JPS6331404A - Magnetic rail for attraction type magnetically levitated carrier - Google Patents

Magnetic rail for attraction type magnetically levitated carrier

Info

Publication number
JPS6331404A
JPS6331404A JP17506286A JP17506286A JPS6331404A JP S6331404 A JPS6331404 A JP S6331404A JP 17506286 A JP17506286 A JP 17506286A JP 17506286 A JP17506286 A JP 17506286A JP S6331404 A JPS6331404 A JP S6331404A
Authority
JP
Japan
Prior art keywords
magnetic
rail
magnetic rail
iron
rails
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17506286A
Other languages
Japanese (ja)
Inventor
Akira Yamamura
山村 昌
Hitoshi Yamaguchi
仁 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP17506286A priority Critical patent/JPS6331404A/en
Publication of JPS6331404A publication Critical patent/JPS6331404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

PURPOSE:To reduce the fluctuation and generation loss of a magnetic attracting force and a jointed section between magnetic rails, by a method wherein the unit magnetic rails are formed with the laminates of iron plates and insulating plates, and wherein the iron plates are projected at the jointed section in the guide direction, and wherein the tips of the iron plates are overlapped each other. CONSTITUTION:Unit magnetic rails 30, 30A jointed to each other consist of the laminates of iron plates 31 and insulating plates 32, and at the end section in the guide direction, a projected section 31A is formed with the iron plate 31 longer than the insulating plate 32 by l1 in the guide derection. At a jointed section 35 between adjacent unit magnetic rails 30 and 30A, a space 34 for thermal expansion absorption is retained, and over all a lap width l2, the iron plates 31 are composed to be overlapped each other. As a result, power loss in the magnetic rails can be reduced.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は浮上車の台車側に設けられた電磁石と、この電
磁石に対向して軌道側に配された磁気レー気レールの構
造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an electromagnet provided on the bogie side of a floating vehicle and a structure of a magnetic rail placed on the track side facing the electromagnet.

〔従来技術とその問題点〕[Prior art and its problems]

第7図は吸引形磁気浮上搬送装置の概略構造図、第8図
は要部の拡大図であシ、浮上車の台車6側にはリニア誘
導電機の電機子4、左右対称に上向きに配された支持用
!磁石6.互いに対向するよう配された案内用電磁石7
が配設され、高架軌道10側には電機子4に対向して二
次導体および二次鉄の積層体5、支持用電磁石乙に対向
して支持用の磁気レール8.案内用電磁石7に対向して
案内用の磁気レール9がそれぞれ配されてお)、電磁石
6および7と磁気レール8および9との間に作用する磁
気吸引力により磁気浮上車が軌道側に非接触で案内され
るとともに、リニア誘導電機により軌道の案内方向く沿
って推進されるよう構成されている。
Fig. 7 is a schematic structural diagram of the suction type magnetic levitation conveyance device, and Fig. 8 is an enlarged view of the main parts. For support! Magnet 6. Guide electromagnets 7 arranged to face each other
are arranged, and on the side of the elevated track 10, facing the armature 4, a secondary conductor and a laminate 5 of secondary iron, and facing the supporting electromagnet B, a supporting magnetic rail 8. Magnetic rails 9 for guiding are arranged opposite to the electromagnets 7 for guiding, respectively), and the magnetically levitated vehicle is pulled away from the track side by the magnetic attraction force acting between the electromagnets 6 and 7 and the magnetic rails 8 and 9. It is configured to be guided by contact and propelled along the guide direction of the track by a linear induction machine.

