JP4323267B2 - Shape measuring device, shape measuring method, shape analyzing device, shape analyzing program, and recording medium - Google Patents

Shape measuring device, shape measuring method, shape analyzing device, shape analyzing program, and recording medium Download PDF

Info

Publication number
JP4323267B2
JP4323267B2 JP2003316829A JP2003316829A JP4323267B2 JP 4323267 B2 JP4323267 B2 JP 4323267B2 JP 2003316829 A JP2003316829 A JP 2003316829A JP 2003316829 A JP2003316829 A JP 2003316829A JP 4323267 B2 JP4323267 B2 JP 4323267B2
Authority
JP
Japan
Prior art keywords
measured
straight
straight line
angle
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003316829A
Other languages
Japanese (ja)
Other versions
JP2005083918A (en
Inventor
正之 奈良
阿部  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003316829A priority Critical patent/JP4323267B2/en
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to EP04255445A priority patent/EP1515115B1/en
Priority to DE602004005388T priority patent/DE602004005388T2/en
Priority to EP06119993A priority patent/EP1742018B1/en
Priority to DE602004017513T priority patent/DE602004017513D1/en
Priority to US10/936,509 priority patent/US7188046B2/en
Priority to CNB2004100785395A priority patent/CN100375884C/en
Publication of JP2005083918A publication Critical patent/JP2005083918A/en
Priority to US11/652,504 priority patent/US7483807B2/en
Application granted granted Critical
Publication of JP4323267B2 publication Critical patent/JP4323267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は、形状測定装置、形状測定方法、形状解析装置、形状解析プログラムおよび記録媒体に関する。例えば、平面多角形について各辺の凹凸形状や角度のずれなどを求める形状測定装置等に関する。 The present invention relates to a shape measuring device, a shape measuring method, a shape analyzing device, a shape analyzing program, and a recording medium. For example, the present invention relates to a shape measuring device that obtains the uneven shape of each side, a shift in angle, etc., for a planar polygon.

平面多角形状の被測定物を測定するにあたっては、各辺の表面凹凸および角度を測定する必要があり、例えば、4直角スコヤについては各辺の真直度と四つの角の直角度とを測定する必要がある。
各辺の真直度は、例えば、直定規に沿って移動する検出器(電気マイクロメータ等)によって測定対象辺を走査して、真直基準となる直定規からのずれに基づいて真直度を測定していた。一方、直角度は、互いに直角に配置された基準定規の内側に4直角スコヤを配置して基準定規と4直角スコヤの各辺との距離を測定して直角度を測定していた(特許文献1)。
しかしながら、上記のようにある基準からのずれに基づいた測定によると、測定時において基準と被測定物との配置姿勢がずれていたり、基準に加工誤差があったりすると、このようなずれが測定結果に含まれることになるので高精度な測定を期待できないという問題が生じる。
In measuring a planar polygonal object to be measured, it is necessary to measure the surface irregularities and angles of each side. For example, for a 4-square skewer, the straightness of each side and the squareness of four angles are measured. There is a need.
The straightness of each side is measured by, for example, scanning the measurement target side with a detector (such as an electric micrometer) that moves along the straight ruler, and measuring the straightness based on the deviation from the straight ruler as the straight reference. It was. On the other hand, the perpendicularity is measured by arranging a 4 right angle square inside the reference rulers arranged at right angles to each other and measuring the distance between the reference ruler and each side of the 4 right angle square (Patent Document). 1).
However, according to the measurement based on the deviation from the reference as described above, if the arrangement posture between the reference and the object to be measured is shifted at the time of measurement, or there is a processing error in the reference, such a deviation is measured. Since it is included in the result, there arises a problem that high-precision measurement cannot be expected.

真直度の校正にあっては、基準定規や測定時の配置姿勢に影響を受けない測定方法として三面合わせ法が提案されている(例えば、特許文献2、特許文献3)。
三面合わせ法は、三つの棒状の被測定物(AとBとC)を組み合わせてできる三組(AとB、BとC、CとA)について、各組(例えばAとB)を対向させて測定面間距離を複数点にて測定する。この測定面間距離の測定を各組で行って、三組の被測定物対に成立する連立方程式を解く。すると、仮想基準線からのずれとして各被測定物の真直度が算出される。このようにすると、基準定規の加工誤差や、基準定規と被測定物との配置姿勢等に影響されずに真直度の評価が可能となる利点がある。
In the straightness calibration, a three-surface alignment method has been proposed as a measurement method that is not affected by the reference ruler or the arrangement posture during measurement (for example, Patent Document 2 and Patent Document 3).
In the three-sided alignment method, three sets (A and B, B and C, C and A) formed by combining three rod-like objects to be measured (A, B and C) face each other (for example, A and B). Thus, the distance between the measurement surfaces is measured at a plurality of points. The measurement of the distance between the measurement surfaces is performed for each group, and the simultaneous equations established for the three pairs of objects to be measured are solved. Then, the straightness of each object to be measured is calculated as a deviation from the virtual reference line. In this way, there is an advantage that the straightness can be evaluated without being affected by the processing error of the reference ruler, the arrangement posture of the reference ruler and the measured object, and the like.

特開平9−243351号JP-A-9-243351 特開平2−253114号JP-A-2-253114 特開2003−121131号JP2003-121131A

上記の三面合わせ法によれば、真直度が未知の定規を用いても被測定物の真直度を正確に評価できるが、一次元的な計算に限られているという問題がある。つまり、4直角スコヤのように平面多角形の被測定物に関し、各辺の真直度は評価できても角の直角度を評価することまではできないという問題がある。そして、一次元的な計算方法を辺と辺との姿勢まで含めた二次元的計算に拡張することは、連立方程式を解くための未知数を増やすことになるので単純ではないという問題がある。   According to the above three-plane alignment method, the straightness of the object to be measured can be accurately evaluated even if a ruler whose straightness is unknown is used, but there is a problem that it is limited to one-dimensional calculation. In other words, there is a problem that the straightness of each side cannot be evaluated even though the straightness of each side can be evaluated with respect to a planar polygonal object to be measured such as a 4-right angle square. And, extending the one-dimensional calculation method to two-dimensional calculation including the postures of the sides has a problem that it is not simple because the number of unknowns for solving the simultaneous equations is increased.

本発明の目的は、基準定規や測定姿勢に関係なく、平面多角形について各辺の表面凹凸および各内角を簡便かつ高精度に求めることができる平面多角形の形状測定装置、形状測定方法、形状測定プログラムおよび記録媒体を提供することにある。   An object of the present invention is to provide a planar polygon shape measuring device, a shape measuring method, and a shape capable of easily and accurately obtaining the surface irregularities and the inner angles of each side of the planar polygon regardless of the reference ruler and the measurement posture. It is to provide a measurement program and a recording medium.

請求項1に記載の形状測定装置は、二本の直定規を有するとともに、これら直定規と平面多角形である被測定物の辺とを対向する状態に組み合わせて互いの間隔を複数のサンプリング点で測定した測定データを取得する測定部と、前記被測定物の各辺および前記直定規の被検面に対して設定された仮想的な直線である参照直線から前記被検面までの前記各サンプリング点における距離を、前記被検面の凹凸を表す形状示数として設定し、前記被測定物の参照直線が構成する内角角度および前記直定規の参照直線が構成する角度が前記平面多角形を正多角形としたときの内角角度からずれた角度を、前記被測定物の参照直線が構成する内角角度および前記各直定規の参照直線が構成する角度を表す角度示数として設定する示数設定部と、前記測定部にて取得される前記直定規から前記被測定物の辺までの距離がこの直定規の参照直線から被測定物の辺の参照直線までの距離に前記形状示数を加えた値に等しいとするとともに、一方の前記直定規に対向する前記被測定物の辺の参照直線に対するこの直定規の参照直線の傾きと、他方の前記直定規に対向する前記被測定物の辺の参照直線に対するこの直定規の参照直線の傾きとの関係は、前記角度示数を用いて表されるとして、前記直定規と前記被測定物の各辺とで構成される複数の組についての連立式を導出する連立式導出部と、連立式導出部にて導出された前記連立式を解くことで前記形状示数、及び前記角度示数を算出する連立式演算部と、を備えていることを特徴とする。 The shape measuring apparatus according to claim 1 has two straight rulers and combines the straight ruler and the side of the object to be measured which is a plane polygon so as to face each other with a plurality of sampling points. in a measuring unit for acquiring measurement data measured, each of the from the reference straight line is a virtual straight line set for the test surface of the sides and the straight edge of the object to be measured to the test surface the distance at the sampling point, the set as a shape readings representing the unevenness of the surface to be inspected, prior SL internal angle angle and the corner of the reference straight line for each straightedge constitutes the plane in which the reference straight line of the object to be measured constitutes The angle deviated from the interior angle when the polygon is a regular polygon is set as an angle index representing the interior angle formed by the reference straight line of the object to be measured and the angle formed by the reference straight line of each straight ruler. and readings setting unit, the Equal from the distance from the straightedge to the side of the object to be measured reference straight line of the straight edge to be acquired to a value obtained by adding the shape readings of the distance to the reference straight sides of the object to be measured at tough And the inclination of the reference straight line of the straight ruler relative to the reference straight line of the object to be measured facing one of the straight rulers and the reference straight line of the side of the measured object facing the other of the straight ruler relationship between the inclination of the reference straight line of the straightedge, as is the table with the angle readings, deriving simultaneous equations for a plurality of pairs composed of the respective sides of the straightedge and the object to be measured A simultaneous equation deriving unit , and a simultaneous equation calculating unit that calculates the shape index and the angle index by solving the simultaneous equations derived by the simultaneous equation deriving unit, To do.

ここで、前記参照直線は、直定規の被検面、および、被測定物の各辺の被検面をそれぞれ最小自乗回帰して得られる最小自乗直線とすることが例として挙げられる。   Here, as an example, the reference straight line may be a least square line obtained by least square regression of the test surface of the straight ruler and the test surface of each side of the object to be measured.

このような構成によれば、測定部において直定規と被測定物の辺との間隔を測定した測定データが取得される。例えば、二本の直定規の延長線が所定角度をなす状態に二本の直定規が配置され、さらに、直定規のそれぞれと被測定物の辺とが略平行に対向する状態に被測定物が配置されて、各サンプリング点おいて直定規と被測定物の辺との間隔が測定される。そして、被測定物がローテーションされて直定規と被測定物の辺との組み合わせが換えられてすべての可能な組み合わせについて直定規と被測定物の辺との距離が測定される。このようにして得られた測定データは解析部に送られる。
示数設定部で設定された形状示数および角度示数と取得された測定データとを用い、連立式導出部において連立式が導出される。このとき、直定規から被測定物の辺までの距離の関係に加えて、二本の直定規と被測定物の内角との関係も加味した連立式が立てられる。連立式演算部によってこれらの連立式が演算処理されて、被測定物の形状示数および角度示数が算出される。なお、このような連立方程式の計算は行列を利用すれば、簡便な計算で完了する。
According to such a configuration, measurement data obtained by measuring the distance between the straight ruler and the side of the object to be measured is acquired in the measurement unit. For example, the two straight rulers are arranged in a state where the extension lines of the two straight rulers form a predetermined angle, and the measurement object is in a state where each of the straight rulers and the side of the measurement object are substantially parallel to each other. Are arranged, and the distance between the straight ruler and the side of the object to be measured is measured at each sampling point. Then, the object to be measured is rotated and the combination of the straight ruler and the side of the object to be measured is changed, and the distance between the straight ruler and the side of the object to be measured is measured for all possible combinations. The measurement data obtained in this way is sent to the analysis unit.
The simultaneous equations are derived by the simultaneous equation deriving unit using the shape and angle indications set by the indication setting unit and the acquired measurement data. At this time, in addition to the relationship between the distance from the straight ruler to the side of the object to be measured, a simultaneous equation is established in consideration of the relationship between the two straight rulers and the internal angle of the object to be measured. These simultaneous equations are processed by the simultaneous equation calculation unit, and the shape indication and angle indication of the object to be measured are calculated. In addition, calculation of such simultaneous equations can be completed with simple calculation by using a matrix.

