US20200368556A1 - High-speed energy switching - Google Patents

High-speed energy switching Download PDF

Info

Publication number
US20200368556A1
US20200368556A1 US16/895,522 US202016895522A US2020368556A1 US 20200368556 A1 US20200368556 A1 US 20200368556A1 US 202016895522 A US202016895522 A US 202016895522A US 2020368556 A1 US2020368556 A1 US 2020368556A1
Authority
US
United States
Prior art keywords
particle beam
energy
plate
plates
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US16/895,522
Inventor
Gerrit Townsend Zwart
Mark R. Jones
James Cooley
Adam Molzahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mevion Medical Systems Inc
Original Assignee
Mevion Medical Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/137,854 external-priority patent/US9962560B2/en
Application filed by Mevion Medical Systems Inc filed Critical Mevion Medical Systems Inc
Priority to US16/895,522 priority Critical patent/US20200368556A1/en
Publication of US20200368556A1 publication Critical patent/US20200368556A1/en
Assigned to MEVION MEDICAL SYSTEMS, INC. reassignment MEVION MEDICAL SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JONES, MARK R., ZWART, GERRIT TOWNSEND, COOLEY, JAMES, MOLZAHN, ADAM
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1043Scanning the radiation beam, e.g. spot scanning or raster scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1045X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1081Rotating beam systems with a specific mechanical construction, e.g. gantries
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1083Robot arm beam systems
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • G21K1/046Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers varying the contour of the field, e.g. multileaf collimators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/10Scattering devices; Absorbing devices; Ionising radiation filters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/02Synchrocyclotrons, i.e. frequency modulated cyclotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/001Arrangements for beam delivery or irradiation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1095Elements inserted into the radiation path within the system, e.g. filters or wedges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/001Arrangements for beam delivery or irradiation
    • H05H2007/002Arrangements for beam delivery or irradiation for modifying beam trajectory, e.g. gantries
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/001Arrangements for beam delivery or irradiation
    • H05H2007/004Arrangements for beam delivery or irradiation for modifying beam energy, e.g. spread out Bragg peak devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/001Arrangements for beam delivery or irradiation
    • H05H2007/007Arrangements for beam delivery or irradiation for focusing the beam to irradiation target
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • H05H2007/046Magnet systems, e.g. undulators, wigglers; Energisation thereof for beam deflection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/12Arrangements for varying final energy of beam
    • H05H2007/122Arrangements for varying final energy of beam by electromagnetic means, e.g. RF cavities