前述のように構成された吸引形磁気浮上搬送装置におい
て、第8図に示すように、例えば突極形の支持用の電磁
石6で発生した磁束Φ1は、電磁石乙の磁極面から間隙
11を通って支持用の磁気レール8に入夛、再び間隙1
1を通って案内方向にN極、S極交互に配された電磁石
乙の他の磁極から電磁石乙の鉄心に入って循環する閉ル
ープを形成するが、間隙11の磁気抵抗が高く電磁石乙
の発生磁束が間隙11の磁気抵抗によって決まってしま
うために、電磁石の鉄心および志気レール8の鉄板中の
磁束密度は鉄板に許容される磁束密度例えば1Tの数分
の一以下にすぎず、鉄材が無駄に使われる傾向があシ、
さらに間隙部11の磁気抵抗を低減するために電磁石の
磁極面積の拡大を必要とすることもあり、この場合には
磁気レール8の積層方向寸法が益々大きくなり、経済的
不利益をもたらす欠点がある。また、案内用磁気レール
9についても同様である。
In the attraction type magnetic levitation conveyance device configured as described above, as shown in FIG. Then, the magnetic rail 8 for support is added, and the gap 1 is again inserted.
1, and enters the iron core of electromagnet B from other magnetic poles of electromagnet B, which are alternately arranged N and S poles in the guiding direction, forming a closed loop that circulates, but the magnetic resistance of the gap 11 is high, so that electromagnet B Since the magnetic flux is determined by the magnetic resistance of the gap 11, the magnetic flux density in the iron core of the electromagnet and the iron plate of the shiki rail 8 is only a fraction of the allowable magnetic flux density for the iron plate, for example 1T, and iron material is wasted. It tends to be used for
Furthermore, in order to reduce the magnetic resistance of the gap 11, it may be necessary to increase the magnetic pole area of the electromagnet, and in this case, the dimensions of the magnetic rail 8 in the stacking direction become larger, which causes an economic disadvantage. be. The same applies to the guiding magnetic rail 9.

第9図は支持用の電磁石および磁気レールの要部の側面
図であシ、単位磁気レールの連接部の状態を示したもの
である。図において、支持用電磁石6は案内方向にN極
、S極が交互に位置するよう複数の突極形磁極6A、6
B等を備え、また支持用の磁気レール8は案内方向に所
定の長さの単位磁気レール8A、8B等複数の単位磁気
レールからなシ、連接部には長さ9なる熱膨張吸収用の
間隙部12を設けて単位磁気レールが最も高温になった
場合においても単位磁気レール8A、8B等が相互に当
接してその膨張力により磁気レールが曲がるなどの不都
合を生じないよう構成されている。ところが、図に示す
ように隣接する磁気レール8A、8Bの間隙12付近に
磁石6が位置する場合には、電磁石6を励磁することに
より生じた磁束は図中矢印で示すごとく磁極6Aから空
隙11を経て磁気レール8Aに入り、次いで磁気レール
8Aと8Bとの空隙12を通って志気レール8Bに人シ
、さらに磁気レール8Bと磁極6Bとの間IIJii1
1を通って磁極6Bに至る経路をとる。
FIG. 9 is a side view of the main parts of the supporting electromagnet and the magnetic rail, and shows the state of the connecting portion of the unit magnetic rail. In the figure, the supporting electromagnet 6 has a plurality of salient magnetic poles 6A, 6 so that N poles and S poles are alternately located in the guiding direction.
B, etc., and the supporting magnetic rail 8 is composed of a plurality of unit magnetic rails such as unit magnetic rails 8A and 8B having a predetermined length in the guiding direction, and a thermal expansion absorbing rail having a length of 9 at the connecting part. The gap 12 is provided so that even when the unit magnetic rail reaches the highest temperature, the unit magnetic rails 8A, 8B, etc. do not come into contact with each other and cause problems such as bending of the magnetic rail due to the expansion force. . However, as shown in the figure, when the magnet 6 is located near the gap 12 between adjacent magnetic rails 8A and 8B, the magnetic flux generated by exciting the electromagnet 6 flows from the magnetic pole 6A to the gap 11 as shown by the arrow in the figure. It enters the magnetic rail 8A through the magnetic rail 8A, then passes through the gap 12 between the magnetic rails 8A and 8B to the Shiki rail 8B, and then between the magnetic rail 8B and the magnetic pole 6B IIJii1
1 to the magnetic pole 6B.

電磁石の励磁電流は各磁極ごとに制御するのでな制御す
るのが普通である。したがって、磁気レール8Aと8B
の継目12では、間隙部分での磁気抵抗が高いために磁
気レール8と磁=6A、6Bとの間の空隙磁束密度は磁
石が間隙以外にある場合よりも低下する。そのため電磁
石乙に働く吸引力は磁気レール8の継目部分を通過する
際には低下する。特に、電磁石の極数が少ない場合にこ
のある。
The excitation current of the electromagnet is usually controlled for each magnetic pole. Therefore, magnetic rails 8A and 8B
At the joint 12, since the magnetic resistance in the gap portion is high, the air gap magnetic flux density between the magnetic rail 8 and the magnets 6A and 6B is lower than when the magnet is located outside the gap. Therefore, the attractive force acting on the electromagnet B decreases when it passes through the joint portion of the magnetic rail 8. This is especially true when the electromagnet has a small number of poles.

第10図は従来技術における磁気レールの構造図であシ
、21A、21B、210等厚み1間程度の鉄板21を
積層面に23A、23B、23C等絶縁皮膜、絶縁シー
ト等の薄い絶縁層26を介在させて積層組立体とした磁
気レールが用いられているが、鉄板21を切断する際発
生するパリが薄い絶縁層23の側方で鉄板相互間を短絡
することが間々あシ、電磁石6のN極、S極が交互に通
過することによって変流磁界となる磁気レール8中の磁
束により、パリを介して隣接する鉄板間を循環する渦電
流が発生し、磁気レール中の電力損失が増大するという
欠点がある。
FIG. 10 is a structural diagram of a magnetic rail according to the prior art. Iron plates 21 with a thickness of about 1 inch, such as 21A, 21B, and 210, are laminated on the laminated surface, and thin insulating layers 26, such as insulating films and insulating sheets, such as 23A, 23B, and 23C, are laminated. A magnetic rail is used, which is a laminated assembly with an electromagnet 6 interposed between the electromagnets 6 and 6. The magnetic flux in the magnetic rail 8, which becomes a changing magnetic field when the north and south poles of the magnetic rail 8 pass alternately, generates an eddy current that circulates between adjacent iron plates via the poles, and the power loss in the magnetic rail increases. The disadvantage is that it increases.

〔発明の目的〕[Purpose of the invention]

本発明は前述の状況に鑑みてなされたもので、磁気レー
ルの連接部における磁気吸引力の変動ならびに発生損失
を低減でき、かつ鉄板の使用量が少く経隣的な吸引形磁
気浮上搬送装置の磁気レールを提供することを目的とす
る。
The present invention has been made in view of the above-mentioned situation, and it is possible to reduce fluctuations in magnetic attraction force and generated losses at the joints of magnetic rails, use less iron plates, and provide a horizontal attraction type magnetic levitation conveyance device. The purpose is to provide magnetic rails.

〔発明の要点〕[Key points of the invention]

本発明は、支持用または系内用電磁石に対向して軌道の
案内方向に沿って配接される複数の単位磁気レールの接
合体からなる磁気レールを、案内方向に長い鉄板と絶縁
板とを交互に配した積層形の単位磁気レールで形成し、
かつ単位磁気レールの端部において鉄板を案内方向に突
出させ、連接部において隣接する単位磁気レールの鉄板
の先端が熱膨張吸収用の間隙を保持して互いに導電接触
することなく互いにオーバーラツプするよう構成したこ
とにより、電磁石の磁極面と磁気レールとの間の磁気抵
抗をほとんど高めることなく磁気レールの鉄板の使用量
およびパリに起因する電力損失を低減できるとともに、
連接部における単位磁気レール間の磁気抵抗が低減され
、したがって連接部を電磁石が通過する際に生ずる磁気
吸引力の変動を抑制できるようにしたものである。
The present invention provides a magnetic rail consisting of a joined body of a plurality of unit magnetic rails arranged along the guide direction of a track facing a supporting or internal electromagnet, and a magnetic rail that is made of iron plates and insulating plates that are long in the guide direction. Formed by laminated unit magnetic rails arranged alternately,
Also, the iron plates are made to protrude in the guiding direction at the ends of the unit magnetic rails, and the tips of the iron plates of adjacent unit magnetic rails at the connecting part are configured to overlap each other without making conductive contact with each other by maintaining a gap for absorbing thermal expansion. By doing so, it is possible to reduce the amount of steel plate used for the magnetic rail and the power loss caused by the magnetic rail without increasing the magnetic resistance between the magnetic pole surface of the electromagnet and the magnetic rail.
The magnetic resistance between the unit magnetic rails in the connecting portion is reduced, so that fluctuations in the magnetic attraction force that occur when the electromagnet passes through the connecting portion can be suppressed.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第1図は本発明の実施例を示す磁気レールを電磁石との
対向面側から見た要部の側面図である。
FIG. 1 is a side view of the main parts of a magnetic rail showing an embodiment of the present invention, viewed from the side facing the electromagnet.

図において、50および30Aは互いに連接した単位磁
気レールであり、案内方向に長い複数の鉄板31と、鉄
板61より厚いアスベスト板、アスベストセメント板(
スレート板)1石こうボード等安価で耐熱性に富んだ間
隔片としての絶縁板62との積層体からなシ、案内方向
の端部は絶縁板62に対して鉄板31が案内方向に11
だけ長く突出部31Aを形成しており、隣接する単位磁
気レール30および30Aの連接部35において、鉄板
61の先端と絶縁板62の端面との間に熱膨張吸収用の
間隙64を保持してラップ代12にわたって鉄板が相互
にオーバーラツプするよう構成されてお)、鉄板の突出
部31A相互は鉄板31よ)厚い絶縁板32によ層間1
m34Aが保持されることにより導電接触が回避される
□翫も馴(蔦−−−゛  〜i二4:メ成=2二1固よ
りEげ=ラチョSし=仁エミ戸t;千と=≠?懇欧丸攻
、縁へ陣嵐ネ妃も 前述のように構成された磁気レールにおいては、電磁石
のN極、S極が連接部35をまたいで通過する際、連接
部において磁束が図中矢印で示すように鉄板のオーバー
ラップ代12にわたシ面積が広くギャップ長の小さい間
隙34Aを介して単位磁気レール30側から30A側へ
と環流することにより、従来技術に比べて連接部の磁気
抵抗を大幅に低減でき、したがって連接部における磁気
状一方、連接部以外の部分においては磁気レールの鉄板
61の層間に鉄板より厚い絶縁板52を介挿したことに
よ)磁気レールの鉄板の占積率が減少するので、電磁石
の磁極面との間の空隙11(第9図参照)の磁気抵抗が
増すことが懸念される。
In the figure, 50 and 30A are unit magnetic rails that are connected to each other, and include a plurality of iron plates 31 that are long in the guiding direction, an asbestos plate that is thicker than the iron plate 61, and an asbestos cement plate (
Slate board) 1 A laminate with an insulating plate 62 as a spacing piece that is inexpensive and has high heat resistance, such as a gypsum board.
A gap 64 for absorbing thermal expansion is maintained between the tip of the iron plate 61 and the end face of the insulating plate 62 at the connecting portion 35 of the adjacent unit magnetic rails 30 and 30A. The iron plates are constructed so that they overlap each other over the lap width 12), and the protrusions 31A of the iron plates are arranged so that the thick insulating plate 32 overlaps the layer 1.
By holding m34A, conductive contact is avoided. =≠?In the magnetic rail configured as described above, when the N and S poles of the electromagnet pass across the connecting part 35, magnetic flux is generated at the connecting part. As shown by the arrow in the figure, by circulating the flow from the unit magnetic rail 30 side to the 30A side through the gap 34A, which has a wide area across the overlap margin 12 of the iron plate and has a small gap length, the connecting portion is improved compared to the conventional technology. The magnetic resistance of the magnetic rail can be greatly reduced, and therefore the magnetic resistance of the magnetic rail can be significantly reduced by inserting the insulating plate 52, which is thicker than the iron plate between the layers of the iron plate 61 of the magnetic rail in the parts other than the joint part. Since the space factor of the electromagnet decreases, there is a concern that the magnetic resistance of the air gap 11 (see FIG. 9) between the electromagnet and the magnetic pole surface will increase.

この点に関しては、鉄板61の厚みをi 1ra、絶縁
板52の厚みを2 rren 、 *磁石と磁気レール
との間の空隙長11を10+mとして電磁石と磁気レー
ルとの間の等価空隙長の増加割合を求めた結果、等価空
隙長の増加率は僅か2.1%に止まることが明らかとな
シ、電磁石と磁気レールとの間の磁気低用量を従来技術
のそれに比べてほぼXに低減することができ、絶縁板と
して鉄板より安価な石綿。
Regarding this point, increase the equivalent air gap length between the electromagnet and the magnetic rail by assuming that the thickness of the iron plate 61 is i 1ra, the thickness of the insulating plate 52 is 2 rren, and the air gap length 11 between the magnet and the magnetic rail is 10 + m. As a result of calculating the ratio, it is clear that the increase rate of the equivalent air gap length is only 2.1%, and the magnetic flux between the electromagnet and the magnetic rail is reduced to approximately X compared to that of the conventional technology. Asbestos can be used as an insulating plate and is cheaper than iron plate.

石こう、セメント等を原材料とする板状体を使用できる
ことによ)、磁気レールを安価に形成することができる
By being able to use plate-shaped bodies made of gypsum, cement, etc. as raw materials, magnetic rails can be formed at low cost.

また、鉄板の層間に鉄板より厚い絶縁板を介挿したこと
により、鉄板のパリによって隣接する鉄板が導電接融す
るのを阻止できるので、鉄板間にまたがる渦電流に起因
する磁気レールの電力損失を排除することが°できる。
In addition, by inserting an insulating plate that is thicker than the steel plate between the layers of the steel plate, it is possible to prevent conductive welding of adjacent steel plates due to the gaps between the steel plates, so power loss in the magnetic rail due to eddy currents that span between the steel plates can be prevented. can be eliminated.

第2図は本発明の異なる実施例を示す磁気レールの構造
図であシ、単位磁気レール30.3OAの連接部45に
おける鉄板31のオーバーラツプ部の層間に滑シ性のよ
いシート状の絶縁材42を介装した点が前述の実施例と
異なっておシ、連接部における鉄板相互の導電接触を防
いで電力損失の増大を防止できる利点が得られる。
FIG. 2 is a structural diagram of a magnetic rail showing a different embodiment of the present invention, in which a sheet-like insulating material with good sliding property is used between the layers of the overlapping portion of the iron plate 31 in the connecting portion 45 of the unit magnetic rail 30.3OA. This embodiment is different from the previous embodiments in that 42 is interposed, and there is an advantage that conductive contact between the iron plates at the connecting portion can be prevented, thereby preventing an increase in power loss.

第5図は本発明のさらに異なる実施例を示す磁気レール
の鉄板の平面図でろシ、鉄板61のオーバーラツプ部を
形成する部分に案内方向に延びるスリット51を設けた
点が前述の各実施例と異なの広が9を規制できるので、
電力損失の増大を阻止することができる。
FIG. 5 is a plan view of an iron plate of a magnetic rail showing still another embodiment of the present invention, and is different from the above-mentioned embodiments in that a slit 51 extending in the guiding direction is provided in a portion forming an overlapping portion of the iron plate 61. Since it is possible to control the spread of differences9,
It is possible to prevent an increase in power loss.

第4図は本発明のさらにまた異なる実施例を示す磁気レ
ールの構造図であり、単位磁気レール60側の鉄板31
を連接部55において積層方向に変位させることにより
、単位磁気レール相互の積層方向の位置ずれを排除する
よう構成した点が前述の実施例と異なっておシ、磁気レ
ールと電磁石との間の空隙を通る磁束が単位磁気レール
毎に積層方向に移動することによる支持案内の不安定性
を排除し、かつ電磁石側の鉄心の幅を僅かながら縮小す
ることができる。
FIG. 4 is a structural diagram of a magnetic rail showing still another embodiment of the present invention, in which an iron plate 31 on the unit magnetic rail 60 side
This is different from the previous embodiment in that the structure is configured such that positional deviation in the stacking direction between the unit magnetic rails is eliminated by displacing the unit magnetic rails in the stacking direction at the connecting portion 55, and the air gap between the magnetic rail and the electromagnet is It is possible to eliminate the instability of the support guide due to the magnetic flux passing through moving in the stacking direction for each unit magnetic rail, and to reduce the width of the iron core on the electromagnet side, albeit slightly.

第5図は本発明の他の実施例を示′す磁気レールの構造
図であり、単位磁気レール30および3OAの連接部6
5に一方の単位磁気レール30側に結合された別体の鉄
板片61を介装してオーツクーラツブ部を形成した点が
前述の各実施例と異なってお)、単位磁気レール相互の
積層方向の位置ずれを排除することができる。
FIG. 5 is a structural diagram of a magnetic rail showing another embodiment of the present invention, in which the connecting portion 6 of the unit magnetic rail 30 and 3OA is shown.
5 is different from the previous embodiments in that a separate iron plate piece 61 connected to one unit magnetic rail 30 side is interposed to form an autocooler tube part), and the unit magnetic rails are laminated with each other. directional misalignment can be eliminated.

第6図は本発明のさらに他の実施例を示す磁気レールの
案内方向の断面図であシ、案内用と支持用の磁気レール
を一体化形成した兼用形磁気レールへの適用例を示した
ものである。図において、磁気レール70は幅が順次具
なる鉄板71と絶縁板72との積層体からな)、支持用
電磁石に対向する面70Aが水平に、案内用電磁石に対
向する面70Bが垂直になるよう台形状に形成され、高
架軌道側に積層面が45°頌斜するよう取付けられる。
FIG. 6 is a sectional view of a magnetic rail in the guiding direction showing still another embodiment of the present invention, and shows an example of application to a dual-purpose magnetic rail in which guiding and supporting magnetic rails are integrally formed. It is something. In the figure, the magnetic rail 70 is made of a laminate of a steel plate 71 and an insulating plate 72 whose widths are sequential.) The surface 70A facing the supporting electromagnet is horizontal, and the surface 70B facing the guiding electromagnet is vertical. It is formed in a trapezoidal shape and is installed so that the laminated surface is inclined at 45 degrees on the elevated track side.

このように構成された兼用形磁気レールにおいても前述
の実施例におけると同様に連接部における磁気抵抗を低
減し、かつ鉄板の使用量を低減することができる。
Also in the dual-purpose magnetic rail configured in this way, the magnetic resistance at the connecting portion can be reduced and the amount of iron plates used can be reduced, as in the above-described embodiments.

〔発明の効果〕〔Effect of the invention〕

本発明は前述のように、支持用および案内用電磁石に積
層端面が対向するよう軌道の案内方向に沿って互いに連
接して配された単位磁気レールを鉄板と絶縁板の積層体
で形成するとともに、連接部において鉄板を案内方向に
突出させ、鉄板の先端が熱膨張吸収用の間隙を保持して
互いに導電接触することなくオーバーラツプした連接部
を形成するよう構成した。その結果、オーバーラツプ部
における磁気抵抗の低減が可能となシ、従来技術におい
て連接部の磁気抵抗が高いことによって生じた磁気吸引
力の低下が排除され、磁気浮上車を安定して支持案内で
きるとともに、電磁石と磁気レールとの間の空隙の磁気
抵抗を高めることなく磁気レールの鉄板の使用量を従来
装置の数分の−に低減することができ、かつ間隔片とし
ての絶縁板を安価な絶縁材で形成できることにより、磁
気的性能の優れた磁気レールを経済的に有利に提供する
ことができる。また従来装置に比べて厚い絶縁板が鉄板
の層間に介装されることにより、鉄板のバlJ’を介し
て鉄板相互が4電接触するという問題点が排除され、磁
気レール中の電力損失を低減できる利点が得られる。さ
らに、連接部における磁気抵抗が減ることにより起磁力
損失を低減できるので、電磁石の励磁電流を低減できる
利点が得られる。
As described above, the present invention includes unit magnetic rails formed of a laminate of iron plates and insulating plates, which are arranged in conjunction with each other along the guide direction of the track so that the end faces of the laminate face the supporting and guiding electromagnets. The iron plate is made to protrude in the guiding direction at the connecting portion, and the tip of the iron plate maintains a gap for absorbing thermal expansion to form an overlapping connecting portion without being in conductive contact with each other. As a result, it is possible to reduce the magnetic resistance at the overlap part, eliminate the decrease in magnetic attraction force caused by the high magnetic resistance of the connecting part in the conventional technology, and stably support and guide the magnetically levitated vehicle. , the amount of iron plates used in the magnetic rail can be reduced to several times that of conventional devices without increasing the magnetic resistance of the air gap between the electromagnet and the magnetic rail, and the insulating plate used as the spacing piece can be used as an inexpensive insulator. By being able to form the magnetic rail using the same material, it is possible to economically advantageously provide a magnetic rail with excellent magnetic performance. In addition, by inserting a thicker insulating plate between the layers of the iron plates than in conventional equipment, the problem of four-electrical contact between the iron plates through the steel plates' bars IJ' is eliminated, and the power loss in the magnetic rail is reduced. This provides the advantage of reducing Furthermore, since the magnetomotive force loss can be reduced by reducing the magnetic resistance in the connecting portion, there is an advantage that the excitation current of the electromagnet can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す磁気レールを電磁石対向
面側から見た構造図、第2図は異なる実施例を示す構造
図、第6図はさらに異なる実施例を示す鉄板の平面図、
第4図はさらにまた異なる実施例を示す構造図、第5図
は他の実施例を示す構造図、第6図はさらに他の実施例
を示す磁気レールの案内方向の断面図、第7図は吸引形
磁気浮上搬送装置の概略構造図、第8図は従来技術を示
す要部の断面図、第9図は従来装置の磁気レールおよび
電磁石の要部の側面図、第10図は従来の磁気レールの
構造図である。 3・・・台車、6・・・支持用電磁石、7・・・案内用
電磁石、8・・・支持用磁気レール、9・・・案内用磁
気レール、10・・・高架軌道、11・・・9隙、30
.3OA、70・・・単位磁気レール、31.71・・
・鉄板、62.72・・・絶縁板、31A・・・鉄板の
突出部、34.12・・・熱膨張吸収用の間隙、35,
45,55.65・・・連接部、34A・・・間隙、4
2・・・絶縁層、51・・・スリット、61・・・鉄板
片。 第2図 第3図 第4図 第6図 第7図 第8図
Fig. 1 is a structural diagram of a magnetic rail showing an embodiment of the present invention viewed from the side facing the electromagnet, Fig. 2 is a structural diagram showing a different embodiment, and Fig. 6 is a plan view of an iron plate showing a further different embodiment. ,
FIG. 4 is a structural diagram showing yet another embodiment, FIG. 5 is a structural diagram showing another embodiment, FIG. 6 is a sectional view in the guiding direction of the magnetic rail showing still another embodiment, and FIG. 7 is a structural diagram showing yet another embodiment. 8 is a schematic structural diagram of an attraction type magnetic levitation conveyance device, FIG. 8 is a sectional view of the main parts showing the conventional technology, FIG. 9 is a side view of the main parts of the magnetic rail and electromagnet of the conventional device, and FIG. 10 is the conventional device. It is a structural diagram of a magnetic rail. 3... Bogie, 6... Support electromagnet, 7... Guide electromagnet, 8... Support magnetic rail, 9... Guide magnetic rail, 10... Elevated track, 11...・9 gaps, 30
.. 3OA, 70...Unit magnetic rail, 31.71...
・Iron plate, 62.72...Insulating plate, 31A...Protrusion of iron plate, 34.12...Gap for thermal expansion absorption, 35,
45,55.65...Connection part, 34A...Gap, 4
2... Insulating layer, 51... Slit, 61... Iron plate piece. Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 1)吸引形磁気浮上車の台車側に左右対称に配され吸引
形磁気浮上車の進行方向にN極、S極が交互に隣接する
よう形成された突極形の支持用電磁石および案内用電磁
石と、前記両電磁石それぞれの磁極面との間に間隙を保
持して対向するよう軌道側に浮上車の案内方向に長い積
層形の単位磁気レールを相互間に熱膨張吸収用の間隙を
保持して連接して配してなる磁気レールとを備えたもの
において、所定の長さの鉄板と、鉄板より所定の長さ短
かい絶縁板とを交互に隣接配置してなる積層形の複数の
単位磁気レールと、互いに連接する単位磁気レールの鉄
板の先端が熱膨張吸収用の間隙を保持して互いに導電接
触することなく互いにオーバーラップしてなる連接部と
を備えてなることを特徴とする吸引形磁気浮上搬送装置
の磁気レール。 2)特許請求の範囲第1項記載のものにおいて、連接部
がオーバーラップした鉄板相互間に介装されたシート状
の絶縁材を有することを特徴とする吸引形磁気浮上搬送
装置の磁気レール。 3)特許請求の範囲第1項記載のものにおいて、連接部
が隣接する単位磁気レール端部の鉄板相互間に介装され
てオーバーラップ部を形成する別体の鉄板片を有するこ
とを特徴とする吸引形磁気浮上搬送装置の磁気レール。 4)特許請求の範囲第1項記載のものにおいて、単位磁
気レールが連接部における鉄板の端部に長さ方向に延び
る複数条のスリットを有することを特徴とする吸引形磁
気浮上搬送装置の磁気レール。
[Scope of Claims] 1) A salient pole-shaped support arranged symmetrically on the bogie side of the suction type magnetic levitation vehicle and formed such that N poles and S poles are alternately adjacent to each other in the traveling direction of the suction type magnetic levitation vehicle. A laminated unit magnetic rail that is long in the guiding direction of the floating vehicle is placed on the track side so as to face each other with a gap between the guiding electromagnet and the magnetic pole faces of each of the two electromagnets to absorb thermal expansion between them. magnetic rails that are arranged in a connected manner while maintaining a gap between the two, and are made by alternately arranging iron plates of a predetermined length and insulating plates that are shorter than the iron plate by a predetermined length adjacent to each other. It comprises a plurality of laminated unit magnetic rails and a connecting portion in which the tips of the iron plates of the unit magnetic rails that are connected to each other overlap each other without making conductive contact with each other while maintaining a gap for absorbing thermal expansion. A magnetic rail of a suction type magnetic levitation conveyance device characterized by: 2) A magnetic rail for an attraction type magnetic levitation conveyance device according to claim 1, characterized in that the connecting portion has a sheet-like insulating material interposed between overlapping iron plates. 3) The device according to claim 1, characterized in that the connecting portion has a separate iron plate piece interposed between the iron plates of adjacent unit magnetic rail ends to form an overlapping portion. Magnetic rail of suction type magnetic levitation transport device. 4) The magnetism of the suction type magnetic levitation conveyance device according to claim 1, wherein the unit magnetic rail has a plurality of slits extending in the length direction at the end of the iron plate in the connecting part. rail.
JP17506286A 1986-07-25 1986-07-25 Magnetic rail for attraction type magnetically levitated carrier Pending JPS6331404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17506286A JPS6331404A (en) 1986-07-25 1986-07-25 Magnetic rail for attraction type magnetically levitated carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17506286A JPS6331404A (en) 1986-07-25 1986-07-25 Magnetic rail for attraction type magnetically levitated carrier

Publications (1)

Publication Number Publication Date
JPS6331404A true JPS6331404A (en) 1988-02-10

Family

ID=15989560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17506286A Pending JPS6331404A (en) 1986-07-25 1986-07-25 Magnetic rail for attraction type magnetically levitated carrier

Country Status (1)

Country Link
JP (1) JPS6331404A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5184557A (en) * 1991-12-10 1993-02-09 The United States Of America As Represented By The United States Department Of Energy Expansion joint for guideway for magnetic levitation transportation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5184557A (en) * 1991-12-10 1993-02-09 The United States Of America As Represented By The United States Department Of Energy Expansion joint for guideway for magnetic levitation transportation system

Similar Documents

Publication Publication Date Title
US3770995A (en) Linear induction motor
EP0144000B1 (en) Floating apparatus for attractive magnetic floater
JP3251654B2 (en) System for levitating and guiding objects by magnetic force
JPS6111521B2 (en)
US3585423A (en) Linear induction motor
JPH01177805A (en) Attraction type magnetic levitation vehicle
US3836799A (en) Linear induction motor with electromagnetic levitation
US3913493A (en) System for propelling train by linear synchronous motor
Tzeng et al. Optimal design of the electromagnetic levitation with permanent and electro magnets
JPS5857066B2 (en) linear motor
US3824414A (en) Secondary member for single-sided linear induction motor
JP2013050018A (en) Track coil and track coil set for magnetic levitation type railway
JPS6331404A (en) Magnetic rail for attraction type magnetically levitated carrier
US4013906A (en) Electromagnetic levitation
TWI287907B (en) Moving magnet type linear actuator
JPS62193543A (en) Moving-coil type linear motor
EP0222938A1 (en) Rail for use in magnetic propulsive levitation apparatus
JPH08153577A (en) Induction heating device for metal plate
JP2602810B2 (en) Floating transfer device
USRE28161E (en) Linear induction motor
JP2008253126A (en) Magnetic levitation mechanism
JPS5886808A (en) Supporter for attracting force type magnetic levitating car
JPH0132750B2 (en)
JPS61277362A (en) Three-phase linear inductor type synchronous motor
JPH1189004A (en) Power receiving equipment in moving body, and moving body