被測定物の辺について各サンプリング点における形状示数によって、被測定物の辺と参照直線とのずれが示される。そして、例えば、辺に関する形状示数のうち、最大値と最小値との差から辺の真直度が示されるなど、形状に関する情報が得られる。また、被測定物の角度示数によって被測定物の各内角について情報を得ることができる。例えば、被測定物が4直角スコヤであれば、各内角が90°からずれている量が得られる。加えて、直定規の形状示数によって直定規の真直度をはじめとする形状に関する情報が得られる。   The deviation between the side of the object to be measured and the reference line is indicated by the shape index at each sampling point for the side of the object to be measured. Then, for example, information on the shape is obtained such that the straightness of the side is indicated from the difference between the maximum value and the minimum value among the shape indications on the side. Further, information about each inner angle of the object to be measured can be obtained from the angle indication of the object to be measured. For example, if the object to be measured is a 4-right angle square, an amount in which each internal angle is deviated from 90 ° is obtained. In addition, information on the shape including the straightness of the straight ruler can be obtained from the shape index of the straight ruler.

真直度が未知の直定規から被測定物の辺までの距離を測定した測定データを演算処理することにより被測定物の形状を求めることができ、直定規の精度に関係なく演算によって精密に被測定物の形状測定を行うことができる。
各サンプリング点での形状示数を算出することができるので、単なる真直度の評価にとどまらず被測定物の各辺の表面凹凸まで求めることができる。さらに、被測定物の内角を角度示数として算出することができるので、被測定物の各辺の真直度に加えて被測定物の内角まで求めることができる。
二本の直定規と被測定物の各辺とを対にしてその間隔を測定できれば演算処理を行うことができるので、原則として平面多面体であればどんな形状でも辺の形状や内角の大きさを測定することができる。
The shape of the object to be measured can be calculated by processing the measurement data obtained by measuring the distance from the straight ruler whose straightness is unknown to the side of the object to be measured. The shape of the measurement object can be measured.
Since the shape index at each sampling point can be calculated, not only the straightness evaluation but also the surface irregularities on each side of the object to be measured can be obtained. Furthermore, since the internal angle of the object to be measured can be calculated as an angle index, the internal angle of the object to be measured can be obtained in addition to the straightness of each side of the object to be measured.
As long as two straight rulers and each side of the object to be measured can be measured and the distance between them can be measured, calculation processing can be performed, so in principle any shape of the plane polyhedron can be used to determine the shape of the side and the size of the interior angle. Can be measured.

ここで、測定部の直定規とは、必ずしも真直加工されて真直基準となる直定規の意味ではなく、直線状の棒体であればよい。直定規の形状示数から直定規の形状も求まることから、場合によっては、この直定規も形状測定の対象としてもよい。   Here, the straight ruler of the measuring unit does not necessarily mean a straight ruler that is straightened and serves as a straight reference, and may be a straight bar. Since the shape of the straight ruler is also obtained from the shape index of the straight ruler, depending on the case, this straight ruler may be the target of shape measurement.

請求項2に記載の形状測定は、請求項1に記載の形状測定装置において、前記測定部は、前記直定規と前記被測定物の辺との間の間隔を測定する測長センサを有し、前記測長センサは、二つの前記直定規のそれぞれに辺を対向させて配置された被測定物とこれら直定規との間で前記直定規の長手方向に移動可能に設けられた本体部と、前記直定規とこの直定規に対向する被測定物の辺とを最短で結ぶ方向で前記本体部から互いに反対に向けて進退可能に設けられた第1スピンドルおよび第2スピンドルと、第1スピンドルおよび第2スピンドルの進退量を検出する検出部と、を備えていることを特徴とする。   The shape measurement according to claim 2 is the shape measurement device according to claim 1, wherein the measurement unit includes a length measuring sensor that measures a distance between the straight ruler and a side of the object to be measured. The length measuring sensor includes a main body provided to be movable in the longitudinal direction of the straight ruler between an object to be measured arranged with the sides facing each of the two straight rulers and the straight ruler. A first spindle and a second spindle provided so as to be able to advance and retreat from the main body in opposite directions in the direction connecting the straight ruler and the side of the object to be measured facing the straight ruler in the shortest direction; And a detector for detecting the amount of advancement and retreat of the second spindle.

このような構成によれば、測長センサは互いに反対方向に進退するスピンドルを有し、これらスピンドルの進退量の総和から直定規と被測定物の辺との距離を検出する。すると、測長センサを移動させる移動軸が直定規と被測定物の辺とを結ぶ方向にずれても、検出値は直定規と被測定物の辺との距離を正確に表す。したがって、被測定物の辺と直定規との間隔が正確に検出される。   According to such a configuration, the length measuring sensor has the spindles that advance and retreat in opposite directions, and detects the distance between the straight ruler and the side of the object to be measured from the sum of the advance and retreat amounts of these spindles. Then, even if the movement axis for moving the length measuring sensor is shifted in the direction connecting the straight ruler and the side of the object to be measured, the detected value accurately represents the distance between the straight ruler and the side of the object to be measured. Therefore, the distance between the side of the object to be measured and the straight ruler is accurately detected.

請求項3に記載の形状測定方法は、二本の直定規を有するとともにこれら直定規と平面多角形である被測定物の辺とを対向する状態に組み合わせて互いの間隔を複数のサンプリング点で測定した測定データを取得する測定工程と、前記被測定物の各辺および前記直定規の被検面に対して設定された仮想的な直線である参照直線から前記被検面までの前記各サンプリング点における距離を、前記被検面の凹凸を表す形状示数として設定し、前記被測定物の参照直線が構成する内角角度および前記直定規の参照直線が構成する角度が前記平面多角形を正多角形としたときの内角角度からずれた角度を、前記被測定物の参照直線が構成する内角角度および前記各直定規の参照直線が構成する角度を表す角度示数として設定する示数設定工程と、前記測定工程にて取得される前記直定規から前記被測定物の辺までの距離がこの直定規の参照直線から被測定物の辺の参照直線までの距離に前記形状示数を加えた値に等しいとするとともに、一方の前記直定規に対向する前記被測定物の辺の参照直線に対するこの直定規の参照直線の傾きと、他方の前記直定規に対向する前記被測定物の辺の参照直線に対するこの直定規の参照直線の傾きとの関係は、前記角度示数を用いて表されるとして、前記直定規と前記被測定物の各辺とで構成される組についての連立式を導出する連立式導出工程と、導出された前記連立式を解くことで前記形状示数、及び前記角度示数を算出する連立式演算工程と、を備えていることを特徴とする。
このような構成によれば、請求項1に記載の発明と同様の作用効果を奏することができる。
The shape measuring method according to claim 3 has two straight rulers and combines the straight ruler and the side of the object to be measured which is a plane polygon so as to face each other at a plurality of sampling points. a measuring step of obtaining the measured measurement data, each sampling of the from the reference straight line is a virtual straight line set for the test surface of the sides and the straight edge of the object to be measured to the test surface the distance in points, the set as the shape readings representing the unevenness of the surface to be inspected, prior Symbol angles of reference straight interior angle angles and the respective straight edge which reference straight line of the object to be measured constitutes constitutes said planar multi The angle deviated from the internal angle when the square is a regular polygon is set as an angle index representing the internal angle formed by the reference straight line of the object to be measured and the angle formed by the reference straight line of each straight ruler. number setting step and, before Equal to the distance to the sides plus the shape readings of the distance to the reference straight sides of the object to be measured from the reference straight line of the straightedge of the object to be measured from the straight edge to be acquired by the measuring step And the inclination of the reference straight line of the straight ruler relative to the reference straight line of the object to be measured facing one of the straight rulers and the reference straight line of the side of the measured object facing the other of the straight ruler relationship between the inclination of the reference straight line of the straightedge, as is the table with the angle readings and derives the simultaneous equations for pairs constituted by the respective sides of the straightedge and the object to be measured simultaneous An equation deriving step , and a simultaneous equation calculating step of calculating the shape indication and the angle indication by solving the derived simultaneous equations.
According to such a configuration, the same effect as that of the first aspect of the invention can be achieved.

請求項4に記載の形状測定方法は、請求項3に記載の形状測定方法において、前記測定工程は、二本の前記直定規の延長線が所定角度をなす状態に配置された前記直定規のそれぞれに被測定物の辺を略平行に対向させた状態で、一方の直定規と被測定物の一辺との間隔および他方の直定規と被測定物の他辺との間隔を測定する間隔測定工程と、二つの前記直定規の姿勢はそのままで被測定物をローテーションさせて前記直定規と前記被測定物の辺との組み合わせを換える組合せ変更工程と、を備えることを特徴とする。   The shape measuring method according to claim 4 is the shape measuring method according to claim 3, wherein the measuring step includes the step of measuring the straight ruler in which the extension lines of the two straight rulers form a predetermined angle. Interval measurement that measures the distance between one straight ruler and one side of the object to be measured and the distance between the other straight ruler and the other side of the object to be measured, with the sides of the object to be measured facing substantially parallel to each other. And a combination changing step of changing the combination of the straight ruler and the side of the object to be measured by rotating the object to be measured while keeping the postures of the two straight rulers as they are.

このような構成によれば、二本の直定規の延長線が所定角度をなす状態に配置され、さらに、直定規のそれぞれと被測定物の辺とが略平行に対向する状態に被測定物が配置される。この状態で間隔測定工程において、直定規と被測定物の辺との間隔を測定した測定データが取得される。例えば、4直角スコヤの辺を第1辺、第2辺、第3辺および第4辺としたとき、第1の直定規に対向して第1辺が配置され、第2の直定規に対向して第2辺が配置されたとする。そして、第1の直定規と第1辺との間隔、および、第2の直定規と第2辺との間隔が所定のサンプリングピッチで測定される。
第1の直定規と第1辺との間隔および第2の直定規と第2辺との間隔が測定されたところで、組合せ変更工程において、第1の直定規および第2の直定規の姿勢はそのままの状態で被測定物がローテーションされて直定規と辺との組み合わせが変更される。例えば、第1の直定規に対しては第2辺が対向し、第2の直定規に対しては第3辺が対向して配置されたとする。そして、この組み合わせで直定規と辺との間隔が測定されて測定データが取得される。以後、被測定物がローテーションされて直定規と被測定物の辺との組み合わせが変更され、すべての可能な組み合わせについて直定規と被測定物のとの距離が測定される。
According to such a configuration, the extension of the two straight rulers is arranged in a state where a predetermined angle is formed, and further, the measurement object is in a state in which each of the straight rulers and the side of the measurement object are substantially parallel to each other. Is placed. In this state, in the interval measurement step, measurement data obtained by measuring the interval between the straight ruler and the side of the object to be measured is acquired. For example, when the sides of a four-right angle square are the first side, the second side, the third side, and the fourth side, the first side is arranged opposite to the first straight ruler and faces the second straight ruler Assume that the second side is arranged. Then, the distance between the first straight ruler and the first side and the distance between the second straight ruler and the second side are measured at a predetermined sampling pitch.
When the distance between the first straight ruler and the first side and the distance between the second straight ruler and the second side are measured, in the combination changing step, the postures of the first straight ruler and the second straight ruler are The measurement object is rotated as it is, and the combination of the straight ruler and the edge is changed. For example, it is assumed that the second side faces the first straight ruler and the third side faces the second straight ruler. Then, with this combination, the distance between the straight ruler and the side is measured, and measurement data is acquired. Thereafter, the measurement object is rotated to change the combination of the straight ruler and the side of the measurement object, and the distance between the straight ruler and the measurement object is measured for all possible combinations.

ここで、本発明の形状測定方法において、測定工程は、一方の直定規と他方の直定規とを一定の間隔をもって略平行に配置してこの間隔を前記測長センサによって測定して測定データを得る直定規間隔測定工程を有する。すると、連立式を解くための条件式がさらに加えられるので、連立式を解いて形状示数および角度示数を求めることができる。   Here, in the shape measuring method of the present invention, in the measuring step, one straight ruler and the other straight ruler are arranged substantially in parallel with a certain interval, and this interval is measured by the length measuring sensor to obtain measurement data. A straight ruler interval measuring step to obtain. Then, since a conditional expression for solving simultaneous equations is further added, it is possible to obtain the shape index and the angle indication by solving the simultaneous equations.

請求項5に記載の形状解析装置は、二本の直定規を有するとともにこれら直定規と平面多角形である被測定物の辺とを対向する状態に組み合わせて互いの間隔を複数のサンプリング点で測定した測定データを解析して前記被測定物形状を求める形状解析装置であって、前記被測定物の各辺および前記直定規の被検面に対して設定された仮想的な直線である参照直線から前記被検面までの前記各サンプリング点における距離を、前記被検面の凹凸を表す形状示数として設定し、前記被測定物の参照直線が構成する内角角度および前記直定規の参照直線が構成する角度が前記平面多角形を正多角形としたときの内角角度からずれた角度を、前記被測定物の参照直線が構成する内角角度および前記各直定規の参照直線が構成する角度を表す角度示数として設定する示数設定部と、前記測定部にて取得される前記直定規から前記被測定物の辺までの距離がこの直定規の参照直線から被測定物の辺の参照直線までの距離に前記形状示数を加えた値に等しいとするとともに、一方の前記直定規に対向する前記被測定物の辺の参照直線に対するこの直定規の参照直線の傾きと、他方の前記直定規に対向する前記被測定物の辺の参照直線に対するこの直定規の参照直線の傾きとの関係は、前記角度示数を用いて表されるとして、前記直定規と前記被測定物の各辺とで構成されるすべての組についての連立式を導出する連立式導出部と、導出された前記連立式を解くことで前記形状示数、及び前記角度示数を算出する連立式演算部と、を備えていることを特徴とする。
このような構成によれば、請求項1に記載の発明に同様の作用効果を奏することができる。
The shape analysis apparatus according to claim 5 has two straight rulers and combines the straight rulers and the sides of the object to be measured which are planar polygons so as to face each other at a plurality of sampling points. A shape analyzing apparatus for analyzing the measured measurement data to obtain the shape of the object to be measured, which is a virtual straight line set for each side of the object to be measured and the test surface of the straight ruler the distance in each of the sampling points from a straight line to the test surface, the set as the shape readings representing the unevenness of the surface to be inspected, prior SL interior angle angles and the respective straight edge which reference straight line of the object to be measured constitutes the angle at which the angles of the reference straight line constituting deviates from the interior angle angle when the regular polygon the planar polygons, the internal angle angle and the reference straight line for each straight edge of the reference straight line of the measurement object constitutes the structure angle shows representing the angle at which the And readings setting unit for setting as to a distance from said straightedge acquired by the measurement unit to the reference straight sides of the distance to the side of the object to be measured is the measured object from the reference straight line of the straightedge It is equal to a value obtained by adding the shape index, and the inclination of the reference straight line of the straight ruler with respect to the reference straight line of the side of the object facing the straight ruler is opposed to the other straight ruler. the relationship between the slope of the reference straight line of the straightedge to the reference straight sides of the object to be measured, as is the table with the angle readings, the consists of straightedge and the sides of the object to be measured A simultaneous equation deriving unit for deriving simultaneous equations for all sets , and a simultaneous equation calculating unit for calculating the shape number and the angle number by solving the derived simultaneous equations. It is characterized by that.
According to such a configuration, the same effect as that of the first aspect of the invention can be achieved.

請求項6に記載の形状解析プログラムは、二本の直定規を有するとともにこれら直定規と平面多角形である被測定物の辺とを対向する状態に組み合わせて互いの間隔を複数のサンプリング点で測定した測定データを解析して前記被測定物形状を求める形状解析装置に組み込まれたコンピュータを、前記被測定物の各辺および前記直定規の被検面に対して設定された仮想的な直線である参照直線から前記被検面までの前記各サンプリング点における距離を、前記被検面の凹凸を表す形状示数として設定し、前記被測定物の参照直線が構成する内角角度および前記直定規の参照直線が構成する角度が前記平面多角形を正多角形としたときの内角角度からずれた角度を、前記被測定物の参照直線が構成する内角角度および前記各直定規の参照直線が構成する角度を表す角度示数として設定する示数設定部と、前記測定部にて取得される前記直定規から前記被測定物の辺までの距離がこの直定規の参照直線から被測定物の辺の参照直線までの距離に前記形状示数を加えた値に等しいとするとともに、一方の前記直定規に対向する前記被測定物の辺の参照直線に対するこの直定規の参照直線の傾きと、他方の前記直定規に対向する前記被測定物の辺の参照直線に対するこの直定規の参照直線の傾きとの関係は、前記角度示数を用いて表されるとして、前記直定規と前記被測定物の各辺とで構成される組についての連立式を導出する連立式導出部と、導出された前記連立式を解くことで前記形状示数、及び前記角度示数を算出する連立式演算部と、して機能させることを特徴とする。 The shape analysis program according to claim 6 has two straight rulers and combines the straight rulers and the sides of the object to be measured which are planar polygons so as to face each other at a plurality of sampling points. A virtual straight line set with respect to each side of the object to be measured and the surface to be measured of the straight ruler, with a computer incorporated in the shape analysis device for analyzing the measured measurement data and obtaining the shape of the object to be measured the distance at each sampling point from the reference straight line up to the test surface, the set as the shape readings representing the unevenness of the surface to be inspected, prior SL internal angle angles and the respective reference straight line of the object to be measured constitutes the angle at which angles the reference straight straightedge constitutes deviates from the interior angle angle when the regular polygon the planar polygons, see the internal angle angles and the respective straight edge which reference straight line of the object to be measured constitutes Straight line And readings setting unit for setting as an angle readings that represent the angle that constitutes a distance from said straightedge acquired by the measuring unit to the side of the object to be measured of the object to be measured from the reference straight line of the straightedge An inclination of the reference line of the straight ruler with respect to the reference line of the side of the object to be measured facing one of the straight rulers , and equal to a value obtained by adding the shape index to the distance to the reference straight line of the side; relationship between the inclination of the reference straight line of the straightedge against the sides of the reference straight line of the object to be measured which is opposed to the other of said straightedge as is the table with the angle readings, the device under test and the straightedge A simultaneous equation deriving unit for deriving simultaneous equations for a set composed of each side of the object , and a simultaneous equation calculating unit for calculating the shape index and the angle index by solving the derived simultaneous equations And functioning.

請求項7に記載の記録媒体は、請求項6に記載の形状解析プログラムを記録したことを特徴とする。   A recording medium according to a seventh aspect records the shape analysis program according to the sixth aspect.

このような構成によれば、請求項1に記載の発明と同様の作用効果を奏することができる。さらに、CPU(中央処理装置)やメモリ(記憶装置)を有するコンピュータを組み込んでこのコンピュータに各機能を実現させるようにプログラムを構成すれば、各機能におけるパラメータを容易に変更することができる。例えば、示数設定部において設定される形状示数や角度示数などを被測定物の形状にあわせて容易に設定変更することができる。例えば、角度示数を正多角形(正n角形)の内角180×(n−2)/nからのずれとして設定する場合でも、被測定物の形状に応じて簡便に設定変更できる。また、形状示数を参照直線からのずれとして設定する場合に、参照直線を最小自乗直線など種々の近似直線に設定することができる。そして、このプログラムを記録した記録媒体をコンピュータに直接差し込んでプログラムをコンピュータにインストールしてもよく、記録媒体の情報を読み取る読取装置をコンピュータに外付けし、この読取装置からコンピュータにプログラムをインストールしてもよい。なお、プログラムは、インターネット、LANケーブル、電話回線等の通信回線や無線によってコンピュータに供給されてインストールされてもよい。   According to such a configuration, the same effect as that of the first aspect of the invention can be achieved. Furthermore, if a computer having a CPU (central processing unit) and a memory (storage device) is incorporated and a program is configured to realize each function in the computer, parameters in each function can be easily changed. For example, it is possible to easily change the setting of the shape indication, the angle indication, etc. set in the indication setting unit according to the shape of the object to be measured. For example, even when the angle index is set as a deviation from the internal angle 180 × (n−2) / n of the regular polygon (regular n-gon), the setting can be easily changed according to the shape of the object to be measured. Further, when the shape index is set as a deviation from the reference line, the reference line can be set to various approximate lines such as a least square line. Then, the program may be installed in the computer by directly inserting the recording medium in which the program is recorded into the computer, and a reading device that reads information on the recording medium is externally attached to the computer, and the program is installed from the reading device into the computer. May be. The program may be supplied and installed on the computer via a communication line such as the Internet, a LAN cable, a telephone line, or wirelessly.

以下、本発明の実施の形態を図示するとともに図中の各要素に付した符号を参照して説明する。
図1に、本発明の形状測定装置に係る一実施形態の構成を示す。
この形状測定装置1は、二本の直定規21、22を有するとともに直定規21、22と被測定物5の辺(51〜54)との間隔mを異なる組み合わせにおいて複数点で測定した測定データを取得する測定部2と、取得した測定データを演算処理して被測定物形状を解析する解析部(形状解析装置)3と、解析結果を出力する出力部4を備えて構成されている。
測定部2は、互いの延長線が所定の角度をなす状態に配置された二本の直定規21、22と、これら直定規21、22のそれぞれに辺(51〜54)を対向させて配置された被測定物5と直定規21、22との間の間隔を所定の複数点で測定する測長センサ24と、測長センサ24を直定規21、22の長手方向に沿って移動させる移動機構(不図示)と、を備えている。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be illustrated and described with reference to reference numerals attached to respective elements in the drawings.
In FIG. 1, the structure of one Embodiment which concerns on the shape measuring apparatus of this invention is shown.
The shape measuring apparatus 1 includes two straight rulers 21 and 22 and measurement data measured at a plurality of points in different combinations of the distance m between the straight rulers 21 and 22 and the sides (51 to 54) of the object 5 to be measured. The measurement unit 2 is configured to include an analysis unit (shape analysis device) 3 that analyzes the acquired measurement data to analyze the shape of the object to be measured, and an output unit 4 that outputs the analysis result.
The measuring unit 2 is arranged with two straight rulers 21 and 22 arranged so that their extension lines form a predetermined angle, and the sides (51 to 54) facing each of these straight rulers 21 and 22. The length measuring sensor 24 that measures the distance between the measured object 5 and the straight rulers 21 and 22 at a plurality of predetermined points, and the movement that moves the length measuring sensor 24 along the longitudinal direction of the straight rulers 21 and 22 A mechanism (not shown).

直定規21、22は二本設けられており、被測定物5をこれら二本の直定規21、22で構成される角側(180°よりも小さい角側)に受け入れられる程度に開いて配置されている。二本の直定規21、22は、被測定物5における最大の内角(55〜58)に同等程度の角度をなして配置されており、例えば、4直角スコヤを被測定物5とする場合には、二本の直定規21、22は互いの延長線が約直角をなす状態で配置されている。直定規21、22において被測定物5側に向けられる被検面は、できるかぎり真直に加工されるのが望ましいのはもちろんであるが、本測定方法は直定規21、22の加工誤差に影響されないので必ずしも高精度に真直加工される必要はない。
直定規21、22は、被測定物5の辺に対して対向配置されたときに被測定物5の辺(51〜54)上の点に向き合う対応点を有することが必要であり、少なくとも被測定物5の最長辺に同等以上の長さを有する。
ここで、一方の直定規を第1直定規21とし、他方の直定規を第2直定規22とする。
Two straight rulers 21 and 22 are provided, and the object to be measured 5 is opened and disposed so as to be received on the corner side formed by the two straight rulers 21 and 22 (corner side smaller than 180 °). Has been. The two straight rulers 21 and 22 are arranged at an angle equivalent to the maximum inner angle (55 to 58) in the object 5 to be measured. The two straight rulers 21 and 22 are arranged in a state in which the extension lines of each other form an approximately right angle. Of course, it is desirable that the test surface directed toward the object 5 to be measured on the straight rulers 21 and 22 is processed as straight as possible, but this measurement method affects the processing error of the straight rulers 21 and 22. Therefore, it is not always necessary to perform straight machining with high accuracy.
The straight rulers 21 and 22 are required to have corresponding points that face points on the sides (51 to 54) of the device under test 5 when they are arranged opposite to the sides of the device under test 5. The longest side of the measurement object 5 has an equal or longer length.
Here, one straight ruler is referred to as a first straight ruler 21, and the other straight ruler is referred to as a second straight ruler 22.

測長センサ24は、直定規21、22の長手方向に移動可能に設けられ直定規21、22と被測定物5との間隔mを所定のサンプリングピッチで測定する。
測長センサ24は、直定規21、22の長手方向に移動可能に設けられた本体筒部(本体部)25と、本体筒部25から互いに反対方向に進退可能に設けられた第1スピンドル26および第2スピンドル27と、第1スピンドル26および第2スピンドル27の進退量を検出する検出部(不図示)と、を備えている。第1スピンドル26および第2スピンドル27の先端には対象物に当接する接触子261、271が設けられている。
二本の直定規21、22に辺(51〜54)を対向させて被測定物5を配置したとき、測長センサ24は、直定規21、22と被測定物5との間で第1スピンドル26を直定規21(22)に向け、第2スピンドル27を被測定物5に向けて配置される。測長センサ24が直定規21、22に沿って移動すると、直定規21、22の表面凹凸および被測定物5の表面凹凸に応じて第1スピンドル26および第2スピンドル27が進退され、第1スピンドル26および第2スピンドルの進退量の総和から直定規21、22と被測定物5の辺(51〜54)との距離mが検出される。
The length measuring sensor 24 is provided so as to be movable in the longitudinal direction of the straight rulers 21 and 22 and measures the distance m between the straight rulers 21 and 22 and the DUT 5 at a predetermined sampling pitch.
The length measuring sensor 24 includes a main body cylinder part (main body part) 25 provided so as to be movable in the longitudinal direction of the straight rulers 21 and 22, and a first spindle 26 provided so as to be able to advance and retreat in the opposite direction from the main body cylinder part 25. And a second spindle 27, and a detection unit (not shown) for detecting the amount of advance and retreat of the first spindle 26 and the second spindle 27. At the tips of the first spindle 26 and the second spindle 27, contacts 261 and 271 that contact the object are provided.
When the object to be measured 5 is arranged with the sides (51 to 54) opposed to the two straight rulers 21 and 22, the length measuring sensor 24 is the first between the straight rulers 21 and 22 and the object to be measured 5. The spindle 26 is disposed toward the straight ruler 21 (22), and the second spindle 27 is disposed toward the object 5 to be measured. When the length measuring sensor 24 moves along the straight rulers 21 and 22, the first spindle 26 and the second spindle 27 are moved forward and backward according to the surface irregularities of the straight rulers 21 and 22 and the surface irregularities of the object 5 to be measured. The distance m between the straight rulers 21 and 22 and the side (51 to 54) of the object to be measured 5 is detected from the sum of the advance and retreat amounts of the spindle 26 and the second spindle.

移動機構は、特に図示しないが、直定規21、22に沿って配設された駆動軸と、この駆動軸上をスライド移動可能に設けられたスライダとを備えた構成が例として挙げられる。そして、測長センサ24をスライダに取り付けて一体的に移動させればよい。なお、スライダは、測長センサ24のサンプリングピッチに対応して所定の移動ピッチを設定可能であることが好ましい。   Although the movement mechanism is not particularly illustrated, a configuration including a drive shaft disposed along the straight rulers 21 and 22 and a slider slidably movable on the drive shaft is given as an example. Then, the length measuring sensor 24 may be attached to the slider and moved integrally. It is preferable that the slider can set a predetermined movement pitch corresponding to the sampling pitch of the length measurement sensor 24.

なお、特に図示しないが、直定規21、22および被測定物5を載置する略平坦に加工された載置台を備えていることが好ましく、さらに、直定規21、22および被測定物5の位置を位置決めする位置決め手段が設けられていることが好ましい。このような位置決め手段としては、載置台から突出する位置決めピンや位置決め板などであればよく、さらに、位置決めピンや位置決め板は移動可能であって任意の位置で固定可能であることが好ましい。   Although not particularly illustrated, it is preferable that the straight rulers 21 and 22 and the workpiece 5 to be measured are provided with a mounting table processed substantially flat. Further, the straight rulers 21 and 22 and the workpiece 5 are measured. It is preferable that positioning means for positioning the position is provided. Such positioning means may be any positioning pin or positioning plate protruding from the mounting table, and it is preferable that the positioning pin or positioning plate is movable and can be fixed at an arbitrary position.

解析部3は、図2に示されるように、測定部2によって取得された測定データを記憶する測定データ記憶部31と、直定規21、22および被測定物5の形状を表す示数を設定する示数設定部32と、測定データと設定された示数との関係を表す連立式を立てる連立式導出部33と、導出された連立式を解く連立式演算部34と、解析部3の動作を制御する中央演算処理部(CPU)35とを備えている。これら測定データ記憶部31、示数設定部32、連立式導出部33、連立式演算部34およびCPU35はバス36を介して接続されている。   As shown in FIG. 2, the analysis unit 3 sets a measurement data storage unit 31 that stores measurement data acquired by the measurement unit 2, a straight ruler 21, 22, and a number that indicates the shape of the DUT 5. An indicator setting unit 32, a simultaneous expression deriving unit 33 that establishes a simultaneous expression representing the relationship between the measurement data and the set display number, a simultaneous expression calculating unit 34 that solves the derived simultaneous expression, and an analysis unit 3 And a central processing unit (CPU) 35 for controlling the operation. The measurement data storage unit 31, the number setting unit 32, the simultaneous equation deriving unit 33, the simultaneous equation calculating unit 34, and the CPU 35 are connected via a bus 36.

測定データ記憶部31は、測定部2で取得された測定データを記憶し、例えば、図3に示されるように各直定規21、22と被測定物5の各辺(51〜54)との組み合わせについて各サンプリング点xiでの距離m(xi)を記憶する。 The measurement data storage unit 31 stores the measurement data acquired by the measurement unit 2. For example, as shown in FIG. 3, the straight rulers 21 and 22 and the sides (51 to 54) of the object to be measured 5 are stored. The distance m (x i ) at each sampling point x i is stored for the combination.

示数設定部32は、例えば図4、図5に示されるように、直定規21、22の形状、被測定物5の形状、被測定物の内角、および、直定規21、22の設置姿勢を表す未知数として設定された示数を記憶している(示数設定工程)。
被測定物5の各辺(51〜54)および直定規21、22の形状を示す形状示数(L1、L2、S1、S2、S3、S4・・)の設定について説明する。
被測定物5の各辺(51〜54)の被検面および各直定規21、22の被検面は凹凸を有しているところ、図6に示されるように、このような被検面を直線回帰する参照直線(R1〜R6)を仮想的に設定する。さらに、仮想的に設定された参照直線(R1〜R6)から被検面までの残差(距離)を形状示数として設定する。参照直線R1〜R6としては最小自乗直線とすることが例示される。
For example, as shown in FIG. 4 and FIG. 5, the reading setting unit 32 is configured so that the shape of the straight rulers 21 and 22, the shape of the measured object 5, the internal angle of the measured object, and the installation posture of the straight rulers 21 and 22. Is stored as an unknown number indicating (number setting step).
The setting of the shape indicators (L 1 , L 2 , S 1 , S 2 , S 3 , S 4 ...) Indicating the shape of each side (51 to 54) of the DUT 5 and the straight rulers 21 and 22 will be described. To do.
The test surface of each side (51 to 54) of the object to be measured 5 and the test surfaces of the straight rulers 21 and 22 have irregularities. As shown in FIG. A reference straight line (R 1 to R 6 ) for linear regression is virtually set. Furthermore, the residual (distance) from the virtually set reference straight line (R 1 to R 6 ) to the surface to be measured is set as the shape index. The reference straight lines R 1 to R 6 are exemplified as least square lines.

第1直定規21について参照直線R1からの残差をL1で表し、サンプリング点xiにおける残差を形状示数L1(xi)で表す(図4参照)。同様に第2直定規22についてサンプリング点xiにおける残差を形状示数L2(xi)として表す。
また、被測定物5の第1辺51について参照直線R3からの残差をS1で表し、サンプリング点(xi)における残差を形状示数S1(xi)で表す。同様に、被測定物5の第2辺52、第3辺53、第4辺54・・・について参照直線(R4〜R6)からの残差を形状示数S2(xi)、S3(xi)、S4(xi)・・・として表す。
これら形状示数(L1、L2、S1、S2、S3、S4・・・)によって被測定物5の各辺(51〜54)および直定規21、22の被検面の凹凸が参照直線(R1〜R6)からの凹凸として表されることになる。
For the first straight ruler 21, the residual from the reference line R 1 is represented by L 1 , and the residual at the sampling point x i is represented by a shape index L 1 (x i ) (see FIG. 4). Similarly, the residual at the sampling point x i for the second straight ruler 22 is expressed as a shape index L 2 (x i ).
Further, the residual from the reference straight line R 3 for the first side 51 of the DUT 5 is represented by S 1 , and the residual at the sampling point (x i ) is represented by the shape index S 1 (x i ). Similarly, the residual from the reference straight line (R 4 to R 6 ) for the second side 52, the third side 53, the fourth side 54... Of the DUT 5 is represented by the shape index S 2 (x i ), S 3 (x i), expressed as S 4 (x i) ···.
By these shape indexes (L 1 , L 2 , S 1 , S 2 , S 3 , S 4 ...), The sides (51 to 54) of the object to be measured 5 and the test surfaces of the straight rulers 21 and 22 are measured. The unevenness is expressed as unevenness from the reference straight line (R 1 to R 6 ).

被測定物5の内角(55〜58)の大きさを表す角度示数の設定について説明する。
被測定物5である多角形(例えばn角形)の各内角(55〜58)は180×(n−2)/nからずれているところ、これらの内角(55〜58)が正多角形(正n角形)の内角からずれた角度を角度示数として設定する。例えば、被測定物5の平面多角形について内角を第1角55、第2角56、第3角57、第4角58・・とすると、それぞれの角が180×(n−2)/nからずれている角度を角度示数α、β、γ、δ・・として設定する。なお、被測定物5の内角(55〜58)の角度は各辺(51〜54)の参照直線(R3〜R6)がなす角として規定される。例として、被測定物5が4直角スコヤであった場合、角度示数は90°からのずれとして設定される。すなわち、4直角スコヤの内角は、第1角(55)が90°+α、第2角(56)が90°+β、第3角(57)が90°+γ、第4角(58)が90°+δで表される。
また、二本の直定規21、22が設置された姿勢を表す示数を被測定物5の内角にあわせて180×(n−2)/nからのずれとして表し、二本の直定規21、22の参照直線R1、R2がなす角が180×(n−2)/nからずれている角度を角度示数θとして表す。
これら角度示数(α、β、γ、δ、・・)によって被測定物5の内角(55〜58)が表される。
The setting of the angle index that represents the size of the inner angle (55 to 58) of the DUT 5 will be described.
Each interior angle (55 to 58) of a polygon (for example, an n-gon) as the DUT 5 is deviated from 180 × (n−2) / n, so that these interior angles (55 to 58) are regular polygons ( The angle deviated from the interior angle of the regular n-gon) is set as the angle index. For example, if the interior angles of the planar polygon of the DUT 5 are the first angle 55, the second angle 56, the third angle 57, the fourth angle 58,..., Each angle is 180 × (n−2) / n. The angles deviating from the above are set as angle indices α, β, γ, δ. The internal angle (55 to 58) of the DUT 5 is defined as the angle formed by the reference straight lines (R 3 to R 6 ) of the sides (51 to 54). As an example, when the DUT 5 is a 4 right angle score, the angle reading is set as a deviation from 90 °. That is, the internal angle of the four right angle square is 90 ° + α for the first angle (55), 90 ° + β for the second angle (56), 90 ° + γ for the third angle (57), and 90 ° for the fourth angle (58). It is expressed in ° + δ.
In addition, a numerical value indicating the posture where the two straight rulers 21 and 22 are installed is expressed as a deviation from 180 × (n−2) / n in accordance with the inner angle of the object 5 to be measured. The angle formed by the reference lines R 1 and R 2 of 22 is deviated from 180 × (n−2) / n as an angle index θ.
These angle indications (α, β, γ, δ,...) Represent the internal angles (55 to 58) of the DUT 5.

連立式導出部33は、測定部2で取得された測定データm(xi)と、示数設定部32で設定された形状示数L(xi)、S(xi)および角度示数α〜γとが満たす式を立てる(連立式導出工程)。連立式導出部33に設定されている式の導出過程を簡単に説明する。
直定規21、22の参照直線R1、R2と被測定物5の各辺(51〜54)の参照直線R3〜R6との距離をDで表し、例えば、第1直定規21の参照直線R1と被測定物5の第1辺(51)の参照直線R1との距離をD11で表す。すると、第1直定規21と被測定物5の第1辺51との間には次の式が成立する。
The simultaneous equation deriving unit 33 measures the measurement data m (x i ) acquired by the measuring unit 2, the shape index L (x i ), S (x i ) and the angle index set by the index setting unit 32. Formula which α-γ satisfies is established (simultaneous formula derivation step). The derivation process of the equation set in the simultaneous equation deriving unit 33 will be briefly described.
The distance between the reference straight lines R 1 and R 2 of the straight rulers 21 and 22 and the reference straight lines R 3 to R 6 of each side (51 to 54) of the DUT 5 is represented by D. the distance between the reference straight line R 1 and the reference straight line R 1 of the first side of the object 5 (51) represented by D 11. Then, the following formula is established between the first straight ruler 21 and the first side 51 of the DUT 5.

Figure 0004323267
Figure 0004323267

同様に、第2直定規22と第2辺52との間の関係など、直定規21、22と被測定物5の各辺(51〜54)との組み合わせについて式を立てると、次の式が成立する。   Similarly, when formulas are established for combinations of the straight rulers 21 and 22 and each side (51 to 54) of the DUT 5 such as the relationship between the second straight ruler 22 and the second side 52, the following formula is obtained: Is established.

Figure 0004323267
Figure 0004323267

また、第1直定規21と第2直定規22とを略平行に配置したときの各参照直線間R1、R2の距離をD5として表すと、次の式が成立する。 Further, when the distance between the reference straight lines R 1 and R 2 when the first straight ruler 21 and the second straight ruler 22 are arranged substantially in parallel is expressed as D 5 , the following expression is established.

Figure 0004323267
Figure 0004323267

対になる参照直線において一方の参照直線が他方の参照直線に対してなす傾きをuとしサンプリング点x0における参照直線間の距離をwとするとき、参照直線間の距離Dはuとwとを用いた一次式で表現される。例えば、第1直定規21の参照直線R1と第1辺51の参照直線R3との距離D11は、傾きu11と、切片w11とを用いて次の式で表される。 In a pair of reference lines, when the slope formed by one reference line with respect to the other reference line is u and the distance between the reference lines at the sampling point x 0 is w, the distance D between the reference lines is u and w. It is expressed by a linear expression using For example, the distance D 11 between the reference straight line R 1 of the first straight ruler 21 and the reference straight line R 3 of the first side 51 is expressed by the following equation using the slope u 11 and the intercept w 11 .

Figure 0004323267
Figure 0004323267

同様に、第2直定規22の参照直線R2と第2辺52の参照直線R4との距離D22は、傾きu22と切片w22とを用いて表され、以下同様である。 Similarly, the distance D 22 between the reference straight line R 2 of the second straight ruler 22 and the reference straight line R 4 of the second side 52 is expressed using the slope u 22 and the intercept w 22, and so on.

Figure 0004323267
Figure 0004323267

ここで、第1直定規21および第2直定規22の各参照直線R1、R2がなす角(角度示数θ)と被測定物5の各内角(角度示数α、β、・・・)とを用いて、第2直定規22と被測定物5の辺(51〜54)との関係は第1直定規21と被測定物5の辺(51〜54)との関係によって表される。例えば、第1直定規21の参照直線R1が第1辺51の参照直線R3に対する傾きu11によって第2直定規22の参照直線R2が第2辺52の参照直線R4に対する傾きu22は、次の式で表される。 Here, the angle (angle index θ) formed by the reference straight lines R 1 and R 2 of the first straight ruler 21 and the second straight ruler 22 and the inner angles (angle indices α, β,. The relationship between the second straight ruler 22 and the side (51 to 54) of the object 5 to be measured is expressed by the relationship between the first straight ruler 21 and the side (51 to 54) of the object 5 to be measured. Is done. For example, the slope u reference straight line R 2 of the reference straight lines R 1 is the first side by the reference slope u 11 for linear R 3 of the 51 second straightedge 22 of the first straightedge 21 for the reference straight line R 4 of the second side 52 22 is represented by the following formula.

Figure 0004323267
Figure 0004323267

同様に、被測定物5の一辺と第1直定規21とで構成される組と、被測定物5の一辺に隣接する辺と第2直定規22とで構成される組との関係は、一方組みの相対姿勢によって他方組みの相対姿勢が表される関係にある。4直角スコヤを例にすると次のように表される。   Similarly, the relationship between the set composed of one side of the object to be measured 5 and the first straight ruler 21 and the pair composed of the side adjacent to one side of the object to be measured 5 and the second straight ruler 22 is as follows. The relative posture of the other set is represented by the relative posture of the one set. Taking a four-square square as an example, it is expressed as follows.

Figure 0004323267
Figure 0004323267

直定規21、22と被測定物5の辺(51〜54)との距離mから導かれた式(1)から式(5)に対して、式(6)から式(10)および式(11)から式(14)を代入することにより、次の式を得ることができる。   For the equations (1) to (5) derived from the distance m between the straight rulers 21 and 22 and the sides (51 to 54) of the DUT 5, the equations (6) to (10) and ( By substituting equation (14) from 11), the following equation can be obtained.

Figure 0004323267
Figure 0004323267

さらに、n角形である被測定物5の内角55〜58の和が180×(n−2)であるので、例えば、4直角スコヤであれば内角の和が360度であることから次の式が成立つ。   Further, since the sum of the inner angles 55 to 58 of the n-shaped object 5 to be measured is 180 × (n−2), for example, in the case of a 4-right angle square, the sum of the inner angles is 360 degrees, so Is established.

Figure 0004323267
Figure 0004323267

ここで、参照直線R1〜R6は、被検面の最小自乗直線としたので、次の式が成立つ。ここで、これらの式は、参照直線R1〜R6を被検面の最小自乗直線としたことから未定乗数法により導出される。 Here, since the reference straight lines R 1 to R 6 are the least square lines of the test surface, the following equation is established. Here, these equations are derived by the undetermined multiplier method because the reference straight lines R 1 to R 6 are the least square lines of the surface to be examined.

Figure 0004323267
Figure 0004323267

連立式導出部33は、上記の式(15)から(30)の式を記憶しており、測定データ記憶部31に記憶された測定データを上記の式に代入して連立式を立てる。   The simultaneous equation deriving unit 33 stores the equations (15) to (30) described above, and establishes simultaneous equations by substituting the measurement data stored in the measurement data storage unit 31 into the above equations.

連立式演算部34は、連立式導出部33で立てられた式(15)から式(30)の連立式を演算処理することによって、図4のテーブルに示される形状示数(L1(xi)、L2(xi)、S1(xi)、S2(xi)、・・・、)および図5のテーブルに示される角度示数(α、β、γ、δ、θ)を算出する(連立式演算工程)。
算出された各示数は、出力部4に出力される。出力部4としては、演算処理結果を表示または印刷できるモニタやプリンタ等の外部出力機器が例として挙げられる。
The simultaneous equation calculation unit 34 performs arithmetic processing on the simultaneous equations of the equations (15) to (30) established by the simultaneous equation deriving unit 33, thereby obtaining the shape index (L 1 (x i ), L 2 (x i ), S 1 (x i ), S 2 (x i ),...) and the angle readings (α, β, γ, δ, θ shown in the table of FIG. ) Is calculated (simultaneous calculation process).
Each calculated indication is output to the output unit 4. An example of the output unit 4 is an external output device such as a monitor or a printer that can display or print the arithmetic processing result.

このような構成を備える形状測定装置1を用いて平面多角形である被測定物5の形状を測定する場合について説明する。
測定部2において直定規21、22と被測定物5の辺51〜54との間隔mを測定した測定データを取得する(測定工程)。二本の直定規21、22の延長線が所定角度をなす状態に配置し、さらに、直定規21、22のそれぞれと被測定物5の辺とが略平行に対向する状態に被測定物5を配置する。例えば、4直角スコヤの辺を第1辺51、第2辺52、第3辺53および第4辺54としたとき、第1直定規21に対向して第1辺51が配置され、第2直定規22に対向して第2辺52が配置されたとする。直定規21、22と辺51、52との平行度は厳密でなくてもよく、直定規21、22と辺51、52との間隔が測長センサ24の測定レンジに収まっていればよい。
The case where the shape of the to-be-measured object 5 which is a planar polygon is measured using the shape measuring apparatus 1 having such a configuration will be described.
Measurement data obtained by measuring the distance m between the straight rulers 21 and 22 and the sides 51 to 54 of the DUT 5 in the measurement unit 2 is acquired (measurement process). The extension lines of the two straight rulers 21 and 22 are arranged at a predetermined angle, and the measurement object 5 is in a state in which each of the straight rulers 21 and 22 and the side of the measurement object 5 face each other substantially in parallel. Place. For example, when the sides of the 4 right angle skewer are the first side 51, the second side 52, the third side 53, and the fourth side 54, the first side 51 is arranged to face the first straight ruler 21, and the second side It is assumed that the second side 52 is disposed to face the straight ruler 22. The parallelism between the straight rulers 21 and 22 and the sides 51 and 52 may not be strict, and the distance between the straight rulers 21 and 22 and the sides 51 and 52 may be within the measurement range of the length measuring sensor 24.

測長センサ24の移動ピッチを設定しておいて、この移動ピッチごとに直定規21、22と被測定物5の辺51、52との間隔mを測長センサ24で測定する(間隔測定工程)。すると、第1直定規21と第1辺51との間隔m11および第2直定規22と第2辺52との間隔m22が所定のサンプリングピッチで測定される。
例えば、サンプリング点の座標を直定規21、22に沿って直定規の一端から順にx0、x1、x2・・xi・・xnと規定して、第1直定規21と第1辺51との間隔の測定データをm11として表すと、第1定規21と第1辺51との間隔がm11(x0)、m11(x1)、m11(x2)・・m11(xi)・・m11(xn)として測定される(例えば、図3参照)。
The movement pitch of the length measurement sensor 24 is set, and the distance m between the straight rulers 21 and 22 and the sides 51 and 52 of the object to be measured 5 is measured by the length measurement sensor 24 for each movement pitch (interval measurement process). ). Then, the interval m 22 between the first straightedge 21 and spacing m 11 and the second straightedge 22 between first side 51 and second side 52 is measured at a predetermined sampling pitch.
For example, the coordinates of the sampling points are defined as x 0 , x 1 , x 2 ..x i ..x n in order from one end of the straight ruler along the straight rulers 21 and 22, and the first straight ruler 21 and the first straight ruler 21. When the measurement data of the distance to the side 51 is expressed as m 11 , the distance between the first ruler 21 and the first side 51 is m 11 (x 0 ), m 11 (x 1 ), m 11 (x 2 ),. It is measured as m 11 (x i ) ·· m 11 (x n ) (see, for example, FIG. 3).

第1直定規21と第1辺51との間隔m11(xi)および第2直定規22と第2辺52との間隔m22(xi)が測定されたところで、第1直定規21および第2直定規22の姿勢はそのままの状態で被測定物5をローテーションさせて直定規21、22と辺51〜54との組み合わせを変える(組合せ変更工程)。例えば、第1直定規21に対しては第2辺52が対向し、第2直定規22に対しては第3辺53が対向して配置されたとする。
そして、この組み合わせで直定規21、22と辺52、53との間隔m12、m23を測定して測定データを取得する。以後、被測定物5をローテーションさせて直定規21、22と被測定物5の辺51〜54との組み合わせ換え、すべての可能な組み合わせについて直定規21、22と被測定物5の辺51〜54との距離を測長センサ24で測定する(例えば、図3参照)。
When the distance m 11 (x i ) between the first straight ruler 21 and the first side 51 and the distance m 22 (x i ) between the second straight ruler 22 and the second side 52 are measured, the first straight ruler 21 is measured. Further, the measurement object 5 is rotated with the posture of the second straight ruler 22 as it is, and the combination of the straight rulers 21 and 22 and the sides 51 to 54 is changed (combination changing step). For example, it is assumed that the second side 52 faces the first straight ruler 21 and the third side 53 faces the second straight ruler 22.
Then, the measurement data is obtained by measuring the distances m 12 and m 23 between the straight rulers 21 and 22 and the sides 52 and 53 with this combination. Thereafter, the measurement object 5 is rotated to change the combination of the straight rulers 21 and 22 and the sides 51 to 54 of the measurement object 5, and for all possible combinations, the straight rulers 21 and 22 and the sides 51 to 51 of the measurement object 5. The distance to 54 is measured by the length measuring sensor 24 (see, for example, FIG. 3).

さらに、第1直定規21と第2直定規22とを一定の間隔を持って略平行に配置して、この間隔を測長センサによって測定して測定データm5(xi)を得る(直定規間隔測定工程、図2中最下欄参照)。 Further, the first straight ruler 21 and the second straight ruler 22 are arranged substantially in parallel with a certain interval, and this interval is measured by a length measuring sensor to obtain measurement data m 5 (x i ). Ruler interval measurement process, see bottom row in FIG.

ここで、直定規21、22と辺51〜54とによる総ての組み合わせにおいて直定規21、22と辺51〜54との間隔を測定するサンプリングの点は同じである。すなわち、直定規21、22に沿って一端から順にx0、x1、x2・・・xi・・xnとサンプリング点を規定するとき、サンプリング点は第1直定規21でも第2直定規22でも同じ間隔で設定される。そして、第1直定規21と第1辺51との間隔m11を測定したときにサンプリング点xiに対応する第1辺51上の点は、被測定物5をローテーションさせて第2直定規22と第1辺51との間隔m21を測定する場合でもサンプリング点xiに対応する第1辺51上の点になる。
このようにして得られた測定データは、解析部3に送られ測定データ記憶部31に記憶される(図2、3参照)。
Here, in all combinations of the straight rulers 21 and 22 and the sides 51 to 54, the sampling points for measuring the intervals between the straight rulers 21 and 22 and the sides 51 to 54 are the same. That is, when the sampling points are defined as x 0 , x 1 , x 2 ... X i ..x n in order from one end along the straight rulers 21 and 22, the sampling points are the first straight ruler 21 and the second straight ruler. The ruler 22 is also set at the same interval. Then, the point on the first side 51 corresponding to the sampling point x i as measured between the first straightedge 21 intervals m 11 between the first side 51, second straightedge by rotation of the object to be measured 5 Even when the distance m 21 between the first edge 51 and the first edge 51 is measured, the point is on the first edge 51 corresponding to the sampling point x i .
The measurement data obtained in this way is sent to the analysis unit 3 and stored in the measurement data storage unit 31 (see FIGS. 2 and 3).

測定データ記憶部31に記憶された測定データ(図3)と示数設定部32で設定された形状示数および角度示数(図4、5参照)とが連立式導出部33において予め設定された連立式(15)から式(23)に代入され、連立方程式(15)から式(30)が立てられる。連立式演算部34によってこれらの式(15)から式(30)が演算処理されて、被測定物の形状示数(S1、S2・・)および角度示数(α、β・・)が算出される。なお、このような連立方程式は行列を利用して計算を行えば簡便な計算で完了する。   The measurement data stored in the measurement data storage unit 31 (FIG. 3) and the shape and angle indications (see FIGS. 4 and 5) set by the indication setting unit 32 are preset in the simultaneous derivation unit 33. The simultaneous equation (15) is substituted into the equation (23), and the equation (15) is established from the simultaneous equations (15). The simultaneous expression calculation unit 34 calculates the expression (30) from these expressions (15), and calculates the shape index (S1, S2...) And the angle index (α, β. Is done. Such simultaneous equations can be completed with a simple calculation if they are calculated using a matrix.

被測定物5の形状示数S1(xi)、S2(xi)、S3(xi)、S4(xi)・・によって、各サンプリング点において被測定物5の辺(51〜54)の被検面と直線とのずれが示される。例えば、第1辺51に関する形状示数S1(xi)のうち、最大値と最小値との差から第1辺の真直度が示されるなど、形状に関する情報が得られる。
また、被測定物5の角度示数α、β、γ、δ・・によって被測定物5の各内角(55〜58)について180×(n−2)/nからのずれが求められる。例えば、被測定物が4直角スコヤであれば、各内角が90°からずれている量が得られる。
加えて、直定規21、22の形状示数L1(xi)、L2(xi)によって直定規21、22の真直度を始めとする形状に関する情報が得られる。
Depending on the shape index S 1 (x i ), S 2 (x i ), S 3 (x i ), S 4 (x i ),... 51 to 54) shows a deviation between the test surface and the straight line. For example, information on the shape is obtained such that the straightness of the first side is indicated from the difference between the maximum value and the minimum value of the shape indication S 1 (x i ) related to the first side 51.
Further, the deviation from 180 × (n−2) / n is obtained for each internal angle (55 to 58) of the object 5 to be measured by the angle readings α, β, γ, δ. For example, if the object to be measured is a 4-right angle square, an amount in which each internal angle is deviated from 90 ° is obtained.
In addition, information on the shape including straightness of the straight rulers 21 and 22 is obtained by the shape indications L 1 (x i ) and L 2 (x i ) of the straight rulers 21 and 22.

以上、このような構成を備える形状測定装置1によれば、次に示すような顕著な効果を奏することができる。
(1)真直度が未知の直定規21、22から被測定物5の辺51〜54までの距離を測定した測定データを演算処理することによって被測定物5の形状を求めることができる。したがって、直定規21、22の精度に関係なく演算によって精密に被測定物5の形状測定を行うことができる。
As described above, according to the shape measuring apparatus 1 having such a configuration, the following remarkable effects can be obtained.
(1) The shape of the device under test 5 can be obtained by calculating the measurement data obtained by measuring the distance from the straight rulers 21 and 22 whose straightness is unknown to the sides 51 to 54 of the device under test 5. Therefore, the shape of the DUT 5 can be accurately measured by calculation regardless of the accuracy of the straight rulers 21 and 22.

(2)各サンプリング点での形状示数(Li、Si)を算出することができるので、単なる真直度の評価にとどまらず被測定物5の各辺の表面凹凸まで求めることができる。
(3)被測定物5の内角を角度示数(α、β、・・)として算出することができるので、被測定物5の各辺(51〜54)の真直度に加えて被測定物5の内角(55〜58)まで求めることができる。
(2) Since the shape index (L i , S i ) at each sampling point can be calculated, not only the straightness evaluation but also the surface irregularities on each side of the DUT 5 can be obtained.
(3) Since the internal angle of the device under test 5 can be calculated as an angle index (α, β,...), The device under test in addition to the straightness of each side (51 to 54) of the device under test 5 Up to 5 interior angles (55 to 58) can be obtained.

(4)直定規21、22と被測定物5の各辺(51〜54)との距離を求める場合でも直定規21、22と被測定物5との配置姿勢は演算結果に影響しないので、配置姿勢に関わらず精密な測定結果を得ることができる。そして、配置姿勢は結果に影響しないので、配置を正確にするために手間をかける必要がなく簡便かつ短時間で測定作業を行うことができる。例えば、直定規21、22同士を厳密に90°で交差させたり、直定規21、22と被測定物5の辺51〜54とを厳密に平行配置したりする必要はない。 (4) Even when the distance between the straight rulers 21 and 22 and each side (51 to 54) of the measured object 5 is determined, the arrangement posture of the straight rulers 21 and 22 and the measured object 5 does not affect the calculation result. Precise measurement results can be obtained regardless of the orientation. Since the orientation does not affect the result, it is not necessary to take time to make the placement accurate, and the measurement operation can be performed easily and in a short time. For example, it is not necessary that the straight rulers 21 and 22 cross each other at exactly 90 °, or the straight rulers 21 and 22 and the sides 51 to 54 of the object to be measured 5 are strictly arranged in parallel.

(5)測長センサ24は互いに反対方向に進退するスピンドル26、27を有し、これらスピンドル26、27の進退量の総和から直定規21、22と被測定物5の辺51〜54との距離を検出するので、直定規21、22と被測定物5の辺51〜54との間隔を正確に検出することができる。例えば、測長センサ24を移動させる移動軸が直定規21、22と被測定物5の辺51〜54とを結ぶ方向にずれても検出値は直定規21、22と被測定物5の辺51〜54との距離を正確に表す。 (5) The length measurement sensor 24 has spindles 26 and 27 that advance and retract in opposite directions. From the total amount of the spindles 26 and 27, the straight rulers 21 and 22 and the sides 51 to 54 of the object to be measured 5 Since the distance is detected, the distance between the straight rulers 21 and 22 and the sides 51 to 54 of the DUT 5 can be accurately detected. For example, even if the movement axis for moving the length measuring sensor 24 is shifted in the direction connecting the straight rulers 21 and 22 and the sides 51 to 54 of the measured object 5, the detected value is the sides of the straight rulers 21 and 22 and the measured object 5. The distance from 51 to 54 is expressed accurately.

(6)二本の直定規21、22と被測定物5の各辺51〜54とを対にしてその間隔を測定できれば演算処理を行うことができるので、原則として平面多面体であればどんな形状でも辺の形状や内角の大きさを測定することができる。 (6) As long as the distance between the two straight rulers 21 and 22 and the sides 51 to 54 of the DUT 5 can be measured, the calculation process can be performed. However, the shape of the side and the size of the inner angle can be measured.

尚、本発明の形状測定装置(形状測定方法)は、上記実施形態にのみ限定されず、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
平面多角形の被測定物5として4直角スコヤを例に説明したが、本発明の形状測定装置(形状測定方法)は、二本の直定規21、22との間隔を測定できれば種々の平面多角形状に適用できる。つまり、二本の直定規21、22で構成される角度のうち小さい角度側に被測定物5を配置したときに、直定規21、22と被測定物5の辺(51〜54)との間隔が測長センサ24の測定レンジに入ることが必要である。このとき、直定規21、22の姿勢はそのままで被測定物5をローテーションさせたときに直定規21、22と被測定物5の辺(51〜54)との総ての組で間隔が測定レンジに収まることが必要である。よって、例えば、内角が180°以上の凹角を有する凹多面体などは被測定物5としてはあまり好ましくはないと考えられる。
また、連立方程式を立てるためには、ある組合わせで直定規21、22と被測定物5の辺51〜54との間隔を測定した測定データが、他の組で直定規21、22と被測定物5の辺51〜54との間隔を測定した測定データに対応して存在していることが必要であるので、各組で対応する測定データが存在する程度に被測定物5の各辺(51〜54)の長さが揃っていることが好ましい。
In addition, the shape measuring apparatus (shape measuring method) of the present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the present invention.
Although the four-right angle skewer has been described as an example of the planar polygonal object 5 to be measured, the shape measuring device (shape measuring method) of the present invention can measure various planar polygons as long as the distance between the two straight rulers 21 and 22 can be measured. Applicable to shape. That is, when the object to be measured 5 is arranged on the smaller angle side of the angles formed by the two straight rulers 21 and 22, the straight rulers 21 and 22 and the sides (51 to 54) of the object to be measured 5 The interval needs to fall within the measurement range of the length measurement sensor 24. At this time, when the measured object 5 is rotated while the postures of the straight rulers 21 and 22 are kept as they are, the distance is measured for all the pairs of the straight rulers 21 and 22 and the sides (51 to 54) of the measured object 5. It needs to be in the range. Therefore, for example, a concave polyhedron having a concave angle with an internal angle of 180 ° or more is considered not preferable for the DUT 5.
In order to establish simultaneous equations, the measurement data obtained by measuring the distance between the straight rulers 21 and 22 and the sides 51 to 54 of the measured object 5 in a certain combination is used as the measurement data obtained in another set. Since it is necessary to exist corresponding to the measurement data obtained by measuring the distance between the sides 51 to 54 of the measurement object 5, each side of the measurement object 5 to the extent that the corresponding measurement data exists in each group. It is preferable that the lengths (51 to 54) are uniform.

測長センサ24の構成は限定されず、間隔を測定できればよい。例えば、本体部25の底部を直定規21、22および被測定物5のいずれか一方に当接させて先端をいずれか他方に当接させてもよい。そして、接触式の測長センサ24に限られず、非接触式の測長センサであってもよい。例えば、被測定物と静電容量結合する電極を有し、この電極の電位に基づいて被測定物との距離を検出する構成であってもよい。   The configuration of the length measuring sensor 24 is not limited as long as the distance can be measured. For example, the bottom part of the main body part 25 may be brought into contact with one of the straight rulers 21, 22 and the DUT 5 and the tip may be brought into contact with either of the other. And it is not restricted to the contact-type length measurement sensor 24, A non-contact-type length measurement sensor may be sufficient. For example, it may be configured to have an electrode capacitively coupled to the object to be measured and detect the distance to the object to be measured based on the potential of this electrode.

参照直線R1〜R6としては最小自乗直線とする場合を例示して説明したが、参照直線としては特に限定されず、任意の直線を設定することができる。例えば被検表面の任意の2点を結ぶ直線を参照直線として設定してもよい。そして、このような場合でも、例えば、参照直線が通る2点の条件を与えることで、式(25)から式(30)に相当する条件式を加えることができる。
被測定物の辺の真直度を測定する場合には複数(例えば3点以上)のサンプリング点が必要であるが、単に被測定物の内角を測定するだけであれば、複数点の測定データは必ずしも必要ではなく、直定規21、22と被測定物5の辺51〜54との各組について二つずつあればよい。
The reference straight lines R 1 to R 6 have been described by exemplifying the case of using the least-squares straight line, but the reference straight line is not particularly limited, and an arbitrary straight line can be set. For example, a straight line connecting any two points on the test surface may be set as the reference straight line. Even in such a case, for example, conditional expressions corresponding to the expressions (25) to (30) can be added by giving conditions of two points through which the reference straight line passes.
When measuring the straightness of the side of the object to be measured, a plurality of (for example, three or more) sampling points are required. However, if only the internal angle of the object to be measured is to be measured, This is not always necessary, and it is sufficient that there are two for each set of the straight rulers 21 and 22 and the sides 51 to 54 of the DUT 5.

以上、説明したように本発明の形状測定装置、形状測定方法、形状解析装置、形状解析プログラムおよび記録媒体によれば、基準定規や測定姿勢に関係なく、平面多角形について各辺の表面凹凸および各内角を簡便かつ高精度に求めることができるという優れた効果を奏し得る。   As described above, according to the shape measuring device, the shape measuring method, the shape analyzing device, the shape analyzing program, and the recording medium of the present invention, the surface irregularities on each side of the planar polygon and the plane polygon, regardless of the reference ruler and the measurement posture. It is possible to obtain an excellent effect that each inner angle can be obtained simply and with high accuracy.

本発明は、平面多角形について各辺の凹凸形状や角度のずれなどを求める形状測定装置等に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for a shape measuring device or the like that obtains an uneven shape or an angle shift of each side of a planar polygon.

本発明の形状測定装置の一実施形態を示す図である。It is a figure which shows one Embodiment of the shape measuring apparatus of this invention. 前記実施形態において、解析部の構成を示す図である。In the said embodiment, it is a figure which shows the structure of an analysis part. 前記実施形態において、測定データを示す図である。In the said embodiment, it is a figure which shows measurement data. 前記実施形態において、形状示数を示す図である。In the said embodiment, it is a figure which shows a shape index. 前記実施形態において、角度示数を示す図である。It is a figure which shows an angle index in the said embodiment. 前記実施形態において、参照直線、形状パラメータ、角度パラメータを示す図である。In the said embodiment, it is a figure which shows a reference straight line, a shape parameter, and an angle parameter.

符号の説明Explanation of symbols

1…形状測定装置、2…測定部、21…第1直定規、22…第2直定規、24…測長センサ、25…本体筒部、26…第1スピンドル、261…接触子、27…第2スピンドル、271…接触子、3…解析部、31…測定データ記憶部、32…示数設定部、33…連立式導出部、34…連立式演算部、36…バス4…出力部、5…被測定物、51…第1辺、52…第2辺、53…第3辺、54…第4辺、55…第1角、56…第2角、57…第3角、58…第4角、L…形状示数、m…測定データ、R1…参照直線、R2…参照直線、R3…参照直線、R4…参照直線、S…形状示数
DESCRIPTION OF SYMBOLS 1 ... Shape measuring apparatus, 2 ... Measuring part, 21 ... 1st straight ruler, 22 ... 2nd straight ruler, 24 ... Length measuring sensor, 25 ... Main body cylinder part, 26 ... 1st spindle, 261 ... Contact, 27 ... 2nd spindle, 271 ... contact, 3 ... analysis unit, 31 ... measurement data storage unit, 32 ... reading setting unit, 33 ... simultaneous equation deriving unit, 34 ... simultaneous equation calculation unit, 36 ... bus 4 ... output unit, 5 ... object to be measured, 51 ... first side, 52 ... second side, 53 ... third side, 54 ... fourth side, 55 ... first corner, 56 ... second corner, 57 ... third corner, 58 ... Fourth angle, L: shape index, m: measured data, R 1 ... reference line, R 2 ... reference line, R 3 ... reference line, R 4 ... reference line, S ... shape index

Claims (7)

二本の直定規を有するとともに、これら直定規と平面多角形である被測定物の辺とを対向する状態に組み合わせて互いの間隔を複数のサンプリング点で測定した測定データを取得する測定部と、
前記被測定物の各辺および前記直定規の被検面に対して設定された仮想的な直線である参照直線から前記被検面までの前記各サンプリング点における距離を、前記被検面の凹凸を表す形状示数として設定し、前記被測定物の参照直線が構成する内角角度および前記直定規の参照直線が構成する角度が前記平面多角形を正多角形としたときの内角角度からずれた角度を、前記被測定物の参照直線が構成する内角角度および前記各直定規の参照直線が構成する角度を表す角度示数として設定する示数設定部と、
前記測定部にて取得される前記直定規から前記被測定物の辺までの距離がこの直定規の参照直線から被測定物の辺の参照直線までの距離に前記形状示数を加えた値に等しいとするとともに、一方の前記直定規に対向する前記被測定物の辺の参照直線に対するこの直定規の参照直線の傾きと、他方の前記直定規に対向する前記被測定物の辺の参照直線に対するこの直定規の参照直線の傾きとの関係は、前記角度示数を用いて表されるとして、前記直定規と前記被測定物の各辺とで構成される複数の組についての連立式を導出する連立式導出部と、
連立式導出部にて導出された前記連立式を解くことで前記形状示数、及び前記角度示数を算出する連立式演算部と、を備えている
ことを特徴とする形状測定装置。
A measuring unit that has two straight rulers and obtains measurement data obtained by measuring the distance between the straight ruler and the side of the object to be measured, which is a plane polygon, in a state of being opposed to each other at a plurality of sampling points; ,
The distance in each of sampling points from said reference straight line is a virtual straight line set for the test surface of the sides and the straight edge of the object to be measured to the test surface, unevenness of the surface to be inspected set the shape readings representing the interior angle angle when the previous SL internal angle angles and the angles of the reference straight line for each straightedge constitutes a reference straight line of the object to be measured constitutes has a regular polygon the planar polygons A setting unit for setting an angle deviated from an internal angle formed by the reference straight line of the object to be measured and an angle indicating the angle formed by the reference straight line of each straight ruler ;
The distance from the straight ruler acquired by the measuring unit to the side of the object to be measured is a value obtained by adding the shape index to the distance from the reference straight line of the straight ruler to the reference line of the side of the object to be measured. The inclination of the reference straight line of the straight ruler with respect to the reference straight line of the object to be measured facing one of the straight rulers and the reference straight line of the side of the object to be measured facing the other straight ruler relationship between the inclination of the reference straight line of the straightedge against, as is the table with the angle readings, the simultaneous equations for a plurality of pairs composed of the respective sides of the straightedge and the object to be measured A simultaneous derivation unit for deriving;
A shape measuring apparatus , comprising: a simultaneous expression calculation unit that calculates the shape index and the angle index by solving the simultaneous expression derived by the simultaneous expression deriving unit.
請求項1に記載の形状測定装置において、
前記測定部は、前記直定規と前記被測定物の辺との間の間隔を測定する測長センサを有し、
前記測長センサは、二つの前記直定規のそれぞれに辺を対向させて配置された被測定物とこれら直定規との間で前記直定規の長手方向に移動可能に設けられた本体部と、
前記直定規とこの直定規に対向する被測定物の辺とを最短で結ぶ方向で前記本体部から互いに反対に向けて進退可能に設けられた第1スピンドルおよび第2スピンドルと、
第1スピンドルおよび第2スピンドルの進退量を検出する検出部と、を備えている
ことを特徴とする形状測定装置。
In the shape measuring apparatus according to claim 1,
The measuring unit includes a length measuring sensor that measures a distance between the straight ruler and a side of the object to be measured.
The length measuring sensor is a main body provided so as to be movable in the longitudinal direction of the straight ruler between an object to be measured arranged with the sides facing each of the two straight rulers and the straight ruler;
A first spindle and a second spindle which are provided so as to be able to advance and retreat from the main body in opposite directions in a direction connecting the straight ruler and the side of the object to be measured facing the straight ruler in the shortest direction;
A shape measuring device, comprising: a detection unit that detects an advance / retreat amount of the first spindle and the second spindle.
二本の直定規を有するとともにこれら直定規と平面多角形である被測定物の辺とを対向する状態に組み合わせて互いの間隔を複数のサンプリング点で測定した測定データを取得する測定工程と、
前記被測定物の各辺および前記直定規の被検面に対して設定された仮想的な直線である参照直線から前記被検面までの前記各サンプリング点における距離を、前記被検面の凹凸を表す形状示数として設定し、前記被測定物の参照直線が構成する内角角度および前記直定規の参照直線が構成する角度が前記平面多角形を正多角形としたときの内角角度からずれた角度を、前記被測定物の参照直線が構成する内角角度および前記各直定規の参照直線が構成する角度を表す角度示数として設定する示数設定工程と、
前記測定工程にて取得される前記直定規から前記被測定物の辺までの距離がこの直定規の参照直線から被測定物の辺の参照直線までの距離に前記形状示数を加えた値に等しいとするとともに、一方の前記直定規に対向する前記被測定物の辺の参照直線に対するこの直定規の参照直線の傾きと、他方の前記直定規に対向する前記被測定物の辺の参照直線に対するこの直定規の参照直線の傾きとの関係は、前記角度示数を用いて表されるとして、前記直定規と前記被測定物の各辺とで構成される組についての連立式を導出する連立式導出工程と、
導出された前記連立式を解くことで前記形状示数、及び前記角度示数を算出する連立式演算工程と、を備えている
ことを特徴とする形状測定方法。
A measurement step of obtaining measurement data obtained by measuring two or more intervals at a plurality of sampling points by having two straight rulers and combining the straight ruler and the side of the object to be measured, which is a plane polygon, facing each other.
The distance in each of sampling points from said reference straight line is a virtual straight line set for the test surface of the sides and the straight edge of the object to be measured to the test surface, unevenness of the surface to be inspected set the shape readings representing the interior angle angle when the previous SL internal angle angles and the angles of the reference straight line for each straightedge constitutes a reference straight line of the object to be measured constitutes has a regular polygon the planar polygons An index setting step for setting an angle deviated from an internal angle formed by the reference straight line of the object to be measured and an angle indicated by an angle formed by the reference straight line of each straight ruler ;
The distance from the straight ruler acquired in the measuring step to the side of the object to be measured is a value obtained by adding the shape index to the distance from the reference line of the straight ruler to the reference line of the side of the object to be measured. The inclination of the reference straight line of the straight ruler with respect to the reference straight line of the object to be measured facing one of the straight rulers and the reference straight line of the side of the object to be measured facing the other straight ruler relationship between the inclination of the reference straight line of the straightedge for as is the table with the angle readings and derives the simultaneous equations for pairs constituted by the respective sides of the straightedge and the object to be measured Simultaneous derivation process,
A shape measurement method comprising: a simultaneous equation calculation step of calculating the shape index and the angle index by solving the derived simultaneous equations.
請求項3に記載の形状測定方法において、
前記測定工程は、二本の前記直定規の延長線が所定角度をなす状態に配置された前記直定規のそれぞれに被測定物の辺を略平行に対向させた状態で、一方の直定規と被測定物の一辺との間隔および他方の直定規と被測定物の他辺との間隔を測定する間隔測定工程と、
二つの前記直定規の姿勢はそのままで被測定物をローテーションさせて前記直定規と前記被測定物の辺との組み合わせを換える組合せ変更工程と、を備える
ことを特徴とする形状測定方法。
In the shape measuring method according to claim 3,
In the measuring step, one of the straight rulers is placed in a state where the sides of the object to be measured are substantially parallel to each of the straight rulers arranged in a state where the extension lines of the two straight rulers form a predetermined angle. An interval measuring step for measuring an interval between one side of the object to be measured and an interval between the other straight ruler and the other side of the object to be measured;
A shape measuring method comprising: a combination changing step of rotating the object to be measured while maintaining the postures of the two straight rulers to change the combination of the straight ruler and the side of the object to be measured.
二本の直定規を有するとともにこれら直定規と平面多角形である被測定物の辺とを対向する状態に組み合わせて互いの間隔を複数のサンプリング点で測定した測定データを解析して前記被測定物形状を求める形状解析装置であって、
前記被測定物の各辺および前記直定規の被検面に対して設定された仮想的な直線である参照直線から前記被検面までの前記各サンプリング点における距離を、前記被検面の凹凸を表す形状示数として設定し、前記被測定物の参照直線が構成する内角角度および前記直定規の参照直線が構成する角度が前記平面多角形を正多角形としたときの内角角度からずれた角度を、前記被測定物の参照直線が構成する内角角度および前記各直定規の参照直線が構成する角度を表す角度示数として設定する示数設定部と、
前記測定部にて取得される前記直定規から前記被測定物の辺までの距離がこの直定規の参照直線から被測定物の辺の参照直線までの距離に前記形状示数を加えた値に等しいとするとともに、一方の前記直定規に対向する前記被測定物の辺の参照直線に対するこの直定規の参照直線の傾きと、他方の前記直定規に対向する前記被測定物の辺の参照直線に対するこの直定規の参照直線の傾きとの関係は、前記角度示数を用いて表されるとして、前記直定規と前記被測定物の各辺とで構成されるすべての組についての連立式を導出する連立式導出部と、
導出された前記連立式を解くことで前記形状示数、及び前記角度示数を算出する連立式演算部と、を備えている
ことを特徴とする形状解析装置。
The measurement target is analyzed by measuring measurement data measured at a plurality of sampling points by having two straight rulers and combining the straight ruler and the side of the object to be measured which is a plane polygon so as to face each other. A shape analysis device for obtaining an object shape,
The distance in each of sampling points from said reference straight line is a virtual straight line set for the test surface of the sides and the straight edge of the object to be measured to the test surface, unevenness of the surface to be inspected set the shape readings representing the interior angle angle when the previous SL internal angle angles and the angles of the reference straight line for each straightedge constitutes a reference straight line of the object to be measured constitutes has a regular polygon the planar polygons A setting unit for setting an angle deviated from an internal angle formed by the reference straight line of the object to be measured and an angle indicating the angle formed by the reference straight line of each straight ruler ;
The distance from the straight ruler acquired by the measuring unit to the side of the object to be measured is a value obtained by adding the shape index to the distance from the reference straight line of the straight ruler to the reference line of the side of the object to be measured. The inclination of the reference straight line of the straight ruler with respect to the reference straight line of the object to be measured facing one of the straight rulers and the reference straight line of the side of the object to be measured facing the other straight ruler relationship between the inclination of the reference straight line of the straightedge against, as is the table with the angle readings, the simultaneous equation for all pairs constituted by the respective sides of the straightedge and the object to be measured A simultaneous derivation unit for deriving;
A shape analysis apparatus , comprising: a simultaneous operation unit that calculates the shape indication and the angle indication by solving the derived simultaneous equations.
二本の直定規を有するとともにこれら直定規と平面多角形である被測定物の辺とを対向する状態に組み合わせて互いの間隔を複数のサンプリング点で測定した測定データを解析して前記被測定物形状を求める形状解析装置に組み込まれたコンピュータを、
前記被測定物の各辺および前記直定規の被検面に対して設定された仮想的な直線である参照直線から前記被検面までの前記各サンプリング点における距離を、前記被検面の凹凸を表す形状示数として設定し、前記被測定物の参照直線が構成する内角角度および前記直定規の参照直線が構成する角度が前記平面多角形を正多角形としたときの内角角度からずれた角度を、前記被測定物の参照直線が構成する内角角度および前記各直定規の参照直線が構成する角度を表す角度示数として設定する示数設定部と、
前記測定部にて取得される前記直定規から前記被測定物の辺までの距離がこの直定規の参照直線から被測定物の辺の参照直線までの距離に前記形状示数を加えた値に等しいとするとともに、一方の前記直定規に対向する前記被測定物の辺の参照直線に対するこの直定規の参照直線の傾きと、他方の前記直定規に対向する前記被測定物の辺の参照直線に対するこの直定規の参照直線の傾きとの関係は、前記角度示数を用いて表されるとして、前記直定規と前記被測定物の各辺とで構成される組についての連立式を導出する連立式導出部と、
導出された前記連立式を解くことで前記形状示数、及び前記角度示数を算出する連立式演算部と、して機能させる
ことを特徴としたコンピュータ読取可能な形状解析プログラム。
The measurement target is analyzed by measuring measurement data measured at a plurality of sampling points by having two straight rulers and combining the straight ruler and the side of the object to be measured which is a plane polygon so as to face each other. A computer built into a shape analysis device that calculates the shape of an object
The distance in each of sampling points from said reference straight line is a virtual straight line set for the test surface of the sides and the straight edge of the object to be measured to the test surface, unevenness of the surface to be inspected set the shape readings representing the interior angle angle when the previous SL internal angle angles and the angles of the reference straight line for each straightedge constitutes a reference straight line of the object to be measured constitutes has a regular polygon the planar polygons A setting unit for setting an angle deviated from an internal angle formed by the reference straight line of the object to be measured and an angle indicating the angle formed by the reference straight line of each straight ruler ;
The distance from the straight ruler acquired by the measuring unit to the side of the object to be measured is a value obtained by adding the shape index to the distance from the reference straight line of the straight ruler to the reference line of the side of the object to be measured. The inclination of the reference straight line of the straight ruler with respect to the reference straight line of the object to be measured facing one of the straight rulers and the reference straight line of the side of the object to be measured facing the other straight ruler relationship between the inclination of the reference straight line of the straightedge for as is the table with the angle readings and derives the simultaneous equations for pairs constituted by the respective sides of the straightedge and the object to be measured Simultaneous derivation unit;
A computer-readable shape analysis program that functions as a simultaneous expression calculation unit that calculates the shape indication and the angle indication by solving the derived simultaneous equations.
請求項6に記載の形状解析プログラムを記録したことを特徴としたコンピュータ読取可能な記録媒体。   A computer-readable recording medium on which the shape analysis program according to claim 6 is recorded.
JP2003316829A 2003-09-09 2003-09-09 Shape measuring device, shape measuring method, shape analyzing device, shape analyzing program, and recording medium Expired - Fee Related JP4323267B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003316829A JP4323267B2 (en) 2003-09-09 2003-09-09 Shape measuring device, shape measuring method, shape analyzing device, shape analyzing program, and recording medium
DE602004005388T DE602004005388T2 (en) 2003-09-09 2004-09-08 Apparatus and method for measuring and analyzing the shape of an object, and corresponding program
EP06119993A EP1742018B1 (en) 2003-09-09 2004-09-08 Device and Method for Form Measurement
DE602004017513T DE602004017513D1 (en) 2003-09-09 2004-09-08 Apparatus and method for shape measurement
EP04255445A EP1515115B1 (en) 2003-09-09 2004-09-08 Form measuring device, form measuring method, form analysis device, form analysis program, and recording medium storing the program
US10/936,509 US7188046B2 (en) 2003-09-09 2004-09-09 Form measuring device, form measuring method, form analysis device, form analysis program, and recording medium storing the program
CNB2004100785395A CN100375884C (en) 2003-09-09 2004-09-09 Form measuring device, form measuring method, form analysis device, form analysis program, and recording medium storing the program
US11/652,504 US7483807B2 (en) 2003-09-09 2007-01-12 Form measuring device, form measuring method, form analysis device, form analysis program, and recording medium storing the program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003316829A JP4323267B2 (en) 2003-09-09 2003-09-09 Shape measuring device, shape measuring method, shape analyzing device, shape analyzing program, and recording medium

Publications (2)

Publication Number Publication Date
JP2005083918A JP2005083918A (en) 2005-03-31
JP4323267B2 true JP4323267B2 (en) 2009-09-02

Family

ID=34416607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003316829A Expired - Fee Related JP4323267B2 (en) 2003-09-09 2003-09-09 Shape measuring device, shape measuring method, shape analyzing device, shape analyzing program, and recording medium

Country Status (1)

Country Link
JP (1) JP4323267B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728311B2 (en) 2005-11-18 2010-06-01 Still River Systems Incorporated Charged particle radiation therapy
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9706636B2 (en) 2012-09-28 2017-07-11 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9723705B2 (en) 2012-09-28 2017-08-01 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US10155124B2 (en) 2012-09-28 2018-12-18 Mevion Medical Systems, Inc. Controlling particle therapy
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US10646728B2 (en) 2015-11-10 2020-05-12 Mevion Medical Systems, Inc. Adaptive aperture
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US11311746B2 (en) 2019-03-08 2022-04-26 Mevion Medical Systems, Inc. Collimator and energy degrader for a particle therapy system

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9925395B2 (en) 2005-11-18 2018-03-27 Mevion Medical Systems, Inc. Inner gantry
US8344340B2 (en) 2005-11-18 2013-01-01 Mevion Medical Systems, Inc. Inner gantry
US10722735B2 (en) 2005-11-18 2020-07-28 Mevion Medical Systems, Inc. Inner gantry
US8907311B2 (en) 2005-11-18 2014-12-09 Mevion Medical Systems, Inc. Charged particle radiation therapy
US10279199B2 (en) 2005-11-18 2019-05-07 Mevion Medical Systems, Inc. Inner gantry
US7728311B2 (en) 2005-11-18 2010-06-01 Still River Systems Incorporated Charged particle radiation therapy
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US10155124B2 (en) 2012-09-28 2018-12-18 Mevion Medical Systems, Inc. Controlling particle therapy
US9723705B2 (en) 2012-09-28 2017-08-01 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US9706636B2 (en) 2012-09-28 2017-07-11 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US10434331B2 (en) 2014-02-20 2019-10-08 Mevion Medical Systems, Inc. Scanning system
US10646728B2 (en) 2015-11-10 2020-05-12 Mevion Medical Systems, Inc. Adaptive aperture
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
US11311746B2 (en) 2019-03-08 2022-04-26 Mevion Medical Systems, Inc. Collimator and energy degrader for a particle therapy system

Also Published As

Publication number Publication date
JP2005083918A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
JP4323267B2 (en) Shape measuring device, shape measuring method, shape analyzing device, shape analyzing program, and recording medium
JP4828974B2 (en) Screw measuring method, screw measuring probe, and screw measuring device using the same
EP1475603B1 (en) Calibration method for a surface texture measuring instrument and said instrument
US7376261B2 (en) Surface scan measuring device and method of forming compensation table for scanning probe
US7483807B2 (en) Form measuring device, form measuring method, form analysis device, form analysis program, and recording medium storing the program
US11022419B2 (en) Thread inspection systems and methods
NL1041839A (en) A method and apparatus increasing the accuracy of the two ball or wire measurement of pitch diameter, simple pitch diameter and virtual pitch diameter of internal and external screw threads and thread gauges.
JP2005055282A (en) Measuring method and measuring device
WO2016134085A1 (en) Device for measuring airfoil spacing
JP2008524576A (en) Sequential multi-probe method for straightness measurement of straight rulers
US11774227B2 (en) Inspection gauge for coordinate measuring apparatus and abnormality determination method
JP4098649B2 (en) Calibration tool for surface texture measuring machine, calibration method for surface texture measuring machine, calibration program for surface texture measuring machine, and recording medium recording this calibration program
JP5246952B2 (en) Measuring method
CN207585461U (en) Length-measuring appliance and micrometer
RU2471145C1 (en) Method of controlling accuracy parameters of end faces of body of rotation type articles
CN101398296B (en) Standard gauge for calibrating contourgraph
CN207585481U (en) Band steel two sides width difference detection device
JP2005221320A (en) Measurement head and probe
CN211291279U (en) Deep hole bottom shallow spigot diameter measuring tool
CN219083982U (en) Measuring tool for measuring chamfer angle
CN210741381U (en) Endoscopic measuring device for linear dimension in workpiece hole
CN107144205A (en) A kind of wall thickness measuring device and detection method
JP2018072202A (en) Shape measurement device and method for shape measurement
JP2006047148A (en) Shape measurement apparatus, shape measurement method, shape analysis apparatus, shape analysis program, and recording medium
Nemec Consider the Indicating Plug Gage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060710

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070703

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090604

R150 Certificate of patent or registration of utility model

Ref document number: 4323267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150612

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees