EP0277521B1 - Synchrotron radiation source with fixation of its curved coils - Google Patents

Synchrotron radiation source with fixation of its curved coils Download PDF

Info

Publication number
EP0277521B1
EP0277521B1 EP88100522A EP88100522A EP0277521B1 EP 0277521 B1 EP0277521 B1 EP 0277521B1 EP 88100522 A EP88100522 A EP 88100522A EP 88100522 A EP88100522 A EP 88100522A EP 0277521 B1 EP0277521 B1 EP 0277521B1
Authority
EP
European Patent Office
Prior art keywords
synchrotron radiation
radiation source
source according
synchrotron
coil windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88100522A
Other languages
German (de)
French (fr)
Other versions
EP0277521A2 (en
EP0277521A3 (en
Inventor
Helmut Marsing
Andreas Dr. Jahnke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0277521A2 publication Critical patent/EP0277521A2/en
Publication of EP0277521A3 publication Critical patent/EP0277521A3/en
Application granted granted Critical
Publication of EP0277521B1 publication Critical patent/EP0277521B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00

Definitions

  • Such a synchrotron radiation source is known from DE-OS 35 30 446.
  • synchrotron In a synchrotron, as is known, electrically charged particles such as electrons or protons can be accelerated to high energy by circulating them on a curved path and repeatedly passing them through a high-frequency acceleration cavity of an acceleration path.
  • the electrons In the case of an electron synchrotron, the electrons are introduced into the acceleration path at almost the speed of light; it only changes their energy at a fixed frequency.
  • Synchrotron radiation ie the relative radiation emission of the electrons, which circulate almost at the speed of light and are held on a circular path by deflection in a magnetic field of a magnetic device, provides X-rays with parallel radiation characteristics and great intensity.
  • This synchrotron radiation can advantageously be used for an X-ray lithography, which is suitable in the manufacture of integrated circuits for producing structures that are smaller than 0.5 ⁇ m.
  • an embodiment of an electron synchrotron of the so-called racetrack type which has a particle track with alternating straight and curved track sections.
  • the radius of curvature is determined by the equilibrium between centrifugal force and Lorentz force in the magnetic field of dipole magnetic devices, which each contain curved superconducting coil windings on both sides of the particle path.
  • the individual dipole coil windings are arranged together with a gradient coil in a cryostat, which also keeps the evacuated beam guiding chamber, in which the electrons circulate, at low temperature in the curved path section.
  • the straight sections of the acceleration path are assigned an electron injector, with which the electrons are introduced into the acceleration path, and devices for electron acceleration.
  • the beam guiding chamber is curved in each Each section of the particle track is provided with a slit-shaped exit opening for the synchrotron radiation.
  • the Lorentz forces of the opposing superconducting coil windings which try to compress the slot-shaped outlet opening, must therefore be absorbed by the legs of a mechanical, C-shaped or U-shaped support structure. Since a change in the position of these superconducting coil windings under the action of the Lorentz forces with a corresponding field distortion must be practically ruled out, a correspondingly complex mechanical fixation of these windings is essential. However, this is extremely difficult in the slot area. For example, according to DE-PS 35 11 282, the forces compressing the slot are compensated for by particularly prestressed clamp and tensioning elements.
  • the invention is therefore based on the object of improving the synchrotron radiation source of the type mentioned in such a way that a relatively simple fixation of the superconducting dipole coil windings of their magnetic devices is to be ensured in the exit region of the synchrotron radiation.
  • the figure shows a cross section through the synchrotron radiation source according to the invention in the region of its particle path 2 curved by 180 ° with a corresponding magnet device 3.
  • the radius of curvature is designated R.
  • This magnetic device contains on both sides of the equatorial plane spanned by the particle path 2 and lying in the xy direction of a right-angled xyz coordinate system, a curved superconducting dipole coil winding 4 or 5 and possibly additional superconducting coil windings such as correction coil windings 4a and 5a.
  • the superconducting windings are advantageously held in structurally identical upper and lower frame structures 7 and 8, which are joined together in the equatorial plane and thereby accommodate a beam guiding chamber 10 surrounding the particle path 2.
  • the particle web 2 extends through an approximately rectangular aperture area 11, in which a dipole field B of sufficient quality is formed.
  • the chamber 10 merges radially or tangentially outward into an equatorial outlet chamber 12 which is open on one side and has an outlet opening or opening 13 for the synchrotron radiation indicated by an arrow 14.
  • the exit chamber with a vertical, i.e. Extension a pointing in the z direction can in particular be slit-shaped, the corresponding slit being able to make up the entire 180 ° arc of the curved particle path section. According to the illustrated embodiment, such an exit chamber is assumed.
  • the individual superconducting dipole coil windings 4 and 5 are located in azimuth-rotating coil bodies 16, which are fitted into an upper or lower frame piece 17 or 18 of the respective frame structure 7 or 8 and in the z direction perpendicular to the equatorial xy plane with screws 19 being held.
  • the winding structure can advantageously take place from the respective slot base of the coil body in the direction of the equatorial plane as well as in the opposite direction.
  • a graduated bracket part 21 or 22 secures the exact distances between the respective winding edges to the equatorial plane on the one hand and on the other hand increases the rigidity of the entire construction with regard to the radially directed Lorentz forces by means of a positive connection with the coil formers 16 and the frame pieces 17 and 18.
  • the clamp parts 21 and 22 can also compress the individual windings with the aid of screws 23 and 24 and thus conductor movements during the operation of the magnet device 3, which lead to a premature, undesirable transition of the superconducting material into the normal conducting state, ie to a so-called quenching of the windings can prevent.
  • pressure strips 37 on the respective slot base also serve, which are to be pressed against the respective winding parts by means of screws 38.
  • the frame pieces 17 and 18 of the frame structures 7 and 8 are fixed with the aid of dowel pins 25 and screws 26 on a respective upper or lower plate element 28 or 29 in grooves milled there. This ensures a very precise positioning of the individual superconducting coil windings 4, 5 and optionally 4a, 5a relative to the particle path 2.
  • the non-positive assembly of the upper and lower frame structures 7 and 8 takes place in the area of direct mutual vertical force support with the aid of screws 31 and threaded rods 32.
  • the upper and lower plate elements 28 and 29 of the frame structures 7 and 8 are clamped against ring-like, force-transmitting distributor pieces 34 and 35 with screws 36.
  • the slot-like outlet chamber 12 extends with its outlet opening 13 to the outside between the mutually facing parts of these distributor pieces 34 and 35.
  • the mutual distance and a force support between the distributor pieces 34 and 35 and thus also between the coil windings is ensured via at least one, in particular columnar, support element 40.
  • this support element is to be located radially further outside in the insulating vacuum of a cryostat, not shown in the figure, than the mouth of the outlet opening 13. Since the distributor pieces 34 and 35 in the cryostat represent parts of a cold helium housing 42 for receiving liquid helium cooling the superconducting coil windings, the support element 40 running between them is also at this temperature.
  • the force-transmitting distributor pieces 34 and 35 and the at least one Support element 40 designed mechanical fixing device is consequently to ensure a relatively simple and secure support and support of the superconducting coil windings lying on both sides of the equatorial plane.
  • Vertical Lorentz forces of the windings can be introduced into the respective upper and lower plate elements 28 and 29 of the corresponding frame structures 7 and 8 via threaded rods 44. That is to say, in the configuration of the mechanical fixing device according to the invention, the vertical forces are absorbed in short ways via the at least one cold support element 40 located on the outside.
  • a noticeable hindrance of the synchrotron radiation 14 emerging from the outlet opening 13 does not have to be accepted, since there is only a relatively small space requirement for sufficient support via the one support element 40 or a small number of such support elements.
  • the power part of the synchrotron radiation to be dissipated in this way is therefore only a fraction of the total radiation.
  • the portion of the synchrotron radiation 14 striking the at least one support element 40 is advantageously intercepted by a radiation absorber 46, which is expediently cooled.
  • the preferred cryogenic refrigerant is liquid nitrogen, which is passed through a corresponding cooling channel 47 of the absorber.
  • the absorber can surround the support element 40 in a ring shape.
  • a radiation-absorbing shield wall 48 On its side facing the synchrotron radiation, it has a radiation-absorbing shield wall 48, which advantageously consists of a good heat-conducting material such as e.g. Copper is executed.
  • the configuration of the mechanical fixing device according to the invention ensures a relatively small radial span w on the two plate elements 28 and 29 of the frame structures 7 and 8. This has the consequence that only correspondingly small plate thicknesses of these parts are required and thus the overall height of the magnet device 3 is limited.
  • the mass of the magnetic device to be cooled is advantageously also to be kept correspondingly small.
  • Another advantage of this construction is the possibility of attaching the suspension and positioning elements of the magnetic device (not shown in the figure) directly to the distribution pieces 34 and 35 within a vacuum housing (also not shown) and thus in close proximity to the superconducting coil windings. This brings a correspondingly high positioning accuracy of the windings to the particle path and allows the use of thin housing walls in the top and bottom area of the helium housing 42.

Description

Die Erfindung bezieht sich auf eine Synchrotronstrahlungsquelle mit mindestens einem gekrümmten Abschnitt ihrer Teilchenbahn, in dem vorgesehen sind

  • eine Magneteinrichtung mit supraleitenden Spulenwicklungen, die zu beiden Seiten der von einer Strahlführungskammer umgebenen Teilchenbahn liegen und in mindestens einem Kryostaten mit einem Vakuumgehäuse angeordnet sind,
  • mindestens eine radial oder tangential nach außen hin führende Austrittsöffnung der Strahlführungskammer für die Synchrontronstrahlung
und
  • eine Vorrichtung zur mechanischen Fixierung der supraleitenden Spulenwicklungen.
The invention relates to a synchrotron radiation source with at least one curved section of its particle path, in which are provided
  • a magnetic device with superconducting coil windings which are located on both sides of the particle path surrounded by a beam guiding chamber and are arranged in at least one cryostat with a vacuum housing,
  • at least one radially or tangentially outwardly leading exit opening of the beam guiding chamber for the synchronous tron radiation
and
  • a device for mechanically fixing the superconducting coil windings.

Eine derartige Synchrotronstrahlungsquelle ist aus der DE-OS 35 30 446 bekannt.Such a synchrotron radiation source is known from DE-OS 35 30 446.

In einem Synchrotron können bekanntlich elektrisch geladene Teilchen wie Elektronen oder auch Protonen dadurch auf hohe Energie beschleunigt werden, daß sie auf einer gekrümmten Bahn in Umlauf gebracht und wiederholt durch einen Hochfrequenz-Beschleunigungshohlraum einer Beschleunigungsstrecke hindurchgeführt werden. Dabei werden bei einem Elektronen-Synchrotron die Elektronen bereits nahezu mit Lichtgeschwindigkeit in die Beschleunigungsstrecke eingeleitet; es ändert sich somit bei fester Umlauffrequenz nur noch ihre Energie. Die Synchrotronstrahlung, d.h. die relativische Strahlungsemission der Elektronen, die nahezu mit Lichtgeschwindigkeit umlaufen und durch Ablenkung in einem magnetischen Feld einer Magneteinrichtung auf einer Kreisbahn gehalten werden, liefert eine Röntgenstrahlung mit paralleler Strahlungscharakteristik und großer Intensität. Diese Synchrotronstrahlung kann vorteilhaft für eine Röntgenstrahl-Lithographie verwendet werden, welche bei einer Herstellung von integrierten Schaltkreisen zur Erzeugung von Strukturen, die kleiner als 0,5 µm sind, geeignet ist. Dabei trifft die parallele Röntgenstrahlung im nutzbaren Wellenbereich von etwa 2 = 0,2 bis 2 nm auf eine abzubildende Maske, hinter der sich in unmittelbarem Abstand eine zu belichtende Halbleiterfläche befindet.In a synchrotron, as is known, electrically charged particles such as electrons or protons can be accelerated to high energy by circulating them on a curved path and repeatedly passing them through a high-frequency acceleration cavity of an acceleration path. In the case of an electron synchrotron, the electrons are introduced into the acceleration path at almost the speed of light; it only changes their energy at a fixed frequency. Synchrotron radiation, ie the relative radiation emission of the electrons, which circulate almost at the speed of light and are held on a circular path by deflection in a magnetic field of a magnetic device, provides X-rays with parallel radiation characteristics and great intensity. This synchrotron radiation can advantageously be used for an X-ray lithography, which is suitable in the manufacture of integrated circuits for producing structures that are smaller than 0.5 μm. The parallel x-ray radiation in the usable wave range of approximately 2 = 0.2 to 2 nm strikes a mask to be imaged, behind which there is a semiconductor surface to be exposed at a direct distance.

Aus der eingangs genannten DE-OS ist eine Ausführungsform eines Elektronen-Synchrotrons vom sogenannten Rennbahn-Typ zu entnehmen, das eine Teilchenbahn mit abwechselnd geraden und gekrümmten Bahnabschnitten aufweist. Der Krümmungsradius ist dabei durch das Gleichgewicht zwischen Zentrifugalkraft und Lorentzkraft im Magnetfeld von Dipolmagneteinrichtungen festgelegt, die jeweils zu beiden Seiten der Teilchenbahn gekrümmte supraleitende Spulenwicklungen enthalten. In jeder dieser Magneteinrichtungen sind die einzelnen Dipolspulenwicklungen zusammen mit einer Gradientenspule in einem Kryostaten angeordnet, der im gekrümmten Bahnabschnitt auch die evakuierte Strahlführungskammer, in welcher die Elektronen umlaufen, auf Tieftemperatur hält. Den geraden Abschnitten der Beschleunigungsstrecke sind ein Elektroneninjektor, mit dem die Elektronen in die Beschleunigungsstrecke eingeleitet werden, sowie Einrichtungen zur Elektronenbeschleunigung zugeordnet.From the DE-OS mentioned at the outset, an embodiment of an electron synchrotron of the so-called racetrack type can be found which has a particle track with alternating straight and curved track sections. The radius of curvature is determined by the equilibrium between centrifugal force and Lorentz force in the magnetic field of dipole magnetic devices, which each contain curved superconducting coil windings on both sides of the particle path. In each of these magnetic devices, the individual dipole coil windings are arranged together with a gradient coil in a cryostat, which also keeps the evacuated beam guiding chamber, in which the electrons circulate, at low temperature in the curved path section. The straight sections of the acceleration path are assigned an electron injector, with which the electrons are introduced into the acceleration path, and devices for electron acceleration.

Bei dieser bekannten Ausführungsform einer Synchrotronstrahlungsquelle ist die Strahlführungskammer in jedem gekrümmten Bahnabschnitt der Teilchenbahn jeweils mit einer schlitzförmigen Austrittsöffnung für die Synchrotronstrahlung versehen. Die Lorentzkräfte der gegenüberliegenden supraleitenden Spulenwicklungen, welche die schlitzförmige Austrittsöffnung zusammmenzudrücken versuchen, müssen deshalb von den Schenkeln einer mechanischen, C- oder U-förmigen Tragkonstruktion aufgenommen werden. Da eine Lageänderung dieser supraleitenden Spulenwicklungen unter der Einwirkung der Lorentzkräfte mit einer entsprechenden Feldverzerrung praktisch ausgeschlossen werden muß, ist eine entsprechende aufwendige mechanische Fixierung dieser Wicklungen unumgänglich. Dies ist aber im Schlitzbereich außerordentlich schwierig. So werden beispielsweise gemäß der DE-PS 35 11 282 die den Schlitz zusammendrückenden Kräfte durch besonders vorgespannte Klammer- und Spannelemente kompensiert.In this known embodiment of a synchrotron radiation source, the beam guiding chamber is curved in each Each section of the particle track is provided with a slit-shaped exit opening for the synchrotron radiation. The Lorentz forces of the opposing superconducting coil windings, which try to compress the slot-shaped outlet opening, must therefore be absorbed by the legs of a mechanical, C-shaped or U-shaped support structure. Since a change in the position of these superconducting coil windings under the action of the Lorentz forces with a corresponding field distortion must be practically ruled out, a correspondingly complex mechanical fixation of these windings is essential. However, this is extremely difficult in the slot area. For example, according to DE-PS 35 11 282, the forces compressing the slot are compensated for by particularly prestressed clamp and tensioning elements.

Der Erfindung liegt deshalb die Aufgabe zugrunde, die Synchrotronstrahlungsquelle der eingangs genannten Art dahingehend zu verbessern, daß eine verhältnismäßig einfache Fixierung der supraleitenden Dipolspulenwicklungen ihrer Magneteinrichtungen im Austrittsbereich der Synchrotronstrahlung zu gewährleisten ist.The invention is therefore based on the object of improving the synchrotron radiation source of the type mentioned in such a way that a relatively simple fixation of the superconducting dipole coil windings of their magnetic devices is to be ensured in the exit region of the synchrotron radiation.

Diese Aufgabe wird erfindungsgemäß mit den im Kennzeichen des Anspruchs 1 angegebenen Maßnahmen gelöst.This object is achieved with the measures specified in the characterizing part of claim 1.

Die mit einer entsprechenden Ausgestaltung der Strahlungsquelle verbundenen Vorteile sind insbesondere darin zu sehen, daß auf aufwendige Tragstrukturen im Bereich der insbesondere schlitzförmig gestalteten Austrittsöffnung für die Strahlung bzw. ihres entsprechenden Austrittskanales verzichtet werden kann. Zugleich wird auf verhältnismäßig einfache Weise eine hohe mechanische Steifigkeit des gesamten Aufbaus einer Fixierungsvorrichtung zur Halterung und Abstützung der supraleitenden Wicklungen erreicht. Damit läßt sich auch die Bauhöhe, die abzukühlende Gewichtsmasse und das gespeicherte Volumen an kryogenem Kühlmittel reduzieren.The advantages associated with a corresponding configuration of the radiation source can be seen in particular in the fact that there is no need for complex support structures in the region of the particularly slot-shaped outlet opening for the radiation or its corresponding outlet channel. At the same time, a high degree of mechanical rigidity of the entire structure of a fixing device for holding and supporting the superconducting windings is achieved in a relatively simple manner. This also allows the overall height to be cooled Reduce the weight and the stored volume of cryogenic coolant.

Vorteilhafte Ausgestaltungen der erfindungsgemäßen Synchrotronstrahlungsquelle gehen aus den Unteransprüchen hervor.Advantageous refinements of the synchrotron radiation source according to the invention emerge from the subclaims.

Zur weiteren Erläuterung der Erfindung wird auf die Zeichnung Bezug genommen, in deren Figur als Ausführungsbeispiel ein Teil einer Synchrotronstrahlungsquelle gemäß der Erfindung schematisch veranschaulicht ist.To further explain the invention, reference is made to the drawing, in the figure, in which an example of a part of a synchrotron radiation source according to the invention is schematically illustrated.

Beim Aufbau der erfindungsgemäßen Strahlungsquelle wird von bekannten Ausführungsformen, insbesondere vom Rennbahn-Typ, ausgegangen (vgl. z.B. DE-PS 35 11 282, DE-OS 35 30 446 oder die Veröffentlichung des "Institute for Solid State Physics" of the University of Tokyo, Japan, Sept. 1984, Ser. B., No. 21, Seiten 1 bis 29 mit dem Titel: "Superconducting Racetrack Electron Storage Ring and Coexistent Injector Microtron for Synchrotron Radiation").When designing the radiation source according to the invention, known embodiments, in particular of the racetrack type, are assumed (cf. for example DE-PS 35 11 282, DE-OS 35 30 446 or the publication of the "Institute for Solid State Physics" of the University of Tokyo , Japan, Sept. 1984, Ser. B., No. 21, pages 1 to 29 with the title: "Superconducting Racetrack Electron Storage Ring and Coexistent Injector Microtron for Synchrotron Radiation").

In der Figur ist ein Querschnitt durch die erfindungsgemäße Synchrotronstrahlungsquelle im Bereich ihrer um 180° gekrümmten Teilchenbahn 2 mit einer entsprechenden Magneteinrichtung 3 dargestellt. Der Krümmungsradius ist dabei mit R bezeichnet. Diese Magneteinrichtung enthält zu beiden Seiten der durch die Teilchenbahn 2 aufgespannten, in x-y-Richtung eines rechtwinkligen x-y-z-Koordinatensystems liegenden Äquatorialebene je eine gekrümmte supraleitende Dipolspulenwicklung 4 bzw. 5 und gegebenenfalls noch zusätzliche supraleitende Spulenwicklungen wie z.B. Korrekturspulenwicklungen 4a und 5a. Die supraleitenden Wicklungen werden vorteilhaft in baugleichen oberen und unteren Rahmenstrukturen 7 bzw. 8 gehalten, die in der Äquatorialebene zusammengefügt werden und dabei eine die Teilchenbahn 2 umschließende Strahlführungskammer 10 aufnehmen.The figure shows a cross section through the synchrotron radiation source according to the invention in the region of its particle path 2 curved by 180 ° with a corresponding magnet device 3. The radius of curvature is designated R. This magnetic device contains on both sides of the equatorial plane spanned by the particle path 2 and lying in the xy direction of a right-angled xyz coordinate system, a curved superconducting dipole coil winding 4 or 5 and possibly additional superconducting coil windings such as correction coil windings 4a and 5a. The superconducting windings are advantageously held in structurally identical upper and lower frame structures 7 and 8, which are joined together in the equatorial plane and thereby accommodate a beam guiding chamber 10 surrounding the particle path 2.

Innerhalb dieser evakuierten Kammer 10 erstreckt sich die Teilchenbahn 2 durch eine etwa rechteckige Aperturfläche 11 hindurch, in der ein Dipolfeld B hinreichender Qualität ausgebildet ist. Die Kammer 10 geht radial oder tangential nach außen hin in eine äquatoriale, einseitig offene Austrittskammer 12 mit einer Austrittsöffnung oder -mündung 13 für die durch einen Pfeil 14 angedeutete Synchrotronstrahlung über. Die Austrittskammer mit einer senkrechten, d.h. in z-Richtung weisenden Ausdehnung a kann insbesondere schlitzförmig ausgebildet sein, wobei der entsprechende Schlitz den gesamten 180°-Bogen des gekrümmten Teilchenbahnabschnittes ausmachen kann. Gemäß dem dargestellten Ausführungsbeispiel ist eine derartige Austrittskammer angenommen.Within this evacuated chamber 10, the particle web 2 extends through an approximately rectangular aperture area 11, in which a dipole field B of sufficient quality is formed. The chamber 10 merges radially or tangentially outward into an equatorial outlet chamber 12 which is open on one side and has an outlet opening or opening 13 for the synchrotron radiation indicated by an arrow 14. The exit chamber with a vertical, i.e. Extension a pointing in the z direction can in particular be slit-shaped, the corresponding slit being able to make up the entire 180 ° arc of the curved particle path section. According to the illustrated embodiment, such an exit chamber is assumed.

Die einzelnen supraleitenden Dipolspulenwicklungen 4 und 5 befinden sich in azimut umlaufenden Spulenkörpern 16, die in ein oberes bzw. unteres Rahmenstück 17 bzw. 18 der jeweiligen Rahmenstruktur 7 bzw. 8 eingepaßt sind und in z-Richtung senkrecht zur äquatorialen x-y-Ebene mit Schrauben 19 gehalten werden. Der Wicklungsaufbau kann dabei vorteilhaft von dem jeweiligen Nutengrund des Spulenkörpers in Richtung auf die Äquatorialebene hin als auch in umgekehrter Richtung erfolgen. Hierbei sichert je ein abgestuft ausgeführtes Klammerteil 21 bzw. 22 die exakten Abstände der jeweiligen Wicklungskanten zur Äquatorialebene einerseits und erhöht andererseits durch einen Formschluß mit den Spulenkörpern 16 und den Rahmenstücken 17 bzw. 18 die Steifigkeit der gesamten Konstruktion im Hinblick auf die radial gerichteten Lorentzkräfte. Die Klammerteile 21 und 22 können außerdem mit Hilfe von Schrauben 23 und 24 die einzelnen Wicklungen verdichten und somit Leiterbewegungen im Betrieb der Magneteinrichtung 3, die zu einem vorzeitigen, unerwünschten Übergang des supraleitenden Materials in den normalleitenden Zustand, d.h. zu einem sogenannten Quenchen der Wicklungen führen können, verhindern. Hierzu dienen auch Druckleisten 37 am jeweiligen Nutengrund, die über Schrauben 38 gegen die jeweiligen Wicklungsteile zu pressen sind.The individual superconducting dipole coil windings 4 and 5 are located in azimuth-rotating coil bodies 16, which are fitted into an upper or lower frame piece 17 or 18 of the respective frame structure 7 or 8 and in the z direction perpendicular to the equatorial xy plane with screws 19 being held. The winding structure can advantageously take place from the respective slot base of the coil body in the direction of the equatorial plane as well as in the opposite direction. Here, a graduated bracket part 21 or 22 secures the exact distances between the respective winding edges to the equatorial plane on the one hand and on the other hand increases the rigidity of the entire construction with regard to the radially directed Lorentz forces by means of a positive connection with the coil formers 16 and the frame pieces 17 and 18. The clamp parts 21 and 22 can also compress the individual windings with the aid of screws 23 and 24 and thus conductor movements during the operation of the magnet device 3, which lead to a premature, undesirable transition of the superconducting material into the normal conducting state, ie to a so-called quenching of the windings can prevent. For this purpose, pressure strips 37 on the respective slot base also serve, which are to be pressed against the respective winding parts by means of screws 38.

Die Rahmenstücke 17 und 18 der Rahmenstrukturen 7 und 8 werden mit Hilfe von Paßstiften 25 und Schrauben 26 auf einem jeweiligen oberen bzw. unteren Plattenelement 28 bzw. 29 in dort eingefrästen Nuten fixiert. Damit ist eine sehr genaue Positionierung der einzelnen supraleitenden Spulenwicklungen 4, 5 sowie gegebenenfalls 4a, 5a zur Teilchenbahn 2 gewährleistet.The frame pieces 17 and 18 of the frame structures 7 and 8 are fixed with the aid of dowel pins 25 and screws 26 on a respective upper or lower plate element 28 or 29 in grooves milled there. This ensures a very precise positioning of the individual superconducting coil windings 4, 5 and optionally 4a, 5a relative to the particle path 2.

Der kraftschlüssige Zusammenbau der oberen und unteren Rahmenstrukturen 7 und 8 erfolgt im Bereich einer direkten gegenseitigen vertikalen Kraftabstützung mit Hilfe von Schrauben 31 und Gewindestangen 32.The non-positive assembly of the upper and lower frame structures 7 and 8 takes place in the area of direct mutual vertical force support with the aid of screws 31 and threaded rods 32.

Am peripheren Außenrand der Magneteinrichtung 3 im Bereich der schlitzförmigen Austrittsöffnung 13 für die Synchrotronstrahlung 14 werden die oberen und unteren Plattenelemente 28 und 29 der Rahmenstrukturen 7 bzw. 8 gegen ringartige, kraftübertragende Verteilerstücke 34 und 35 mit Schrauben 36 verspannt. Zwischen den einander zugewandten Teilen dieser Verteilerstücke 34 und 35 hindurch erstreckt sich die schlitzartige Austrittskammer 12 mit ihrer Austrittsöffnung 13 nach außen. Dabei ist der gegenseitige Abstand und eine Kraftabstützung zwischen den Verteilerstücken 34 und 35 und somit auch zwischen den Spulenwicklungen über mindestens ein insbesondere säulenartiges Stützelement 40 gewährleistet. Dieses Stützelement soll sich erfindungsgemäß in dem isolierenden Vakuum eines in der Figur nicht dargestellten Kryostaten radial weiter außen als die Mündung der Austrittsöffnung 13 befinden. Da die Verteilerstücke 34 und 35 in dem Kryostaten Teile eines kalten Heliumgehäuses 42 zur Aufnahme von die supraleitenden Spulenwicklungen kühlendem flüssigen Helium darstellen, befindet sich auch das zwischen ihnen verlaufende Stützelement 40 etwa auf dieser Temperatur.At the peripheral outer edge of the magnet device 3 in the area of the slot-shaped outlet opening 13 for the synchrotron radiation 14, the upper and lower plate elements 28 and 29 of the frame structures 7 and 8 are clamped against ring-like, force-transmitting distributor pieces 34 and 35 with screws 36. The slot-like outlet chamber 12 extends with its outlet opening 13 to the outside between the mutually facing parts of these distributor pieces 34 and 35. The mutual distance and a force support between the distributor pieces 34 and 35 and thus also between the coil windings is ensured via at least one, in particular columnar, support element 40. According to the invention, this support element is to be located radially further outside in the insulating vacuum of a cryostat, not shown in the figure, than the mouth of the outlet opening 13. Since the distributor pieces 34 and 35 in the cryostat represent parts of a cold helium housing 42 for receiving liquid helium cooling the superconducting coil windings, the support element 40 running between them is also at this temperature.

Mit der so aus den Rahmenstrukturen 7 und 8, den kraftübertragenden Verteilerstücken 34 und 35 sowie dem mindestens einen Stützelement 40 ausgebildeten mechanischen Fixierungsvorrichtung ist folglich eine verhältnismäßig einfache und sichere Abstützung und Halterung der zu beiden Seiten der Äquatorialebene liegenden supraleitenden Spulenwicklungen zu gewährleisten. Hierbei können vertikale Lorentzkräfte der Wicklungen über Gewindestangen 44 in das jeweilige obere und untere Plattenelement 28 bzw. 29 der entsprechenden Rahmenstrukturen 7 bzw. 8 eingeleitet werden. D.h., bei der erfindungsgemäßen Ausgestaltung der mechanischen Fixierungsvorrichtung werden die vertikalen Kräfte auf kurzen Wegen über das mindestens eine außen liegende kalte Stützelement 40 abgefangen.With the frame structures 7 and 8, the force-transmitting distributor pieces 34 and 35 and the at least one Support element 40 designed mechanical fixing device is consequently to ensure a relatively simple and secure support and support of the superconducting coil windings lying on both sides of the equatorial plane. Vertical Lorentz forces of the windings can be introduced into the respective upper and lower plate elements 28 and 29 of the corresponding frame structures 7 and 8 via threaded rods 44. That is to say, in the configuration of the mechanical fixing device according to the invention, the vertical forces are absorbed in short ways via the at least one cold support element 40 located on the outside.

Eine merkliche Behinderung der aus der Austrittsöffnung 13 austretenden Synchrotronstrahlung 14 muß dabei nicht in Kauf genommen werden, da für eine hinreichende Abstützung über das eine Stützelement 40 oder über eine geringe Anzahl derartiger Stützelemente nur ein verhältnismäßig kleiner Platzbedarf besteht. Der hierdurch abzuführende Leistungsteil der Synchrotronstrahlung beträgt demnach nur Bruchteile der Gesamtstrahlung.A noticeable hindrance of the synchrotron radiation 14 emerging from the outlet opening 13 does not have to be accepted, since there is only a relatively small space requirement for sufficient support via the one support element 40 or a small number of such support elements. The power part of the synchrotron radiation to be dissipated in this way is therefore only a fraction of the total radiation.

Vorteilhaft wird der auf das mindestens eine Stützelement 40 auftreffende Anteil der Synchrotronstrahlung 14 von einem Strahlungsabsorber 46 abgefangen, der zweckmäßig gekühlt wird. Als bevorzugtes kryogenes Kältemittel ist hierzu flüssiger Stickstoff anzusehen, der durch einen entsprechenden Kühlkanal 47 des Absorbers geleitet wird. Gemäß dem dargestellten Ausführungsbeispiel kann der Absorber das Stützelement 40 ringförmig umschließen. Er weist auf seiner der Synchrotronstrahlung zugewandten Seite eine strahlabsorbierende Schildwand 48 auf, die vorteilhaft aus einem gut wärmeleitenden Material wie z.B. Kupfer ausgeführt ist.The portion of the synchrotron radiation 14 striking the at least one support element 40 is advantageously intercepted by a radiation absorber 46, which is expediently cooled. For this purpose, the preferred cryogenic refrigerant is liquid nitrogen, which is passed through a corresponding cooling channel 47 of the absorber. According to the exemplary embodiment shown, the absorber can surround the support element 40 in a ring shape. On its side facing the synchrotron radiation, it has a radiation-absorbing shield wall 48, which advantageously consists of a good heat-conducting material such as e.g. Copper is executed.

Wie ferner aus der Figur hervorgeht, gewährleistet die erfindungsgemäße Ausgestaltung der mechanischen Fixierungsvorrichtung eine verhältnismäßig kleine radiale Stützweite w an den beiden Plattenelementen 28 und 29 der Rahmenstrukturen 7 und 8. Dies hat zur Folge, daß auch nur entsprechend geringe Plattendicken dieser Teile erforderlich sind und somit die gesamte Bauhöhe der Magneteinrichtung 3 begrenzt ist. Damit ist aber auch die abzukühlende Masse der Magneteinrichtung vorteilhaft entsprechend klein zu halten.As can also be seen from the figure, the configuration of the mechanical fixing device according to the invention ensures a relatively small radial span w on the two plate elements 28 and 29 of the frame structures 7 and 8. This has the consequence that only correspondingly small plate thicknesses of these parts are required and thus the overall height of the magnet device 3 is limited. However, the mass of the magnetic device to be cooled is advantageously also to be kept correspondingly small.

Ein weiterer Vorteil dieser Konstruktion besteht in der Möglichkeit, die in der Figur nicht ausgeführten Aufhängungs- und Positionierelemente der Magneteinrichtung innerhalb eines ebenfalls nicht dargestellten Vakuumgehäuses direkt an den Verteilungsstücken 34 und 35 und damit in unmittelbarer Nähe zu den supraleitenden Spulenwicklungen anzusetzen. Dies bringt eine entsprechend hohe Positioniergenauigkeit der Wicklungen zur Teilchenbahn mit sich und erlaubt den Einsatz dünner Gehäusewände im Deckel- und Bodenbereich des Helium-Gehäuses 42.Another advantage of this construction is the possibility of attaching the suspension and positioning elements of the magnetic device (not shown in the figure) directly to the distribution pieces 34 and 35 within a vacuum housing (also not shown) and thus in close proximity to the superconducting coil windings. This brings a correspondingly high positioning accuracy of the windings to the particle path and allows the use of thin housing walls in the top and bottom area of the helium housing 42.

Claims (10)

  1. A synchrotron radiation source with at least one curved section in its particle track, in which there are provided,
    - a magnetic device having superconducting coil windings, which lie on both sides of the particle track, the track being surrounded by a beam guiding chamber, and which are arranged in at least one cryostat with a vacuum housing,
    - at least one outlet opening of the beam guiding chamber, for the synchrotron beam, leading radially or tangentially outward
    and
    - a device for mechanical fixing of the superconducting coil windings,
    characterised in that on the peripheral outer edge of the magnetic device (3) the fixing device has at least one supporting element (40) lying radially further outward than the outlet opening (13) for the synchrotron radiation (14) and acting substantially perpendicular to the radiation direction, which element is shielded from the synchrotron radiation (14) by a radiation absorber (46).
  2. A synchrotron radiation source according to claim 1, characterised in that at least one supporting element (40) is arranged within the vacuum housing of the cryostat.
  3. A synchrotron radiation source according to claim 1 or 2, characterised in that at least one supporting element (40) is coupled thermally to a housing (42) for receiving the cryogenic medium cooling the superconducting coil windings (4,5,4a,5a).
  4. A synchrotron radiation source according to one of claims 1 to 3, characterised in that at least one supporting element (40) is formed in the shape of a column.
  5. A synchrotron radiation source according to one of claims 1 to 4, characterised in that the mechanical fixing device has two at least largely structurally similar frame structures (7,8) which are to be joined in a radiation plane, i.e. equatorial plane, determined by the synchrotron radiation (14).
  6. A synchrotron radiation source according to claim 5, characterised in that the frame structures (7,8) contain frame pieces (17 or 18), which have coil bodies (16) receiving the superconducting coil windings (4 or 5) as well as clamping parts (21,22) mechanically securing the coil windings there.
  7. A synchrotron radiation source according to one of claims 1 to 6, characterised in that the frame structures (7,8) are connected to respective plate elements (28 or 29), these plate elements (28,29) supporting themselves forcewise at their peripheral outer edges by means of the said at least one supporting element (40).
  8. A synchrotron radiation source according to one of claims 1 to 7, characterised in that the radiation absorber (46) consists at least in the region of the incident synchrotron radiation (14) of a shield wall 48 of a good thermally-conducting material.
  9. A synchrotron radiation source according to claim 8, characterised in that the radiation absorber (46) is cooled additionally.
  10. A synchrotron radiation source according to claim 9, characterised in that the radiation absorber (46) is formed as a tubular cooling channel (47) for a cryogenic medium, such as liquid nitrogen.
EP88100522A 1987-01-28 1988-01-15 Synchrotron radiation source with fixation of its curved coils Expired - Lifetime EP0277521B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3702388 1987-01-28
DE3702388 1987-01-28

Publications (3)

Publication Number Publication Date
EP0277521A2 EP0277521A2 (en) 1988-08-10
EP0277521A3 EP0277521A3 (en) 1989-04-26
EP0277521B1 true EP0277521B1 (en) 1991-11-06

Family

ID=6319640

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88100522A Expired - Lifetime EP0277521B1 (en) 1987-01-28 1988-01-15 Synchrotron radiation source with fixation of its curved coils

Country Status (4)

Country Link
US (1) US4843333A (en)
EP (1) EP0277521B1 (en)
JP (1) JPH0711998B2 (en)
DE (1) DE3865977D1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728311B2 (en) 2005-11-18 2010-06-01 Still River Systems Incorporated Charged particle radiation therapy
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8952634B2 (en) 2004-07-21 2015-02-10 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US9155186B2 (en) 2012-09-28 2015-10-06 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
US9185789B2 (en) 2012-09-28 2015-11-10 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138900U (en) * 1989-04-25 1990-11-20
WO1992003028A1 (en) * 1990-08-06 1992-02-20 Siemens Aktiengesellschaft Synchrotron radiation source
JP4732613B2 (en) * 2000-10-31 2011-07-27 スルーンインターナショナルサービス株式会社 Desktop smoke generator
EP1764132A1 (en) * 2005-09-16 2007-03-21 Siemens Aktiengesellschaft Method and device for configuring a beam path in a particle beam therapy system
WO2007084701A1 (en) * 2006-01-19 2007-07-26 Massachusetts Institute Of Technology Magnet structure for particle acceleration
US9981147B2 (en) 2008-05-22 2018-05-29 W. Davis Lee Ion beam extraction apparatus and method of use thereof
US9937362B2 (en) 2008-05-22 2018-04-10 W. Davis Lee Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof
US10548551B2 (en) 2008-05-22 2020-02-04 W. Davis Lee Depth resolved scintillation detector array imaging apparatus and method of use thereof
US9168392B1 (en) 2008-05-22 2015-10-27 Vladimir Balakin Charged particle cancer therapy system X-ray apparatus and method of use thereof
US9177751B2 (en) 2008-05-22 2015-11-03 Vladimir Balakin Carbon ion beam injector apparatus and method of use thereof
US9579525B2 (en) 2008-05-22 2017-02-28 Vladimir Balakin Multi-axis charged particle cancer therapy method and apparatus
US10684380B2 (en) 2008-05-22 2020-06-16 W. Davis Lee Multiple scintillation detector array imaging apparatus and method of use thereof
US8436327B2 (en) 2008-05-22 2013-05-07 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus
US9155911B1 (en) 2008-05-22 2015-10-13 Vladimir Balakin Ion source method and apparatus used in conjunction with a charged particle cancer therapy system
US9056199B2 (en) 2008-05-22 2015-06-16 Vladimir Balakin Charged particle treatment, rapid patient positioning apparatus and method of use thereof
US9782140B2 (en) 2008-05-22 2017-10-10 Susan L. Michaud Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof
US8598543B2 (en) * 2008-05-22 2013-12-03 Vladimir Balakin Multi-axis/multi-field charged particle cancer therapy method and apparatus
US9682254B2 (en) 2008-05-22 2017-06-20 Vladimir Balakin Cancer surface searing apparatus and method of use thereof
US8642978B2 (en) 2008-05-22 2014-02-04 Vladimir Balakin Charged particle cancer therapy dose distribution method and apparatus
US9974978B2 (en) 2008-05-22 2018-05-22 W. Davis Lee Scintillation array apparatus and method of use thereof
US8519365B2 (en) 2008-05-22 2013-08-27 Vladimir Balakin Charged particle cancer therapy imaging method and apparatus
US8624528B2 (en) 2008-05-22 2014-01-07 Vladimir Balakin Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods
US9498649B2 (en) 2008-05-22 2016-11-22 Vladimir Balakin Charged particle cancer therapy patient constraint apparatus and method of use thereof
US9737734B2 (en) 2008-05-22 2017-08-22 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US8969834B2 (en) 2008-05-22 2015-03-03 Vladimir Balakin Charged particle therapy patient constraint apparatus and method of use thereof
US8089054B2 (en) 2008-05-22 2012-01-03 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US10092776B2 (en) 2008-05-22 2018-10-09 Susan L. Michaud Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof
US8710462B2 (en) 2008-05-22 2014-04-29 Vladimir Balakin Charged particle cancer therapy beam path control method and apparatus
US10143854B2 (en) 2008-05-22 2018-12-04 Susan L. Michaud Dual rotation charged particle imaging / treatment apparatus and method of use thereof
US9044600B2 (en) 2008-05-22 2015-06-02 Vladimir Balakin Proton tomography apparatus and method of operation therefor
US8975600B2 (en) 2008-05-22 2015-03-10 Vladimir Balakin Treatment delivery control system and method of operation thereof
US8188688B2 (en) 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
US8718231B2 (en) 2008-05-22 2014-05-06 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US8637833B2 (en) 2008-05-22 2014-01-28 Vladimir Balakin Synchrotron power supply apparatus and method of use thereof
US9910166B2 (en) 2008-05-22 2018-03-06 Stephen L. Spotts Redundant charged particle state determination apparatus and method of use thereof
US8569717B2 (en) * 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US8907309B2 (en) 2009-04-17 2014-12-09 Stephen L. Spotts Treatment delivery control system and method of operation thereof
US9737733B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle state determination apparatus and method of use thereof
US9744380B2 (en) 2008-05-22 2017-08-29 Susan L. Michaud Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof
US9616252B2 (en) 2008-05-22 2017-04-11 Vladimir Balakin Multi-field cancer therapy apparatus and method of use thereof
US9095040B2 (en) 2008-05-22 2015-07-28 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US7939809B2 (en) 2008-05-22 2011-05-10 Vladimir Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8368038B2 (en) 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
US8178859B2 (en) 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
US9737272B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle cancer therapy beam state determination apparatus and method of use thereof
US10029122B2 (en) 2008-05-22 2018-07-24 Susan L. Michaud Charged particle—patient motion control system apparatus and method of use thereof
US8129699B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
US9855444B2 (en) 2008-05-22 2018-01-02 Scott Penfold X-ray detector for proton transit detection apparatus and method of use thereof
US10070831B2 (en) 2008-05-22 2018-09-11 James P. Bennett Integrated cancer therapy—imaging apparatus and method of use thereof
US8627822B2 (en) 2008-07-14 2014-01-14 Vladimir Balakin Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US8625739B2 (en) 2008-07-14 2014-01-07 Vladimir Balakin Charged particle cancer therapy x-ray method and apparatus
US10556126B2 (en) 2010-04-16 2020-02-11 Mark R. Amato Automated radiation treatment plan development apparatus and method of use thereof
US11648420B2 (en) 2010-04-16 2023-05-16 Vladimir Balakin Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof
US10086214B2 (en) 2010-04-16 2018-10-02 Vladimir Balakin Integrated tomography—cancer treatment apparatus and method of use thereof
US10188877B2 (en) 2010-04-16 2019-01-29 W. Davis Lee Fiducial marker/cancer imaging and treatment apparatus and method of use thereof
US9737731B2 (en) 2010-04-16 2017-08-22 Vladimir Balakin Synchrotron energy control apparatus and method of use thereof
US10349906B2 (en) 2010-04-16 2019-07-16 James P. Bennett Multiplexed proton tomography imaging apparatus and method of use thereof
US10179250B2 (en) 2010-04-16 2019-01-15 Nick Ruebel Auto-updated and implemented radiation treatment plan apparatus and method of use thereof
US10625097B2 (en) 2010-04-16 2020-04-21 Jillian Reno Semi-automated cancer therapy treatment apparatus and method of use thereof
US10518109B2 (en) 2010-04-16 2019-12-31 Jillian Reno Transformable charged particle beam path cancer therapy apparatus and method of use thereof
US10751551B2 (en) 2010-04-16 2020-08-25 James P. Bennett Integrated imaging-cancer treatment apparatus and method of use thereof
US10376717B2 (en) 2010-04-16 2019-08-13 James P. Bennett Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof
US10638988B2 (en) 2010-04-16 2020-05-05 Scott Penfold Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof
US10589128B2 (en) 2010-04-16 2020-03-17 Susan L. Michaud Treatment beam path verification in a cancer therapy apparatus and method of use thereof
US10555710B2 (en) 2010-04-16 2020-02-11 James P. Bennett Simultaneous multi-axes imaging apparatus and method of use thereof
FR2962844B1 (en) * 2010-07-16 2013-08-30 Commissariat Energie Atomique COMPACT SUPERCONDUCTING MAGNET DEVICE
US8681939B2 (en) * 2010-12-06 2014-03-25 Lawrence Livermore National Security, Llc Device for detection and identification of carbon- and nitrogen-containing materials
US8963112B1 (en) 2011-05-25 2015-02-24 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
EP2839780A4 (en) * 2012-04-20 2015-04-29 Mitsubishi Electric Corp Superconductor magnet and method of adjusting same
JP6367201B2 (en) 2012-09-28 2018-08-01 メビオン・メディカル・システムズ・インコーポレーテッド Control of particle beam intensity
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
CN108770178B (en) 2012-09-28 2021-04-16 迈胜医疗设备有限公司 Magnetic field regenerator
TW201422278A (en) 2012-09-28 2014-06-16 Mevion Medical Systems Inc Control system for a particle accelerator
US8933651B2 (en) 2012-11-16 2015-01-13 Vladimir Balakin Charged particle accelerator magnet apparatus and method of use thereof
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
CN110237447B (en) 2013-09-27 2021-11-02 梅维昂医疗系统股份有限公司 Particle therapy system
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US9907981B2 (en) 2016-03-07 2018-03-06 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US10037863B2 (en) 2016-05-27 2018-07-31 Mark R. Amato Continuous ion beam kinetic energy dissipater apparatus and method of use thereof
EP3906968A1 (en) 2016-07-08 2021-11-10 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
EP3645111A1 (en) 2017-06-30 2020-05-06 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
EP3934751A1 (en) 2019-03-08 2022-01-12 Mevion Medical Systems, Inc. Collimator and energy degrader for a particle therapy system
CN115397087B (en) * 2022-10-27 2023-03-14 合肥中科离子医学技术装备有限公司 Coil adjusting device and cyclotron

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA966893A (en) * 1973-06-19 1975-04-29 Her Majesty In Right Of Canada As Represented By Atomic Energy Of Canada Limited Superconducting cyclotron
DE3148100A1 (en) * 1981-12-04 1983-06-09 Uwe Hanno Dr. 8050 Freising Trinks Synchrotron X-ray radiation source
US4641104A (en) * 1984-04-26 1987-02-03 Board Of Trustees Operating Michigan State University Superconducting medical cyclotron
GB2165988B (en) * 1984-08-29 1988-08-24 Oxford Instr Ltd Improvements in devices for accelerating electrons
DE3511282C1 (en) * 1985-03-28 1986-08-21 Brown, Boveri & Cie Ag, 6800 Mannheim Superconducting magnet system for particle accelerators of a synchrotron radiation source
EP0208163B1 (en) * 1985-06-24 1989-01-04 Siemens Aktiengesellschaft Magnetic-field device for an apparatus for accelerating and/or storing electrically charged particles
US4737727A (en) * 1986-02-12 1988-04-12 Mitsubishi Denki Kabushiki Kaisha Charged beam apparatus
DE3703938A1 (en) * 1986-02-12 1987-09-10 Mitsubishi Electric Corp PARTICLE ACCELERATOR
US4808941A (en) * 1986-10-29 1989-02-28 Siemens Aktiengesellschaft Synchrotron with radiation absorber

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8952634B2 (en) 2004-07-21 2015-02-10 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US8344340B2 (en) 2005-11-18 2013-01-01 Mevion Medical Systems, Inc. Inner gantry
US9452301B2 (en) 2005-11-18 2016-09-27 Mevion Medical Systems, Inc. Inner gantry
US8907311B2 (en) 2005-11-18 2014-12-09 Mevion Medical Systems, Inc. Charged particle radiation therapy
US8916843B2 (en) 2005-11-18 2014-12-23 Mevion Medical Systems, Inc. Inner gantry
US7728311B2 (en) 2005-11-18 2010-06-01 Still River Systems Incorporated Charged particle radiation therapy
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8941083B2 (en) 2007-10-11 2015-01-27 Mevion Medical Systems, Inc. Applying a particle beam to a patient
US8970137B2 (en) 2007-11-30 2015-03-03 Mevion Medical Systems, Inc. Interrupted particle source
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US9155186B2 (en) 2012-09-28 2015-10-06 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
US9185789B2 (en) 2012-09-28 2015-11-10 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system

Also Published As

Publication number Publication date
US4843333A (en) 1989-06-27
DE3865977D1 (en) 1991-12-12
EP0277521A2 (en) 1988-08-10
JPH0711998B2 (en) 1995-02-08
JPS63200500A (en) 1988-08-18
EP0277521A3 (en) 1989-04-26

Similar Documents

Publication Publication Date Title
EP0277521B1 (en) Synchrotron radiation source with fixation of its curved coils
EP0276360B1 (en) Magnet device with curved coil windings
EP0265797B1 (en) Synchrotron
EP0208163B1 (en) Magnetic-field device for an apparatus for accelerating and/or storing electrically charged particles
DE4109931C2 (en) Deflection magnet for deflecting a beam of charged particles on a semicircular path
EP0492295B1 (en) Electron energy filter, preferably from alpha or omega type
DE2559678C3 (en) Atomic beam tube
DE4010032C2 (en) Magnet system
DE102017205485A1 (en) Permanent magnet arrangement for MR apparatus with axially and laterally displaceable, rotatably mounted ring assemblies
EP0774670A1 (en) Magnet assembly for a diagnostic magnetic resonance apparatus
EP0102486B1 (en) Device for adjusting and supporting magnetic coils of a magnetic system for nuclear spin tomography
DE102019209160B3 (en) Cryostat arrangement with resilient, thermally conductive connecting element
DE602004010934T2 (en) X-RAY SOURCE
DE2307822B2 (en) Superconducting lens system for corpuscular radiation
DE102007008513A1 (en) Arrangement with a basic field magnet and with a gradient coil of a magnetic resonance apparatus
WO1985005448A1 (en) Spin resonance tomograph
DE2731458C3 (en) Magnetic objective lens device for corpuscular beam devices operating under vacuum, in particular objective lens device for high-voltage electron microscopes and use
DE102008064696B4 (en) Magnet array particle optical device and its use for imaging or illumination
DE10354228B3 (en) A gradient coil radio frequency antenna unit and a magnetic resonance apparatus having a gradient coil radio frequency antenna unit
EP0177869A2 (en) Magnet arrangement with a screen device for a nuclear spin tomography installation
DE4344287C1 (en) Superconducting magnet with active screening
DE2726195C3 (en) Magnetic objective lens for particle beam devices operating under vacuum, in particular objective lens for electron microscopes
DE102020214443A1 (en) magnetic resonance imaging facility
DE3242853A1 (en) TRANSPORT ARRANGEMENT FOR A RAY OF LOADED PARTICLES
DD220416A1 (en) GRADIENT COIL ASSEMBLY FOR EPR-TESTMATOGRAPHY

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19890529

17Q First examination report despatched

Effective date: 19910403

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 3865977

Country of ref document: DE

Date of ref document: 19911212

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920122

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920127

Year of fee payment: 5

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920422

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930131

Ref country code: CH

Effective date: 19930131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940322

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941216

Year of fee payment: 8

EUG Se: european patent has lapsed

Ref document number: 88100522.7

Effective date: 19930810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960115

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050115