Definitions

  • This disclosure relates generally to an energy degrader that is configurable to change the energy of a particle beam.
  • Particle therapy systems use an accelerator to generate a particle beam for treating afflictions, such as tumors.
  • particles are accelerated in orbits inside a cavity in the presence of a magnetic field, and are removed from the cavity through an extraction channel.
  • a magnetic field regenerator generates a magnetic field bump near the outside of the cavity to distort the pitch and angle of some orbits so that they precess towards, and eventually into, the extraction channel.
  • a scanning system is down-beam of the extraction channel.
  • “down-beam” means closer to an irradiation target (here, relative to the extraction channel).
  • the scanning system moves the beam across at least part of the irradiation target to expose various parts of the irradiation target to the beam.
  • the particle beam may be “scanned” over different cross-sections of the tumor.
  • An energy degrader changes the energy of the particle beam to reach the different cross-sections of the tumor.
  • An example particle therapy system comprises: a particle accelerator to output a particle beam; and an energy degrader that is controllable to pass the particle beam to an irradiation target. At least part of the energy degrader may be controllable to move during passage of the particle beam to the irradiation target.
  • the example particle therapy system may include one or more of the following features, either alone or in combination.
  • the energy degrader may comprise plates (e.g., multiple plates) that are movable.
  • the multiple plates may comprise a first plate and a second plate that are controllable to move during passage of the particle beam.
  • the second plate may be controllable to trail the first plate during movement, or the first plate may be controllable to trail the second plate during movement.
  • the example particle therapy system may comprise a scanner that is controllable to move the particle beam in one or more dimensions relative to the irradiation target. At least one of the energy degrader or the scanner may be controllable so that, during movement of the first plate and the second plate, the particle beam passes through the first plate but not the second plate or the second plate but not the first plate. At least one of the energy degrader or the scanner may be controllable so that, during movement of the first plate and the second plate, the particle beam passes through both first plate and the second plate. Movement of the particle beam across a plate among the multiple plates may be limited to movement outside of a predefined distance from an edge of the plate.
  • the energy degrader may comprise multiple plates comprising a first plate and a second plate that are controllable to move during passage of the particle beam.
  • the first plate and the second plate may move from a starting position to an ending position.
  • the particle beam may be controllable to move from a location towards the ending position such that the particle beam passes through both the first plate and the second plate or through only one of the first plate or the second plate.
  • the particle beam may be controllable to move from a location towards the starting position such that the particle beam passes through both the first plate and the second plate or through only one of the first plate or the second plate.
  • the multiple plates of the energy degrader may comprise one or more first plates and one or more second plates.
  • the one or more first plates and the one or more second plates may be controllable to move relative to the particle beam.
  • Each of one or more first plates may have a thickness that is less than thicknesses of the one or more second plates.
  • a first plate among the one or more first plates may have a thickness that is a fraction of a thickness of each of the one or more second plates.
  • the first plate may have a thickness that is half of a thickness of each of the one or more second plates.
  • Control over movement of multiple plates of the energy degrader may comprise sequencing movement of the multiple plates so that each of multiple layers of the irradiation target is subjected to the particle beam.
  • Control over movement of the multiple plates may comprise sequencing movement of the multiple plates so that the multiple layers of the irradiation target are treated with the particle beam non-sequentially.
  • Control over movement of the multiple plates may comprise sequencing movement of the multiple plates so that an energy of the particle beam corresponds to a location of each of multiple layers of the irradiation target.
  • the example particle therapy may comprise an aperture that is controllable to trim spots of the particle beam.
  • the aperture may be between the irradiation target and the energy degrader.
  • the energy degrader may comprise one or more plates that are movable relative to the irradiation target during passage of the particle beam. Each of the one or more plates may have a size that is less than a size of a radiation field.
  • An example particle therapy system may comprise: a synchrocyclotron to produce a particle beam; a scanner to move the particle beam in one or more dimensions relative to an irradiation target; and an energy degrader that is between the scanner and the irradiation target.
  • the energy degrader may comprise multiple plates that are movable relative to a path of the particle beam. The multiple plates may each be controllable to move while in the path of the particle beam and during movement of the particle beam.
  • An aperture may be between the energy degrader and the irradiation target. The aperture may be controllable to trim the particle beam prior to the particle beam reaching the irradiation target.
  • the example particle therapy system may include one or more of the following features, either alone or in combination.
  • the example particle therapy system may comprise an outer gantry on which the synchrocyclotron is mounted, with the outer gantry being configured to move the synchrocyclotron at least partly around the irradiation target; and an inner gantry, within a sweep of the outer gantry, with the inner gantry comprising a nozzle on which the energy degrader is mounted, and with the inner gantry being configured to move the energy degrader based on movement of the outer gantry.
  • the multiple plates may comprise a first plate and a second plate that are controllable to move in a first direction and a second direction during passage of the particle beam.
  • the first direction may be from a starting position to an ending position
  • the second direction may be from the ending position to the starting position.
  • At least one of the scanner or the energy degrader may be controllable so that, during movement of the first plate and the second plate in the first direction, the particle beam passes through either the first plate only or the second plate only or through both the first plate and the second plate.
  • At least one of the scanner or the energy degrader may be controllable so that, during movement of the first plate and the second plate in the second direction, the particle beam passes through either the first plate only or the second plate only or through both the first plate and the second plate.
  • the first plate and the second plate may be controllable to move separately during application of the particle beam.
  • the second plate may be controllable to trail the first plate during movement, or the first plate may be controllable to trail the second plate during movement.
  • At least one of the energy degrader or the scanner may be controllable so that movement of the particle beam during movement of the first plate and the second plate is such that the particle beam passes through the first plate but not the second plate or through the second plate but not the first plate.
  • the first plate and the second plate may move from a starting position to an ending position.
  • the scanner may be controllable to move the particle beam from a location towards the ending position such that the particle beam passes through both the first plate and the second plate or through only one of the first plate or the second plate.
  • the scanner may be controllable to move the particle beam from a location towards the starting position such that the particle beam passes through both the first plate and the second plate or through only one of the first plate or the second plate.
  • the multiple plates may comprise one or more first plates and one or more second plates, with the one or more first plates and one or more second plates being controllable to move during application of the particle beam, and with each of the one or more first plates having a thickness that is less than thicknesses of the one or more second plates.
  • Each of the multiple plates may have a size that is less than a size of a radiation (or beam) field.
  • An example particle therapy system may be configured to apply a particle beam to an irradiation target.
  • the example particle therapy system comprises a scanner to move the particle beam in one or more dimensions relative to the irradiation target; and an energy degrader comprising elements that are controllable to move during movement of the particle beam.
  • the energy degrader is for passing the particle beam prior to application of the particle beam to the irradiation target.
  • the example particle therapy system may include one or more of the following features, either alone or in combination.
  • the elements may comprise plates that are controllable to move in a sequence to change an energy of the particle beam so that different layers of the irradiation target are subjected to the particle beam.
  • the elements may comprise a first plate and a second plate, with both the first plate and the second plate being controllable to move during movement of the particle beam.
  • At least one of the energy degrader or the scanner may be controllable so that the particle beam passes through the first plate but not the second plate or through the second plate but not the first plate during at least part of the movement of the first plate and the second plate.
  • At least one of the energy degrader or the scanner may be controllable so that the particle beam passes through both the first plate and the second plate during at least part of the movement of the first plate and the second plate.
  • At least one of the energy degrader or the scanner may be controllable so that the particle beam does not pass within at least a distance from an edge of at least one of the elements.
  • the distance may be based on a distribution of particles in a spot representing a cross-section of the particle beam at the at least one of the elements.
  • the elements may be controllable to move in at least one of a first direction or a second direction during movement of the particle beam, with the first direction being from a starting position of the elements to an ending position of the elements, and with the second direction being from the ending position to the starting position. At least some of the elements may be controllable to move separately during movement of the particle beam. At least some of the elements may be controllable to move together during movement of the particle beam.
  • Each of the multiple elements may have a size that is less than a size of a radiation field.
  • An example particle therapy system comprises a particle accelerator to output a particle beam; and a scanning system for the particle accelerator to scan the particle beam across at least part of an irradiation target.
  • the scanning system is configured to scan the particle beam in two dimensions that are at an angle relative to a direction of the particle beam.
  • a structure defines an edge. The structure is controllable to move in the two dimensions relative to the irradiation target such that at least part of the structure is between at least part of the particle beam and the irradiation target.
  • the structure comprises a material that inhibits transmission of the particle beam.
  • the example particle therapy system may include one or more of the following features, either alone or in combination.
  • the structure may be rotatable at least in the two dimensions so that the edge can be moved between different parts of the irradiation target and the particle beam.
  • the edge may comprise a curve that has a radius that varies on at least one side of the structure.
  • the curve may be a French curve.
  • the structure may define an aperture and the edge may comprise an edge of the aperture.
  • the structure may be movable to track a direction of the particle beam.
  • the structure may comprise multiple elements that are adjustable to vary a size of the edge.
  • the multiple elements may comprise fingers that are individually movable relative to the irradiation target.
  • the structure may be part of a collimator system.
  • the structure may comprise a first structure in the collimator system and the edge may comprise a first edge.
  • the collimator system may comprise a second structure comprising a second edge. The first edge and the second edge may be controllable to move along different edges of the irradiation target.
  • the scanning system may comprise at least one magnet to control movement of the particle beam to scan the particle beam.
  • the at least one magnet may be for generating a magnetic field in response to applied current.
  • the magnetic field may affect the movement.
  • the scanning system may be configured to scan the particle beam more quickly in interior sections of the irradiation target than at edges of the irradiation target.
  • the particle beam may be movable within an area of a plane at a location of the structure.
  • the structure may have an area that is less than the area of the plane.
  • the structure may have an area that is less than half the area of the plane.
  • the structure may have an area that is less than a quarter the area of the plane.
  • the structure may have an area that is less than an eighth the area of the plane.
  • the structure may have an area that is less than ten times a cross-sectional area of the particle beam.
  • the scanning system may be configured to scan the particle beam from different incident angles.
  • the structure may be controllable to move based on movement of the particle beam as the particle beam is scanned from different incident angles.
  • the scanning system may comprise: a magnet to affect a direction of the particle beam to scan the particle beam across at least part of an irradiation target; and a degrader to change an energy of the beam prior to output of the particle beam to the irradiation target, where the degrader is down-beam of the magnet relative to the particle accelerator.
  • the particle accelerator may be a variable-energy device.
  • the particle accelerator may comprise: a voltage source to provide a radio frequency (RF) voltage to a cavity to accelerate particles from a plasma column, where the cavity has a magnetic field causing particles accelerated from the plasma column to move orbitally within the cavity; an extraction channel to receive the particles accelerated from the plasma column and to output the received particles from the cavity; and a regenerator to provide a magnetic field bump within the cavity to thereby change successive orbits of the particles accelerated from the plasma column so that, eventually, particles output to the extraction channel.
  • the magnetic field may be between 4 Tesla (T) and 20 T and the magnetic field bump is at most 2 Tesla.
  • An example particle therapy system comprises: a particle accelerator to output a particle beam; and a scanning system to receive the particle beam from the particle accelerator and to perform scanning of at least part of an irradiation target with the particle beam.
  • the scanning system comprises a structure defining an edge.
  • the structure is controllable to move in the two dimensions and to move based on movement of the particle beam so that the edge is between at least part of the particle beam and the irradiation target.
  • the structure comprises a material that inhibits transmission of the particle beam.
  • the example system also comprises a gantry on which the particle accelerator and the scanning system are mounted. The gantry may be configured to move the particle accelerator and the scanning system around the irradiation target.
  • An example particle therapy system comprises: a synchrocyclotron to output a particle beam; a magnet to affect a direction of the particle beam to move the particle beam across a cross-section of an irradiation target; a degrader to change an energy of the particle beam prior to moving the particle beam across the cross-section of the irradiation target, where the degrader is down-beam of the magnet relative to the synchrocyclotron; and one or more processing devices to control movement of the degrader so that the degrader at least partly tracks movement of the particle beam at an irradiation plane.
  • the example particle therapy system may include one or more of the following features, either alone or in combination.
  • the particle beam may be movable within an area of a plane at a location of the degrader.
  • the degrader may have an area that is less than the area of the plane.
  • the degrader may comprise multiple pieces, with each piece comprised of beam-energy absorbing material, and with each piece being movable into a path of the particle beam.
  • the one or more processing devices may be programmed to receive an energy of the particle beam to apply to the irradiation target, and to move one or more of the pieces of the beam-energy absorbing material into the path of the particle beam so that a resulting energy of the particle beam approximates the energy of the particle beam to apply to the irradiation target.
  • the one or more processing devices may be programmed to control movement of the one or more pieces of the beam-energy absorbing material to at least partly track movement of the particle beam.
  • the degrader may have an area that is less than half the area of the plane.
  • the degrader may have an area that is less than one-quarter the area of the plane.
  • the particle beam has a spot size at a location of the degrader; and the degrader may have an area that is less than ten times an area of the spot size.
  • the degrader may have an area that is less than twice an area of the spot size.
  • the particle therapy system may comprise memory to store a treatment plan.
  • the treatment plan may comprise information to define a scanning pattern for the irradiation target.
  • the scanning pattern may define movement of the particle beam in the two dimensions and movement of the degrader so that the degrader at least partly tracks movement of the particle beam.
  • the synchrocyclotron may comprise: a voltage source to provide a radio frequency (RF) voltage to a cavity to accelerate particles from a plasma column, where the cavity has a magnetic field causing particles accelerated from the plasma column to move orbitally within the cavity; an extraction channel to receive the particles accelerated from the plasma column and to output the received particles from the cavity as part of the particle beam; and a regenerator to provide a magnetic field bump within the cavity to thereby change successive orbits of the particles accelerated from the plasma column so that, eventually, particles output to the extraction channel.
  • the magnetic field may be between 4 Tesla (T) and 20 T and the magnetic field bump may be at most 2 Tesla, and the synchrocyclotron may be a variable-energy device.
  • the magnet and the degrader may be part of a scanning system.
  • the particle therapy system may comprise a gantry on which the synchrocyclotron and the scanning system are mounted.
  • the gantry may be configured to move the synchrocyclotron and the scanning system around the irradiation target.
  • the scanning system may be a raster scanning system, a spot scanning system, or any other type of scanning system
  • An example particle therapy system may comprise a particle accelerator to output a particle beam; and a scanning system to receive the particle beam from the synchrocyclotron and to perform scanning of at least part of an irradiation target with the particle beam.
  • the scanning system may comprise a degrader to change an energy of the particle beam prior to scanning the at least part of the irradiation target.
  • the degrader may be down-beam of the magnet relative to the synchrocyclotron.
  • the example particle therapy system may comprise one or more processing devices to control movement of the degrader so that the degrader at least partly tracks movement of the particle beam during; and a gantry on which the particle accelerator and the scanning system are mounted.
  • the gantry may be configured to move the synchrocyclotron and the scanning system around the irradiation target.
  • the example particle therapy system may include one or more of the following features, either alone or in combination.
  • the particle beam may be movable within an area of a plane at a location of the degrader.
  • the degrader may have an area that is less than the area of the plane.
  • the degrader may comprise multiple pieces, with each piece comprised of beam-energy absorbing material, and with each piece being movable into a path of the particle beam.
  • the one or more processing devices may be programmed to receive an energy of the particle beam to apply to the irradiation target, and to move one or more of the pieces of the beam-energy absorbing material into the path of the particle beam so that a resulting energy of the particle beam approximates the energy of the particle beam to apply to the irradiation target.
  • the one or more processing devices may be programmed to control movement of the one or more pieces of the beam-energy absorbing material to at least partly track movement of the particle beam.
  • the degrader may have an area that is less than half the area of the plane.
  • the degrader may have an area that is less than one-quarter the area of the plane.
  • the particle beam has a spot size at a location of the degrader, and the degrader may have an area that is less than ten times an area of the spot size.
  • the degrader may have an area that is less than twice an area of the spot size.
  • the particle accelerator may be a variable-energy synchrocyclotron.
  • An example proton therapy system may include the foregoing particle accelerator and scanning system; and a gantry on which the particle accelerator and scanning system are mounted.
  • the gantry is rotatable relative to a patient position.
  • Protons are output essentially directly from the particle accelerator and through the scanning system to the position of an irradiation target, such as a patient.
  • the particle accelerator may be a synchrocyclotron.
  • Control of the various systems described herein, or portions thereof, may be implemented via a computer program product that includes instructions that are stored on one or more non-transitory machine-readable storage media, and that are executable on one or more processing devices.
  • the systems described herein, or portions thereof, may be implemented as an apparatus, method, or electronic system that may include one or more processing devices and memory to store executable instructions to implement control of the stated functions.
  • FIGS. 1 and 2 are a cross-sectional views of an example synchrocyclotron configuration for use in a particle therapy system.
  • FIG. 3 is a side view of an example scanning system.
  • FIG. 4 is a perspective view of components of an example scanning system, excluding scattering material for spot size variation.
  • FIG. 5 is a front view of an example magnet for use in a scanning system of the type shown in FIGS. 3 and 4 .
  • FIG. 6 is a perspective view of an example magnet for use in a scanning system of the type shown in FIGS. 3 and 4 .
  • FIG. 7 is a perspective view of an example energy degrader (range modulator) for use in a scanning system of the type shown in FIGS. 3 and 4 .
  • FIG. 8 is a perspective view of a process for moving a plate of an energy degrader in the path of a particle beam
  • FIG. 9 is a side view of an example particle beam and collimator.
  • FIG. 10 is a top view show an example cross-section of an irradiation target, an example collimator that is movable along the edge of the cross-section, and an example beam scanning path along an interior of the irradiation target.
  • FIG. 11 is a top view of an example collimator.
  • FIG. 12 is a top view of components of an example collimator.
  • FIG. 13 is a top view showing the components of FIG. 12 combined to form an example collimator.
  • FIG. 14 is a top view showing an example cross-section of an irradiation target, and an example multi-leaf collimator that is movable along the edge of the cross-section during particle beam scanning.
  • FIG. 15 is a top view showing an example cross-section of an irradiation target, and an example straight-edge collimator that is movable and rotatable along the edge of the cross-section during particle beam scanning.
  • FIG. 16 is a top view showing an example cross-section of an irradiation target, an example multi-part collimator that is movable along the edges of the cross-section during particle beam scanning, and example beam scanning paths along an interior of the irradiation target.
  • FIG. 17 is a top view of an example curved collimator.
  • FIG. 18 is a view showing an example cross-section of an irradiation target, and an example of how intensity-modulated proton therapy is performed on the irradiation target.
  • FIG. 19 is a perspective view of an example irradiation field of a particle beam scanning system.
  • FIG. 20 is a perspective view of multiple pieces of an example energy degrader in the beam path to an irradiation target.
  • FIG. 21 is a perspective view illustrating movement of pieces of an energy degrader to track scanning of a particle beam.
  • FIG. 22 is a perspective view illustrating situations where movement of pieces of an energy degrader is required, and is not required, to track scanning of a particle beam.
  • FIG. 23 is a perspective view of an example therapy system.
  • FIG. 24 is an exploded perspective view of components of an example synchrocyclotron for use in the particle therapy system.
  • FIG. 25 is a cross-sectional view of the example synchrocyclotron.
  • FIG. 26 is a perspective view of the example synchrocyclotron.
  • FIG. 27 is a cross-sectional view of an example ion source for use in the synchrocyclotron.
  • FIG. 28 is a perspective view of an example dee plate and an example dummy dee for use in the synchrocyclotron.
  • FIG. 29 shows a patient positioned within an example inner gantry of the example particle therapy system in a treatment room.
  • FIG. 30 is a conceptual view of an example particle therapy system that may use a variable-energy particle accelerator.
  • FIG. 31 is an example graph showing energy and current for variations in magnetic field and distance in a particle accelerator.
  • FIG. 32 is a side view of an example structure for sweeping voltage on a dee plate over a frequency range for each energy level of a particle beam, and for varying the frequency range when the particle beam energy is varied.
  • FIG. 33 is a perspective, exploded view of an example magnet system that may be used in a variable-energy particle accelerator.
  • FIG. 34 is a block diagram showing an example particle therapy system that includes a switching energy degrader.
  • FIG. 35 is a perspective view of an example irradiation target, including layers thereof to be treated by particle therapy.
  • FIG. 36 is perspective view of example plates of a switching energy degrader that have the same thickness.
  • FIG. 37 is perspective view of example plates of a switching energy degrader that have different thicknesses.
  • FIG. 38 is a perspective view showing plates of an example energy degrader moving separately during scanning in a forward direction.
  • FIG. 38A is a perspective view showing plates of an example energy degrader at a first position during scanning in a forward direction.
  • FIG. 38B is a perspective view showing plates of an example energy degrader at a second position during scanning in a forward direction.
  • FIG. 39 is a graph showing the Gaussian distribution of a particle beam spot.
  • FIG. 40 is a perspective view showing plates of an example energy degrader moving separately during scanning in a forward direction.
  • FIG. 41 is a perspective view showing plates of an example energy degrader moving together during scanning in a reverse direction.
  • FIG. 42 is a perspective view showing plates of an example energy degrader moving together during scanning in a forward direction.
  • FIG. 43 is a perspective view showing plates of an example energy degrader moving separately during scanning in a reverse direction.
  • FIG. 44 is a perspective view showing plates of an example energy degrader moving together during scanning in a forward direction.
  • FIG. 45 is a perspective view showing plates of an example energy degrader moving separately during scanning in a reverse direction.
  • FIG. 46 is a perspective view showing plates of an example energy degrader moving together during scanning in a forward direction.
  • FIG. 47 is a perspective view showing plates combined, and moving during scanning, to hit a layer within an irradiation target.
  • FIG. 48 is a top perspective view of a plate containing sensors.
  • FIG. 49 is a top perspective view of a plate illustrating two-dimensional scanning of the plate.
  • the example particle therapy system includes a particle accelerator—in this example, a synchrocyclotron—mounted on a gantry.
  • the gantry enables the accelerator to be rotated around a patient position, as explained in more detail below.
  • the gantry is steel and has two legs mounted for rotation on two respective bearings that lie on opposite sides of a patient.
  • the particle accelerator is supported by a steel truss that is long enough to span a treatment area in which the patient lies and that is attached at both ends to the rotating legs of the gantry. As a result of rotation of the gantry around the patient, the particle accelerator also rotates.
  • the particle accelerator (e.g., the synchrocyclotron) includes a cryostat that holds one or more superconducting coils, each for conducting a current that generates a magnetic field (B).
  • the cryostat uses liquid helium (He) to maintain each coil at superconducting temperatures, e.g., 4° Kelvin (K).
  • He liquid helium
  • K 4° Kelvin
  • Magnetic yokes or smaller magnetic pole pieces are located inside the cryostat, and define a cavity in which particles are accelerated.
  • the particle accelerator includes a particle source (e.g., a Penning Ion Gauge—PIG source) to provide a plasma column to the cavity. Hydrogen gas is ionized to produce the plasma column.
  • a voltage source provides a radio frequency (RF) voltage to the cavity to accelerate pulses of particles from the plasma column.
  • RF radio frequency
  • the particle accelerator is a synchrocyclotron. Accordingly, the RF voltage is swept across a range of frequencies to account for relativistic effects on the particles (e.g., increasing particle mass) when accelerating particles from the plasma column.
  • the magnetic field produced by running current through a superconducting coil causes particles accelerated from the plasma column to accelerate orbitally within the cavity.
  • a particle accelerator other than a synchrocyclotron may be used.
  • a cyclotron, a synchrotron, a linear accelerator, and so forth may be substituted for the synchrocyclotron described herein.
  • a magnetic field regenerator (“regenerator”) is positioned near the outside of the cavity (e.g., at an interior edge thereof) to adjust the existing magnetic field inside the cavity to thereby change locations (e.g., the pitch and angle) of successive orbits of the particles accelerated from the plasma column so that, eventually, the particles output to an extraction channel that passes through the cryostat.
  • the regenerator may increase the magnetic field at a point in the cavity (e.g., it may produce a magnetic field “bump” at an area of the cavity), thereby causing each successive orbit of particles at that point to precess outwardly toward the entry point of the extraction channel until it reaches the extraction channel.
  • the extraction channel receives particles accelerated from the plasma column and outputs the received particles from the cavity as a particle beam.
  • the superconducting (“main”) coils can produce relatively high magnetic fields.
  • the magnetic field generated by a main coil may be within a range of 4 T to 20 T or more.
  • a main coil may be used to generate magnetic fields at, or that exceed, one or more of the following magnitudes: 4.0 T, 4.1 T, 4.2 T, 4.3 T, 4.4 T, 4.5 T, 4.6 T, 4.7 T, 4.8 T, 4.9 T, 5.0 T, 5.1 T, 5.2 T, 5.3 T, 5.4 T, 5.5 T, 5.6 T, 5.7 T, 5.8 T, 5.9 T, 6.0 T, 6.1 T, 6.2 T, 6.3 T, 6.4 T, 6.5 T, 6.6 T, 6.7 T, 6.8 T, 6.9 T, 7.0 T, 7.1 T, 7.2 T, 7.3 T, 7.4 T, 7.5 T, 7.6 T, 7.7 T, 7.8 T, 7.9 T, 8.0 T, 8.1 T, 8.2 T, 8.3 T, 8.4 T, 8.5 T
  • large ferromagnetic magnetic yokes act as a return for stray magnetic field produced by the superconducting coils.
  • the superconducting magnet can generate a relatively high magnetic field of, e.g., 4 T or more, resulting in considerable stray magnetic fields.
  • the relatively large ferromagnetic return yoke 100 are used as a return for the magnetic field generated by superconducting coils.
  • a magnetic shield surrounds the yoke. The return yoke and the shield together dissipate stray magnetic field, thereby reducing the possibility that stray magnetic fields will adversely affect the operation of the accelerator.
  • the return yoke and shield may be replaced by, or augmented by, an active return system.
  • An example active return system includes one or more active return coils that conduct current in a direction opposite to current through the main superconducting coils.
  • there is an active return coil for each superconducting coil e.g., two active return coils—one for each superconducting coil (referred to as a “main” coil).
  • Each active return coil may also be a superconducting coil that surrounds the outside of a corresponding main superconducting coil.
  • each active return may be used to generate a magnetic field of between 2.5 T and 12 T or more.
  • An example of an active return system that may be used is described in U.S. patent application Ser. No. 13/907,601 (U.S. Pat. No. 8,791,656), filed on May 31, 2013, the contents of which are incorporated herein by reference.
  • FIG. 4 shows examples of components of the scanning system. These include, but are not limited to, a scanning magnet 108 , an ion chamber 109 , and an energy degrader 110 . Other components that may be incorporated into the scanning system are not shown in FIG. 4 , including, e.g., one or more scatterers for changing beam spot size.
  • scanning magnet 108 is controllable in two dimensions (e.g., Cartesian XY dimensions) to direct the particle beam across a part (e.g., a cross-section) of an irradiation target.
  • Ion chamber 109 detects the dosage of the beam and feeds-back that information to a control system to adjust beam movement.
  • Energy degrader 110 is controllable to move material into, and out of, the path of the particle beam to change the energy of the particle beam and therefore the depth to which the particle beam will penetrate the irradiation target.
  • FIGS. 5 and 6 shows views of an example scanning magnet 108 .
  • Scanning magnet 108 includes two coils 111 , which control particle beam movement in the X direction, and two coils 112 , which control particle beam movement in the Y direction. Control is achieved, in some implementations, by varying current through one or both sets of coils to thereby vary the magnetic field(s) produced thereby. By varying the magnetic field(s) appropriately, the particle beam can be moved in the X and/or Y direction across the irradiation target.
  • the scanning magnet is not movable physically relative to the particle accelerator. In other implementations, the scanning magnet may be movable relative to the accelerator (e.g., in addition to the movement provided by the gantry).
  • the scanning magnets may be controllable to move the particle beam continuously. In other implementations, the scanning magnets are controllable at intervals or specific times. In some implementations, there may be different scanning magnets to control movement of the beam in the X and/or Y directions. In some implementations, there may be different scanning magnets to control partial movement of the beam in either the X and/or Y direction.
  • ion chamber 109 detects dosage applied by the particle beam by detecting the numbers of ion pairs created within a gas caused by incident radiation.
  • the numbers of ion pairs correspond to the dosage provided by the particle beam. That information is fed-back to a computer system that controls operation of the particle therapy system.
  • the computer system (not shown), which may include memory and one or more processing devices, determines if the dosage detected by the ion chamber is the intended dose. If the dosage is not as intended, the computer system may control the accelerator to interrupt production and/or output of the particle beam, and/or control the scanning magnet to prevent output of the particle beam to the irradiation target.
  • the computer system may turn the ion source off/on, change the frequency of the RF sweep, activate one or more mechanisms (such as a fast kicker magnet (not shown)) to divert the beam to an absorber material and thereby prevent the beam output, and so forth.
  • a fast kicker magnet not shown
  • FIG. 7 shows a range modulator 115 , which is an example implementation of energy degrader 110 .
  • range modulator includes a series of plates 116 .
  • the plates may be made of one or more of the following example materials: polycarbonate, carbon, beryllium or other material of low atomic number. Other materials, however, may be used in place of, or in addition to, these example materials.
  • One or more of the plates is movable into, or out of, the beam path to thereby affect the energy of the particle beam and, thus, the depth of penetration of the particle beam within the irradiation target. For example, the more plates that are moved into the path of the particle beam, the more energy that will be absorbed by the plates, and the less energy the particle beam will have. Conversely, the fewer plates that are moved into the path of the particle beam, the less energy that will be absorbed by the plates, and the more energy the particle beam will have. Higher energy particle beams penetrate deeper into the irradiation target than do lower energy particle beams. In this context, “higher” and “lower” are meant as relative terms, and do not have any specific numeric connotations.
  • Plates are moved physically into, and out of, the path of the particle beam. For example, as shown in FIG. 8 , a plate 116 a moves along the direction of arrow 117 between positions in the path of the particle beam and outside the path of the particle beam.
  • the plates are computer-controlled.
  • the number of plates that are moved into the path of the particle beam corresponds to the depth at which scanning of an irradiation target is to take place.
  • the irradiation target can be divided into cross-sections, each of which corresponds to an irradiation depth.
  • One or more plates of the range modulator can be moved into, or out of, the beam path to the irradiation target in order to achieve the appropriate energy to irradiate each of these cross-sections of the irradiation target.
  • the range modulator was stationary relative to the particle beam during scanning of a part of (e.g., cross-section of) an irradiation target, except for its plates moving in and out of the path of the particle beam.
  • the range modulator of FIGS. 7 and 8 may be replaced with a range modulator that, at least some of the time, tracks movement of the particle beam. This type of energy degrader is described in more detail below.
  • the range modulator may be an energy-switching range modulator, examples of which are described with respect to FIGS. 35 to 49 .
  • the particle accelerator may be a variable-energy particle accelerator, such as the example particle accelerator described in U.S. patent application Ser. No. 13/916,401 (U.S. Patent Publication No. 2014/0371511), filed on Jun. 12, 2013, the contents of which are incorporated herein by reference.
  • a variable-energy particle accelerator there may be less need for an energy degrader of the type described herein, as the energy level of the particle beam may be controlled by the particle accelerator.
  • an energy degrader may not be needed.
  • an energy degrader may still be used to change beam energy levels.
  • a treatment plan is established prior to treating the irradiation target.
  • the treatment plan may specify how scanning is to be performed for a particular irradiation target.
  • the treatment plan specifies the following information: a type of scanning (e.g., spot scanning or raster scanning); scan locations (e.g., locations of spots to be scanned); magnet current per scan location; dosage-per-spot, spot size; locations (e.g., depths) of irradiation target cross-sections; particle beam energy per cross-section; plates or other types of pieces to move into the beam path for each particle beam energy; and so forth.
  • spot scanning involves applying irradiation at discrete spots on an irradiation target and raster scanning involves moving a radiation spot across the radiation target. The concept of spot size therefore applies for both raster and spot scanning.
  • the overall treatment plan of an irradiation target includes different treatment plans for different cross-sections of the irradiation target.
  • the treatment plans for different cross-sections may contain the same information or different information, such as that provided above.
  • the scanning system may include a collimator 120 ( FIG. 3 ) to collimate the particle bean, which may include an aperture that is placeable relative to the irradiation target to limit the extent of the particle beam and thereby alter the shape of the spot applied to the irradiation target.
  • the collimator may be placed in the beam path down-beam of the energy degrader and before the particle beam hits the irradiation target.
  • the collimator may contain an area (e.g., a hole or a transmissive material) through which the particle beam passes and another material (e.g., brass) around the hole that inhibits or prevents passage of the particle beam.
  • the collimator may include a structure defining an edge.
  • the structure may include a material, such as brass, that inhibits transmission of the particle beam.
  • the structure may be controllable to move in two dimensions relative to the irradiation target so that at least part of the structure is between at least part of the particle beam and the irradiation target.
  • the structure may be movable in the X and Y directions of a plane that intersects the particle beam and that is parallel, or substantially parallel to, a cross-section of the irradiation target that is being treated.
  • a collimator in this manner may be beneficial in that it can be used to customize the cross-sectional shape of the particle beam that reaches the patient, thereby limiting the amount of particle beam that extends beyond the radiation target.
  • a structure 220 in a collimator prevents portion 221 of particle beam 222 from reaching a target 224 , thereby limiting the beam to the irradiation target and reducing exposure of healthy tissue 225 to radiation.
  • the example collimator also provides a defined, or sharp, edge to the particle beam portion that reaches the patient, thereby promoting more precise dose applications.
  • Positioning and movement of the collimator may be controlled by a control computer system that controls other features of the particle therapy system described herein.
  • the collimator may be controlled in accordance with the treatment plan to track (e.g., follow) motion of the particle beam across at least part of the irradiation target.
  • the collimator track is controlled to track all motion of the particle beam relative to the irradiation target.
  • the collimator may be controlled to track motion of the particle beam throughout the entirety of the irradiation target, e.g., both at edges of the irradiation target and at interiors of the irradiation target.
  • the collimator is controlled to track only some motion of the particle beam relative to the irradiation target.
  • the collimator may be controlled to track movement of the particle beam only along the edges of the irradiation target relative to when the particle beam reaches those edges.
  • a particle beam may follow a path in an irradiation target 229 shown by arrowed lines 230 .
  • Collimator 231 may not track motion of the particle beam on the interior 233 of irradiation target 229 . But, collimator 231 may track motion of the particle beam along only the edges of the irradiation target (e.g., roughly along arrow 232 ). For example, each time the particle beam reaches an edge 234 of the irradiation target, the collimator may move, or may have previously moved, to intercept the particle beam at the edge, and thereby limit exposure of surrounding tissue 235 to the beam.
  • the collimator moves may depend on the size of the particle beam cross-section (spot) and the speed at which the particle beam scans.
  • spot the size of the particle beam cross-section (spot) and the speed at which the particle beam scans.
  • the collimator need not track the beam at the interior.
  • the movement of a collimator may be controlled in various ways.
  • the current through magnet 108 may correspond to the deflection of the particle beam by the magnet and, thus, the location of the particle beam spot on the irradiation target.
  • a computer system controlling operation of the scanning system can determine the projected location of the irradiation spot.
  • the computer system can control the scanning system, in particular the collimator, to track movement of the irradiation spot along all or part of its motion, as described herein.
  • the computer system can control the scanning system, in particular the collimator, so that the collimator arrives at a location before the particle beam spot arrives at that location, as described in more detail below.
  • goals of particle beam scanning may include achieving accuracy at the edges of an irradiation target and uniformity of dosage or coverage in the interior of the irradiation target.
  • the use of a collimator can help to further these goals by enabling use of a relatively large particle beam spot for scanning.
  • a spot size may be considered “large” if it has an area that is within a specified percentage of the area of the irradiation target. This percentage might typically be 2.5%, but values between, e.g., 0.25% and 25%, could also be used. Scanning using a relative large spot size increases the fractional areal coverage of the irradiation target for each beam pulse.
  • the larger the size of this spot the less adversely affected the target uniformity will be due to target (patient) motion.
  • the collimator reduces the chances that radiation from the large spot will impact tissue (e.g., healthy tissue) outside the radiation target by reducing the lateral penumbra.
  • tissue e.g., healthy tissue
  • smaller spot sizes were preferred, since they enabled more precise dosage at the edges as compared to a larger spot size. But, compared to a collimated edge, those smaller spot sizes could result in slower treatment times for a given treatment volume, and reduced edge conformality due to reduced edge resolution and increased penumbra.
  • the collimator may have any number of different shapes or configurations and may, or may not, include one or more moving parts.
  • the collimator is comprised of brass and/or other radiation-blocking material, and has a thickness on the order of several centimeters.
  • different collimators may have different compositions and thicknesses.
  • the collimator is a structure that has one or more defined edges.
  • the collimator may be a structure containing an aperture, or hole.
  • FIG. 11 shows an example of this type of collimator 239 .
  • Collimator 239 may have any appropriate shape, with an aperture therein.
  • the edges of the aperture may be used to limit application of the particle beam, as shown in FIG. 9 for example, thereby allowing application of beam 222 to the irradiation target 224 but not to tissue covered by collimator 220 that is otherwise in the beam path.
  • the aperture may track (e.g., follow) the particle beam throughout all or part of the scanning operation.
  • the aperture may track movement of the particle beam only at edges of the irradiation target or throughout the entire motion of the beam. That is, the collimator itself may move along the edge of the irradiation target to track movement of the particle beam (e.g., so that the location of the collimator coincides with the particle beam when the particle beam reaches the irradiation target edge).
  • the collimator may include two or more apertures that are controlled to overlap and thereby achieve a specific size.
  • apertures 244 and 245 are part of respective structures 246 and 247 .
  • the structures move relative to each other, as shown in FIG. 13 , thereby causing the apertures 244 , 245 to overlap and change the size and, in some cases, the shape of resulting hole 248 through which the particle beam is allowed to pass. Shapes other than those shown may be used.
  • the collimator may track the movement of the particle beam during the particle beam's motion in the interior of the irradiation target.
  • the aperture may have a diameter that is less than the diameter of the particle beam spot.
  • the aperture of the collimator may vary in size and/or shape.
  • the collimator may have one or more moving parts to vary the size and shape of the aperture (e.g., to reduce its diameter, surface area, or the like).
  • the collimator may be a structure having one or more straight edges.
  • the collimator may include square, rectangular, or substantially linear structures, each having at least one edge that can be placed in the path of the particle beam.
  • the collimator may have a multi-leaf structure, as in FIG. 14 .
  • collimator 250 tracks movement along the edge of irradiation target 251 .
  • Fingers 252 move up or down, or towards or away from the irradiation target, in order to achieve an edge shape 253 that substantially matches the edge shape of the irradiation target and that blocks the particle beam from reaching healthy tissue (or tissue that should not be irradiated).
  • each finger can be moved up or down, or extended and retracted, or a combination of such movements to substantially match the edge shape.
  • Collimator 250 itself may move along the edge of the irradiation target 251 (e.g., roughly in the direction of arrow 255 ) to track movement of the particle beam (e.g., so that the location of the collimator coincides with the particle beam when the particle beam reaches the irradiation target edge). In some implementations, collimator 250 may, or may not, move into the interior of the irradiation target during scanning operations.
  • irradiation field may be defined by a plane, which is at an angle to the beam, and which defines the maximum extent that a particle beam can move in the X and Y directions relative to the irradiation target.
  • the collimator moves relative to (e.g., tracks or moves along the edge of) the irradiation target, and need only provide a defined edge at the point of the irradiation target where and when the spot hits that point.
  • the multi-leaf collimator may be made considerably smaller than its conventional counterparts.
  • the multi-leaf collimators described herein may include ten or less (e.g., two, three, four, five, six, seven, eight or nine) fingers (or more, if desired).
  • collimator 260 may be rectangular in shape, and move along the edge of irradiation target 261 .
  • Collimator 260 may move along the edge of the irradiation target to track movement of the particle beam (e.g., so that the location of the collimator coincides with the particle beam when the particle beam reaches the irradiation target edge).
  • collimator 260 may also rotate in two or three dimensions, e.g., in the XY dimensions of arrow 262 and also in the Z dimension. This rotation allows at least a portion of an edge of collimator 260 to match the edge of the irradiation target relative closely.
  • collimator 260 may be appropriately positioned so that, when the particle beam reaches the edge of the irradiation target, the collimator blocks the tissue extending beyond the edge.
  • the collimator provides a defined radiation edge relative to the irradiation target and protects adjacent tissue from the particle beam. Movement of the collimator to the appropriate point on the edge of the irradiation target may coincide with movement of the particle beam or precede movement of the particle beam.
  • the collimator may include a single structure with one or more straight edges, as shown in FIG. 15 .
  • the collimator may include two or more such structures at different (e.g., opposing) edges of the irradiation target, as shown in FIG. 16 .
  • the collimator includes two structures 265 , 266 .
  • Each of structures 265 and 266 tracks movement of the particle beam. That is, structure 265 moves so that the location of structure 265 coincides with the particle beam when the particle beam reaches edge 269 of the irradiation target, and structure 266 moves so that the location of structure 266 coincides with the particle beam when the particle beam reaches edge 270 of the irradiation target.
  • Movement of each structure to the appropriate point on the edge of the irradiation target may coincide with movement of the particle beam or precede movement of the particle beam.
  • structure 266 can be moved as the spot is scanned in the direction of arrow 271 , so that structure 266 is in the appropriate location when the spot returns to edge 270 ; and structure 265 can be moved as the spot is scanned in the direction of arrow 272 , so that structure 265 is in the appropriate location when the spot returns to edge 269 .
  • Structures 265 and 266 may move at the same times, at different times, or there may be overlap in the times of their movement.
  • the collimator may include more than two (e.g., three, four, etc.) structures of the type and operation shown in FIG. 16 .
  • the two or more structures that make up the collimator may be structures that include holes, such as that shown in FIG. 11 . The operation of the two-structure collimator is otherwise as described above.
  • the collimator need not have a straight edge, but rather its edge(s) may be curved, as shown in FIG. 17 .
  • a collimator may include only one such structure or two or more such structures.
  • the two or more structures that make up the collimator may be structures that include curved edges.
  • two structures of the type shown in FIG. 17 may replace the two structures of FIG. 16 .
  • the operation of the two-structure collimator is otherwise as described above.
  • the collimator may be a structure having a curved shape having a radius of curvature that varies continuously along its edge, thereby enabling at least part of the edge to closely match the edge of an irradiation target, either directly or by rotating the edge at an appropriate angle.
  • collimator 275 is a French curve that can be moved to track the beam, either partly or fully, and that can be rotated in two or three dimensions relative to the irradiation target to control application of the particle beam. Any appropriately curved structure may be include in the collimator.
  • collimator 275 may only move along the edge of the irradiation target to track movement of the particle beam (e.g., so that the location of the collimator coincides with the particle beam when the particle beam reaches the irradiation target edge).
  • the collimator may, or may not, track movement of the particle beam at the interior of the irradiation target.
  • a collimator may include only one structure of the type shown in FIG. 17 or the collimator may include two or more such structures.
  • two structures of the type shown in FIG. 17 may replace the two structures of FIG. 16 .
  • the operation of the two-structure collimator is otherwise as described above.
  • the treatment planning system may be designed so that the scanning speed (e.g., the rate at which the particle beam spot traverses the irradiation target) is different in the interior of the irradiation target than at the edges of the irradiation target.
  • the scanning speed may be faster at the interior of the irradiation target than at the edges of the irradiation target.
  • This arrangement allows for higher precision scanning at the edges of the irradiation target than at the interior of the irradiation target.
  • This type of variable-speed scanning may be implemented using any appropriate type of collimator, including those described herein, or this type of variable-speed scanning may be implemented without using any collimator. In either case, the slower speed at the irradiation target edge may enable more precise scanning there, which may reduce the chances that the particle beam will impact outside the irradiation target.
  • the collimator described herein may be used in an intensity-modulated proton therapy process.
  • the proton beam is projected at the radiation target from different directions so that a percentage of the overall dose is delivered from each direction.
  • FIG. 18 shows a particle beam 280 applied to the irradiation target 281 from three different angles.
  • 1 ⁇ 3 of the total dose may be applied from one angle; 1 ⁇ 3 of the total dose may be applied from another angle; and 1 ⁇ 3 of the total dose may be applied from yet another angle.
  • the particle beam may be scanned at angle 282 relative to horizontal 285 to apply 1 ⁇ 3 of the dose; the particle beam may be scanned at angle 283 to apply 1 ⁇ 3 of the dose; and the particle beam may be scanned at angle 284 to apply 1 ⁇ 3 of the dose.
  • the amount of radiation applied to surrounding tissue 287 is spread out at the appropriate angles, thereby reducing the chances that surrounding tissue will be exposed to harmful amounts of radiation. Any appropriate number of angles and appropriate dosage per angle may be employed.
  • Irradiation targets such as tumors
  • different beam collimation is typically required for the different angles of application of the particle beam.
  • the example collimators described herein can be positioned at the appropriate locations along the irradiation target's edge (as described above) to provide appropriate collimation given the angle of irradiation.
  • the example collimators can track motion of the particle beam, either only at the irradiation target's edge or throughout some portion (e.g., all) of the motion of the particle beam at all angles of application.
  • the example collimators described herein prevent transmission of the particle beam to surrounding tissue by blocking the particle beam. In some implementations, the example collimators may enable partial transmission of the particle beam, thereby resulting in application of lower-levels of radiation to the surrounding tissue than to the irradiation target. Any of the example collimators described herein may be produced in this manner.
  • the example collimators described herein may be mounted to one or more computer-controlled robotic arms or other structures to control their movement relative to the irradiation target.
  • a collimator may be mounted to the scanning system itself as well.
  • the collimator is mounted closest to the patent relative to other elements of the particle beam scanning system (e.g., down-beam of other elements of the scanning system).
  • the collimator includes more than one piece (e.g., FIG. 16 )
  • a single robotic arm may be configured to control the different pieces of the collimator independently or to control a combination of pre-assembled pieces.
  • the energy degrader may also configured to track motion of the particle beam.
  • the energy degrader may include multiple plates that are movable into the path of the particle beam to control the amount of energy in the beam and thereby control the depth to which the particle beam penetrates the irradiation target. In this way, the energy degrader is used to perform depth (the direction of the particle beam or Z-direction) scanning in the irradiation target.
  • each plate absorbs an amount of energy in the particle beam. Accordingly, the more plates that are placed in front of the particle beam, the less energy the beam has, and the less deep the beam will penetrate into the irradiation target.
  • each plate has about the same thickness, and therefore absorbs about the same amount of beam energy.
  • different plates may have different thicknesses, with the thickness of a plate corresponding to the amount of energy that the plate absorbs.
  • the plates each have a surface area that is about the size of the irradiation field.
  • the irradiation field may be defined by a plane that defines the maximum extent that a particle beam can move in the X and Y directions relative to the irradiation target.
  • FIG. 19 shows an irradiation field 290 (also called a beam field or radiation field) in front of an irradiation target 291 . Due to physical system limitations, a particle beam is movable across, but not beyond, the plane defining the irradiation field.
  • the plates in the energy degrader each have a surface are that is at least as big as, and in some cases that exceeds, the size of the irradiation field.
  • This configuration can result in plates that are large (e.g., possibly a square meter or square meters), and thus that can be heavy and relative slow to move. Slow movement of the plates can result in slower treatment.
  • the energy degraders may be smaller than the size of the irradiation field, and track at least part of the motion of the particle beam. As a result, the energy degrader may be lighter, which can reduce the amount of time that it takes to position the energy degrader plates in the path of the particle beam and thus reduce the treatment time.
  • the energy degrader may track the particle beam in two directions (e.g., XY) or in three directions (e.g., XYZ). That is, the energy degrader may move in a plane perpendicular to the particle beam, or the energy degrader may move in a plane perpendicular to the particle beam and along a longitudinal direction of the particle beam.
  • any of the collimators described herein may also move in a plane perpendicular to the particle beam, or any of the collimators described herein may also move in a plane perpendicular to the particle beam and along a longitudinal direction of the particle beam. Movement of the collimator(s) and energy degrader(s) may be independent or coordinated.
  • an energy degrader may be comprised of multiple pieces, which may be plates or other structures constructed to absorb particle beam energy during treatment. Each piece may have the same area (XY) and thickness (Z) or different pieces may have different areas and thicknesses.
  • two or more pieces 294 having the same or different thicknesses may be placed in front an irradiation target 295 in the particle beam 293 path to achieve a particular amount of energy absorption.
  • a single piece having a specified thickness may be placed in front of the beam to achieve a particular amount of energy absorption. For example, if a particular energy absorption is needed, the control computer may select a piece with the appropriate thickness to achieve that absorption.
  • those pieces may be assembled prior to placement or assembled dynamically during placement.
  • the control computer may select two pieces, arrange them, and then move the combination of the two pieces into the beam path.
  • the control computer may select two pieces and then move the combination of the two pieces into the beam path simultaneously but not in combination (e.g., each may be moved with a separate robotic arm).
  • the energy degrader may track movement of the particle beam across at least part of the irradiation field so as to achieve appropriate energy absorption, and thus beam depth penetration, at various points on the irradiation target.
  • the treatment plan may dictate where the energy degrader needs to be at any particular time during treatment, and feedback from the ionization chamber may be used for positioning and position correction, if necessary.
  • the precision with which the energy degrader needs to track the particle beam is based on the size of the degrader and the spot size of the particle beam at the point where the particle beam intersects the energy degrader.
  • motion of particle beam 304 from location 302 to location 303 would also require energy degrader 299 to move in the direction of arrow 305 to remain in the beam path, since the areas of the spot and the degrader are relatively close in size.
  • motion of the particle beam may be dictated by the treatment plan and detected through use of the ionization chamber and feedback to the control computer. This information may also be used to control movement of the energy degrader.
  • the movable energy degrader may be considerably larger than the particle beam spot.
  • the energy degrader need not track motion of the particle beam as closely in order to ensure that the energy degrader is in front of the particle beam at appropriate times during treatment.
  • the energy degrader need not move at all in some cases where the particle beam moves. That is, for some motion of the particle beam, the energy degrader may remain stationary, but for other motion of the particle beam, the energy degrader also moves to intercept the particle beam.
  • FIG. 22 shows a case where the energy degrader 310 is considerably larger than particle beam spot 311 at the point where the particle beam intersects the energy degrader.
  • the energy degrader As the particle beam spot moves from point 314 a to point 314 b, the energy degrader remains in the beam path even though the energy degrader has not moved.
  • the control computer system knowing the size of the degrader and the two spot positions, does not move the energy degrader in this case. Accordingly, in this case, the energy degrader need not track movement of the particle beam spot.
  • the energy degrader (or piece(s) thereof) will move to track and intercept the beam so as to remain in the beam path. Accordingly, the size of the energy degrader relative to the beam spot is a factor in determining when, and by how much, the energy degrader is required to move during scanning.
  • the energy degrader may include multiple parts or pieces.
  • one part or piece may be used to track movement of the particle beam across part of an irradiation target (e.g., irradiation applied from the top of the irradiation target) and another part or piece may be used to track movement of the particle beam across another part of an irradiation target (e.g., irradiation applied from the bottom of the target).
  • the energy degrader (or pieces thereof) may have any shape, e.g., square, rectangular, circular, oval, irregular, regular, polygonal, spherical, cubical, tetrahedral, and so forth.
  • the energy degrader (or pieces thereof) may have any appropriate size.
  • the energy degrader (or pieces thereof) may have a surface area this less than the area of the irradiation field, that is less than 3 ⁇ 4 the area of the irradiation field, that is less than 1 ⁇ 2 the area of the irradiation field, that is less than 1 ⁇ 3 the area of the irradiation field, that is less than 1 ⁇ 4 the area of the irradiation field, that is less than 1 ⁇ 5 the area of the irradiation field, or so forth.
  • the energy degrader may have a surface area that is less than twenty times the area of the particle beam spot at the irradiation field, that is less than fifteen times the area of the particle beam spot at the irradiation field, that is less than ten times the area of the particle beam spot at the irradiation field, that is less than nine times the area of the particle beam spot at the irradiation field, that is less than eight times the area of the particle beam spot at the irradiation field, that is less than seven times the area of the particle beam spot at the irradiation field, that is less than six times the area of the particle beam spot at the irradiation field, that is less than five times the area of the particle beam spot at the irradiation field, that is less than four times the area of the particle beam spot at the irradiation field, that is less than three times the area of the particle beam spot at the irradiation field, or that is less than two times the area of the particle beam spot at the irradiation field
  • the energy degrader (or pieces thereof) may have a surface area that is a multiple of the spot size, e.g., two times the spot size, three times the spot size, five times the spot size, ten times the spot size, and so forth.
  • each piece e.g., layer of multiple layers
  • different pieces may have different sizes, shapes thicknesses and compositions.
  • the movement of the example energy degraders described herein may be controlled in various ways.
  • the current through magnet 108 may correspond to the deflection of the particle beam by the magnet and, thus, the location of the particle beam spot on the irradiation target.
  • a computer system controlling operation of the scanning system can determine the projected location of the irradiation spot.
  • the computer system can control the energy degrader, to track (if necessary) movement of the irradiation spot along all or part of its motion, as described herein.
  • the example movable energy degraders described herein may be mounted to one or more computer-controlled robotic arms or other structures that also contain elements of the scanning system to control movement relative to the irradiation target.
  • the energy degrader includes more than one piece (e.g., multiple pieces or plates)
  • a single robotic arm may be configured to control the different pieces independently.
  • Different cross-sections of the irradiation target may be scanned according to different treatment plans.
  • an energy degrader is used to control the scanning depth.
  • the particle beam may be interrupted or redirected during configuration of the energy degrader. In other implementations, this need not be the case.
  • Described herein are examples of treating cross-sections of an irradiation target. These may be cross-sections that are roughly perpendicular to the direction of the particle beam. However, the concepts described herein are equally applicable to treating other portions of an irradiation target that are not cross-sections perpendicular to the direction of the particle beam.
  • an irradiation target may be segmented into spherical, cubical or other shaped volumes, and those volumes may be treated using the example processes, systems, and/or devices described herein.
  • the processes described herein may be used with a single particle accelerator, and any two or more of the features thereof described herein may be used with the single particle accelerator.
  • the particle accelerator may be used in any type of medical or non-medical application.
  • An example of a particle therapy system that may be used is provided below.
  • the concepts described herein may be used in other systems not specifically described.
  • an example implementation of a charged particle radiation therapy system 401 includes a beam-producing particle accelerator 402 having a weight and size small enough to permit it to be mounted on a rotating gantry 404 with its output directed straight (that is, essentially directly) from the accelerator housing toward a patient 406 .
  • Particle accelerator 402 also includes a scanning system of a type described herein, which may operate as described with respect to FIGS. 3 to 22 and FIGS. 34 to 49 .
  • the steel gantry has two legs 408 , 410 mounted for rotation on two respective bearings 412 , 414 that lie on opposite sides of the patient.
  • the accelerator is supported by a steel truss 416 that is long enough to span a treatment area 418 in which the patient lies (e.g., twice as long as a tall person, to permit the person to be rotated fully within the space with any desired target area of the patient remaining in the line of the beam) and is attached stably at both ends to the rotating legs of the gantry.
  • the rotation of the gantry is limited to a range 420 of less than 360 degrees, e.g., about 180 degrees, to permit a floor 422 to extend from a wall of the vault 424 that houses the therapy system into the patient treatment area.
  • the limited rotation range of the gantry also reduces the required thickness of some of the walls (which are not directly aligned with the beam, e.g., wall 430 ), which provide radiation shielding of people outside the treatment area.
  • a range of 180 degrees of gantry rotation is enough to cover all treatment approach angles, but providing a larger range of travel can be useful.
  • the range of rotation may be between 180 and 330 degrees and still provide clearance for the therapy floor space. In other implementations, rotation is not limited as described above.
  • the horizontal rotational axis 432 of the gantry is located nominally one meter above the floor where the patient and therapist interact with the therapy system. This floor is positioned about 3 meters above the bottom floor of the therapy system shielded vault.
  • the accelerator can swing under the raised floor for delivery of treatment beams from below the rotational axis.
  • the patient couch moves and rotates in a substantially horizontal plane parallel to the rotational axis of the gantry.
  • the couch can rotate through a range 434 of about 270 degrees in the horizontal plane with this configuration. This combination of gantry and patient rotational ranges and degrees of freedom allow the therapist to select virtually any approach angle for the beam. If needed, the patient can be placed on the couch in the opposite orientation and then all possible angles can be used.
  • the accelerator uses a synchrocyclotron configuration having a high magnetic field superconducting electromagnetic structure. Because the bend radius of a charged particle of a given kinetic energy is reduced in direct proportion to an increase in the magnetic field applied to it, the high magnetic field superconducting magnetic structure permits the accelerator to be made smaller and lighter.
  • the synchrocyclotron uses a magnetic field that is uniform in rotation angle and falls off in strength with increasing radius. Such a field shape can be achieved regardless of the magnitude of the magnetic field, so in theory there is no upper limit to the magnetic field strength (and therefore the resulting particle energy at a fixed radius) that can be used in a synchrocyclotron.
  • the synchrocyclotron is supported on the gantry so that the beam is generated directly in line with the patient.
  • the gantry permits rotation of the synchrocyclotron about a horizontal rotational axis that contains a point (isocenter 440 ) within, or near, the patient.
  • the split truss that is parallel to the rotational axis, supports the synchrocyclotron on both sides.
  • a patient support area can be accommodated in a wide area around the isocenter. Because the floor can be extended broadly around the isocenter, a patient support table can be positioned to move relative to and to rotate about a vertical axis 442 through the isocenter so that, by a combination of gantry rotation and table motion and rotation, any angle of beam direction into any part of the patient can be achieved.
  • the two gantry arms are separated by more than twice the height of a tall patient, allowing the couch with patient to rotate and translate in a horizontal plane above the raised floor.
  • Limiting the gantry rotation angle allows for a reduction in the thickness of at least one of the walls surrounding the treatment room. Thick walls, typically constructed of concrete, provide radiation protection to individuals outside the treatment room. A wall downstream of a stopping proton beam may be about twice as thick as a wall at the opposite end of the room to provide an equivalent level of protection. Limiting the range of gantry rotation enables the treatment room to be sited below earth grade on three sides, while allowing an occupied area adjacent to the thinnest wall reducing the cost of constructing the treatment room.
  • the superconducting synchrocyclotron 402 operates with a peak magnetic field in a pole gap of the synchrocyclotron of 8.8 Tesla.
  • the synchrocyclotron produces a beam of protons having an energy of 250 MeV.
  • the synchrocyclotron is a variable-energy machine, and is capable of outputting proton beams having different energies.
  • the synchrocyclotron may produce a beam having a fixed energy.
  • the field strength could be in the range of 4 T to 20 T and the proton energy could be in the range of 150 to 300 MeV.
  • the radiation therapy system described in this example is used for proton radiation therapy, but the same principles and details can be applied in analogous systems for use in heavy ion (ion) treatment systems.
  • an example synchrocyclotron 10 (e.g., 402 in FIG. 23 ) includes a magnet system 122 that contains a particle source 190 , a radiofrequency drive system 191 , and a beam extraction system 138 .
  • the magnetic field established by the magnet system has a shape appropriate to maintain focus of a contained proton beam using a combination of a split pair of annular superconducting coils 140 , 142 and a pair of shaped ferromagnetic (e.g., low carbon steel) pole faces 144 , 146 .
