JP3633475B2 - Interdigital transducer method and panel, and magnetic darkroom - Google Patents

Interdigital transducer method and panel, and magnetic darkroom Download PDF

Info

Publication number
JP3633475B2
JP3633475B2 JP2000360033A JP2000360033A JP3633475B2 JP 3633475 B2 JP3633475 B2 JP 3633475B2 JP 2000360033 A JP2000360033 A JP 2000360033A JP 2000360033 A JP2000360033 A JP 2000360033A JP 3633475 B2 JP3633475 B2 JP 3633475B2
Authority
JP
Japan
Prior art keywords
magnetic
shield
plate
gap
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000360033A
Other languages
Japanese (ja)
Other versions
JP2002164686A5 (en
JP2002164686A (en
Inventor
健 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2000360033A priority Critical patent/JP3633475B2/en
Publication of JP2002164686A publication Critical patent/JP2002164686A/en
Application granted granted Critical
Publication of JP3633475B2 publication Critical patent/JP3633475B2/en
Publication of JP2002164686A5 publication Critical patent/JP2002164686A5/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【0001】
【発明の属する技術の分野】
本発明はすだれ型磁気シールド方法及びパネル並びに磁気暗室に関し、特に短冊形磁性の群をすだれ状に並べて用いる磁気シールド方法及びパネル並びに磁気暗室に関する。
【0002】
【従来の技術】
技術の高度化に伴い大電流を使用する施設が増えている。
例えば図11に示す電車線路10では、列車ごとの車両数の増加や発車間隔の短縮などにより、線路10のき電線11とトロリー線12へ給電する往路ケーブル21、及びレール13に接続された復路ケーブル22に流れる電流が大きくなっている。
また、超高圧送電線の大容量化に伴う周辺への磁気的影響についても関心が高まっている。更に、建物内部においても、NMR診断装置その他の大電流使用装置が周囲へ及ぼす磁気的影響が検討されている。
【0003】
電流は周囲に磁界を発生するので、大電流の近隣に電子機器があるとその動作、例えば機器中の電子流が影響される場合がある。図示例では、線路10の周囲磁界の影響を防ぐため、往路ケーブル21や復路ケーブル22等を鉄板等の磁性材料板で囲んだ磁気シールド性ダクト23に収納している。必要に応じて、き電線11をも磁気シールド性ダクト23に収納する。図中、符号14、15、16及び17はそれぞれ高架橋、変電所、電源装置及び電車を示す。
【0004】
【発明が解決しようとする課題】
しかし、従来の鉄板製磁気シールド性ダクト23は、ケーブル貫通部以外には開口がないので通風が悪く、夏季には直射日光を受けて内部温度が非常に高くなる問題点がある。ダクト内部の高温化はケーブルの絶縁劣化の原因になり得る。
【0005】
そこで本発明の目的は、上記問題点を解決するため通気性のある磁気シールド方法及びパネルを提供するにある。
【0006】
【課題を解決するための手段】
本発明者は、磁気シールド板を用いた実験において、磁気シールド板の面だけでなく、その周縁の外側一定範囲にも磁気シールド効果が認められることに注目した。先ず、図5及び6の実験例を参照して、磁気シールド板の周縁外側の磁気シールド効果について説明する。
【0007】
[実験1]
図5は、磁気シールド板1枚の周縁外側の磁気シールド効果を確認するための実験の平面図を示す。本実験では、長さL=4600mmで幅D=3100mmの水平なコイル1に電流を流し、その長辺の導体1aの中央部分におけるコイル側で導体1aから距離S=50mmの部位に一辺長さC=910mmの正方形方向性ケイ素鋼板2を垂直に設置した。コイル1の長さ方向の中央を通る測定ライン3上でコイル導体1aから距離X=1540mmの部位に磁気センサ4を置き、コイル1からの距離Xを維持しつつ磁気センサ4をコイル1の長さ方向の一端からコイル導体1aと平行に(同図(A)のY軸方向に)移動させつつ磁束密度を測定した。
【0008】
図6のグラフは、磁気シールド板2が1枚の場合(カーブβ)、磁気シールド板2を3枚重ね合わた場合(カーブγ)、及び5枚重ね合わせた場合(カーブδ)における磁気センサ4による磁束密度測定結果の一例を示す。同グラフの横軸は、コイル1の長さ方向の一端からの距離を示す。また同グラフでは、比較のため、磁気シールド板2を用いない場合(カーブα)の磁束密度をも併せて示す。同グラフから、シールド板2の周縁外側の一定範囲にも磁気シールド効果が認められることが分かる。なお、同グラフから明かなように、シールド板2の枚数の増加に伴いシールド効果は増大するが、本実験では5枚の重ね合わせでほぼ飽和に近づいた。
【0009】
[実験2]
更に本発明者は、磁気シールド板に空隙がある場合の磁気シールド効果を確認するための実験を行なった。本実験では図5のコイル導体1aの中央部分におけるコイル外側に、図7に示すように、夫々455×455mmの正方形の2枚の鉄板製磁気シールド板2を水平方向に間隔Gを隔ててコイル導体1aと平行に設置した。両シールド板2の中央の測定ライン3上でコイル導体1aから距離Xの部位に実験1と同じ磁気センサ4を置き、磁気センサ4をコイル導体1aと平行に移動させつつ磁束密度を測定した。
【0010】
図8のグラフは、2枚の磁気シールド板2間の間隔Gを0、50、100、200及び455mmとした場合における磁気センサ4による磁束密度測定結果の一例を示す(同図のカーブβ〜ζ)。同グラフの横軸は、両シールド板2の中央にとった測定ポイントを原点とし、この原点を通り測定ライン3に直交する線上の距離Yを示す(図7参照)。また同グラフでは、比較のため、1枚の磁気シールド板2を用いた場合の磁束密度測定結果を併せて示す(カーブα)。
【0011】
同図のグラフから明かなように、コイル導体1aと平行な方向におけるシールド板2の幅と同程度以下の間隔Gを設けても(カーブζ)、2枚の磁気シールド板2と間隔Gとで定まる面の背後及びその周縁外側を含めた部分(以下、2枚のシールド板2の陰となる部分という場合がある。)ではかなりの磁気シールド効果が得られた。また、間隔Gをシールド板2の幅の半分以下とした場合には(カーブε)、約10μT程度の磁束密度低減効果が2枚のシールド板2の陰となる部分で得られた。なお、2枚のシールド板2を密着させその間の間隔Gを0ミリメートルとした場合には(カーブβ)、910×455mm矩形シールド板1枚と同じシールド効果が得られた。
【0012】
上記実験2を各種形状材質の磁気シールド板2について行なった結果、磁気シールドすべき電流の方向と平行に複数の磁気シールド板2を並べ、隣接シールド板2の間の間隔Gを次のように選択すれば、複数の磁気シールド板2による磁気シールド効果が得られるとの知見を得た。すなわち、シールドすべき磁界の方向と直交方向における磁気シールド板2の断面積(Sm)とシールド板2の比透磁率μsとの積(Sm・μs)に対する隣接シールド板2間の前記直交方向間隙の断面積(Sa)の割合を、間隙中の磁束密度が磁気シールド板2中の磁束密度に比し著しく小さくなるように、具体的には(Sm・μs)/Sa>1となるようにシールド板2を配置すれば、複数の磁気シールド板2による磁気シールド効果が得られる。本発明はこの知見に基づき完成に至ったものである。複数の磁気シールド板2における隣接シールド板2間の間隙Gは一定である必要はない。また、電流を磁気シールドする場合においても、磁気シールド板2の面とシールドすべき電流の向きとの間の角度を直角又は平行に限定する必要はなく、任意の大きさの角度でよい。
【0013】
図1を参照するに、本発明によるすだれ型磁気シールド方法は、長さ方向と直角の横断面が矩形であってその横断面の短辺を厚さとし長辺を幅とした短冊形磁性板5の群を磁界内に各板5の長さ方向が同一面上に平行に並び且つ各板5の厚さ方向に前記幅以上の間隙Gで隔たるようにすだれ状に配置し長さ方向と直角の横方向における各磁性板5の横断面の面積(Sm)と磁性板5の比透磁率μsとの積(Sm・μs)に対する間隙G(図7参照)の断面積(Sa)の割合を(Sm・μs)/Sa>1になるように選んでなるものである。好ましくは、磁性板5群の間隙Gにおいて磁界の磁束密度を間隙なしに磁性板を配置した場合と同等に低減させる。
【0014】
また図14、図15及び図16を参照するに、本発明によるすだれ型磁気シールドパネル8は、長さ方向と直角の横断面が矩形であってその横断面の短辺を厚さとし長辺を幅とした短冊形磁性板5の群を各板5の長さ方向が同一面上に平行に並び且つ各板5の厚さ方向に前記幅以上の間隙Gで隔たるようにすだれ状に配置してパネルを形成し長さ方向と直角の横方向における各磁性板5の横断面の面積(Sm)と磁性板5の比透磁率μsとの積(Sm・μs)に対する間隙G(図7参照)の断面積(Sa)の割合を(Sm・μs)/Sa>1になるように選んでなるものである。好ましくは、磁界内に設置された時に、磁性板5群の間隙Gにおいて磁界の磁束密度を間隙なしに磁性板を配置した場合と同等に低減させる。
【0015】
【実施の形態】
図1(A)の実施例では、比透磁率μs=60000の磁性材料により作成した図5及び7の磁気シールド板2を、長さC=910mm、幅20mm、厚さ0.35mmの矩形断面の短冊形磁性5に形成したものを用いた。同図では、矩形断面の短辺(厚さ方向)を、電流担体1の電流の向きと平行に配置している。また、短冊形磁性5の隣接間隙G(以下、ピッチということがある。)を25mmとしている。水平なコイル導線1の電流は50アンペアであった。以下、電流担体1(以下、磁界発生源ということがある。)をコイル導体1とした場合について説明するが、電流担体1はコイル導体に限定されない。
【0016】
図1(A)の配置の短冊形磁性5の群からなる磁気シールドパネルによる磁気シールド効果を確認するため、図5に示すように、コイル導体1aの中央部分外側にコイル導線1aから距離S=50mmだけ離して、各短冊形磁性5の長さ方向中央部分がコイル導線1aと同じ高さとなるように短冊形磁性5の磁気シールドパネルを形成した。コイル導体1の長さ方向の中央を通る測定ライン3上でコイル導体1aから距離Xの部位に磁気センサ4を置き、コイル導体1aからの距離Xを変化させつつ磁束密度を測定した。磁気センサ4による測定結果の一例を図3のグラフに示す。更に、短冊形磁性5のピッチを50、100、200、400および800mmに増大した場合のシールド効果を磁気センサ4で測定した結果を図3に併せて示す。
【0017】
図3のグラフから分かるように、短冊形磁性5をピッチ25mmで配置した場合、水平なコイル導線1から500mm以上離れた地点において図5の磁気シールド板2による全面シールドと実質上同等のシールド効果が得られた。図3のグラフは磁気センサ4の高さをコイル導体1aのレベル(以下、コイルレベルという。)とした場合の測定結果であるが、図4に示すように、磁気センサ4のコイルレベルからの高さを変えた場合でも、コイル導線1から500mm以上離れた地点では全面シールドと実質上同等のシールド効果が得られることが確認できた。同図のα、β、γ、δ及びεはそれぞれコイルレベルからの高さ 400mm 300mm 200mm 100mm 及び0 mm における実験値を示し、同図には磁気シールドなしの場合の実験値も併せて示す。
【0018】
図3及び4のグラフから、隣接する短冊形磁性5の間に間隙を設けた図1(A)の磁性板5群の配置において、電流による磁界と直交方向の磁性板5の断面積Sm(=20mm×0.35mm)と磁性板5の比透磁率μs=60000との積(Sm・μs)に対し、磁界と直交方向の隣接磁性板5間の間隙Gの断面積Saを(25mm×20mm)程度とすることにより、間隙中の磁束密度を短冊形磁性5中の磁束密度に比し著しく小さくすることができ、間隙のある磁性板5群により間隙のない全面シールドと同等で且つ通気性のある磁気シールド効果を得ることが確認できた。
【0019】
しかも、図1の磁性板5群の配置によれば、図5の磁気シールド板2による全面シールドに比し、25mmの間隙Gで幅20mmの短冊磁性5を配置すれば足りるので、全面シールドと実質上同等のシールド効果を得るに当たり、磁性体材料として20%(={(25−20)/25}×100)が節減されたこととなる。
【0020】
図2は、例えば電流担体1(図1参照)に流れる電流の向きに平行な面と該電流の向きに垂直な所定間隔の平行な平面の列との交差線を囲むように枠体7を形成し、その交差線に沿ってこの場合棒状である磁性体6の群を、その長さ方向が同一面上に平行に並ぶようにすだれ状に枠体7へ取付けた実施例を示す。図2の棒状の磁性体6を用いた場合にも、磁性体6の比透磁率μsと断面積Smとの積(Sm・μs)に対する隣接磁性体6間の間隙の断面積(Sa)の割合を調整することにより、図1(A)及び図3の場合と同様に、全面シールドと実質上同等のシールド効果が得られることを本発明者は実験的に確認した。すなわち、短冊形磁性5のみならず、磁性体6を上述した所定の間隙で配置することにより、隣接磁性体6間の空間による通気性及び透視性が備わった磁気シールド効果が得られる。なお、図2の符号7はすだれ状に並べた磁性板5(磁性体6)の固定用枠体を示すが、この枠体7は本発明に必須のものではない。
【0021】
こうして、本発明の目的である「通気性のある磁気シールド方法及びパネル」の提供が達成される。
【0022】
【実施例】
図1(B)は、図1(A)の短冊形磁性5の2枚ずつの組をピッチ50mmで配置した磁気シールドパネルの実施例である。図1(B)の磁性板5の配置によれば、電流担体1の近傍では図1(A)の配置よりもシールド効果が劣るものの、電流担体1から500mm以上離れた地点では図1(A)の配置と同様な磁気シールド効果を得られることが確認できた。2枚の短冊形磁性5の組における前記断面積と比透磁率との積(Sm・μs)の値に対する隣接磁性板5間の空間断面積(Sa)の割合が、図1(A)の1枚ずつの短冊形磁性5の配置による場合と同様であるためと考えられる。図1(B)の配置構成は、図1(A)の構成配置よりも大きな空隙を作り出すことができるので、より良好な通気性及び透視性を与えることが可能である。
【0023】
図1(A)では短冊形磁性5の矩形断面の短辺(厚さ方向)を電流の向きと平行に配置(縦置き)しているのに対し、図9に示すように、短冊形磁性5の矩形断面の長辺(幅方向)を電流担体即ちコイル導体1と平行に配置(横置き)することも可能である。図10は、磁性5を縦置きにした場合と横置きにした場合の磁気シールド効果を比較するグラフを示す。図10のグラフから、縦置きと横置きは実質上同等の磁気シールド効果を示すことが確認できた。ただし、コイル導体1の近傍において横置きの磁気シールド性能が僅かに優れている。これは隣接する短冊形磁性5間の間隙Gが、横置きの場合に縦置きの場合より小さくなるためと考えられる。
【0024】
短冊形磁性5を使用する場合の縦置きと横置きは、設置場所の条件により適宜に選択することができる。好ましくは、一つおきの短冊形磁性5を矩形断面の横置き又は縦置きに配置し、他の短冊形磁性5を縦置き又は横置きに配置し、横置きの磁性5と縦置きの磁性5を交互に配置する。横置きと縦置きの交互配置により、所望の磁気シールド性能を維持しつつ、通気性及び透視性を調整することが可能となる。ここで留意すべきことに、各短冊形磁性5の姿勢は、上記横置き又は縦置きに限定されるものではなく、横置きと縦置きとの間の任意角度位置とすることができる。また、複数の短冊形磁性5のピッチは必ずしも一定である必要はなく、隣接短冊形磁性5の間隙Gが多数の磁性5の群中における隣接短冊形磁性5の位置によって相違してもよい。
【0025】
更に本発明者は、本発明のすだれ型磁気シールドに用いる短冊形磁性板5として、長手方向の透磁率が横断面方向透磁率より大きい方向性ケイ素鋼板等からなる方向性磁性材料製のものが適していることを実験的に見出した。図1及びの実施例では、方向性ケイ素鋼板製の短冊磁性5を使用しており、無方向性ケイ素鋼板製のものに比し、磁界方向の透磁率を大きくでき従って大きなシールド効果を得られることが確認できた。また、パーマロイ及び同等の磁性体についても、同様のシールド効果が得られることが確認できた。
【0026】
図12は、本発明で使用する短冊形磁性板5又はその代替となり得る棒状の磁性体6の各種断面形状を示す。図中(A)は十字型断面、(B)はY字型断面、(C)は円形断面、(D)は中空円形断面、(E)は方形(矩形)断面、(F)は中空方形(矩形)断面、(G)は星形断面、(H)はH字型断面、(I)はI字型断面、(J)はT字型断面、(K)は半円形断面、(L)は三角形断面、(M)は渦巻き形断面、(N)は内部に多層空間を有する円形断面、(O)は内部に多層空間を有する方形断面を、それぞれ示す。本発明のすだれ型磁気シールド方法及びパネルは、上記図(A)乃至(O)の何れ断面形状の磁性板5又は磁性体6によっても所期の効果を奏する。
【0027】
図13は、図1の短冊形磁性板5の異なる実施例の全体形状の模式図である。図中、(A)は単純短冊、(B)は中膨らみ型、(C)は穴あき短冊、(D)は針型、(E)は三角型、(F)は湾曲短冊、(G)は屈曲短冊、(H)はアングル部材型、(I)は捻り短冊、(J)は螺旋型を、それぞれ示す。図13の(K)回転台形の磁性体、同図(L)異径鉄筋状の磁性体は棒状の磁性体6であるが、それぞれ短冊形磁性板5の代替となり得る
【0028】
図14は、本発明のすだれ状配列の短冊形磁性板5を用いた磁気シールドパネルを、磁気シールド壁、床又は建具に組込む態様の説明図である。図中、(A)は磁性板5を組込んだドア、(B)は磁性板5を組込んだ間仕切りパネル、(C)は磁性板5を埋め込んだ天井吊下げダクト、(D)は例えば極細短冊の磁性板5をすだれ状に組込んだディスプレイ画面又はディスプレイカバー、(E)は磁性板5を組込んだ窓ブラインドを、それぞれ示す。
【0029】
図15は本発明の短冊形磁性板5のすだれ状配列を用いた磁気シールドパネルの各種態様を示し、同図(B)は穴明き短冊磁性板5の列による電線対の磁気シールド、(C)は2列の短冊磁性板5群により電線対を挟んだ磁気シールドを示す。同図(B)に示すように、各短冊形磁性板5の一定位置に貫通孔を穿ち、短冊形磁性板5の群中の各磁性板5を貫通孔で位置合わせし、電線を磁性板5の位置合わせした貫通孔に挿通することにより、電線の磁気シールドパネルとすることができる。
【0030】
図15(A)は、短冊形磁性板5を組込んだ幕部材による磁気シールド型テントの概念図であり、同図の磁気シールド型テントを作るためには、本発明のすだれ型磁気シールドパネル用の短冊形磁性板5を、すだれ状に組込んだ又は織り込んだ布、フィルム、又は紙などの柔軟性のある幕とする。
【0031】
また図15(D)は多数の中空環状磁性の中空部に電線又は大電流使用施設を貫通させた磁気シールドであり、短冊形磁性板5の群中の各磁性板5環状に曲げて中央に貫通孔が穿たれた環状磁性板とし、環状磁性体板を貫通孔で位置合わせしつつ各板の厚さ方向に各板の幅以上の間隙Gで隔たるようにすだれ状に配置し、電線又は大電流使用施設を磁性体の位置合わせした貫通孔に挿通したものである。同図(E)は磁性板5を利用したケーブルの被覆又は蛇腹を示し、中央に通孔が穿たれた円環状断面の磁性板5が、同図(D)のようにケーブルの長さ方向に沿って並べられている。更に同図(F)は両端を折曲げたU字形磁性板の列によるケーブル・ダクトの磁気シールドを示す。同図はケーブル・ダクトの一断面を示し、この断面をU字形磁性板の凹部で位置合わせしつつ同図(D)のようにケーブルの長さ方向に沿って並べ、位置合わせした凹部にケーブル又は大電流使用施設を通すことにより長い磁気シールドダクトを形成することができる。
【0032】
図16は、磁気シールドの目的に供する短冊形磁性板5のすだれ状配列の他の態様を示す。図中、(A)は平行に並べた同一形状の短冊磁性板5のすだれ状配列の二つを相互に櫛状に噛合わせる配列態様、(B)は広い幅の短冊磁性板5のすだれ状配列と狭い幅の短冊磁性板5のすだれ状配列とを相互に櫛状に噛合わせる配列態様、(C)は同一形状の短冊磁性板5を平行に並べたすだれ状配列と同様に同一形状の短冊磁性板5を平行に並べた他のすだれ状配列とを、各すだれ状配列中の磁性板5の長手方向が相互に直交するように積層した配列態様、(D)は可撓性幕体の両面に平行に並べた同一形状の短冊磁性板5の二つのすだれ状配列をそれぞれ取付けた配列態様、(E)は平行に並べた同一形状の短冊磁性板5のすだれ状配列の両側面に可撓性幕体が取付けられた配列態様を、それぞれ示す。
【0033】
図17は、磁気暗室(磁気シールド室)の壁、床及び/又は天井を、短冊形磁性板5利用の壁面により構成する方法の説明図である。図17のすだれ型磁気暗室は、壁、床及び/又は天井の面に、長さ方向と直角の横断面が矩形であってその短辺を厚さとしその長辺を幅とした短冊形磁性板5の群を、各板5の長さ方向が壁、床及び/又は天井の面上に平行に並び且つ各板5の厚さ方向に前記幅以上の間隙Gで隔たるようにすだれ状に配置し、長さ方向と直角の横方向における各磁性板5の横断面の面積(S m )と磁性板5の比透磁率μ s との積(S m ・μ s )に対する間隙Gの断面積(S a )の割合を(S m ・μ s )/S a >1になるように選んだものである。図中、(A)は垂直に並べた同一形状の短冊磁性板5のすだれ状配列を外側に設けた周囲壁を持つ磁気暗室、(B)は垂直に並べた同一形状の短冊磁性板5のすだれ状配列を内側及び外側に設けた周囲壁を持つ磁気暗室、(C)は同一形状の短冊磁性板5を平行に並べた一つのすだれ状配列と同様に同一形状の短冊磁性板5を平行に並べた他のすだれ状配列とを周囲壁の内側及び外側に各すだれ状配列中の磁性板5の長手方向が相互に直交するように積層して取付けた磁気暗室、(D)は水平に並べた同一形状の短冊磁性板5のすだれ状配列を外側に設けた周囲壁を持ち且つ各すだれ状配列をその端縁で相互に列状に結合した磁気暗室、(E)は平行に並べた同一形状の短冊磁性板5のすだれ状配列により全周囲壁を磁気シールドした磁気暗室を、それぞれ示す。
【0034】
また図17(F)は複数の垂直短冊磁性板5が相互に間隙Gを隔てて水平直交メッシュの交点をそれぞれ通るように配列した流路を、図17(G)は中心軸線に沿う中空部の周囲に相互に間隙Gを隔てて放射状に取付けた複数の短冊磁性板5を有する流路をそれぞれ示す。
【0035】
本発明のすだれ型磁気シールド方法及びパネル並びに磁気暗室は、土木関係、建築関係その他の技術分野に広く適用可能である。土木分野では、鉄道の防音壁、床版、ボックスカルバート、型枠リブ、駅舎、き電線カバー等に磁気シールド機能を付与する場合、共同溝などの地下送電線に磁気シールド機能を付与する場合等への適用が期待できる。また建築分野では、例えば病院におけるMRIやSQUID、半導体工場におけるEB装置や電子顕微鏡、研究所における電子顕微鏡やNMR等の施設内への外乱磁場を遮蔽するための磁気シールド(受動的シールド)、例えば研究所における加速器や核融合等の強磁場施設、変電所におけるモータやトランス、オフィスにおける電機室、その他の施設から外部への磁場漏洩を防止する磁気シールド(能動的シールド)、建築物のコンピュータルームや電機室などの磁気シールド壁やスラブ等への応用が期待できる。ディスプレイカバー等の機器部材としての利用も期待でき、吸音材等と組み合わせた防音・磁気シールド壁等のハイブリッド型の建具への応用も期待できる。
【0036】
【発明の効果】
以上詳細に説明したように、本発明のすだれ型磁気シールド方法又はパネルは、複数の短冊形磁性各板の長さ方向が同一面上に平行に並び且つ各板の厚さ方向に各板の幅以上の間隙で隔たるようにすだれ状に配置長さ方向と直角の横方向における各磁性板の横断面の面積(S m )と磁性板の比透磁率μ s との積(S m ・μ s )に対する間隙の断面積(S a )の割合を(S m ・μ s )/S a >1になるように選ぶので、次の顕著な効果を奏する。
【0037】
(イ)通気性がよい磁気シールドを与え、温度上昇による材料及び機器の劣化を防止できる。
(ロ)磁気シールドパネルに透視性を与え、磁気シールドを施した機器の保守・管理の容易化を図ることができる。
(ハ)短冊磁性をブラインド状に可変角度で設けた磁気シールドパネルとし、通気性及び透視性の調節が可能な磁気遮蔽を実現することができる。
(ニ)短冊形磁性板の幅以上の間隙に相当する磁性材料の節減が可能になる。
(ホ)所要のシールドレベルに応じ、材料使用量を最適化した経済的設計が可能になる。
【図面の簡単な説明】
【図1】は、本発明の磁気シールド方法の一実施例の説明図である。
【図2】は、本発明の磁気シールドパネルの一実施例の説明図である。
【図3】は、ピッチが異なる短冊形磁性の群を用いた本発明のシールド効果を示すグラフである。
【図4】は、磁気センサの高さを変えた場合の本発明のシールド効果を示すグラフである。
【図5】は、磁気シールド板の外周周縁のシールド効果を確認する実験1の説明図である。
【図6】は、図5の周縁磁気シールド効果を示すグラフの一例である。
【図7】は、空隙のある磁気シールド板の磁気シールド効果を確認する実験2の説明図である。
【図8】は、図7の磁気シールド効果を示すグラフの一例である。
【図9】は、短冊形磁性の矩形断面の短辺又は長辺を電流と平行に配置した実施例の説明図である。
【図10】は、図9の実施例のシールド効果を示すグラフの一例である。
【図11】は、従来の電車線路における磁気シールドの説明図である。
【図12】は、短冊形磁性板又はその代替となり得る棒状の磁性体の各種断面形状を示す図である。
【図13】は、短冊形磁性の各種立体形状を示す図である。
【図14】は、本発明の磁気シールドパネルを壁、床又は建具に組込む態様の説明図である。
【図15】は、本発明の磁気シールドパネルを用いた電線用磁気シールドの説明図である。
【図16】は、本発明の磁気シールドパネルの各種取付け態様を示す図である。
【図17】は、本発明の磁気暗室の壁面を示す図である。
【符号の説明】
1…電流担体 2…磁気シールド板
3…測定ライン 4…磁気センサ
5…短冊形磁性 6…棒状の磁性体
7…枠体 8…磁気シールドパネル
10…電車線路 11…き電線
12…トロリー線 13…レール
14…高架橋 15…変電所
16…電源装置 17…電車
21…往路ケーブル 22…復路ケーブル
23…磁気シールド性ダクト
[0001]
[Field of the Invention]
The present invention relates to an interdigital magnetic shield method andPanel and magnetic darkroomIn particular,StripMagnetismBoardMagnetic shield method using a group of wires arranged interdigitally, andPanel and magnetic darkroomAbout.
[0002]
[Prior art]
With the advancement of technology, facilities using large currents are increasing.
For example, in the train track 10 shown in FIG. 11, the return cable 21 that feeds power to the feeder 11 and the trolley wire 12 of the track 10 and the return route connected to the rail 13 due to an increase in the number of vehicles for each train and a reduction in the departure interval. The current flowing through the cable 22 is large.
In addition, there is a growing interest in the magnetic effects on the surroundings associated with the increase in capacity of ultra high voltage transmission lines. Furthermore, the magnetic influence on the surroundings by NMR diagnostic devices and other devices that use large currents has also been examined inside buildings.
[0003]
Since an electric current generates a magnetic field around it, if there is an electronic device in the vicinity of a large current, its operation, for example, an electron flow in the device may be affected. In the illustrated example, in order to prevent the influence of the magnetic field around the track 10, the forward cable 21, the return cable 22, and the like are accommodated in a magnetic shielding duct 23 surrounded by a magnetic material plate such as an iron plate. The feeder 11 is also housed in the magnetic shielding duct 23 as necessary. In the figure, reference numerals 14, 15, 16 and 17 denote a viaduct, a substation, a power supply device and a train, respectively.
[0004]
[Problems to be solved by the invention]
However, the conventional steel plate magnetic shield duct 23 has a problem that ventilation is poor because there is no opening other than the cable penetrating part, and the internal temperature becomes very high due to direct sunlight in summer. High temperatures inside the duct can cause cable insulation degradation.
[0005]
Accordingly, an object of the present invention is to provide a magnetic shielding method having air permeability in order to solve the above problems, andpanelTo provide.
[0006]
[Means for Solving the Problems]
The inventor of the present invention has noted that in an experiment using a magnetic shield plate, the magnetic shield effect is recognized not only on the surface of the magnetic shield plate but also in a certain range outside the periphery thereof. First, the magnetic shield effect on the outer periphery of the magnetic shield plate will be described with reference to the experimental examples of FIGS.
[0007]
[Experiment 1]
FIG. 5 shows a plan view of an experiment for confirming the magnetic shield effect on the outer periphery of one magnetic shield plate. In this experiment, a current was passed through a horizontal coil 1 having a length L = 4600 mm and a width D = 3100 mm, and the coil in the central portion of the conductor 1a on the long side was passed.OutsideDistance from conductor 1a on the side S =50A square directional silicon steel plate 2 having a side length C = 910 mm was vertically installed at a part of mm. A magnetic sensor 4 is placed at a distance X = 1540 mm from the coil conductor 1a on the measurement line 3 passing through the center of the coil 1 in the length direction, and the magnetic sensor 4 is connected to the length of the coil 1 while maintaining the distance X from the coil 1. The magnetic flux density was measured while moving in parallel with the coil conductor 1a (in the Y-axis direction in FIG. 3A) from one end in the vertical direction.
[0008]
The graph of FIG. 6 shows that when there is one magnetic shield plate 2 (curve β), three magnetic shield plates 2 are overlapped.SetAn example of the magnetic flux density measurement result by the magnetic sensor 4 in the case where the magnetic sensor 4 is overlapped (curve γ) and when five sheets are overlapped (curve δ) is shown. The horizontal axis of the graph indicates the distance from one end of the coil 1 in the length direction. The graph also shows the magnetic flux density when the magnetic shield plate 2 is not used (curve α) for comparison. From this graph, it can be seen that the magnetic shielding effect is also recognized in a certain range outside the periphery of the shield plate 2. It is clear from the graphEtAs can be seen, the shielding effect increases as the number of shield plates 2 increases, but in this experiment, the superposition of five sheets approached saturation.
[0009]
[Experiment 2]
Furthermore, the present inventor conducted an experiment for confirming the magnetic shield effect when the magnetic shield plate has a gap. In this experiment, on the outside of the coil in the central portion of the coil conductor 1a of FIG. 5, two square 455 × 455 mm magnetic shield plates 2 each made of iron plate as shown in FIG. It was installed in parallel with the conductor 1a. The same magnetic sensor 4 as in Experiment 1 was placed on the measurement line 3 at the center of both shield plates 2 at a distance X from the coil conductor 1a, and the magnetic flux density was measured while moving the magnetic sensor 4 parallel to the coil conductor 1a.
[0010]
The graph of FIG. 8 shows an example of the magnetic flux density measurement result by the magnetic sensor 4 when the distance G between the two magnetic shield plates 2 is 0, 50, 100, 200 and 455 mm (curve β to ζ). The horizontal axis of the graph indicates the distance Y on a line that passes through this origin and is perpendicular to the measurement line 3 with the measurement point taken at the center of both shield plates 2 as the origin (see FIG. 7). For comparison, the graph also shows the magnetic flux density measurement results when one magnetic shield plate 2 is used (curve α).
[0011]
It is clear from the graph of the figureEtThus, even if a gap G that is less than or equal to the width of the shield plate 2 in the direction parallel to the coil conductor 1a is provided (curve ζ), the back of the surface defined by the two magnetic shield plates 2 and the gap G and A considerable magnetic shielding effect was obtained in the portion including the outer periphery (hereinafter, sometimes referred to as the shade of the two shield plates 2). In addition, when the gap G was set to be equal to or less than half the width of the shield plate 2 (curve ε), a magnetic flux density reduction effect of about 10 μT was obtained in the shaded area of the two shield plates 2. When the two shield plates 2 are brought into close contact with each other and the distance G between them is 0 millimeter (curve β),910The same shielding effect as that of a single × 455 mm rectangular shield plate was obtained.
[0012]
As a result of performing the experiment 2 on the magnetic shield plates 2 of various shapes and materials, a plurality of magnetic shield plates 2 are arranged in parallel with the direction of the current to be magnetically shielded, and the interval G between the adjacent shield plates 2 is set as follows. The knowledge that a magnetic shield effect by a plurality of magnetic shield plates 2 can be obtained by selection is obtained. That is, adjacent to the product (Sm · μs) of the cross-sectional area (Sm) of the magnetic shield plate 2 in the direction orthogonal to the direction of the magnetic field to be shielded and the relative permeability μs of the shield plate 2.Shield plate 2The orthogonal gap betweenGThe ratio of the cross sectional area (Sa) of the gapGSpecifically, if the shield plate 2 is arranged so that (Sm · μs) / Sa> 1 so that the magnetic flux density inside becomes significantly smaller than the magnetic flux density in the magnetic shield plate 2, a plurality of magnetic The magnetic shield effect by the shield plate 2 is obtained. The present invention has been completed based on this finding. Between adjacent shield plates 2 in a plurality of magnetic shield plates 2gapG need not be constant. Further, even when the current is magnetically shielded, the angle between the surface of the magnetic shield plate 2 and the direction of the current to be shielded does not have to be limited to a right angle or parallel, and may be an angle of any size.
[0013]
Referring to FIG. 1, the interdigital magnetic shield method according to the present invention includes:A rectangular shape with a rectangular cross section perpendicular to the length direction, with the short side of the cross section being the thickness and the long side being the widthMagnetismBoard 5In a magnetic fieldThe length directions of the plates 5 are arranged in parallel on the same plane, and are separated by a gap G that is equal to or larger than the width in the thickness direction of the plates 5.InterdigitalPlace,In the transverse direction perpendicular to the length directionEach magnetismBoard 5Cross-sectional area (Sm) and magnetismBoard 5The ratio of the cross-sectional area (Sa) of the gap G (see FIG. 7) to the product (Sm · μs) with the relative permeability μs of (Sm · μs) / Sa> 1 is selected.InIt will be.Preferably,MagnetismBoard 5HerdIn the gap G, the magnetic fieldMagnetic flux densityReduced to the same level as when magnetic plates are placed without gapsLet
[0014]
Also14, 15 and 16Referring to the interdigital magnetic shield according to the present inventionpanel8 isA rectangular shape with a rectangular cross section perpendicular to the length direction, with the short side of the cross section being the thickness and the long side being the widthMagnetismBoard 5Group ofA panel is formed by arranging the plates 5 in a comb shape so that the length directions of the plates 5 are arranged in parallel on the same plane and are separated by a gap G of the width or more in the thickness direction of the plates 5.,In the transverse direction perpendicular to the length directionEach magnetismBoard 5Cross-sectional area (Sm) and magnetismBoard 5The ratio of the cross-sectional area (Sa) of the gap G (see FIG. 7) to the product (Sm · μs) with the relative permeability μs of (Sm · μs) / Sa> 1 is selected.InIt will be.Preferably, when installed in a magnetic field,MagnetismBoard 5HerdIn the gap G, the magnetic fieldMagnetic flux densityReduced to the same level as when magnetic plates are placed without gapsLet
[0015]
Embodiment
In the embodiment of FIG. 1A, the magnetic shield plate 2 of FIGS. 5 and 7 made of a magnetic material having a relative permeability μs = 60000 has a rectangular cross section with a length C = 910 mm, a width 20 mm, and a thickness 0.35 mm. Strip magnetBoard5 was used. In the figure, the short side (thickness direction) of the rectangular cross section is arranged in parallel with the current direction of the current carrier 1. Also, strip-shaped magneticBoard5 neighborsGap G(Hereinafter sometimes referred to as pitch) is 25 mm. The current in the horizontal coil conductor 1 was 50 amps. Hereinafter, the case where the current carrier 1 (hereinafter sometimes referred to as a magnetic field generation source) is the coil conductor 1 will be described, but the current carrier 1 is not limited to the coil conductor.
[0016]
Strip-shaped magnet with the arrangement shown in FIG.BoardGroup of 5Magnetic shield panel consisting ofIn order to confirm the magnetic shield effect by the coil conductor 1a from the coil conductor 1a outside the central portion of the coil conductor 1a as shown in FIG.distanceEach strip magnet is separated by S = 50mmBoardStrip-shaped magnet so that the central part in the length direction of 5 is the same height as the coil conductor 1aBoardOf 5Magnetic shield panelFormed. coilconductorThe magnetic sensor 4 was placed on a measurement line 3 passing through the center in the length direction 1 at a distance X from the coil conductor 1a, and the magnetic flux density was measured while changing the distance X from the coil conductor 1a. An example of the measurement result by the magnetic sensor 4 is shown in the graph of FIG. In addition, strip magnetismBoardFIG. 3 also shows the results of measuring the shielding effect with the magnetic sensor 4 when the pitch of 5 is increased to 50, 100, 200, 400 and 800 mm.
[0017]
As can be seen from the graph in FIG.BoardWhen 5 was arranged at a pitch of 25 mm, a shielding effect substantially equivalent to that of the entire shield by the magnetic shield plate 2 of FIG. 5 was obtained at a point 500 mm or more away from the horizontal coil conductor 1. The graph in FIG. 3 shows the measurement results when the height of the magnetic sensor 4 is the level of the coil conductor 1a (hereinafter referred to as the coil level). As shown in FIG. Even when the height was changed, it was confirmed that a shielding effect substantially equivalent to that of the full shield could be obtained at a point more than 500 mm away from the coil conductor 1.Α, β, γ, δ and ε in the figure are the heights from the coil level. 400mm , 300mm , 200mm , 100mm And 0 mm The experimental values are shown, and the experimental values in the case without the magnetic shield are also shown.
[0018]
From the graphs of FIGS. 3 and 4, the adjacent strip magnetismBoardGap between 5GThe magnet of FIG.Board 5In the group arrangement, the magnetism is perpendicular to the magnetic field due to the current.Of plate 5Cross-sectional area Sm (= 20mm × 0.35mm) and magnetismBoard 5Adjacent magnetism perpendicular to the magnetic field for the product (Sm · μs) of the relative permeability μs = 60000Board 5Gap betweenGBy setting the cross-sectional area Sa to about (25mm x 20mm), the gapGMagnetic flux density inside is strip-shaped magnetismBoard5 can be made significantly smaller than the magnetic flux density inBoard 5By groupWithout gapsIt was confirmed that a magnetic shielding effect equivalent to that of a full shield and having air permeability was obtained.
[0019]
Moreover, the magnetism of FIG.Board 5According to the arrangement of the group, it is 25 mm compared to the full shield by the magnetic shield plate 2 in FIG.Gap GA strip with a width of 20mmformMagnetismBoardSince 5 is sufficient, 20% (= {(25−20) / 25} × 100) is saved as a magnetic material material in obtaining a shielding effect substantially equivalent to that of the entire surface shielding.
[0020]
FIG. 2 shows, for example, a plane parallel to the direction of the current flowing through the current carrier 1 (see FIG. 1) and a predetermined interval perpendicular to the direction of the current.ParallelThe frame body 7 is formed so as to surround the intersection line with the plane row,ThatA group of magnetic bodies 6 which are rod-shaped in this case along the crossing line, So that its length direction is parallel to the same planeThe Example attached to the frame 7 in the interdigital shape is shown. Also when the rod-like magnetic body 6 of FIG. 2 is used, the sectional area (Sa) of the gap between the adjacent magnetic bodies 6 with respect to the product (Sm · μs) of the relative permeability μs and the sectional area Sm of the magnetic body 6 is obtained. By adjusting the ratio, the present inventor has experimentally confirmed that a shielding effect substantially equivalent to that of the entire surface shield can be obtained in the same manner as in FIGS. That is, strip-shaped magneticBoardBy arranging not only 5 but also the magnetic body 6 with the above-mentioned predetermined gap, a magnetic shielding effect with air permeability and transparency due to the space between the adjacent magnetic bodies 6 can be obtained.2 denotes a frame for fixing the magnetic plate 5 (magnetic body 6) arranged in a comb shape, the frame 7 is not essential to the present invention.
[0021]
Thus, the “air-permeable magnetic shield method andpanel"Is achieved.
[0022]
【Example】
FIG. 1 (B) shows the strip-shaped magnet of FIG. 1 (A).BoardTwo pairs of 5 were arranged at a pitch of 50 mmMagnetic shield panelThis is an example. Magnetism of Fig. 1 (B)Of plate 5According to the arrangement, although the shielding effect is inferior to the arrangement of FIG. 1A in the vicinity of the current carrier 1, the magnetic shielding effect similar to the arrangement of FIG. It was confirmed that it was obtained. Two strips of magnetismBoardAdjacent magnetism for the value of the product of cross-sectional area and relative permeability (Sm · μs) in group 5Board 5The ratio of the space cross-sectional area (Sa) between the strip-shaped magnets shown in FIG.BoardThis is considered to be the same as the case of the arrangement of 5. The arrangement configuration in FIG. 1B can create a larger gap than the configuration arrangement in FIG. 1A, and thus can provide better air permeability and transparency.
[0023]
In FIG. 1 (A), strip-shaped magnetismBoardThe short side (thickness direction) of the rectangular cross section of 5 is arranged parallel to the direction of the current (vertically placed), but as shown in FIG.BoardIt is also possible to arrange (sideways) the long side (width direction) of the rectangular cross section 5 in parallel with the current carrier, that is, the coil conductor 1. Figure 10 shows magnetismBoardThe graph which compares the magnetic shielding effect at the time of setting the case where 5 is placed vertically and the case where it is placed horizontally is shown. From the graph of FIG. 10, it was confirmed that the vertical placement and the horizontal placement show substantially the same magnetic shielding effect. However, the horizontal magnetic shielding performance in the vicinity of the coil conductor 1 is slightly superior. This is an adjacent strip magnetBoardBetween 5Gap GThis is considered to be smaller in the case of horizontal placement than in the case of vertical placement.
[0024]
Strip magnetBoardThe vertical placement and the horizontal placement when using 5 can be appropriately selected according to the conditions of the installation location. Preferably every other strip of magnetismBoard5 is arranged horizontally or vertically with a rectangular cross section, and other strip magnetsBoard5 is placed vertically or horizontally, and the magnet is placed horizontallyBoard5 and vertical magnetismBoard5 are arranged alternately. By alternately arranging horizontally and vertically, it is possible to adjust air permeability and transparency while maintaining desired magnetic shielding performance. It should be noted here that each strip magnetBoardThe posture of 5 is not limited to the horizontal placement or the vertical placement, and can be an arbitrary angular position between the horizontal placement and the vertical placement. Also, multiple strip magnetsBoardThe pitch of 5 does not necessarily have to be constant, and adjacent strip magnetismBoardOf 5Gap GIs a lot of magnetismBoardAdjacent strip magnetism in 5 groupsBoardIt may be different depending on the position of 5.
[0025]
Furthermore, the present inventor uses the interdigital magnetic shield of the present invention.StripMagnetismBoard 5As a result, it has been experimentally found that a directional magnetic material made of a directional silicon steel sheet having a longitudinal permeability larger than a transverse cross-sectional permeability is suitable. 1 and9In this example, a strip made of grain-oriented silicon steel sheetformMagnetismBoard5 was used, and it was confirmed that the magnetic permeability in the magnetic field direction can be increased as compared with that made of a non-oriented silicon steel plate, and thus a large shielding effect can be obtained. It was also confirmed that the same shielding effect was obtained with permalloy and equivalent magnetic materials.
[0026]
FIG. 12 is used in the present invention.The strip-shaped magnetic plate 5 or a rod-like shape that can be used as an alternativeVarious cross-sectional shapes of the magnetic body 6 are shown. In the figure, (A) is a cross-shaped section, (B) is a Y-shaped section, (C) is a circular section, (D) is a hollow circular section, (E) is a square (rectangular) section, and (F) is a hollow square section. (Rectangular) cross section, (G) is a star-shaped cross section, (H) is an H-shaped cross section, (I) is an I-shaped cross section, (J) is a T-shaped cross section, (K) is a semicircular cross section, (L ) Is a triangular cross section, (M) is a spiral cross section, (N) is a circular cross section having a multilayer space inside, and (O) is a square cross section having a multilayer space inside. The interdigital magnetic shield method of the present invention andpanelIs the cross-sectional shape of any of the above figures (A) to (O).Magnetic plate 5 orThe magnetic body 6 also has the desired effect.
[0027]
FIG. 13 shows the strip magnet of FIG.Board 5It is a schematic diagram of the whole shape of the Example from which these differ. In the figure, (A) is a simple strip.form, (B) is a medium-bulging type, (C) is a perforated strip.form, (D) is a needle, (E) is a triangle, (F) is a curved stripform, (G) is a bent stripform, (H) is an angle member type, (I) is a twisted stripform, (J) indicate a spiral type, respectively. FIG. 13 (K)ofRotating trapezoidal magnetic material,Same figure(L)ofMagnetic material of different diameter rebarIs a rod-shaped magnetic body 6,RespectivelyCan be an alternative to strip-shaped magnetic plate 5.
[0028]
FIG. 14 shows the interdigital array of the present invention.Magnetic shield panel using strip-shaped magnetic plate 5It is explanatory drawing of the aspect which incorporates in a magnetic shield wall, a floor, or joinery. In the figure, (A) is magnetic.Board 5(B) is magneticBoard 5Partition panel with built-in, (C) is magneticBoard 5(D) is an example of a magnetic stripBoard 5Display screen or display cover built in interdigital shape, (E) is magneticBoard 5The window blinds incorporating are shown respectively.
[0029]
FIG. 15 illustrates the present invention.Of the strip-shaped magnetic plate 5Interdigital arrayMagnetic shield panel usingFigure (B) is a perforated strip.formMagnetismBoard 5Magnetic shield of wire pair by row of (C) is 2 rows of stripsformMagnetismBoard 5The magnetic shield which pinched the wire pair by the group is shown. As shown in FIG.Strip-shaped magnetic plate 5Drill a through hole at a certain position,Strip-shaped magnetic plate 5Each in the groupMagnetic plate 5Align the through hole andMagnetic plate 5Magnetic shield of wire by inserting through the aligned through holepanelIt can be.
[0030]
FIG. 15A showsStrip-shaped magnetic plate 5FIG. 2 is a conceptual diagram of a magnetic shield type tent with a curtain member incorporating therein, and in order to make the magnetic shield type tent shown in FIG.panelForStrip-shaped magnetic plate 5Is a flexible curtain such as cloth, film or paper incorporated or interwoven in a comb shape.
[0031]
FIG. 15D shows a number of hollow annular magnetism.BoardWire in the hollow part ofOr facilities using large currentIs a magnetic shield that penetratesStrip-shaped magnetic plate 5Each in the groupMagnetic plate 5TheBend into a ringA through hole was drilled in the centerRingA magnetic plate,RingAlign the magnetic plate with the through holeHowever, it is arranged in a comb shape so that it is separated by a gap G that is greater than the width of each plate in the thickness direction of each plate.,Electrical wireOr facilities using large currentIs inserted through a through hole in which the magnetic material is aligned. Figure (E)Magnetic plate 5Shows the cable covering or bellows usingPenetratingAn annular cross-section with a through holeMagnetic plate 5Are arranged along the length direction of the cable as shown in FIG. Furthermore, the figure (F) bent both ends.U-shaped magnetic plateThe magnetic shield of the cable duct by the row of. The figure shows one section of the cable duct.While aligning with the concave part of the U-shaped magnetic plateArranged along the length of the cable as shown in Figure (D)Pass the cable or high-current facility through the aligned recess.Thus, a long magnetic shield duct can be formed.
[0032]
Figure 16 shows a strip-shaped magnet for the purpose of magnetic shielding.Board 5Another embodiment of the interdigital array is shown. In the figure, (A) is a strip of the same shape arranged in parallel.formMagnetismBoard 5An arrangement in which two interdigital arrays are interdigitated with each other, (B) is a wide strip.formMagnetismBoard 5Interdigital array and narrow stripformMagnetismBoard 5An arrangement mode in which interdigital arrays are interdigitated with each other, (C) is a strip of the same shapeformMagnetismBoard 5Strips of the same shape as the interdigital array arranged in parallelformMagnetismBoard 5And other interdigital arrays arranged in parallel with the magnetic properties in each interdigital array.Board 5Are arranged so that their longitudinal directions are orthogonal to each other, (D) is a strip of the same shape arranged in parallel on both sides of the flexible curtainformMagnetismBoard 5(E) is a strip of the same shape arranged in parallel.formMagnetismBoard 5The arrangement | positioning aspect with which the flexible curtain was attached to the both sides | surfaces of the interdigital array is shown, respectively.
[0033]
FIG. 17 shows the shape of a strip-shaped magnet on the wall, floor and / or ceiling of a magnetic darkroom (magnetic shield room).Board 5It is explanatory drawing of the method comprised by the wall surface of utilization.The interdigital magnetic darkroom shown in FIG. 17 is a strip-shaped magnetic plate having a rectangular cross section perpendicular to the length direction on the wall, floor and / or ceiling surfaces, with the short side being thick and the long side being the width. The groups of 5 are interdigitally such that the length direction of each plate 5 is arranged in parallel on the surface of the wall, floor and / or ceiling, and is separated by a gap G which is not less than the width in the thickness direction of each plate 5. The area of the cross section of each magnetic plate 5 in the lateral direction perpendicular to the length direction (S m ) And the relative permeability μ of the magnetic plate 5 s Product with (S m ・ Μ s ) Cross-sectional area (S a ) Percentage (S m ・ Μ s ) / S a It was chosen to be> 1.In the figure, (A) is a strip of the same shape arranged vertically.formMagnetismBoard 5A magnetic darkroom with a peripheral wall with an interdigital array on the outside, (B) is a strip of the same shape arranged verticallyformMagnetismBoard 5Magnetic darkroom with surrounding walls with inner and outer interdigital arrays, (C) is a strip of identical shapeformMagnetismBoard 5Strips of the same shape as one interdigital array arranged in parallelformMagnetismBoard 5Magnetic properties in each interdigital array inside and outside the surrounding wall with other interdigital arrays arranged in parallelBoard 5Magnetic darkrooms stacked and attached so that their longitudinal directions are orthogonal to each other, (D) is a strip of the same shape arranged horizontallyformMagnetismBoard 5A magnetic darkroom having a peripheral wall with an interdigital array arranged on the outside and in which each interdigital array is connected to each other in a row, (E) is a strip of the same shape arranged in parallelformMagnetismBoard 5A magnetic darkroom in which the entire surrounding wall is magnetically shielded by the interdigital array is shown.
[0034]
FIG. 17F shows a plurality of vertical directions.NaStripformMagnetismBoard 5MutuallyGap GFIG. 17 (G) shows the flow paths arranged so as to pass through the intersections of the horizontal orthogonal meshes with each other around the hollow portion along the central axis.Gap GMultiple strips attached radially with a gap between themformMagnetismBoard 5Each of the flow paths having
[0035]
Interdigital magnetic shield method of the present inventionAnd panels and magnetic darkroomIs widely applicable to civil engineering, construction, and other technical fields. In the civil engineering field, when providing magnetic shielding functions for railway noise barriers, floor slabs, box culverts, formwork ribs, station buildings, feeder lines, etc., and when providing magnetic shielding functions for underground transmission lines such as joint grooves, etc. Application to can be expected. In the field of architecture, for example, MRI and SQUID in hospitals, EB devices and electron microscopes in semiconductor factories, magnetic shields (passive shields) for shielding disturbance magnetic fields in facilities such as electron microscopes and NMR in laboratories, Strong magnetic field facilities such as accelerators and nuclear fusion in laboratories, motors and transformers in substations, electrical rooms in offices, magnetic shields (active shields) that prevent leakage of magnetic fields from other facilities to the outside, computer rooms in buildings It can be expected to be applied to magnetic shield walls and slabs in electric and electrical rooms. It can be expected to be used as a device member such as a display cover, and it can also be expected to be applied to a hybrid type fitting such as a soundproof / magnetic shield wall combined with a sound absorbing material.
[0036]
【The invention's effect】
As explained in detail above, the interdigital magnetic shield method of the present invention orpanelMultipleStripMagnetismBoardTheThe length direction of each plate is arranged in parallel on the same surface, and the thickness direction of each plate is separated by a gap more than the width of each plate.Arranged in a comb shapeShi,The area of the cross section of each magnetic plate in the transverse direction perpendicular to the length direction (S m ) And magnetic plate relative permeability μ s Product with (S m ・ Μ s ) Cross-sectional area (S a ) Percentage (S m ・ Μ s ) / S a Choose to be> 1Therefore, the following remarkable effects are produced.
[0037]
(A) A magnetic shield with good air permeability can be provided to prevent deterioration of materials and equipment due to temperature rise.
(B) Magnetic shieldpanelCan be made transparent, and maintenance and management of equipment with a magnetic shield can be facilitated.
(C) StripformMagnetismBoardShield with variable angle in a blind shapepanelThus, it is possible to realize a magnetic shield capable of adjusting air permeability and transparency.
(D)StripMagnetismGap greater than the width of the plateIt is possible to reduce the magnetic material corresponding to.
(E) An economical design that optimizes the amount of material used according to the required shield level becomes possible.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment of a magnetic shielding method of the present invention.
FIG. 2 is a magnetic shield of the present inventionpanelIt is explanatory drawing of one Example.
FIG. 3 shows different pitchesStripMagnetismBoardIt is a graph which shows the shielding effect of this invention using the group of.
FIG. 4 is a graph showing the shielding effect of the present invention when the height of the magnetic sensor is changed.
FIG. 5 is an explanatory diagram of Experiment 1 for confirming the shielding effect on the outer periphery of the magnetic shield plate.
FIG. 6 is an example of a graph showing the peripheral magnetic shielding effect of FIG. 5;
FIG. 7 is an explanatory diagram of Experiment 2 for confirming the magnetic shield effect of the magnetic shield plate with a gap.
FIG. 8 is an example of a graph showing the magnetic shielding effect of FIG.
FIG. 9 is a strip-shaped magnetismBoardOf rectangular cross sectionShort side orIt is explanatory drawing of the Example which has arrange | positioned the long side in parallel with an electric current.
FIG. 10 is an example of a graph showing a shielding effect of the embodiment of FIG. 9;
FIG. 11 is an explanatory diagram of a magnetic shield in a conventional train line.
FIG.A strip-shaped magnetic plate or a barIt is a figure which shows the various cross-sectional shapes of a magnetic body.
FIG. 13 is a strip magnetBoardIt is a figure which shows various three-dimensional shapes.
FIG. 14 showsThe magnetic shield panel of the present inventionIt is explanatory drawing of the aspect integrated in a wall, a floor, or a fitting.
FIG. 15 showsMagnetic shield panel of the present inventionIt is explanatory drawing of the magnetic shield for electric wires using.
FIG. 16 showsMagnetic shield panel of the present inventionIt is a figure which shows various attachment aspects.
FIG.Of the present inventionIt is a figure which shows the wall surface of a magnetic darkroom.
[Explanation of symbols]
1 ... current carrier 2 ... magnetic shield plate
3 ... Measurement line 4 ... Magnetic sensor
5 ... Strip-shaped magnetismBoard        6 ...Rod-shapedMagnetic material
7 ... Frame 8 ... Magnetic shieldpanel
10 ... Train line 11 ... Wire
12 ... trolley wire 13 ... rail
14 ... Viaduct 15 ... Substation
16 ... Power supply 17 ... Train
21 ... Outward cable 22 ... Return cable
23… Magnetic shield duct

Claims (18)

長さ方向と直角の横断面が矩形であってその横断面の短辺を厚さとし長辺を幅とした短冊形磁性の群を磁界内に各板の長さ方向が同一面上に平行に並び且つ各板の厚さ方向に前記幅以上の間隙で隔たるようにすだれ状に配置し、前記長さ方向と直角の横方向における各磁性の横断面の面積(Sm)と磁性の比透磁率μsとの積(Sm・μs)に対する前記間隙の断面積(Sa)の割合を(Sm・μs)/Sa>1になるように選んでなるすだれ型磁気シールド方法。A group of strip-shaped magnetic plates whose rectangular cross section perpendicular to the length direction is rectangular and whose short side is thick and whose long side is the width are parallel to each other in the magnetic field. Are arranged in a comb shape so as to be separated by a gap of the width or more in the thickness direction of each plate , and the cross-sectional area (Sm) of each magnetic plate in the transverse direction perpendicular to the length direction and the magnetic plate relative permeability .mu.s and the product (Sm · μs) the ratio of the cross-sectional area (Sa) of the gap for (Sm · μs) / Sa> blind type magnetic shield method comprising Nde selected to be 1. 請求項のシールド方法において、前記磁性板群の間隙において前記磁界の磁束密度を間隙なしに磁性板を配置した場合と同等に低減してなるすだれ型磁気シールド方法。2. The shield type magnetic shielding method according to claim 1 , wherein the magnetic flux density of the magnetic field is reduced in the gap between the magnetic plate groups to the same extent as when a magnetic plate is arranged without a gap . 請求項1又は2のシールド方法において、前記短冊形磁性の長さ方向を、前記磁界の磁力線の方向と平行にしてなるすだれ型磁気シールド方法。 3. The shield type magnetic shielding method according to claim 1 or 2 , wherein a length direction of the strip-shaped magnetic plate is parallel to a direction of a magnetic force line of the magnetic field. 請求項1から3の何れかのシールド方法において、前記短冊形磁性を、長方向透磁率が横方向透磁率より大きい方向性磁性材料製としてなるすだれ型磁気シールド方法。In any of the shielding method of claims 1 to 3, the strip-shaped magnetic plates, blind-type magnetic shield method lengthwise permeability becomes as large directional magnetic material than the lateral permeability. 請求項1から4の何れかのシールド方法において、前記すだれ状配置の磁性板群の複数を、各磁性板群の長さ方向端縁で相互に列状に結合してなるすだれ型磁気シールド方法。 5. The shield type magnetic shield method according to claim 1 , wherein a plurality of the interleaved magnetic plate groups are connected to each other in a row at the longitudinal edges of the magnetic plate groups. . 請求項1から4の何れかのシールド方法において、前記すだれ状配置の磁性板群の複数を、各群内の磁性板の長さ方向が相互に直交するように積層してなるすだれ型磁気シールド方法。 5. The shield type magnetic shield according to claim 1 , wherein a plurality of the interdigitally arranged magnetic plate groups are laminated such that the length directions of the magnetic plates in each group are orthogonal to each other. Method. 長さ方向と直角の横断面が矩形であってその横断面の短辺を厚さとし長辺を幅とした短冊形磁性の群を各板の長さ方向が同一面上に平行に並び且つ各板の厚さ方向に前記幅以上の間隙で隔たるようにすだれ状に配置してパネルを形成し、前記長さ方向と直角の横方向における各磁性の横断面の面積(Sm)と磁性の比透磁率μsとの積(Sm・μs)に対する前記間隙の断面積(Sa)の割合を(Sm・μs)/Sa>1になるように選んでなるすだれ型磁気シールドパネルA group of strip-shaped magnetic plates each having a rectangular cross section perpendicular to the length direction and having a short side of the cross section as a thickness and a long side as a width are arranged in parallel on the same plane in the length direction A panel is formed by interdigitally arranging the plates in the thickness direction so as to be separated by a gap larger than the width, and the cross-sectional area (Sm) of each magnetic plate in the transverse direction perpendicular to the length direction magnetic plate relative permeability .mu.s and the product (Sm · μs) (Sm · μs) the ratio of the cross-sectional area of the gap (Sa) for / Sa> blind type magnetic shield panel comprising Nde selected to be 1. 請求項7のシールドパネルにおいて、磁界内に設置された時に前記磁性板群の間隙において磁界の磁束密度を間隙なしに磁性板を配置した場合と同等に低減してなるすだれ型磁気シールドパネル 8. The shield type magnetic shield panel according to claim 7, wherein when installed in a magnetic field, the interdigital magnetic shield panel is formed by reducing the magnetic flux density of the magnetic field in the gap between the magnetic plate groups to the same extent as when the magnetic plate is arranged without a gap . 請求項7又は8のシールドパネルにおいて、前記短冊形磁性、長さ方向透磁率が横方向透磁率より大きい方向性磁性材料製としてなるすだれ型磁気シールドパネルThe shield panel according to claim 7 or 8, the strip-shaped magnetic plates, longitudinal permeability becomes as large directional magnetic material than the lateral permeability blind type magnetic shield panel. 請求項7から9の何れかのシールドパネルにおいて、前記各短冊形磁性環状に曲げて中央に貫通孔が穿たれた環状磁性板とし、前記環状磁性板を貫通孔で位置合わせしつつ各板の厚さ方向に前記幅以上の間隙で隔たるようにすだれ状に配置し、電線又は大電流使用装置を前記位置合わせした貫通孔に挿通してなるすだれ型磁気シールドパネルIn any of the shield panel of claims 7 9, wherein each strip-shaped magnetic plates and an annular magnetic plate that is a through hole centrally bent into an annular bored, while aligning the annular magnetic plate with through holes each An interdigital magnetic shield panel that is arranged in a comb shape so as to be separated by a gap of the width or more in the thickness direction of the plate, and an electric wire or a device for using a large current is inserted into the aligned through hole. 請求項7から9の何れかのシールドパネルにおいて、前記各短冊形磁性両端の折り曲げによりU字形磁性板とし、前記U字形磁性凹部で位置合わせしつつ各板の厚さ方向に前記幅以上の間隙で隔たるようにすだれ状に配置し、電線又は大電流使用装置を前記位置合わせした凹部に通してなるすだれ型磁気シールドパネルIn any of the shield panel of claims 7 9, wherein the U-shaped magnetic plate by bending the opposite ends of each strip-shaped magnetic plates, the said U-shaped magnetic plates in the thickness direction of the Kakuita while being aligned with the recess An interdigital magnetic shield panel , which is arranged in an interdigital shape so as to be separated by a gap of at least a width, and an electric wire or a device for using large current is passed through the aligned recess . 請求項7から9の何れかのシールドパネルにおいて、前記すだれ状配置の磁性群の複数を、各磁性群の長方向端縁で相互に列状に結合してなるすだれ型磁気シールドパネルIn any of the shield panel of claims 7 9, a plurality of magnetic plates groups of the interdigital arrangement, blind-type magnetic shield panels formed by coupling to one another in rows in the length direction end edges of the magnetic plate group . 請求項7から9の何れかのシールドパネルにおいて、前記すだれ状配置の磁性群の複数を、相互に櫛状に噛合わせてなるすだれ型磁気シールドパネルIn any of the shield panel of claims 7 9, a plurality of magnetic plates groups of the interdigital arrangement, blind-type magnetic shield panel comprising meshed in a comb-like to one another. 請求項7から9の何れかのシールドパネルにおいて、前記すだれ状配置の磁性群の複数を、各群内の磁性の長方向が相互に直交するように積層してなるすだれ型磁気シールドパネルIn any of the shield panel of claims 7 9, wherein the interdigital arrangement of a plurality of magnetic plate group, interdigital type magnetic shield length direction of the magnetic plate in each group formed by laminating so as to be perpendicular to each other Panel . 壁、床及び/又は天井の面に、長さ方向と直角の横断面が矩形であってその横断面の短辺を厚さとし長辺を幅とした短冊形磁性板の群を、各板の長さ方向が前記壁、床及び/又は天井の面上に平行に並び且つ各板の厚さ方向に前記幅以上の間隙で隔たるようにすだれ状に配置し、前記長さ方向と直角の横方向における各磁性の横断面の面積(Sm)と磁性の比透磁率μsとの積(Sm・μs)に対する前記間隙の断面積(Sa)の割合を(Sm・μs)/Sa>1になるように選んでなるすだれ型磁気暗室。 A group of strip-shaped magnetic plates having a rectangular cross section perpendicular to the length direction on the wall, floor and / or ceiling surfaces, with the short side of the cross section being thick and the long side being the width, The lengthwise direction is parallel to the surface of the wall, floor and / or ceiling and is arranged in a comb shape so as to be separated by a gap of the width or more in the thickness direction of each plate, and is perpendicular to the length direction. sectional area of the gap to the product (Sm · μs) with relative permeability .mu.s the magnetic plate area of the cross section of each of the magnetic plates (Sm) in the transverse direction ratio of (Sa) (Sm · μs) / Sa> comb-type magnetic dark room made Nde selected to be 1. 請求項15の磁気暗室において、前記磁性板群の間隙において磁界の磁束密度を間隙なしに磁性板を配置した場合と同等に低減してなるすだれ型磁気暗室。16. The interstitial magnetic darkroom according to claim 15, wherein the magnetic flux density of the magnetic field in the gap between the magnetic plate groups is reduced to the same extent as when a magnetic plate is disposed without a gap. 請求項15又は16の磁気暗室において、前記壁、床及び/又は天井のすだれ状配置の磁性群を、各々の長方向端縁で相互に結合してなるすだれ型磁気暗室。The magnetic darkroom claim 15 or 16, wherein the wall, floor and / or ceiling of the magnetic plate group interdigital arrangement, blind magnetic darkroom formed by binding to each other in each of the lengthwise edges. 請求項15又は16の磁気暗室において、前記壁、床及び/又は天井に、前記すだれ状配置の磁性板の複数を、各群内の磁性の長方向が相互に直交するように積層してなるすだれ型磁気暗室。The magnetic darkroom claim 15 or 16, laminate the walls, the floor and / or ceiling, the plurality of magnetic plates groups of the interdigital arrangement, such that the length direction of the magnetic plate in each group are orthogonal to each other This is a blind type magnetic darkroom.
JP2000360033A 2000-11-27 2000-11-27 Interdigital transducer method and panel, and magnetic darkroom Expired - Lifetime JP3633475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000360033A JP3633475B2 (en) 2000-11-27 2000-11-27 Interdigital transducer method and panel, and magnetic darkroom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000360033A JP3633475B2 (en) 2000-11-27 2000-11-27 Interdigital transducer method and panel, and magnetic darkroom

Publications (3)

Publication Number Publication Date
JP2002164686A JP2002164686A (en) 2002-06-07
JP3633475B2 true JP3633475B2 (en) 2005-03-30
JP2002164686A5 JP2002164686A5 (en) 2005-05-26

Family

ID=18831693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000360033A Expired - Lifetime JP3633475B2 (en) 2000-11-27 2000-11-27 Interdigital transducer method and panel, and magnetic darkroom

Country Status (1)

Country Link
JP (1) JP3633475B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101489238B1 (en) 2012-09-07 2015-02-04 한국전력공사 Shielding apparatus for magnetic field

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1762188B (en) 2003-03-17 2011-01-12 鹿岛建设株式会社 Open magnetic shield structure and its magnetic frame
TWI287066B (en) * 2003-09-12 2007-09-21 Nippon Steel Corp Magnetic shield panel
JP4658528B2 (en) * 2004-06-22 2011-03-23 日鉄住金鋼板株式会社 Duct for cable
JP2006032433A (en) * 2004-07-12 2006-02-02 Nippon Steel Corp Magnetic shielding apparatus
EP2259664B1 (en) 2004-07-21 2017-10-18 Mevion Medical Systems, Inc. A programmable radio frequency waveform generator for a synchrocyclotron
JP4602053B2 (en) * 2004-11-16 2010-12-22 ナブテスコ株式会社 Magnetic shield door and magnetic shield room
JP2006269662A (en) * 2005-03-23 2006-10-05 Nippon Steel Corp Magnetic shield wall and magnetic shield room
JP4605778B2 (en) * 2005-06-13 2011-01-05 鹿島建設株式会社 Magnetic shield housing and connection structure thereof
JP4892207B2 (en) * 2005-07-25 2012-03-07 鹿島建設株式会社 Translucent electromagnetic wave shielding plate joining structure and joining tool
EP2389980A3 (en) 2005-11-18 2012-03-14 Still River Systems, Inc. Charged particle radiation therapy
JP4906323B2 (en) * 2005-11-25 2012-03-28 鹿島建設株式会社 Magnetic shield device
JP4458542B2 (en) * 2005-12-28 2010-04-28 鹿島建設株式会社 Magnetic shield blade material and magnetic shield housing
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
JP2009111032A (en) * 2007-10-26 2009-05-21 Nippon Steel Engineering Co Ltd Designing device for magnetic shield device, designing method of magnetic shield device, and computer program
JP5160865B2 (en) 2007-11-19 2013-03-13 株式会社竹中工務店 Magnetic shield body and magnetic shield room
JP4960843B2 (en) * 2007-11-29 2012-06-27 新日鉄エンジニアリング株式会社 Magnetic shield device, magnetic shield system
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
JP5317183B2 (en) * 2008-12-25 2013-10-16 東急建設株式会社 Magnetic shield structure
TW201434508A (en) 2012-09-28 2014-09-16 Mevion Medical Systems Inc Adjusting energy of a particle beam
JP6254600B2 (en) 2012-09-28 2017-12-27 メビオン・メディカル・システムズ・インコーポレーテッド Particle accelerator
CN104812443B (en) 2012-09-28 2018-02-02 梅维昂医疗系统股份有限公司 particle therapy system
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
TW201422279A (en) 2012-09-28 2014-06-16 Mevion Medical Systems Inc Focusing a particle beam
EP2901824B1 (en) 2012-09-28 2020-04-15 Mevion Medical Systems, Inc. Magnetic shims to adjust a position of a main coil and corresponding method
TW201424467A (en) 2012-09-28 2014-06-16 Mevion Medical Systems Inc Controlling intensity of a particle beam
JP6138947B2 (en) 2012-09-28 2017-05-31 メビオン・メディカル・システムズ・インコーポレーテッド Magnetic field regenerator
TW201422278A (en) 2012-09-28 2014-06-16 Mevion Medical Systems Inc Control system for a particle accelerator
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
JP6855240B2 (en) 2013-09-27 2021-04-07 メビオン・メディカル・システムズ・インコーポレーテッド Particle beam scanning
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
JP7059245B2 (en) 2016-07-08 2022-04-25 メビオン・メディカル・システムズ・インコーポレーテッド Decide on a treatment plan
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
EP3645111A1 (en) 2017-06-30 2020-05-06 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
TW202039026A (en) 2019-03-08 2020-11-01 美商美威高能離子醫療系統公司 Delivery of radiation by column and generating a treatment plan therefor
KR102672743B1 (en) 2020-09-10 2024-06-07 한국전력공사 Structure for shielding magnetic field having dissimilar composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101489238B1 (en) 2012-09-07 2015-02-04 한국전력공사 Shielding apparatus for magnetic field

Also Published As

Publication number Publication date
JP2002164686A (en) 2002-06-07

Similar Documents

Publication Publication Date Title
JP3633475B2 (en) Interdigital transducer method and panel, and magnetic darkroom
JP4347847B2 (en) Open type magnetic shield structure and magnetic body frame thereof
JP2002164686A5 (en)
CA2872151C (en) Arrangement for providing vehicles with energy comprising magnetizable material
JPH0461588B2 (en)
US7589285B2 (en) Magnetic shield panel
JP5160865B2 (en) Magnetic shield body and magnetic shield room
JP3781814B2 (en) Fluctuating magnetic field shield method
JP6022411B2 (en) Wide frequency compatible magnetic shield panel and structure
JP4368761B2 (en) Magnetic shield structure and magnetic shield panel on load receiving surface
JP6628407B2 (en) Low leakage shaking type open magnetic shield structure
JP4260648B2 (en) Magnetic shield structure
JP5238367B2 (en) Magnetic shield structure
JPH05183290A (en) Panel for magnetic shield
JP5317183B2 (en) Magnetic shield structure
JPH03121048A (en) Shield room for mri
JP3217466U (en) Magnetic shield room
KR20010075537A (en) Space defining structure for magnetic homogenization
Beauloye et al. Comparison of Track Topologies of Permanent Magnet Electrodynamic Suspensions
JPH0421325B2 (en)
JP2013197290A (en) Magnetic shield member
JP2006269656A (en) Magnetic shield wall and magnetic shield room
JPH06224581A (en) Method for magnetic shield construction
JPS6331404A (en) Magnetic rail for attraction type magnetically levitated carrier
KR20010084131A (en) Space defining structure for magnetic homogenization

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040728

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040728

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

R150 Certificate of patent or registration of utility model

Ref document number: 3633475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term