよび第2のプレートを適切な位置(終了位置)に残しながら開始位置の近くから始まり動きに追随し、ビーム場を横切って、第3のプレートを通り走査されるものとしてよい。粒子ビームの走査中に、ビームは第1、第2、および第3のプレートを通過し、それによって、エネルギーをしかるべく変化させる。このプロセスは、照射ターゲットのすべての層を走査するために必要な数のプレートを使用して繰り返され得る。この例では、走査は、順方向に実行されるものとしてよい。幾つかの実施例では、走査プロセスは、逆方向に実行されるものとしてよい。例えば、すべてのプレートは、最初に開始位置から終了位置に移動され、移動中に順方向に走査され得る。その後、個別のプレートが引っ込められ、粒子ビームは残りのプレートを通して、例えば、逆方向に、走査されるものとしてよく、それによって、照射ターゲットの連続的に深くなって行く層に当たる粒子ビームを発生させる。このプロセスは、すべての、または適切な数のプレートが引っ込められるまで繰り返され得る。
指摘されているように、走査およびエネルギーデグレーダに対する制御は、1つまたは複数のコンピューティングシステムを使用して実装され得る。例示的な一実施例では、エネルギーデグレーダの各プレートは、ビーム場に関してプレートの配置を識別するように構成されている1つまたは複数のセンサを備える。図48を参照すると、幾つかの実施例では、各プレート4801は2つのセンサ4802、4803を備える。
幾つかの実施例では、図48に示されているように、センサは各プレートの同じ側に配置されている帯状センサであるが、他の実施例では、センサの数、構成、および配置は、図48に示されているものまたは本明細書で説明されているものと異なっていてもよい。例示的な動作において、センサは独立しており、例えば、1つのセンサの出力は他のセンサの出力に依存しない。独立したセンサは冗長性を付与し、プレートの決定された配置が正確であるという確認をもたらす。各センサは、ビーム場に関して、およびその中でセンサが配置されているプレートの位置を検出し、その位置を走査システムの動作を制御するコンピューティングシステムに中継する。センサからのフィードバックは、プレートが動いているときに連続的であるものとしてよい。幾つかの実施例では、センサはプレートの位置に比例する電圧を出力するが、他の種類のセンサ、例えば、プレートの位置に関するモータの動きを検出するセンサも使用され得る。粒子治療制御システムは、この情報を使用して、ビームを配置する場所、および走査をいつどこで開始するかを決定する。コンピューティングシステムは、ビーム場内への、および外へのプレートの移動も制御し得る。制御は、治療計画に基づくものとしてよく、走査システムの制御と協調するものとしてよい。
幾つかの実施例では、プレートの移動速度は、プレートの厚さ、移動方向(例えば、開始位置から終了位置へ、もしくは終了位置から開始位置へ)、または他のプレートに関する位置に関係なく同じであってよい。幾つかの実施例では、プレートの移動速度は制御されるものとしてよく、また変化してよい。例えば、幾つかの実施例では、後を追うプレートの速度は、動いているときに走査されるプレートの速度と異なる(例えば、速い)ことがあり得る。これは、例えば、後を追うプレートが設定された時刻に適切な配置に到達することを可能にするものとしてよい。幾つかの実施例では、プレートの位置は、プレートの速度、その初期位置、および動きを開始した時刻に関する知識に基づき、決定されるか、または増強され得る。例えば、予想されるプレートの位置は、プレートの速度、その初期位置、および動きを開始した時刻に関する知識に基づき計算され得る。幾つかの実施例では、プレートは走査中にビームの移動と協調する形で移動されるので、プレートは、ビームが移動される速度と同じ速度で移動するだけでよい。幾つかの場合において、ビームおよびプレートのこの協調した移動は、可能な限り速くプレートを移動させる既知のデグレーダに関してエネルギーデグレーダ上の騒音および機械的摩耗を減らし得る。
上で指摘されているように、ビーム内の粒子は、ガウス分布を有する。幾つかの実施例では、1つまたは複数のプレートを通過する結果、さらなるビーム発散が生じ得る。例えば、図34を参照すると、開口3404は、エネルギーデグレーダと照射ターゲット(例えば、患者)との間に位置決めされるものとしてよい。開口は、照射ターゲットの縁の近くに配置されているスポットをトリミングし、例えば、粒子ビームの一部をブロックしてビームに鋭利な縁を付け、周辺(治療されない)組織を粒子ビームから保護する。例えば、開口のビームブロッキング材料は、ビームの一部と健康な組織との間に置かれ、それにより、ビームが健康な組織に印加させるのをブロックするものとしてよい。幾つかの実施例では、開口は、形状を変化させ、それによって放射ターゲットの形状に適合させるように動的に制御可能である。使用され得る開口の例は、参照により本明細書に組み込まれている、2015年11月10日に出願した米国特許出願第14/937,048号、名称「Adaptive Aperture」で説明されている。粒子ビームの一部をブロックしてビームに鋭利な縁を付け周辺(治療されない)組織を粒子ビームから保護するように動作し得る構造の例は、本明細書においてコリメータとも称され、図34の実施例において使用され得る。
本明細書で説明されているエネルギーデグレーダで使用される要素およびその動作は、プレートに限定されない。むしろ、任意の適切な構造体が、粒子ビームのエネルギーに影響を及ぼすために使用され得る。プレートまたは類似の構造を採用する実施例では、各プレートまたは構造は、均一の厚さである必要はなく、例えば、1つまたは複数の個別のプレートを横切って少なくとも何らかの厚さの変動があり得る。そのようなプレートが適切なサイズである(例えば、十分に小さい)場合、そのようなプレートは、ビームが1つまたは複数のプレートを通過し、また異なる厚さを有するプレートの異なる部分を通過してターゲットの異なる層を治療するようにビーム場を横切って移動され得る。
治療セッションを実行するガントリー、患者支持体、能動的ビーム整形要素(例えば、開口、エネルギーデグレーダ、および走査を含む)、ならびにシンクロサイクロトロンの制御は、適切な治療制御電子機器(図示せず)によって達成される。
本明細書で説明されている粒子治療システムおよびその様々な特徴の制御は、ハードウェアまたはハードウェアとソフトウェアとの組合せを使用して実施され得る。例えば、本明細書で説明されているようなシステムは、様々な地点に配置された様々なコントローラおよび/または処理デバイスを備え得る。中央コンピュータは、様々なコントローラまたは処理デバイスの間の動作を調整することができる。中央コンピュータ、コントローラ、および処理デバイスは、テストおよび較正の制御および調整を行わせるために様々なソフトウェアルーチンを実行し得る。
システム動作は、少なくとも一部は、1つまたは複数のデータ処理装置、例えば、プログラム可能なプロセッサ、コンピュータ、複数のコンピュータ、および/またはプログラム可能な論理構成要素による実行のため、またはその動作を制御するために、1つまたは複数のコンピュータプログラム製品、例えば、1つまたは複数の非一時的機械可読媒体中に明確に具現化された1つまたは複数のコンピュータプログラムを使用することで制御され得る。
コンピュータプログラムは、コンパイル言語またはインタプリタ言語を含む、任意の形態のプログラミング言語で書かれ得、スタンドアロンプログラム、またはモジュール、コンポーネント、サブルーチン、またはコンピューティング環境において使用するのに適している他のユニットを含む、任意の形態で配備され得る。コンピュータプログラムは、1つのコンピュータ上で、または1つのサイトにあるか、または複数のサイトにまたがって分散され、ネットワークによって相互接続されている複数のコンピュータ上で実行されるように配備され得る。
本明細書で説明されている粒子治療システムの動作の全部または一部を実施するステップに関連するアクションは、1つまたは複数のコンピュータプログラムを実行して本明細書で説明されている機能を実行する1つまたは複数のプログラム可能なプロセッサによって実行され得る。これらの動作の全部または一部は、専用論理回路、例えば、FPGA(フィールドプログラマブルゲートアレイ)、および/またはASIC(特定用途向け集積回路)を使用して実施され得る。
コンピュータプログラムの実行に適しているプロセッサは、例として、汎用マイクロプロセッサと専用マイクロプロセッサを共に、および任意の種類のデジタルコンピュータの任意の1つまたは複数のプロセッサを含む。一般的に、プロセッサは、リードオンリー記憶領域またはランダムアクセス記憶領域またはその両方から命令およびデータを受け取る。コンピュータ(サーバを含む)の要素は、命令を実行するための1つまたは複数のプロセッサならびに命令およびデータを記憶するための1つまたは複数の記憶領域デバイスを含む。一般的に、コンピュータは、データを記憶するための大容量PCBなどの1つまたは複数の機械可読記憶媒体、例えば、磁気ディスク、磁気光ディスク、または光ディスクも備え、またはこれらからデータを受け取るか、もしくはこれらにデータを転送するか、もしくはその両方を行うように動作可能なように結合される。コンピュータプログラムの命令およびデータを具現化するのに好適な非一時的機械可読記憶媒体は、例として、半導体記憶領域デバイス、例えば、EPROM、EEPROM、およびフラッシュ記憶領域デバイス、磁気ディスク、例えば、内蔵ハードディスクまたはリムーバブルディスク、光磁気ディスク、ならびにCD-ROMおよびDVD-ROMディスクを含む、あらゆる形態の不揮発性記憶領域を含む。
本明細書で使用されているような任意の「電気的接続」は、直接的物理的接続、または介在する構成要素を含むが、それにもかかわらず、電気的信号が接続されている構成要素間を流れることを許す接続を暗示するものとしてよい。信号を通すことを可能にする本明細書において言及されている電気回路を伴う「接続」は、断りのない限り、電気的接続であり、「電気的」という単語が「接続」を修飾するために使用されているかどうかに関係なく必ずしも直接的物理的接続ではない。
前述の実施例のうちのさらに2つが、適切な粒子加速器(例えば、シンクロサイクロトロン)において適切な組合せで使用され得る。同様に、前記の実施例のうちのさらに2つの個別の特徴が、適切な組合せで使用され得る。
本明細書で説明されている異なる実施例の要素は、特に上で述べていない他の実施例を形成するように組み合わせることもできる。要素は、その動作に悪影響を及ぼすことなく本明細書で説明されているプロセス、システム、装置などから外してもよい。本明細書で説明されている機能を実行するために、様々な別々の要素を1つまたは複数の個別の要素に組み合わせることができる。
本明細書で説明されている例示的な実施例は、粒子治療システムと共に使用すること、または本明細書で説明されている例示的な粒子治療システムと共に使用することに限定されない。むしろ、例示的な実施例は、加速された粒子を出力に導く適切なシステム内で使用され得る。
本明細書で特に説明されていない他の実装も、以下の請求項の範囲内に収まる。
10 治療システム
100 磁石ヨーク
102 引き出しチャネル
105 粒子加速器
106 走査システム
108 走査磁石
109 電離箱
110 エネルギーデグレーダ
111、112 コイル
115 飛程変調装置
116 プレート
116a プレート
117 矢印
120 コリメータ
122 磁石システム
138 ビーム引き出しシステム
138 引き出しチャネル
140 環状超電導コイル
142 環状超電導コイル
40a、40b、42a、42b コイルセット
144 磁極面
146 磁極面
147 共通軸
156 矩形「リバース」ボビン
170 低温保持槽
171 支持点
173 支持点
181、183 半分
184 帰還磁束
186 容積部
190 粒子源
191 高周波駆動システム
192 幾何学的中心
220 構造体
221 一部分
222 粒子ビーム
224 ターゲット
225 健康な組織
229 照射ターゲット
230 矢印付き線
232 矢印
233 内側
234 縁
235 周辺組織
239 コリメータ
244、245 開口
246、247 構造体
248 穴
250 コリメータ
251 照射ターゲット
252 フィンガ
253 縁の形状
255 矢印
260 コリメータ
261 照射ターゲット
262 矢印
265、266 構造体
269、270 縁
271 矢印
272 矢印
280 粒子ビーム
281 照射ターゲット
282 角度
283 角度
284 角度
285 水平
287 周辺組織
290 照射場
291 照射ターゲット
293 粒子ビーム
294 個別部品
294 電気ケーブル
295 照射ターゲット
299 エネルギーデグレーダ
300 スポット
301 照射ターゲット
302 配置
303 配置
304 粒子ビーム
305 矢印
310 エネルギーデグレーダ
311 粒子ビームスポット
314a 点
314b 点
314c 点
390 陰極
392 陰極
393 ガス管路
394 管
399 水素の供給部
400 磁場
401 荷電粒子線治療システム
402、404、406 高温-低温支持ストラップ
402 ビーム発生粒子加速器
402 粒子加速器
404 回転式ガントリー
406 患者
408、410 脚部
409 S2ガラス繊維リンク
412、414 軸受
416 鉄骨トラス、トラス構造体
418 治療領域
420 回転範囲
422 床
424 ボールト
432 水平回転軸線
442 垂直軸線
480、482 略平行なスパン
500 ディープレート
502 ダミーディー
503、505 半円形表面
507 空間
509 ダクト
514 磁気シールド
516 空間
517 強磁性体(例えば、鋼または鉄)の層
525 ビーム形成システム
601 内部ガントリー
602 システム
604 シンクロサイクロトロン
605 回転式ガントリー
606 患者支持体
607、609 ビーム成形要素
610 ノズル
622、624 釣合いおもり
910 治療システム
912 加速器
914 粒子(例えば、陽子)ビーム
916 走査ユニット
916 散乱ユニット
918 監視ユニット
920 エネルギーデグレーダ
922 身体
922’ 身体または身体部分
924 ターゲット容積部
926a~826i 層
928 照射方向
930 ターゲット容積部
932 制御装置
1010 磁石システム
1012 磁石システム
1035、1037 曲線
1300 内部導体
1302 外部導体
1304 電力結合デバイス
1306、1308 可変リアクタンス素子
1310 ブレード
1312 プレート
1314 方向
1316 表面
3401 粒子加速器
3402 走査コンポーネント
3403 エネルギーデグレーダ
3405 照射ターゲット
3500 照射ターゲット
3499、3501、3502、3503、3504、3505、3506、3507、3508、3509 層
3600 エネルギーデグレーダ
3700 エネルギーデグレーダ
3701 プレート
3702 プレート
3799 エネルギー低減粒子ビーム
3801、3802 プレート
3803 矢印
3804 粒子ビーム
3805 粒子ビーム
3806 矢印
3807 スポット
3809 ビーム場
3810 縁
3814 照射ターゲット
3900 ガウス分布
4000 開始位置
4001 終了位置
4003 適切な位置
4301 矢印
4401 2倍の厚さ(「2X」)のプレート
4402 単一の厚さ(「1X」)のプレート
4404 順方向
4405 粒子ビーム
4405a エネルギー低減粒子ビーム
4405c エネルギー低減粒子ビーム
4407 終了位置
4409 逆方向
4410 2Xのプレート
4700 ビーム
4701 1Xのプレート
4702から4705 層
4706から4709 層
4801 プレート
4802、4803 センサ
4901 プレート
4902 スポット

Claims (43)

  1. 粒子治療システムであって、
    粒子ビームを出力するための粒子加速器と、
    前記粒子ビームを移動するための走査磁石と、
    制御システムと、
    複数のプレートを備えるエネルギーデグレーダであって、前記複数のプレートは、前記複数のプレートの1つまたは複数を通る前記粒子ビームの照射ターゲットへの通過中に前記粒子ビームのエネルギーを変化させるように前記制御システムによって制御可能であり、前記複数のプレートは、前記粒子ビームが前記走査磁石によって第1のプレートの表面を横切って第1の方向に移動される間に、ビーム場の少なくとも一部を横切って前記第1の方向に移動するように前記制御システムによって制御可能である第1のプレートを備え、前記複数のプレートは、前記第1の方向の前記第1のプレートの移動の少なくとも一部の間に、前記粒子ビームが第2のプレートの表面を横切って移動されないように、前記ビーム場の前記少なくとも一部を横切って移動し、かつ前記第1のプレートを前記第1の方向に追うように、または前記第1のプレートを前記第1の方向にリードするように前記制御システムによって制御可能である第2のプレートを備える、エネルギーデグレーダとを備える、粒子治療システム。
  2. 前記第2のプレートは、移動中に前記第1のプレートの後を追うように前記制御システムによって制御可能である、請求項1に記載の粒子治療システム。
  3. 前記照射ターゲットに関して複数の次元で前記粒子ビームを移動するように前記制御システムによって制御可能である走査システムをさらに備え、前記走査磁石は前記走査システムの一部であり、
    前記エネルギーデグレーダまたは前記走査システムのうちの少なくとも一方は、前記第1のプレートおよび前記第2のプレートの移動中に、前記粒子ビームが前記第1のプレートを通過するが前記第2のプレートを通過しないように、前記制御システムによって制御可能である請求項1に記載の粒子治療システム。
  4. 前記照射ターゲットに関して複数の次元で前記粒子ビームを移動するように前記制御システムによって制御可能である走査システムをさらに備え、前記走査磁石は前記走査システムの一部であり、
    前記エネルギーデグレーダまたは前記走査システムのうちの少なくとも一方は、前記第1のプレートおよび前記第2のプレートの移動の少なくとも一部の間に、前記粒子ビームが前記第1のプレートおよび前記第2のプレートの両方を通過するように前記制御システムによって制御可能である請求項1に記載の粒子治療システム。
  5. 前記照射ターゲットに関して複数の次元で前記粒子ビームを移動するように前記制御システムによって制御可能である走査システムをさらに備え、前記走査磁石は前記走査システムの一部であり、
    前記複数のプレートのうちの1つのプレートを横切る前記粒子ビームの移動は、前記プレートの縁から所定の距離の外側の移動に制限される請求項1に記載の粒子治療システム。
  6. 前記第1のプレートおよび前記第2のプレートの移動中に、前記第1のプレートおよび前記第2のプレートは、開始位置から終了位置まで移動し、
    前記走査磁石は、前記粒子ビームが前記移動の少なくとも一部の間に前記第1のプレートのみを通過するように、前記終了位置まで前記第1の方向に前記粒子ビームを移動するように前記制御システムによって制御可能である請求項1に記載の粒子治療システム。
  7. 前記第1のプレートおよび前記第2のプレートの移動中に、前記第1のプレートおよび前記第2のプレートは、開始位置から終了位置まで移動し、
    前記走査磁石は、前記粒子ビームが前記移動の少なくとも一部の間に前記第1のプレートのみを通過するように前記開始位置まで第2の方向に前記粒子ビームを移動するように前記制御システムによって制御可能である請求項1に記載の粒子治療システム。
  8. 前記複数のプレートは、前記第1のプレートを含む1つまたは複数の第1のプレートと、前記第2のプレートを含む1つまたは複数の第2のプレートとを備え、前記1つまたは複数の第1のプレートおよび前記1つまたは複数の第2のプレートは前記粒子ビームに関して移動するように前記制御システムによって制御可能であり、1つまたは複数の第1のプレートの各々は前記1つまたは複数の第2のプレートの厚さより薄い厚さを有する請求項1に記載の粒子治療システム。
  9. 前記第1のプレートは、前記1つまたは複数の第2のプレートの各々の厚さの数分の一である厚さを有する請求項8に記載の粒子治療システム。
  10. 前記第1のプレートは、前記1つまたは複数の第2のプレートの各々の厚さの半分である厚さを有する請求項9に記載の粒子治療システム。
  11. 前記制御システムによる前記複数のプレートの移動の制御は、前記照射ターゲットの複数の層の各々が前記粒子ビームに曝されるように前記複数のプレートの移動を順序付けることを含む請求項1に記載の粒子治療システム。
  12. 前記制御システムによる前記複数のプレートの移動の制御は、前記照射ターゲットの前記複数の層が前記粒子ビームにより非順次的に治療されるように前記複数のプレートの移動を順序付けることを含む請求項11に記載の粒子治療システム。
  13. 前記制御システムによる前記複数のプレートの移動の制御は、前記粒子ビームのエネルギーが前記照射ターゲットの複数の層の各々の配置に対応するように前記複数のプレートの移動を順序付けることを含む請求項1に記載の粒子治療システム。
  14. 前記粒子ビームのスポットをトリミングするように前記制御システムによって制御可能である開口をさらに備え、前記開口は前記照射ターゲットと前記エネルギーデグレーダとの間にある請求項1に記載の粒子治療システム。
  15. 前記複数のプレートの各々は、前記ビーム場のサイズより小さいサイズを有する請求項1に記載の粒子治療システム。
  16. 前記粒子加速器は、前記照射ターゲットに対して移動可能であるシンクロサイクロトロンを備える請求項1に記載の粒子治療システム。
  17. 前記シンクロサイクロトロンが、前記照射ターゲットに対して移動するように取り付けられたガントリーをさらに備える請求項16に記載の粒子治療システム。
  18. 前記粒子ビームの少なくとも一部を前記照射ターゲットに到達することからブロックするための構造をさらに備え、前記構造が前記照射ターゲットに対して前記粒子ビームの移動を辿るように構成された、請求項1に記載の粒子治療システム。
  19. 前記構造が、前記粒子ビームの移動を辿るための前記構造の前記移動とは別個に移動可能であるフィンガを備える請求項18に記載の粒子治療システム。
  20. 前記第1のプレート及び前記第2のプレートの移動速度が、前記粒子ビームの移動速度に基づく、請求項1に記載の粒子治療システム。
  21. 前記粒子ビームが、前記第1のプレートまたは前記第2のプレートの少なくとも一方とは独立に移動可能である、請求項1に記載の粒子治療システム。
  22. 粒子加速器が前記照射ターゲットに対して移動するように取り付けられたガントリーをさらに備え、前記エネルギーデグレーダも前記ガントリーに取り付けられた、請求項1に記載の粒子治療システム。
  23. 前記第2のプレートが、移動中に前記第1のプレートをリードするように前記制御システムによって制御可能である、請求項1に記載の粒子治療システム。
  24. 放射ビームが第1の構造の表面に入射し、前記放射ビームが前記第1の構造の前記表面を横切って移動される間に、第1の方向にビーム場の少なくとも一部を横切って移動するように制御システムによって制御可能なビームエネルギー吸収材料を備える第1の構造であって、前記第1の構造の前記表面を横切る前記放射ビームの移動が、少なくとも部分的に前記第1の方向である、第1の構造と、
    前記放射ビームが前記第1の構造の前記表面に入射する間に前記ビーム場の少なくとも一部を横切って移動するように前記制御システムによって制御可能なビームエネルギー吸収材料を備える第2の構造であって、前記第2の構造が、前記放射ビームが前記第1の構造及び前記第2の構造の移動の少なくとも一部の間に、前記第2の構造を通過しないように、前記第1の構造を前記第1の方向に追うように、または前記第1の構造をリードするように制御可能である、第2の構造と、
    を備える、エネルギーデグレーダ。
  25. 前記第1の構造が第1のプレートを備え、前記第2の構造が第2のプレートを備える、請求項24に記載のエネルギーデグレーダ。
  26. 前記エネルギーデグレーダが前記ビーム場よりも小さな大きさである、請求項24に記載のエネルギーデグレーダ。
  27. 前記第1の構造が、前記ビーム場に対する、かつ前記ビーム場内の前記第1の構造の位置を検出し、前記第1の構造の前記位置を前記制御システムに中継するための第1のセンサを備える、請求項24に記載のエネルギーデグレーダ。
  28. 前記第2の構造が、前記ビーム場に対する、かつ前記ビーム場内の前記第2の構造の位置を検出し、前記第2の構造の前記位置を前記制御システムに中継するための第2のセンサを備える、請求項27に記載のエネルギーデグレーダ。
  29. 前記第1の構造及び前記第2の構造が、異なる速度で移動するように前記制御システムによって制御可能である、請求項24に記載のエネルギーデグレーダ。
  30. 前記第2の構造が、移動中に前記第1の構造を追うように前記制御システムによって制御可能である、請求項24に記載のエネルギーデグレーダ。
  31. 前記第1の構造及び前記第2の構造が、開始位置と終了位置との間で移動するように前記制御システムによって制御可能であり、前記開始位置が、前記放射ビームが前記第1の方向に少なくとも部分的に移動する点に対応し、前記終了位置が、前記放射ビームが移動を停止する点に対応する、請求項24に記載のエネルギーデグレーダ。
  32. 前記第1の構造が第1の厚さを有するプレートを備え、前記第2の構造が第2の厚さを有するプレートを備え、前記第1の厚さ及び前記第2の厚さが異なる、請求項24に記載のエネルギーデグレーダ。
  33. 複数のプレートをさらに備え、前記複数のプレートが、前記第1の構造を含む1つまたは複数の第1のプレート及び、前記第2の構造を含む1つまたは複数の第2のプレートを備え、前記1つまたは複数の第1のプレート及び前記1つまたは複数の第2のプレートが、前記放射ビームに対して移動するように前記制御システムによって制御可能であり、1つまたは複数の第1のプレートの各々は、前記1つまたは複数の第2のプレートの厚さよりも小さい厚さを有する、請求項24に記載のエネルギーデグレーダ。
  34. 前記制御システムによる複数のプレートの移動の制御が、照射ターゲットの複数の層の各々が粒子ビームに曝されるように、前記複数のプレートの移動を順序付けることを含む請求項24に記載のエネルギーデグレーダ。
  35. 前記制御システムによる前記複数のプレートの移動の制御が、前記照射ターゲットの前記複数の層が前記粒子ビームにより非順次的に治療されるように前記複数のプレートの移動を順序付けることを含む請求項34に記載のエネルギーデグレーダ。
  36. 粒子ビームのエネルギーを変化させるための第1の吸収手段であって、前記第1の吸収手段が、前記粒子ビームが前記第1の吸収手段に入射し、前記粒子ビームが前記第1の吸収手段の表面を横切って移動される間に、第1の方向にビーム場の少なくとも一部を横切って移動するように制御手段によって制御可能であり、前記粒子ビームの前記第1の吸収手段の前記表面を横切る移動が少なくとも部分的に第1の方向である、第1の吸収手段と、
    前記粒子ビームが前記第1の吸収手段の前記表面に入射する間に前記ビーム場の少なくとも一部を横切って移動するように前記制御手段によって制御可能な第2の吸収手段であって、前記第2の吸収手段が、前記粒子ビームが前記第1の吸収手段及び前記第2の吸収手段の移動の少なくとも一部の間に、前記第2の吸収手段を通過しないように、前記第1の方向に前記第1の吸収手段を追うように、または前記第1の吸収手段をリードするように制御可能である、第2の吸収手段と、を備える、エネルギーデグレーダ。
  37. ビーム場の少なくとも一部を横切って移動するように制御システムによって制御可能なビームエネルギー吸収材料を備える第1の構造と、
    前記ビーム場の少なくとも一部を横切って移動するように制御システムによって制御可能なビームエネルギー吸収材料を備える第2の構造と、を備え、
    最初に、前記ビーム場に関する照射ターゲットが前記第1の構造または前記第2の構造の両方ではなく一方を通過する放射に曝され、次に、前記照射ターゲットが前記第1の構造及び前記第2の構造の両方を通過する放射に曝されるように少なくとも部分的に重なりつつ、前記第1の構造及び前記第2の構造が、同時に同じ方向に移動するように制御可能である、エネルギーデグレーダ。
  38. 前記第1の構造及び前記第2の構造の少なくとも一部が重なる、請求項37に記載のエネルギーデグレーダ。
  39. 前記第1の構造が第1のプレートを備え、前記第2の構造が第2のプレートを備える、請求項37に記載のエネルギーデグレーダ。
  40. 前記エネルギーデグレーダの表面積が、前記ビーム場の面積の4分の1未満である、請求項37に記載のエネルギーデグレーダ。
  41. 前記第1の構造が、前記ビーム場に対する、かつ前記ビーム場内の前記第1の構造の位置を検出し、前記第1の構造の前記位置を前記制御システムに中継するための第1のセンサを備え、
    前記第2の構造が、前記ビーム場に対する、かつ前記ビーム場内の前記第2の構造の位置を検出し、前記第2の構造の前記位置を前記制御システムに中継するための第2のセンサを備える、請求項37に記載のエネルギーデグレーダ。
  42. 前記第1の構造または前記第2の構造の少なくとも1つが、前記放射を有する粒子ビームが同じ方向に移動するにつれて、同じ方向に同じ速度で移動するように前記制御システムによって制御された、請求項37に記載のエネルギーデグレーダ。
  43. 前記第1の構造が第1のプレートを備え、前記第2の構造が第2のプレートを備え、前記照射ターゲットが、前記第1のプレートを通過するが前記第2のプレートを通過しない放射に曝され、前記第2のプレートが、少なくとも一部の時間において前記第1のプレートよりも大きな速度で移動するように、前記制御システムによって制御可能である、請求項37に記載のエネルギーデグレーダ。
JP2019536182A 2017-01-05 2017-12-20 高速エネルギースイッチング Active JP7041158B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/399,250 US10675487B2 (en) 2013-12-20 2017-01-05 Energy degrader enabling high-speed energy switching
US15/399,250 2017-01-05
PCT/US2017/067677 WO2018128822A1 (en) 2017-01-05 2017-12-20 High-speed energy switching

Publications (2)

Publication Number Publication Date
JP2020503139A JP2020503139A (ja) 2020-01-30
JP7041158B2 true JP7041158B2 (ja) 2022-03-23

Family

ID=60991606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019536182A Active JP7041158B2 (ja) 2017-01-05 2017-12-20 高速エネルギースイッチング

Country Status (4)

Country Link
EP (1) EP3565633B1 (ja)
JP (1) JP7041158B2 (ja)
CN (2) CN114699656A (ja)
WO (1) WO2018128822A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
EP3481503B1 (en) 2016-07-08 2021-04-21 Mevion Medical Systems, Inc. Treatment planning
CN111093767B (zh) 2017-06-30 2022-08-23 美国迈胜医疗系统有限公司 使用线性电动机而被控制的可配置准直仪
TW202041245A (zh) * 2019-03-08 2020-11-16 美商美威高能離子醫療系統公司 用於粒子治療系統之準直儀及降能器
CN114324125B (zh) * 2021-12-30 2024-03-26 苏州苏信环境科技有限公司 一种粒子计数传感器及控制该传感器的方法、装置及介质
CN115006747B (zh) * 2022-08-09 2022-10-25 合肥中科离子医学技术装备有限公司 超导旋转机架以及质子治疗设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090289192A1 (en) 2007-02-27 2009-11-26 Westerly David C Scanning aperture ion beam modulator
US20100176309A1 (en) 2007-02-27 2010-07-15 Mackie Thomas R Ion radiation therapy system with rocking gantry motion
JP2010273785A (ja) 2009-05-27 2010-12-09 Mitsubishi Electric Corp 粒子線治療装置
WO2012090614A1 (ja) 2010-12-27 2012-07-05 住友重機械工業株式会社 エネルギーデグレーダ、及びそれを備えた荷電粒子照射システム
WO2015095678A2 (en) 2013-12-20 2015-06-25 Mevion Medical Systems, Inc. Collimator and energy degrader
JP2016122001A (ja) 2014-12-16 2016-07-07 イオンビーム アプリケーションズ, エス.エー. エネルギーディグレーダ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142600A (ja) * 1997-11-12 1999-05-28 Mitsubishi Electric Corp 荷電粒子線照射装置及び照射方法
EP1584353A1 (en) * 2004-04-05 2005-10-12 Paul Scherrer Institut A system for delivery of proton therapy
JP2008279159A (ja) * 2007-05-14 2008-11-20 Hitachi Ltd 粒子線照射装置及び粒子線照射方法
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
JP5726644B2 (ja) * 2011-06-06 2015-06-03 住友重機械工業株式会社 エネルギーデグレーダ、及びそれを備えた荷電粒子線照射システム
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
WO2015048468A1 (en) * 2013-09-27 2015-04-02 Mevion Medical Systems, Inc. Particle beam scanning
JP6017486B2 (ja) * 2014-03-20 2016-11-02 住友重機械工業株式会社 荷電粒子線治療装置、及び荷電粒子線の飛程調整方法
CN106267584B (zh) * 2016-07-29 2018-12-28 中国原子能科学研究院 一种双盘旋转式紧凑型降能器及其使用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090289192A1 (en) 2007-02-27 2009-11-26 Westerly David C Scanning aperture ion beam modulator
US20100176309A1 (en) 2007-02-27 2010-07-15 Mackie Thomas R Ion radiation therapy system with rocking gantry motion
JP2010273785A (ja) 2009-05-27 2010-12-09 Mitsubishi Electric Corp 粒子線治療装置
WO2012090614A1 (ja) 2010-12-27 2012-07-05 住友重機械工業株式会社 エネルギーデグレーダ、及びそれを備えた荷電粒子照射システム
WO2015095678A2 (en) 2013-12-20 2015-06-25 Mevion Medical Systems, Inc. Collimator and energy degrader
JP2016122001A (ja) 2014-12-16 2016-07-07 イオンビーム アプリケーションズ, エス.エー. エネルギーディグレーダ

Also Published As

Publication number Publication date
WO2018128822A1 (en) 2018-07-12
JP2020503139A (ja) 2020-01-30
EP3565633A1 (en) 2019-11-13
CN110382050B (zh) 2022-04-12
CN110382050A (zh) 2019-10-25
EP3565633B1 (en) 2023-11-15
CN114699656A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
JP6768737B2 (ja) コリメータおよびエネルギーデグレーダ
JP6976288B2 (ja) 粒子ビーム走査
US20200368556A1 (en) High-speed energy switching
JP7091247B2 (ja) 適応開口
JP7041158B2 (ja) 高速エネルギースイッチング
US20210274635A1 (en) Treatment planning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220310

R150 Certificate of patent or registration of utility model

Ref document number: 7041158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150