  • the two superconducting magnet coils are centered on a common axis 147 and are spaced apart along the axis.
  • the coils may be formed by of Nb 3 Sn-based superconducting 0.8 mm diameter strands (that initially comprise a niobium-tin core surrounded by a copper sheath) deployed in a twisted cable-in-channel conductor geometry. After seven individual strands are cabled together, they are heated to cause a reaction that forms the final (brittle) superconducting material of the wire. After the material has been reacted, the wires are soldered into the copper channel (outer dimensions 3.18 ⁇ 2.54 mm and inner dimensions 2.08 ⁇ 2.08 mm) and covered with insulation (in this example, a woven fiberglass material).
  • the copper channel containing the wires is then wound in a coil having a rectangular cross-section.
  • the wound coil is then vacuum impregnated with an epoxy compound.
  • the finished coils are mounted on an annular stainless steel reverse bobbin. Heater blankets may be placed at intervals in the layers of the windings to protect the assembly in the event of a magnet quench.
  • the entire coil can then be covered with copper sheets to provide thermal conductivity and mechanical stability and then contained in an additional layer of epoxy.
  • the precompression of the coil can be provided by heating the stainless steel reverse bobbin and fitting the coils within the reverse bobbin.
  • the reverse bobbin inner diameter is chosen so that when the entire mass is cooled to 4 K, the reverse bobbin stays in contact with the coil and provides some compression. Heating the stainless steel reverse bobbin to approximately 50 degrees C. and fitting coils at a temperature of 100 degrees Kelvin can achieve this.
  • coil position is maintained relative to corresponding magnet pole pieces and the cryostat using a set of warm-to-cold support straps 402 , 404 , 406 . Supporting the cold mass with thin straps reduces the heat leakage imparted to the cold mass by the rigid support system.
  • the straps are arranged to withstand the varying gravitational force on the coil as the magnet rotates on board the gantry.
  • Each warm-to-cold support may include one S2 fiberglass link and one carbon fiber link.
  • the carbon fiber link is supported across pins between the warm yoke and an intermediate temperature (50-70 K), and the S2 fiberglass link 409 is supported across the intermediate temperature pin and a pin attached to the cold mass.
  • Each pin may be made of high strength stainless steel.
  • the field strength profile as a function of radius is determined largely by choice of coil geometry and pole face shape; the pole faces 144 , 146 of the permeable yoke material can be contoured to fine tune the shape of the magnetic field to ensure that the particle beam remains focused during acceleration.
  • the superconducting coils are maintained at temperatures near absolute zero (e.g., about 4 degrees Kelvin) by enclosing the coil assembly (the coils and the bobbin) inside an evacuated annular aluminum or stainless steel cryostatic chamber 170 (the cryostat) that provides a free space around the coil structure, except at a limited set of support points 171 , 173 .
  • the outer wall of the cryostat may be made of low carbon steel to provide an additional return flux path for the magnetic field.
  • the temperature near absolute zero is achieved and maintained using one single-stage Gifford-McMahon cryo-cooler and three two-stage Gifford McMahon cryo-coolers. Each two stage cryo-cooler has a second stage cold end attached to a condenser that recondenses Helium vapor into liquid Helium.
  • the temperature near absolute zero is achieved and maintained using a cooling channel (not shown) containing liquid helium, which is formed inside a superconducting coil support structure (e.g., the reverse bobbin), and which contains a thermal connection between the liquid helium in the channel and the corresponding superconducting coil.
  • the coil assembly and cryostatic chambers are mounted within and fully enclosed by two halves 181 , 183 of a pillbox-shaped magnet yoke 100 .
  • the yoke 100 provides a path for the return magnetic field flux 184 and magnetically shields the volume 186 between the pole faces 144 , 146 to prevent external magnetic influences from perturbing the shape of the magnetic field within that volume.
  • the yoke also serves to decrease the stray magnetic field in the vicinity of the accelerator.
  • the coil assembly and cryostatic chambers are mounted within and fully enclosed by a non-magnetic enclosure, and the path for return magnetic field flux is implemented using an active return system, an example of which is described above.
  • the synchrocyclotron includes a particle source 190 of a Penning ion gauge geometry located near the geometric center 192 of the magnet structure 182 .
  • the particle source may be as described below, or the particle source may be of the type described in U.S. patent application Ser. No. 11/948,662 (U.S. Pat. No. 8,581,523) incorporated herein by reference.
  • Particle source 190 is fed from a supply 399 of hydrogen through a gas line 393 and tube 394 that delivers gaseous hydrogen.
  • Electric cables 294 carry an electric current from a current source to stimulate electron discharge from cathodes 392 , 390 that are aligned with the magnetic field 400 .
  • the discharged electrons ionize the gas exiting through a small hole from tube 394 to create a supply of positive ions (protons) for acceleration by one semicircular (dee-shaped) radio-frequency plate that spans half of the space enclosed by the magnet structure and one dummy dee plate.
  • one semicircular (dee-shaped) radio-frequency plate that spans half of the space enclosed by the magnet structure and one dummy dee plate.
  • all (or a substantial part, e.g., a majority) of the tube containing plasma is removed at the acceleration region.
  • the dee plate 500 is a hollow metal structure that has two semicircular surfaces 503 , 505 that enclose a space 507 in which the protons are accelerated during half of their rotation around the space enclosed by the magnet structure.
  • a duct 509 opening into the space 507 extends through the enclosure (e.g., the yoke or pole piece(s)) to an external location from which a vacuum pump can be attached to evacuate the space 507 and the rest of the space within a vacuum chamber in which the acceleration takes place.
  • the dummy dee 502 comprises a rectangular metal ring that is spaced near to the exposed rim of the dee plate. The dummy dee is grounded to the vacuum chamber and magnet yoke.
  • the dee plate 500 is driven by a radio-frequency signal that is applied at the end of a radio-frequency transmission line to impart an electric field in the space 507 .
  • the radio frequency electric field is made to vary in time as the accelerated particle beam increases in distance from the geometric center.
  • the radio frequency electric field may be controlled in the manner described in U.S. patent application Ser. No. 11/948,359 (U.S. Pat. No. 8,933,650), entitled “Matching A Resonant Frequency Of A Resonant Cavity To A Frequency Of An Input Voltage”, the contents of which are incorporated herein by reference.
  • a large voltage difference may be applied across the radio frequency plates.
  • 20,000 Volts is applied across the radio frequency plates. In some versions from 8,000 to 20,000 Volts may be applied across the radio frequency plates.
  • the magnet structure is arranged to reduce the capacitance between the radio frequency plates and ground. This may be done by forming holes with sufficient clearance from the radio frequency structures through the outer yoke and the cryostat housing and making sufficient space between the magnet pole faces.
  • the high voltage alternating potential that drives the dee plate has a frequency that is swept downward during the accelerating cycle to account for the increasing relativistic mass of the protons and the decreasing magnetic field.
  • the dummy dee does not require a hollow semi-cylindrical structure as it is at ground potential along with the vacuum chamber walls.
  • Other plate arrangements could be used such as more than one pair of accelerating electrodes driven with different electrical phases or multiples of the fundamental frequency.
  • the RF structure can be tuned to keep the Q high during the required frequency sweep by using, for example, a rotating capacitor having intermeshing rotating and stationary blades. During each meshing of the blades, the capacitance increases, thus lowering the resonant frequency of the RF structure.
  • the blades can be shaped to create a precise frequency sweep required.
  • a drive motor for the rotating condenser can be phase locked to the RF generator for precise control. One bunch of particles may be accelerated during each meshing of the blades of the rotating condenser.
  • the vacuum chamber in which the acceleration occurs is a generally cylindrical container that is thinner in the center and thicker at the rim.
  • the vacuum chamber encloses the RF plates and the particle source and is evacuated by a vacuum pump. Maintaining a high vacuum reduces the chances that accelerating ions are not lost to collisions with gas molecules and enables the RF voltage to be kept at a higher level without arcing to ground.
  • Protons traverse a generally spiral orbital path beginning at the particle source. In half of each loop of the spiral path, the protons gain energy as they pass through the RF electric field. As the protons gain energy, the radius of the central orbit of each successive loop of their spiral path is larger than the prior loop until the loop radius reaches the maximum radius of the pole face. At that location a magnetic and electric field perturbation directs protons into an area where the magnetic field rapidly decreases, and the protons depart the area of the high magnetic field and are directed through an evacuated tube, referred to herein as the extraction channel, to exit the synchrocyclotron.
  • a magnetic regenerator may be used to change the magnetic field perturbation to direct the protons.
  • the protons exiting will tend to disperse as they enter an area of markedly decreased magnetic field that exists in the room around the synchrocyclotron.
  • Beam shaping elements 607 , 609 in the extraction channel 138 redirect the protons so that they stay in a straight beam of limited spatial extent.
  • Beam formation system 525 may include a scanning system of the type described herein. Beam formation system 525 may be used in conjunction with an inner gantry that controls application of the beam.
  • Stray magnetic fields exiting from the synchrocyclotron may be limited by both a magnet yoke (which also serves as a shield) and a separate magnetic shield 514 (e.g., FIG. 1 ).
  • the separate magnetic shield includes of a layer 517 of ferromagnetic material (e.g., steel or iron) that encloses the pillbox yoke, separated by a space 516 .
  • This configuration that includes a sandwich of a yoke, a space, and a shield achieves adequate shielding for a given leakage magnetic field at lower weight.
  • an active return system may be used in place of, or to augment, the operation of the magnetic yoke and shield.
  • the gantry allows the synchrocyclotron to be rotated about a horizontal rotational axis 432 .
  • the truss structure 416 has two generally parallel spans 480 , 482 .
  • the synchrocyclotron is cradled between the spans about midway between the legs.
  • the gantry is balanced for rotation about the bearings using counterweights 622 , 624 mounted on ends of the legs opposite the truss.
  • the gantry is driven to rotate by an electric motor mounted to one or both of the gantry legs and connected to the bearing housings by drive gears.
  • the rotational position of the gantry is derived from signals provided by shaft angle encoders incorporated into the gantry drive motors and the drive gears.
  • the beam formation system 525 acts on the ion beam to give it properties suitable for patient treatment.
  • the beam may be spread and its depth of penetration varied to provide uniform radiation across a given target volume.
  • the beam formation system may include active scanning elements as described herein.
  • synchrocyclotron control electronics may include, e.g., one or more processing devices executing instructions from memory to effect control.
  • a beam-producing particle accelerator in this case synchrocyclotron 604 (which may include any and all features described herein), may be mounted on rotating gantry 605 .
  • Rotating gantry 605 is of the type described herein, and can angularly rotate around patient support 606 .
  • This feature enables synchrocyclotron 604 to provide a particle beam essentially directly to the patient from various angles. For example, as in FIG. 29 , if synchrocyclotron 604 is above patient support 606 , the particle beam may be directed downwards toward the patient. Alternatively, if synchrocyclotron 604 is below patient support 606 , the particle beam may be directed upwards toward the patient.
  • a routing mechanism in this context, is different from a shaping or sizing mechanism in that a shaping or sizing mechanism does not re-route the beam, but rather sizes and/or shapes the beam while maintaining the same general trajectory of the beam.
  • the particle accelerator used in the example particle therapy systems and example scanning systems described herein may be a variable-energy particle accelerator, an example of which is described below
  • an example treatment system 910 includes an accelerator 912 , e.g., a synchrocyclotron, from which a particle (e.g., proton) beam 914 having a variable energy is extracted to irradiate a target volume 924 of a body 922 .
  • an accelerator 912 e.g., a synchrocyclotron
  • one or more additional devices such as a scanning unit 916 or a scattering unit 916 , one or more monitoring units 918 , and an energy degrader 920 , are placed along the irradiation direction 928 .
  • the devices intercept the cross-section of the extracted beam 914 and alter one or more properties of the extracted beam for the treatment.
  • a target volume to be irradiated (an irradiation target) by a particle beam for treatment typically has a three-dimensional configuration.
  • the target volume is divided into layers along the irradiation direction of the particle beam so that the irradiation can be done on a layer-by-layer basis.
  • the penetration depth (or which layer the beam reaches) within the target volume is largely determined by the energy of the particle beam.
  • a particle beam of a given energy does not reach substantially beyond a corresponding penetration depth for that energy.
  • the energy of the particle beam is changed.
  • the target volume 924 is divided into nine layers 926 a - 926 i along the irradiation direction 928 .
  • the irradiation starts from the deepest layer 926 i, one layer at a time, gradually to the shallower layers and finishes with the shallowest layer 926 a.
  • the energy of the particle beam 914 is controlled to be at a level to allow the particle beam to stop at a desired layer, e.g., the layer 926 d, without substantially penetrating further into the body or the target volume, e.g., the layers 926 e - 926 i or deeper into the body.
  • the desired energy of the particle beam 914 decreases as the treatment layer becomes shallower relative to the particle acceleration.
  • the beam energy difference for treating adjacent layers of the target volume 924 is about 3 MeV to about 100 MeV, e.g., about 10 MeV to about 80 MeV, although other differences may also be possible, depending on, e.g., the thickness of the layers and the properties of the beam.
  • the energy variation for treating different layers of the target volume 924 can be performed at the accelerator 912 (e.g., the accelerator can vary the energy) so that, in some implementations, no additional energy variation is required after the particle beam is extracted from the accelerator 912 . So, the optional energy degrader 920 in the treatment system 10 may be eliminated from the system.
  • the accelerator 912 can output particle beams having an energy that varies between about 100 MeV and about 300 MeV, e.g., between about 115 MeV and about 250 MeV.
  • the variation can be continuous or non-continuous, e.g., one step at a time.
  • the variation, continuous or non-continuous can take place at a relatively high rate, e.g., up to about 50 MeV per second or up to about 20 MeV per second.
  • Non-continuous variation can take place one step at a time with a step size of about 10 MeV to about 90 MeV.
  • the accelerator 912 can vary the energy of the particle beam for irradiating a next layer, e.g., within several seconds or within less than one second.
  • the treatment of the target volume 924 can be continued without substantial interruption or even without any interruption.
  • the step size of the non-continuous energy variation is selected to correspond to the energy difference needed for irradiating two adjacent layers of the target volume 924 .
  • the step size can be the same as, or a fraction of, the energy difference.
  • the accelerator 912 and the degrader 920 collectively vary the energy of the beam 914 .
  • the accelerator 912 provides a coarse adjustment and the degrader 920 provides a fine adjustment or vice versa.
  • the accelerator 912 can output the particle beam that varies energy with a variation step of about 10-80 MeV, and the degrader 920 adjusts (e.g., reduces) the energy of the beam at a variation step of about 2-10 MeV.
  • the reduced use (or absence) of the energy degrader may help to maintain properties and quality of the output beam from the accelerator, e.g., beam intensity.
  • the control of the particle beam can be performed at the accelerator. Side effects, e.g., from neutrons generated when the particle beam passes the degrader 920 can be reduced or eliminated.
  • the energy of the particle beam 914 may be adjusted to treat another target volume 930 in another body or body part 922 ′ after completing treatment in target volume 924 .
  • the target volumes 924 , 930 may be in the same body (or patient), or in different patients. It is possible that the depth D of the target volume 930 from a surface of body 922 ′ is different from that of the target volume 924 .
  • the degrader 912 may only reduce the beam energy and not increase the beam energy.
  • the beam energy required for treating target volume 930 is greater than the beam energy required to treat target volume 924 .
  • the accelerator 912 may increase the output beam energy after treating the target volume 924 and before treating the target volume 930 .
  • the beam energy required for treating target volume 930 is less than the beam energy required to treat target volume 924 .
  • the degrader 920 can reduce the energy, the accelerator 912 can be adjusted to output a lower beam energy to reduce or eliminate the use of the degrader 920 .
  • the division of the target volumes 924 , 930 into layers can be different or the same.
  • the target volume 930 can be treated similarly on a layer by layer basis to the treatment of the target volume 924 .
  • the treatment of the different target volumes 924 , 930 on the same patient may be substantially continuous, e.g., with the stop time between the two volumes being no longer than about 30 minutes or less, e.g., 25 minutes or less, 20 minutes or less, 15 minutes or less, 10 minutes or less, 5 minutes or less, or 1 minute or less.
  • the accelerator 912 can be mounted on a movable gantry and the movement of the gantry can move the accelerator to aim at different target volumes. In some situations, the accelerator 912 can complete the energy adjustment of the output beam 914 during the time the treatment system makes adjustment (such as moving the gantry) after completing the treatment of the target volume 924 and before starting treating the target volume 930 .
  • the treatment can begin with the adjusted, desired beam energy. Beam energy adjustment for different patients can also be completed relatively efficiently. In some examples, all adjustments, including increasing/reducing beam energy and/or moving the gantry are done within about 30 minutes, e.g., within about 25 minutes, within about 20 minutes, within about 15 minutes, within about 10 minutes or within about 5 minutes.
  • an irradiation dose may be applied by moving the beam across the two-dimensional surface of the layer (which is sometimes called scanning beam) using a scanning unit 916 .
  • the layer can be irradiated by passing the extracted beam through one or more scatterers of the scattering unit 16 (which is sometimes called scattering beam).
  • Beam properties can be selected before a treatment or can be adjusted during the treatment by controlling the accelerator 912 and/or other devices, such as the scanning unit/scatterer(s) 916 , the degrader 920 , and others not shown in the figures.
  • system 910 includes a controller 932 , such as a computer, in communication with one or more devices in the system. Control can be based on results of the monitoring performed by the one or more monitors 918 , e.g., monitoring of the beam intensity, dose, beam location in the target volume, etc.
  • Controller 932 can also store a treatment plan for one or more target volumes (for the same patient and/or different patients).
  • the treatment plan can be determined before the treatment starts and can include parameters, such as the shape of the target volume, the number of irradiation layers, the irradiation dose for each layer, the number of times each layer is irradiated, etc.
  • the adjustment of a beam property within the system 910 can be performed based on the treatment plan. Additional adjustment can be made during the treatment, e.g., when deviation from the treatment plan is detected.
  • the accelerator 912 is configured to vary the energy of the output particle beam by varying the magnetic field in which the particle beam is accelerated.
  • one or more sets of coils receives variable electrical current to produce a variable magnetic field in the cavity.
  • one set of coils receives a fixed electrical current, while one or more other sets of coils receives a variable current so that the total current received by the coil sets varies.
  • all sets of coils are superconducting.
  • some sets of coils, such as the set for the fixed electrical current are superconducting, while other sets of coils, such as the one or more sets for the variable current, are non-superconducting.
  • all sets of coils are non-superconducting.
  • the magnitude of the magnetic field is scalable with the magnitude of the electrical current. Adjusting the total electric current of the coils in a predetermined range can generate a magnetic field that varies in a corresponding, predetermined range. In some examples, a continuous adjustment of the electrical current can lead to a continuous variation of the magnetic field and a continuous variation of the output beam energy. Alternatively, when the electrical current applied to the coils is adjusted in a non-continuous, step-wise manner, the magnetic field and the output beam energy also varies accordingly in a non-continuous (step-wise) manner. The scaling of the magnetic field to the current can allow the variation of the beam energy to be carried out relatively precisely, although sometimes minor adjustment other than the input current may be performed.
  • the accelerator 912 is configured to apply RF voltages that sweep over different ranges of frequencies, with each range corresponding to a different output beam energy. For example, if the accelerator 912 is configured to produce three different output beam energies, the RF voltage is capable of sweeping over three different ranges of frequencies. In another example, corresponding to continuous beam energy variations, the RF voltage sweeps over frequency ranges that continuously change. The different frequency ranges may have different lower frequency and/or upper frequency boundaries.
  • the extraction channel may be configured to accommodate the range of different energies produced by the variable-energy particle accelerator.
  • the extraction channel may be large enough to support the highest and lowest energies produced by the particle accelerator. That is, the extraction channel may be sized or otherwise configured to receive and to transmit particles within that range of energies.
  • Particle beams having different energies can be extracted from the accelerator 912 without altering the features of the regenerator that is used for extracting particle beams having a single energy.
  • the regenerator can be moved to disturb (e.g., change) different particle orbits in the manner described above and/or iron rods (magnetic shims) can be added or removed to change the magnetic field bump provided by the regenerator.
  • different particle energies will typically be at different particle orbits within the cavity.
  • movement of the regenerator is performed in real-time to match real-time changes in the particle beam energy output by the accelerator.
  • particle energy is adjusted on a per-treatment basis, and movement of the regenerator (and/or addition/removal of magnetic shims) is performed in advance of the treatment.
  • movement of the regenerator (and/or addition/removal of magnetic shims) may be computer controlled.
  • a computer may control one or more motors that effect movement of the regenerator and/or magnetic shims.
  • the regenerator is implemented using one or more magnetic shims that are controllable to move to the appropriate location(s).
  • table 1 shows three example energy levels at which example accelerator 912 can output particle beams.
  • the corresponding parameters for producing the three energy levels are also listed.
  • the magnet current refers to the total electrical current applied to the one or more coil sets in the accelerator 912 ;
  • the maximum and minimum frequencies define the ranges in which the RF voltage sweeps; and
  • “r” is the radial distance of a location to a center of the cavity in which the particles are accelerated.
  • the accelerator can be a synchrocyclotron and the particles may be protons.
  • the particles may be output as pulsed beams.
  • the energy of the beam output from the particle accelerator can be varied during the treatment of one target volume in a patient, or between treatments of different target volumes of the same patient or different patients.
  • settings of the accelerator are changed to vary the beam energy when no beam (or particles) is output from the accelerator.
  • the energy variation can be continuous or non-continuous over a desired range.
  • the particle accelerator (e.g., a synchrocyclotron), which may be a variable-energy particle accelerator like accelerator 912 described above, may be configured to output particle beams that have a variable energy.
  • the range of the variable energy can have an upper boundary that is about 200 MeV to about 300 MeV or higher, e.g., 200 MeV, about 205 MeV, about 210 MeV, about 215 MeV, about 220 MeV, about 225 MeV, about 230 MeV, about 235 MeV, about 240 MeV, about 245 MeV, about 250 MeV, about 255 MeV, about 260 MeV, about 265 MeV, about 270 MeV, about 275 MeV, about 280 MeV, about 285 MeV, about 290 MeV, about 295 MeV, or about 300 MeV or higher.
  • the range can also have a lower boundary that is about 100 MeV or lower to about 200 MeV, e.g., about 100 MeV or lower, about 105 MeV, about 110 MeV, about 115 MeV, about 120 MeV, about 125 MeV, about 130 MeV, about 135 MeV, about 140 MeV, about 145 MeV, about 150 MeV, about 155 MeV, about 160 MeV, about 165 MeV, about 170 MeV, about 175 MeV, about 180 MeV, about 185 MeV, about 190 MeV, about 195 MeV, about 200 MeV.
  • a lower boundary that is about 100 MeV or lower to about 200 MeV, e.g., about 100 MeV or lower, about 105 MeV, about 110 MeV, about 115 MeV, about 120 MeV, about 125 MeV, about 130 MeV, about 135 MeV, about 140 MeV, about 145 MeV, about 150 MeV, about 155 MeV, about 160 MeV, about 165 MeV, about
  • the variation is non-continuous and the variation step can have a size of about 10 MeV or lower, about 15 MeV, about 20 MeV, about 25 MeV, about 30 MeV, about 35 MeV, about 40 MeV, about 45 MeV, about 50 MeV, about 55 MeV, about 60 MeV, about 65 MeV, about 70 MeV, about 75 MeV, or about 80 MeV or higher.
  • Varying the energy by one step size can take no more than 30 minutes, e.g., about 25 minutes or less, about 20 minutes or less, about 15 minutes or less, about 10 minutes or less, about 5 minutes or less, about 1 minute or less, or about 30 seconds or less.
  • the variation is continuous and the accelerator can adjust the energy of the particle beam at a relatively high rate, e.g., up to about 50 MeV per second, up to about 45 MeV per second, up to about 40 MeV per second, up to about 35 MeV per second, up to about 30 MeV per second, up to about 25 MeV per second, up to about 20 MeV per second, up to about 15 MeV per second, or up to about 10 MeV per second.
  • the accelerator can be configured to adjust the particle energy both continuously and non-continuously.
  • a combination of the continuous and non-continuous variation can be used in a treatment of one target volume or in treatments of different target volumes. Flexible treatment planning and flexible treatment can be achieved.
  • a particle accelerator that outputs a particle beam having a variable energy can provide accuracy in irradiation treatment and reduce the number of additional devices (other than the accelerator) used for the treatment. For example, the use of degraders for changing the energy of an output particle beam may be reduced or eliminated for all or part of the treatment.
  • the properties of the particle beam, such as intensity, focus, etc. can be controlled at the particle accelerator and the particle beam can reach the target volume without substantial disturbance from the additional devices.
  • the relatively high variation rate of the beam energy can reduce treatment time and allow for efficient use of the treatment system.
  • the accelerator such as the synchrocyclotron of FIG. 1 accelerates particles or particle beams to variable energy levels by varying the magnetic field in the accelerator, which can be achieved by varying the electrical current applied to coils for generating the magnetic field.
  • an example synchrocyclotron e.g., FIG. 1
  • FIG. 33 shows an example of a magnet system 1010 that may be used in a variable-energy accelerator.
  • the magnetic field established by the magnet system 1012 can vary by about 5% to about 35% of a maximum value of the magnetic field that two sets of coils 40 a and 40 b, and 42 a and 42 b are capable of generating.
  • the magnetic field established by the magnet system has a shape appropriate to maintain focus of a contained proton beam using a combination of the two sets of coils and a pair of shaped ferromagnetic (e.g., low carbon steel) structures, examples of which are provided above.
  • Each set of coils may be a split pair of annular coils to receive electrical current.
  • both sets of coils are superconducting.
  • only one set of the coils is superconducting and the other set is non-superconducting or normal conducting (also discussed further below). It is also possible that both sets of coils are non-superconducting.
  • Suitable superconducting materials for use in the coils include niobium-3 tin (Nb3Sn) and/or niobium-titanium.
  • Other normal conducting materials can include copper. Examples of the coil set constructions are described further below.
  • the two sets of coils can be electrically connected serially or in parallel.
  • the total electrical current received by the two sets of coils can include about 2 million ampere turns to about 10 million ampere turns, e.g., about 2.5 to about 7.5 million ampere turns or about 3.75 million ampere turns to about 5 million ampere turns.
  • one set of coils is configured to receive a fixed (or constant) portion of the total variable electrical current, while the other set of coils is configured to receive a variable portion of the total electrical current.
  • the total electrical current of the two coil sets varies with the variation of the current in one coil set. In other situations, the electrical current applied to both sets of coils can vary.
  • the variable total current in the two sets of coils can generate a magnetic field having a variable magnitude, which in turn varies the acceleration pathways of the particles and produces particles having variable energies.
  • the magnitude of the magnetic field generated by the coil(s) is scalable to the magnitude of the total electrical current applied to the coil(s). Based on the scalability, in some implementations, linear variation of the magnetic field strength can be achieved by linearly changing the total current of the coil sets. The total current can be adjusted at a relatively high rate that leads to a relatively high-rate adjustment of the magnetic field and the beam energy.
  • the ratio between values of the current and the magnetic field at the geometric center of the coil rings is: 1990:8.7 (approximately 228.7:1); 1920:8.4 (approximately 228.6:1); 1760:7.9 (approximately 222.8:1). Accordingly, adjusting the magnitude of the total current applied to a superconducting coil(s) can proportionally (based on the ratio) adjust the magnitude of the magnetic field.
  • the scalability of the magnetic field to the total electrical current in the example of Table 1 is also shown in the plot of FIG. 31 , where Bz is the magnetic field along the Z direction; and R is the radial distance measured from a geometric center of the coil rings along a direction perpendicular to the Z direction.
  • the magnetic field has the highest value at the geometric center, and decreases as the distance R increases.
  • the curves 1035 , 1037 represent the magnetic field generated by the same coil sets receiving different total electrical current: 1760 Amperes and 1990 Amperes, respectively.
  • the corresponding energies of the extracted particles are 211 MeV and 250 MeV, respectively.
  • the two curves 1035 , 1037 have substantially the same shape and the different parts of the curves 1035 , 1037 are substantially parallel. As a result, either the curve 1035 or the curve 1037 can be linearly shifted to substantially match the other curve, indicating that the magnetic field is scalable to the total electrical current applied to the coil sets.
  • the scalability of the magnetic field to the total electrical current may not be perfect.
  • the ratio between the magnetic field and the current calculated based on the example shown in table 1 is not constant.
  • the linear shift of one curve may not perfectly match the other curve.
  • the total current is applied to the coil sets under the assumption of perfect scalability.
  • the target magnetic field (under the assumption of perfect scalability) can be generated by additionally altering the features, e.g., geometry, of the coils to counteract the imperfection in the scalability.
  • ferromagnetic (e.g., iron) rods can be inserted or removed from one or both of the magnetic structures (e.g., yokes, pole pieces, and the like).
  • the features of the coils can be altered at a relatively high rate so that the rate of the magnetic field adjustment is not substantially affected as compared to the situation in which the scalability is perfect and only the electrical current needs to be adjusted.
  • the rods can be added or removed at the time scale of seconds or minutes, e.g., within 5 minutes, within 1 minute, less than 30 seconds, or less than 1 second.
  • settings of the accelerator such as the current applied to the coil sets, can be chosen based on the substantial scalability of the magnetic field to the total electrical current in the coil sets.
  • the coil set 42 a, 42 b can be configured to receive a fixed electrical current corresponding to a lower boundary of a desired range of the magnetic field.
  • the fixed electrical current is 1760 Amperes.
  • the coil set 40 a, 40 b can be configured to receive a variable electrical current having an upper boundary corresponding to a difference between an upper boundary and a lower boundary of the desired range of the magnetic field.
  • the coil set 40 a, 40 b is configured to receive electrical current that varies between 0 Ampere and 230 Amperes.
  • the coil set 42 a, 42 b can be configured to receive a fixed electrical current corresponding to an upper boundary of a desired range of the magnetic field.
  • the fixed current is 1990 Amperes.
  • the coil set 40 a, 40 b can be configured to receive a variable electrical current having an upper boundary corresponding to a difference between a lower boundary and an upper boundary of the desired range of the magnetic field.
  • the coil set 40 a, 40 b is configured to receive electrical current that varies between ⁇ 230 Ampere and 0 Ampere.
  • the total variable magnetic field generated by the variable total current for accelerating the particles can have a maximum magnitude greater than 4 Tesla, e.g., greater than 5 Tesla, greater than 6 Tesla, greater than 7 Tesla, greater than 8 Tesla, greater than 9 Tesla, or greater than 10 Tesla, and up to about 20 Tesla or higher, e.g., up to about 18 Tesla, up to about 15 Tesla, or up to about 12 Tesla.
  • variation of the total current in the coil sets can vary the magnetic field by about 0.2 Tesla to about 4.2 Tesla or more, e.g., about 0.2 Tesla to about 1.4 Tesla or about 0.6 Tesla to about 4.2 Tesla.
  • the amount of variation of the magnetic field can be proportional to the maximum magnitude.
  • FIG. 32 shows an example RF structure for sweeping the voltage on the dee plate 500 over an RF frequency range for each energy level of the particle beam, and for varying the frequency range when the particle beam energy is varied.
  • the semicircular surfaces 503 , 505 of the dee plate 500 are connected to an inner conductor 1300 and housed in an outer conductor 1302 .
  • the high voltage is applied to the dee plate 500 from a power source (not shown, e.g., an oscillating voltage input) through a power coupling device 1304 that couples the power source to the inner conductor.
  • the coupling device 1304 is positioned on the inner conductor 1300 to provide power transfer from the power source to the dee plate 500 .
  • the dee plate 500 is coupled to variable reactive elements 1306 , 1308 to perform the RF frequency sweep for each particle energy level, and to change the RF frequency range for different particle energy levels.
  • the variable reactive element 1306 can be a rotating capacitor that has multiple blades 1310 rotatable by a motor (not shown). By meshing or unmeshing the blades 1310 during each cycle of RF sweeping, the capacitance of the RF structure changes, which in turn changes the resonant frequency of the RF structure. In some implementations, during each quarter cycle of the motor, the blades 1310 mesh with the each other. The capacitance of the RF structure increases and the resonant frequency decreases. The process reverses as the blades 1310 unmesh. As a result, the power required to generate the high voltage applied to the dee plate 103 and necessary to accelerate the beam can be reduced by a large factor. In some implementations, the shape of the blades 1310 is machined to form the required dependence of resonant frequency on time.
  • the RF frequency generation is synchronized with the blade rotation by sensing the phase of the RF voltage in the resonator, keeping the alternating voltage on the dee plates close to the resonant frequency of the RF cavity. (The dummy dee is grounded and is not shown in FIG. 32 ).
  • the variable reactive element 1308 can be a capacitor formed by a plate 1312 and a surface 1316 of the inner conductor 1300 .
  • the plate 1312 is movable along a direction 1314 towards or away from the surface 1316 .
  • the capacitance of the capacitor changes as the distance D between the plate 1312 and the surface 1316 changes. For each frequency range to be swept for one particle energy, the distance D is at a set value, and to change the frequency range, the plate 1312 is moved corresponding to the change in the energy of the output beam.
  • the inner and outer conductors 1300 , 1302 are formed of a metallic material, such as copper, aluminum, or silver.
  • the blades 1310 and the plate 1312 can also be formed of the same or different metallic materials as the conductors 1300 , 1302 .
  • the coupling device 1304 can be an electrical conductor.
  • the variable reactive elements 1306 , 1308 can have other forms and can couple to the dee plate in other ways to perform the RF frequency sweep and the frequency range alteration.
  • a single variable reactive element can be configured to perform the functions of both the variable reactive elements 1306 , 1308 . In other implementations, more than two variable reactive elements can be used.
  • a scanner comprised of scanning components 3402 , such as a scanning magnet.
  • the scanning magnet is controllable in one or more (e.g., at least two) dimensions (e.g., Cartesian XY dimensions) to direct the particle beam across a part (e.g., a cross-section) of an irradiation target.
  • An ion chamber detects the dosage of the beam and feeds-back that information to a control system to adjust beam movement.
  • An energy degrader is controllable to move one or more elements—e.g., plates—into, and out of, the path of the particle beam to change the energy of the particle beam and therefore the depth (the Z direction) to which the particle beam will penetrate the irradiation target.
  • the energy degrader may include one or more computer-controlled motors, that drive a plate or multiple plates in sequence into the beam field, and retract the plate or plates from the beam field.
  • the beam field corresponds the maximum lateral extent that the particle beam may move in specified directions, e.g., in a Cartesian XY plane above an irradiation target as shown, for example, in FIG. 19 .
  • scanning of the particle beam does not wait for plates to be moved into place, but rather scanning of the particle beam may be performed during plate movement.
  • scanning may be performed during plate movement, scanning may also be performed when plates are stationary or not present. For example, in some cases, to reach a deepest layer of a target, no plate need be moved into the path of the particle beam. And, in some cases, all plates may be positioned and stationary while scanning takes place.
  • the energy degrader may have a configuration and operation as described with respect to FIGS. 36 to 49 , which are described below
  • an energy degrader 3403 which may have the configuration and operation of FIGS. 36 to 49 , is located between particle accelerator 3401 and irradiation target 3405 (e.g., a tumor in the patient).
  • energy degrader 3403 may be located on a nozzle 610 of inner gantry 601 ( FIG. 29 ), and may be controlled by a computer system that also controls operation of other components of the particle therapy system. Operation of energy degrader 3403 may be coordinated with, and controlled with, operation of the scanning components, the particle accelerator, and the inner and outer gantries described herein to implement the particle therapy treatment described herein, and variations thereof.
  • beam passage through the energy degrader may result in further beam divergence.
  • an aperture 3404 may be positioned between the energy degrader and the irradiation target. The aperture may be controllable to further shape the beam, as described herein.
  • each plate of the energy degrader located in the particle beam path absorbs an amount of energy in the particle beam. Accordingly, the more plates that are placed in the path of the particle beam, the less energy the beam has, and the less deep the beam will penetrate into the irradiation target. Conversely, the fewer plates that are placed in front of the particle beam, the more energy the beam has (since less energy is absorbed by the plate(s)), and the more deep the beam will penetrate into the irradiation target. Thus, for a given plate of the energy degrader, the energy of the particle beam incident on that plate exceeds the energy of the particle beam following passage through the plate.
  • the plates may be made of one or more of the following example materials: polycarbonate, carbon, beryllium, or other material having a low atomic number. Other materials, however, may be used in place of, or in addition to, these example materials.
  • a treatment plan may dictate the configuration of the energy degrader at any particular time during treatment, and feedback from the ionization chamber may be used for positioning and position correction of the particle beam.
  • the energy degrader may be a high-speed energy-switching range shifter.
  • an energy degrader of this type includes one or more elements, e.g., one or more plates, that move during movement of the particle beam during scanning.
  • the plates(s) may move from a starting position towards an ending position and, while the plate(s) move, the particle beam is moved in one or more dimensions across the surface of the plate(s).
  • the particle beam may be moved in one dimension, in two dimensions, or in three dimensions across the surface of the plate(s) and, ultimately, across the irradiation target.
  • FIG. 49 shows a top perspective view example plate 4901 .
  • Spot 4902 of particle beam is scanned in an example two-dimensional path labeled 4903 a, 4903 b, 4903 c, 4903 d, and 4903 e.
  • Example future positions of spot 4902 during scanning are labeled 4902 a, 4902 b, 4902 c, 4902 d, and 4902 e, although it is noted that spot will appear at all locations along the two-dimensional path.
  • the speed of the beam's movement in the movement direction may be the same as, slower than, or faster than, the speed of movement of the plate(s) in the movement direction (so long as the beam remains on a plate surface). In some implementations, if the beam moves faster than a plate, then the beam may stop to wait for the plate. As described herein, concurrent movement of plates and the particle beam can decrease the treatment time relative to some known energy degraders.
  • each of the plates has a uniform thickness, as shown in FIG. 36 . That is, in such implementations, there is little or no thickness variation across each plate.
  • the plates of the energy degrader may each have the same thickness, defined as a “step size”.
  • a step size refers to the distance between two layers of a target to be treated. That is, the thickness may correspond, e.g., to the beam energy required to hit individual layers of the irradiation target.
  • no plate is used to reach the deepest layer of an irradiation target.
  • the energy degrader may be configured so that no plates are in the path of the particle beam, and so that the particle beam simply passes, without energy change, to the irradiation target. Then, plates are added to reach other, shallower layers. That is, to reach more shallow layers of the irradiation target, plates are moved into the beam field/treatment area and into the path of the particle beam.
  • an example irradiation target 3500 may be divided into ten layers 3499 , 3501 , 3502 , 3503 , 3504 , 3505 , 3506 , 3507 , 3508 , and 3509 (also referred to as steps), each of which is to be treated by scanning the particle beam across that layer.
  • Layer 3499 is at the deep end 3510 of the target and requires the most energy to hit
  • layer 3509 is at the shallow end 3511 of the target and requires the least energy to hit. Accordingly, in this example implementation, no plates are moved into the path of the particle beam to hit layer 3499 . That is, the particle beam passes, without energy change, through the energy degrader.
  • a single plate may be moved into the beam path to change the energy of the beam so that the beam hits layer 3501 , two plates may be moved into the beam path to change the energy of the beam so that the beam hits layer 3502 , three plates may be moved into the beam path to change the energy of the beam so that the beam hits hit layer 3503 , and so forth until all layers are treated.
  • the particle beam moves across the plate(s) (and thus, ultimately, across the corresponding layers) as the plate(s) move across the beam field, thereby treating the irradiation target during time that was heretofore not used for treatment.
  • the energy degrader may contain a first plate having a first thickness and multiple additional plates each having a second thickness that is different than the first thickness, as shown in FIG. 37 .
  • the first plate may have a thickness that corresponds to the beam energy required to hit an individual layer of the irradiation target (e.g., a single step size).
  • the additional plates may each be thicker than the first plate.
  • each additional plate may have a thickness that is two step sizes or twice as thick as the first plate to allow combinations of first and other plates to produce beam energies required to hit every layer within the irradiation target. Referring to FIG.
  • target 3500 may be treated as follows using the first plate and the additional plates.
  • To treat layer 3499 all plates may be moved out of the beam path.
  • To treat layer 3501 the first plate may be moved into the beam path.
  • To treat layer 3502 the first plate may be retracted from the beam path and an additional plate (having twice the thickness of the first plate) may be moved into the beam path.
  • To treat layer 3503 both the first plate having a single step thickness and an additional plate having the two-step thickness may be moved into the beam path.
  • the first plate may be removed from the beam path and two additional plates, each having a two-step thickness, may be placed into the beam path.
  • This process which includes introducing zero, one, or more second plates and the first plate for odd-numbered layers, excluding the deepest layer 3499 (e.g., layers 3501 , 3503 , 3505 , 3507 , and 3509 in this example) and retracting the first plate for even-numbered layers (e.g., layers 3502 , 3504 , 3506 , and 3508 in this example), may be performed until all layers of the target have been treated.
  • the particle beam moves across the plate(s) (and, ultimately, across corresponding layers of the irradiation target) as the plate(s) move across the beam field, thereby treating the irradiation target during time that was heretofore not used for treatment.
  • the individual plates may have different thicknesses than those described herein.
  • the plates may have more than two different thicknesses, and may be sequenced appropriately to hit all layers of a radiation target.
  • the energy degrader may contain a first plate having a single step size, and additional plates that are thicker than the first plate.
  • some additional plates may be two step sizes thick, while others are three step sizes thick, four step sizes thick, eight step sizes thick, and so forth.
  • target 3500 may be treated as follows using the first plate and the additional plates. To treat layer 3499 , all plates may be moved out of the beam path. To treat layer 3501 , the first plate may be moved into the beam path.
  • the first plate may be removed from the beam path and a second additional plate (having twice the thickness of the first plate) may be moved into the beam path.
  • a third additional plate (having three times the thickness of the first plate) may be moved into the beam path.
  • the third additional plate (having a three-step thickness) may be left in the beam path and the first plate (having a one-step thickness) may be moved into the beam path.
  • the third additional plate may be left in the beam path, the first plate may be removed from the beam path, and the second additional plate (having a two-step thickness) may be moved into the beam path.
  • This process which includes moving different plates into the beam path different times based on the energy level desired, may be performed until all layers of the target have been treated.
  • the particle beam moves across the plate(s) as the plate(s) move across the beam field, thereby treating the irradiation target during time that was heretofore not used for treatment.
  • the layers may, but need not, be treated in depth-wise order.
  • the plates of the energy degrader may be sequenced so that layer 3499 is treated first, followed by layer 3501 , followed by layer 3502 , followed by layer 3503 , and so forth until all layers are treated in order, or so that layer 3509 is treated first, followed by layer 3508 , followed by layer 3507 , and so forth until all layers are treated in order.
  • the plates of the energy degrader may be sequenced so that the layers are not treated in depth-wise order, e.g., so that layer 3503 is treated first, followed by layer 3508 , followed by layer 3501 , and then followed by other layers until all layers are treated.
  • the order in which layers are treated may be determined by a treatment plan, which may be based, at least in part, on the configuration of the energy degrader.
  • the use of fewer plates may reduce the number of moving parts in the energy degrader, thereby making the energy degrader less prone to mechanical malfunction. Fewer plates may also reduce the size of the energy degrader allowing the energy degrader to be located relatively close to a patient undergoing treatment. Movement of plates into, or out of, the beam path can noisy. Use of plates having different thicknesses may reduce the number of plates that need to be moved into the beam path, which may reduce noise during treatment in some cases.
  • FIG. 36 shows an example energy degrader 3600 having multiple plates, each of which corresponds to a single step.
  • FIG. 37 shows an example energy degrader 3700 also having multiple plates, with one plate 3701 corresponding to a single step and with the multiple other plates 3702 each corresponding to two steps (in other words, in this example, plate 3701 is half the thickness of each of plates 3702 ).
  • Energy degrader 3700 may require movement of fewer plates than energy degrader 3600 in order to hit all layers of a target and, therefore, may be less noisy, smaller, and less susceptible to mechanical malfunction in some cases.
  • energy degrader 3700 may include multiple single-step plates like plate 3701 , and multiple thicker plates like plates 3702 .
  • energy degrader 3700 may include a single thicker plate like plate 3702 , and multiple single-step plates like plate 3701 .
  • individual plates are movable into, and out of, the path of the particle beam, and may continue their movement as the particle beam is moved during scanning. More specifically, in some known energy degraders, plates are positioned prior to scanning of the particle beam. After positioning, scanning is performed, and then halted as the plates are repositioned. Treatment time may be prolonged in systems such as these.
  • the example energy degrader may reduce treatment time relative to the treatment time resulting from use of known systems. This is because both the particle beam and the plates move at the same time. Thus, time that was previously used to move plates prior to patient treatment can be used for actual treatment.
  • the same computer system that controls the energy degrader also controls movement of the particle beam during scanning.
  • different computer systems control operations of the energy degrader and movement of the particle beam.
  • operations of the energy degrader and/or the scanner may be coordinated so that the particle beam passes through an appropriate number of plate(s) for the treatment layer desired while those plate(s) are in motion across at least part of the beam field.
  • operation of the energy degrader also includes passing the particle beam through plates whose motion has stopped, as also described herein.
  • plates 3801 , 3802 of an energy degrader are controllable to move in a same direction (in this example, the direction of arrow 3803 ), and at the same time, during movement of particle beam 3804 during scanning.
  • movement of particle beam 3804 during movement of the plates is represented by arrow 3806 .
  • the particle beam at a future location, following movement is represented in dashed lines.
  • a plate of the energy degrader at a future location, following movement is represented in dashed lines. Only a portion of the plate at the future location may be represented (as is the case in FIG. 38 ), since current and future locations of the plate may overlap and the current plate location is represented in solid lines.
  • the particle beam 3804 passes through one or more of the plates (e.g., at least part) of the energy degrader while corresponding plates are in motion.
  • FIG. 38 shows first plate 3801 and second plate 3802 , both of which are part of an example energy degrader.
  • First plate 3801 and second plate 3802 are controllable to move in the direction of arrow 3803 .
  • the particle beam is orthogonal to the plates, although that need not be the case in some implementations.
  • the particle beam may be non-orthogonal to the plates as is the case with intensity-modulated proton therapy described with respect to FIG. 18 .
  • the particle beam is represented by a spot 3807 on a plate (here, plate 3802 ) on which the particle beam is incident.
  • plate 3802 begins moving towards/into the beam field 3809 in the direction of arrow 3803 .
  • Scanning may begin at any appropriate time after plate 3802 is within the beam field.
  • scanning may begin will be determined by a treatment plan, which identifies the location of a radiation target relative to the plates of the energy degrader.
  • scanning may begin within the beam field prior to any plates being in the beam field.
  • the plates may begin moving towards, and into, the beam field at any appropriate time before or after scanning begins, including as the deepest layer is being scanned, plates may be moved into the beam field but trail the beam path.
  • movement of the particle beam across plate 3802 is limited to movement outside of a predefined distance from an edge 3810 of plate 3802 .
  • the energy degrader and/or the scanning system may be controlled so that the particle beam does not pass near to edge 3810 .
  • a spot incident on plate 3802 has a Gaussian distribution 3900 of particles.
  • applying the spot near to (e.g., within a distance of) an edge 3810 of plate 3802 may cause some particles to pass, unimpeded, to the patient unintentionally.
  • operation of the scanning system and/or energy degrader may be controlled so that spots are applied away from a least one, and in some cases all, edges of plates.
  • the minimum distance between the spot and the edge of a plate is in the range of 2 ⁇ to 2.5 ⁇ , where ⁇ is one standard deviation of the Gaussian curve representing the distribution of particles in a spot.
  • is one standard deviation of the Gaussian curve representing the distribution of particles in a spot.
  • the implementations described herein are not limited to distances in the range of 2 ⁇ to 2.5 ⁇ .
  • particle beam movement across plate 3802 produces a reduced-energy particle beam 3799 that is applied to the irradiation target 3814 . That is, the particle beam passes through plate 3802 , thereby changing (e.g., reducing) the energy of the particle beam to enable the particle beam to hit a corresponding energy layer (step) of the irradiation target.
  • plate 3801 also starts to move, in this example, in the direction of arrow 3803 .
  • plate 3801 partly overlaps and trails plate 3802 , and both plates continue to move concurrently for at least some period of time.
  • edge 3810 of plate 3802 may move least a 2 ⁇ to 2.5 ⁇ distance relative to the edge 3812 of plate 3801 before plate 3801 starts moving; however, in other implementations, different criteria may be used. In some implementations, there is not a trailing plate. For example, in FIG. 38 , plate 3801 may not begin moving until plate 3802 has reached its ending position or until plate 3802 has been moved to its ending position and then retracted to its starting position (e.g., plate 3801 may not trail plate 3802 ).
  • FIGS. 38A and 38B depict the plates of FIG. 38 without dashed lines at different points during the scanning of irradiation target 3814 .
  • next layer does not necessarily mean a next layer in depth sequence as shown in FIG. 35 , but rather a next layer to be scanned according to a treatment plan. As explained above, that next layer need not be a layer that is in depth-wise sequence relative to the previously-scanned layer.
  • the next layer may be reached, in this example, by moving the particle beam across, and through, both plates 3801 and 3802 . Because plate 3801 has already begun moving, plate 3801 may be in place, or closer in place than would otherwise be the case had plate 3801 not begun movement, to begin scanning operations for the next layer.
  • the particle beam may next be moved across combined plates 3801 and 3802 from a point towards the starting position (reverse direction) or from a point towards the ending position (forward direction).
  • each plate of the energy degrader moves from a starting position 4000 to an ending position 4001 .
  • the scanning system may begin scanning the particle beam through the combined plates at a point near to the starting position and proceed towards a point near to the ending position (with the respective points being determined based on the treatment plan). This is referred to as scanning in the forward direction.
  • the scanning system may begin scanning the particle beam at a point near to the ending position and proceed towards a point near to the starting position (again, with the respective points being determined based on the treatment plan). This is referred to as scanning in the reverse direction.
  • the scanning direction may be specified in the treatment plan, and may be based on any appropriate factors, such as the location of the plates, the state of the beam, and so forth.
  • scanning may be performed in the forward direction (e.g., towards the ending position) and then in the reverse direction (e.g., towards the starting position) if the plates are appropriately positioned.
  • a trailing plate 3801 may not yet be in an appropriate position to scan through both plates in the reverse direction. In some cases, it may take more time to wait for the trailing plate 3801 to reach the appropriate position for reverse scanning than to reposition the beam near to the starting position to scan towards the ending position.
  • the particle beam is repositioned at an appropriate point 4003 towards the starting position 4000 , and scanning through both plates proceeds in the forward direction of arrow 3803 while plate 3801 continues to move towards the end position 4001 (plate 3802 has stopped movement at this point).
  • plate 3801 is already in place across the beam field, there is no need to wait for that plate to be appropriately positioned for scanning through both plates to begin.
  • plate 3801 continues to move towards the ending position 4001 in the direction of arrow 3803 .
  • Plate 3802 may be stationary at this point.
  • the trailing plate 3801 may be in an appropriate position, or such a position may be reachable in an appropriate time, to scan through both plates in the reverse direction (the direction of arrow 4100 ). Accordingly, in these cases, the scanning may proceed in the reverse direction and plate 3801 may reverse its movement direction.
  • the particle beam is scanned towards the starting position, one or both of plates 3801 and/or 3802 may be retracted, that is, moved toward the starting position so that a different configuration of plates can be moved into the beam field for a next scan. In the example shown in FIG. 41 , both plates are retracted; however, that need not be the case.
  • a deeper layer in the target is scanned first by moving a single plate 3802 into the beam path and a more shallow layer is target is scanned next by moving another plate 3801 into the beam path so that the beam passes through both plates 3801 and 3802 .
  • two or more plates may first be moved into the beam path (thereby treating more shallow layer(s)), and subsequently plate(s) may be retracted during scanning.
  • two (or more) plates 3801 , 3802 may begin motion concurrently from their starting position 4000 towards their ending position 4001 in the particle beam field.
  • the particle beam may be moved across the plates in the forward direction (represented by arrow 3803 ), thereby causing the particle beam to pass through both plates 3801 and 3802 to produce a particle beam 3805 having an appropriate energy.
  • the particle beam may be scanned in the reverse direction (represented by arrow 4301 ) as a plate, such as plate 3802 , is first retracted towards the staring position 4000 . That is, plate 3802 is retracted first so that the particle beam moves across only plate 3801 , as shown. Plate 3801 may also be retracted as the particle beam moves across plate 3801 , as shown.
  • the scanning components and energy degrader may be controlled so that the particle beam follows, but does not pass through, plate 3802 during its movement in the direction of arrow 4301 , thereby causing the particle beam to pass through plate 3801 only to produce a particle beam 3799 having an appropriate energy.
  • Any appropriate number (e.g., one, two, or more) plates may be moved across the beam field while the particle beam is scanned across the irradiation target in either the forward or reverse direction, as described herein.
  • the number and sequence of plates, and the scanning direction, may be specified in the treatment plan, as appropriate.
  • different plates may have different thicknesses. Plate thickness may affect how plates are moved.
  • Movement of the plates may be sequenced so that the particle beam is not turned-off during treatment or so that the particle beam turn-off time has been reduced.
  • the speed of scanning the particle beam, the thicknesses of the plates, and movement of the plates may be selected so that reverse-direction scanning immediately or quickly follows forward direction scanning during treatment.
  • an example energy degrader includes a single thickness (“1 ⁇ ”) plate 4402 and a double thickness (“2 ⁇ ”) plate 4401 that may be moved into the treatment field at the same time in forward direction 4404 and that the particle beam 4405 may pass through both together as the particle beam is scanned in the forward direction 4404 during plate movement to produce reduced-energy particle beam 4405 a.
  • 2 ⁇ plate 4401 may be retracted first (moved in the reverse direction 4409 ), while the particle beam is scanned in the reverse direction and passes through the 1 ⁇ plate 4402 only to produce reduced energy particle beam 4405 b. While the particle beam is scanned in the reverse direction, the 1 ⁇ plate 4402 may also be moved in the reverse direction, as shown. As explained above, the particle beam will be scanned across the beam field and through one or more plates at appropriate distances from the edge of each plate. Referring to FIG.
  • example implementations of the energy degrader may contain multiple plates, each having a thickness of 2 ⁇ , and a single plate or multiple plates having a thickness of 1 ⁇ .
  • the plates are sequenced so as to treat each layer of the target. For example, as shown in FIG. 47 , together with zero, one, or multiple 2 ⁇ plates, a 1 ⁇ plate 4701 can be moved into the beam field for every odd layer 4702 to 4705 to be treated by beam 4700 , and moved out of the beam field for every even layer 4706 to 4709 to be treated.
  • layers in the target may be treated out of order or not, depending upon the treatment plan.
  • all of the plates may have the same thickness. So, for example an initial, single plate may be moved into, and through, the beam field, and the particle beam scanned across the beam field during movement of the plate in order to produce a particle beam having the energy level sufficient to reach an appropriate layer.
  • a second plate may begin motion before or after the first plate reached its ending position, and the particle beam may be scanned across the beam field and through the second plate beginning from near to its starting position following its motion while leaving the first plate in position. During scanning, the beam passes through both the first and second plates, thereby changing its energy accordingly.
  • a third plate may begin motion before or after the second plate reaches its ending position, and the particle beam may be scanned across the beam field and through the third plate beginning from near to its starting position following its motion while leaving the first plate and the second plate in position (their ending positions).
  • the beam passes through the first, second, and third plates, thereby changing its energy accordingly.
  • This process may be repeated using as many plates as needed to scan all layers of the irradiation target.
  • scanning may be performed in the forward direction.
  • the scanning process may be performed in the reverse direction. For example, all plates may be moved initially from the starting position to the ending position, and scanned in the forward direction during movement.
  • individual plates may be retracted, with the particle beam being scanned through the remaining plates, e.g., in the reverse direction, thereby producing particle beams that hit successively deeper layers of the irradiation target. This process may be repeated until all, or an appropriate number, of plates have been retracted.
  • each plate of the energy degrader includes one or more sensors that are configured to identify a location of the plate relative to the beam field.
  • each plate 4801 includes two sensors 4802 , 4803 .
  • the sensors are strip sensors located on the same side of each plate; however, in other implementations, the number, configuration, and placement of the sensors may be different than that shown in FIG. 48 or described herein.
  • the sensors are independent, e.g., the output of one sensor is not dependent upon the output of the other sensor. Independent sensors provide redundancy, and confirmation that the determined location of the plate is accurate.
  • Each sensor detects the position of the plate on which the sensors are located relative to, and within, the beam field, and relays that position to the computing system(s) that controls operation of the scanning system. The feedback from the sensors may be continuous during plate motion.
  • the sensors output voltage that is proportional to plate positions; however, other types of sensors may be used, e.g., ones that detect motor motion in relation to plate position.
  • the particle therapy control system uses this information to determine where to place the beam, and where and when to begin scanning.
  • the computing system(s) may also control movement of the plates into and out of the beam field. Control may be based on the treatment plan and may be coordinated with control of the scanning system.
  • the speed of movement of the plates may be the same regardless of plate thickness, direction of movement (e.g., starting to ending position or ending to starting position), or position relative to any other plate.
  • the speed of movement of plates may be controlled and may vary.
  • the speed of a trailing plate may be different (e.g., greater than) the speed of a plate being scanned during motion. This may be, e.g., to enable the trailing plate to reach an appropriate location at a set time.
  • plate position may be determined, or augmented, based on knowledge of the plate's speed, its initial position, and the time at which it began motion.
  • expected plate position may be calculated based on knowledge of the plate's speed, its initial position, and the time at which it began motion.
  • the plates because the plates are moved in coordination with movement of the beam during scanning, the plates need only move as fast as the beam is moved. In some cases, this coordinated movement of the beam and plates may reduce noise and mechanical wear on the energy degrader relative known degraders that move the plates as fast as possible.
  • an aperture 3404 may be positioned between the energy degrader and the irradiation target (e.g., the patient).
  • the aperture trims spots located near the edges of the irradiation target, e.g., blocks a portion of the particle beam to provide a sharp edge to the beam and to protect surrounding (non-treated) tissue from the particle beam.
  • beam-blocking material of the aperture may be placed between a part of the beam and healthy tissue to block the application of the beam to healthy tissue.
  • the aperture is controllable dynamically to change shape and thereby adapt to the shape of the radiation target.
  • apertures that may be used are described in U.S. patent application Ser. No. 14/937,048 filed on Nov. 10, 2015 and titled “Adaptive Aperture”, which is incorporated herein by reference.
  • structures that may operate to block a portion of the particle beam to provide a sharp edge to the beam and to protect surrounding (non-treated) tissue from the particle beam are also referred to as collimators herein, and may be used in the implementation of FIG. 34 .
  • each plate or structure need not be of uniform thickness, e.g., there may be at least some thickness variation across one or more individual plates. If such plates are of an appropriate size (e.g., sufficiently small), such plates may be moved across the beam field so that the beam passes through one or more plates and through different portions of those plates having different thicknesses in order to treat different layers of the target.
  • the control of the gantry, the patient support, the active beam shaping elements (including, for example, the aperture, the energy degrader, and the scanning), and the synchrocyclotron to perform a therapy session is achieved by appropriate therapy control electronics (not shown).
  • Control of the particle therapy system described herein and its various features may be implemented using hardware or a combination of hardware and software.
  • a system like the ones described herein may include various controllers and/or processing devices located at various points.
  • a central computer may coordinate operation among the various controllers or processing devices.
  • the central computer, controllers, and processing devices may execute various software routines to effect control and coordination of testing and calibration.
  • System operation can be controlled, at least in part, using one or more computer program products, e.g., one or more computer program tangibly embodied in one or more non-transitory machine-readable media, for execution by, or to control the operation of, one or more data processing apparatus, e.g., a programmable processor, a computer, multiple computers, and/or programmable logic components.
  • one or more data processing apparatus e.g., a programmable processor, a computer, multiple computers, and/or programmable logic components.
  • a computer program can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment.
  • a computer program can be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a network.
  • Actions associated with implementing all or part of the operations of the particle therapy system described herein can be performed by one or more programmable processors executing one or more computer programs to perform the functions described herein. All or part of the operations can be implemented using special purpose logic circuitry, e.g., an FPGA (field programmable gate array) and/or an ASIC (application-specific integrated circuit).
  • FPGA field programmable gate array
  • ASIC application-specific integrated circuit
  • processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer.
  • a processor will receive instructions and data from a read-only storage area or a random access storage area or both.
  • Elements of a computer include one or more processors for executing instructions and one or more storage area devices for storing instructions and data.
  • a computer will also include, or be operatively coupled to receive data from, or transfer data to, or both, one or more machine-readable storage media, such as mass PCBs for storing data, e.g., magnetic, magneto-optical disks, or optical disks.
  • Non-transitory machine-readable storage media suitable for embodying computer program instructions and data include all forms of non-volatile storage area, including by way of example, semiconductor storage area devices, e.g., EPROM, EEPROM, and flash storage area devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks.
  • semiconductor storage area devices e.g., EPROM, EEPROM, and flash storage area devices
  • magnetic disks e.g., internal hard disks or removable disks
  • magneto-optical disks e.g., CD-ROM and DVD-ROM disks.
  • connection may imply a direct physical connection or a connection that includes intervening components but that nevertheless allows electrical signals to flow between connected components.
  • connection involving electrical circuitry mentioned herein that allows signal(s) to pass, unless stated otherwise, is an electrical connection and not necessarily a direct physical connection regardless of whether the word “electrical” is used to modify “connection”.
  • any two more of the foregoing implementations may be used in an appropriate combination in an appropriate particle accelerator (e.g., a synchrocyclotron).
  • an appropriate particle accelerator e.g., a synchrocyclotron
  • individual features of any two more of the foregoing implementations may be used in an appropriate combination.
  • the example implementations described herein are not limited to use with a particle therapy system or to use with the example particle therapy systems described herein. Rather, the example implementations can be used in any appropriate system that directs accelerated particles to an output.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Robotics (AREA)
  • Optics & Photonics (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

An example particle therapy system may include: a synchrocyclotron to produce a particle beam; a scanner to move the particle beam in one or more dimensions relative to an irradiation target; and an energy degrader that is between the scanner and the irradiation target. The energy degrader may include multiple plates that are movable relative to a path of the particle beam, with the multiple plates each being controllable to move while in the path of the particle beam and during movement of the particle beam. An aperture may be between the energy degrader and the irradiation target. The aperture being may be to trim the particle beam prior to the particle beam reaching the irradiation target.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation-in-part of, and claims priority to, U.S. patent application Ser. No. 14/137,854, which was filed on Dec. 13, 2013, and which is titled “Collimator and Energy Degrader”. U.S. patent application Ser. No. 14/137,854 is incorporated herein by reference.
  • TECHNICAL FIELD
  • This disclosure relates generally to an energy degrader that is configurable to change the energy of a particle beam.
  • BACKGROUND
  • Particle therapy systems use an accelerator to generate a particle beam for treating afflictions, such as tumors. In operation, particles are accelerated in orbits inside a cavity in the presence of a magnetic field, and are removed from the cavity through an extraction channel. A magnetic field regenerator generates a magnetic field bump near the outside of the cavity to distort the pitch and angle of some orbits so that they precess towards, and eventually into, the extraction channel. A beam, comprised of the particles, exits the extraction channel.
  • A scanning system is down-beam of the extraction channel. In this context, “down-beam” means closer to an irradiation target (here, relative to the extraction channel). The scanning system moves the beam across at least part of the irradiation target to expose various parts of the irradiation target to the beam. For example, to treat a tumor, the particle beam may be “scanned” over different cross-sections of the tumor. An energy degrader changes the energy of the particle beam to reach the different cross-sections of the tumor.
  • SUMMARY
  • An example particle therapy system comprises: a particle accelerator to output a particle beam; and an energy degrader that is controllable to pass the particle beam to an irradiation target. At least part of the energy degrader may be controllable to move during passage of the particle beam to the irradiation target. The example particle therapy system may include one or more of the following features, either alone or in combination.
  • The energy degrader may comprise plates (e.g., multiple plates) that are movable. The multiple plates may comprise a first plate and a second plate that are controllable to move during passage of the particle beam. The second plate may be controllable to trail the first plate during movement, or the first plate may be controllable to trail the second plate during movement.
  • The example particle therapy system may comprise a scanner that is controllable to move the particle beam in one or more dimensions relative to the irradiation target. At least one of the energy degrader or the scanner may be controllable so that, during movement of the first plate and the second plate, the particle beam passes through the first plate but not the second plate or the second plate but not the first plate. At least one of the energy degrader or the scanner may be controllable so that, during movement of the first plate and the second plate, the particle beam passes through both first plate and the second plate. Movement of the particle beam across a plate among the multiple plates may be limited to movement outside of a predefined distance from an edge of the plate.
  • The energy degrader may comprise multiple plates comprising a first plate and a second plate that are controllable to move during passage of the particle beam. During movement of the first plate and the second plate, the first plate and the second plate may move from a starting position to an ending position. The particle beam may be controllable to move from a location towards the ending position such that the particle beam passes through both the first plate and the second plate or through only one of the first plate or the second plate. The particle beam may be controllable to move from a location towards the starting position such that the particle beam passes through both the first plate and the second plate or through only one of the first plate or the second plate.
  • The multiple plates of the energy degrader may comprise one or more first plates and one or more second plates. The one or more first plates and the one or more second plates may be controllable to move relative to the particle beam. Each of one or more first plates may have a thickness that is less than thicknesses of the one or more second plates. A first plate among the one or more first plates may have a thickness that is a fraction of a thickness of each of the one or more second plates. For example, the first plate may have a thickness that is half of a thickness of each of the one or more second plates.
  • Control over movement of multiple plates of the energy degrader may comprise sequencing movement of the multiple plates so that each of multiple layers of the irradiation target is subjected to the particle beam. Control over movement of the multiple plates may comprise sequencing movement of the multiple plates so that the multiple layers of the irradiation target are treated with the particle beam non-sequentially. Control over movement of the multiple plates may comprise sequencing movement of the multiple plates so that an energy of the particle beam corresponds to a location of each of multiple layers of the irradiation target.
  • The example particle therapy may comprise an aperture that is controllable to trim spots of the particle beam. The aperture may be between the irradiation target and the energy degrader. The energy degrader may comprise one or more plates that are movable relative to the irradiation target during passage of the particle beam. Each of the one or more plates may have a size that is less than a size of a radiation field.
  • An example particle therapy system may comprise: a synchrocyclotron to produce a particle beam; a scanner to move the particle beam in one or more dimensions relative to an irradiation target; and an energy degrader that is between the scanner and the irradiation target. The energy degrader may comprise multiple plates that are movable relative to a path of the particle beam. The multiple plates may each be controllable to move while in the path of the particle beam and during movement of the particle beam. An aperture may be between the energy degrader and the irradiation target. The aperture may be controllable to trim the particle beam prior to the particle beam reaching the irradiation target. The example particle therapy system may include one or more of the following features, either alone or in combination.
  • The example particle therapy system may comprise an outer gantry on which the synchrocyclotron is mounted, with the outer gantry being configured to move the synchrocyclotron at least partly around the irradiation target; and an inner gantry, within a sweep of the outer gantry, with the inner gantry comprising a nozzle on which the energy degrader is mounted, and with the inner gantry being configured to move the energy degrader based on movement of the outer gantry.
  • The multiple plates may comprise a first plate and a second plate that are controllable to move in a first direction and a second direction during passage of the particle beam. The first direction may be from a starting position to an ending position, and the second direction may be from the ending position to the starting position. At least one of the scanner or the energy degrader may be controllable so that, during movement of the first plate and the second plate in the first direction, the particle beam passes through either the first plate only or the second plate only or through both the first plate and the second plate. At least one of the scanner or the energy degrader may be controllable so that, during movement of the first plate and the second plate in the second direction, the particle beam passes through either the first plate only or the second plate only or through both the first plate and the second plate.
  • The first plate and the second plate may be controllable to move separately during application of the particle beam. The second plate may be controllable to trail the first plate during movement, or the first plate may be controllable to trail the second plate during movement. At least one of the energy degrader or the scanner may be controllable so that movement of the particle beam during movement of the first plate and the second plate is such that the particle beam passes through the first plate but not the second plate or through the second plate but not the first plate. At least one of the energy degrader or the scanner may be controllable so that movement of the particle beam during movement of the first plate and the second plate is such that the particle beam passes through both the first plate and the second plate. Movement of the particle beam across a plate among the multiple plates may be limited to movement outside of a distance from an edge of the plate.
  • During movement of the first plate and the second plate, the first plate and the second plate may move from a starting position to an ending position. The scanner may be controllable to move the particle beam from a location towards the ending position such that the particle beam passes through both the first plate and the second plate or through only one of the first plate or the second plate. The scanner may be controllable to move the particle beam from a location towards the starting position such that the particle beam passes through both the first plate and the second plate or through only one of the first plate or the second plate. The multiple plates may comprise one or more first plates and one or more second plates, with the one or more first plates and one or more second plates being controllable to move during application of the particle beam, and with each of the one or more first plates having a thickness that is less than thicknesses of the one or more second plates. Each of the multiple plates may have a size that is less than a size of a radiation (or beam) field.
  • An example particle therapy system may be configured to apply a particle beam to an irradiation target. The example particle therapy system comprises a scanner to move the particle beam in one or more dimensions relative to the irradiation target; and an energy degrader comprising elements that are controllable to move during movement of the particle beam. The energy degrader is for passing the particle beam prior to application of the particle beam to the irradiation target. The example particle therapy system may include one or more of the following features, either alone or in combination.
  • The elements may comprise plates that are controllable to move in a sequence to change an energy of the particle beam so that different layers of the irradiation target are subjected to the particle beam. The elements may comprise a first plate and a second plate, with both the first plate and the second plate being controllable to move during movement of the particle beam. At least one of the energy degrader or the scanner may be controllable so that the particle beam passes through the first plate but not the second plate or through the second plate but not the first plate during at least part of the movement of the first plate and the second plate. At least one of the energy degrader or the scanner may be controllable so that the particle beam passes through both the first plate and the second plate during at least part of the movement of the first plate and the second plate. At least one of the energy degrader or the scanner may be controllable so that the particle beam does not pass within at least a distance from an edge of at least one of the elements. The distance may be based on a distribution of particles in a spot representing a cross-section of the particle beam at the at least one of the elements.
  • The elements may be controllable to move in at least one of a first direction or a second direction during movement of the particle beam, with the first direction being from a starting position of the elements to an ending position of the elements, and with the second direction being from the ending position to the starting position. At least some of the elements may be controllable to move separately during movement of the particle beam. At least some of the elements may be controllable to move together during movement of the particle beam. Each of the multiple elements may have a size that is less than a size of a radiation field.
  • An example particle therapy system comprises a particle accelerator to output a particle beam; and a scanning system for the particle accelerator to scan the particle beam across at least part of an irradiation target. The scanning system is configured to scan the particle beam in two dimensions that are at an angle relative to a direction of the particle beam. A structure defines an edge. The structure is controllable to move in the two dimensions relative to the irradiation target such that at least part of the structure is between at least part of the particle beam and the irradiation target. The structure comprises a material that inhibits transmission of the particle beam. The example particle therapy system may include one or more of the following features, either alone or in combination.
  • The structure may be rotatable at least in the two dimensions so that the edge can be moved between different parts of the irradiation target and the particle beam. The edge may comprise a curve that has a radius that varies on at least one side of the structure. The curve may be a French curve. The structure may define an aperture and the edge may comprise an edge of the aperture. The structure may be movable to track a direction of the particle beam. The structure may comprise multiple elements that are adjustable to vary a size of the edge. The multiple elements may comprise fingers that are individually movable relative to the irradiation target.
  • The structure may be part of a collimator system. The structure may comprise a first structure in the collimator system and the edge may comprise a first edge. The collimator system may comprise a second structure comprising a second edge. The first edge and the second edge may be controllable to move along different edges of the irradiation target.
  • The scanning system may comprise at least one magnet to control movement of the particle beam to scan the particle beam. The at least one magnet may be for generating a magnetic field in response to applied current. The magnetic field may affect the movement.
  • The scanning system may be configured to scan the particle beam more quickly in interior sections of the irradiation target than at edges of the irradiation target. The particle beam may be movable within an area of a plane at a location of the structure. The structure may have an area that is less than the area of the plane. The structure may have an area that is less than half the area of the plane. The structure may have an area that is less than a quarter the area of the plane. The structure may have an area that is less than an eighth the area of the plane. The structure may have an area that is less than ten times a cross-sectional area of the particle beam.
  • The scanning system may be configured to scan the particle beam from different incident angles. The structure may be controllable to move based on movement of the particle beam as the particle beam is scanned from different incident angles. The scanning system may comprise: a magnet to affect a direction of the particle beam to scan the particle beam across at least part of an irradiation target; and a degrader to change an energy of the beam prior to output of the particle beam to the irradiation target, where the degrader is down-beam of the magnet relative to the particle accelerator. The particle accelerator may be a variable-energy device.
  • The particle accelerator may comprise: a voltage source to provide a radio frequency (RF) voltage to a cavity to accelerate particles from a plasma column, where the cavity has a magnetic field causing particles accelerated from the plasma column to move orbitally within the cavity; an extraction channel to receive the particles accelerated from the plasma column and to output the received particles from the cavity; and a regenerator to provide a magnetic field bump within the cavity to thereby change successive orbits of the particles accelerated from the plasma column so that, eventually, particles output to the extraction channel. The magnetic field may be between 4 Tesla (T) and 20 T and the magnetic field bump is at most 2 Tesla.
  • An example particle therapy system comprises: a particle accelerator to output a particle beam; and a scanning system to receive the particle beam from the particle accelerator and to perform scanning of at least part of an irradiation target with the particle beam. The scanning system comprises a structure defining an edge. The structure is controllable to move in the two dimensions and to move based on movement of the particle beam so that the edge is between at least part of the particle beam and the irradiation target. The structure comprises a material that inhibits transmission of the particle beam. The example system also comprises a gantry on which the particle accelerator and the scanning system are mounted. The gantry may be configured to move the particle accelerator and the scanning system around the irradiation target.
  • An example particle therapy system comprises: a synchrocyclotron to output a particle beam; a magnet to affect a direction of the particle beam to move the particle beam across a cross-section of an irradiation target; a degrader to change an energy of the particle beam prior to moving the particle beam across the cross-section of the irradiation target, where the degrader is down-beam of the magnet relative to the synchrocyclotron; and one or more processing devices to control movement of the degrader so that the degrader at least partly tracks movement of the particle beam at an irradiation plane. The example particle therapy system may include one or more of the following features, either alone or in combination.
  • The particle beam may be movable within an area of a plane at a location of the degrader. The degrader may have an area that is less than the area of the plane. The degrader may comprise multiple pieces, with each piece comprised of beam-energy absorbing material, and with each piece being movable into a path of the particle beam. The one or more processing devices may be programmed to receive an energy of the particle beam to apply to the irradiation target, and to move one or more of the pieces of the beam-energy absorbing material into the path of the particle beam so that a resulting energy of the particle beam approximates the energy of the particle beam to apply to the irradiation target. The one or more processing devices may be programmed to control movement of the one or more pieces of the beam-energy absorbing material to at least partly track movement of the particle beam.
  • The degrader may have an area that is less than half the area of the plane. The degrader may have an area that is less than one-quarter the area of the plane. The particle beam has a spot size at a location of the degrader; and the degrader may have an area that is less than ten times an area of the spot size. The degrader may have an area that is less than twice an area of the spot size.
  • The particle therapy system may comprise memory to store a treatment plan. The treatment plan may comprise information to define a scanning pattern for the irradiation target. The scanning pattern may define movement of the particle beam in the two dimensions and movement of the degrader so that the degrader at least partly tracks movement of the particle beam.
  • The synchrocyclotron may comprise: a voltage source to provide a radio frequency (RF) voltage to a cavity to accelerate particles from a plasma column, where the cavity has a magnetic field causing particles accelerated from the plasma column to move orbitally within the cavity; an extraction channel to receive the particles accelerated from the plasma column and to output the received particles from the cavity as part of the particle beam; and a regenerator to provide a magnetic field bump within the cavity to thereby change successive orbits of the particles accelerated from the plasma column so that, eventually, particles output to the extraction channel. The magnetic field may be between 4 Tesla (T) and 20 T and the magnetic field bump may be at most 2 Tesla, and the synchrocyclotron may be a variable-energy device.
  • The magnet and the degrader may be part of a scanning system. The particle therapy system may comprise a gantry on which the synchrocyclotron and the scanning system are mounted. The gantry may be configured to move the synchrocyclotron and the scanning system around the irradiation target.
  • The scanning system may be a raster scanning system, a spot scanning system, or any other type of scanning system
  • An example particle therapy system may comprise a particle accelerator to output a particle beam; and a scanning system to receive the particle beam from the synchrocyclotron and to perform scanning of at least part of an irradiation target with the particle beam. The scanning system may comprise a degrader to change an energy of the particle beam prior to scanning the at least part of the irradiation target. The degrader may be down-beam of the magnet relative to the synchrocyclotron. The example particle therapy system may comprise one or more processing devices to control movement of the degrader so that the degrader at least partly tracks movement of the particle beam during; and a gantry on which the particle accelerator and the scanning system are mounted. The gantry may be configured to move the synchrocyclotron and the scanning system around the irradiation target. The example particle therapy system may include one or more of the following features, either alone or in combination.
  • The particle beam may be movable within an area of a plane at a location of the degrader. The degrader may have an area that is less than the area of the plane. The degrader may comprise multiple pieces, with each piece comprised of beam-energy absorbing material, and with each piece being movable into a path of the particle beam. The one or more processing devices may be programmed to receive an energy of the particle beam to apply to the irradiation target, and to move one or more of the pieces of the beam-energy absorbing material into the path of the particle beam so that a resulting energy of the particle beam approximates the energy of the particle beam to apply to the irradiation target. The one or more processing devices may be programmed to control movement of the one or more pieces of the beam-energy absorbing material to at least partly track movement of the particle beam.
  • The degrader may have an area that is less than half the area of the plane. The degrader may have an area that is less than one-quarter the area of the plane. The particle beam has a spot size at a location of the degrader, and the degrader may have an area that is less than ten times an area of the spot size. The degrader may have an area that is less than twice an area of the spot size. The particle accelerator may be a variable-energy synchrocyclotron.
  • An example proton therapy system may include the foregoing particle accelerator and scanning system; and a gantry on which the particle accelerator and scanning system are mounted. The gantry is rotatable relative to a patient position. Protons are output essentially directly from the particle accelerator and through the scanning system to the position of an irradiation target, such as a patient. The particle accelerator may be a synchrocyclotron.
  • Two or more of the features described in this disclosure, including those described in this summary section, may be combined to form implementations not specifically described herein.
  • Control of the various systems described herein, or portions thereof, may be implemented via a computer program product that includes instructions that are stored on one or more non-transitory machine-readable storage media, and that are executable on one or more processing devices. The systems described herein, or portions thereof, may be implemented as an apparatus, method, or electronic system that may include one or more processing devices and memory to store executable instructions to implement control of the stated functions.
  • The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
  • DESCRIPTION OF THE DRAWINGS
  • FIGS. 1 and 2 are a cross-sectional views of an example synchrocyclotron configuration for use in a particle therapy system.
  • FIG. 3 is a side view of an example scanning system.
  • FIG. 4 is a perspective view of components of an example scanning system, excluding scattering material for spot size variation.
  • FIG. 5 is a front view of an example magnet for use in a scanning system of the type shown in FIGS. 3 and 4.
  • FIG. 6 is a perspective view of an example magnet for use in a scanning system of the type shown in FIGS. 3 and 4.
  • FIG. 7 is a perspective view of an example energy degrader (range modulator) for use in a scanning system of the type shown in FIGS. 3 and 4.
  • FIG. 8 is a perspective view of a process for moving a plate of an energy degrader in the path of a particle beam
  • FIG. 9 is a side view of an example particle beam and collimator.
  • FIG. 10 is a top view show an example cross-section of an irradiation target, an example collimator that is movable along the edge of the cross-section, and an example beam scanning path along an interior of the irradiation target.
  • FIG. 11 is a top view of an example collimator.
  • FIG. 12 is a top view of components of an example collimator.
  • FIG. 13 is a top view showing the components of FIG. 12 combined to form an example collimator.
  • FIG. 14 is a top view showing an example cross-section of an irradiation target, and an example multi-leaf collimator that is movable along the edge of the cross-section during particle beam scanning.
  • FIG. 15 is a top view showing an example cross-section of an irradiation target, and an example straight-edge collimator that is movable and rotatable along the edge of the cross-section during particle beam scanning.
  • FIG. 16 is a top view showing an example cross-section of an irradiation target, an example multi-part collimator that is movable along the edges of the cross-section during particle beam scanning, and example beam scanning paths along an interior of the irradiation target.
  • FIG. 17 is a top view of an example curved collimator.
  • FIG. 18 is a view showing an example cross-section of an irradiation target, and an example of how intensity-modulated proton therapy is performed on the irradiation target.
  • FIG. 19 is a perspective view of an example irradiation field of a particle beam scanning system.
  • FIG. 20 is a perspective view of multiple pieces of an example energy degrader in the beam path to an irradiation target.
  • FIG. 21 is a perspective view illustrating movement of pieces of an energy degrader to track scanning of a particle beam.
  • FIG. 22 is a perspective view illustrating situations where movement of pieces of an energy degrader is required, and is not required, to track scanning of a particle beam.
  • FIG. 23 is a perspective view of an example therapy system.
  • FIG. 24 is an exploded perspective view of components of an example synchrocyclotron for use in the particle therapy system.
  • FIG. 25 is a cross-sectional view of the example synchrocyclotron.
  • FIG. 26 is a perspective view of the example synchrocyclotron.
  • FIG. 27 is a cross-sectional view of an example ion source for use in the synchrocyclotron.
  • FIG. 28 is a perspective view of an example dee plate and an example dummy dee for use in the synchrocyclotron.
  • FIG. 29 shows a patient positioned within an example inner gantry of the example particle therapy system in a treatment room.
  • FIG. 30 is a conceptual view of an example particle therapy system that may use a variable-energy particle accelerator.
  • FIG. 31 is an example graph showing energy and current for variations in magnetic field and distance in a particle accelerator.
  • FIG. 32 is a side view of an example structure for sweeping voltage on a dee plate over a frequency range for each energy level of a particle beam, and for varying the frequency range when the particle beam energy is varied.
  • FIG. 33 is a perspective, exploded view of an example magnet system that may be used in a variable-energy particle accelerator.
  • FIG. 34 is a block diagram showing an example particle therapy system that includes a switching energy degrader.
  • FIG. 35 is a perspective view of an example irradiation target, including layers thereof to be treated by particle therapy.
  • FIG. 36 is perspective view of example plates of a switching energy degrader that have the same thickness.
  • FIG. 37 is perspective view of example plates of a switching energy degrader that have different thicknesses.
  • FIG. 38 is a perspective view showing plates of an example energy degrader moving separately during scanning in a forward direction.
  • FIG. 38A is a perspective view showing plates of an example energy degrader at a first position during scanning in a forward direction.
  • FIG. 38B is a perspective view showing plates of an example energy degrader at a second position during scanning in a forward direction.
  • FIG. 39 is a graph showing the Gaussian distribution of a particle beam spot.
  • FIG. 40 is a perspective view showing plates of an example energy degrader moving separately during scanning in a forward direction.
  • FIG. 41 is a perspective view showing plates of an example energy degrader moving together during scanning in a reverse direction.
  • FIG. 42 is a perspective view showing plates of an example energy degrader moving together during scanning in a forward direction.
  • FIG. 43 is a perspective view showing plates of an example energy degrader moving separately during scanning in a reverse direction.
  • FIG. 44 is a perspective view showing plates of an example energy degrader moving together during scanning in a forward direction.
  • FIG. 45 is a perspective view showing plates of an example energy degrader moving separately during scanning in a reverse direction.
  • FIG. 46 is a perspective view showing plates of an example energy degrader moving together during scanning in a forward direction.
  • FIG. 47 is a perspective view showing plates combined, and moving during scanning, to hit a layer within an irradiation target.
  • FIG. 48 is a top perspective view of a plate containing sensors.
  • FIG. 49 is a top perspective view of a plate illustrating two-dimensional scanning of the plate.
  • Like reference symbols in the various drawings indicate like elements.
  • DETAILED DESCRIPTION
  • Described herein is an example of a particle accelerator for use in a system, such as a proton or ion therapy system. The example particle therapy system includes a particle accelerator—in this example, a synchrocyclotron—mounted on a gantry. The gantry enables the accelerator to be rotated around a patient position, as explained in more detail below. In some implementations, the gantry is steel and has two legs mounted for rotation on two respective bearings that lie on opposite sides of a patient. The particle accelerator is supported by a steel truss that is long enough to span a treatment area in which the patient lies and that is attached at both ends to the rotating legs of the gantry. As a result of rotation of the gantry around the patient, the particle accelerator also rotates.
  • In an example implementation, the particle accelerator (e.g., the synchrocyclotron) includes a cryostat that holds one or more superconducting coils, each for conducting a current that generates a magnetic field (B). In this example, the cryostat uses liquid helium (He) to maintain each coil at superconducting temperatures, e.g., 4° Kelvin (K). Magnetic yokes or smaller magnetic pole pieces are located inside the cryostat, and define a cavity in which particles are accelerated.
  • In this example implementation, the particle accelerator includes a particle source (e.g., a Penning Ion Gauge—PIG source) to provide a plasma column to the cavity. Hydrogen gas is ionized to produce the plasma column. A voltage source provides a radio frequency (RF) voltage to the cavity to accelerate pulses of particles from the plasma column.
  • As noted, in an example, the particle accelerator is a synchrocyclotron. Accordingly, the RF voltage is swept across a range of frequencies to account for relativistic effects on the particles (e.g., increasing particle mass) when accelerating particles from the plasma column. The magnetic field produced by running current through a superconducting coil causes particles accelerated from the plasma column to accelerate orbitally within the cavity. In other implementations, a particle accelerator other than a synchrocyclotron may be used. For example, a cyclotron, a synchrotron, a linear accelerator, and so forth may be substituted for the synchrocyclotron described herein.
  • In the synchrocyclotron, a magnetic field regenerator (“regenerator”) is positioned near the outside of the cavity (e.g., at an interior edge thereof) to adjust the existing magnetic field inside the cavity to thereby change locations (e.g., the pitch and angle) of successive orbits of the particles accelerated from the plasma column so that, eventually, the particles output to an extraction channel that passes through the cryostat. The regenerator may increase the magnetic field at a point in the cavity (e.g., it may produce a magnetic field “bump” at an area of the cavity), thereby causing each successive orbit of particles at that point to precess outwardly toward the entry point of the extraction channel until it reaches the extraction channel. The extraction channel receives particles accelerated from the plasma column and outputs the received particles from the cavity as a particle beam.
  • The superconducting (“main”) coils can produce relatively high magnetic fields. The magnetic field generated by a main coil may be within a range of 4 T to 20 T or more. For example, a main coil may be used to generate magnetic fields at, or that exceed, one or more of the following magnitudes: 4.0 T, 4.1 T, 4.2 T, 4.3 T, 4.4 T, 4.5 T, 4.6 T, 4.7 T, 4.8 T, 4.9 T, 5.0 T, 5.1 T, 5.2 T, 5.3 T, 5.4 T, 5.5 T, 5.6 T, 5.7 T, 5.8 T, 5.9 T, 6.0 T, 6.1 T, 6.2 T, 6.3 T, 6.4 T, 6.5 T, 6.6 T, 6.7 T, 6.8 T, 6.9 T, 7.0 T, 7.1 T, 7.2 T, 7.3 T, 7.4 T, 7.5 T, 7.6 T, 7.7 T, 7.8 T, 7.9 T, 8.0 T, 8.1 T, 8.2 T, 8.3 T, 8.4 T, 8.5 T, 8.6 T, 8.7 T, 8.8 T, 8.9 T, 9.0 T, 9.1 T, 9.2 T, 9.3 T, 9.4 T, 9.5 T, 9.6 T, 9.7 T, 9.8 T, 9.9 T, 10.0 T, 10.1 T, 10.2 T, 10.3 T, 10.4 T, 10.5 T, 10.6 T, 10.7 T, 10.8 T, 10.9 T, 11.0 T, 11.1 T, 11.2 T, 11.3 T, 11.4 T, 11.5 T, 11.6 T, 11.7 T, 11.8 T, 11.9 T, 12.0 T, 12.1 T, 12.2 T, 12.3 T, 12.4 T, 12.5 T, 12.6 T, 12.7 T, 12.8 T, 12.9 T, 13.0 T, 13.1 T, 13.2 T, 13.3 T, 13.4 T, 13.5 T, 13.6 T, 13.7 T, 13.8 T, 13.9 T, 14.0 T, 14.1 T, 14.2 T, 14.3 T, 14.4 T, 14.5 T, 14.6 T, 14.7 T, 14.8 T, 14.9 T, 15.0 T, 15.1 T, 15.2 T, 15.3 T, 15.4 T, 15.5 T, 15.6 T, 15.7 T, 15.8 T, 15.9 T, 16.0 T, 16.1 T, 16.2 T, 16.3 T, 16.4 T, 16.5 T, 16.6 T, 16.7 T, 16.8 T, 16.9 T, 17.0 T, 17.1 T, 17.2 T, 17.3 T, 17.4 T, 17.5 T, 17.6 T, 17.7 T, 17.8 T, 17.9 T, 18.0 T, 18.1 T, 18.2 T, 18.3 T, 18.4 T, 18.5 T, 18.6 T, 18.7 T, 18.8 T, 18.9 T, 19.0 T, 19.1 T, 19.2 T, 19.3 T, 19.4 T, 19.5 T, 19.6 T, 19.7 T, 19.8 T, 19.9 T, 20.0 T, 20.1 T, 20.2 T, 20.3 T, 20.4 T, 20.5 T, 20.6 T, 20.7 T, 20.8 T, 20.9 T, or more. Furthermore, a main coil may be used to generate magnetic fields that are within the range of 4 T to 20 T (or more, or less) that are not specifically listed above.
  • In some implementations, such as the examples shown in FIGS. 1 and 2, large ferromagnetic magnetic yokes act as a return for stray magnetic field produced by the superconducting coils. For example, in some implementations, the superconducting magnet can generate a relatively high magnetic field of, e.g., 4 T or more, resulting in considerable stray magnetic fields. In some systems, such as that shown in FIGS. 1 and 2, the relatively large ferromagnetic return yoke 100 are used as a return for the magnetic field generated by superconducting coils. A magnetic shield surrounds the yoke. The return yoke and the shield together dissipate stray magnetic field, thereby reducing the possibility that stray magnetic fields will adversely affect the operation of the accelerator.
  • In some implementations, the return yoke and shield may be replaced by, or augmented by, an active return system. An example active return system includes one or more active return coils that conduct current in a direction opposite to current through the main superconducting coils. In some example implementations, there is an active return coil for each superconducting coil, e.g., two active return coils—one for each superconducting coil (referred to as a “main” coil). Each active return coil may also be a superconducting coil that surrounds the outside of a corresponding main superconducting coil.
  • Current passes through the active return coils in a direction that is opposite to the direction of current passing through the main coils. The current passing through the active return coils thus generates a magnetic field that is opposite in polarity to the magnetic field generated by the main coils. As a result, the magnetic field generated by an active return coil is able to dissipate at least some of the relatively strong stray magnetic field resulting from the corresponding main coil. In some implementations, each active return may be used to generate a magnetic field of between 2.5 T and 12 T or more. An example of an active return system that may be used is described in U.S. patent application Ser. No. 13/907,601 (U.S. Pat. No. 8,791,656), filed on May 31, 2013, the contents of which are incorporated herein by reference.
  • Referring to FIG. 3, at the output of extraction channel 102 of particle accelerator 105 (which may have the configuration shown in FIGS. 1 and 2), is an example scanning system 106 that may be used to scan the particle beam across at least part of an irradiation target. FIG. 4 shows examples of components of the scanning system. These include, but are not limited to, a scanning magnet 108, an ion chamber 109, and an energy degrader 110. Other components that may be incorporated into the scanning system are not shown in FIG. 4, including, e.g., one or more scatterers for changing beam spot size.
  • In an example operation, scanning magnet 108 is controllable in two dimensions (e.g., Cartesian XY dimensions) to direct the particle beam across a part (e.g., a cross-section) of an irradiation target. Ion chamber 109 detects the dosage of the beam and feeds-back that information to a control system to adjust beam movement. Energy degrader 110 is controllable to move material into, and out of, the path of the particle beam to change the energy of the particle beam and therefore the depth to which the particle beam will penetrate the irradiation target.
  • FIGS. 5 and 6 shows views of an example scanning magnet 108. Scanning magnet 108 includes two coils 111, which control particle beam movement in the X direction, and two coils 112, which control particle beam movement in the Y direction. Control is achieved, in some implementations, by varying current through one or both sets of coils to thereby vary the magnetic field(s) produced thereby. By varying the magnetic field(s) appropriately, the particle beam can be moved in the X and/or Y direction across the irradiation target. In some implementations, the scanning magnet is not movable physically relative to the particle accelerator. In other implementations, the scanning magnet may be movable relative to the accelerator (e.g., in addition to the movement provided by the gantry). In some implementations, the scanning magnets may be controllable to move the particle beam continuously. In other implementations, the scanning magnets are controllable at intervals or specific times. In some implementations, there may be different scanning magnets to control movement of the beam in the X and/or Y directions. In some implementations, there may be different scanning magnets to control partial movement of the beam in either the X and/or Y direction.
  • In some implementations, ion chamber 109 detects dosage applied by the particle beam by detecting the numbers of ion pairs created within a gas caused by incident radiation. The numbers of ion pairs correspond to the dosage provided by the particle beam. That information is fed-back to a computer system that controls operation of the particle therapy system. The computer system (not shown), which may include memory and one or more processing devices, determines if the dosage detected by the ion chamber is the intended dose. If the dosage is not as intended, the computer system may control the accelerator to interrupt production and/or output of the particle beam, and/or control the scanning magnet to prevent output of the particle beam to the irradiation target. For example, to prevent or modify output of the particle beam, the computer system may turn the ion source off/on, change the frequency of the RF sweep, activate one or more mechanisms (such as a fast kicker magnet (not shown)) to divert the beam to an absorber material and thereby prevent the beam output, and so forth.
  • FIG. 7 shows a range modulator 115, which is an example implementation of energy degrader 110. In some implementations, such as that shown in FIG. 7, range modulator includes a series of plates 116. The plates may be made of one or more of the following example materials: polycarbonate, carbon, beryllium or other material of low atomic number. Other materials, however, may be used in place of, or in addition to, these example materials.
  • One or more of the plates is movable into, or out of, the beam path to thereby affect the energy of the particle beam and, thus, the depth of penetration of the particle beam within the irradiation target. For example, the more plates that are moved into the path of the particle beam, the more energy that will be absorbed by the plates, and the less energy the particle beam will have. Conversely, the fewer plates that are moved into the path of the particle beam, the less energy that will be absorbed by the plates, and the more energy the particle beam will have. Higher energy particle beams penetrate deeper into the irradiation target than do lower energy particle beams. In this context, “higher” and “lower” are meant as relative terms, and do not have any specific numeric connotations.
  • Plates are moved physically into, and out of, the path of the particle beam. For example, as shown in FIG. 8, a plate 116 a moves along the direction of arrow 117 between positions in the path of the particle beam and outside the path of the particle beam. The plates are computer-controlled. Generally, the number of plates that are moved into the path of the particle beam corresponds to the depth at which scanning of an irradiation target is to take place. For example, the irradiation target can be divided into cross-sections, each of which corresponds to an irradiation depth. One or more plates of the range modulator can be moved into, or out of, the beam path to the irradiation target in order to achieve the appropriate energy to irradiate each of these cross-sections of the irradiation target. Traditionally, the range modulator was stationary relative to the particle beam during scanning of a part of (e.g., cross-section of) an irradiation target, except for its plates moving in and out of the path of the particle beam.
  • In some implementations, the range modulator of FIGS. 7 and 8 may be replaced with a range modulator that, at least some of the time, tracks movement of the particle beam. This type of energy degrader is described in more detail below. In some implementations, the range modulator may be an energy-switching range modulator, examples of which are described with respect to FIGS. 35 to 49.
  • In some implementations, the particle accelerator may be a variable-energy particle accelerator, such as the example particle accelerator described in U.S. patent application Ser. No. 13/916,401 (U.S. Patent Publication No. 2014/0371511), filed on Jun. 12, 2013, the contents of which are incorporated herein by reference. In example systems where a variable-energy particle accelerator is used, there may be less need for an energy degrader of the type described herein, as the energy level of the particle beam may be controlled by the particle accelerator. For example, in some systems that employ a variable-energy particle accelerator, an energy degrader may not be needed. In some systems that employ a variable-energy particle accelerator, an energy degrader may still be used to change beam energy levels.
  • In some implementations, a treatment plan is established prior to treating the irradiation target. The treatment plan may specify how scanning is to be performed for a particular irradiation target. In some implementations, the treatment plan specifies the following information: a type of scanning (e.g., spot scanning or raster scanning); scan locations (e.g., locations of spots to be scanned); magnet current per scan location; dosage-per-spot, spot size; locations (e.g., depths) of irradiation target cross-sections; particle beam energy per cross-section; plates or other types of pieces to move into the beam path for each particle beam energy; and so forth. Generally, spot scanning involves applying irradiation at discrete spots on an irradiation target and raster scanning involves moving a radiation spot across the radiation target. The concept of spot size therefore applies for both raster and spot scanning.
  • In some implementations, the overall treatment plan of an irradiation target includes different treatment plans for different cross-sections of the irradiation target. The treatment plans for different cross-sections may contain the same information or different information, such as that provided above.
  • In some implementations, the scanning system may include a collimator 120 (FIG. 3) to collimate the particle bean, which may include an aperture that is placeable relative to the irradiation target to limit the extent of the particle beam and thereby alter the shape of the spot applied to the irradiation target. For example, the collimator may be placed in the beam path down-beam of the energy degrader and before the particle beam hits the irradiation target. The collimator may contain an area (e.g., a hole or a transmissive material) through which the particle beam passes and another material (e.g., brass) around the hole that inhibits or prevents passage of the particle beam.
  • In some implementations, the collimator may include a structure defining an edge. The structure may include a material, such as brass, that inhibits transmission of the particle beam. The structure may be controllable to move in two dimensions relative to the irradiation target so that at least part of the structure is between at least part of the particle beam and the irradiation target. For example, the structure may be movable in the X and Y directions of a plane that intersects the particle beam and that is parallel, or substantially parallel to, a cross-section of the irradiation target that is being treated. Use of a collimator in this manner may be beneficial in that it can be used to customize the cross-sectional shape of the particle beam that reaches the patient, thereby limiting the amount of particle beam that extends beyond the radiation target. For example, as shown in FIG. 9, a structure 220 in a collimator prevents portion 221 of particle beam 222 from reaching a target 224, thereby limiting the beam to the irradiation target and reducing exposure of healthy tissue 225 to radiation. By placing a structure with an edge between part of the particle beam and the patient, the example collimator also provides a defined, or sharp, edge to the particle beam portion that reaches the patient, thereby promoting more precise dose applications.
  • Positioning and movement of the collimator may be controlled by a control computer system that controls other features of the particle therapy system described herein. For example, the collimator may be controlled in accordance with the treatment plan to track (e.g., follow) motion of the particle beam across at least part of the irradiation target. In some implementations, the collimator track is controlled to track all motion of the particle beam relative to the irradiation target. For example, in some implementations, the collimator may be controlled to track motion of the particle beam throughout the entirety of the irradiation target, e.g., both at edges of the irradiation target and at interiors of the irradiation target. In some implementations, the collimator is controlled to track only some motion of the particle beam relative to the irradiation target. For example, the collimator may be controlled to track movement of the particle beam only along the edges of the irradiation target relative to when the particle beam reaches those edges.
  • Referring to FIG. 10, for instance, a particle beam may follow a path in an irradiation target 229 shown by arrowed lines 230. Collimator 231 may not track motion of the particle beam on the interior 233 of irradiation target 229. But, collimator 231 may track motion of the particle beam along only the edges of the irradiation target (e.g., roughly along arrow 232). For example, each time the particle beam reaches an edge 234 of the irradiation target, the collimator may move, or may have previously moved, to intercept the particle beam at the edge, and thereby limit exposure of surrounding tissue 235 to the beam. When, and by how much, the collimator moves may depend on the size of the particle beam cross-section (spot) and the speed at which the particle beam scans. In this example, there is no need to limit exposure to the particle beam at the interior of the irradiation target; hence, the collimator need not track the beam at the interior.
  • The movement of a collimator may be controlled in various ways. For example, the current through magnet 108 may correspond to the deflection of the particle beam by the magnet and, thus, the location of the particle beam spot on the irradiation target. So, for example, knowing the current through the magnet and the location of the irradiation target relative to the magnet, a computer system controlling operation of the scanning system can determine the projected location of the irradiation spot. And, knowing the location of the radiation spot, the computer system can control the scanning system, in particular the collimator, to track movement of the irradiation spot along all or part of its motion, as described herein. In some implementations, the computer system can control the scanning system, in particular the collimator, so that the collimator arrives at a location before the particle beam spot arrives at that location, as described in more detail below.
  • Use of a collimator, such as is described above, can have advantages. For example, in some cases, goals of particle beam scanning may include achieving accuracy at the edges of an irradiation target and uniformity of dosage or coverage in the interior of the irradiation target. The use of a collimator can help to further these goals by enabling use of a relatively large particle beam spot for scanning. In this context, a spot size may be considered “large” if it has an area that is within a specified percentage of the area of the irradiation target. This percentage might typically be 2.5%, but values between, e.g., 0.25% and 25%, could also be used. Scanning using a relative large spot size increases the fractional areal coverage of the irradiation target for each beam pulse. Typically, the larger the size of this spot, the less adversely affected the target uniformity will be due to target (patient) motion. At the edges, however, the collimator reduces the chances that radiation from the large spot will impact tissue (e.g., healthy tissue) outside the radiation target by reducing the lateral penumbra. Traditionally, smaller spot sizes were preferred, since they enabled more precise dosage at the edges as compared to a larger spot size. But, compared to a collimated edge, those smaller spot sizes could result in slower treatment times for a given treatment volume, and reduced edge conformality due to reduced edge resolution and increased penumbra.
  • The collimator may have any number of different shapes or configurations and may, or may not, include one or more moving parts. In an example implementation, the collimator is comprised of brass and/or other radiation-blocking material, and has a thickness on the order of several centimeters. However, different collimators may have different compositions and thicknesses.
  • In example implementations, the collimator is a structure that has one or more defined edges. For example, the collimator may be a structure containing an aperture, or hole. FIG. 11 shows an example of this type of collimator 239. Collimator 239 may have any appropriate shape, with an aperture therein. The edges of the aperture may be used to limit application of the particle beam, as shown in FIG. 9 for example, thereby allowing application of beam 222 to the irradiation target 224 but not to tissue covered by collimator 220 that is otherwise in the beam path. As explained above, the aperture may track (e.g., follow) the particle beam throughout all or part of the scanning operation. For example, the aperture may track movement of the particle beam only at edges of the irradiation target or throughout the entire motion of the beam. That is, the collimator itself may move along the edge of the irradiation target to track movement of the particle beam (e.g., so that the location of the collimator coincides with the particle beam when the particle beam reaches the irradiation target edge).
  • In some implementations, the collimator may include two or more apertures that are controlled to overlap and thereby achieve a specific size. For example, as shown in FIG. 12, apertures 244 and 245 are part of respective structures 246 and 247. The structures move relative to each other, as shown in FIG. 13, thereby causing the apertures 244, 245 to overlap and change the size and, in some cases, the shape of resulting hole 248 through which the particle beam is allowed to pass. Shapes other than those shown may be used.
  • In some implementations, the collimator may track the movement of the particle beam during the particle beam's motion in the interior of the irradiation target. For example, in some implementations, the aperture may have a diameter that is less than the diameter of the particle beam spot. In some systems, it may be desirable to use a spot having a specific diameter at all irradiation positions (including those on the interior of the irradiation target). In these systems, therefore, the aperture may track all movement of the particle beam spot so as to achieve the appropriate particle beam spot diameter for treatment. In some implementations, the aperture of the collimator may vary in size and/or shape. For example, the collimator may have one or more moving parts to vary the size and shape of the aperture (e.g., to reduce its diameter, surface area, or the like).
  • In example implementations, the collimator may be a structure having one or more straight edges. For example, the collimator may include square, rectangular, or substantially linear structures, each having at least one edge that can be placed in the path of the particle beam.
  • In an example implementation that employs straight edges, the collimator may have a multi-leaf structure, as in FIG. 14. In FIG. 14, collimator 250 tracks movement along the edge of irradiation target 251. Fingers 252 move up or down, or towards or away from the irradiation target, in order to achieve an edge shape 253 that substantially matches the edge shape of the irradiation target and that blocks the particle beam from reaching healthy tissue (or tissue that should not be irradiated). For example, each finger can be moved up or down, or extended and retracted, or a combination of such movements to substantially match the edge shape. Collimator 250 itself may move along the edge of the irradiation target 251 (e.g., roughly in the direction of arrow 255) to track movement of the particle beam (e.g., so that the location of the collimator coincides with the particle beam when the particle beam reaches the irradiation target edge). In some implementations, collimator 250 may, or may not, move into the interior of the irradiation target during scanning operations.
  • Traditional multi-leaf collimators are stationary relative to the irradiation target and include two sets of fingers that face each other and that move relative to each other to attain the appropriate collimation. There may be tens, hundreds, or even thousands of fingers used in such collimators, and their size may be as large as the irradiation field itself. In some implementations, the irradiation field may be defined by a plane, which is at an angle to the beam, and which defines the maximum extent that a particle beam can move in the X and Y directions relative to the irradiation target. However, in the example implementations described herein, the collimator moves relative to (e.g., tracks or moves along the edge of) the irradiation target, and need only provide a defined edge at the point of the irradiation target where and when the spot hits that point. Accordingly, the multi-leaf collimator may be made considerably smaller than its conventional counterparts. For example, the multi-leaf collimators described herein may include ten or less (e.g., two, three, four, five, six, seven, eight or nine) fingers (or more, if desired).
  • In an example implementation that employs straight edges, as shown in FIG. 15, collimator 260 may be rectangular in shape, and move along the edge of irradiation target 261. Collimator 260 may move along the edge of the irradiation target to track movement of the particle beam (e.g., so that the location of the collimator coincides with the particle beam when the particle beam reaches the irradiation target edge). During motion along the edge of the irradiation target, collimator 260 may also rotate in two or three dimensions, e.g., in the XY dimensions of arrow 262 and also in the Z dimension. This rotation allows at least a portion of an edge of collimator 260 to match the edge of the irradiation target relative closely. Thus, collimator 260 may be appropriately positioned so that, when the particle beam reaches the edge of the irradiation target, the collimator blocks the tissue extending beyond the edge. As a result, the collimator provides a defined radiation edge relative to the irradiation target and protects adjacent tissue from the particle beam. Movement of the collimator to the appropriate point on the edge of the irradiation target may coincide with movement of the particle beam or precede movement of the particle beam.
  • In some implementations, the collimator may include a single structure with one or more straight edges, as shown in FIG. 15. In other implementations, the collimator may include two or more such structures at different (e.g., opposing) edges of the irradiation target, as shown in FIG. 16. There, the collimator includes two structures 265, 266. Each of structures 265 and 266 tracks movement of the particle beam. That is, structure 265 moves so that the location of structure 265 coincides with the particle beam when the particle beam reaches edge 269 of the irradiation target, and structure 266 moves so that the location of structure 266 coincides with the particle beam when the particle beam reaches edge 270 of the irradiation target. Movement of each structure to the appropriate point on the edge of the irradiation target may coincide with movement of the particle beam or precede movement of the particle beam. For example, structure 266 can be moved as the spot is scanned in the direction of arrow 271, so that structure 266 is in the appropriate location when the spot returns to edge 270; and structure 265 can be moved as the spot is scanned in the direction of arrow 272, so that structure 265 is in the appropriate location when the spot returns to edge 269. Structures 265 and 266 may move at the same times, at different times, or there may be overlap in the times of their movement. An arrangement of this type enables the particle beam to be moved from edge to edge of the irradiation target, with the collimator enabling a defined irradiation field at both edges. And, since the collimator is comprised of multiple structures, scanning need not be significantly slowed waiting for movement of the collimator. In some implementations, the collimator may include more than two (e.g., three, four, etc.) structures of the type and operation shown in FIG. 16. In some implementations, the two or more structures that make up the collimator may be structures that include holes, such as that shown in FIG. 11. The operation of the two-structure collimator is otherwise as described above.
  • In some implementations, the collimator need not have a straight edge, but rather its edge(s) may be curved, as shown in FIG. 17. A collimator may include only one such structure or two or more such structures. In some implementations, the two or more structures that make up the collimator may be structures that include curved edges. For example, two structures of the type shown in FIG. 17 may replace the two structures of FIG. 16. The operation of the two-structure collimator is otherwise as described above.
  • In this regard, in example implementations, the collimator may be a structure having a curved shape having a radius of curvature that varies continuously along its edge, thereby enabling at least part of the edge to closely match the edge of an irradiation target, either directly or by rotating the edge at an appropriate angle. In this example, collimator 275 is a French curve that can be moved to track the beam, either partly or fully, and that can be rotated in two or three dimensions relative to the irradiation target to control application of the particle beam. Any appropriately curved structure may be include in the collimator. As was the case above, collimator 275 may only move along the edge of the irradiation target to track movement of the particle beam (e.g., so that the location of the collimator coincides with the particle beam when the particle beam reaches the irradiation target edge). As was the case above, the collimator may, or may not, track movement of the particle beam at the interior of the irradiation target.
  • A collimator may include only one structure of the type shown in FIG. 17 or the collimator may include two or more such structures. For example, two structures of the type shown in FIG. 17 may replace the two structures of FIG. 16. The operation of the two-structure collimator is otherwise as described above.
  • In some implementations, the treatment planning system may be designed so that the scanning speed (e.g., the rate at which the particle beam spot traverses the irradiation target) is different in the interior of the irradiation target than at the edges of the irradiation target. For example, the scanning speed may be faster at the interior of the irradiation target than at the edges of the irradiation target. This arrangement allows for higher precision scanning at the edges of the irradiation target than at the interior of the irradiation target. This type of variable-speed scanning may be implemented using any appropriate type of collimator, including those described herein, or this type of variable-speed scanning may be implemented without using any collimator. In either case, the slower speed at the irradiation target edge may enable more precise scanning there, which may reduce the chances that the particle beam will impact outside the irradiation target.
  • In some implementations, the collimator described herein may be used in an intensity-modulated proton therapy process. In such as process, the proton beam is projected at the radiation target from different directions so that a percentage of the overall dose is delivered from each direction. As a result, the amount of dose delivered to volumes outside of the irradiation target can be reduced. For example, FIG. 18 shows a particle beam 280 applied to the irradiation target 281 from three different angles. In this example, ⅓ of the total dose may be applied from one angle; ⅓ of the total dose may be applied from another angle; and ⅓ of the total dose may be applied from yet another angle. That is, the particle beam may be scanned at angle 282 relative to horizontal 285 to apply ⅓ of the dose; the particle beam may be scanned at angle 283 to apply ⅓ of the dose; and the particle beam may be scanned at angle 284 to apply ⅓ of the dose. As a result, the amount of radiation applied to surrounding tissue 287 is spread out at the appropriate angles, thereby reducing the chances that surrounding tissue will be exposed to harmful amounts of radiation. Any appropriate number of angles and appropriate dosage per angle may be employed.
  • Irradiation targets, such as tumors, typically are not symmetric. Accordingly, different beam collimation is typically required for the different angles of application of the particle beam. The example collimators described herein can be positioned at the appropriate locations along the irradiation target's edge (as described above) to provide appropriate collimation given the angle of irradiation. In some implementations, the example collimators can track motion of the particle beam, either only at the irradiation target's edge or throughout some portion (e.g., all) of the motion of the particle beam at all angles of application.
  • In some implementations, the example collimators described herein prevent transmission of the particle beam to surrounding tissue by blocking the particle beam. In some implementations, the example collimators may enable partial transmission of the particle beam, thereby resulting in application of lower-levels of radiation to the surrounding tissue than to the irradiation target. Any of the example collimators described herein may be produced in this manner.
  • The example collimators described herein may be mounted to one or more computer-controlled robotic arms or other structures to control their movement relative to the irradiation target. A collimator may be mounted to the scanning system itself as well. Typically, the collimator is mounted closest to the patent relative to other elements of the particle beam scanning system (e.g., down-beam of other elements of the scanning system). In implementations where the collimator includes more than one piece (e.g., FIG. 16), there may be more than one robotic arm or other structure to independently control the different pieces of the collimator in accordance with the treatment plan. In some implementations, a single robotic arm may be configured to control the different pieces of the collimator independently or to control a combination of pre-assembled pieces.
  • In some implementations, the energy degrader may also configured to track motion of the particle beam. In this regard, in some implementations, such as the example implementation described with respect to FIGS. 7 and 8, the energy degrader may include multiple plates that are movable into the path of the particle beam to control the amount of energy in the beam and thereby control the depth to which the particle beam penetrates the irradiation target. In this way, the energy degrader is used to perform depth (the direction of the particle beam or Z-direction) scanning in the irradiation target. Typically, each plate absorbs an amount of energy in the particle beam. Accordingly, the more plates that are placed in front of the particle beam, the less energy the beam has, and the less deep the beam will penetrate into the irradiation target. Conversely, the fewer plates that are placed in front of the particle beam, the more energy the beam has (since less energy is absorbed by the plate(s)), and the more deep the beam will penetrate into the irradiation target. In some implementations, each plate has about the same thickness, and therefore absorbs about the same amount of beam energy. In other implementations, different plates may have different thicknesses, with the thickness of a plate corresponding to the amount of energy that the plate absorbs.
  • In some implementations, the plates each have a surface area that is about the size of the irradiation field. In this context, the irradiation field may be defined by a plane that defines the maximum extent that a particle beam can move in the X and Y directions relative to the irradiation target. For example, FIG. 19 shows an irradiation field 290 (also called a beam field or radiation field) in front of an irradiation target 291. Due to physical system limitations, a particle beam is movable across, but not beyond, the plane defining the irradiation field. Accordingly, to ensure that the energy degrader can be applied to any location within the irradiation field, in some implementations the plates in the energy degrader each have a surface are that is at least as big as, and in some cases that exceeds, the size of the irradiation field. This configuration, however, can result in plates that are large (e.g., possibly a square meter or square meters), and thus that can be heavy and relative slow to move. Slow movement of the plates can result in slower treatment.
  • In some implementations, the energy degraders may be smaller than the size of the irradiation field, and track at least part of the motion of the particle beam. As a result, the energy degrader may be lighter, which can reduce the amount of time that it takes to position the energy degrader plates in the path of the particle beam and thus reduce the treatment time. The energy degrader may track the particle beam in two directions (e.g., XY) or in three directions (e.g., XYZ). That is, the energy degrader may move in a plane perpendicular to the particle beam, or the energy degrader may move in a plane perpendicular to the particle beam and along a longitudinal direction of the particle beam. In this regard, any of the collimators described herein may also move in a plane perpendicular to the particle beam, or any of the collimators described herein may also move in a plane perpendicular to the particle beam and along a longitudinal direction of the particle beam. Movement of the collimator(s) and energy degrader(s) may be independent or coordinated.
  • For example, an energy degrader may be comprised of multiple pieces, which may be plates or other structures constructed to absorb particle beam energy during treatment. Each piece may have the same area (XY) and thickness (Z) or different pieces may have different areas and thicknesses. Referring to FIG. 20, two or more pieces 294 having the same or different thicknesses may be placed in front an irradiation target 295 in the particle beam 293 path to achieve a particular amount of energy absorption. Alternatively, a single piece having a specified thickness may be placed in front of the beam to achieve a particular amount of energy absorption. For example, if a particular energy absorption is needed, the control computer may select a piece with the appropriate thickness to achieve that absorption.
  • In examples where two or more pieces are placed in front of the beam, those pieces may be assembled prior to placement or assembled dynamically during placement. For example, the control computer may select two pieces, arrange them, and then move the combination of the two pieces into the beam path. Alternatively, the control computer may select two pieces and then move the combination of the two pieces into the beam path simultaneously but not in combination (e.g., each may be moved with a separate robotic arm).
  • The energy degrader, or pieces thereof, may track movement of the particle beam across at least part of the irradiation field so as to achieve appropriate energy absorption, and thus beam depth penetration, at various points on the irradiation target. The treatment plan may dictate where the energy degrader needs to be at any particular time during treatment, and feedback from the ionization chamber may be used for positioning and position correction, if necessary. In some implementations, the precision with which the energy degrader needs to track the particle beam is based on the size of the degrader and the spot size of the particle beam at the point where the particle beam intersects the energy degrader.
  • More specifically, in some examples, the smaller that the surface area of the energy degrader is, the more closely movement of the energy degrader should track movement of the particle beam. Conversely, in other examples, the larger that the surface area of the energy degrader is, the less closely movement of the energy degrader needs to track movement of the particle beam. For example referring to FIG. 21, if the energy degrader 299 has a surface area that is close to a surface area of spot 300 at the point where the particle beam intersects the energy degrader, the energy degrader should track motion of the particle beam rather closely in order to ensure that the energy degrader is in front of the particle beam relative to irradiation target 301 at appropriate times during treatment. For example, motion of particle beam 304 from location 302 to location 303 would also require energy degrader 299 to move in the direction of arrow 305 to remain in the beam path, since the areas of the spot and the degrader are relatively close in size. As indicated, motion of the particle beam may be dictated by the treatment plan and detected through use of the ionization chamber and feedback to the control computer. This information may also be used to control movement of the energy degrader.
  • In some implementations, the movable energy degrader may be considerably larger than the particle beam spot. In these cases, the energy degrader need not track motion of the particle beam as closely in order to ensure that the energy degrader is in front of the particle beam at appropriate times during treatment. In fact, depending upon the size of the energy degrader, the energy degrader need not move at all in some cases where the particle beam moves. That is, for some motion of the particle beam, the energy degrader may remain stationary, but for other motion of the particle beam, the energy degrader also moves to intercept the particle beam. For example, FIG. 22 shows a case where the energy degrader 310 is considerably larger than particle beam spot 311 at the point where the particle beam intersects the energy degrader. As the particle beam spot moves from point 314 a to point 314 b, the energy degrader remains in the beam path even though the energy degrader has not moved. The control computer system, knowing the size of the degrader and the two spot positions, does not move the energy degrader in this case. Accordingly, in this case, the energy degrader need not track movement of the particle beam spot. However, when the spot moves to point 314 c, the energy degrader (or piece(s) thereof) will move to track and intercept the beam so as to remain in the beam path. Accordingly, the size of the energy degrader relative to the beam spot is a factor in determining when, and by how much, the energy degrader is required to move during scanning.
  • In some implementations, the energy degrader may include multiple parts or pieces. For example, one part or piece may be used to track movement of the particle beam across part of an irradiation target (e.g., irradiation applied from the top of the irradiation target) and another part or piece may be used to track movement of the particle beam across another part of an irradiation target (e.g., irradiation applied from the bottom of the target).
  • The energy degrader (or pieces thereof) may have any shape, e.g., square, rectangular, circular, oval, irregular, regular, polygonal, spherical, cubical, tetrahedral, and so forth. The energy degrader (or pieces thereof) may have any appropriate size. For example, the energy degrader (or pieces thereof) may have a surface area this less than the area of the irradiation field, that is less than ¾ the area of the irradiation field, that is less than ½ the area of the irradiation field, that is less than ⅓ the area of the irradiation field, that is less than ¼ the area of the irradiation field, that is less than ⅕ the area of the irradiation field, or so forth. The energy degrader (or pieces thereof) may have a surface area that is less than twenty times the area of the particle beam spot at the irradiation field, that is less than fifteen times the area of the particle beam spot at the irradiation field, that is less than ten times the area of the particle beam spot at the irradiation field, that is less than nine times the area of the particle beam spot at the irradiation field, that is less than eight times the area of the particle beam spot at the irradiation field, that is less than seven times the area of the particle beam spot at the irradiation field, that is less than six times the area of the particle beam spot at the irradiation field, that is less than five times the area of the particle beam spot at the irradiation field, that is less than four times the area of the particle beam spot at the irradiation field, that is less than three times the area of the particle beam spot at the irradiation field, or that is less than two times the area of the particle beam spot at the irradiation field. In some implementations, the energy degrader (or pieces thereof) may have a surface area that is a multiple of the spot size, e.g., two times the spot size, three times the spot size, five times the spot size, ten times the spot size, and so forth.
  • In some implementations, each piece (e.g., layer of multiple layers) has a same size, shape, thickness and composition. In other implementations, different pieces may have different sizes, shapes thicknesses and compositions.
  • The movement of the example energy degraders described herein may be controlled in various ways. For example, the current through magnet 108 may correspond to the deflection of the particle beam by the magnet and, thus, the location of the particle beam spot on the irradiation target. So, for example, knowing the current through the magnet and the location of the irradiation target relative to the magnet, a computer system controlling operation of the scanning system can determine the projected location of the irradiation spot. And, knowing the location of the radiation spot, and the size of the energy degrader relative to the spot size, the computer system can control the energy degrader, to track (if necessary) movement of the irradiation spot along all or part of its motion, as described herein.
  • The example movable energy degraders described herein may be mounted to one or more computer-controlled robotic arms or other structures that also contain elements of the scanning system to control movement relative to the irradiation target. In implementations where the energy degrader includes more than one piece (e.g., multiple pieces or plates), there may be more than one robotic arm to independently control the different pieces of the energy degrader in accordance with the treatment plan. In some implementations, a single robotic arm may be configured to control the different pieces independently.
  • Different cross-sections of the irradiation target may be scanned according to different treatment plans. As described above, an energy degrader is used to control the scanning depth. In some implementations, the particle beam may be interrupted or redirected during configuration of the energy degrader. In other implementations, this need not be the case.
  • Described herein are examples of treating cross-sections of an irradiation target. These may be cross-sections that are roughly perpendicular to the direction of the particle beam. However, the concepts described herein are equally applicable to treating other portions of an irradiation target that are not cross-sections perpendicular to the direction of the particle beam. For example, an irradiation target may be segmented into spherical, cubical or other shaped volumes, and those volumes may be treated using the example processes, systems, and/or devices described herein.
  • The processes described herein may be used with a single particle accelerator, and any two or more of the features thereof described herein may be used with the single particle accelerator. The particle accelerator may be used in any type of medical or non-medical application. An example of a particle therapy system that may be used is provided below. Notably, the concepts described herein may be used in other systems not specifically described.
  • Referring to FIG. 23, an example implementation of a charged particle radiation therapy system 401 includes a beam-producing particle accelerator 402 having a weight and size small enough to permit it to be mounted on a rotating gantry 404 with its output directed straight (that is, essentially directly) from the accelerator housing toward a patient 406. Particle accelerator 402 also includes a scanning system of a type described herein, which may operate as described with respect to FIGS. 3 to 22 and FIGS. 34 to 49.
  • In some implementations, the steel gantry has two legs 408, 410 mounted for rotation on two respective bearings 412, 414 that lie on opposite sides of the patient. The accelerator is supported by a steel truss 416 that is long enough to span a treatment area 418 in which the patient lies (e.g., twice as long as a tall person, to permit the person to be rotated fully within the space with any desired target area of the patient remaining in the line of the beam) and is attached stably at both ends to the rotating legs of the gantry.
  • In some examples, the rotation of the gantry is limited to a range 420 of less than 360 degrees, e.g., about 180 degrees, to permit a floor 422 to extend from a wall of the vault 424 that houses the therapy system into the patient treatment area. The limited rotation range of the gantry also reduces the required thickness of some of the walls (which are not directly aligned with the beam, e.g., wall 430), which provide radiation shielding of people outside the treatment area. A range of 180 degrees of gantry rotation is enough to cover all treatment approach angles, but providing a larger range of travel can be useful. For example the range of rotation may be between 180 and 330 degrees and still provide clearance for the therapy floor space. In other implementations, rotation is not limited as described above.
  • The horizontal rotational axis 432 of the gantry is located nominally one meter above the floor where the patient and therapist interact with the therapy system. This floor is positioned about 3 meters above the bottom floor of the therapy system shielded vault. The accelerator can swing under the raised floor for delivery of treatment beams from below the rotational axis. The patient couch moves and rotates in a substantially horizontal plane parallel to the rotational axis of the gantry. The couch can rotate through a range 434 of about 270 degrees in the horizontal plane with this configuration. This combination of gantry and patient rotational ranges and degrees of freedom allow the therapist to select virtually any approach angle for the beam. If needed, the patient can be placed on the couch in the opposite orientation and then all possible angles can be used.
  • In some implementations, the accelerator uses a synchrocyclotron configuration having a high magnetic field superconducting electromagnetic structure. Because the bend radius of a charged particle of a given kinetic energy is reduced in direct proportion to an increase in the magnetic field applied to it, the high magnetic field superconducting magnetic structure permits the accelerator to be made smaller and lighter. The synchrocyclotron uses a magnetic field that is uniform in rotation angle and falls off in strength with increasing radius. Such a field shape can be achieved regardless of the magnitude of the magnetic field, so in theory there is no upper limit to the magnetic field strength (and therefore the resulting particle energy at a fixed radius) that can be used in a synchrocyclotron.
  • The synchrocyclotron is supported on the gantry so that the beam is generated directly in line with the patient. The gantry permits rotation of the synchrocyclotron about a horizontal rotational axis that contains a point (isocenter 440) within, or near, the patient. The split truss that is parallel to the rotational axis, supports the synchrocyclotron on both sides.
  • Because the rotational range of the gantry is limited in some example implementations, a patient support area can be accommodated in a wide area around the isocenter. Because the floor can be extended broadly around the isocenter, a patient support table can be positioned to move relative to and to rotate about a vertical axis 442 through the isocenter so that, by a combination of gantry rotation and table motion and rotation, any angle of beam direction into any part of the patient can be achieved. In some implementations, the two gantry arms are separated by more than twice the height of a tall patient, allowing the couch with patient to rotate and translate in a horizontal plane above the raised floor.
  • Limiting the gantry rotation angle allows for a reduction in the thickness of at least one of the walls surrounding the treatment room. Thick walls, typically constructed of concrete, provide radiation protection to individuals outside the treatment room. A wall downstream of a stopping proton beam may be about twice as thick as a wall at the opposite end of the room to provide an equivalent level of protection. Limiting the range of gantry rotation enables the treatment room to be sited below earth grade on three sides, while allowing an occupied area adjacent to the thinnest wall reducing the cost of constructing the treatment room.
  • In the example implementation shown in FIG. 23, the superconducting synchrocyclotron 402 operates with a peak magnetic field in a pole gap of the synchrocyclotron of 8.8 Tesla. The synchrocyclotron produces a beam of protons having an energy of 250 MeV. In some implementations, the synchrocyclotron is a variable-energy machine, and is capable of outputting proton beams having different energies. In some implementations, the synchrocyclotron may produce a beam having a fixed energy. In some implementations the field strength could be in the range of 4 T to 20 T and the proton energy could be in the range of 150 to 300 MeV.
  • The radiation therapy system described in this example is used for proton radiation therapy, but the same principles and details can be applied in analogous systems for use in heavy ion (ion) treatment systems.
  • As shown in FIGS. 1, 2, 24, 25, and 26, an example synchrocyclotron 10 (e.g., 402 in FIG. 23) includes a magnet system 122 that contains a particle source 190, a radiofrequency drive system 191, and a beam extraction system 138. In this example, the magnetic field established by the magnet system has a shape appropriate to maintain focus of a contained proton beam using a combination of a split pair of annular superconducting coils 140, 142 and a pair of shaped ferromagnetic (e.g., low carbon steel) pole faces 144, 146.
  • The two superconducting magnet coils are centered on a common axis 147 and are spaced apart along the axis. The coils may be formed by of Nb3Sn-based superconducting 0.8 mm diameter strands (that initially comprise a niobium-tin core surrounded by a copper sheath) deployed in a twisted cable-in-channel conductor geometry. After seven individual strands are cabled together, they are heated to cause a reaction that forms the final (brittle) superconducting material of the wire. After the material has been reacted, the wires are soldered into the copper channel (outer dimensions 3.18×2.54 mm and inner dimensions 2.08×2.08 mm) and covered with insulation (in this example, a woven fiberglass material). The copper channel containing the wires is then wound in a coil having a rectangular cross-section. The wound coil is then vacuum impregnated with an epoxy compound. The finished coils are mounted on an annular stainless steel reverse bobbin. Heater blankets may be placed at intervals in the layers of the windings to protect the assembly in the event of a magnet quench.
  • The entire coil can then be covered with copper sheets to provide thermal conductivity and mechanical stability and then contained in an additional layer of epoxy. The precompression of the coil can be provided by heating the stainless steel reverse bobbin and fitting the coils within the reverse bobbin. The reverse bobbin inner diameter is chosen so that when the entire mass is cooled to 4 K, the reverse bobbin stays in contact with the coil and provides some compression. Heating the stainless steel reverse bobbin to approximately 50 degrees C. and fitting coils at a temperature of 100 degrees Kelvin can achieve this.
  • The geometry of the coil is maintained by mounting the coils in a “reverse” rectangular bobbin 156 to exert a restorative force that works against the distorting force produced when the coils are energized. As shown in FIG. 25, in some implementations, coil position is maintained relative to corresponding magnet pole pieces and the cryostat using a set of warm-to-cold support straps 402, 404, 406. Supporting the cold mass with thin straps reduces the heat leakage imparted to the cold mass by the rigid support system. The straps are arranged to withstand the varying gravitational force on the coil as the magnet rotates on board the gantry. They withstand the combined effects of gravity and the large de-centering force realized by the coil when it is perturbed from a perfectly symmetric position relative to the magnet yoke. Additionally the links act to reduce dynamic forces imparted on the coil as the gantry accelerates and decelerates when its position is changed. Each warm-to-cold support may include one S2 fiberglass link and one carbon fiber link. The carbon fiber link is supported across pins between the warm yoke and an intermediate temperature (50-70 K), and the S2 fiberglass link 409 is supported across the intermediate temperature pin and a pin attached to the cold mass. Each pin may be made of high strength stainless steel.
  • Referring to FIG. 1, the field strength profile as a function of radius is determined largely by choice of coil geometry and pole face shape; the pole faces 144, 146 of the permeable yoke material can be contoured to fine tune the shape of the magnetic field to ensure that the particle beam remains focused during acceleration.
  • The superconducting coils are maintained at temperatures near absolute zero (e.g., about 4 degrees Kelvin) by enclosing the coil assembly (the coils and the bobbin) inside an evacuated annular aluminum or stainless steel cryostatic chamber 170 (the cryostat) that provides a free space around the coil structure, except at a limited set of support points 171, 173. In an alternate version (e.g., FIG. 2) the outer wall of the cryostat may be made of low carbon steel to provide an additional return flux path for the magnetic field.
  • In some implementations, the temperature near absolute zero is achieved and maintained using one single-stage Gifford-McMahon cryo-cooler and three two-stage Gifford McMahon cryo-coolers. Each two stage cryo-cooler has a second stage cold end attached to a condenser that recondenses Helium vapor into liquid Helium. In some implementations, the temperature near absolute zero is achieved and maintained using a cooling channel (not shown) containing liquid helium, which is formed inside a superconducting coil support structure (e.g., the reverse bobbin), and which contains a thermal connection between the liquid helium in the channel and the corresponding superconducting coil.
  • In some implementations, the coil assembly and cryostatic chambers are mounted within and fully enclosed by two halves 181, 183 of a pillbox-shaped magnet yoke 100. The yoke 100 provides a path for the return magnetic field flux 184 and magnetically shields the volume 186 between the pole faces 144, 146 to prevent external magnetic influences from perturbing the shape of the magnetic field within that volume. The yoke also serves to decrease the stray magnetic field in the vicinity of the accelerator. In other implementations, the coil assembly and cryostatic chambers are mounted within and fully enclosed by a non-magnetic enclosure, and the path for return magnetic field flux is implemented using an active return system, an example of which is described above.
  • As shown in FIGS. 1 and 27, the synchrocyclotron includes a particle source 190 of a Penning ion gauge geometry located near the geometric center 192 of the magnet structure 182. The particle source may be as described below, or the particle source may be of the type described in U.S. patent application Ser. No. 11/948,662 (U.S. Pat. No. 8,581,523) incorporated herein by reference.
  • Particle source 190 is fed from a supply 399 of hydrogen through a gas line 393 and tube 394 that delivers gaseous hydrogen. Electric cables 294 carry an electric current from a current source to stimulate electron discharge from cathodes 392, 390 that are aligned with the magnetic field 400.
  • In this example, the discharged electrons ionize the gas exiting through a small hole from tube 394 to create a supply of positive ions (protons) for acceleration by one semicircular (dee-shaped) radio-frequency plate that spans half of the space enclosed by the magnet structure and one dummy dee plate. In the case of an interrupted particle source (an example of which is described in U.S. patent application Ser. No. 11/948,662), all (or a substantial part, e.g., a majority) of the tube containing plasma is removed at the acceleration region.
  • As shown in FIG. 28, the dee plate 500 is a hollow metal structure that has two semicircular surfaces 503, 505 that enclose a space 507 in which the protons are accelerated during half of their rotation around the space enclosed by the magnet structure. A duct 509 opening into the space 507 extends through the enclosure (e.g., the yoke or pole piece(s)) to an external location from which a vacuum pump can be attached to evacuate the space 507 and the rest of the space within a vacuum chamber in which the acceleration takes place. The dummy dee 502 comprises a rectangular metal ring that is spaced near to the exposed rim of the dee plate. The dummy dee is grounded to the vacuum chamber and magnet yoke. The dee plate 500 is driven by a radio-frequency signal that is applied at the end of a radio-frequency transmission line to impart an electric field in the space 507. The radio frequency electric field is made to vary in time as the accelerated particle beam increases in distance from the geometric center. The radio frequency electric field may be controlled in the manner described in U.S. patent application Ser. No. 11/948,359 (U.S. Pat. No. 8,933,650), entitled “Matching A Resonant Frequency Of A Resonant Cavity To A Frequency Of An Input Voltage”, the contents of which are incorporated herein by reference.
  • For the beam emerging from the centrally located particle source to clear the particle source structure as it begins to spiral outward, a large voltage difference may be applied across the radio frequency plates. 20,000 Volts is applied across the radio frequency plates. In some versions from 8,000 to 20,000 Volts may be applied across the radio frequency plates. To reduce the power required to drive this large voltage, the magnet structure is arranged to reduce the capacitance between the radio frequency plates and ground. This may be done by forming holes with sufficient clearance from the radio frequency structures through the outer yoke and the cryostat housing and making sufficient space between the magnet pole faces.
  • The high voltage alternating potential that drives the dee plate has a frequency that is swept downward during the accelerating cycle to account for the increasing relativistic mass of the protons and the decreasing magnetic field. The dummy dee does not require a hollow semi-cylindrical structure as it is at ground potential along with the vacuum chamber walls. Other plate arrangements could be used such as more than one pair of accelerating electrodes driven with different electrical phases or multiples of the fundamental frequency. The RF structure can be tuned to keep the Q high during the required frequency sweep by using, for example, a rotating capacitor having intermeshing rotating and stationary blades. During each meshing of the blades, the capacitance increases, thus lowering the resonant frequency of the RF structure. The blades can be shaped to create a precise frequency sweep required. A drive motor for the rotating condenser can be phase locked to the RF generator for precise control. One bunch of particles may be accelerated during each meshing of the blades of the rotating condenser.
  • The vacuum chamber in which the acceleration occurs is a generally cylindrical container that is thinner in the center and thicker at the rim. The vacuum chamber encloses the RF plates and the particle source and is evacuated by a vacuum pump. Maintaining a high vacuum reduces the chances that accelerating ions are not lost to collisions with gas molecules and enables the RF voltage to be kept at a higher level without arcing to ground.
  • Protons (or other ions) traverse a generally spiral orbital path beginning at the particle source. In half of each loop of the spiral path, the protons gain energy as they pass through the RF electric field. As the protons gain energy, the radius of the central orbit of each successive loop of their spiral path is larger than the prior loop until the loop radius reaches the maximum radius of the pole face. At that location a magnetic and electric field perturbation directs protons into an area where the magnetic field rapidly decreases, and the protons depart the area of the high magnetic field and are directed through an evacuated tube, referred to herein as the extraction channel, to exit the synchrocyclotron. A magnetic regenerator may be used to change the magnetic field perturbation to direct the protons. The protons exiting will tend to disperse as they enter an area of markedly decreased magnetic field that exists in the room around the synchrocyclotron. Beam shaping elements 607, 609 in the extraction channel 138 (FIG. 25) redirect the protons so that they stay in a straight beam of limited spatial extent.
  • As the beam exits the extraction channel it is passed through a beam formation system 525 (FIG. 25), which may include a scanning system of the type described herein. Beam formation system 525 may be used in conjunction with an inner gantry that controls application of the beam.
  • Stray magnetic fields exiting from the synchrocyclotron may be limited by both a magnet yoke (which also serves as a shield) and a separate magnetic shield 514 (e.g., FIG. 1). The separate magnetic shield includes of a layer 517 of ferromagnetic material (e.g., steel or iron) that encloses the pillbox yoke, separated by a space 516. This configuration that includes a sandwich of a yoke, a space, and a shield achieves adequate shielding for a given leakage magnetic field at lower weight. As described above, in some implementations, an active return system may be used in place of, or to augment, the operation of the magnetic yoke and shield.
  • Referring to FIG. 23, the gantry allows the synchrocyclotron to be rotated about a horizontal rotational axis 432. The truss structure 416 has two generally parallel spans 480, 482. The synchrocyclotron is cradled between the spans about midway between the legs. The gantry is balanced for rotation about the bearings using counterweights 622, 624 mounted on ends of the legs opposite the truss.
  • The gantry is driven to rotate by an electric motor mounted to one or both of the gantry legs and connected to the bearing housings by drive gears. The rotational position of the gantry is derived from signals provided by shaft angle encoders incorporated into the gantry drive motors and the drive gears.
  • At the location at which the ion beam exits the synchrocyclotron, the beam formation system 525 acts on the ion beam to give it properties suitable for patient treatment. For example, the beam may be spread and its depth of penetration varied to provide uniform radiation across a given target volume. The beam formation system may include active scanning elements as described herein.
  • All of the active systems of the synchrocyclotron (the current driven superconducting coils, the RF-driven plates, the vacuum pumps for the vacuum acceleration chamber and for the superconducting coil cooling chamber, the current driven particle source, the hydrogen gas source, and the RF plate coolers, for example), may be controlled by appropriate synchrocyclotron control electronics (not shown), which may include, e.g., one or more processing devices executing instructions from memory to effect control.
  • As explained above, referring to system 602 of FIG. 29, a beam-producing particle accelerator, in this case synchrocyclotron 604 (which may include any and all features described herein), may be mounted on rotating gantry 605. Rotating gantry 605 is of the type described herein, and can angularly rotate around patient support 606. This feature enables synchrocyclotron 604 to provide a particle beam essentially directly to the patient from various angles. For example, as in FIG. 29, if synchrocyclotron 604 is above patient support 606, the particle beam may be directed downwards toward the patient. Alternatively, if synchrocyclotron 604 is below patient support 606, the particle beam may be directed upwards toward the patient. The particle beam is applied essentially directly to the patient in the sense that an intermediary beam routing mechanism is not required. A routing mechanism, in this context, is different from a shaping or sizing mechanism in that a shaping or sizing mechanism does not re-route the beam, but rather sizes and/or shapes the beam while maintaining the same general trajectory of the beam.
  • The particle accelerator used in the example particle therapy systems and example scanning systems described herein may be a variable-energy particle accelerator, an example of which is described below
  • The energy of an extracted particle beam (the particle beam output from the accelerator) can affect the use of the particle beam during treatment. In some machines, the energy of the particle beam (or particles in the particle beam) does not increase after extraction. However, the energy may be reduced based on treatment needs after the extraction and before the treatment. Referring to FIG. 30, an example treatment system 910 includes an accelerator 912, e.g., a synchrocyclotron, from which a particle (e.g., proton) beam 914 having a variable energy is extracted to irradiate a target volume 924 of a body 922. Optionally, one or more additional devices, such as a scanning unit 916 or a scattering unit 916, one or more monitoring units 918, and an energy degrader 920, are placed along the irradiation direction 928. The devices intercept the cross-section of the extracted beam 914 and alter one or more properties of the extracted beam for the treatment.
  • A target volume to be irradiated (an irradiation target) by a particle beam for treatment typically has a three-dimensional configuration. In some examples, to carry-out the treatment, the target volume is divided into layers along the irradiation direction of the particle beam so that the irradiation can be done on a layer-by-layer basis. For certain types of particles, such as protons, the penetration depth (or which layer the beam reaches) within the target volume is largely determined by the energy of the particle beam. A particle beam of a given energy does not reach substantially beyond a corresponding penetration depth for that energy. To move the beam irradiation from one layer to another layer of the target volume, the energy of the particle beam is changed.
  • In the example shown in FIG. 30, the target volume 924 is divided into nine layers 926 a-926 i along the irradiation direction 928. In an example process, the irradiation starts from the deepest layer 926 i, one layer at a time, gradually to the shallower layers and finishes with the shallowest layer 926 a. Before application to the body 922, the energy of the particle beam 914 is controlled to be at a level to allow the particle beam to stop at a desired layer, e.g., the layer 926 d, without substantially penetrating further into the body or the target volume, e.g., the layers 926 e-926 i or deeper into the body. In some examples, the desired energy of the particle beam 914 decreases as the treatment layer becomes shallower relative to the particle acceleration. In some examples, the beam energy difference for treating adjacent layers of the target volume 924 is about 3 MeV to about 100 MeV, e.g., about 10 MeV to about 80 MeV, although other differences may also be possible, depending on, e.g., the thickness of the layers and the properties of the beam.
  • The energy variation for treating different layers of the target volume 924 can be performed at the accelerator 912 (e.g., the accelerator can vary the energy) so that, in some implementations, no additional energy variation is required after the particle beam is extracted from the accelerator 912. So, the optional energy degrader 920 in the treatment system 10 may be eliminated from the system. In some implementations, the accelerator 912 can output particle beams having an energy that varies between about 100 MeV and about 300 MeV, e.g., between about 115 MeV and about 250 MeV. The variation can be continuous or non-continuous, e.g., one step at a time. In some implementations, the variation, continuous or non-continuous, can take place at a relatively high rate, e.g., up to about 50 MeV per second or up to about 20 MeV per second. Non-continuous variation can take place one step at a time with a step size of about 10 MeV to about 90 MeV.
  • When irradiation is complete in one layer, the accelerator 912 can vary the energy of the particle beam for irradiating a next layer, e.g., within several seconds or within less than one second. In some implementations, the treatment of the target volume 924 can be continued without substantial interruption or even without any interruption. In some situations, the step size of the non-continuous energy variation is selected to correspond to the energy difference needed for irradiating two adjacent layers of the target volume 924. For example, the step size can be the same as, or a fraction of, the energy difference.
  • In some implementations, the accelerator 912 and the degrader 920 collectively vary the energy of the beam 914. For example, the accelerator 912 provides a coarse adjustment and the degrader 920 provides a fine adjustment or vice versa. In this example, the accelerator 912 can output the particle beam that varies energy with a variation step of about 10-80 MeV, and the degrader 920 adjusts (e.g., reduces) the energy of the beam at a variation step of about 2-10 MeV.
  • The reduced use (or absence) of the energy degrader, such as a range modulator, may help to maintain properties and quality of the output beam from the accelerator, e.g., beam intensity. The control of the particle beam can be performed at the accelerator. Side effects, e.g., from neutrons generated when the particle beam passes the degrader 920 can be reduced or eliminated.
  • The energy of the particle beam 914 may be adjusted to treat another target volume 930 in another body or body part 922′ after completing treatment in target volume 924. The target volumes 924, 930 may be in the same body (or patient), or in different patients. It is possible that the depth D of the target volume 930 from a surface of body 922′ is different from that of the target volume 924. Although some energy adjustment may be performed by the degrader 920, the degrader 912 may only reduce the beam energy and not increase the beam energy.
  • In this regard, in some cases, the beam energy required for treating target volume 930 is greater than the beam energy required to treat target volume 924. In such cases, the accelerator 912 may increase the output beam energy after treating the target volume 924 and before treating the target volume 930. In other cases, the beam energy required for treating target volume 930 is less than the beam energy required to treat target volume 924. Although the degrader 920 can reduce the energy, the accelerator 912 can be adjusted to output a lower beam energy to reduce or eliminate the use of the degrader 920. The division of the target volumes 924, 930 into layers can be different or the same. The target volume 930 can be treated similarly on a layer by layer basis to the treatment of the target volume 924.
  • The treatment of the different target volumes 924, 930 on the same patient may be substantially continuous, e.g., with the stop time between the two volumes being no longer than about 30 minutes or less, e.g., 25 minutes or less, 20 minutes or less, 15 minutes or less, 10 minutes or less, 5 minutes or less, or 1 minute or less. As explained herein, the accelerator 912 can be mounted on a movable gantry and the movement of the gantry can move the accelerator to aim at different target volumes. In some situations, the accelerator 912 can complete the energy adjustment of the output beam 914 during the time the treatment system makes adjustment (such as moving the gantry) after completing the treatment of the target volume 924 and before starting treating the target volume 930. After the alignment of the accelerator and the target volume 930, the treatment can begin with the adjusted, desired beam energy. Beam energy adjustment for different patients can also be completed relatively efficiently. In some examples, all adjustments, including increasing/reducing beam energy and/or moving the gantry are done within about 30 minutes, e.g., within about 25 minutes, within about 20 minutes, within about 15 minutes, within about 10 minutes or within about 5 minutes.
  • In the same layer of a target volume, an irradiation dose may be applied by moving the beam across the two-dimensional surface of the layer (which is sometimes called scanning beam) using a scanning unit 916. Alternatively, the layer can be irradiated by passing the extracted beam through one or more scatterers of the scattering unit 16 (which is sometimes called scattering beam).
  • Beam properties, such as energy and intensity, can be selected before a treatment or can be adjusted during the treatment by controlling the accelerator 912 and/or other devices, such as the scanning unit/scatterer(s) 916, the degrader 920, and others not shown in the figures. In example implementations, system 910 includes a controller 932, such as a computer, in communication with one or more devices in the system. Control can be based on results of the monitoring performed by the one or more monitors 918, e.g., monitoring of the beam intensity, dose, beam location in the target volume, etc. Although the monitors 918 are shown to be between the device 916 and the degrader 920, one or more monitors can be placed at other appropriate locations along the beam irradiation path. Controller 932 can also store a treatment plan for one or more target volumes (for the same patient and/or different patients). The treatment plan can be determined before the treatment starts and can include parameters, such as the shape of the target volume, the number of irradiation layers, the irradiation dose for each layer, the number of times each layer is irradiated, etc. The adjustment of a beam property within the system 910 can be performed based on the treatment plan. Additional adjustment can be made during the treatment, e.g., when deviation from the treatment plan is detected.
  • In some implementations, the accelerator 912 is configured to vary the energy of the output particle beam by varying the magnetic field in which the particle beam is accelerated. In an example implementation, one or more sets of coils receives variable electrical current to produce a variable magnetic field in the cavity. In some examples, one set of coils receives a fixed electrical current, while one or more other sets of coils receives a variable current so that the total current received by the coil sets varies. In some implementations, all sets of coils are superconducting. In other implementations, some sets of coils, such as the set for the fixed electrical current, are superconducting, while other sets of coils, such as the one or more sets for the variable current, are non-superconducting. In some examples, all sets of coils are non-superconducting.
  • Generally, the magnitude of the magnetic field is scalable with the magnitude of the electrical current. Adjusting the total electric current of the coils in a predetermined range can generate a magnetic field that varies in a corresponding, predetermined range. In some examples, a continuous adjustment of the electrical current can lead to a continuous variation of the magnetic field and a continuous variation of the output beam energy. Alternatively, when the electrical current applied to the coils is adjusted in a non-continuous, step-wise manner, the magnetic field and the output beam energy also varies accordingly in a non-continuous (step-wise) manner. The scaling of the magnetic field to the current can allow the variation of the beam energy to be carried out relatively precisely, although sometimes minor adjustment other than the input current may be performed.
  • In some implementations, to output particle beams having a variable energy, the accelerator 912 is configured to apply RF voltages that sweep over different ranges of frequencies, with each range corresponding to a different output beam energy. For example, if the accelerator 912 is configured to produce three different output beam energies, the RF voltage is capable of sweeping over three different ranges of frequencies. In another example, corresponding to continuous beam energy variations, the RF voltage sweeps over frequency ranges that continuously change. The different frequency ranges may have different lower frequency and/or upper frequency boundaries.
  • The extraction channel may be configured to accommodate the range of different energies produced by the variable-energy particle accelerator. For example the extraction channel may be large enough to support the highest and lowest energies produced by the particle accelerator. That is, the extraction channel may be sized or otherwise configured to receive and to transmit particles within that range of energies. Particle beams having different energies can be extracted from the accelerator 912 without altering the features of the regenerator that is used for extracting particle beams having a single energy. In other implementations, to accommodate the variable particle energy, the regenerator can be moved to disturb (e.g., change) different particle orbits in the manner described above and/or iron rods (magnetic shims) can be added or removed to change the magnetic field bump provided by the regenerator. More specifically, different particle energies will typically be at different particle orbits within the cavity. By moving the regenerator, it is possible to intercept a particle orbit at a specified energy and thereby provide the correct perturbation of that orbit so that particles at the specified energy reach the extraction channel. In some implementations, movement of the regenerator (and/or addition/removal of magnetic shims) is performed in real-time to match real-time changes in the particle beam energy output by the accelerator. In other implementations, particle energy is adjusted on a per-treatment basis, and movement of the regenerator (and/or addition/removal of magnetic shims) is performed in advance of the treatment. In either case, movement of the regenerator (and/or addition/removal of magnetic shims) may be computer controlled. For example, a computer may control one or more motors that effect movement of the regenerator and/or magnetic shims.
  • In some implementations, the regenerator is implemented using one or more magnetic shims that are controllable to move to the appropriate location(s).
  • As an example, table 1 shows three example energy levels at which example accelerator 912 can output particle beams. The corresponding parameters for producing the three energy levels are also listed. In this regard, the magnet current refers to the total electrical current applied to the one or more coil sets in the accelerator 912; the maximum and minimum frequencies define the ranges in which the RF voltage sweeps; and “r” is the radial distance of a location to a center of the cavity in which the particles are accelerated.
  • TABLE 1
    Examples of beam energies and respective parameters.
    Magnetic Magnetic
    Beam Magnet Maximum Minimum Field at Field at
    Energy Current Frequency Frequency r = 0 mm r = 298 mm
    (MeV) (Amps) (MHz) (MHz) (Tesla) (Tesla)
    250 1990 132 99 8.7 8.2
    235 1920 128 97 8.4 8.0
    211 1760 120 93 7.9 7.5
  • Details that may be included in an example particle accelerator that produces charged particles having variable energies are described below. The accelerator can be a synchrocyclotron and the particles may be protons. The particles may be output as pulsed beams. The energy of the beam output from the particle accelerator can be varied during the treatment of one target volume in a patient, or between treatments of different target volumes of the same patient or different patients. In some implementations, settings of the accelerator are changed to vary the beam energy when no beam (or particles) is output from the accelerator. The energy variation can be continuous or non-continuous over a desired range.
  • Referring to the example shown in FIG. 1, the particle accelerator (e.g., a synchrocyclotron), which may be a variable-energy particle accelerator like accelerator 912 described above, may be configured to output particle beams that have a variable energy. The range of the variable energy can have an upper boundary that is about 200 MeV to about 300 MeV or higher, e.g., 200 MeV, about 205 MeV, about 210 MeV, about 215 MeV, about 220 MeV, about 225 MeV, about 230 MeV, about 235 MeV, about 240 MeV, about 245 MeV, about 250 MeV, about 255 MeV, about 260 MeV, about 265 MeV, about 270 MeV, about 275 MeV, about 280 MeV, about 285 MeV, about 290 MeV, about 295 MeV, or about 300 MeV or higher. The range can also have a lower boundary that is about 100 MeV or lower to about 200 MeV, e.g., about 100 MeV or lower, about 105 MeV, about 110 MeV, about 115 MeV, about 120 MeV, about 125 MeV, about 130 MeV, about 135 MeV, about 140 MeV, about 145 MeV, about 150 MeV, about 155 MeV, about 160 MeV, about 165 MeV, about 170 MeV, about 175 MeV, about 180 MeV, about 185 MeV, about 190 MeV, about 195 MeV, about 200 MeV.
  • In some examples, the variation is non-continuous and the variation step can have a size of about 10 MeV or lower, about 15 MeV, about 20 MeV, about 25 MeV, about 30 MeV, about 35 MeV, about 40 MeV, about 45 MeV, about 50 MeV, about 55 MeV, about 60 MeV, about 65 MeV, about 70 MeV, about 75 MeV, or about 80 MeV or higher. Varying the energy by one step size can take no more than 30 minutes, e.g., about 25 minutes or less, about 20 minutes or less, about 15 minutes or less, about 10 minutes or less, about 5 minutes or less, about 1 minute or less, or about 30 seconds or less. In other examples, the variation is continuous and the accelerator can adjust the energy of the particle beam at a relatively high rate, e.g., up to about 50 MeV per second, up to about 45 MeV per second, up to about 40 MeV per second, up to about 35 MeV per second, up to about 30 MeV per second, up to about 25 MeV per second, up to about 20 MeV per second, up to about 15 MeV per second, or up to about 10 MeV per second. The accelerator can be configured to adjust the particle energy both continuously and non-continuously. For example, a combination of the continuous and non-continuous variation can be used in a treatment of one target volume or in treatments of different target volumes. Flexible treatment planning and flexible treatment can be achieved.
  • A particle accelerator that outputs a particle beam having a variable energy can provide accuracy in irradiation treatment and reduce the number of additional devices (other than the accelerator) used for the treatment. For example, the use of degraders for changing the energy of an output particle beam may be reduced or eliminated for all or part of the treatment. The properties of the particle beam, such as intensity, focus, etc. can be controlled at the particle accelerator and the particle beam can reach the target volume without substantial disturbance from the additional devices. The relatively high variation rate of the beam energy can reduce treatment time and allow for efficient use of the treatment system.
  • In some implementations, the accelerator, such as the synchrocyclotron of FIG. 1, accelerates particles or particle beams to variable energy levels by varying the magnetic field in the accelerator, which can be achieved by varying the electrical current applied to coils for generating the magnetic field. As explained above, an example synchrocyclotron (e.g., FIG. 1) includes a magnet system that contains a particle source, a radiofrequency drive system, and a beam extraction system. FIG. 33 shows an example of a magnet system 1010 that may be used in a variable-energy accelerator. In this example implementation, the magnetic field established by the magnet system 1012 can vary by about 5% to about 35% of a maximum value of the magnetic field that two sets of coils 40 a and 40 b, and 42 a and 42 b are capable of generating. The magnetic field established by the magnet system has a shape appropriate to maintain focus of a contained proton beam using a combination of the two sets of coils and a pair of shaped ferromagnetic (e.g., low carbon steel) structures, examples of which are provided above.
  • Each set of coils may be a split pair of annular coils to receive electrical current. In some situations, both sets of coils are superconducting. In other situations, only one set of the coils is superconducting and the other set is non-superconducting or normal conducting (also discussed further below). It is also possible that both sets of coils are non-superconducting. Suitable superconducting materials for use in the coils include niobium-3 tin (Nb3Sn) and/or niobium-titanium. Other normal conducting materials can include copper. Examples of the coil set constructions are described further below.
  • The two sets of coils can be electrically connected serially or in parallel. In some implementations, the total electrical current received by the two sets of coils can include about 2 million ampere turns to about 10 million ampere turns, e.g., about 2.5 to about 7.5 million ampere turns or about 3.75 million ampere turns to about 5 million ampere turns. In some examples, one set of coils is configured to receive a fixed (or constant) portion of the total variable electrical current, while the other set of coils is configured to receive a variable portion of the total electrical current. The total electrical current of the two coil sets varies with the variation of the current in one coil set. In other situations, the electrical current applied to both sets of coils can vary. The variable total current in the two sets of coils can generate a magnetic field having a variable magnitude, which in turn varies the acceleration pathways of the particles and produces particles having variable energies.
  • Generally, the magnitude of the magnetic field generated by the coil(s) is scalable to the magnitude of the total electrical current applied to the coil(s). Based on the scalability, in some implementations, linear variation of the magnetic field strength can be achieved by linearly changing the total current of the coil sets. The total current can be adjusted at a relatively high rate that leads to a relatively high-rate adjustment of the magnetic field and the beam energy.
  • In the example reflected in Table 1 above, the ratio between values of the current and the magnetic field at the geometric center of the coil rings is: 1990:8.7 (approximately 228.7:1); 1920:8.4 (approximately 228.6:1); 1760:7.9 (approximately 222.8:1). Accordingly, adjusting the magnitude of the total current applied to a superconducting coil(s) can proportionally (based on the ratio) adjust the magnitude of the magnetic field.
  • The scalability of the magnetic field to the total electrical current in the example of Table 1 is also shown in the plot of FIG. 31, where Bz is the magnetic field along the Z direction; and R is the radial distance measured from a geometric center of the coil rings along a direction perpendicular to the Z direction. The magnetic field has the highest value at the geometric center, and decreases as the distance R increases. The curves 1035, 1037 represent the magnetic field generated by the same coil sets receiving different total electrical current: 1760 Amperes and 1990 Amperes, respectively. The corresponding energies of the extracted particles are 211 MeV and 250 MeV, respectively. The two curves 1035, 1037 have substantially the same shape and the different parts of the curves 1035, 1037 are substantially parallel. As a result, either the curve 1035 or the curve 1037 can be linearly shifted to substantially match the other curve, indicating that the magnetic field is scalable to the total electrical current applied to the coil sets.
  • In some implementations, the scalability of the magnetic field to the total electrical current may not be perfect. For example, the ratio between the magnetic field and the current calculated based on the example shown in table 1 is not constant. Also, as shown in FIG. 31, the linear shift of one curve may not perfectly match the other curve. In some implementations, the total current is applied to the coil sets under the assumption of perfect scalability. The target magnetic field (under the assumption of perfect scalability) can be generated by additionally altering the features, e.g., geometry, of the coils to counteract the imperfection in the scalability. As one example, ferromagnetic (e.g., iron) rods (magnetic shims) can be inserted or removed from one or both of the magnetic structures (e.g., yokes, pole pieces, and the like). The features of the coils can be altered at a relatively high rate so that the rate of the magnetic field adjustment is not substantially affected as compared to the situation in which the scalability is perfect and only the electrical current needs to be adjusted. In the example of iron rods, the rods can be added or removed at the time scale of seconds or minutes, e.g., within 5 minutes, within 1 minute, less than 30 seconds, or less than 1 second.
  • In some implementations, settings of the accelerator, such as the current applied to the coil sets, can be chosen based on the substantial scalability of the magnetic field to the total electrical current in the coil sets.
  • Generally, to produce the total current that varies within a desired range, any appropriate combination of current applied to the two coil sets can be used. In an example, the coil set 42 a, 42 b can be configured to receive a fixed electrical current corresponding to a lower boundary of a desired range of the magnetic field. In the example shown in table 1, the fixed electrical current is 1760 Amperes. In addition, the coil set 40 a, 40 b can be configured to receive a variable electrical current having an upper boundary corresponding to a difference between an upper boundary and a lower boundary of the desired range of the magnetic field. In the example shown in table 1, the coil set 40 a, 40 b is configured to receive electrical current that varies between 0 Ampere and 230 Amperes.
  • In another example, the coil set 42 a, 42 b can be configured to receive a fixed electrical current corresponding to an upper boundary of a desired range of the magnetic field. In the example shown in table 1, the fixed current is 1990 Amperes. In addition, the coil set 40 a, 40 b can be configured to receive a variable electrical current having an upper boundary corresponding to a difference between a lower boundary and an upper boundary of the desired range of the magnetic field. In the example shown in table 1, the coil set 40 a, 40 b is configured to receive electrical current that varies between −230 Ampere and 0 Ampere.
  • The total variable magnetic field generated by the variable total current for accelerating the particles can have a maximum magnitude greater than 4 Tesla, e.g., greater than 5 Tesla, greater than 6 Tesla, greater than 7 Tesla, greater than 8 Tesla, greater than 9 Tesla, or greater than 10 Tesla, and up to about 20 Tesla or higher, e.g., up to about 18 Tesla, up to about 15 Tesla, or up to about 12 Tesla. In some implementations, variation of the total current in the coil sets can vary the magnetic field by about 0.2 Tesla to about 4.2 Tesla or more, e.g., about 0.2 Tesla to about 1.4 Tesla or about 0.6 Tesla to about 4.2 Tesla. In some situations, the amount of variation of the magnetic field can be proportional to the maximum magnitude.
  • FIG. 32 shows an example RF structure for sweeping the voltage on the dee plate 500 over an RF frequency range for each energy level of the particle beam, and for varying the frequency range when the particle beam energy is varied. The semicircular surfaces 503, 505 of the dee plate 500 are connected to an inner conductor 1300 and housed in an outer conductor 1302. The high voltage is applied to the dee plate 500 from a power source (not shown, e.g., an oscillating voltage input) through a power coupling device 1304 that couples the power source to the inner conductor. In some implementations, the coupling device 1304 is positioned on the inner conductor 1300 to provide power transfer from the power source to the dee plate 500. In addition, the dee plate 500 is coupled to variable reactive elements 1306, 1308 to perform the RF frequency sweep for each particle energy level, and to change the RF frequency range for different particle energy levels.
  • The variable reactive element 1306 can be a rotating capacitor that has multiple blades 1310 rotatable by a motor (not shown). By meshing or unmeshing the blades 1310 during each cycle of RF sweeping, the capacitance of the RF structure changes, which in turn changes the resonant frequency of the RF structure. In some implementations, during each quarter cycle of the motor, the blades 1310 mesh with the each other. The capacitance of the RF structure increases and the resonant frequency decreases. The process reverses as the blades 1310 unmesh. As a result, the power required to generate the high voltage applied to the dee plate 103 and necessary to accelerate the beam can be reduced by a large factor. In some implementations, the shape of the blades 1310 is machined to form the required dependence of resonant frequency on time.
  • The RF frequency generation is synchronized with the blade rotation by sensing the phase of the RF voltage in the resonator, keeping the alternating voltage on the dee plates close to the resonant frequency of the RF cavity. (The dummy dee is grounded and is not shown in FIG. 32).
  • The variable reactive element 1308 can be a capacitor formed by a plate 1312 and a surface 1316 of the inner conductor 1300. The plate 1312 is movable along a direction 1314 towards or away from the surface 1316. The capacitance of the capacitor changes as the distance D between the plate 1312 and the surface 1316 changes. For each frequency range to be swept for one particle energy, the distance D is at a set value, and to change the frequency range, the plate 1312 is moved corresponding to the change in the energy of the output beam.
  • In some implementations, the inner and outer conductors 1300, 1302 are formed of a metallic material, such as copper, aluminum, or silver. The blades 1310 and the plate 1312 can also be formed of the same or different metallic materials as the conductors 1300, 1302. The coupling device 1304 can be an electrical conductor. The variable reactive elements 1306, 1308 can have other forms and can couple to the dee plate in other ways to perform the RF frequency sweep and the frequency range alteration. In some implementations, a single variable reactive element can be configured to perform the functions of both the variable reactive elements 1306, 1308. In other implementations, more than two variable reactive elements can be used.
  • Referring back to FIG. 3 and also to FIG. 34, at the output of extraction channel of a particle accelerator 3401 (which may have configuration shown in FIGS. 1, 2) is a scanner comprised of scanning components 3402, such as a scanning magnet. As described with respect to FIG. 3, in an example operation, the scanning magnet is controllable in one or more (e.g., at least two) dimensions (e.g., Cartesian XY dimensions) to direct the particle beam across a part (e.g., a cross-section) of an irradiation target. An ion chamber detects the dosage of the beam and feeds-back that information to a control system to adjust beam movement. An energy degrader is controllable to move one or more elements—e.g., plates—into, and out of, the path of the particle beam to change the energy of the particle beam and therefore the depth (the Z direction) to which the particle beam will penetrate the irradiation target. For example, the energy degrader may include one or more computer-controlled motors, that drive a plate or multiple plates in sequence into the beam field, and retract the plate or plates from the beam field. In some implementations, the beam field corresponds the maximum lateral extent that the particle beam may move in specified directions, e.g., in a Cartesian XY plane above an irradiation target as shown, for example, in FIG. 19.
  • As described herein, scanning of the particle beam does not wait for plates to be moved into place, but rather scanning of the particle beam may be performed during plate movement. Although scanning may be performed during plate movement, scanning may also be performed when plates are stationary or not present. For example, in some cases, to reach a deepest layer of a target, no plate need be moved into the path of the particle beam. And, in some cases, all plates may be positioned and stationary while scanning takes place. In some implementations, the energy degrader may have a configuration and operation as described with respect to FIGS. 36 to 49, which are described below
  • Referring to FIG. 34, an energy degrader 3403, which may have the configuration and operation of FIGS. 36 to 49, is located between particle accelerator 3401 and irradiation target 3405 (e.g., a tumor in the patient). For example, energy degrader 3403 may be located on a nozzle 610 of inner gantry 601 (FIG. 29), and may be controlled by a computer system that also controls operation of other components of the particle therapy system. Operation of energy degrader 3403 may be coordinated with, and controlled with, operation of the scanning components, the particle accelerator, and the inner and outer gantries described herein to implement the particle therapy treatment described herein, and variations thereof.
  • In some implementations, beam passage through the energy degrader may result in further beam divergence. Accordingly, an aperture 3404 may be positioned between the energy degrader and the irradiation target. The aperture may be controllable to further shape the beam, as described herein.
  • In an example, each plate of the energy degrader located in the particle beam path absorbs an amount of energy in the particle beam. Accordingly, the more plates that are placed in the path of the particle beam, the less energy the beam has, and the less deep the beam will penetrate into the irradiation target. Conversely, the fewer plates that are placed in front of the particle beam, the more energy the beam has (since less energy is absorbed by the plate(s)), and the more deep the beam will penetrate into the irradiation target. Thus, for a given plate of the energy degrader, the energy of the particle beam incident on that plate exceeds the energy of the particle beam following passage through the plate. In some implementations, the plates may be made of one or more of the following example materials: polycarbonate, carbon, beryllium, or other material having a low atomic number. Other materials, however, may be used in place of, or in addition to, these example materials. As described herein, a treatment plan may dictate the configuration of the energy degrader at any particular time during treatment, and feedback from the ionization chamber may be used for positioning and position correction of the particle beam.
  • The energy degrader may be a high-speed energy-switching range shifter. In an example, an energy degrader of this type includes one or more elements, e.g., one or more plates, that move during movement of the particle beam during scanning. For example, the plates(s) may move from a starting position towards an ending position and, while the plate(s) move, the particle beam is moved in one or more dimensions across the surface of the plate(s). For example, the particle beam may be moved in one dimension, in two dimensions, or in three dimensions across the surface of the plate(s) and, ultimately, across the irradiation target. For example, FIG. 49 shows a top perspective view example plate 4901. Spot 4902 of particle beam is scanned in an example two-dimensional path labeled 4903 a, 4903 b, 4903 c, 4903 d, and 4903 e. Example future positions of spot 4902 during scanning are labeled 4902 a, 4902 b, 4902 c, 4902 d, and 4902 e, although it is noted that spot will appear at all locations along the two-dimensional path.
  • The speed of the beam's movement in the movement direction may be the same as, slower than, or faster than, the speed of movement of the plate(s) in the movement direction (so long as the beam remains on a plate surface). In some implementations, if the beam moves faster than a plate, then the beam may stop to wait for the plate. As described herein, concurrent movement of plates and the particle beam can decrease the treatment time relative to some known energy degraders.
  • In some implementations, each of the plates has a uniform thickness, as shown in FIG. 36. That is, in such implementations, there is little or no thickness variation across each plate. In some implementations, the plates of the energy degrader may each have the same thickness, defined as a “step size”. In this context, a step size refers to the distance between two layers of a target to be treated. That is, the thickness may correspond, e.g., to the beam energy required to hit individual layers of the irradiation target. In some implementations, no plate is used to reach the deepest layer of an irradiation target. For example, the energy degrader may be configured so that no plates are in the path of the particle beam, and so that the particle beam simply passes, without energy change, to the irradiation target. Then, plates are added to reach other, shallower layers. That is, to reach more shallow layers of the irradiation target, plates are moved into the beam field/treatment area and into the path of the particle beam.
  • By way of example, referring to FIG. 35, an example irradiation target 3500 may be divided into ten layers 3499, 3501, 3502, 3503, 3504, 3505, 3506, 3507, 3508, and 3509 (also referred to as steps), each of which is to be treated by scanning the particle beam across that layer. Layer 3499 is at the deep end 3510 of the target and requires the most energy to hit, whereas layer 3509 is at the shallow end 3511 of the target and requires the least energy to hit. Accordingly, in this example implementation, no plates are moved into the path of the particle beam to hit layer 3499. That is, the particle beam passes, without energy change, through the energy degrader. Thereafter, in an example operation, using plates having a thickness that corresponds to a single step (e.g., an energy level of the layer), a single plate may be moved into the beam path to change the energy of the beam so that the beam hits layer 3501, two plates may be moved into the beam path to change the energy of the beam so that the beam hits layer 3502, three plates may be moved into the beam path to change the energy of the beam so that the beam hits hit layer 3503, and so forth until all layers are treated. As described herein, the particle beam moves across the plate(s) (and thus, ultimately, across the corresponding layers) as the plate(s) move across the beam field, thereby treating the irradiation target during time that was heretofore not used for treatment.
  • In some implementations, different plates within the energy degrader may have different thicknesses. For example, in some implementations, the energy degrader may contain a first plate having a first thickness and multiple additional plates each having a second thickness that is different than the first thickness, as shown in FIG. 37. In an example, the first plate may have a thickness that corresponds to the beam energy required to hit an individual layer of the irradiation target (e.g., a single step size). The additional plates may each be thicker than the first plate. For example, each additional plate may have a thickness that is two step sizes or twice as thick as the first plate to allow combinations of first and other plates to produce beam energies required to hit every layer within the irradiation target. Referring to FIG. 35, in an example implementation, target 3500 may be treated as follows using the first plate and the additional plates. To treat layer 3499, all plates may be moved out of the beam path. To treat layer 3501, the first plate may be moved into the beam path. To treat layer 3502, the first plate may be retracted from the beam path and an additional plate (having twice the thickness of the first plate) may be moved into the beam path. To treat layer 3503, both the first plate having a single step thickness and an additional plate having the two-step thickness may be moved into the beam path. To treat layer 3504, the first plate may be removed from the beam path and two additional plates, each having a two-step thickness, may be placed into the beam path. This process, which includes introducing zero, one, or more second plates and the first plate for odd-numbered layers, excluding the deepest layer 3499 (e.g., layers 3501, 3503, 3505, 3507, and 3509 in this example) and retracting the first plate for even-numbered layers (e.g., layers 3502, 3504, 3506, and 3508 in this example), may be performed until all layers of the target have been treated. As described herein, the particle beam moves across the plate(s) (and, ultimately, across corresponding layers of the irradiation target) as the plate(s) move across the beam field, thereby treating the irradiation target during time that was heretofore not used for treatment.
  • In some implementations, the individual plates may have different thicknesses than those described herein. For example, the plates may have more than two different thicknesses, and may be sequenced appropriately to hit all layers of a radiation target. For example, the energy degrader may contain a first plate having a single step size, and additional plates that are thicker than the first plate. For example, some additional plates may be two step sizes thick, while others are three step sizes thick, four step sizes thick, eight step sizes thick, and so forth. Referring, for example, to FIG. 35, target 3500 may be treated as follows using the first plate and the additional plates. To treat layer 3499, all plates may be moved out of the beam path. To treat layer 3501, the first plate may be moved into the beam path. To treat layer 3502, the first plate may be removed from the beam path and a second additional plate (having twice the thickness of the first plate) may be moved into the beam path. To treat layer 3503, the first plate and the second plate may be removed from the beam path and a third additional plate (having three times the thickness of the first plate) may be moved into the beam path. To treat layer 3504, the third additional plate (having a three-step thickness) may be left in the beam path and the first plate (having a one-step thickness) may be moved into the beam path. To treat layer 3505, the third additional plate may be left in the beam path, the first plate may be removed from the beam path, and the second additional plate (having a two-step thickness) may be moved into the beam path. This process, which includes moving different plates into the beam path different times based on the energy level desired, may be performed until all layers of the target have been treated. As described herein, the particle beam moves across the plate(s) as the plate(s) move across the beam field, thereby treating the irradiation target during time that was heretofore not used for treatment.
  • In some implementations, the layers may, but need not, be treated in depth-wise order. In this regard, referring to FIG. 35, the plates of the energy degrader may be sequenced so that layer 3499 is treated first, followed by layer 3501, followed by layer 3502, followed by layer 3503, and so forth until all layers are treated in order, or so that layer 3509 is treated first, followed by layer 3508, followed by layer 3507, and so forth until all layers are treated in order. In some implementations, however, the plates of the energy degrader may be sequenced so that the layers are not treated in depth-wise order, e.g., so that layer 3503 is treated first, followed by layer 3508, followed by layer 3501, and then followed by other layers until all layers are treated. The order in which layers are treated may be determined by a treatment plan, which may be based, at least in part, on the configuration of the energy degrader.
  • In some implementations, the use of fewer plates may reduce the number of moving parts in the energy degrader, thereby making the energy degrader less prone to mechanical malfunction. Fewer plates may also reduce the size of the energy degrader allowing the energy degrader to be located relatively close to a patient undergoing treatment. Movement of plates into, or out of, the beam path can noisy. Use of plates having different thicknesses may reduce the number of plates that need to be moved into the beam path, which may reduce noise during treatment in some cases.
  • FIG. 36 shows an example energy degrader 3600 having multiple plates, each of which corresponds to a single step. FIG. 37 shows an example energy degrader 3700 also having multiple plates, with one plate 3701 corresponding to a single step and with the multiple other plates 3702 each corresponding to two steps (in other words, in this example, plate 3701 is half the thickness of each of plates 3702). Energy degrader 3700 may require movement of fewer plates than energy degrader 3600 in order to hit all layers of a target and, therefore, may be less noisy, smaller, and less susceptible to mechanical malfunction in some cases. In some implementations, energy degrader 3700 may include multiple single-step plates like plate 3701, and multiple thicker plates like plates 3702. In some implementations, energy degrader 3700 may include a single thicker plate like plate 3702, and multiple single-step plates like plate 3701.
  • In the example energy degraders described herein, individual plates are movable into, and out of, the path of the particle beam, and may continue their movement as the particle beam is moved during scanning. More specifically, in some known energy degraders, plates are positioned prior to scanning of the particle beam. After positioning, scanning is performed, and then halted as the plates are repositioned. Treatment time may be prolonged in systems such as these. By moving the particle beam during movement of its plates, as described herein, the example energy degrader may reduce treatment time relative to the treatment time resulting from use of known systems. This is because both the particle beam and the plates move at the same time. Thus, time that was previously used to move plates prior to patient treatment can be used for actual treatment.
  • In some implementations, the same computer system that controls the energy degrader also controls movement of the particle beam during scanning. In some implementations, different computer systems control operations of the energy degrader and movement of the particle beam. In either case, operations of the energy degrader and/or the scanner may be coordinated so that the particle beam passes through an appropriate number of plate(s) for the treatment layer desired while those plate(s) are in motion across at least part of the beam field. In some implementations, operation of the energy degrader also includes passing the particle beam through plates whose motion has stopped, as also described herein.
  • Referring to FIG. 38, in an example operation, plates 3801, 3802 of an energy degrader are controllable to move in a same direction (in this example, the direction of arrow 3803), and at the same time, during movement of particle beam 3804 during scanning. In the example of FIG. 38, movement of particle beam 3804 during movement of the plates is represented by arrow 3806. In the example of FIG. 38 and the other figures presented subsequently, the particle beam at a future location, following movement, is represented in dashed lines. In the example of FIG. 38 and the other figures presented subsequently, a plate of the energy degrader at a future location, following movement, is represented in dashed lines. Only a portion of the plate at the future location may be represented (as is the case in FIG. 38), since current and future locations of the plate may overlap and the current plate location is represented in solid lines.
  • In an example operation, the particle beam 3804 passes through one or more of the plates (e.g., at least part) of the energy degrader while corresponding plates are in motion. For example, FIG. 38 shows first plate 3801 and second plate 3802, both of which are part of an example energy degrader. First plate 3801 and second plate 3802 are controllable to move in the direction of arrow 3803. In this example, the particle beam is orthogonal to the plates, although that need not be the case in some implementations. For example, the particle beam may be non-orthogonal to the plates as is the case with intensity-modulated proton therapy described with respect to FIG. 18. The particle beam is represented by a spot 3807 on a plate (here, plate 3802) on which the particle beam is incident.
  • In an example operation, plate 3802 begins moving towards/into the beam field 3809 in the direction of arrow 3803. Scanning may begin at any appropriate time after plate 3802 is within the beam field. When scanning begins will be determined by a treatment plan, which identifies the location of a radiation target relative to the plates of the energy degrader. As described herein, scanning may begin within the beam field prior to any plates being in the beam field. For example, in some implementations, to scan a deepest layer in a target, no beam energy change is required and, therefore, no plates are in the path of the beam. However, the plates may begin moving towards, and into, the beam field at any appropriate time before or after scanning begins, including as the deepest layer is being scanned, plates may be moved into the beam field but trail the beam path.
  • In some implementations, movement of the particle beam across plate 3802 is limited to movement outside of a predefined distance from an edge 3810 of plate 3802. For example, the energy degrader and/or the scanning system may be controlled so that the particle beam does not pass near to edge 3810. This is because, as shown in FIG. 39, a spot incident on plate 3802 has a Gaussian distribution 3900 of particles. Accordingly, applying the spot near to (e.g., within a distance of) an edge 3810 of plate 3802 may cause some particles to pass, unimpeded, to the patient unintentionally. Accordingly, operation of the scanning system and/or energy degrader may be controlled so that spots are applied away from a least one, and in some cases all, edges of plates. In some implementations, the minimum distance between the spot and the edge of a plate is in the range of 2π to 2.5σ, where σ is one standard deviation of the Gaussian curve representing the distribution of particles in a spot. However, the implementations described herein are not limited to distances in the range of 2σ to 2.5σ.
  • Referring back to FIG. 38, particle beam movement across plate 3802 produces a reduced-energy particle beam 3799 that is applied to the irradiation target 3814. That is, the particle beam passes through plate 3802, thereby changing (e.g., reducing) the energy of the particle beam to enable the particle beam to hit a corresponding energy layer (step) of the irradiation target. In this example, at some point in time after motion of plate 3802 begins, and while plate 3802 is in motion and movement of the particle beam continues, plate 3801 also starts to move, in this example, in the direction of arrow 3803. During its motion, plate 3801 partly overlaps and trails plate 3802, and both plates continue to move concurrently for at least some period of time. In some implementations, edge 3810 of plate 3802 may move least a 2σ to 2.5σ distance relative to the edge 3812 of plate 3801 before plate 3801 starts moving; however, in other implementations, different criteria may be used. In some implementations, there is not a trailing plate. For example, in FIG. 38, plate 3801 may not begin moving until plate 3802 has reached its ending position or until plate 3802 has been moved to its ending position and then retracted to its starting position (e.g., plate 3801 may not trail plate 3802).
  • FIGS. 38A and 38B depict the plates of FIG. 38 without dashed lines at different points during the scanning of irradiation target 3814.
  • At some time, particle beam movement across plate 3802 will be completed—for example, the entire layer corresponding to the step of plate 3802 may be scanned. Thereafter, scanning for the next layer of the irradiation target may begin. In this context, “next” does not necessarily mean a next layer in depth sequence as shown in FIG. 35, but rather a next layer to be scanned according to a treatment plan. As explained above, that next layer need not be a layer that is in depth-wise sequence relative to the previously-scanned layer. The next layer may be reached, in this example, by moving the particle beam across, and through, both plates 3801 and 3802. Because plate 3801 has already begun moving, plate 3801 may be in place, or closer in place than would otherwise be the case had plate 3801 not begun movement, to begin scanning operations for the next layer.
  • Referring to the examples of FIGS. 40 and 41, the particle beam may next be moved across combined plates 3801 and 3802 from a point towards the starting position (reverse direction) or from a point towards the ending position (forward direction). In this regard, in an example operation, each plate of the energy degrader moves from a starting position 4000 to an ending position 4001. In some implementations, the scanning system may begin scanning the particle beam through the combined plates at a point near to the starting position and proceed towards a point near to the ending position (with the respective points being determined based on the treatment plan). This is referred to as scanning in the forward direction. In some implementations, the scanning system may begin scanning the particle beam at a point near to the ending position and proceed towards a point near to the starting position (again, with the respective points being determined based on the treatment plan). This is referred to as scanning in the reverse direction. The scanning direction may be specified in the treatment plan, and may be based on any appropriate factors, such as the location of the plates, the state of the beam, and so forth.
  • By way of example, scanning may be performed in the forward direction (e.g., towards the ending position) and then in the reverse direction (e.g., towards the starting position) if the plates are appropriately positioned. However, in some cases, such as that shown in FIG. 40, after plate 3802 is scanned, e.g., the plate has reached the end position 4001, a trailing plate 3801 may not yet be in an appropriate position to scan through both plates in the reverse direction. In some cases, it may take more time to wait for the trailing plate 3801 to reach the appropriate position for reverse scanning than to reposition the beam near to the starting position to scan towards the ending position. Accordingly, in such cases, the particle beam is repositioned at an appropriate point 4003 towards the starting position 4000, and scanning through both plates proceeds in the forward direction of arrow 3803 while plate 3801 continues to move towards the end position 4001 (plate 3802 has stopped movement at this point). Again, because plate 3801 is already in place across the beam field, there is no need to wait for that plate to be appropriately positioned for scanning through both plates to begin. Furthermore, while scanning proceeds, plate 3801 continues to move towards the ending position 4001 in the direction of arrow 3803. Plate 3802 may be stationary at this point.
  • In some cases, as shown in FIG. 41, after plate 3802 is scanned, the trailing plate 3801 may be in an appropriate position, or such a position may be reachable in an appropriate time, to scan through both plates in the reverse direction (the direction of arrow 4100). Accordingly, in these cases, the scanning may proceed in the reverse direction and plate 3801 may reverse its movement direction. As the particle beam is scanned towards the starting position, one or both of plates 3801 and/or 3802 may be retracted, that is, moved toward the starting position so that a different configuration of plates can be moved into the beam field for a next scan. In the example shown in FIG. 41, both plates are retracted; however, that need not be the case.
  • In the examples of FIGS. 40 and 41, a deeper layer in the target is scanned first by moving a single plate 3802 into the beam path and a more shallow layer is target is scanned next by moving another plate 3801 into the beam path so that the beam passes through both plates 3801 and 3802. In some implementations, two or more plates may first be moved into the beam path (thereby treating more shallow layer(s)), and subsequently plate(s) may be retracted during scanning. For example, referring to FIG. 42, in an example operation, two (or more) plates 3801, 3802 may begin motion concurrently from their starting position 4000 towards their ending position 4001 in the particle beam field. During movement of the plates, the particle beam may be moved across the plates in the forward direction (represented by arrow 3803), thereby causing the particle beam to pass through both plates 3801 and 3802 to produce a particle beam 3805 having an appropriate energy. Referring to FIG. 43, after the plates reach the ending position 4001, the particle beam may be scanned in the reverse direction (represented by arrow 4301) as a plate, such as plate 3802, is first retracted towards the staring position 4000. That is, plate 3802 is retracted first so that the particle beam moves across only plate 3801, as shown. Plate 3801 may also be retracted as the particle beam moves across plate 3801, as shown. The scanning components and energy degrader may be controlled so that the particle beam follows, but does not pass through, plate 3802 during its movement in the direction of arrow 4301, thereby causing the particle beam to pass through plate 3801 only to produce a particle beam 3799 having an appropriate energy.
  • Any appropriate number (e.g., one, two, or more) plates may be moved across the beam field while the particle beam is scanned across the irradiation target in either the forward or reverse direction, as described herein. The number and sequence of plates, and the scanning direction, may be specified in the treatment plan, as appropriate. In addition, as described herein, different plates may have different thicknesses. Plate thickness may affect how plates are moved.
  • Movement of the plates may be sequenced so that the particle beam is not turned-off during treatment or so that the particle beam turn-off time has been reduced. For example, the speed of scanning the particle beam, the thicknesses of the plates, and movement of the plates may be selected so that reverse-direction scanning immediately or quickly follows forward direction scanning during treatment. For example, referring to FIGS. 44 to 46, an example energy degrader includes a single thickness (“1×”) plate 4402 and a double thickness (“2×”) plate 4401 that may be moved into the treatment field at the same time in forward direction 4404 and that the particle beam 4405 may pass through both together as the particle beam is scanned in the forward direction 4404 during plate movement to produce reduced-energy particle beam 4405 a. Referring to FIG. 45, after both plates reach their ending position 4407, 2× plate 4401 may be retracted first (moved in the reverse direction 4409), while the particle beam is scanned in the reverse direction and passes through the 1× plate 4402 only to produce reduced energy particle beam 4405 b. While the particle beam is scanned in the reverse direction, the 1× plate 4402 may also be moved in the reverse direction, as shown. As explained above, the particle beam will be scanned across the beam field and through one or more plates at appropriate distances from the edge of each plate. Referring to FIG. 46, after the particle beam scan reaches the starting position and plate 4402 is fully retracted, another 2× plate 4410 may be moved into position and both 2× plates 4401 and 4410 may be moved in the forward direction of arrow 4404 as the particle beam is scanned in the forward direction to produce reduced-energy particle beam 4405 c. Sequencing of various plates may continue, as appropriate, until all layers of the target are treated.
  • As noted above, example implementations of the energy degrader may contain multiple plates, each having a thickness of 2×, and a single plate or multiple plates having a thickness of 1×. In implementations such as these, the plates are sequenced so as to treat each layer of the target. For example, as shown in FIG. 47, together with zero, one, or multiple 2× plates, a 1× plate 4701 can be moved into the beam field for every odd layer 4702 to 4705 to be treated by beam 4700, and moved out of the beam field for every even layer 4706 to 4709 to be treated. As explained herein, layers in the target may be treated out of order or not, depending upon the treatment plan.
  • In some implementations, as noted, all of the plates may have the same thickness. So, for example an initial, single plate may be moved into, and through, the beam field, and the particle beam scanned across the beam field during movement of the plate in order to produce a particle beam having the energy level sufficient to reach an appropriate layer. A second plate may begin motion before or after the first plate reached its ending position, and the particle beam may be scanned across the beam field and through the second plate beginning from near to its starting position following its motion while leaving the first plate in position. During scanning, the beam passes through both the first and second plates, thereby changing its energy accordingly. A third plate may begin motion before or after the second plate reaches its ending position, and the particle beam may be scanned across the beam field and through the third plate beginning from near to its starting position following its motion while leaving the first plate and the second plate in position (their ending positions). During scanning of the particle beam, the beam passes through the first, second, and third plates, thereby changing its energy accordingly. This process may be repeated using as many plates as needed to scan all layers of the irradiation target. In this example, scanning may be performed in the forward direction. In some implementations, the scanning process may be performed in the reverse direction. For example, all plates may be moved initially from the starting position to the ending position, and scanned in the forward direction during movement. Thereafter, individual plates may be retracted, with the particle beam being scanned through the remaining plates, e.g., in the reverse direction, thereby producing particle beams that hit successively deeper layers of the irradiation target. This process may be repeated until all, or an appropriate number, of plates have been retracted.
  • As noted, control over scanning and the energy degrader may be implemented using one or more computing systems. In an example implementation, each plate of the energy degrader includes one or more sensors that are configured to identify a location of the plate relative to the beam field. Referring to FIG. 48, in some implementations, each plate 4801 includes two sensors 4802, 4803.
  • In some implementations, as shown in FIG. 48, the sensors are strip sensors located on the same side of each plate; however, in other implementations, the number, configuration, and placement of the sensors may be different than that shown in FIG. 48 or described herein. In an example operation, the sensors are independent, e.g., the output of one sensor is not dependent upon the output of the other sensor. Independent sensors provide redundancy, and confirmation that the determined location of the plate is accurate. Each sensor detects the position of the plate on which the sensors are located relative to, and within, the beam field, and relays that position to the computing system(s) that controls operation of the scanning system. The feedback from the sensors may be continuous during plate motion. In some implementations, the sensors output voltage that is proportional to plate positions; however, other types of sensors may be used, e.g., ones that detect motor motion in relation to plate position. The particle therapy control system uses this information to determine where to place the beam, and where and when to begin scanning. The computing system(s) may also control movement of the plates into and out of the beam field. Control may be based on the treatment plan and may be coordinated with control of the scanning system.
  • In some implementations, the speed of movement of the plates may be the same regardless of plate thickness, direction of movement (e.g., starting to ending position or ending to starting position), or position relative to any other plate. In some implementations, the speed of movement of plates may be controlled and may vary. For example, in some implementations, the speed of a trailing plate may be different (e.g., greater than) the speed of a plate being scanned during motion. This may be, e.g., to enable the trailing plate to reach an appropriate location at a set time. In some implementations, plate position may be determined, or augmented, based on knowledge of the plate's speed, its initial position, and the time at which it began motion. For example, expected plate position may be calculated based on knowledge of the plate's speed, its initial position, and the time at which it began motion. In some implementations, because the plates are moved in coordination with movement of the beam during scanning, the plates need only move as fast as the beam is moved. In some cases, this coordinated movement of the beam and plates may reduce noise and mechanical wear on the energy degrader relative known degraders that move the plates as fast as possible.
  • As noted above, particles in the beam have a Gaussian distribution. In some implementations, passage through one or more plates may result in further beam divergence. For example, referring to FIG. 34, an aperture 3404 may be positioned between the energy degrader and the irradiation target (e.g., the patient). The aperture trims spots located near the edges of the irradiation target, e.g., blocks a portion of the particle beam to provide a sharp edge to the beam and to protect surrounding (non-treated) tissue from the particle beam. For example, beam-blocking material of the aperture may be placed between a part of the beam and healthy tissue to block the application of the beam to healthy tissue. In some implementations, the aperture is controllable dynamically to change shape and thereby adapt to the shape of the radiation target. Examples of apertures that may be used are described in U.S. patent application Ser. No. 14/937,048 filed on Nov. 10, 2015 and titled “Adaptive Aperture”, which is incorporated herein by reference. Examples of structures that may operate to block a portion of the particle beam to provide a sharp edge to the beam and to protect surrounding (non-treated) tissue from the particle beam are also referred to as collimators herein, and may be used in the implementation of FIG. 34.
  • The elements used in the energy degrader and operation thereof described herein are not limited to plates. Rather, any appropriate structure may be used to affect the energy of the particle beam. In implementations that employ plates or similar structures, each plate or structure need not be of uniform thickness, e.g., there may be at least some thickness variation across one or more individual plates. If such plates are of an appropriate size (e.g., sufficiently small), such plates may be moved across the beam field so that the beam passes through one or more plates and through different portions of those plates having different thicknesses in order to treat different layers of the target.
  • The control of the gantry, the patient support, the active beam shaping elements (including, for example, the aperture, the energy degrader, and the scanning), and the synchrocyclotron to perform a therapy session is achieved by appropriate therapy control electronics (not shown).
  • Control of the particle therapy system described herein and its various features may be implemented using hardware or a combination of hardware and software. For example, a system like the ones described herein may include various controllers and/or processing devices located at various points. A central computer may coordinate operation among the various controllers or processing devices. The central computer, controllers, and processing devices may execute various software routines to effect control and coordination of testing and calibration.
  • System operation can be controlled, at least in part, using one or more computer program products, e.g., one or more computer program tangibly embodied in one or more non-transitory machine-readable media, for execution by, or to control the operation of, one or more data processing apparatus, e.g., a programmable processor, a computer, multiple computers, and/or programmable logic components.
  • A computer program can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program can be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a network.
  • Actions associated with implementing all or part of the operations of the particle therapy system described herein can be performed by one or more programmable processors executing one or more computer programs to perform the functions described herein. All or part of the operations can be implemented using special purpose logic circuitry, e.g., an FPGA (field programmable gate array) and/or an ASIC (application-specific integrated circuit).
  • Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read-only storage area or a random access storage area or both. Elements of a computer (including a server) include one or more processors for executing instructions and one or more storage area devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from, or transfer data to, or both, one or more machine-readable storage media, such as mass PCBs for storing data, e.g., magnetic, magneto-optical disks, or optical disks. Non-transitory machine-readable storage media suitable for embodying computer program instructions and data include all forms of non-volatile storage area, including by way of example, semiconductor storage area devices, e.g., EPROM, EEPROM, and flash storage area devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks.
  • Any “electrical connection” as used herein may imply a direct physical connection or a connection that includes intervening components but that nevertheless allows electrical signals to flow between connected components. Any “connection” involving electrical circuitry mentioned herein that allows signal(s) to pass, unless stated otherwise, is an electrical connection and not necessarily a direct physical connection regardless of whether the word “electrical” is used to modify “connection”.
  • Any two more of the foregoing implementations may be used in an appropriate combination in an appropriate particle accelerator (e.g., a synchrocyclotron). Likewise, individual features of any two more of the foregoing implementations may be used in an appropriate combination.
  • Elements of different implementations described herein may be combined to form other implementations not specifically set forth above. Elements may be left out of the processes, systems, apparatus, etc., described herein without adversely affecting their operation. Various separate elements may be combined into one or more individual elements to perform the functions described herein.
  • The example implementations described herein are not limited to use with a particle therapy system or to use with the example particle therapy systems described herein. Rather, the example implementations can be used in any appropriate system that directs accelerated particles to an output.
  • Other implementations not specifically described herein are also within the scope of the following claims.

Claims (21)

What is claimed is:
1-38.
39. An energy degrader comprising:
a first structure comprised of a beam-energy absorbing material that is controllable by a control system to move across at least part a beam field in a first direction while a radiation beam is incident on a surface of the first structure and while the radiation beam is moved across the surface of the first structure, where movement of the radiation beam across the surface of the first structure is at least partly in the first direction, and
a second structure comprised of a beam-energy absorbing material that is controllable by the control system to move across at least part of the beam field while the radiation beam is incident on the surface of the first structure, the second structure being controllable to trail or to lead the first structure in the first direction such that the radiation beam does not pass through the second structure during at least part of movement of the first structure and the second structure.
40. The energy degrader of claim 39, wherein the first structure comprises a first plate and the second structure comprises a second plate.
41. The energy degrader of claim 39, wherein the energy degrader is smaller in size than the beam field.
42. The energy degrader of claim 39, wherein the first structure comprises a first sensor to detect a position of the first structure relative to, and within, the beam field, and to relay the position of the first structure to the control system.
43. The energy degrader of claim 42, wherein the second structure comprises a second sensor to detect a position of the second structure relative to, and within, the beam field, and to relay the position of the second structure to the control system.
44. The energy degrader of claim 39, wherein the first structure and the second structure move are controllable by the control system to move at different speeds.
45. The energy degrader of claim 39, wherein the second structure is controllable by the control system to trail the first structure during movement.
46. The energy degrader of claim 39, wherein the first structure and the second structure are controllable by the control system to move between a starting position and an ending position, the starting position corresponding to a point where the radiation beam beings moving at least partly in the first direction and the ending position corresponding to a point where the radiation beam stops moving.
47. The energy degrader of claim 39, wherein the first structure comprises a plate having a first thickness, the second structure comprises a plate having a second thickness, and the first thickness and the second thickness are different.
48. The energy degrader of claim 39, further comprising multiple plates, the multiple plates comprise one or more first plates including the first structure and one or more second plates including the second structure, the one or more first plates and the one or more second plates being controllable by the control system to move relative to the radiation beam, each of one or more first plates having a thickness that is less than thicknesses of the one or more second plates.
49. The energy degrader of claim 39, wherein control over movement of the multiple plates by the control system comprises sequencing movement of the multiple plates so that each of multiple layers of an irradiation target is subjected to the particle beam.
50. The energy degrader of claim 49, wherein control over movement of the multiple plates by the control system comprises sequencing movement of the multiple plates so that the multiple layers of the irradiation target are treated with the particle beam non-sequentially.
51. An energy degrader comprising:
first absorbing means for changing an energy of a particle beam, the first absorbing means being controllable by control means to move across at least part a beam field in a first direction while the particle beam is incident on the first absorbing means and while the particle beam is moved across the surface of the first absorbing means, where movement of the particle beam across the surface of the first absorbing means is at least partly in the first direction, and
second absorbing means that is controllable by the control means to move across at least part of the beam field while the particle beam is incident on the surface of the first structure, the second absorbing means being controllable to trail or to lead the first absorbing means in the first direction such that the particle beam does not pass through the second absorbing means during at least part of movement of the first absorbing means and the second absorbing means.
52. An energy degrader comprising:
a first structure comprised of a beam-energy absorbing material that is controllable by a control system to move across at least part of a beam field; and
a second structure comprised of a beam-energy absorbing material that is controllable by a control system to move across at least part of the beam field;
wherein the first structure and the second structure are controllable to move at a same time and in a same direction while at least partly overlapping such that, at a first time, an irradiation target associated with the beam field is subjected to radiation passing through one of, but not both, the first structure or the second structure and, at a second time, the irradiation target is subjected to radiation passing through both the first structure and the second structure.
53. The energy degrader of claim 52, wherein at least part of the first structure and the second structure overlap.
54. The energy degrader of claim 52, wherein the first structure comprises a first plate and the second structure comprises a second plate.
55. The energy degrader of claim 52, wherein a surface area of the energy degrader is less than ¼ of an area of the beam field.
56. The energy degrader of claim 52, wherein the first structure comprises a first sensor to detect a position of the first structure relative to, and within, the beam field, and to relay the position of the first structure to the control system; and
wherein the second structure comprises a second sensor to detect a position of the second structure relative to, and within, the beam field, and to relay the position of the second structure to the control system.
57. The energy degrader of claim 52, wherein at least one of the first structure or the second structure is controllable by the control system to move in the same direction at a same speeds as a particle beam comprising the radiation moves in the same direction.
58. The energy degrader of claim 52, wherein the first structure comprises a first plate, the second structure comprises a second plate, and, when the irradiation target is subjected to radiation passing through the first plate but not the second plate, the second plate is controllable by the control system to move at a speed that is greater than the first plate for at least part of a time.
US16/895,522 2013-12-20 2020-06-08 High-speed energy switching Pending US20200368556A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/895,522 US20200368556A1 (en) 2013-12-20 2020-06-08 High-speed energy switching

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/137,854 US9962560B2 (en) 2013-12-20 2013-12-20 Collimator and energy degrader
US15/399,250 US10675487B2 (en) 2013-12-20 2017-01-05 Energy degrader enabling high-speed energy switching
US16/895,522 US20200368556A1 (en) 2013-12-20 2020-06-08 High-speed energy switching

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/399,250 Continuation US10675487B2 (en) 2013-12-20 2017-01-05 Energy degrader enabling high-speed energy switching

Publications (1)

Publication Number Publication Date
US20200368556A1 true US20200368556A1 (en) 2020-11-26

Family

ID=59088178

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/399,250 Active US10675487B2 (en) 2013-12-20 2017-01-05 Energy degrader enabling high-speed energy switching
US16/895,522 Pending US20200368556A1 (en) 2013-12-20 2020-06-08 High-speed energy switching

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/399,250 Active US10675487B2 (en) 2013-12-20 2017-01-05 Energy degrader enabling high-speed energy switching

Country Status (1)

Country Link
US (2) US10675487B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200078603A1 (en) * 2014-02-20 2020-03-12 Mevion Medical Systems, Inc. Scanning system

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
WO2018009779A1 (en) 2016-07-08 2018-01-11 Mevion Medical Systems, Inc. Treatment planning
WO2019006253A1 (en) 2017-06-30 2019-01-03 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
CN109104809A (en) * 2018-08-22 2018-12-28 西北核技术研究所 A kind of degrader and drop energy method for accelerator terminal experiment centre
WO2020185543A1 (en) * 2019-03-08 2020-09-17 Mevion Medical Systems, Inc. Collimator and energy degrader for a particle therapy system
JP7352412B2 (en) * 2019-08-28 2023-09-28 住友重機械工業株式会社 cyclotron
US11899042B2 (en) 2020-10-22 2024-02-13 Teradyne, Inc. Automated test system
EP4294513A1 (en) 2021-02-19 2023-12-27 Mevion Medical Systems, Inc. Gantry for a particle therapy system
US12007411B2 (en) 2021-06-22 2024-06-11 Teradyne, Inc. Test socket having an automated lid
CN117836034A (en) 2021-07-20 2024-04-05 美国迈胜医疗系统有限公司 Annular housing for particle therapy system
US20230022716A1 (en) * 2021-07-20 2023-01-26 Mevion Medical Systems, Inc. Gantry having a retractable cover
JP2023049895A (en) * 2021-09-29 2023-04-10 株式会社日立製作所 Radiotherapy system and operation method of radiotherapy system
CN118804785A (en) 2022-01-05 2024-10-18 美国迈胜医疗系统有限公司 Frame configured for translational movement
WO2024030424A1 (en) 2022-08-02 2024-02-08 Mevion Medical Systems, Inc. Bending magnet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006034582A (en) * 2004-07-27 2006-02-09 Mitsubishi Electric Corp Particle beam irradiation device
US20140094638A1 (en) * 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US20140094643A1 (en) * 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Controlling Particle Therapy
US8822965B2 (en) * 2012-07-12 2014-09-02 Sumitomo Heavy Industries, Ltd. Charged particle beam irradiation apparatus
US20150090894A1 (en) * 2013-09-27 2015-04-02 Mevion Medical Systems, Inc. Particle beam scanning

Family Cites Families (870)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US463291A (en) 1891-11-17 Air-escape for radiators
US773508A (en) 1904-02-05 1904-10-25 Westinghouse Electric & Mfg Co Process of regulating voltage.
US2280606A (en) 1940-01-26 1942-04-21 Rca Corp Electronic reactance circuits
US2615129A (en) 1947-05-16 1952-10-21 Edwin M Mcmillan Synchro-cyclotron
US2492324A (en) 1947-12-24 1949-12-27 Collins Radio Co Cyclotron oscillator system
US2616042A (en) 1950-05-17 1952-10-28 Weeks Robert Ray Stabilizer arrangement for cyclotrons and the like
US2659000A (en) 1951-04-27 1953-11-10 Collins Radio Co Variable frequency cyclotron
US2701304A (en) 1951-05-31 1955-02-01 Gen Electric Cyclotron
US2789222A (en) 1954-07-21 1957-04-16 Marvin D Martin Frequency modulation system
US2958327A (en) 1957-03-29 1960-11-01 Gladys W Geissmann Foundation garment
NL112025C (en) 1959-01-23
US3360647A (en) 1964-09-14 1967-12-26 Varian Associates Electron accelerator with specific deflecting magnet structure and x-ray target
GB957342A (en) 1960-08-01 1964-05-06 Varian Associates Apparatus for directing ionising radiation in the form of or produced by beams from particle accelerators
US3175131A (en) 1961-02-08 1965-03-23 Richard J Burleigh Magnet construction for a variable energy cyclotron
US3432721A (en) 1966-01-17 1969-03-11 Gen Electric Beam plasma high frequency wave generating system
JPS4323267Y1 (en) 1966-10-11 1968-10-01
NL7007871A (en) 1970-05-29 1971-12-01
US3679899A (en) 1971-04-16 1972-07-25 Nasa Nondispersive gas analyzing method and apparatus wherein radiation is serially passed through a reference and unknown gas
JPS4728762U (en) 1971-04-23 1972-12-01
US3757118A (en) 1972-02-22 1973-09-04 Ca Atomic Energy Ltd Electron beam therapy unit
JPS5036158Y2 (en) 1972-03-09 1975-10-21
CA966893A (en) 1973-06-19 1975-04-29 Her Majesty In Right Of Canada As Represented By Atomic Energy Of Canada Limited Superconducting cyclotron
US4047068A (en) 1973-11-26 1977-09-06 Kreidl Chemico Physical K.G. Synchronous plasma packet accelerator
US3992625A (en) 1973-12-27 1976-11-16 Jersey Nuclear-Avco Isotopes, Inc. Method and apparatus for extracting ions from a partially ionized plasma using a magnetic field gradient
US3886367A (en) 1974-01-18 1975-05-27 Us Energy Ion-beam mask for cancer patient therapy
US3958327A (en) 1974-05-01 1976-05-25 Airco, Inc. Stabilized high-field superconductor
US4129784A (en) 1974-06-14 1978-12-12 Siemens Aktiengesellschaft Gamma camera
US3925676A (en) 1974-07-31 1975-12-09 Ca Atomic Energy Ltd Superconducting cyclotron neutron source for therapy
US3955089A (en) 1974-10-21 1976-05-04 Varian Associates Automatic steering of a high velocity beam of charged particles
US4230129A (en) 1975-07-11 1980-10-28 Leveen Harry H Radio frequency, electromagnetic radiation device having orbital mount
ZA757266B (en) 1975-11-19 1977-09-28 W Rautenbach Cyclotron and neutron therapy installation incorporating such a cyclotron
SU569635A1 (en) 1976-03-01 1977-08-25 Предприятие П/Я М-5649 Magnetic alloy
US4038622A (en) 1976-04-13 1977-07-26 The United States Of America As Represented By The United States Energy Research And Development Administration Superconducting dipole electromagnet
US4112306A (en) 1976-12-06 1978-09-05 Varian Associates, Inc. Neutron irradiation therapy machine
DE2759073C3 (en) 1977-12-30 1981-10-22 Siemens AG, 1000 Berlin und 8000 München Electron tube
GB2015821B (en) 1978-02-28 1982-03-31 Radiation Dynamics Ltd Racetrack linear accelerators
US4197510A (en) 1978-06-23 1980-04-08 The United States Of America As Represented By The Secretary Of The Navy Isochronous cyclotron
JPS5924520B2 (en) 1979-03-07 1984-06-09 理化学研究所 Structure of the magnetic pole of an isochronous cyclotron and how to use it
FR2458201A1 (en) 1979-05-31 1980-12-26 Cgr Mev MICROWAVE RESONANT SYSTEM WITH DOUBLE FREQUENCY OF RESONANCE AND CYCLOTRON PROVIDED WITH SUCH A SYSTEM
DE2926873A1 (en) 1979-07-03 1981-01-22 Siemens Ag RAY THERAPY DEVICE WITH TWO LIGHT VISORS
US4293772A (en) 1980-03-31 1981-10-06 Siemens Medical Laboratories, Inc. Wobbling device for a charged particle accelerator
US4342060A (en) 1980-05-22 1982-07-27 Siemens Medical Laboratories, Inc. Energy interlock system for a linear accelerator
US4336505A (en) 1980-07-14 1982-06-22 John Fluke Mfg. Co., Inc. Controlled frequency signal source apparatus including a feedback path for the reduction of phase noise
JPS57162527A (en) 1981-03-31 1982-10-06 Fujitsu Ltd Setting device for preset voltage of frequency synthesizer
US4425506A (en) 1981-11-19 1984-01-10 Varian Associates, Inc. Stepped gap achromatic bending magnet
DE3148100A1 (en) 1981-12-04 1983-06-09 Uwe Hanno Dr. 8050 Freising Trinks Synchrotron X-ray radiation source
JPS58141000A (en) 1982-02-16 1983-08-20 住友重機械工業株式会社 Cyclotron
US4507616A (en) 1982-03-08 1985-03-26 Board Of Trustees Operating Michigan State University Rotatable superconducting cyclotron adapted for medical use
US4490616A (en) 1982-09-30 1984-12-25 Cipollina John J Cephalometric shield
JPS5964069A (en) 1982-10-04 1984-04-11 バリアン・アソシエイツ・インコ−ポレイテツド Sight level apparatus for electronic arc treatment
US4507614A (en) 1983-03-21 1985-03-26 The United States Of America As Represented By The United States Department Of Energy Electrostatic wire for stabilizing a charged particle beam
US4736173A (en) 1983-06-30 1988-04-05 Hughes Aircraft Company Thermally-compensated microwave resonator utilizing current-null segmentation
JPS6076717A (en) 1983-10-03 1985-05-01 Olympus Optical Co Ltd Endoscope device
SE462013B (en) 1984-01-26 1990-04-30 Kjell Olov Torgny Lindstroem TREATMENT TABLE FOR RADIOTHERAPY OF PATIENTS
FR2560421B1 (en) 1984-02-28 1988-06-17 Commissariat Energie Atomique DEVICE FOR COOLING SUPERCONDUCTING WINDINGS
US4865284A (en) 1984-03-13 1989-09-12 Siemens Gammasonics, Inc. Collimator storage device in particular a collimator cart
US4641104A (en) 1984-04-26 1987-02-03 Board Of Trustees Operating Michigan State University Superconducting medical cyclotron
GB8421867D0 (en) 1984-08-29 1984-10-03 Oxford Instr Ltd Devices for accelerating electrons
US4651007A (en) 1984-09-13 1987-03-17 Technicare Corporation Medical diagnostic mechanical positioner
JPS6180800A (en) 1984-09-28 1986-04-24 株式会社日立製作所 Radiation light irradiator
US4641057A (en) 1985-01-23 1987-02-03 Board Of Trustees Operating Michigan State University Superconducting synchrocyclotron
DE3506562A1 (en) 1985-02-25 1986-08-28 Siemens AG, 1000 Berlin und 8000 München MAGNETIC FIELD DEVICE FOR A PARTICLE ACCELERATOR SYSTEM
DE3670943D1 (en) 1985-03-08 1990-06-07 Siemens Ag MAGNETIC FIELD GENERATING DEVICE FOR A PARTICLE ACCELERATOR SYSTEM.
NL8500748A (en) 1985-03-15 1986-10-01 Philips Nv COLLIMATOR CHANGE SYSTEM.
DE3511282C1 (en) 1985-03-28 1986-08-21 Brown, Boveri & Cie Ag, 6800 Mannheim Superconducting magnet system for particle accelerators of a synchrotron radiation source
JPS61225798A (en) 1985-03-29 1986-10-07 三菱電機株式会社 Plasma generator
US4705955A (en) 1985-04-02 1987-11-10 Curt Mileikowsky Radiation therapy for cancer patients
US4633125A (en) 1985-05-09 1986-12-30 Board Of Trustees Operating Michigan State University Vented 360 degree rotatable vessel for containing liquids
LU85895A1 (en) 1985-05-10 1986-12-05 Univ Louvain CYCLOTRON
US4628523A (en) 1985-05-13 1986-12-09 B.V. Optische Industrie De Oude Delft Direction control for radiographic therapy apparatus
GB8512804D0 (en) 1985-05-21 1985-06-26 Oxford Instr Ltd Cyclotrons
DE3661672D1 (en) 1985-06-24 1989-02-09 Siemens Ag Magnetic-field device for an apparatus for accelerating and/or storing electrically charged particles
US4726046A (en) 1985-11-05 1988-02-16 Varian Associates, Inc. X-ray and electron radiotherapy clinical treatment machine
JPS62150804A (en) 1985-12-25 1987-07-04 Sumitomo Electric Ind Ltd Charged particle deflector for synchrotron orbit radiation system
DE3704442A1 (en) 1986-02-12 1987-08-13 Mitsubishi Electric Corp CARRIER BEAM DEVICE
JPS62186500A (en) 1986-02-12 1987-08-14 三菱電機株式会社 Charged beam device
US4783634A (en) 1986-02-27 1988-11-08 Mitsubishi Denki Kabushiki Kaisha Superconducting synchrotron orbital radiation apparatus
US4754147A (en) 1986-04-11 1988-06-28 Michigan State University Variable radiation collimator
US4739173A (en) 1986-04-11 1988-04-19 Board Of Trustees Operating Michigan State University Collimator apparatus and method
DE3616141A1 (en) 1986-05-14 1987-11-19 Siemens Ag Contour collimator for radiation therapy (radiotherapy, X-ray therapy)
US4763483A (en) 1986-07-17 1988-08-16 Helix Technology Corporation Cryopump and method of starting the cryopump
US4868843A (en) 1986-09-10 1989-09-19 Varian Associates, Inc. Multileaf collimator and compensator for radiotherapy machines
US4736106A (en) 1986-10-08 1988-04-05 Michigan State University Method and apparatus for uniform charged particle irradiation of a surface
US4808941A (en) 1986-10-29 1989-02-28 Siemens Aktiengesellschaft Synchrotron with radiation absorber
JP2670670B2 (en) 1986-12-12 1997-10-29 日鉱金属 株式会社 High strength and high conductivity copper alloy
GB8701363D0 (en) 1987-01-22 1987-02-25 Oxford Instr Ltd Magnetic field generating assembly
EP0276360B1 (en) 1987-01-28 1993-06-09 Siemens Aktiengesellschaft Magnet device with curved coil windings
EP0277521B1 (en) 1987-01-28 1991-11-06 Siemens Aktiengesellschaft Synchrotron radiation source with fixation of its curved coils
DE3705294A1 (en) 1987-02-19 1988-09-01 Kernforschungsz Karlsruhe MAGNETIC DEFLECTION SYSTEM FOR CHARGED PARTICLES
JPS63218200A (en) 1987-03-05 1988-09-12 Furukawa Electric Co Ltd:The Superconductive sor generation device
JPS63226899A (en) 1987-03-16 1988-09-21 Ishikawajima Harima Heavy Ind Co Ltd Superconductive wigller
US4767930A (en) 1987-03-31 1988-08-30 Siemens Medical Laboratories, Inc. Method and apparatus for enlarging a charged particle beam
US4812658A (en) 1987-07-23 1989-03-14 President And Fellows Of Harvard College Beam Redirecting
JPS6435838A (en) 1987-07-31 1989-02-06 Jeol Ltd Charged particle beam device
DE3844716C2 (en) 1987-08-24 2001-02-22 Mitsubishi Electric Corp Ionised particle beam therapy device
JP2667832B2 (en) 1987-09-11 1997-10-27 株式会社日立製作所 Deflection magnet
JPS6489621A (en) 1987-09-30 1989-04-04 Nec Corp Frequency synthesizer
GB8725459D0 (en) 1987-10-30 1987-12-02 Nat Research Dev Corpn Generating particle beams
US4945478A (en) 1987-11-06 1990-07-31 Center For Innovative Technology Noninvasive medical imaging system and method for the identification and 3-D display of atherosclerosis and the like
JPH02503521A (en) 1987-12-03 1990-10-25 ユニヴァーシティ オブ フロリダ Equipment used for stereotactic radiotherapy
US4896206A (en) 1987-12-14 1990-01-23 Electro Science Industries, Inc. Video detection system
US4870287A (en) 1988-03-03 1989-09-26 Loma Linda University Medical Center Multi-station proton beam therapy system
US4845371A (en) 1988-03-29 1989-07-04 Siemens Medical Laboratories, Inc. Apparatus for generating and transporting a charged particle beam
US4917344A (en) 1988-04-07 1990-04-17 Loma Linda University Medical Center Roller-supported, modular, isocentric gantry and method of assembly
JP2645314B2 (en) 1988-04-28 1997-08-25 清水建設株式会社 Magnetic shield
US4905267A (en) 1988-04-29 1990-02-27 Loma Linda University Medical Center Method of assembly and whole body, patient positioning and repositioning support for use in radiation beam therapy systems
US5006759A (en) 1988-05-09 1991-04-09 Siemens Medical Laboratories, Inc. Two piece apparatus for accelerating and transporting a charged particle beam
JPH079839B2 (en) 1988-05-30 1995-02-01 株式会社島津製作所 High frequency multipole accelerator
JPH078300B2 (en) 1988-06-21 1995-02-01 三菱電機株式会社 Charged particle beam irradiation device
GB2223350B (en) 1988-08-26 1992-12-23 Mitsubishi Electric Corp Device for accelerating and storing charged particles
GB8820628D0 (en) 1988-09-01 1988-10-26 Amersham Int Plc Proton source
US4880985A (en) 1988-10-05 1989-11-14 Douglas Jones Detached collimator apparatus for radiation therapy
EP0371303B1 (en) 1988-11-29 1994-04-27 Varian International AG. Radiation therapy apparatus
US5117212A (en) 1989-01-12 1992-05-26 Mitsubishi Denki Kabushiki Kaisha Electromagnet for charged-particle apparatus
JPH0834130B2 (en) 1989-03-15 1996-03-29 株式会社日立製作所 Synchrotron radiation generator
US5017789A (en) 1989-03-31 1991-05-21 Loma Linda University Medical Center Raster scan control system for a charged-particle beam
US5117829A (en) 1989-03-31 1992-06-02 Loma Linda University Medical Center Patient alignment system and procedure for radiation treatment
US5010562A (en) 1989-08-31 1991-04-23 Siemens Medical Laboratories, Inc. Apparatus and method for inhibiting the generation of excessive radiation
US5046078A (en) 1989-08-31 1991-09-03 Siemens Medical Laboratories, Inc. Apparatus and method for inhibiting the generation of excessive radiation
JP2896188B2 (en) 1990-03-27 1999-05-31 三菱電機株式会社 Bending magnets for charged particle devices
US5072123A (en) 1990-05-03 1991-12-10 Varian Associates, Inc. Method of measuring total ionization current in a segmented ionization chamber
JPH0763512B2 (en) 1990-07-09 1995-07-12 三菱電機株式会社 Radiation field limiting device
WO1992003028A1 (en) 1990-08-06 1992-02-20 Siemens Aktiengesellschaft Synchrotron radiation source
JPH0494198A (en) 1990-08-09 1992-03-26 Nippon Steel Corp Electro-magnetic shield material
JP2896217B2 (en) 1990-09-21 1999-05-31 キヤノン株式会社 Recording device
JP2529492B2 (en) 1990-08-31 1996-08-28 三菱電機株式会社 Coil for charged particle deflection electromagnet and method for manufacturing the same
JP2786330B2 (en) 1990-11-30 1998-08-13 株式会社日立製作所 Superconducting magnet coil and curable resin composition used for the magnet coil
DE4101094C1 (en) 1991-01-16 1992-05-27 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe, De Superconducting micro-undulator for particle accelerator synchrotron source - has superconductor which produces strong magnetic field along track and allows intensity and wavelength of radiation to be varied by conrolling current
IT1244689B (en) 1991-01-25 1994-08-08 Getters Spa DEVICE TO ELIMINATE HYDROGEN FROM A VACUUM CHAMBER, AT CRYOGENIC TEMPERATURES, ESPECIALLY IN HIGH ENERGY PARTICLE ACCELERATORS
JPH04258781A (en) 1991-02-14 1992-09-14 Toshiba Corp Scintillation camera
JPH04273409A (en) 1991-02-28 1992-09-29 Hitachi Ltd Superconducting magnet device; particle accelerator using said superconducting magnet device
KR950002578B1 (en) 1991-03-13 1995-03-23 후지쓰 가부시끼가이샤 Charged particle beam exposure system and charged particle beam exposure method
JP2556057Y2 (en) 1991-05-11 1997-12-03 ケージーパック株式会社 Temporary denture storage bag
JPH04337300A (en) 1991-05-15 1992-11-25 Res Dev Corp Of Japan Superconducting deflection magnet
JPH05154210A (en) 1991-12-06 1993-06-22 Mitsubishi Electric Corp Radiotherapeutic device
US5148032A (en) 1991-06-28 1992-09-15 Siemens Medical Laboratories, Inc. Radiation emitting device with moveable aperture plate
US5191706A (en) 1991-07-15 1993-03-09 Delmarva Sash & Door Company Of Maryland, Inc. Machine and method for attaching casing to a structural frame assembly
WO1993002537A1 (en) 1991-07-16 1993-02-04 Sergei Nikolaevich Lapitsky Superconducting electromagnet for charged-particle accelerator
FR2679509B1 (en) 1991-07-26 1993-11-05 Lebre Charles DEVICE FOR AUTOMATICALLY TIGHTENING THE FUT SUSPENSION ELEMENT ON THE MAT OF A FUTURE DEVICE.
US5166531A (en) 1991-08-05 1992-11-24 Varian Associates, Inc. Leaf-end configuration for multileaf collimator
JP3125805B2 (en) 1991-10-16 2001-01-22 株式会社日立製作所 Circular accelerator
US5240218A (en) 1991-10-23 1993-08-31 Loma Linda University Medical Center Retractable support assembly
BE1005530A4 (en) 1991-11-22 1993-09-28 Ion Beam Applic Sa Cyclotron isochronous
US5374913A (en) 1991-12-13 1994-12-20 Houston Advanced Research Center Twin-bore flux pipe dipole magnet
US5260581A (en) 1992-03-04 1993-11-09 Loma Linda University Medical Center Method of treatment room selection verification in a radiation beam therapy system
US5382914A (en) 1992-05-05 1995-01-17 Accsys Technology, Inc. Proton-beam therapy linac
JPH05341352A (en) 1992-06-08 1993-12-24 Minolta Camera Co Ltd Camera and cap for bayonet mount of interchangeable lens
JPH0636893A (en) 1992-06-11 1994-02-10 Ishikawajima Harima Heavy Ind Co Ltd Particle accelerator
US5336891A (en) 1992-06-16 1994-08-09 Arch Development Corporation Aberration free lens system for electron microscope
JP2824363B2 (en) 1992-07-15 1998-11-11 三菱電機株式会社 Beam supply device
US5401973A (en) 1992-12-04 1995-03-28 Atomic Energy Of Canada Limited Industrial material processing electron linear accelerator
JP3121157B2 (en) 1992-12-15 2000-12-25 株式会社日立メディコ Microtron electron accelerator
JPH06233831A (en) 1993-02-10 1994-08-23 Hitachi Medical Corp Stereotaxic radiotherapeutic device
US5440133A (en) 1993-07-02 1995-08-08 Loma Linda University Medical Center Charged particle beam scattering system
US5464411A (en) 1993-11-02 1995-11-07 Loma Linda University Medical Center Vacuum-assisted fixation apparatus
US5549616A (en) 1993-11-02 1996-08-27 Loma Linda University Medical Center Vacuum-assisted stereotactic fixation system with patient-activated switch
US5463291A (en) 1993-12-23 1995-10-31 Carroll; Lewis Cyclotron and associated magnet coil and coil fabricating process
JPH07191199A (en) 1993-12-27 1995-07-28 Fujitsu Ltd Method and system for exposure with charged particle beam
JP3307059B2 (en) 1994-03-17 2002-07-24 株式会社日立製作所 Accelerator, medical device and emission method
JPH07260939A (en) 1994-03-17 1995-10-13 Hitachi Medical Corp Collimator replacement carriage for scintillation camera
JPH07263196A (en) 1994-03-18 1995-10-13 Toshiba Corp High frequency acceleration cavity
US5748703A (en) 1994-03-22 1998-05-05 Cosman; Eric R. Dynamic collimator for a linear accelerator
DE4411171A1 (en) 1994-03-30 1995-10-05 Siemens Ag Compact charged-particle accelerator for tumour therapy
US5874811A (en) 1994-08-19 1999-02-23 Nycomed Amersham Plc Superconducting cyclotron for use in the production of heavy isotopes
IT1281184B1 (en) 1994-09-19 1998-02-17 Giorgio Trozzi Amministratore EQUIPMENT FOR INTRAOPERATIVE RADIOTHERAPY BY MEANS OF LINEAR ACCELERATORS THAT CAN BE USED DIRECTLY IN THE OPERATING ROOM
EP0709618B1 (en) 1994-10-27 2002-10-09 General Electric Company Ceramic superconducting lead
US5633747A (en) 1994-12-21 1997-05-27 Tencor Instruments Variable spot-size scanning apparatus
JP3629054B2 (en) 1994-12-22 2005-03-16 北海製罐株式会社 Surface correction coating method for welded can side seam
US5511549A (en) 1995-02-13 1996-04-30 Loma Linda Medical Center Normalizing and calibrating therapeutic radiation delivery systems
US5585642A (en) 1995-02-15 1996-12-17 Loma Linda University Medical Center Beamline control and security system for a radiation treatment facility
US5510357A (en) 1995-02-28 1996-04-23 Eli Lilly And Company Benzothiophene compounds as anti-estrogenic agents
JP3023533B2 (en) 1995-03-23 2000-03-21 住友重機械工業株式会社 cyclotron
AU5486796A (en) 1995-04-18 1996-11-07 Loma Linda University Medical Center System and method for multiple particle therapy
US5668371A (en) * 1995-06-06 1997-09-16 Wisconsin Alumni Research Foundation Method and apparatus for proton therapy
US5591983A (en) 1995-06-30 1997-01-07 Siemens Medical Systems, Inc. Multiple layer multileaf collimator
BE1009669A3 (en) 1995-10-06 1997-06-03 Ion Beam Applic Sa Method of extraction out of a charged particle isochronous cyclotron and device applying this method.
GB9520564D0 (en) 1995-10-07 1995-12-13 Philips Electronics Nv Apparatus for treating a patient
JPH09162585A (en) 1995-12-05 1997-06-20 Kanazawa Kogyo Univ Magnetic shielding room and its assembling method
JP3472657B2 (en) 1996-01-18 2003-12-02 三菱電機株式会社 Particle beam irradiation equipment
JP3121265B2 (en) 1996-05-07 2000-12-25 株式会社日立製作所 Radiation shield
US5811944A (en) 1996-06-25 1998-09-22 The United States Of America As Represented By The Department Of Energy Enhanced dielectric-wall linear accelerator
US5821705A (en) 1996-06-25 1998-10-13 The United States Of America As Represented By The United States Department Of Energy Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators
US5726448A (en) 1996-08-09 1998-03-10 California Institute Of Technology Rotating field mass and velocity analyzer
EP0826394B1 (en) 1996-08-30 2004-05-19 Hitachi, Ltd. Charged particle beam apparatus
JPH1071213A (en) 1996-08-30 1998-03-17 Hitachi Ltd Proton ray treatment system
US5851182A (en) 1996-09-11 1998-12-22 Sahadevan; Velayudhan Megavoltage radiation therapy machine combined to diagnostic imaging devices for cost efficient conventional and 3D conformal radiation therapy with on-line Isodose port and diagnostic radiology
US5727554A (en) 1996-09-19 1998-03-17 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus responsive to movement of a patient during treatment/diagnosis
US5764723A (en) 1996-10-16 1998-06-09 The Trustees Of Columbia University In The City Of New York Apparatus and method to gate a source for radiation therapy
US5672878A (en) 1996-10-24 1997-09-30 Siemens Medical Systems Inc. Ionization chamber having off-passageway measuring electrodes
US5778047A (en) 1996-10-24 1998-07-07 Varian Associates, Inc. Radiotherapy couch top
US5920601A (en) 1996-10-25 1999-07-06 Lockheed Martin Idaho Technologies Company System and method for delivery of neutron beams for medical therapy
US5825845A (en) 1996-10-28 1998-10-20 Loma Linda University Medical Center Proton beam digital imaging system
US5784431A (en) 1996-10-29 1998-07-21 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus for matching X-ray images with reference images
JP3841898B2 (en) 1996-11-21 2006-11-08 三菱電機株式会社 Deep dose measurement system
WO1998023330A1 (en) 1996-11-26 1998-06-04 Mitsubishi Denki Kabushiki Kaisha Method of forming energy distribution
JP3246364B2 (en) 1996-12-03 2002-01-15 株式会社日立製作所 Synchrotron accelerator and medical device using the same
JP3178381B2 (en) 1997-02-07 2001-06-18 株式会社日立製作所 Charged particle irradiation device
JPH1119235A (en) 1997-07-03 1999-01-26 Hitachi Ltd Charged particle beam irradiation device and method
EP0864337A3 (en) 1997-03-15 1999-03-10 Shenzhen OUR International Technology & Science Co., Ltd. Three-dimensional irradiation technique with charged particles of Bragg peak properties and its device
JPH1128252A (en) 1997-07-11 1999-02-02 Mitsubishi Electric Corp Forming method and forming device for radiation field
US5841237A (en) 1997-07-14 1998-11-24 Lockheed Martin Energy Research Corporation Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources
BE1012534A3 (en) 1997-08-04 2000-12-05 Sumitomo Heavy Industries Bed system for radiation therapy.
US5846043A (en) 1997-08-05 1998-12-08 Spath; John J. Cart and caddie system for storing and delivering water bottles
JP3532739B2 (en) 1997-08-07 2004-05-31 住友重機械工業株式会社 Radiation field forming member fixing device
JP3519248B2 (en) 1997-08-08 2004-04-12 住友重機械工業株式会社 Rotation irradiation room for radiation therapy
US5963615A (en) 1997-08-08 1999-10-05 Siemens Medical Systems, Inc. Rotational flatness improvement
JP3203211B2 (en) 1997-08-11 2001-08-27 住友重機械工業株式会社 Water phantom type dose distribution measuring device and radiotherapy device
JPH11102800A (en) 1997-09-29 1999-04-13 Toshiba Corp Superconducting high-frequency accelerating cavity and particle accelerator
JP2001509899A (en) 1997-10-06 2001-07-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X-ray inspection device including X-ray filter
JP3577201B2 (en) 1997-10-20 2004-10-13 三菱電機株式会社 Charged particle beam irradiation device, charged particle beam rotation irradiation device, and charged particle beam irradiation method
JPH11142600A (en) 1997-11-12 1999-05-28 Mitsubishi Electric Corp Charged particle beam irradiation device and irradiation method
JP3528583B2 (en) 1997-12-25 2004-05-17 三菱電機株式会社 Charged particle beam irradiation device and magnetic field generator
DE69937286D1 (en) 1998-01-14 2007-11-22 Leonard Reiffel ARRANGEMENT FOR STABILIZING BODY INTERNAL RADIATION GROUNDING SURFACES
AUPP156698A0 (en) 1998-01-30 1998-02-19 Pacific Solar Pty Limited New method for hydrogen passivation
JPH11243295A (en) 1998-02-26 1999-09-07 Shimizu Corp Magnetic shield method and structure
JPH11253563A (en) 1998-03-10 1999-09-21 Hitachi Ltd Method and device for charged particle beam radiation
JP3053389B1 (en) 1998-12-03 2000-06-19 三菱電機株式会社 Moving object tracking irradiation device
GB2361523B (en) 1998-03-31 2002-05-01 Toshiba Kk Superconducting magnet apparatus
JPH11329945A (en) 1998-05-08 1999-11-30 Nikon Corp Method and system for charged beam transfer
JP2000070389A (en) 1998-08-27 2000-03-07 Mitsubishi Electric Corp Exposure value computing device, exposure value computing, and recording medium
EP0986071A3 (en) 1998-09-11 2000-03-29 Gesellschaft für Schwerionenforschung mbH Ion beam therapy system and a method for operating the system
SE513192C2 (en) 1998-09-29 2000-07-24 Gems Pet Systems Ab Procedures and systems for HF control
US6369585B2 (en) 1998-10-02 2002-04-09 Siemens Medical Solutions Usa, Inc. System and method for tuning a resonant structure
US6621889B1 (en) 1998-10-23 2003-09-16 Varian Medical Systems, Inc. Method and system for predictive physiological gating of radiation therapy
US6279579B1 (en) 1998-10-23 2001-08-28 Varian Medical Systems, Inc. Method and system for positioning patients for medical treatment procedures
US6241671B1 (en) 1998-11-03 2001-06-05 Stereotaxis, Inc. Open field system for magnetic surgery
US6441569B1 (en) 1998-12-09 2002-08-27 Edward F. Janzow Particle accelerator for inducing contained particle collisions
BE1012358A5 (en) 1998-12-21 2000-10-03 Ion Beam Applic Sa Process of changes of energy of particle beam extracted of an accelerator and device for this purpose.
BE1012371A5 (en) 1998-12-24 2000-10-03 Ion Beam Applic Sa Treatment method for proton beam and device applying the method.
JP2000237335A (en) 1999-02-17 2000-09-05 Mitsubishi Electric Corp Radiotherapy method and system
JP3464406B2 (en) 1999-02-18 2003-11-10 高エネルギー加速器研究機構長 Internal negative ion source for cyclotron
DE19907065A1 (en) 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Method for checking an isocenter and a patient positioning device of an ion beam therapy system
DE19907205A1 (en) 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Method for operating an ion beam therapy system while monitoring the beam position
DE19907098A1 (en) 1999-02-19 2000-08-24 Schwerionenforsch Gmbh Ion beam scanning system for radiation therapy e.g. for tumor treatment, uses energy absorption device displaced transverse to ion beam path via linear motor for altering penetration depth
DE19907774A1 (en) 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Method for verifying the calculated radiation dose of an ion beam therapy system
DE19907138A1 (en) 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Method for checking the beam generating means and the beam accelerating means of an ion beam therapy system
DE19907121A1 (en) 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Procedure for checking the beam guidance of an ion beam therapy system
US6144875A (en) 1999-03-16 2000-11-07 Accuray Incorporated Apparatus and method for compensating for respiratory and patient motion during treatment
US6501981B1 (en) 1999-03-16 2002-12-31 Accuray, Inc. Apparatus and method for compensating for respiratory and patient motions during treatment
EP1041579A1 (en) 1999-04-01 2000-10-04 GSI Gesellschaft für Schwerionenforschung mbH Gantry with an ion-optical system
US6780149B1 (en) 1999-04-07 2004-08-24 Loma Linda University Medical Center Patient motion monitoring system for proton therapy
JP2000294399A (en) 1999-04-12 2000-10-20 Toshiba Corp Superconducting high-frequency acceleration cavity and particle accelerator
US6433494B1 (en) 1999-04-22 2002-08-13 Victor V. Kulish Inductional undulative EH-accelerator
US6459769B1 (en) 1999-05-03 2002-10-01 Sherwood Services Ag Movable miniature multi-leaf collimator
JP3530072B2 (en) 1999-05-13 2004-05-24 三菱電機株式会社 Control device for radiation irradiation apparatus for radiation therapy
SE9902163D0 (en) 1999-06-09 1999-06-09 Scanditronix Medical Ab Stable rotable radiation gantry
JP2001006900A (en) 1999-06-18 2001-01-12 Toshiba Corp Radiant light generation device
EP1189661B1 (en) 1999-06-25 2012-11-28 Paul Scherrer Institut Device for carrying out proton therapy
JP2001009050A (en) 1999-06-29 2001-01-16 Hitachi Medical Corp Radiotherapy device
EP1069809A1 (en) 1999-07-13 2001-01-17 Ion Beam Applications S.A. Isochronous cyclotron and method of extraction of charged particles from such cyclotron
JP2001029490A (en) 1999-07-19 2001-02-06 Hitachi Ltd Combined irradiation evaluation support system
NL1012677C2 (en) 1999-07-22 2001-01-23 William Van Der Burg Device and method for placing an information carrier.
US6380545B1 (en) 1999-08-30 2002-04-30 Southeastern Universities Research Association, Inc. Uniform raster pattern generating system
US7811981B2 (en) 1999-08-30 2010-10-12 Yissum Research Development Company Of The Hebrew University Of Jerusalem Methods of and compositions for inhibiting the proliferation of mammalian cells
US6420917B1 (en) 1999-10-01 2002-07-16 Ericsson Inc. PLL loop filter with switched-capacitor resistor
US6713773B1 (en) 1999-10-07 2004-03-30 Mitec, Inc. Irradiation system and method
AU8002500A (en) 1999-10-08 2001-04-23 Advanced Research And Technology Institute, Inc. Apparatus and method for non-invasive myocardial revascularization
JP4185637B2 (en) 1999-11-01 2008-11-26 株式会社神鋼エンジニアリング&メンテナンス Rotating irradiation chamber for particle beam therapy
US6803585B2 (en) 2000-01-03 2004-10-12 Yuri Glukhoy Electron-cyclotron resonance type ion beam source for ion implanter
US6366021B1 (en) 2000-01-06 2002-04-02 Varian Medical Systems, Inc. Standing wave particle beam accelerator with switchable beam energy
JP4128717B2 (en) 2000-01-26 2008-07-30 古河電気工業株式会社 Floor heating panel
JP4203208B2 (en) 2000-03-28 2008-12-24 住友重機械工業株式会社 Radiation energy distribution adjustment mechanism and radiation irradiation apparatus using the same
AU2001251222A1 (en) 2000-03-31 2001-10-15 University Of Maryland, Baltimore Helical electron beam generating device and method of use
US6498444B1 (en) 2000-04-10 2002-12-24 Siemens Medical Solutions Usa, Inc. Computer-aided tuning of charged particle accelerators
CA2406697C (en) 2000-04-27 2007-10-02 Loma Linda University Nanodosimeter based on single ion detection
JP2001346893A (en) 2000-06-06 2001-12-18 Ishikawajima Harima Heavy Ind Co Ltd Radiotherapeutic apparatus
DE10031074A1 (en) 2000-06-30 2002-01-31 Schwerionenforsch Gmbh Device for irradiating a tumor tissue
US6630675B2 (en) 2000-07-26 2003-10-07 Siemens Medical Solutions Usa, Inc. X-ray scintillator compositions for X-ray imaging applications
JP3705091B2 (en) 2000-07-27 2005-10-12 株式会社日立製作所 Medical accelerator system and operating method thereof
US6914396B1 (en) 2000-07-31 2005-07-05 Yale University Multi-stage cavity cyclotron resonance accelerator
US6813336B1 (en) 2000-08-17 2004-11-02 Siemens Medical Solutions Usa, Inc. High definition conformal arc radiation therapy with a multi-leaf collimator
US6757355B1 (en) 2000-08-17 2004-06-29 Siemens Medical Solutions Usa, Inc. High definition radiation treatment with an intensity modulating multi-leaf collimator
US7041479B2 (en) 2000-09-06 2006-05-09 The Board Of Trustess Of The Leland Stanford Junior University Enhanced in vitro synthesis of active proteins containing disulfide bonds
CA2422291C (en) 2000-09-15 2011-03-08 Sloan-Kettering Institute For Cancer Research Targeted alpha particle therapy using actinium-225 conjugates
WO2002024278A1 (en) 2000-09-22 2002-03-28 Numerix Llc Improved radiation therapy treatment method
CA2325362A1 (en) 2000-11-08 2002-05-08 Kirk Flippo Method and apparatus for high-energy generation and for inducing nuclear reactions
US8039261B2 (en) 2000-11-17 2011-10-18 Vascular Biogenics Ltd. Promoters exhibiting endothelial cell specificity and methods of using same for regulation of angiogenesis
US8071740B2 (en) 2000-11-17 2011-12-06 Vascular Biogenics Ltd. Promoters exhibiting endothelial cell specificity and methods of using same for regulation of angiogenesis
JP3633475B2 (en) 2000-11-27 2005-03-30 鹿島建設株式会社 Interdigital transducer method and panel, and magnetic darkroom
JP4467237B2 (en) 2000-12-08 2010-05-26 ローマ リンダ ユニヴァーシティ メディカル センター Proton therapy control system
US6492922B1 (en) 2000-12-14 2002-12-10 Xilinx Inc. Anti-aliasing filter with automatic cutoff frequency adaptation
JP2002210028A (en) 2001-01-23 2002-07-30 Mitsubishi Electric Corp Radiation irradiating system and radiation irradiating method
JP3779878B2 (en) 2001-01-30 2006-05-31 株式会社日立製作所 Multi-leaf collimator
US6407505B1 (en) 2001-02-01 2002-06-18 Siemens Medical Solutions Usa, Inc. Variable energy linear accelerator
JP2004525486A (en) 2001-02-05 2004-08-19 ジー エス アイ ゲゼルシャフト フュア シュベールイオーネンフォルシュンク エム ベー ハー A device that generates and selects ions for use in heavy ion cancer treatment facilities
EP1282900B8 (en) 2001-02-06 2011-01-26 GSI Helmholtzzentrum für Schwerionenforschung GmbH Beam scanning system for a heavy ion gantry
US6493424B2 (en) 2001-03-05 2002-12-10 Siemens Medical Solutions Usa, Inc. Multi-mode operation of a standing wave linear accelerator
JP4115675B2 (en) 2001-03-14 2008-07-09 三菱電機株式会社 Absorption dosimetry device for intensity modulation therapy
US6646383B2 (en) 2001-03-15 2003-11-11 Siemens Medical Solutions Usa, Inc. Monolithic structure with asymmetric coupling
US6465957B1 (en) 2001-05-25 2002-10-15 Siemens Medical Solutions Usa, Inc. Standing wave linear accelerator with integral prebunching section
EP1265462A1 (en) 2001-06-08 2002-12-11 Ion Beam Applications S.A. Device and method for the intensity control of a beam extracted from a particle accelerator
US6853703B2 (en) 2001-07-20 2005-02-08 Siemens Medical Solutions Usa, Inc. Automated delivery of treatment fields
AU2002324775A1 (en) 2001-08-23 2003-03-10 Sciperio, Inc. Architecture tool and methods of use
JP2003086400A (en) 2001-09-11 2003-03-20 Hitachi Ltd Accelerator system and medical accelerator facility
US6907105B2 (en) 2001-09-25 2005-06-14 Bc Cancer Agency Methods and apparatus for planning and delivering intensity modulated radiation fields with a rotating multileaf collimator
AU2002353904B2 (en) 2001-10-30 2005-07-07 Loma Linda University Medical Center Method and device for delivering radiotherapy
US6519316B1 (en) 2001-11-02 2003-02-11 Siemens Medical Solutions Usa, Inc.. Integrated control of portal imaging device
US6777689B2 (en) 2001-11-16 2004-08-17 Ion Beam Application, S.A. Article irradiation system shielding
US7221733B1 (en) 2002-01-02 2007-05-22 Varian Medical Systems Technologies, Inc. Method and apparatus for irradiating a target
US6593696B2 (en) 2002-01-04 2003-07-15 Siemens Medical Solutions Usa, Inc. Low dark current linear accelerator
DE10205949B4 (en) 2002-02-12 2013-04-25 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh A method and apparatus for controlling a raster scan irradiation apparatus for heavy ions or protons with beam extraction
JP4146648B2 (en) 2002-02-14 2008-09-10 三菱電機株式会社 Absorbed dose distribution measuring device
JP4072359B2 (en) 2002-02-28 2008-04-09 株式会社日立製作所 Charged particle beam irradiation equipment
JP3691020B2 (en) 2002-02-28 2005-08-31 株式会社日立製作所 Medical charged particle irradiation equipment
JP4337300B2 (en) 2002-02-28 2009-09-30 日立金属株式会社 Rare earth permanent magnet manufacturing method
DE50211712D1 (en) 2002-03-12 2008-03-27 Deutsches Krebsforsch DEVICE FOR CARRYING OUT AND VERIFYING THERAPEUTIC TREATMENT AND APPROPRIATE COMPUTER PROGRAM
JP3801938B2 (en) 2002-03-26 2006-07-26 株式会社日立製作所 Particle beam therapy system and method for adjusting charged particle beam trajectory
EP1358908A1 (en) 2002-05-03 2003-11-05 Ion Beam Applications S.A. Device for irradiation therapy with charged particles
DE10221180A1 (en) 2002-05-13 2003-12-24 Siemens Ag Patient positioning device for radiation therapy
US6735277B2 (en) 2002-05-23 2004-05-11 Koninklijke Philips Electronics N.V. Inverse planning for intensity-modulated radiotherapy
AU2002367995A1 (en) 2002-05-31 2003-12-19 Ion Beam Applications S.A. Apparatus for irradiating a target volume
US6777700B2 (en) 2002-06-12 2004-08-17 Hitachi, Ltd. Particle beam irradiation system and method of adjusting irradiation apparatus
JP2004031115A (en) 2002-06-26 2004-01-29 Matsushita Electric Ind Co Ltd Phase width confining method and phase width confining device for beam accelerated by cyclotron
US6865254B2 (en) 2002-07-02 2005-03-08 Pencilbeam Technologies Ab Radiation system with inner and outer gantry parts
US7162005B2 (en) 2002-07-19 2007-01-09 Varian Medical Systems Technologies, Inc. Radiation sources and compact radiation scanning systems
US7103137B2 (en) 2002-07-24 2006-09-05 Varian Medical Systems Technology, Inc. Radiation scanning of objects for contraband
DE10241178B4 (en) 2002-09-05 2007-03-29 Mt Aerospace Ag Isokinetic gantry arrangement for the isocentric guidance of a particle beam and method for its design
WO2004026401A1 (en) 2002-09-18 2004-04-01 Paul Scherrer Institut System for performing proton therapy
JP3748426B2 (en) 2002-09-30 2006-02-22 株式会社日立製作所 Medical particle beam irradiation equipment
JP3961925B2 (en) 2002-10-17 2007-08-22 三菱電機株式会社 Beam accelerator
US6853142B2 (en) 2002-11-04 2005-02-08 Zond, Inc. Methods and apparatus for generating high-density plasma
ES2385709T3 (en) 2002-11-25 2012-07-30 Ion Beam Applications S.A. Cyclotron
EP1429345A1 (en) 2002-12-10 2004-06-16 Ion Beam Applications S.A. Device and method of radioisotope production
DE10261099B4 (en) 2002-12-20 2005-12-08 Siemens Ag Ion beam system
KR101077630B1 (en) 2003-01-02 2011-10-27 로마 린다 유니버시티 메디칼 센터 Configuration management and retrieval system for proton beam therapy system
EP1439566B1 (en) 2003-01-17 2019-08-28 ICT, Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam apparatus and method for operating the same
US7814937B2 (en) 2005-10-26 2010-10-19 University Of Southern California Deployable contour crafting
JP4186636B2 (en) 2003-01-30 2008-11-26 株式会社日立製作所 Superconducting magnet
DE112004000137B4 (en) 2003-02-17 2015-10-22 Mitsubishi Denki K.K. Method of operating a charged particle accelerator
JP3748433B2 (en) 2003-03-05 2006-02-22 株式会社日立製作所 Bed positioning device and positioning method thereof
JP3859605B2 (en) 2003-03-07 2006-12-20 株式会社日立製作所 Particle beam therapy system and particle beam extraction method
WO2004084603A1 (en) 2003-03-17 2004-09-30 Kajima Corporation Open magnetic shield structure and its magnetic frame
US6853705B2 (en) 2003-03-28 2005-02-08 The University Of North Carolina At Chapel Hill Residual map segmentation method for multi-leaf collimator-intensity modulated radiotherapy
JP3655292B2 (en) 2003-04-14 2005-06-02 株式会社日立製作所 Particle beam irradiation apparatus and method for adjusting charged particle beam irradiation apparatus
JP2004321408A (en) 2003-04-23 2004-11-18 Mitsubishi Electric Corp Radiation irradiation device and radiation irradiation method
DE602004010949T3 (en) 2003-05-13 2011-09-15 Hitachi, Ltd. Device for irradiation with particle beams and radiation planning unit
US20070018121A1 (en) 2003-05-13 2007-01-25 Ion Beam Applications Sa Of Method and system for automatic beam allocation in a multi-room particle beam treatment facility
US7317192B2 (en) 2003-06-02 2008-01-08 Fox Chase Cancer Center High energy polyenergetic ion selection systems, ion beam therapy systems, and ion beam treatment centers
JP2005027681A (en) 2003-07-07 2005-02-03 Hitachi Ltd Treatment device using charged particle and treatment system using charged particle
GB2403884B (en) 2003-07-08 2006-03-01 Elekta Ab Multi-leaf collimator
US7038403B2 (en) 2003-07-31 2006-05-02 Ge Medical Technology Services, Inc. Method and apparatus for maintaining alignment of a cyclotron dee
WO2005018735A2 (en) 2003-08-12 2005-03-03 Loma Linda University Medical Center Modular patient support system
US7199382B2 (en) 2003-08-12 2007-04-03 Loma Linda University Medical Center Patient alignment system with external measurement and object coordination for radiation therapy system
JP4323267B2 (en) 2003-09-09 2009-09-02 株式会社ミツトヨ Shape measuring device, shape measuring method, shape analyzing device, shape analyzing program, and recording medium
JP3685194B2 (en) 2003-09-10 2005-08-17 株式会社日立製作所 Particle beam therapy device, range modulation rotation device, and method of attaching range modulation rotation device
US20050058245A1 (en) 2003-09-11 2005-03-17 Moshe Ein-Gal Intensity-modulated radiation therapy with a multilayer multileaf collimator
JP4129768B2 (en) 2003-10-02 2008-08-06 株式会社山武 Detection device
US20050079235A1 (en) 2003-10-09 2005-04-14 Eggert Stockfleth Use of a polyphenol for the treatment of actinic keratosis
WO2005037300A1 (en) 2003-10-09 2005-04-28 Medigene Ag The use of a polyphenol for the treatment of a cancerous or pre-cancerous lesion of the skin
US7557361B2 (en) 2003-10-16 2009-07-07 Alis Corporation Ion sources, systems and methods
US7554096B2 (en) 2003-10-16 2009-06-30 Alis Corporation Ion sources, systems and methods
US7786451B2 (en) 2003-10-16 2010-08-31 Alis Corporation Ion sources, systems and methods
US7554097B2 (en) 2003-10-16 2009-06-30 Alis Corporation Ion sources, systems and methods
US7557360B2 (en) 2003-10-16 2009-07-07 Alis Corporation Ion sources, systems and methods
US7557359B2 (en) 2003-10-16 2009-07-07 Alis Corporation Ion sources, systems and methods
US7786452B2 (en) 2003-10-16 2010-08-31 Alis Corporation Ion sources, systems and methods
US7557358B2 (en) 2003-10-16 2009-07-07 Alis Corporation Ion sources, systems and methods
US7154991B2 (en) 2003-10-17 2006-12-26 Accuray, Inc. Patient positioning assembly for therapeutic radiation system
CN1537657A (en) 2003-10-22 2004-10-20 高春平 Radiotherapeutic apparatus in operation
US7295648B2 (en) 2003-10-23 2007-11-13 Elektra Ab (Publ) Method and apparatus for treatment by ionizing radiation
JP4114590B2 (en) 2003-10-24 2008-07-09 株式会社日立製作所 Particle beam therapy system
JP3912364B2 (en) 2003-11-07 2007-05-09 株式会社日立製作所 Particle beam therapy system
EP1691890B1 (en) 2003-12-02 2008-01-23 Radinova AB Multiple room radiation treatment system
JP2007531556A (en) 2003-12-02 2007-11-08 フォックス・チェイス・キャンサー・センター Method for modulating laser-accelerated protons for radiation therapy
US20080164416A1 (en) 2003-12-04 2008-07-10 Paul Scherrer Institut Inorganic Scintillating Mixture and a Sensor Assembly For Charged Particle Dosimetry
JP3643371B1 (en) 2003-12-10 2005-04-27 株式会社日立製作所 Method of adjusting particle beam irradiation apparatus and irradiation field forming apparatus
JP4443917B2 (en) 2003-12-26 2010-03-31 株式会社日立製作所 Particle beam therapy system
US20060127879A1 (en) 2003-12-31 2006-06-15 Fuccione Anthony S Electrodynamic profiling of genomic response in the cell
US7710051B2 (en) 2004-01-15 2010-05-04 Lawrence Livermore National Security, Llc Compact accelerator for medical therapy
US7173385B2 (en) 2004-01-15 2007-02-06 The Regents Of The University Of California Compact accelerator
JP4273409B2 (en) 2004-01-29 2009-06-03 日本ビクター株式会社 Worm gear device and electronic device including the worm gear device
JP5110881B2 (en) 2004-02-20 2012-12-26 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インコーポレイティド System for delivering conformal radiation therapy while simultaneously imaging soft tissue
CN1696652A (en) 2004-02-23 2005-11-16 塞威公司 Particle beam device probe operation
WO2005092195A1 (en) 2004-03-29 2005-10-06 National Institute Of Radiological Sciences Heel effect correction filter, x-ray irradiator, x-ray ct apparatus, and x-ray ct imaging method
EP1584353A1 (en) * 2004-04-05 2005-10-12 Paul Scherrer Institut A system for delivery of proton therapy
US7860550B2 (en) 2004-04-06 2010-12-28 Accuray, Inc. Patient positioning assembly
US8160205B2 (en) 2004-04-06 2012-04-17 Accuray Incorporated Robotic arm for patient positioning assembly
JP4257741B2 (en) * 2004-04-19 2009-04-22 三菱電機株式会社 Charged particle beam accelerator, particle beam irradiation medical system using charged particle beam accelerator, and method of operating particle beam irradiation medical system
US20050259779A1 (en) 2004-05-18 2005-11-24 Siemens Aktiengesellschaft Biomolecular contrast agents for therapy optimization in radiation therapy with proton or ion beams
DE102004027071A1 (en) 2004-05-19 2006-01-05 Gesellschaft für Schwerionenforschung mbH Beam feeder for medical particle accelerator has arbitration unit with switching logic, monitoring unit and sequential control and provides direct access of control room of irradiation-active surgery room for particle beam interruption
DE102004028035A1 (en) * 2004-06-09 2005-12-29 Gesellschaft für Schwerionenforschung mbH Apparatus and method for compensating for movements of a target volume during ion beam irradiation
DE202004009421U1 (en) 2004-06-16 2005-11-03 Gesellschaft für Schwerionenforschung mbH Particle accelerator for ion beam radiation therapy
US20070031337A1 (en) 2004-06-22 2007-02-08 Reinhard Schulte Nanoparticle enhanced proton computed tomography and proton therapy
US7073508B2 (en) 2004-06-25 2006-07-11 Loma Linda University Medical Center Method and device for registration and immobilization
US7135678B2 (en) 2004-07-09 2006-11-14 Credence Systems Corporation Charged particle guide
JP4104008B2 (en) 2004-07-21 2008-06-18 独立行政法人放射線医学総合研究所 Spiral orbit type charged particle accelerator and acceleration method thereof
CN101061759B (en) 2004-07-21 2011-05-25 斯蒂尔瑞弗系统有限公司 A programmable radio frequency waveform generator for a synchrocyclotron
US7208748B2 (en) 2004-07-21 2007-04-24 Still River Systems, Inc. Programmable particle scatterer for radiation therapy beam formation
US6965116B1 (en) 2004-07-23 2005-11-15 Applied Materials, Inc. Method of determining dose uniformity of a scanning ion implanter
JP4489529B2 (en) 2004-07-28 2010-06-23 株式会社日立製作所 Particle beam therapy system and control system for particle beam therapy system
GB2418061B (en) 2004-09-03 2006-10-18 Zeiss Carl Smt Ltd Scanning particle beam instrument
WO2006034207A2 (en) 2004-09-17 2006-03-30 Vanderbilt University Use of gsk3 inhibitors in combination with radiation therapies
ES2524601T3 (en) 2004-09-29 2014-12-10 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Recombinant human T2 RNase and uses thereof
DE102004048212B4 (en) 2004-09-30 2007-02-01 Siemens Ag Radiation therapy system with imaging device
JP2006128087A (en) 2004-09-30 2006-05-18 Hitachi Ltd Charged particle beam emitting device and charged particle beam emitting method
JP3806723B2 (en) 2004-11-16 2006-08-09 株式会社日立製作所 Particle beam irradiation system
DE102004057726B4 (en) 2004-11-30 2010-03-18 Siemens Ag Medical examination and treatment facility
CN100561332C (en) 2004-12-09 2009-11-18 Ge医疗系统环球技术有限公司 X-ray irradiation device and x-ray imaging equipment
US7122966B2 (en) 2004-12-16 2006-10-17 General Electric Company Ion source apparatus and method
WO2007061426A2 (en) 2004-12-22 2007-05-31 Fox Chase Cancer Center Laser-accelerated proton therapy units and superconducting eletromagnetig systems for same
JP5341352B2 (en) 2004-12-30 2013-11-13 クリスタルビュー メディカル イメージング リミテッド This application is a U.S. provisional patent application filed on Dec. 30, 2004. Insist on the benefit of priority based on 60 / 640,368. This application is filed with US provisional patent application no. No. 60 / 534,390, the specification of which is hereby incorporated by reference.
WO2006076545A2 (en) 2005-01-14 2006-07-20 Indiana University Research And Technology Corporation Automatic retractable floor system for a rotating gantry
US7193227B2 (en) 2005-01-24 2007-03-20 Hitachi, Ltd. Ion beam therapy system and its couch positioning method
US7468506B2 (en) 2005-01-26 2008-12-23 Applied Materials, Israel, Ltd. Spot grid array scanning system
DE112005002171B4 (en) 2005-02-04 2009-11-12 Mitsubishi Denki K.K. Particle beam irradiation method and particle beam irradiation apparatus used therefor
GB2422958B (en) 2005-02-04 2008-07-09 Siemens Magnet Technology Ltd Quench protection circuit for a superconducting magnet
CN101031336B (en) 2005-02-04 2011-08-10 三菱电机株式会社 Particle beam irradiation method and device
JP4219905B2 (en) 2005-02-25 2009-02-04 株式会社日立製作所 Rotating gantry for radiation therapy equipment
WO2006094533A1 (en) 2005-03-09 2006-09-14 Paul Scherrer Institute System for taking wide-field beam-eye-view (bev) x-ray-images simultaneously to the proton therapy delivery
JP4363344B2 (en) 2005-03-15 2009-11-11 三菱電機株式会社 Particle beam accelerator
JP4158931B2 (en) 2005-04-13 2008-10-01 三菱電機株式会社 Particle beam therapy system
JP4751635B2 (en) 2005-04-13 2011-08-17 株式会社日立ハイテクノロジーズ Magnetic field superposition type electron gun
US7420182B2 (en) 2005-04-27 2008-09-02 Busek Company Combined radio frequency and hall effect ion source and plasma accelerator system
US7014361B1 (en) 2005-05-11 2006-03-21 Moshe Ein-Gal Adaptive rotator for gantry
WO2006126075A2 (en) 2005-05-27 2006-11-30 Ion Beam Applications, S.A. Device and method for quality assurance and online verification of radiation therapy
JP4115468B2 (en) 2005-06-10 2008-07-09 三菱電機株式会社 Particle beam therapy system
US7575242B2 (en) 2005-06-16 2009-08-18 Siemens Medical Solutions Usa, Inc. Collimator change cart
GB2427478B (en) 2005-06-22 2008-02-20 Siemens Magnet Technology Ltd Particle radiation therapy equipment and method for simultaneous application of magnetic resonance imaging and particle radiation
US7436932B2 (en) 2005-06-24 2008-10-14 Varian Medical Systems Technologies, Inc. X-ray radiation sources with low neutron emissions for radiation scanning
JP3882843B2 (en) 2005-06-30 2007-02-21 株式会社日立製作所 Rotating irradiation device
CN100564232C (en) 2005-07-13 2009-12-02 克朗设备公司 The material handling vehicle
CA2616306A1 (en) 2005-07-22 2007-02-01 Tomotherapy Incorporated Method and system for processing data relating to a radiation therapy treatment plan
US7643661B2 (en) 2005-07-22 2010-01-05 Tomo Therapy Incorporated Method and system for evaluating delivered dose
US7567694B2 (en) 2005-07-22 2009-07-28 Tomotherapy Incorporated Method of placing constraints on a deformation map and system for implementing same
EP1907065B1 (en) 2005-07-22 2012-11-07 TomoTherapy, Inc. Method and system for adapting a radiation therapy treatment plan based on a biological model
JP2009502255A (en) 2005-07-22 2009-01-29 トモセラピー・インコーポレーテッド Method and system for assessing quality assurance criteria in the delivery of treatment plans
JP2009506800A (en) 2005-07-22 2009-02-19 トモセラピー・インコーポレーテッド Method and system for predicting dose delivery
EP1906827A4 (en) 2005-07-22 2009-10-21 Tomotherapy Inc System and method of evaluating dose delivered by a radiation therapy system
ATE511885T1 (en) 2005-07-22 2011-06-15 Tomotherapy Inc METHOD FOR DETERMINING AN AREA OF INTEREST OF SURFACE STRUCTURES USING A DOSAGE VOLUME HISTOGRAM
US7880154B2 (en) 2005-07-25 2011-02-01 Karl Otto Methods and apparatus for the planning and delivery of radiation treatments
DE102005034912B4 (en) 2005-07-26 2007-10-04 Siemens Ag Particle therapy system, method for determining control parameters of such a therapy system, radiotherapy planning device and irradiation method
DE102006033501A1 (en) 2005-08-05 2007-02-15 Siemens Ag Gantry system for particle therapy facility, includes beam guidance gantry, and measurement gantry comprising device for beam monitoring and measuring beam parameter
EP1752992A1 (en) 2005-08-12 2007-02-14 Siemens Aktiengesellschaft Apparatus for the adaption of a particle beam parameter of a particle beam in a particle beam accelerator and particle beam accelerator with such an apparatus
DE102005038242B3 (en) 2005-08-12 2007-04-12 Siemens Ag Device for expanding a particle energy distribution of a particle beam of a particle therapy system, beam monitoring and beam adjustment unit and method
US7723036B2 (en) 2005-08-18 2010-05-25 The University Of Iowa Research Foundation Assessing response to anti-CD20 therapy by genotyping C1q components
DE102005041122B3 (en) 2005-08-30 2007-05-31 Siemens Ag Gantry system useful for particle therapy system for therapy plan and radiation method, particularly for irradiating volume, comprises first and second beam guiding devices guides particle beams
JP5245193B2 (en) 2005-09-07 2013-07-24 株式会社日立製作所 Charged particle beam irradiation system and charged particle beam extraction method
EP1764132A1 (en) 2005-09-16 2007-03-21 Siemens Aktiengesellschaft Method and device for configuring a beam path in a particle beam therapy system
DE102005044407A1 (en) 2005-09-16 2007-03-22 Siemens Ag Artifact reduced radiological three dimensional imaging method, involves combining two three dimensional image data sets to artifact reduced three dimensional image data set for producing artifact reduced radiological data sets
DE102005044409B4 (en) 2005-09-16 2007-11-29 Siemens Ag Particle therapy system and method for forming a beam path for an irradiation process in a particle therapy system
DE102005044408B4 (en) 2005-09-16 2008-03-27 Siemens Ag Particle therapy system, method and apparatus for requesting a particle beam
WO2007035775A2 (en) 2005-09-19 2007-03-29 Feng Ma Imaging system and method utilizing primary radiation
US7295649B2 (en) 2005-10-13 2007-11-13 Varian Medical Systems Technologies, Inc. Radiation therapy system and method of using the same
US7658901B2 (en) 2005-10-14 2010-02-09 The Trustees Of Princeton University Thermally exfoliated graphite oxide
KR20080059579A (en) 2005-10-24 2008-06-30 로렌스 리버모어 내쇼날 시큐리티, 엘엘시 Optically-initiated silicon carbide high voltage switch
WO2007051312A1 (en) 2005-11-07 2007-05-10 Fibics Incorporated Apparatus and method for surface modification using charged particle beams
DE102005053719B3 (en) 2005-11-10 2007-07-05 Siemens Ag Particle therapy system, treatment plan and irradiation method for such a particle therapy system
EP1785161A1 (en) 2005-11-11 2007-05-16 Siemens Aktiengesellschaft Treatment room of a particle therapy system, treatment plan, method of creating a treatment plan, and method of irradiation treatment
ITCO20050028A1 (en) 2005-11-11 2007-05-12 Fond Per Adroterapia Oncologica COMPLEX OF ACCELERATORS OF PROTON TILES IN PARTICULAR FOR MEDICAL USE
DE102005053971B4 (en) 2005-11-11 2009-08-27 Siemens Ag Particle therapy system with a fluoroscopy system for continuous acquisition of fluoroscopic image data
US7615942B2 (en) 2005-11-14 2009-11-10 Lawrence Livermore National Security, Llc Cast dielectric composite linear accelerator
EP2389983B1 (en) 2005-11-18 2016-05-25 Mevion Medical Systems, Inc. Charged particle radiation therapy
US7459899B2 (en) 2005-11-21 2008-12-02 Thermo Fisher Scientific Inc. Inductively-coupled RF power source
EP1795229A1 (en) 2005-12-12 2007-06-13 Ion Beam Applications S.A. Device and method for positioning a patient in a radiation therapy apparatus
DE102005063220A1 (en) 2005-12-22 2007-06-28 GSI Gesellschaft für Schwerionenforschung mbH Patient`s tumor tissue radiating device, has module detecting data of radiation characteristics and detection device, and correlation unit setting data of radiation characteristics and detection device in time relation to each other
WO2007077617A2 (en) 2005-12-28 2007-07-12 Takashi Suzuki Device designed based on binary dynamics and design method thereof
US8633160B2 (en) 2005-12-30 2014-01-21 Nono Inc. Small molecule inhibitors of PDZ interactions
WO2007084701A1 (en) 2006-01-19 2007-07-26 Massachusetts Institute Of Technology Magnet structure for particle acceleration
US7656258B1 (en) 2006-01-19 2010-02-02 Massachusetts Institute Of Technology Magnet structure for particle acceleration
DE102006002908B3 (en) 2006-01-20 2007-08-23 Siemens Ag Particle therapy system for treating cancer disease, has rotatable gantry enclosing radiation area with base, where base has movable segments displaceable under adjacent base region, and base is limited at irradiation area
US7432516B2 (en) 2006-01-24 2008-10-07 Brookhaven Science Associates, Llc Rapid cycling medical synchrotron and beam delivery system
JP4703421B2 (en) 2006-02-02 2011-06-15 株式会社東芝 Multi-leaf collimator and radiotherapy apparatus provided with the same
EP1818078A1 (en) 2006-02-09 2007-08-15 DKFZ Deutsches Krebsforschungszentrum Inverse treatment planning method
JP4696965B2 (en) 2006-02-24 2011-06-08 株式会社日立製作所 Charged particle beam irradiation system and charged particle beam extraction method
JP4310319B2 (en) 2006-03-10 2009-08-05 三菱重工業株式会社 Radiotherapy apparatus control apparatus and radiation irradiation method
DE102006011828A1 (en) 2006-03-13 2007-09-20 Gesellschaft für Schwerionenforschung mbH Irradiation verification device for radiotherapy plants, exhibits living cell material, which is locally fixed in the three space coordinates x, y and z in a container with an insert on cell carriers of the insert, and cell carrier holders
DE102006012680B3 (en) 2006-03-20 2007-08-02 Siemens Ag Particle therapy system has rotary gantry that can be moved so as to correct deviation in axial direction of position of particle beam from its desired axial position
JP4644617B2 (en) 2006-03-23 2011-03-02 株式会社日立ハイテクノロジーズ Charged particle beam equipment
JP4730167B2 (en) 2006-03-29 2011-07-20 株式会社日立製作所 Particle beam irradiation system
US7507975B2 (en) 2006-04-21 2009-03-24 Varian Medical Systems, Inc. System and method for high resolution radiation field shaping
CN101484071B (en) 2006-04-27 2017-02-22 Qfix系统有限责任公司 A support device and method for compensation of patient weight
US8173981B2 (en) 2006-05-12 2012-05-08 Brookhaven Science Associates, Llc Gantry for medical particle therapy facility
US7582886B2 (en) 2006-05-12 2009-09-01 Brookhaven Science Associates, Llc Gantry for medical particle therapy facility
US8426833B2 (en) 2006-05-12 2013-04-23 Brookhaven Science Associates, Llc Gantry for medical particle therapy facility
US8657354B2 (en) 2006-05-19 2014-02-25 Breya, Llc. Mobile radiation therapy
JP2007307223A (en) * 2006-05-19 2007-11-29 Mitsubishi Electric Corp Particle beam irradiation device
US7530616B2 (en) 2006-05-19 2009-05-12 Breya, Llc. Mobile radiation therapy
US8459714B2 (en) 2006-05-19 2013-06-11 Breya, Llc. Mobile radiation therapy
US7476883B2 (en) 2006-05-26 2009-01-13 Advanced Biomarker Technologies, Llc Biomarker generator system
US7466085B2 (en) 2007-04-17 2008-12-16 Advanced Biomarker Technologies, Llc Cyclotron having permanent magnets
US7402822B2 (en) 2006-06-05 2008-07-22 Varian Medical Systems Technologies, Inc. Particle beam nozzle transport system
US7817836B2 (en) 2006-06-05 2010-10-19 Varian Medical Systems, Inc. Methods for volumetric contouring with expert guidance
DE102006026212B3 (en) 2006-06-06 2008-02-21 Mt Mechatronics Gmbh Particle therapy system with at least one movable base plate
JP5116996B2 (en) 2006-06-20 2013-01-09 キヤノン株式会社 Charged particle beam drawing method, exposure apparatus, and device manufacturing method
AU2007260872A1 (en) 2006-06-22 2007-12-27 Sirion Therapeutics, Inc Methods and compositions for treating ophthalmic conditions via modulation of megalin activity
US7990524B2 (en) 2006-06-30 2011-08-02 The University Of Chicago Stochastic scanning apparatus using multiphoton multifocal source
JP4206414B2 (en) 2006-07-07 2009-01-14 株式会社日立製作所 Charged particle beam extraction apparatus and charged particle beam extraction method
WO2008013944A2 (en) 2006-07-28 2008-01-31 Tomotherapy Incorporated Method and apparatus for calibrating a radiation therapy treatment system
US20090080602A1 (en) 2006-08-03 2009-03-26 Kenneth Brooks Dedicated breast radiation imaging/therapy system
JP4872540B2 (en) 2006-08-31 2012-02-08 株式会社日立製作所 Rotating irradiation treatment device
JP4881677B2 (en) 2006-08-31 2012-02-22 株式会社日立ハイテクノロジーズ Charged particle beam scanning method and charged particle beam apparatus
US7701677B2 (en) 2006-09-07 2010-04-20 Massachusetts Institute Of Technology Inductive quench for magnet protection
JP4365844B2 (en) 2006-09-08 2009-11-18 三菱電機株式会社 Charged particle beam dose distribution measurement system
DE102006042572A1 (en) 2006-09-11 2008-03-27 Siemens Ag Imaging medical unit
DE102006042726A1 (en) 2006-09-12 2008-03-27 Siemens Ag multileaf collimator
US7950587B2 (en) 2006-09-22 2011-05-31 The Board of Regents of the Nevada System of Higher Education on behalf of the University of Reno, Nevada Devices and methods for storing data
DE102006046193B3 (en) 2006-09-29 2008-05-08 Siemens Ag Particle therapy facility for the particle therapy of a target volume exposed to a movement
US8069675B2 (en) 2006-10-10 2011-12-06 Massachusetts Institute Of Technology Cryogenic vacuum break thermal coupler
DE102006048426B3 (en) 2006-10-12 2008-05-21 Siemens Ag Method for determining the range of radiation
US7469035B2 (en) 2006-12-11 2008-12-23 The Board Of Trustees Of The Leland Stanford Junior University Method to track three-dimensional target motion with a dynamical multi-leaf collimator
US7609810B2 (en) 2006-12-14 2009-10-27 Byong Yong Yi Treatment-speed regulated tumor-tracking
EP2095373A4 (en) 2006-12-19 2012-07-18 C Rad Innovation Ab Collimator
DE202006019307U1 (en) 2006-12-21 2008-04-24 Accel Instruments Gmbh irradiator
US8405056B2 (en) 2006-12-28 2013-03-26 Fondazione per Adroterapia Oncologica—TERA Ion acceleration system for medical and/or other applications
JP4655046B2 (en) 2007-01-10 2011-03-23 三菱電機株式会社 Linear ion accelerator
DE102007003878B4 (en) 2007-01-25 2008-10-02 Siemens Ag Particle therapy system with movable floor segment
FR2911843B1 (en) 2007-01-30 2009-04-10 Peugeot Citroen Automobiles Sa TRUCK SYSTEM FOR TRANSPORTING AND HANDLING BINS FOR SUPPLYING PARTS OF A VEHICLE MOUNTING LINE
EP2109399B1 (en) 2007-02-07 2014-03-12 Koninklijke Philips N.V. Motion estimation in treatment planning
US7386099B1 (en) 2007-02-12 2008-06-10 Brainlab Ag Leave collimator for radiation therapy
JP4228018B2 (en) 2007-02-16 2009-02-25 三菱重工業株式会社 Medical equipment
JP4936924B2 (en) 2007-02-20 2012-05-23 稔 植松 Particle beam irradiation system
JP2008229324A (en) 2007-02-23 2008-10-02 Toshiba Corp Radiotherapeutic apparatus
US7858592B2 (en) 2007-02-26 2010-12-28 The Board Of Regents Of The University Of Texas System Interfering RNAs against the promoter region of P53
US8269196B2 (en) 2007-02-27 2012-09-18 Wisconsin Alumni Research Foundation Heavy ion radiation therapy system with stair-step modulation
US7977648B2 (en) 2007-02-27 2011-07-12 Wisconsin Alumni Research Foundation Scanning aperture ion beam modulator
US7763873B2 (en) 2007-02-27 2010-07-27 Wisconsin Alumni Research Foundation Ion radiation therapy system with variable beam resolution
US8093568B2 (en) * 2007-02-27 2012-01-10 Wisconsin Alumni Research Foundation Ion radiation therapy system with rocking gantry motion
US7977657B2 (en) 2007-02-27 2011-07-12 Wisconsin Alumni Research Foundation Ion radiation therapy system with distal gradient tracking
US7397901B1 (en) 2007-02-28 2008-07-08 Varian Medical Systems Technologies, Inc. Multi-leaf collimator with leaves formed of different materials
DE102007011154A1 (en) 2007-03-07 2008-09-11 Siemens Ag Phantom and method for quality control of a medical device and particle therapy system
DE102007011153A1 (en) 2007-03-07 2008-09-11 Siemens Ag Retaining device for phantoms and method for the quality inspection of a radiation therapy system and radiation therapy system
DE102007011399A1 (en) 2007-03-08 2008-09-11 Siemens Ag Particle therapy facility
US7453076B2 (en) 2007-03-23 2008-11-18 Nanolife Sciences, Inc. Bi-polar treatment facility for treating target cells with both positive and negative ions
US7778488B2 (en) 2007-03-23 2010-08-17 Varian Medical Systems International Ag Image deformation using multiple image regions
US8041006B2 (en) 2007-04-11 2011-10-18 The Invention Science Fund I Llc Aspects of compton scattered X-ray visualization, imaging, or information providing
DE102007020599A1 (en) 2007-05-02 2008-11-06 Siemens Ag Particle therapy system
DE102007020600A1 (en) 2007-05-02 2008-11-13 Siemens Ag Method for calibrating a positron emission tomograph of a radiotherapy device and radiotherapy device
DE102007021033B3 (en) 2007-05-04 2009-03-05 Siemens Ag Beam guiding magnet for deflecting a beam of electrically charged particles along a curved particle path and irradiation system with such a magnet
JP2008279159A (en) * 2007-05-14 2008-11-20 Hitachi Ltd Particle beam irradiation apparatus and particle beam irradiation method
US7668291B2 (en) 2007-05-18 2010-02-23 Varian Medical Systems International Ag Leaf sequencing
JP5004659B2 (en) 2007-05-22 2012-08-22 株式会社日立ハイテクノロジーズ Charged particle beam equipment
CN101755309B (en) 2007-05-24 2013-05-29 伊利克塔股份有限公司 Collimation apparatus for radiotherapy
DE102007026114A1 (en) 2007-06-05 2008-12-11 Siemens Ag Positioning device and method for positioning a load and medical diagnostic and / or therapy system
DE102007029192B3 (en) 2007-06-25 2009-01-29 Siemens Ag Gantry with alternative space for a particle therapy facility
US7947969B2 (en) 2007-06-27 2011-05-24 Mitsubishi Electric Corporation Stacked conformation radiotherapy system and particle beam therapy apparatus employing the same
DE102007036035A1 (en) 2007-08-01 2009-02-05 Siemens Ag Control device for controlling an irradiation process, particle therapy system and method for irradiating a target volume
US7770231B2 (en) 2007-08-02 2010-08-03 Veeco Instruments, Inc. Fast-scanning SPM and method of operating same
DE102007037896A1 (en) 2007-08-10 2009-02-26 Enocean Gmbh System with presence detector, procedure with presence detector, presence detector, radio receiver
GB2451708B (en) 2007-08-10 2011-07-13 Tesla Engineering Ltd Cooling methods
JP4339904B2 (en) 2007-08-17 2009-10-07 株式会社日立製作所 Particle beam therapy system
CN101854865A (en) 2007-09-04 2010-10-06 断层放疗公司 Patient support device
DE102007042336A1 (en) 2007-09-06 2009-03-12 Siemens Ag Particle therapy system
DE102007042340C5 (en) 2007-09-06 2011-09-22 Mt Mechatronics Gmbh Particle therapy system with moveable C-arm
DE102007042337A1 (en) 2007-09-06 2009-03-12 Siemens Ag Control device and method for controlling a medical diagnostic and / or therapeutic system and medical diagnostic and / or therapeutic system
US7848488B2 (en) 2007-09-10 2010-12-07 Varian Medical Systems, Inc. Radiation systems having tiltable gantry
WO2009035080A1 (en) 2007-09-12 2009-03-19 Kabushiki Kaisha Toshiba Particle beam projection apparatus and particle beam projection method
DE102007044630A1 (en) 2007-09-19 2009-04-02 Siemens Ag Plant and method for operating a plant
DE102007045879B4 (en) * 2007-09-25 2014-07-10 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Irradiation of a moving target volume
US7582866B2 (en) 2007-10-03 2009-09-01 Shimadzu Corporation Ion trap mass spectrometry
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
FR2922372B1 (en) 2007-10-15 2010-07-30 Imagine Optic METHOD AND DEVICE FOR PROTECTING LASER POWER EQUIPMENT, AND POWER LASER OPTIC SYSTEM USING SUCH A DEVICE
DE102007050035B4 (en) 2007-10-17 2015-10-08 Siemens Aktiengesellschaft Apparatus and method for deflecting a jet of electrically charged particles onto a curved particle path
DE102007050168B3 (en) 2007-10-19 2009-04-30 Siemens Ag Gantry, particle therapy system and method for operating a gantry with a movable actuator
CN101842133B (en) 2007-10-30 2013-03-20 伊利克塔股份有限公司 Radiotherapy apparatus
US8016336B2 (en) 2007-11-07 2011-09-13 Samuel Messinger Mobile radiation therapy
ES2546676T3 (en) 2007-11-30 2015-09-25 Mevion Medical Systems, Inc. Interior porch
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
TWI448313B (en) 2007-11-30 2014-08-11 Mevion Medical Systems Inc System having an inner gantry
US7784124B2 (en) 2007-12-10 2010-08-31 Kci Licensing, Inc. System and method to occlude patient entrapment zones
US8085899B2 (en) 2007-12-12 2011-12-27 Varian Medical Systems International Ag Treatment planning system and method for radiotherapy
ATE521979T1 (en) 2007-12-17 2011-09-15 Zeiss Carl Nts Gmbh RASTER SCANNING BEAMS OF CHARGED PARTICLES
AU2008352940B2 (en) 2007-12-19 2014-06-05 Singulex, Inc. Scanning analyzer for single molecule detection and methods of use
JP5074915B2 (en) 2007-12-21 2012-11-14 株式会社日立製作所 Charged particle beam irradiation system
DE102008005069B4 (en) 2008-01-18 2017-06-08 Siemens Healthcare Gmbh Positioning device for positioning a patient, particle therapy system and method for operating a positioning device
US8163709B2 (en) 2008-01-28 2012-04-24 Board Of Regents Of The University Of Texas System TAK1-D mediated induction of cell death in human cancer cells by specific sequence short double-stranded RNAS
AU2009217348B2 (en) 2008-02-22 2014-10-09 Loma Linda University Medical Center Systems and methods for characterizing spatial distortion in 3D imaging systems
DE102008011015A1 (en) 2008-02-25 2009-09-03 Siemens Aktiengesellschaft Particle therapy system
WO2010082944A2 (en) 2008-02-29 2010-07-22 The Regents Of The University Of Michigan Systems and methods for imaging changes in tissue
DE102008014406A1 (en) 2008-03-14 2009-09-24 Siemens Aktiengesellschaft Particle therapy system and method for modulating a particle beam generated in an accelerator
US7919765B2 (en) 2008-03-20 2011-04-05 Varian Medical Systems Particle Therapy Gmbh Non-continuous particle beam irradiation method and apparatus
JP5107113B2 (en) 2008-03-28 2012-12-26 住友重機械工業株式会社 Charged particle beam irradiation equipment
JP5143606B2 (en) 2008-03-28 2013-02-13 住友重機械工業株式会社 Charged particle beam irradiation equipment
DE102008018417A1 (en) 2008-04-10 2009-10-29 Siemens Aktiengesellschaft Method and device for creating an irradiation plan
JP4719241B2 (en) 2008-04-15 2011-07-06 三菱電機株式会社 Circular accelerator
EP2280764B1 (en) 2008-04-21 2012-08-22 Elekta AB (publ) Improvements in or relating to multi-leaf collimators
US7759642B2 (en) 2008-04-30 2010-07-20 Applied Materials Israel, Ltd. Pattern invariant focusing of a charged particle beam
US8291717B2 (en) 2008-05-02 2012-10-23 Massachusetts Institute Of Technology Cryogenic vacuum break thermal coupler with cross-axial actuation
US7903781B2 (en) 2008-05-02 2011-03-08 L-3 Communications Security And Detection Systems, Inc. Determination of heavy particle stopping power
EP2116277A1 (en) 2008-05-06 2009-11-11 Ion Beam Applications S.A. Device and method for particle therapy monitoring and verification
JP4691574B2 (en) 2008-05-14 2011-06-01 株式会社日立製作所 Charged particle beam extraction apparatus and charged particle beam extraction method
US8144832B2 (en) 2008-05-22 2012-03-27 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US20090314960A1 (en) 2008-05-22 2009-12-24 Vladimir Balakin Patient positioning method and apparatus used in conjunction with a charged particle cancer therapy system
EP2283710B1 (en) 2008-05-22 2018-07-11 Vladimir Yegorovich Balakin Multi-field charged particle cancer therapy apparatus
US8519365B2 (en) 2008-05-22 2013-08-27 Vladimir Balakin Charged particle cancer therapy imaging method and apparatus
CN102113419B (en) 2008-05-22 2015-09-02 弗拉迪米尔·叶戈罗维奇·巴拉金 Multi-axis charged particle cancer therapy method and device
CN102119585B (en) 2008-05-22 2016-02-03 弗拉迪米尔·叶戈罗维奇·巴拉金 The method and apparatus of charged particle cancer therapy patient location
US7953205B2 (en) 2008-05-22 2011-05-31 Vladimir Balakin Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system
US8374314B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system
US10213626B2 (en) 2010-04-16 2019-02-26 Vladimir Balakin Treatment delivery control system and method of operation thereof
US7940894B2 (en) 2008-05-22 2011-05-10 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US8178859B2 (en) 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
US8975600B2 (en) 2008-05-22 2015-03-10 Vladimir Balakin Treatment delivery control system and method of operation thereof
US9498649B2 (en) 2008-05-22 2016-11-22 Vladimir Balakin Charged particle cancer therapy patient constraint apparatus and method of use thereof
US8598543B2 (en) 2008-05-22 2013-12-03 Vladimir Balakin Multi-axis/multi-field charged particle cancer therapy method and apparatus
US9579525B2 (en) 2008-05-22 2017-02-28 Vladimir Balakin Multi-axis charged particle cancer therapy method and apparatus
US8378311B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Synchrotron power cycling apparatus and method of use thereof
US8093564B2 (en) 2008-05-22 2012-01-10 Vladimir Balakin Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system
US10137316B2 (en) 2008-05-22 2018-11-27 Vladimir Balakin Charged particle treatment, rapid patient positioning apparatus and method of use thereof
US8129699B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
US8129694B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system
US9095040B2 (en) 2008-05-22 2015-07-28 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8710462B2 (en) 2008-05-22 2014-04-29 Vladimir Balakin Charged particle cancer therapy beam path control method and apparatus
US7939809B2 (en) 2008-05-22 2011-05-10 Vladimir Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US9737733B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle state determination apparatus and method of use thereof
US8373143B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy
US8373145B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Charged particle cancer therapy system magnet control method and apparatus
US8288742B2 (en) 2008-05-22 2012-10-16 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
WO2009142544A2 (en) 2008-05-22 2009-11-26 Vladimir Yegorovich Balakin Charged particle cancer therapy beam path control method and apparatus
US8487278B2 (en) 2008-05-22 2013-07-16 Vladimir Yegorovich Balakin X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US8198607B2 (en) 2008-05-22 2012-06-12 Vladimir Balakin Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8309941B2 (en) 2008-05-22 2012-11-13 Vladimir Balakin Charged particle cancer therapy and patient breath monitoring method and apparatus
US8436327B2 (en) 2008-05-22 2013-05-07 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus
US9737734B2 (en) * 2008-05-22 2017-08-22 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US9044600B2 (en) 2008-05-22 2015-06-02 Vladimir Balakin Proton tomography apparatus and method of operation therefor
US8642978B2 (en) 2008-05-22 2014-02-04 Vladimir Balakin Charged particle cancer therapy dose distribution method and apparatus
US8045679B2 (en) 2008-05-22 2011-10-25 Vladimir Balakin Charged particle cancer therapy X-ray method and apparatus
US8896239B2 (en) 2008-05-22 2014-11-25 Vladimir Yegorovich Balakin Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system
US8624528B2 (en) 2008-05-22 2014-01-07 Vladimir Balakin Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods
US8373146B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8089054B2 (en) 2008-05-22 2012-01-03 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8718231B2 (en) 2008-05-22 2014-05-06 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US8969834B2 (en) 2008-05-22 2015-03-03 Vladimir Balakin Charged particle therapy patient constraint apparatus and method of use thereof
US8907309B2 (en) 2009-04-17 2014-12-09 Stephen L. Spotts Treatment delivery control system and method of operation thereof
US9056199B2 (en) 2008-05-22 2015-06-16 Vladimir Balakin Charged particle treatment, rapid patient positioning apparatus and method of use thereof
US8378321B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Charged particle cancer therapy and patient positioning method and apparatus
US8368038B2 (en) 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
US8569717B2 (en) 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US7943913B2 (en) 2008-05-22 2011-05-17 Vladimir Balakin Negative ion source method and apparatus used in conjunction with a charged particle cancer therapy system
US9058910B2 (en) 2008-05-22 2015-06-16 Vladimir Yegorovich Balakin Charged particle beam acceleration method and apparatus as part of a charged particle cancer therapy system
US8188688B2 (en) 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
US8399866B2 (en) 2008-05-22 2013-03-19 Vladimir Balakin Charged particle extraction apparatus and method of use thereof
US7834336B2 (en) 2008-05-28 2010-11-16 Varian Medical Systems, Inc. Treatment of patient tumors by charged particle therapy
US7987053B2 (en) 2008-05-30 2011-07-26 Varian Medical Systems International Ag Monitor units calculation method for proton fields
DE102008028510B3 (en) 2008-06-16 2009-12-03 Siemens Aktiengesellschaft Particle therapy system, method for building a particle therapy system and method for retrofitting a particle therapy system
US7801270B2 (en) 2008-06-19 2010-09-21 Varian Medical Systems International Ag Treatment plan optimization method for radiation therapy
US9612308B2 (en) 2008-06-20 2017-04-04 Weinberg Medical Physics Inc Ultra-fast magnetic field for electron paramagnetic resonance imaging used in monitoring dose from proton or hadron therapy
DE102008029609A1 (en) 2008-06-23 2009-12-31 Siemens Aktiengesellschaft Device and method for measuring a beam spot of a particle beam and system for generating a particle beam
US8227768B2 (en) 2008-06-25 2012-07-24 Axcelis Technologies, Inc. Low-inertia multi-axis multi-directional mechanically scanned ion implantation system
DE102008030699A1 (en) 2008-06-27 2009-12-31 Siemens Aktiengesellschaft Method for checking the energy of a particle beam, apparatus for energy verification and installation hereby
US7809107B2 (en) 2008-06-30 2010-10-05 Varian Medical Systems International Ag Method for controlling modulation strength in radiation therapy
EP2140913A1 (en) 2008-07-03 2010-01-06 Ion Beam Applications S.A. Device and method for particle therapy verification
US8627822B2 (en) 2008-07-14 2014-01-14 Vladimir Balakin Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US8625739B2 (en) 2008-07-14 2014-01-07 Vladimir Balakin Charged particle cancer therapy x-ray method and apparatus
US8229072B2 (en) 2008-07-14 2012-07-24 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
JP4691587B2 (en) 2008-08-06 2011-06-01 三菱重工業株式会社 Radiotherapy apparatus and radiation irradiation method
CN102132280A (en) 2008-08-15 2011-07-20 皇家飞利浦电子股份有限公司 Model enhanced imaging
US7796731B2 (en) 2008-08-22 2010-09-14 Varian Medical Systems International Ag Leaf sequencing algorithm for moving targets
US8330132B2 (en) 2008-08-27 2012-12-11 Varian Medical Systems, Inc. Energy modulator for modulating an energy of a particle beam
US7835494B2 (en) 2008-08-28 2010-11-16 Varian Medical Systems International Ag Trajectory optimization method
US7817778B2 (en) 2008-08-29 2010-10-19 Varian Medical Systems International Ag Interactive treatment plan optimization for radiation therapy
DE102008051476A1 (en) * 2008-10-13 2010-04-29 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Device and method for the determination of control parameters for an irradiation facility, irradiation facility and irradiation method
JP5430115B2 (en) 2008-10-15 2014-02-26 三菱電機株式会社 Scanning irradiation equipment for charged particle beam
WO2010047378A1 (en) 2008-10-24 2010-04-29 株式会社 日立ハイテクノロジーズ Charged particle beam apparatus
US7609811B1 (en) 2008-11-07 2009-10-27 Varian Medical Systems International Ag Method for minimizing the tongue and groove effect in intensity modulated radiation delivery
EP2359162A1 (en) 2008-11-21 2011-08-24 Siemens A/S Radiation detector with doped optical guides
US8525419B2 (en) 2008-11-25 2013-09-03 Oregon Physics, Llc High voltage isolation and cooling for an inductively coupled plasma ion source
WO2010073318A1 (en) * 2008-12-24 2010-07-01 三菱電機株式会社 Particle beam treatment apparatus
ES2628757T3 (en) 2008-12-31 2017-08-03 Ion Beam Applications S.A. Rolling floor for exploration cylinder
US7839973B2 (en) 2009-01-14 2010-11-23 Varian Medical Systems International Ag Treatment planning using modulability and visibility factors
WO2010082451A1 (en) 2009-01-15 2010-07-22 株式会社日立ハイテクノロジーズ Charged particle beam applied apparatus
US8632448B1 (en) 2009-02-05 2014-01-21 Loma Linda University Medical Center Proton scattering analysis system
GB2467595B (en) 2009-02-09 2011-08-24 Tesla Engineering Ltd Cooling systems and methods
US7835502B2 (en) 2009-02-11 2010-11-16 Tomotherapy Incorporated Target pedestal assembly and method of preserving the target
US7986768B2 (en) 2009-02-19 2011-07-26 Varian Medical Systems International Ag Apparatus and method to facilitate generating a treatment plan for irradiating a patient's treatment volume
US8053745B2 (en) 2009-02-24 2011-11-08 Moore John F Device and method for administering particle beam therapy
EP2223719A1 (en) 2009-02-27 2010-09-01 Koninklijke Philips Electronics N.V. Therapeutic apparatus for treating a subject using magnetic nanoparticles
CN102387836B (en) 2009-03-04 2016-03-16 普罗汤姆封闭式股份公司 Many charged particle cancer treatment facilities
US8063381B2 (en) 2009-03-13 2011-11-22 Brookhaven Science Associates, Llc Achromatic and uncoupled medical gantry
EP2229981A1 (en) 2009-03-17 2010-09-22 Paul Scherrer Institut A method for evaluating radiation model data in particle beam radiation applications
JP5409428B2 (en) * 2009-03-31 2014-02-05 株式会社日立製作所 Charged particle irradiation system and irradiation planning device
DE102009017440A1 (en) 2009-04-15 2010-10-28 Siemens Aktiengesellschaft Arrangement for expanding the particle energy distribution of a particle beam, particle therapy system and method for expanding the particle energy distribution of a particle beam
DE102009021024A1 (en) 2009-05-13 2010-11-18 Siemens Aktiengesellschaft Method of preparing a treatment plan for a particle therapy and a filter device for a particle therapy system
US8389949B2 (en) 2009-06-09 2013-03-05 Mitsusbishi Electric Corporation Particle beam therapy system and adjustment method for particle beam therapy system
US9451688B2 (en) 2009-06-24 2016-09-20 Ion Beam Applications S.A. Device and method for particle beam production
US7934869B2 (en) 2009-06-30 2011-05-03 Mitsubishi Electric Research Labs, Inc. Positioning an object based on aligned images of the object
WO2011005862A2 (en) 2009-07-07 2011-01-13 The Board Of Regents Of The University Of Texas System Liquid scintillator for 3d dosimetry for radiotherapy modalities
DE102009032275A1 (en) 2009-07-08 2011-01-13 Siemens Aktiengesellschaft Accelerator system and method for adjusting a particle energy
US20110009736A1 (en) 2009-07-09 2011-01-13 Maltz Jonathan S Localization Using Non-Metallic Implantable Fiducial Markers
US8971489B2 (en) 2009-07-09 2015-03-03 The Board Of Trustees Of The Leland Stanford Junior University Method and system for real-time DMLC-based target tracking with optimal motion compensating leaf adaptation
WO2011011049A2 (en) 2009-07-20 2011-01-27 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for inductive amplification of ion beam energy
US8859264B2 (en) 2009-07-29 2014-10-14 Gsi Helmholtzzentrum Fuer Schwerionenforschung Gmbh Phantom for the experimental in-vitro validation of radiation procedures under the influence of motion, taking into account the biological effective dose
US8507195B2 (en) 2009-08-20 2013-08-13 The Regents Of The University Of Colorado MiRNAs dysregulated in triple-negative breast cancer
US8462912B2 (en) 2009-08-31 2013-06-11 Analogic Corporation Computed tomography examination and particle therapy treatment
US7894574B1 (en) 2009-09-22 2011-02-22 Varian Medical Systems International Ag Apparatus and method pertaining to dynamic use of a radiation therapy collimator
US8009803B2 (en) 2009-09-28 2011-08-30 Varian Medical Systems International Ag Treatment plan optimization method for radiosurgery
DK2308561T3 (en) 2009-09-28 2011-10-03 Ion Beam Applic Compact gantry for particle therapy
DE102009043283B4 (en) * 2009-09-29 2013-07-04 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Method and device for checking an irradiation system and irradiation system
US8090074B2 (en) 2009-10-02 2012-01-03 Varian Medical Systems International Ag Systems and methods for obtaining reconstructed images during a treatment session
US8009804B2 (en) 2009-10-20 2011-08-30 Varian Medical Systems International Ag Dose calculation method for multiple fields
WO2011048088A1 (en) 2009-10-23 2011-04-28 Ion Beam Applications Gantry comprising beam analyser for use in particle therapy
US8382943B2 (en) 2009-10-23 2013-02-26 William George Clark Method and apparatus for the selective separation of two layers of material using an ultrashort pulse source of electromagnetic radiation
EP2497101A4 (en) 2009-11-02 2013-05-15 Procure Treat Ct S Inc Compact isocentric gantry
WO2011060141A1 (en) 2009-11-12 2011-05-19 Oncology Tech Llc An integrated beam modifying assembly for use with a proton beam therapy machine
EP2341145A1 (en) 2009-12-30 2011-07-06 febit holding GmbH miRNA fingerprint in the diagnosis of diseases
NZ601325A (en) 2010-01-05 2014-09-26 Vascular Biogenics Ltd Compositions and methods for treating glioblastoma gbm
EP2343103A1 (en) 2010-01-12 2011-07-13 Koninklijke Philips Electronics N.V. Therapeutic apparatus
US8613694B2 (en) 2010-01-25 2013-12-24 James Sherman Walsh Method for biological modulation of radiation therapy
JP5683113B2 (en) * 2010-01-26 2015-03-11 株式会社日立製作所 Radiation measuring apparatus and radiation measuring method of radiation measuring apparatus
CN102740929B (en) 2010-01-28 2015-07-01 三菱电机株式会社 Particle beam treatment apparatus
JP6141640B2 (en) 2010-02-05 2017-06-07 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Track action plan generation workflow
JP5463509B2 (en) 2010-02-10 2014-04-09 株式会社東芝 Particle beam irradiation apparatus and control method thereof
JP5417644B2 (en) * 2010-02-10 2014-02-19 株式会社東芝 Particle beam irradiation apparatus and control method thereof
US9207193B2 (en) 2010-02-12 2015-12-08 Loma Linda University Medical Center Systems and methodologies for proton computed tomography
DE102010008014A1 (en) 2010-02-15 2011-08-18 Siemens Aktiengesellschaft, 80333 Guidance system for medical equipment, medical equipment, mobile transport device and method
US8331532B2 (en) 2010-02-18 2012-12-11 Varian Medical Systems International Ag Method and system for treating moving target
US8207656B2 (en) 2010-02-26 2012-06-26 Heidi Baumgartner B-K electrode for fixed-frequency particle accelerators
JP2011182987A (en) 2010-03-09 2011-09-22 Sumitomo Heavy Ind Ltd Accelerated particle irradiation equipment
EP2365514B1 (en) 2010-03-10 2015-08-26 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Twin beam charged particle column and method of operating thereof
WO2011126805A2 (en) 2010-03-29 2011-10-13 Procure Treatment Centers, Inc. Intelligent particle beam allocation system and related method for treatment in multi-room medical centers
EP2552545B1 (en) 2010-03-31 2015-02-25 Ion Beam Applications Charged particle irradiation device and method of tuning the same
JP5646312B2 (en) 2010-04-02 2014-12-24 三菱電機株式会社 Particle beam irradiation apparatus and particle beam therapy apparatus
DE102010014002A1 (en) 2010-04-07 2011-10-13 Siemens Aktiengesellschaft Method for operating a particle therapy system
US10086214B2 (en) 2010-04-16 2018-10-02 Vladimir Balakin Integrated tomography—cancer treatment apparatus and method of use thereof
US20110284757A1 (en) 2010-05-11 2011-11-24 Hampton University Apparatus, method and system for measuring prompt gamma and other beam-induced radiation during hadron therapy treatments for dose and range verification purposes using ionization radiation detection
JP5606793B2 (en) 2010-05-26 2014-10-15 住友重機械工業株式会社 Accelerator and cyclotron
CN102844820B (en) 2010-05-27 2015-04-01 三菱电机株式会社 Particle beam irradiation system and control method for particle beam irradiation system
US8916838B2 (en) 2010-06-07 2014-12-23 Ion Beam Applications Sa Device and method for particle beam delivery
WO2011154853A1 (en) 2010-06-11 2011-12-15 Koninklijke Philips Electronics N.V. Simultaneous multi-modality inverse optimization for radiotherapy treatment planning
JP5722559B2 (en) 2010-06-30 2015-05-20 株式会社日立製作所 Treatment planning device
CN102905761B (en) 2010-07-15 2013-12-18 三菱电机株式会社 Particle beam irradiation apparatus and particle beam therapy apparatus provided with same
JPWO2012014705A1 (en) 2010-07-28 2013-09-12 住友重機械工業株式会社 Charged particle beam irradiation equipment
CN103282967B (en) 2010-08-17 2016-07-06 德克萨斯州立大学董事会 For radiotherapeutic automatization treatment plan
EP3031495A3 (en) 2010-08-17 2016-08-24 Mitsubishi Electric Corporation Multi-leaf collimator, particle beam therapy system, and treatment planning apparatus
US8416918B2 (en) 2010-08-20 2013-04-09 Varian Medical Systems International Ag Apparatus and method pertaining to radiation-treatment planning optimization
US8637841B2 (en) 2010-08-23 2014-01-28 Varian Medical Systems, Inc. Multi level multileaf collimators
US9324468B2 (en) 2010-08-23 2016-04-26 Varian Medical Systems, Inc. Multileaf collimators with transverse motion
JP5670126B2 (en) 2010-08-26 2015-02-18 住友重機械工業株式会社 Charged particle beam irradiation apparatus, charged particle beam irradiation method, and charged particle beam irradiation program
US8445872B2 (en) 2010-09-03 2013-05-21 Varian Medical Systems Particle Therapy Gmbh System and method for layer-wise proton beam current variation
EP4406557A2 (en) 2010-09-24 2024-07-31 University of Florida Research Foundation, Inc. Materials and methods for improving gastrointestinal function
US8472583B2 (en) 2010-09-29 2013-06-25 Varian Medical Systems, Inc. Radiation scanning of objects for contraband
EP2489407A1 (en) 2011-02-15 2012-08-22 Koninklijke Philips Electronics N.V. Therapeutic apparatus for heating a subject
WO2012055890A1 (en) 2010-10-26 2012-05-03 Ion Beam Applications S.A. Magnetic structure for circular ion accelerator
JP2013540554A (en) 2010-10-26 2013-11-07 コーニンクレッカ フィリップス エヌ ヴェ Treatment device, computer-implemented method, and computer program for controlling the focus of radiation into a moving target area
JP5535879B2 (en) 2010-11-11 2014-07-02 住友重機械工業株式会社 A charged particle beam irradiation apparatus, a charged particle beam irradiation method, and a method for attaching and detaching a transport line.
CN103153397B (en) 2010-11-16 2015-10-07 三菱电机株式会社 The manufacture method of thing block, thing block, particle-beam therapeutic apparatus and therapy planning device
US8525447B2 (en) 2010-11-22 2013-09-03 Massachusetts Institute Of Technology Compact cold, weak-focusing, superconducting cyclotron
EP2651512A2 (en) 2010-12-13 2013-10-23 Koninklijke Philips N.V. Therapeutic apparatus comprising a radiotherapy apparatus, a mechanical positioning system, and a magnetic resonance imaging system
US9245336B2 (en) 2010-12-15 2016-01-26 Koninklijke Philips N.V. Contour guided deformable image registration
EP2660825B1 (en) * 2010-12-27 2015-04-01 Sumitomo Heavy Industries, Ltd. Energy degrader and charged-particle irradiation system provided with same
JP5726541B2 (en) * 2011-01-18 2015-06-03 住友重機械工業株式会社 Energy degrader and charged particle irradiation system including the same
US9355784B2 (en) 2011-01-28 2016-05-31 Ion Beam Applications, Sa Variable rotating capacitor for synchrocyclotron
EP2670485B1 (en) 2011-02-04 2015-09-02 Ion Beam Applications S.A. An apparatus for particle therapy verification
WO2012109540A1 (en) 2011-02-10 2012-08-16 Fox Chase Cancer Center Methods for inducing epithelial cancer cell senescence
WO2012111125A1 (en) 2011-02-17 2012-08-23 三菱電機株式会社 Particle beam therapy system
EP2653192B1 (en) 2011-02-23 2015-09-09 Mitsubishi Electric Corporation Particle beam therapy device
JP5665721B2 (en) 2011-02-28 2015-02-04 三菱電機株式会社 Circular accelerator and operation method of circular accelerator
US8565377B2 (en) 2011-03-07 2013-10-22 Dalhousie University Methods and apparatus for imaging in conjunction with radiotherapy
CA2829094A1 (en) * 2011-03-07 2012-11-29 Loma Linda University Medical Center Systems, devices and methods related to calibration of a proton computed tomography scanner
BR112013023264A2 (en) 2011-03-15 2018-07-03 Koninklijke Philips Nv treatment planning system for the generation of patient-specific treatment margins, method and radiation therapy system.
DE102011005739A1 (en) 2011-03-17 2012-09-20 Siemens Aktiengesellschaft Method and device for determining an irradiation plan
US8575579B2 (en) 2011-03-30 2013-11-05 Indiana University Research and Technololgy Corporation Multi-leaf collimator for proton beam therapy
US8519370B2 (en) 2011-04-11 2013-08-27 Elekta Ab (Publ) Modifying radiation beam shapes
JP5637055B2 (en) 2011-04-18 2014-12-10 株式会社日立製作所 Particle beam therapy planning apparatus and particle beam therapy apparatus
JP5914130B2 (en) 2011-04-19 2016-05-11 株式会社日立製作所 Synchrotron and particle beam therapy system
JP5638457B2 (en) 2011-05-09 2014-12-10 住友重機械工業株式会社 Synchrocyclotron and charged particle beam irradiation apparatus including the same
JP5710374B2 (en) 2011-05-11 2015-04-30 住友重機械工業株式会社 Charged particle beam irradiation equipment
EP2524718A1 (en) 2011-05-17 2012-11-21 Deutsches Krebsforschungszentrum Leaf module for a multi-leaf collimator and multi-leaf collimator
US8653314B2 (en) 2011-05-22 2014-02-18 Fina Technology, Inc. Method for providing a co-feed in the coupling of toluene with a carbon source
US8963112B1 (en) 2011-05-25 2015-02-24 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
JP5726644B2 (en) * 2011-06-06 2015-06-03 住友重機械工業株式会社 Energy degrader and charged particle beam irradiation system including the same
EP2532385B1 (en) 2011-06-09 2015-04-22 Ion Beam Applications S.A. Shielding device for irradiation unit
US9504851B2 (en) 2011-06-27 2016-11-29 Koninklijke Philips N.V. Magnetic resonance imaging of bone tissue
JP5615766B2 (en) 2011-06-28 2014-10-29 住友重機械工業株式会社 Charged particle beam irradiation equipment
US20140113388A1 (en) 2011-06-30 2014-04-24 Koninklijke Philips N.V. Treatment planning based on polypeptide radiotoxicity serum markers
US8558485B2 (en) 2011-07-07 2013-10-15 Ionetix Corporation Compact, cold, superconducting isochronous cyclotron
CN103889506B (en) 2011-08-16 2016-10-05 皇家飞利浦有限公司 One treats planning system and treatment system
US8378312B1 (en) 2011-08-19 2013-02-19 Pyramid Technical Consultants, Inc. System, apparatus and method for deflecting a particle beam
US9199094B2 (en) * 2011-08-31 2015-12-01 Hitachi, Ltd. Charged particle beam irradiation system and operating method of charged particle beam irradiation system
JP6040248B2 (en) 2011-09-21 2016-12-07 セルン − ヨーロピアン オーガナイゼーション フォー ニュークリア リサーチCERN − European Organization for Nuclear Research Pixel detector, Compton camera, proton therapy device, neutron imaging device, X-ray polarimeter and γ-ray polarimeter
US9645255B2 (en) 2011-09-21 2017-05-09 Varian Medical Systems Particle Therapy Gmbh Method for efficient daily constancy check or calibration of proton therapy system
US10493300B2 (en) 2011-09-30 2019-12-03 Varian Medical Systems, Inc. Proton therapy beam-sharing panel display and controls
JPWO2013054788A1 (en) 2011-10-14 2015-03-30 住友重機械工業株式会社 Charged particle beam irradiation system and charged particle beam irradiation planning method
US8897857B2 (en) 2011-10-31 2014-11-25 Wisconsin Alumni Research Foundation Method and apparatus for generating proton therapy treatment planning images
WO2013075743A1 (en) 2011-11-23 2013-05-30 Brainlab Ag Method and device for radiation therapy treatment of multiple targets
EP2786643B1 (en) 2011-11-29 2015-03-04 Ion Beam Applications Rf device for synchrocyclotron
BR112014012737B1 (en) 2011-11-30 2022-08-09 Washington University In St. Louis RADIATION THERAPY TREATMENT PLANNING SYSTEM, RADIATION THERAPY SYSTEM, AND METHOD FOR GENERATING A RADIATION TREATMENT PLAN
US8644571B1 (en) 2011-12-06 2014-02-04 Loma Linda University Medical Center Intensity-modulated proton therapy
DE102011088160B3 (en) 2011-12-09 2013-05-16 Siemens Aktiengesellschaft Irradiation planning method and irradiation planning device for particle therapy
DE102011089235A1 (en) 2011-12-20 2012-08-09 Siemens Aktiengesellschaft Contour collimator for radiation therapy for treatment of tumors, has iris diaphragms stacked on top of each other and formed from material absorbing X-ray radiation and with apertures forming contour
DE102011089748A1 (en) 2011-12-23 2013-07-25 Siemens Aktiengesellschaft Method for tracking a beam for the irradiation of a moving target volume and radiotherapy device
CN103826698B (en) 2011-12-28 2017-05-03 住友重机械工业株式会社 Charged particle beam irradiation apparatus
EP2804620A4 (en) 2012-01-18 2016-04-13 Neumedicines Inc Il-12 for radiation protection and radiation-induced toxicity mitigation
JP5844169B2 (en) 2012-01-31 2016-01-13 住友重機械工業株式会社 Synchro cyclotron
US9093209B2 (en) 2012-02-03 2015-07-28 Ion Beam Applications S.A. Magnet structure for an isochronous superconducting compact cyclotron
WO2013118589A1 (en) 2012-02-06 2013-08-15 住友重機械工業株式会社 Particle ray irradiation device
WO2013119612A1 (en) 2012-02-07 2013-08-15 Board Of Trustees Of Michigan State University Electron microscope
US8948341B2 (en) 2012-02-12 2015-02-03 Christopher V. Beckman Radiation therapy techniques using targeted wave superposition, magnetic field direction and real-time sensory feedback
US9381379B2 (en) 2012-02-12 2016-07-05 Christopher V. Beckman Radiation therapy techniques using targeted wave superposition, magnetic field direction and real-time sensory feedback
US9254396B2 (en) 2012-02-16 2016-02-09 Rhode Island Hospital Advanced radiotherapy treatment planning optimization
JP6033279B2 (en) * 2012-02-22 2016-11-30 三菱電機株式会社 Particle beam therapy system
JP5791546B2 (en) * 2012-02-29 2015-10-07 株式会社日立製作所 Calibration method of radiation measuring apparatus and particle beam therapy apparatus
EP2823501B1 (en) 2012-03-03 2019-05-01 The Board of Trustees of The Leland Stanford Junior University Pluridirectional very high electron energy radiation therapy systems
ES2675349T3 (en) 2012-03-06 2018-07-10 Tesla Engineering Limited Cryostats with various orientations
US20130237822A1 (en) 2012-03-07 2013-09-12 Patrick Gross Combined radiotherapy ultrasound device
US8581525B2 (en) 2012-03-23 2013-11-12 Massachusetts Institute Of Technology Compensated precessional beam extraction for cyclotrons
EP2647407A1 (en) 2012-04-03 2013-10-09 Paul Scherrer Institut A system for the delivery of proton therapy by pencil beam scanning of a predeterminable volume within a patient
JP5868249B2 (en) 2012-04-10 2016-02-24 株式会社日立製作所 Particle beam therapy system
JP5954705B2 (en) * 2012-05-07 2016-07-20 国立研究開発法人量子科学技術研究開発機構 Irradiation planning apparatus, irradiation planning program, irradiation plan determination method, and charged particle irradiation system
EP2823694A1 (en) 2012-05-31 2015-01-14 Siemens Aktiengesellschaft Method and device for packetizing a beam-charged particle
EP2679277A1 (en) 2012-06-28 2014-01-01 Ion Beam Applications Apparatus and method for conformal particle radiation therapy of a moving target
JP5886155B2 (en) 2012-07-13 2016-03-16 住友重機械工業株式会社 Charged particle beam therapy planning device
US20150196779A1 (en) 2012-07-27 2015-07-16 H. Lee Moffitt Cancer Center And Research Institute, Inc. Multi-spectral fluorescence for in-vivo determination of proton energy and range in proton therapy
US8975836B2 (en) 2012-07-27 2015-03-10 Massachusetts Institute Of Technology Ultra-light, magnetically shielded, high-current, compact cyclotron
US9603235B2 (en) 2012-07-27 2017-03-21 Massachusetts Institute Of Technology Phase-lock loop synchronization between beam orbit and RF drive in synchrocyclotrons
US9393443B2 (en) 2012-07-30 2016-07-19 Hitachi, Ltd. Treatment planning system
JP2014038738A (en) 2012-08-13 2014-02-27 Sumitomo Heavy Ind Ltd Cyclotron
US20140066755A1 (en) 2012-08-29 2014-03-06 ProNova Solutions, LLC Simultaneous Imaging and Particle Therapy Treatment system and Method
US9655223B2 (en) 2012-09-14 2017-05-16 Oregon Physics, Llc RF system, magnetic filter, and high voltage isolation for an inductively coupled plasma ion source
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
EP2901820B1 (en) 2012-09-28 2021-02-17 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
WO2014052708A2 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
WO2014052721A1 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Control system for a particle accelerator
GB201217782D0 (en) 2012-10-04 2012-11-14 Tesla Engineering Ltd Magnet apparatus
US20140107390A1 (en) 2012-10-12 2014-04-17 Elekta Ab (Publ) Implementation and experimental results of real-time 4d tumor tracking using multi-leaf collimator (mlc), and/or mlc-carriage (mlc-bank), and/or treatment table (couch)
CN104955393A (en) 2012-10-22 2015-09-30 普罗诺瓦解决方案有限责任公司 Proton treatment location projection system
WO2014066896A1 (en) 2012-10-26 2014-05-01 ProNova Solutions, LLC Active floor for proton therapy
GB2507585B (en) 2012-11-06 2015-04-22 Siemens Plc MRI magnet for radiation and particle therapy
BE1021525B1 (en) 2012-12-10 2015-12-08 Orfit Industries PROFILE FOR CONFIRMING AN IMMOBILIZATION MASK
JP5954826B2 (en) 2012-12-25 2016-07-20 株式会社日立製作所 Particle beam therapy system
US20150335919A1 (en) 2012-12-31 2015-11-26 Perseus-Biomed Inc. Phased array energy aiming and tracking for ablation treatment
JP6066478B2 (en) 2013-01-29 2017-01-25 株式会社日立製作所 Particle beam therapy system
EP2959944A4 (en) 2013-02-22 2016-08-31 Mitsubishi Electric Corp Particle therapy apparatus
JP5662503B2 (en) 2013-03-07 2015-01-28 メビオン・メディカル・システムズ・インコーポレーテッド Inner gantry
US9012866B2 (en) 2013-03-15 2015-04-21 Varian Medical Systems, Inc. Compact proton therapy system with energy selection onboard a rotatable gantry
CA2907724C (en) 2013-03-22 2021-06-15 Deutsches Krebsforschungszentrum Contour collimator for radiotherapy
US20140308202A1 (en) 2013-04-12 2014-10-16 Vanderbilt University Nf-kb gene signature predicts prostate and breast cancer progression
US9545527B2 (en) 2013-05-01 2017-01-17 Purdue Research Foundation System design and method for verifying 3D dosimetric imaging of charged particles in media
US9409039B2 (en) 2013-05-21 2016-08-09 Varian Medical Systems International Ag Systems and methods for automatic creation of dose prediction models and therapy treatment plans as a cloud service
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
EP2811813B1 (en) 2013-06-04 2016-01-06 Ion Beam Applications Methods for adjusting the position of a main coil in a cyclotron
EP3006084B1 (en) 2013-06-06 2018-11-14 Mitsubishi Electric Corporation Particle therapy device and method for setting dose calibration factor
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
EP3014629B1 (en) 2013-07-05 2018-03-28 University of Iowa Research Foundation System for dynamically-trimmed spot scanning for ion therapy
DK2825000T3 (en) 2013-07-10 2016-06-13 Adam S A Self-shielded vertical linear proton accelerator for proton therapy
KR101486152B1 (en) 2013-07-25 2015-01-26 가톨릭대학교 산학협력단 Collimator for proton therapy of flowing pixel
EP3030316B1 (en) 2013-08-06 2018-02-21 Koninklijke Philips N.V. Method and system for automatic estimation of utility of adaptive radiation therapy re-planning
US10471279B2 (en) 2013-08-06 2019-11-12 The Trustees Of The University Of Pennsylvania Proton dose imaging method and apparatus
CN105792746A (en) 2013-09-19 2016-07-20 普罗诺瓦解决方案有限责任公司 Tracking external markers to internal bodily structures
WO2015042360A1 (en) 2013-09-19 2015-03-26 ProNova Solutions, LLC Systems and methods of controlling a proton beam of a proton treatment system
CN105792888A (en) 2013-09-20 2016-07-20 普罗诺瓦解决方案有限责任公司 Positron emission tomography guided proton therapy
US9364688B2 (en) 2013-09-20 2016-06-14 Ion Beam Applications, S.A. Method and apparatus for monitoring the range of a particle beam
EP3046626A4 (en) 2013-09-20 2017-10-04 Pronova Solutions, LLC Treatment theater for proton therapy
US9731149B2 (en) 2013-09-22 2017-08-15 Pyramid Technical Consultants Inc. Method and apparatus for measuring, verifying, and displaying progress of dose delivery in scanned beam particle therapy
EP3052120A1 (en) 2013-09-30 2016-08-10 Galderma S.A. Prostate cancer treatment
EP2853292B1 (en) 2013-09-30 2019-07-31 Ion Beam Applications S.A. Charged hadron beam delivery
JP6292813B2 (en) * 2013-10-04 2018-03-14 株式会社日立製作所 Radiation measurement apparatus, particle beam therapy apparatus equipped with the same, and dose distribution calculation method for particle beam
EP3057659B1 (en) 2013-10-17 2017-09-13 Koninklijke Philips N.V. Medical apparatus with a radiation therapy device and a radiation detection system
US9089696B2 (en) 2013-11-07 2015-07-28 Varian Medical Systems International Ag Time-resolved pre-treatment portal dosimetry systems, devices, and methods
US10099070B2 (en) 2013-11-08 2018-10-16 Koninklijke Philips N.V. Medical apparatus for radiotherapy and ultrasound heating
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US20160325118A1 (en) 2014-01-16 2016-11-10 Mitsubishi Heavy Industries, Ltd. Multi-leaf collimator and radiation therapy device
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
JP6017486B2 (en) 2014-03-20 2016-11-02 住友重機械工業株式会社 Charged particle beam therapy apparatus and charged particle beam range adjustment method
US9931521B2 (en) 2014-03-25 2018-04-03 Varian Medical Systems, Inc. Multi level multileaf collimator leaf tip shape effects and penumbra optimization
EP2942081B1 (en) 2014-05-09 2019-11-06 Ion Beam Applications S.A. An apparatus for particle therapy verification comprising a collimator with multiple openings
US9999788B2 (en) 2014-06-05 2018-06-19 International Business Machines Corporation Fast and accurate proton therapy dose calculations
US20160000387A1 (en) 2014-07-02 2016-01-07 Indiana University Research And Technology Corp. Body support with anatomical aperture
US10369381B2 (en) 2014-09-02 2019-08-06 Mayo Foundation For Medical Education And Research System and method for robust intensity-modulated proton therapy planning
US20160067316A1 (en) 2014-09-10 2016-03-10 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Selective Sensitization of Cancer Cells to, and Selective Protection of Non-Cancer Cells from Genotoxic Therapies
US9468608B2 (en) 2014-10-24 2016-10-18 Institute Of Nuclear Energy Research Preparation method of radiation sensitive copolymer carrier for coating radiated nanoparticles and chemotherapy drugs
ES2620670T3 (en) 2014-12-16 2017-06-29 Ion Beam Applications S.A. Energy degrader
US10342997B2 (en) 2014-12-17 2019-07-09 Varian Medical Systems, Inc. Dynamic beam's eye view of proton therapy irradiation shown in anatomical context
KR102412851B1 (en) 2015-03-30 2022-06-28 한국전자통신연구원 Integrated target structure for generating charged particle and driving method of medical appliance using the same
US10569104B2 (en) 2015-04-09 2020-02-25 The General Hospital Corporation System and method for quantitative mapping of radioactivity production rate during proton therapy
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
WO2018128822A1 (en) 2017-01-05 2018-07-12 Mevion Medical Systems, Inc. High-speed energy switching
US9999787B1 (en) 2017-03-08 2018-06-19 Varian Medical Systems International Ag. Beam limiting device for intensity modulated proton therapy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006034582A (en) * 2004-07-27 2006-02-09 Mitsubishi Electric Corp Particle beam irradiation device
US8822965B2 (en) * 2012-07-12 2014-09-02 Sumitomo Heavy Industries, Ltd. Charged particle beam irradiation apparatus
US20140094638A1 (en) * 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US20140094643A1 (en) * 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Controlling Particle Therapy
US20150090894A1 (en) * 2013-09-27 2015-04-02 Mevion Medical Systems, Inc. Particle beam scanning

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200078603A1 (en) * 2014-02-20 2020-03-12 Mevion Medical Systems, Inc. Scanning system
US11717700B2 (en) * 2014-02-20 2023-08-08 Mevion Medical Systems, Inc. Scanning system

Also Published As

Publication number Publication date
US10675487B2 (en) 2020-06-09
US20170182338A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
US20200368556A1 (en) High-speed energy switching
US11213697B2 (en) Adaptive aperture
EP3082954B1 (en) Particle therapy system
US11717700B2 (en) Scanning system
US10456591B2 (en) Particle beam scanning
EP3565633B1 (en) High-speed energy switching

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

AS Assignment

Owner name: MEVION MEDICAL SYSTEMS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZWART, GERRIT TOWNSEND;JONES, MARK R.;COOLEY, JAMES;AND OTHERS;SIGNING DATES FROM 20170329 TO 20170331;REEL/FRAME:060078/0735

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED