JPH04273409A - Superconducting magnet device; particle accelerator using said superconducting magnet device - Google Patents

Superconducting magnet device; particle accelerator using said superconducting magnet device

Info

Publication number
JPH04273409A
JPH04273409A JP5577091A JP5577091A JPH04273409A JP H04273409 A JPH04273409 A JP H04273409A JP 5577091 A JP5577091 A JP 5577091A JP 5577091 A JP5577091 A JP 5577091A JP H04273409 A JPH04273409 A JP H04273409A
Authority
JP
Japan
Prior art keywords
coil
superconducting
magnet device
compensation current
displacement correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5577091A
Other languages
Japanese (ja)
Inventor
Masaji Kitamura
正司 北村
Hiroe Yamamoto
山本 広衛
Hiroshi Tomeoku
留奥 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5577091A priority Critical patent/JPH04273409A/en
Publication of JPH04273409A publication Critical patent/JPH04273409A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To correct an unmatched magnetic field generated when the side of a superconducting coil is displaced due to an electromagnetic force at a superconducting magnet device in which an opening has been formed on the outer circumferential side of the superconducting coil. CONSTITUTION:At a superconducting magnet device, one pair of superconducting coils 4, 5 which have been wound to be a fan shape are arranged so as to be faced on both faces of a particle circulation passage 2, and openings such as synchrotron radiation conducting ports 3a, 6a are installed at the outer circumferential side of the particle circulation passage. At the magnet device, displacement-correcting coils 9, 10 are wound so as to be adjacent to both side faces of coil sides situated on the opening side of the superconducting coils 4, 5, a compensation electric current flowing to the displacement-correcting coils 9, 10 is controlled and said unmatched magnetic field is corrected.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は超電導マグネツト装置及
び該超電導マグネツトを使用した粒子加速器に係り、特
にシンクロトロン放射光発生用粒子蓄積リング等の粒子
加速器の扇型超電導偏向マグネツトとして好適な超電導
マグネツト装置における不整磁場補正に関する。
[Field of Industrial Application] The present invention relates to a superconducting magnet device and a particle accelerator using the superconducting magnet, and in particular to a superconducting magnet suitable as a fan-shaped superconducting deflection magnet for a particle accelerator such as a particle storage ring for synchrotron radiation generation. Concerning correction of irregular magnetic fields in devices.

【0002】0002

【従来の技術】外周側にシンクロトロン放射光導出用開
口を有する扇型超電導偏向マグネツトは、超電導コイル
に流れる電流により発生する電磁力で該超電導コイルが
変位し、不整磁場が発生する。
2. Description of the Related Art In a fan-shaped superconducting deflection magnet having an opening for leading out synchrotron radiation on its outer periphery, the superconducting coil is displaced by electromagnetic force generated by a current flowing through the superconducting coil, and an asymmetric magnetic field is generated.

【0003】超電導偏向マグネツトにおける磁場補正技
術は、アイ・イー・イー・イー  トランザクシヨンズ
  オン  マグネテイツクス(IEEE  Tran
sactions  on  Magnetics)第
17巻  第1号  1981年  の第728頁〜第
731頁に「デイベロツプメント  オブ  スーパー
コンダクテング  マグネツツ  フオア  ビーム 
 ラインズ  アンド  アクセレレター  アツト 
 KEK」(Development  of  su
perconducting  magnets  f
or  bean  lines  and  acc
eleratorat  KEK)と題して開示されて
いる。 該超電導マグネツトは、荷電粒子の軌道と垂直な断面に
おける超電導コイルの断面形状が、荷電粒子軌道を中心
に同心円上及び中心水平面に関して対称に配置した複数
の超電導体の集合体形状であり、シート状に巻回した複
数の磁場補正コイルを超電導コイルの内周面の近傍にお
いて荷電粒子軌道を中心にした同心円上及び中心水平面
に対して対称となるように配置する構成である。
[0003] Magnetic field correction technology for superconducting deflection magnets has been developed by IEEE Transactions on Magnetics (IEEE Tran
17, No. 1, 1981, pp. 728-731.
Lines and Accelerator Atsut
KEK” (Development of su
perconducting magnets f
or bean lines and acc
It is disclosed under the title ELERATORAT KEK). In this superconducting magnet, the cross-sectional shape of the superconducting coil in a cross section perpendicular to the charged particle trajectory is an aggregate shape of a plurality of superconductors arranged concentrically around the charged particle trajectory and symmetrically with respect to the central horizontal plane, and is in the form of a sheet. In this configuration, a plurality of magnetic field correction coils wound around the superconducting coil are arranged in the vicinity of the inner peripheral surface of the superconducting coil so as to be symmetrical with respect to a center horizontal plane and on a concentric circle centered on a charged particle trajectory.

【0004】しかしながら、シンクロトロン放射光発生
用粒子蓄積リングの扇型超電導偏向マグネツトのように
、超電導コイルの外周側にシンクロトロン放射光導出用
の開口を設けた構成では、シート状の磁場補正コイルを
配置することが困難であり、他の有効な不整磁場補正手
段の出現が望まれている。
However, in a structure in which an opening for leading out synchrotron radiation is provided on the outer circumferential side of a superconducting coil, such as in a fan-shaped superconducting deflection magnet of a particle storage ring for generating synchrotron radiation, a sheet-shaped magnetic field correction coil is used. Therefore, it is desired that other effective means for correcting the irregular magnetic field be developed.

【0005】[0005]

【発明が解決しようとする課題】従つて本発明の目的は
、シンクロトロン放射光発生用粒子蓄積リングの扇型超
電導偏向マグネツト等のように、超電導コイルの外周側
に開口を設けた超電導マグネツト装置において、該超電
導コイルに流れる電流による電磁力で該超電導コイル辺
が変位することにより発生する不整磁場を補正するのに
好適な補正手段を提供することにある。
SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to provide a superconducting magnet device having an opening on the outer circumferential side of a superconducting coil, such as a fan-shaped superconducting deflection magnet of a particle storage ring for synchrotron radiation generation. An object of the present invention is to provide a correcting means suitable for correcting an irregular magnetic field generated when a side of the superconducting coil is displaced by electromagnetic force caused by a current flowing through the superconducting coil.

【0006】[0006]

【課題を解決するための手段】本発明は、扇型に巻回さ
れた一対の超電導コイルを粒子周回通路の両側に所定の
間隔で対向配置し、該粒子周回通路の外周側に開口を設
けた超電導マグネツト装置において、前記超電導コイル
の前記開口側に位置するコイル辺の両側面に隣接して巻
回した変位補正コイルと、該変位補正コイルに流す補償
電流を制御する補償電流制御装置とを設けたことを特徴
とする。
[Means for Solving the Problems] The present invention provides a pair of superconducting coils wound in a fan shape, which are arranged facing each other at a predetermined interval on both sides of a particle circulation passage, and an opening is provided on the outer circumferential side of the particle circulation passage. A superconducting magnet device comprising: a displacement correction coil wound adjacent to both sides of the coil side located on the opening side of the superconducting coil; and a compensation current control device for controlling a compensation current flowing through the displacement correction coil. It is characterized by having been established.

【0007】[0007]

【作用】変位補正コイルに流れる電流は、超電導コイル
に流れる電流による電磁力で該超電導コイル辺が変位す
ることによる不整磁場の発生を補正する。
[Operation] The current flowing through the displacement correction coil corrects the generation of an irregular magnetic field caused by the displacement of the sides of the superconducting coil due to the electromagnetic force caused by the current flowing through the superconducting coil.

【0008】[0008]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0009】図1はシンクロトロン放射光発生用電子蓄
積リングを構成する扇型超電導偏向マグネツト装置の平
面図、図2はそのII−II断面図、図3は電気的接続
図である。
FIG. 1 is a plan view of a fan-shaped superconducting deflection magnet device constituting an electron storage ring for synchrotron radiation generation, FIG. 2 is a sectional view taken along line II--II, and FIG. 3 is an electrical connection diagram.

【0010】該超電導偏向マグネツト1は粒子周回軌道
2を周回する荷電粒子(電子)を偏向するもので、1つ
の偏向マグネツト1が90度の偏向を担当し、4つの偏
向マグネツト1で周回する電子蓄積リングを構成する。
The superconducting deflection magnet 1 deflects charged particles (electrons) orbiting in a particle orbit 2. One deflection magnet 1 takes charge of 90 degree deflection, and four deflection magnets 1 deflect charged particles (electrons) orbiting around the particle orbit 2. Configure a storage ring.

【0011】該超電導マグネツト1の鉄心3は、平面形
状が概ね90度の扇状であり、縦断面形状がその中央部
のクライオスタツト配置用のドーナツ(円弧)状空間3
aと該空間3aから外周側面に開口するシンクロトロン
放射光導出口3bによりC字状となつている。一対の超
電導コイル4,5は、それぞれが、楔型断面形状の超電
導導体4a,5aを扇型の平面形状となるように巻回し
て形成した鞍型コイルであり、粒子周回軌道2に沿つて
湾曲した超電導コイル辺の断面形状は超電導導体4a,
5aが重合した集合体である。中心部の粒子周回通路6
と該粒子周回通路6から外周側面に開口するシンクロト
ロン放射光導出口6aを形成するための断面C字状のク
ライオスタツト7は、該シンクロトロン放射光導出口6
aが前記鉄心3のシンクロトロン放射光導出口3bと対
向するように前記ドーナツ状空間3a内に配置され、非
磁性の支持体21を介して鉄心3に支持される。
[0011] The iron core 3 of the superconducting magnet 1 has a planar shape that is approximately 90 degrees fan-shaped, and its vertical cross-section has a donut (arc) shaped space 3 in the center for arranging a cryostat.
a and a synchrotron radiation light outlet 3b opening from the space 3a to the outer circumferential side surface, forming a C-shape. The pair of superconducting coils 4 and 5 are saddle-shaped coils formed by winding superconducting conductors 4a and 5a each having a wedge-shaped cross section so as to have a fan-shaped planar shape, and are arranged along the particle orbit 2. The cross-sectional shape of the curved superconducting coil side is superconducting conductor 4a,
5a is a polymerized aggregate. Particle circulation path 6 in the center
A cryostat 7 having a C-shaped cross section for forming a synchrotron radiation light outlet 6a opening from the particle circulation passage 6 to the outer circumferential side face is connected to the synchrotron radiation light outlet 6.
a is arranged in the donut-shaped space 3a so as to face the synchrotron radiation light outlet 3b of the iron core 3, and is supported by the iron core 3 via a non-magnetic support 21.

【0012】そして、前記一対の超電導コイル4,5は
、前記粒子周回通路6及びシンクロトロン放射光導出口
6aを上下から挾んで対向するように、非磁性支持体8
によつて前記クライオスタツト7内に位置決め固定され
、前記粒子周回通路6に沿つて偏向磁場(双極磁場)B
を発生する。
The pair of superconducting coils 4 and 5 are mounted on a non-magnetic support 8 so as to face each other with the particle circulation path 6 and the synchrotron radiation light outlet 6a sandwiched between them from above and below.
is positioned and fixed in the cryostat 7 by a deflection magnetic field (dipolar magnetic field) B along the particle circulation path 6.
occurs.

【0013】また、前記一対の超電導コイル4,5のコ
イル辺のうちでシンクロトロン放射光導出口6a側に位
置し該導出口6aを挾んで対向するコイル辺を構成する
超電導導体4a,5aの重合体の前記対向側面とその反
対側面に隣接して変位補正コイル9,10が配置される
。各変位補正コイル9,10は導線を扇型に巻回してシ
ート状に形成されたもので、前記超電導コイル4,5の
コイル辺の前記対向側面に隣接する側に位置する変位補
正コイル辺に超電導コイル4,5と逆方向の補償電流が
流れ、その反対側面に隣接する側に位置するコイル辺に
超電導コイル4,5と同方向の補償電流が流れるように
、前記非磁性支持体8に形成された変位補正コイル嵌合
溝に嵌合して支持される。
[0013] Furthermore, the weight of the superconducting conductors 4a, 5a that constitute the coil sides of the pair of superconducting coils 4, 5 that are located on the side of the synchrotron radiation light outlet 6a and that face each other with the outlet 6a in between. Displacement correction coils 9 and 10 are arranged adjacent to the opposing sides of the combination and the opposite side. Each displacement correction coil 9, 10 is formed into a sheet shape by winding a conducting wire in a fan shape. The non-magnetic support 8 is arranged so that a compensation current flows in the opposite direction to the superconducting coils 4 and 5, and a compensation current flows in the same direction as the superconducting coils 4 and 5 to the side of the coil adjacent to the opposite side. It is fitted into and supported by the formed displacement correction coil fitting groove.

【0014】前記変位補正コイル9,10に流す補償電
流を制御する補償電流制御装置は、図3に詳述するよう
に、超電導コイル電源11から前記超電導コイル4(5
)に供給される超電導コイル電流imの値を検出する超
電導コイル電流検出器12と、超電導コイル電流imの
値に対する補償電流isの最適値の対応関数を記憶する
関数記憶装置13と、前記超電導コイル電流検出器12
で検出される超電導コイル電流imの値に基づいて前記
対応関数を参照して補償電流値isの最適値を求め、該
補償電流isを前記変位補正コイル9(10)に供給す
るように変位補正コイル電源14を制御する補償電流指
令装置15を備える。そして、前記関数記憶装置13に
は、各超電導偏向コイルの不整磁場発生の個体差に合わ
せて最適な補償電流制御が可能なように対応関数を記憶
させ、または変更する関数変更手段が設けられる。
As detailed in FIG. 3, the compensation current control device for controlling the compensation current flowing through the displacement correction coils 9 and 10 connects the superconducting coil 4 (5) from the superconducting coil power supply 11.
), a superconducting coil current detector 12 that detects the value of the superconducting coil current im supplied to the superconducting coil current im, a function storage device 13 that stores a corresponding function of the optimum value of the compensation current is with respect to the value of the superconducting coil current im, and the superconducting coil Current detector 12
Based on the value of the superconducting coil current im detected by the superconducting coil current im, the optimum value of the compensation current value is is determined by referring to the corresponding function, and the displacement is corrected so as to supply the compensation current is to the displacement correction coil 9 (10). A compensation current command device 15 that controls the coil power supply 14 is provided. The function storage device 13 is provided with function changing means for storing or changing a corresponding function so as to enable optimal compensation current control in accordance with individual differences in generation of irregular magnetic fields of each superconducting deflection coil.

【0015】以上の構成において、超電導コイル4,5
に電流を流すことにより偏向磁場Bが発生し、周回する
荷電粒子を偏向する。そして、シンクロトロン放射光1
6を、導出口3b,6aを通して外部に導出する。
In the above configuration, the superconducting coils 4, 5
By passing a current through the magnetic field B, a deflecting magnetic field B is generated, which deflects the orbiting charged particles. And synchrotron radiation 1
6 is led out to the outside through the outlet ports 3b and 6a.

【0016】ところで、超電導コイル4,5に図4の(
a)に示す方向の電流imが流れると、対向する両超電
導コイル辺(超電導導体4a,5a)間には該電流の2
乗に比例した大きさの電磁吸引力fが作用する。この電
磁吸引力fは、内周側のコイル辺同志と外周側のコイル
辺同志に作用するが、両超電導コイル4,5を支持する
非磁性支持体8は、シンクロトロン放射光導出口6aを
確保するためにクライオスタツト7内でC字状構造体を
成しているので、外周側(シンクロトロン放射光導出口
側)の超電導コイル辺に作用する電磁吸引力fによつて
シンクロトロン放射光導出口6aを狭めるように弾性変
形する。この弾性変形量は、概ね、超電導コイル電流i
mの2乗に比例する。この非磁性支持体8の変形によつ
て、超電導コイル4,5は図4の(b)のように変位す
る。この超電導コイル辺の変位は、該コイル辺配置領域
に、図4の(c)に図示するようなシート状電流を流し
たのと同様に作用し、不整磁場を発生する。
By the way, the superconducting coils 4 and 5 shown in FIG.
When a current im flows in the direction shown in a), 2 of the current flows between the opposing sides of the superconducting coils (superconducting conductors 4a and 5a).
An electromagnetic attractive force f proportional to the power of the force acts. This electromagnetic attraction force f acts on the inner coil sides and the outer coil sides, but the non-magnetic support 8 that supports both superconducting coils 4 and 5 secures the synchrotron radiation light outlet 6a. Since a C-shaped structure is formed within the cryostat 7 in order to elastically deforms to narrow it. This amount of elastic deformation is approximately equal to the superconducting coil current i
It is proportional to the square of m. Due to this deformation of the nonmagnetic support 8, the superconducting coils 4 and 5 are displaced as shown in FIG. 4(b). This displacement of the superconducting coil sides acts in the same manner as when a sheet-like current as shown in FIG. 4C is passed through the coil side arrangement region, and generates an irregular magnetic field.

【0017】この実施例は、この不整磁場を補正するた
めに、変位補正コイル9,10に前記シート状電流に対
して逆方向の補償電流isを流すものである。
In this embodiment, in order to correct this irregular magnetic field, a compensation current is flowing in the direction opposite to the sheet current through the displacement correction coils 9 and 10.

【0018】前記変位補正コイル9,10は、図5の(
a),(b)に示すように、超電導コイル4,5のコイ
ル辺を構成する超電導導体の重合体の対向側面に該超電
導コイル電流imと逆方向の補償電流が流れるコイル辺
9a,10aを配置し、該重合体の反対側面に該超電導
コイル電流imと同方向の補償電流が流れるコイル辺9
b,10bを配置しているので、前記シート状電流を近
似的に打ち消す電流分布状態となり、不整磁場の発生が
防止される。
The displacement correction coils 9 and 10 are shown in FIG.
As shown in a) and (b), coil sides 9a and 10a through which compensation currents in the opposite direction to the superconducting coil current im flow are formed on opposite sides of the polymer of the superconducting conductor constituting the coil sides of the superconducting coils 4 and 5. A coil side 9 where a compensation current flows in the same direction as the superconducting coil current im on the opposite side of the polymer.
b and 10b, a current distribution state is created that approximately cancels out the sheet-like current, and generation of an irregular magnetic field is prevented.

【0019】超電導コイル4,5を支持する非磁性支持
体8が弾性変形すると仮定すると、該超電導コイル辺の
変位量δは電磁吸引力fに比例し、該電磁吸引力fは超
電導コイル電流imの2乗に比例するのでδ∝f∝im
2 が成り立つ。超電導コイル辺の変位によるシート状電流
に基づく不整磁場発生起磁力atはシート状電流の断面
積(変位面積)と電流密度jの積になる。シート状電流
の電流密度jは超電導コイル電流imに比例するのでa
t∝δj∝im3 が成り立つ。従つて、このシート状電流による不整磁場
発生起磁力atを打ち消す起磁力を前記変位補正コイル
9,10に発生させるには、該変位補正コイル9,10
に超電導コイル電流imのほぼ3乗に比例した補償電流
isを供給することが必要である。
Assuming that the non-magnetic support 8 supporting the superconducting coils 4 and 5 is elastically deformed, the amount of displacement δ on the side of the superconducting coil is proportional to the electromagnetic attractive force f, and the electromagnetic attractive force f is proportional to the superconducting coil current im. Since it is proportional to the square of δ∝f∝im
2 holds true. The magnetomotive force at which is generated in the irregular magnetic field based on the sheet-like current due to the displacement of the superconducting coil side is the product of the cross-sectional area (displacement area) of the sheet-like current and the current density j. Since the current density j of the sheet current is proportional to the superconducting coil current im, a
t∝δj∝im3 holds true. Therefore, in order to cause the displacement correction coils 9, 10 to generate a magnetomotive force that cancels the magnetomotive force at generated by the sheet-like current, the displacement correction coils 9, 10
It is necessary to supply a compensation current is approximately proportional to the third power of the superconducting coil current im.

【0020】このような補償電流供給制御を実現するた
めに、電流検出器12は超電導コイル4(5)に流れる
電流imの値を検出して補償電流指令装置15に入力す
る。補償電流指令装置15は、関数記憶装置13を参照
して該超電導コイル電流imによる超電導コイル辺の変
位に基づく前記シート状電流の影響を打ち消すのに最適
な補償電流isの値を求め、該補償電流isを変位補正
コイル9(10)に供給するように変位補正コイル電源
14を制御する。
In order to realize such compensation current supply control, the current detector 12 detects the value of the current im flowing through the superconducting coil 4 (5) and inputs it to the compensation current command device 15. The compensation current command device 15 refers to the function storage device 13 to determine the value of the compensation current is most suitable for canceling out the influence of the sheet-like current based on the displacement of the superconducting coil side due to the superconducting coil current im, and performs the compensation. The displacement correction coil power supply 14 is controlled to supply the current is to the displacement correction coil 9 (10).

【0021】このように超電導コイル4(5)に流れる
電流imの値に応じて補償電流isの値を制御すれば、
低い偏向磁場に対応する低エネルギー電子から高い偏向
磁場に対応する高エネルギー電子まで、安定して加速あ
るいは蓄積することができる。
[0021] If the value of the compensation current is is controlled in accordance with the value of the current im flowing through the superconducting coil 4 (5) in this way,
It is possible to stably accelerate or accumulate electrons ranging from low-energy electrons corresponding to a low deflection magnetic field to high-energy electrons corresponding to a high deflection magnetic field.

【0022】以上に述べた変位補正コイル9,10によ
る不整磁場補正技術は、超電導コイル4(5)の内周側
のコイル辺にも追加して、同様に、適用することができ
る。内周側の超電導コイル辺の変位量は外周側の超電導
コイル辺よりも少ないので、該内周側の超電導コイル辺
に隣接配置する変位補正コイルの起磁力、例えばターン
数は、外周側の超電導コイル辺に対する変位補正コイル
の起磁力、例えばターン数よりも小さくて済む。
The uneven magnetic field correction technique using the displacement correction coils 9 and 10 described above can be applied to the inner coil side of the superconducting coil 4 (5) as well. Since the amount of displacement of the inner superconducting coil side is smaller than that of the outer superconducting coil side, the magnetomotive force (for example, the number of turns) of the displacement correction coil placed adjacent to the inner superconducting coil side is smaller than that of the outer superconducting coil side. The magnetomotive force of the displacement correction coil relative to the coil side may be smaller than, for example, the number of turns.

【0023】内外周両側の超電導コイル辺に対して変位
補正コイルを設ければ、より高精度の不整磁場補正を実
現することができる。
[0023] If displacement correction coils are provided on both the inner and outer periphery sides of the superconducting coil, more accurate correction of the irregular magnetic field can be realized.

【0024】なお、上記実施例は超電導コイル4,5の
コイル辺がシンクロトロン放射光導出口6aを狭める方
向に変位することにより発生する不整磁場を補正するよ
うに変位補正コイル9,10のコイル辺配置位置を決め
ているが、超電導コイル4,5のコイル辺の変位方向が
これと直角方向となる場合には、変位補正コイル9,1
0のコイル辺の配置位置も直角方向になり、両方向の変
位が複合して発生する場合には、変位補正コイル9,1
0の配置位置も複合的になる。
In the above embodiment, the coil sides of the displacement correction coils 9 and 10 are arranged so as to correct the irregular magnetic field generated when the coil sides of the superconducting coils 4 and 5 are displaced in the direction of narrowing the synchrotron radiation light outlet 6a. Although the placement position has been determined, if the displacement direction of the coil sides of the superconducting coils 4 and 5 is perpendicular to this, the displacement correction coils 9 and 1
The arrangement position of the coil side 0 is also in the right angle direction, and when displacements in both directions occur in combination, the displacement correction coils 9 and 1
The placement position of 0 is also complex.

【0025】図6は、シンクロトロン放射光発生用電子
蓄積リングを構成する扇型超電導偏向マグネツト装置の
他の実施例を示す縦断側面図である。この実施例は、前
記変位補正コイル9,10の他に製作誤差による不整磁
場を補償する多極磁場補正コイル17〜20を備えてい
る。該多極磁場補正コイル17〜20は、粒子周回軌道
2を中心にした同心円上に該中心を通る水平面に関して
対称となるように配置される。その他の構成は前述した
扇型超電導偏向マグネツト装置と同じである。
FIG. 6 is a longitudinal sectional side view showing another embodiment of the fan-shaped superconducting deflection magnet device constituting the electron storage ring for synchrotron radiation generation. This embodiment includes, in addition to the displacement correction coils 9 and 10, multipolar magnetic field correction coils 17 to 20 for compensating for irregular magnetic fields due to manufacturing errors. The multipolar magnetic field correction coils 17 to 20 are arranged on a concentric circle centered on the particle orbit 2 so as to be symmetrical with respect to a horizontal plane passing through the center. The rest of the structure is the same as the fan-shaped superconducting deflection magnet device described above.

【0026】このように不整磁場発生原因毎に補正コイ
ルを設けると、高精度で不整磁場を補正することが可能
となり、偏向磁場の均一度を大幅に向上させることがで
きる。
By providing a correction coil for each cause of irregular magnetic field generation in this way, it becomes possible to correct the irregular magnetic field with high precision, and the uniformity of the deflection magnetic field can be greatly improved.

【0027】[0027]

【発明の効果】以上のように本発明は、シンクロトロン
放射光発生用電子蓄積リングの扇型超電導偏向マグネツ
ト等のように、超電導コイルの外周側に開口が設けられ
た超電導マグネツト装置において、超電導コイルに流れ
る電流による電磁力で該超電導コイル辺が変位すること
により発生する不整磁場を補正して均一な偏向磁場を発
生することができる。
As described above, the present invention is applicable to superconducting magnet devices in which an opening is provided on the outer circumferential side of a superconducting coil, such as a fan-shaped superconducting deflection magnet for an electron storage ring for synchrotron radiation generation. A uniform deflection magnetic field can be generated by correcting an irregular magnetic field generated by displacement of the sides of the superconducting coil by electromagnetic force caused by a current flowing through the coil.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例に係るシンクロトロン放射光
発生用電子蓄積リングを構成する扇型超電導偏向マグネ
ツト装置の平面図である。
FIG. 1 is a plan view of a fan-shaped superconducting deflection magnet device constituting an electron storage ring for synchrotron radiation generation according to an embodiment of the present invention.

【図2】図1のII−II断面図である。FIG. 2 is a sectional view taken along line II-II in FIG. 1;

【図3】前記マグネツト装置の電気的接続図である。FIG. 3 is an electrical connection diagram of the magnet device.

【図4】超電導コイル電流と超電導コイル辺の変位とシ
ート状電流の関係を示す説明図である。
FIG. 4 is an explanatory diagram showing the relationship between superconducting coil current, displacement of the superconducting coil side, and sheet current.

【図5】超電導コイル電流と超電導コイル辺の変位と変
位補正コイルに流す補償電流の関係を示す説明図である
FIG. 5 is an explanatory diagram showing the relationship between the superconducting coil current, the displacement of the superconducting coil side, and the compensation current flowing through the displacement correction coil.

【図6】本発明の他の実施例に係るシンクロトロン放射
光発生用電子蓄積リングを構成する扇型超電導偏向マグ
ネツト装置の縦断側面図である。
FIG. 6 is a longitudinal sectional side view of a fan-shaped superconducting deflection magnet device constituting an electron storage ring for synchrotron radiation generation according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2  粒子周回軌道 3  鉄心 4,5  超電導コイル 6  粒子周回通路 3b,6a  シンクロトロン放射光導出口9,10 
 変位補正コイル 12  電流検出器 13  関数記憶装置 14  変位補正コイル電源 15  補償電流指令装置
2 Particle orbit 3 Iron core 4, 5 Superconducting coil 6 Particle orbit passage 3b, 6a Synchrotron radiation light outlet 9, 10
Displacement correction coil 12 Current detector 13 Function storage device 14 Displacement correction coil power supply 15 Compensation current command device

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】  扇型に巻回された一対の超電導コイル
を粒子周回通路の両側に所定の間隔で対向配置し、該粒
子周回通路の外周側に開口を設けた超電導マグネツト装
置において、前記超電導コイルの前記開口側に位置する
コイル辺の両側面に隣接して巻回した変位補正コイルと
、該変位補正コイルに流す補償電流を制御する補償電流
制御装置とを設けたことを特徴とする超電導マグネツト
装置。
1. A superconducting magnet device in which a pair of superconducting coils wound in a fan shape are disposed facing each other at a predetermined interval on both sides of a particle circulation passage, and an opening is provided on the outer circumferential side of the particle circulation passage. A superconductor comprising: a displacement correction coil wound adjacent to both sides of the coil side located on the opening side of the coil; and a compensation current control device for controlling a compensation current flowing through the displacement correction coil. Magnetic device.
【請求項2】  請求項1において、前記変位補正コイ
ルは前記超電導コイル辺の彎曲外周側だけでなく彎曲内
周側にも設け、彎曲外周側に位置するコイルのターン数
を彎曲内周側に位置するコイルのターン数よりも多くし
たことを特徴とする超電導マグネツト装置。
2. In claim 1, the displacement correction coil is provided not only on the curved outer circumference side of the superconducting coil side but also on the curved inner circumference side, and the number of turns of the coil located on the curved outer circumference side is changed to the curved inner circumference side. A superconducting magnet device characterized in that the number of turns is greater than the number of turns in the coil.
【請求項3】  請求項1において、前記補償電流制御
装置は前記超電導コイルに流れる電流の値に応じて前記
変位補正コイルに流す補償電流の値を制御することを特
徴とする超電導マグネツト装置。
3. The superconducting magnet device according to claim 1, wherein the compensation current control device controls the value of the compensation current flowing through the displacement correction coil in accordance with the value of the current flowing through the superconducting coil.
【請求項4】  請求項1において、前記補償電流制御
装置は、電源と、超電導コイル電流検出器と、超電導コ
イル電流値と最適補償電流値の対応関数を記憶する関数
記憶手段と、該対応関数を変更する関数変更手段と、前
記超電導コイル電流検出器で検出される超電導コイル電
流値に基づいて前記対応関数を参照して補償電流値を求
め、該補償電流を前記変位補正コイルに供給するように
前記電源を制御する制御手段とを備えたことを特徴とす
る超電導マグネツト装置。
4. In claim 1, the compensation current control device comprises a power source, a superconducting coil current detector, a function storage means for storing a correspondence function between a superconducting coil current value and an optimum compensation current value, and the correspondence function. and a function changing means for changing the superconducting coil current value detected by the superconducting coil current detector by referring to the corresponding function to obtain a compensation current value and supplying the compensation current to the displacement correction coil. and a control means for controlling the power source.
【請求項5】  内部のドーナツ状空間から外周側面に
開口するシンクロトロン放射光導出口を有する断面C字
型の扇型鉄心と、前記ドーナツ状空間内に配置されたク
ライオスタツトと、扇型に巻回されその間に粒子周回通
路を挾んで対向するように前記クライオスタツト内に配
置された一対の超電導コイルとを備えた超電導マグネツ
ト装置において、前記超電導コイルの前記シンクロトロ
ン放射光導出口側に位置するコイル辺の両側面に隣接し
て巻回した変位補正コイルと、該変位補正コイルに流す
補償電流を制御する補償電流制御装置とを設けたことを
特徴とする超電導マグネツト装置。
5. A fan-shaped iron core having a C-shaped cross section and having a synchrotron radiation outlet opening from an internal donut-shaped space to an outer circumferential side surface, a cryostat disposed in the donut-shaped space, and a fan-shaped core wound in a fan shape. A superconducting magnet device comprising a pair of superconducting coils disposed in the cryostat so as to face each other with a particle circulation path in between, the coil being located on the side of the synchrotron radiation light outlet of the superconducting coils. A superconducting magnet device comprising: a displacement correction coil wound adjacent to both sides of the side; and a compensation current control device for controlling a compensation current flowing through the displacement correction coil.
【請求項6】  請求項1または5において、前記超電
導コイルの製作誤差による不整磁場を補償する多極磁場
補正コイルを設けたことを特徴とする超電導マグネツト
装置。
6. The superconducting magnet device according to claim 1, further comprising a multipolar magnetic field correction coil for compensating for irregular magnetic fields due to manufacturing errors of the superconducting coil.
【請求項7】  請求項6において、前記多極磁場補正
コイルは複数のシート状コイルにより形成したことを特
徴とする超電導マグネツト装置。
7. The superconducting magnet device according to claim 6, wherein the multipolar magnetic field correction coil is formed by a plurality of sheet-shaped coils.
【請求項8】  請求項1または5において、前記超電
導コイルを支持する非磁性支持体に変位補正コイル嵌合
溝を設け、前記変位補正コイルを該嵌合溝に嵌合させた
ことを特徴とする超電導マグネツト装置。
8. According to claim 1 or 5, a displacement correction coil fitting groove is provided in the non-magnetic support that supports the superconducting coil, and the displacement correction coil is fitted into the fitting groove. A superconducting magnet device.
【請求項9】  請求項1または5に記載した超電導マ
グネツト装置を備えたことを特徴とする粒子加速器。
9. A particle accelerator comprising the superconducting magnet device according to claim 1 or 5.
JP5577091A 1991-02-28 1991-02-28 Superconducting magnet device; particle accelerator using said superconducting magnet device Pending JPH04273409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5577091A JPH04273409A (en) 1991-02-28 1991-02-28 Superconducting magnet device; particle accelerator using said superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5577091A JPH04273409A (en) 1991-02-28 1991-02-28 Superconducting magnet device; particle accelerator using said superconducting magnet device

Publications (1)

Publication Number Publication Date
JPH04273409A true JPH04273409A (en) 1992-09-29

Family

ID=13008107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5577091A Pending JPH04273409A (en) 1991-02-28 1991-02-28 Superconducting magnet device; particle accelerator using said superconducting magnet device

Country Status (1)

Country Link
JP (1) JPH04273409A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301992A (en) * 2008-06-17 2009-12-24 Toshiba Corp Superconducting coil device
US8916843B2 (en) 2005-11-18 2014-12-23 Mevion Medical Systems, Inc. Inner gantry
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8941083B2 (en) 2007-10-11 2015-01-27 Mevion Medical Systems, Inc. Applying a particle beam to a patient
US8952634B2 (en) 2004-07-21 2015-02-10 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US8970137B2 (en) 2007-11-30 2015-03-03 Mevion Medical Systems, Inc. Interrupted particle source
US9155186B2 (en) 2012-09-28 2015-10-06 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
US9185789B2 (en) 2012-09-28 2015-11-10 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
US9723705B2 (en) 2012-09-28 2017-08-01 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US10258810B2 (en) 2013-09-27 2019-04-16 Mevion Medical Systems, Inc. Particle beam scanning
US10646728B2 (en) 2015-11-10 2020-05-12 Mevion Medical Systems, Inc. Adaptive aperture
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US11291861B2 (en) 2019-03-08 2022-04-05 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8952634B2 (en) 2004-07-21 2015-02-10 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
USRE48047E1 (en) 2004-07-21 2020-06-09 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US9452301B2 (en) 2005-11-18 2016-09-27 Mevion Medical Systems, Inc. Inner gantry
US10722735B2 (en) 2005-11-18 2020-07-28 Mevion Medical Systems, Inc. Inner gantry
US10279199B2 (en) 2005-11-18 2019-05-07 Mevion Medical Systems, Inc. Inner gantry
US8916843B2 (en) 2005-11-18 2014-12-23 Mevion Medical Systems, Inc. Inner gantry
US9925395B2 (en) 2005-11-18 2018-03-27 Mevion Medical Systems, Inc. Inner gantry
US8941083B2 (en) 2007-10-11 2015-01-27 Mevion Medical Systems, Inc. Applying a particle beam to a patient
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8970137B2 (en) 2007-11-30 2015-03-03 Mevion Medical Systems, Inc. Interrupted particle source
USRE48317E1 (en) 2007-11-30 2020-11-17 Mevion Medical Systems, Inc. Interrupted particle source
JP2009301992A (en) * 2008-06-17 2009-12-24 Toshiba Corp Superconducting coil device
US10155124B2 (en) 2012-09-28 2018-12-18 Mevion Medical Systems, Inc. Controlling particle therapy
US10368429B2 (en) 2012-09-28 2019-07-30 Mevion Medical Systems, Inc. Magnetic field regenerator
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
US9706636B2 (en) 2012-09-28 2017-07-11 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9723705B2 (en) 2012-09-28 2017-08-01 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
US9155186B2 (en) 2012-09-28 2015-10-06 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
US9185789B2 (en) 2012-09-28 2015-11-10 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
US10258810B2 (en) 2013-09-27 2019-04-16 Mevion Medical Systems, Inc. Particle beam scanning
US10456591B2 (en) 2013-09-27 2019-10-29 Mevion Medical Systems, Inc. Particle beam scanning
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US11717700B2 (en) 2014-02-20 2023-08-08 Mevion Medical Systems, Inc. Scanning system
US10434331B2 (en) 2014-02-20 2019-10-08 Mevion Medical Systems, Inc. Scanning system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US10646728B2 (en) 2015-11-10 2020-05-12 Mevion Medical Systems, Inc. Adaptive aperture
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US11786754B2 (en) 2015-11-10 2023-10-17 Mevion Medical Systems, Inc. Adaptive aperture
US11213697B2 (en) 2015-11-10 2022-01-04 Mevion Medical Systems, Inc. Adaptive aperture
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
US11311746B2 (en) 2019-03-08 2022-04-26 Mevion Medical Systems, Inc. Collimator and energy degrader for a particle therapy system
US11291861B2 (en) 2019-03-08 2022-04-05 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor
US11717703B2 (en) 2019-03-08 2023-08-08 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor

Similar Documents

Publication Publication Date Title
JPH04273409A (en) Superconducting magnet device; particle accelerator using said superconducting magnet device
US4769623A (en) Magnetic device with curved superconducting coil windings
US5132544A (en) System for irradiating a surface with atomic and molecular ions using two dimensional magnetic scanning
JP2667832B2 (en) Deflection magnet
KR100926398B1 (en) Controlling the characteristics of ribbon-shaped implanter ion-beams
US5311028A (en) System and method for producing oscillating magnetic fields in working gaps useful for irradiating a surface with atomic and molecular ions
US9728371B2 (en) Ion beam scanner for an ion implanter
JPH0378592B2 (en)
US4153889A (en) Method and device for generating a magnetic field of a potential with electric current components distributed according to a derivative of the potential
WO2007052774A1 (en) Multi-beam klystron apparatus
JP3014161B2 (en) Charged particle device
US4395691A (en) Beam deflection system
US6420713B1 (en) Image position and lens field control in electron beam systems
US20020153495A1 (en) Magnetically shielded enclosures for housing charged-particle-beam systems
JPH02174099A (en) Superconductive deflecting electromagnet
USRE30466E (en) Method and device for generating a magnetic field of a potential with electric current components distributed according to a derivative of the potential
JP3037520B2 (en) Ring, ring quadrupole electromagnet and its control device
JP2511990B2 (en) Deflection magnet and its excitation device
US5757121A (en) Apparatus for reducing deflection aberration in a CRT
JP2945158B2 (en) Deflection magnet for charged particle devices
KR930000388B1 (en) Magnetic shunt deflection yokes
JPH0878200A (en) Method and device for controlling magnetic field made by eddy current
JPS63224230A (en) X-ray exposure device
JPH0793112B2 (en) Color television display
JPH02191305A (en) Superconductive magnet