JP2002164686A - Method and device for reed screen type magnetic shielding - Google Patents

Method and device for reed screen type magnetic shielding

Info

Publication number
JP2002164686A
JP2002164686A JP2000360033A JP2000360033A JP2002164686A JP 2002164686 A JP2002164686 A JP 2002164686A JP 2000360033 A JP2000360033 A JP 2000360033A JP 2000360033 A JP2000360033 A JP 2000360033A JP 2002164686 A JP2002164686 A JP 2002164686A
Authority
JP
Japan
Prior art keywords
magnetic
finite
length
bodies
magnetic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000360033A
Other languages
Japanese (ja)
Other versions
JP3633475B2 (en
JP2002164686A5 (en
Inventor
Takeshi Saito
健 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2000360033A priority Critical patent/JP3633475B2/en
Publication of JP2002164686A publication Critical patent/JP2002164686A/en
Application granted granted Critical
Publication of JP3633475B2 publication Critical patent/JP3633475B2/en
Publication of JP2002164686A5 publication Critical patent/JP2002164686A5/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and device for magnetic shielding with air permeability and see-through characteristic. SOLUTION: Finite-length magnetic bodies 6 are arrayed as a reed screen in a magnetic field. Here, the relationship between the cross-section area (Sa) of a gap G between adjoining magnetic bodies 6 and a product (Sm.μs) of the area (Sm) of lateral cross-section of the magnetic body 6 and a specific permeability μs of the magnetic body 6 is so selected that (Sm.μs)/Sa>1, attenuating the magnetic flux density between one side of the magnetic bodies 6 arrayed as a reed screen and the other side. The finite-length magnetic body 6 is preferred to comprise a grain oriented silicon steel plate or permalloy whose longitudinal permeability is higher than that lateral cross-section direction, with the length-direction being substantially parallel to the magnetic line direction of magnetic field. Further, the finite-length magnetic body 6 is strip-shaped with a square cross-section.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術の分野】本発明はすだれ型磁気シー
ルド方法及び装置に関し、特に夫々有限長の磁性体の群
をすだれ状に並べて用いる磁気シールド方法及びその方
法に使う装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for intermittent magnetic shielding, and more particularly to a method and apparatus for intermittently using a group of finite-length magnetic materials in an interdigitated manner.

【0002】[0002]

【従来の技術】技術の高度化に伴い大電流を使用する施
設が増えている。例えば図11に示す電車線路10では、
列車ごとの車両数の増加や発車間隔の短縮などにより、
線路10のき電線11とトロリー線12へ給電する往路ケーブ
ル21、及びレール13に接続された復路ケーブル22に流れ
る電流が大きくなっている。また、超高圧送電線の大容
量化に伴う周辺への磁気的影響についても関心が高まっ
ている。更に、建物内部においても、NMR診断装置そ
の他の大電流使用装置が周囲へ及ぼす磁気的影響が検討
されている。
2. Description of the Related Art With the advancement of technology, facilities using a large current are increasing. For example, in the train line 10 shown in FIG.
By increasing the number of vehicles per train and shortening the departure interval,
The current flowing through the forward cable 21 for feeding the feeder wire 11 and the trolley wire 12 of the line 10 and the current flowing through the return cable 22 connected to the rail 13 is large. There is also growing interest in the magnetic effect on the surroundings due to the increase in capacity of ultra-high voltage transmission lines. Furthermore, even inside a building, the magnetic influence on the surroundings by an NMR diagnostic apparatus and other devices using a large current has been studied.

【0003】電流は周囲に磁界を発生するので、大電流
の近隣に電子機器があるとその動作、例えば機器中の電
子流が影響される場合がある。図示例では、線路10の周
囲磁界の影響を防ぐため、往路ケーブル21や復路ケーブ
ル22等を鉄板等の磁性材料板で囲んだ磁気シールド性ダ
クト23に収納している。必要に応じて、き電線11をも磁
気シールド性ダクト23に収納する。図中、符号14、15、
16及び17はそれぞれ高架橋、変電所、電源装置及び電車
を示す。
Since an electric current generates a magnetic field around it, if there is an electronic device near a large current, its operation, for example, an electron flow in the device may be affected. In the illustrated example, in order to prevent the influence of the magnetic field around the line 10, the outward cable 21 and the backward cable 22 are housed in a magnetic shield duct 23 surrounded by a magnetic material plate such as an iron plate. If necessary, the feeder wire 11 is also stored in the magnetic shield duct 23. In the figure, reference numerals 14, 15,
16 and 17 show viaducts, substations, power supplies and trains, respectively.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の鉄板製
磁気シールド性ダクト23は、ケーブル貫通部以外には開
口がないので通風が悪く、夏季には直射日光を受けて内
部温度が非常に高くなる問題点がある。ダクト内部の高
温化はケーブルの絶縁劣化の原因になり得る。
However, the conventional magnetic shield duct 23 made of an iron plate has no opening except for the cable penetrating portion, so that ventilation is poor, and the internal temperature is extremely high in summer due to direct sunlight. There is a problem. The high temperature inside the duct may cause insulation deterioration of the cable.

【0005】そこで本発明の目的は、上記問題点を解決
するため通気性のある磁気シールド方法及び装置を提供
するにある。
Accordingly, an object of the present invention is to provide a magnetic shielding method and apparatus having air permeability in order to solve the above problems.

【0006】[0006]

【課題を解決するための手段】本発明者は、磁気シール
ド板を用いた実験において、磁気シールド板の面だけで
なく、その周縁の外側一定範囲にも磁気シールド効果が
認められることに注目した。先ず、図5及び6の実験例
を参照して、磁気シールド板の周縁外側の磁気シールド
効果について説明する。
SUMMARY OF THE INVENTION The present inventor has noticed in an experiment using a magnetic shield plate that a magnetic shield effect is recognized not only on the surface of the magnetic shield plate but also in a certain range outside the periphery thereof. . First, the magnetic shield effect on the outer periphery of the magnetic shield plate will be described with reference to the experimental examples of FIGS.

【0007】[実験1]図5は、磁気シールド板1枚の
周縁外側の磁気シールド効果を確認するための実験の平
面図を示す。本実験では、長さL=4600mmで幅D=3100
mmの水平なコイル1に電流を流し、その長辺の導体1aの
中央部分におけるコイル内側で導体1aから距離S=1550
mmの部位に一辺長さC=910mmの正方形方向性ケイ素鋼
板2を垂直に設置した。コイル1の長さ方向の中央を通
る測定ライン3上でコイル導体1aから距離X=1540mmの
部位に磁気センサ4を置き、コイル1からの距離Xを維
持しつつ磁気センサ4をコイル1の長さ方向の一端から
コイル導体1aと平行に(同図(A)のY軸方向に)移動
させつつ磁束密度を測定した。
[Experiment 1] FIG. 5 is a plan view of an experiment for confirming the magnetic shield effect on the outer periphery of one magnetic shield plate. In this experiment, length L = 4600 mm and width D = 3100
A current is passed through the horizontal coil 1 of mm and a distance S = 1550 from the conductor 1a inside the coil at the center of the conductor 1a on the long side.
A square oriented silicon steel plate 2 having a side length C = 910 mm was vertically set at a position of mm. The magnetic sensor 4 is placed on the measurement line 3 passing through the center in the longitudinal direction of the coil 1 at a distance X = 1540 mm from the coil conductor 1a. The magnetic flux density was measured while moving from one end in the vertical direction in parallel with the coil conductor 1a (in the Y-axis direction in FIG. 3A).

【0008】図6のグラフは、磁気シールド板2が1枚
の場合(カーブβ)、磁気シールド板2を3枚重ね合わ
た場合(カーブγ)、及び5枚重ね合わせた場合(カー
ブδ)における磁気センサ4による磁束密度測定結果の
一例を示す。同グラフの横軸は、コイル1の長さ方向の
一端からの距離を示す。また同グラフでは、比較のた
め、磁気シールド板2を用いない場合(カーブα)の磁
束密度をも併せて示す。同グラフから、シールド板2の
周縁外側の一定範囲にも磁気シールド効果が認められる
ことが分かる。なお、同グラフから明かなように、シー
ルド板2の枚数の増加に伴いシールド効果は増大する
が、本実験では5枚の重ね合わせでほぼ飽和に近づい
た。
The graph of FIG. 6 shows the case where one magnetic shield plate 2 is used (curve β), the case where three magnetic shield plates 2 are superposed (curve γ), and the case where five magnetic shield plates 2 are superposed (curve δ). 6 shows an example of a magnetic flux density measurement result by the magnetic sensor 4. The horizontal axis of the graph indicates the distance from one end of the coil 1 in the length direction. In the same graph, the magnetic flux density when the magnetic shield plate 2 is not used (curve α) is also shown for comparison. From the graph, it can be seen that the magnetic shield effect is also recognized in a certain range outside the peripheral edge of the shield plate 2. As is clear from the graph, the shielding effect increases as the number of the shield plates 2 increases, but in the present experiment, the superposition of the five shield plates almost reached the saturation.

【0009】[実験2]更に本発明者は、磁気シールド
板に空隙がある場合の磁気シールド効果を確認するため
の実験を行なった。本実験では図5のコイル導体1aの中
央部分におけるコイル外側に、図7に示すように、夫々
455×455mmの正方形の2枚の鉄板製磁気シールド板2を
水平方向に間隔Gを隔ててコイル導体1aと平行に設置し
た。両シールド板2の中央の測定ライン3上でコイル導
体1aから距離Xの部位に実験1と同じ磁気センサ4を置
き、磁気センサ4をコイル導体1aと平行に移動させつつ
磁束密度を測定した。
[Experiment 2] Further, the present inventor conducted an experiment for confirming the magnetic shielding effect when the magnetic shield plate has a gap. In this experiment, as shown in FIG.
Two magnetic shield plates 2 of 455 × 455 mm square made of iron plate were installed in parallel with the coil conductor 1a with an interval G in the horizontal direction. The same magnetic sensor 4 as in Experiment 1 was placed on the measurement line 3 at the center of both shield plates 2 at a distance X from the coil conductor 1a, and the magnetic flux density was measured while moving the magnetic sensor 4 in parallel with the coil conductor 1a.

【0010】図8のグラフは、2枚の磁気シールド板2
間の間隔Gを0、50、100、200及び455mmとした場合に
おける磁気センサ4による磁束密度測定結果の一例を示
す(同図のカーブβ〜ζ)。同グラフの横軸は、両シー
ルド板2の中央にとった測定ポイントを原点とし、この
原点を通り測定ライン3に直交する線上の距離Yを示す
(図7参照)。また同グラフでは、比較のため、1枚の
磁気シールド板2を用いた場合の磁束密度測定結果を併
せて示す(カーブα)。
FIG. 8 is a graph showing two magnetic shield plates 2.
An example of the results of magnetic flux density measurement by the magnetic sensor 4 when the gap G between them is 0, 50, 100, 200, and 455 mm is shown (curves β to の in the figure). The horizontal axis of the graph indicates the distance Y on a line passing through the origin and orthogonal to the measurement line 3 with the measurement point taken at the center of both shield plates 2 as the origin (see FIG. 7). Further, in the same graph, the magnetic flux density measurement result when one magnetic shield plate 2 is used is also shown for comparison (curve α).

【0011】同図のグラフから明かなように、コイル導
体1aと平行な方向におけるシールド板2の幅と同程度以
下の間隔Gを設けても(カーブζ)、2枚の磁気シール
ド板2と間隔Gとで定まる面の背後及びその周縁外側を
含めた部分(以下、2枚のシールド板2の陰となる部分
という場合がある。)ではかなりの磁気シールド効果が
得られた。また、間隔Gをシールド板2の幅の半分以下
とした場合には(カーブε)、約10μT程度の磁束密度
低減効果が2枚のシールド板2の陰となる部分で得られ
た。なお、2枚のシールド板2を密着させその間の間隔
Gを0ミリメートルとした場合には(カーブβ)、900
×455mm矩形シールド板1枚と同じシールド効果が得ら
れた。
As is clear from the graph of FIG. 1, even if an interval G equal to or less than the width of the shield plate 2 in a direction parallel to the coil conductor 1a is provided (curve ζ), the two magnetic shield plates 2 A considerable magnetic shielding effect was obtained in a portion including the portion behind the surface determined by the interval G and the outside of the peripheral edge thereof (hereinafter, may be referred to as a portion behind the two shield plates 2). When the gap G was less than half the width of the shield plate 2 (curve ε), an effect of reducing the magnetic flux density of about 10 μT was obtained in the area behind the two shield plates 2. When two shield plates 2 are brought into close contact with each other and the gap G between them is set to 0 mm (curve β), 900
The same shielding effect as a single × 455 mm rectangular shield plate was obtained.

【0012】上記実験2を各種形状材質の磁気シールド
板2について行なった結果、磁気シールドすべき電流の
方向と平行に複数の磁気シールド板2を並べ、隣接シー
ルド板2の間の間隔Gを次のように選択すれば、複数の
磁気シールド板2による磁気シールド効果が得られると
の知見を得た。すなわち、シールドすべき磁界の方向と
直交方向における磁気シールド板2の断面積(Sm)と
シールド板2の比透磁率μsとの積(Sm・μs)に対す
る隣接磁性体6間の前記直交方向間隙の断面積(Sa)
の割合を、前記間隙中の磁束密度が磁気シールド板2中
の磁束密度に比し著しく小さくなるように、具体的には
(Sm・μs)/Sa>1となるようにシールド板2を配
置すれば、複数の磁気シールド板2による磁気シールド
効果が得られる。本発明はこの知見に基づき完成に至っ
たものである。複数の磁気シールド板2における隣接シ
ールド板2間の間隔は一定である必要はない。また、電
流を磁気シールドする場合においても、磁気シールド板
2の面とシールドすべき電流の向きとの間の角度を直角
又は平行に限定する必要はなく、任意の大きさの角度で
よい。
As a result of performing the above experiment 2 on magnetic shield plates 2 of various shapes and materials, a plurality of magnetic shield plates 2 were arranged in parallel with the direction of the current to be magnetically shielded, and the distance G between adjacent shield plates 2 was set as follows. It has been found that a magnetic shield effect by a plurality of magnetic shield plates 2 can be obtained by selecting as follows. That is, the orthogonal space between the adjacent magnetic members 6 with respect to the product (Sm · μs) of the cross-sectional area (Sm) of the magnetic shield plate 2 and the relative magnetic permeability μs of the shield plate 2 in the direction orthogonal to the direction of the magnetic field to be shielded. Cross section of (Sa)
The shield plate 2 is arranged such that the magnetic flux density in the gap becomes significantly smaller than the magnetic flux density in the magnetic shield plate 2, specifically, (Sm · μs) / Sa> 1. Then, a magnetic shielding effect by the plurality of magnetic shielding plates 2 can be obtained. The present invention has been completed based on this finding. The interval between the adjacent shield plates 2 in the plurality of magnetic shield plates 2 does not need to be constant. Also, when the current is magnetically shielded, the angle between the surface of the magnetic shield plate 2 and the direction of the current to be shielded does not need to be limited to a right angle or a parallel angle, and may be any angle.

【0013】図1を参照するに、本発明によるすだれ型
磁気シールド方法は、夫々有限長の磁性体6の群を磁界
内にすだれ状に並べ、前記各磁性体6の横断面の面積
(Sm)と該磁性体の比透磁率μsとの積(Sm・μs)に
対する隣接磁性体6間の間隙G(図7参照)の断面積
(Sa)の割合を(Sm・μs)/Sa>1になるように選
び、すだれ状に並べた磁性体6群の対向面間に磁束密度
減衰を生じさせてなるものである。
Referring to FIG. 1, in the interdigital magnetic shield method according to the present invention, a group of magnetic bodies 6 each having a finite length are arranged in an interdigital magnetic field, and the area (Sm) of the cross section of each magnetic body 6 is determined. ) And the relative permeability μs of the magnetic body (Sm · μs) to the ratio of the cross-sectional area (Sa) of the gap G (see FIG. 7) between the adjacent magnetic bodies 6 to (Sm · μs) / Sa> 1. The magnetic flux density is attenuated between the opposing surfaces of the group of magnetic members 6 arranged in an interdigitated manner.

【0014】また図1及び2を参照するに、本発明によ
るすだれ型磁気シールド装置8は、磁界内にすだれ状に
並べられる有限長磁性体6の群を備え、各磁性体6の横
断面の面積(Sm)と該磁性体の比透磁率μsとの積(S
m・μs)に対する隣接磁性体6間間隙G(図7参照)の
断面積(Sa)の割合を(Sm・μs)/Sa>1になるよ
うに選び、すだれ状に並べた磁性体6群の対向面間に磁
束密度減衰を生じさせてなるものである。図2の符号7
は、すだれ状に並べた磁性体6の固定用枠体を示すが、
この枠体7は本発明装置に必須のものではない。
Referring also to FIGS. 1 and 2, the intermittent magnetic shield device 8 according to the present invention includes a group of finite-length magnetic bodies 6 arranged in an interdigital manner in a magnetic field. The product of the area (Sm) and the relative permeability μs of the magnetic material (S
The ratio of the cross-sectional area (Sa) of the gap G between the adjacent magnetic bodies 6 (see FIG. 7) to (m · μs) is selected so as to satisfy (Sm · μs) / Sa> 1, and the group of magnetic bodies 6 arranged in an interdigital shape The magnetic flux density is attenuated between the opposing surfaces of. Reference numeral 7 in FIG.
Indicates a frame for fixing the magnetic bodies 6 arranged in a screen.
This frame 7 is not essential to the device of the present invention.

【0015】[0015]

【実施の形態】図1(A)の実施例では、有限長磁性体
6として、比透磁率μs=60000の磁性材料により作成し
た図5及び7の磁気シールド板2を、長さC=910mm、
幅20mm、厚さ0.35mmの矩形断面の短冊形磁性体5に形成
したものを用いた。同図では、矩形断面の短辺(厚さ方
向)を、電流担体1の電流の向きと平行に配置してい
る。また、短冊形磁性体5の隣接間隙(以下、ピッチと
いうことがある。)を25mmとしている。水平なコイル導
線1の電流は50アンペアであった。以下、電流担体1
(以下、磁界発生源ということがある。)をコイル導体
1とした場合について説明するが、電流担体1はコイル
導体に限定されない。
1A, the magnetic shield plate 2 of FIGS. 5 and 7 made of a magnetic material having a relative magnetic permeability μs = 60,000 as a finite-length magnetic body 6 has a length C = 910 mm. ,
A rectangular magnetic body 5 having a rectangular cross section with a width of 20 mm and a thickness of 0.35 mm was used. In the figure, the short side (thickness direction) of the rectangular cross section is arranged parallel to the direction of the current of the current carrier 1. Further, an adjacent gap (hereinafter, sometimes referred to as a pitch) between the strip-shaped magnetic bodies 5 is set to 25 mm. The current in the horizontal coil conductor 1 was 50 amps. Hereinafter, the current carrier 1
A description will be given of a case where the coil conductor 1 is used as a magnetic field generating source hereinafter. However, the current carrier 1 is not limited to the coil conductor.

【0016】図1(A)の配置の短冊形磁性体5の群に
よる磁気シールド効果を確認するため、図5に示すよう
に、コイル導体1aの中央部分外側にコイル導線1aから間
隙S=50mmだけ離して、各短冊形磁性体5の長さ方向中
央部分がコイル導線1aと同じ高さとなるように短冊形磁
性体5の列を形成した。コイル1の長さ方向の中央を通
る測定ライン3上でコイル導体1aから距離Xの部位に磁
気センサ4を置き、コイル導体1aからの距離Xを変化さ
せつつ磁束密度を測定した。磁気センサ4による測定結
果の一例を図3のグラフに示す。更に、短冊形磁性体5
のピッチを50、100、200、400および800mmに増大した場
合のシールド効果を磁気センサ4で測定した結果を図3
に併せて示す。
In order to confirm the magnetic shielding effect of the group of strip-shaped magnetic bodies 5 arranged as shown in FIG. 1A, as shown in FIG. 5, a gap S = 50 mm from the coil conductor 1a outside the central portion of the coil conductor 1a. A row of the strip-shaped magnetic bodies 5 was formed so that the center of the strip-shaped magnetic bodies 5 in the longitudinal direction was at the same height as the coil conductor 1a. The magnetic sensor 4 was placed on the measurement line 3 passing through the center in the length direction of the coil 1 at a distance X from the coil conductor 1a, and the magnetic flux density was measured while changing the distance X from the coil conductor 1a. An example of the measurement result by the magnetic sensor 4 is shown in the graph of FIG. Furthermore, a strip-shaped magnetic body 5
FIG. 3 shows the results obtained by measuring the shielding effect with the magnetic sensor 4 when the pitch was increased to 50, 100, 200, 400 and 800 mm.
Are shown together.

【0017】図3のグラフから分かるように、短冊形磁
性体5をピッチ25mmで配置した場合、水平なコイル導線
1から500mm以上離れた地点において図5の磁気シール
ド板2による全面シールドと実質上同等のシールド効果
が得られた。図3のグラフは磁気センサ4の高さをコイ
ル導体1aのレベル(以下、コイルレベルという。)とし
た場合の測定結果であるが、図4に示すように、磁気セ
ンサ4のコイルレベルからの高さを変えた場合でも、コ
イル導線1から500mm以上離れた地点では全面シールド
と実質上同等のシールド効果が得られることが確認でき
た。
As can be seen from the graph of FIG. 3, when the strip-shaped magnetic bodies 5 are arranged at a pitch of 25 mm, the magnetic shield plate 2 of FIG. The same shielding effect was obtained. The graph of FIG. 3 is a measurement result when the height of the magnetic sensor 4 is set to the level of the coil conductor 1a (hereinafter, referred to as a coil level). As shown in FIG. Even when the height was changed, it was confirmed that a shielding effect substantially equivalent to that of the entire shield could be obtained at a point 500 mm or more away from the coil conductor 1.

【0018】図3及び4のグラフから、隣接する短冊形
磁性体5の間に間隙を設けた図1(A)の磁性体群の配
置において、電流による磁界と直交方向の磁性体断面積
Sm(=20mm×0.35mm)と該磁性体6の比透磁率μs=60
000との積(Sm・μs)に対し、磁界と直交方向の隣接
磁性体6間の間隙断面積Saを(25mm×20mm)程度とす
ることにより、間隙中の磁束密度を短冊形磁性体5中の
磁束密度に比し著しく小さくすることができ、間隙のあ
る磁性体群により実質上全面シールドと同等で且つ通気
性のある磁気シールド効果を得ることが確認できた。
From the graphs of FIGS. 3 and 4, it can be seen that, in the arrangement of the magnetic body group of FIG. 1A in which a gap is provided between adjacent strip-shaped magnetic bodies 5, the cross-sectional area Sm of the magnetic body in the direction perpendicular to the magnetic field caused by the current. (= 20 mm × 0.35 mm) and the relative permeability μs of the magnetic body 6 = 60
000 (Sm · μs), the magnetic flux density in the gap is reduced to about 25 mm × 20 mm by making the cross-sectional area Sa of the gap between the adjacent magnetic bodies 6 in the direction perpendicular to the magnetic field approximately equal to (25 mm × 20 mm). The magnetic flux density can be remarkably reduced as compared with the magnetic flux density in the middle, and it has been confirmed that a magnetic shield effect having substantially the same air permeability as the whole surface shield and air permeability can be obtained by the magnetic material group having a gap.

【0019】しかも、図1の磁性体6群の配置によれ
ば、図5の磁気シールド板2による全面シールドに比
し、25mmの間隔で幅20mmの短冊状磁性体5を配置すれば
足りるので、全面シールドと実質上同等のシールド効果
を得るに当たり、磁性体材料として20%(={(25−2
0)/25}×100)が節減されたこととなる。
Moreover, according to the arrangement of the magnetic body 6 group shown in FIG. 1, it is sufficient to arrange the strip-shaped magnetic bodies 5 having a width of 20 mm at intervals of 25 mm as compared with the whole shield by the magnetic shield plate 2 of FIG. In order to obtain a shielding effect substantially equivalent to that of a full-screen shield, as a magnetic material, 20% (= {(25−2
0) / 25} × 100).

【0020】図2は、例えば電流担体1(図1参照)に
流れる電流の向きに平行な面と該電流の向きに垂直な所
定間隔の平面の列との交差線を囲むように枠体7を形成
し、前記交差線に沿ってこの場合棒状である有限長磁性
体6の群をすだれ状に枠体7へ取付けた実施例を示す。
図2の棒状の有限長磁性体6を用いた場合にも、有限長
磁性体6の比透磁率μsと断面積Smとの積(Sm・μs)
に対する隣接磁性体6間の間隙の断面積(Sa)の割合
を調整することにより、図1(A)及び図3の場合と同
様に、全面シールドと実質上同等のシールド効果が得ら
れることを本発明者は実験的に確認した。すなわち、短
冊形磁性体5のみならず、有限長磁性体6を上述した所
定の間隙で配置することにより、隣接有限長磁性体6間
の空間による通気性及び透視性が備わった磁気シールド
効果が得られる。
FIG. 2 shows, for example, a frame 7 surrounding a crossing line of a plane parallel to the direction of the current flowing through the current carrier 1 (see FIG. 1) and a row of planes at predetermined intervals perpendicular to the direction of the current. An example is shown in which a group of finite-length magnetic bodies 6, which are rod-shaped in this case, are attached to the frame body 7 along the crossing line.
Even when the rod-shaped finite-length magnetic body 6 of FIG. 2 is used, the product of the relative permeability μs of the finite-length magnetic body 6 and the cross-sectional area Sm (Sm · μs)
By adjusting the ratio of the cross-sectional area (Sa) of the gap between the adjacent magnetic bodies 6 with respect to the above, it is possible to obtain a shielding effect substantially equivalent to that of the whole-surface shield as in the case of FIGS. The present inventors have confirmed experimentally. That is, by arranging not only the strip-shaped magnetic body 5 but also the finite-length magnetic body 6 at the above-mentioned predetermined gap, the magnetic shielding effect provided with the air permeability and the see-through property by the space between the adjacent finite-length magnetic bodies 6 can be obtained. can get.

【0021】こうして、本発明の目的である「通気性の
ある磁気シールド方法及び装置」の提供が達成される。
Thus, the provision of the "method and apparatus for air-permeable magnetic shielding" which is the object of the present invention is achieved.

【0022】[0022]

【実施例】図1(B)は、図1(A)の短冊形磁性体5
の2枚ずつの組をピッチ50mmで配置した実施例である。
図1(B)の磁性体配置によれば、電流担体1の近傍で
は図1(A)の配置よりもシールド効果が劣るものの、
電流担体1から500mm以上離れた地点では図1(A)の
配置と同様な磁気シールド効果を得られることが確認で
きた。2枚の短冊形磁性体5の組における前記断面積と
比透磁率との積(Sm・μs)の値に対する隣接磁性間の
空間断面積(Sa)の割合が、図1(A)の1枚ずつの
短冊形磁性体5の配置による場合と同様であるためと考
えられる。図1(B)の配置構成は、図1(A)の構成
配置よりも大きな空隙を作り出すことができるので、よ
り良好な通気性及び透視性を与えることが可能である。
FIG. 1B shows a strip-shaped magnetic material 5 shown in FIG.
This is an embodiment in which a pair of 2 sheets is arranged at a pitch of 50 mm.
According to the magnetic body arrangement shown in FIG. 1B, the shielding effect near the current carrier 1 is inferior to the arrangement shown in FIG.
It was confirmed that a magnetic shielding effect similar to the arrangement of FIG. 1A can be obtained at a point 500 mm or more away from the current carrier 1. The ratio of the space cross-sectional area (Sa) between adjacent magnets to the value of the product of the cross-sectional area and the relative magnetic permeability (Sm · μs) in the set of two strip-shaped magnetic bodies 5 is 1 in FIG. It is considered that this is the same as the case where the strip-shaped magnetic bodies 5 are arranged one by one. The arrangement shown in FIG. 1B can create a larger gap than the arrangement shown in FIG. 1A, and thus can provide better air permeability and transparency.

【0023】図1(A)では短冊形磁性体5の矩形断面
の短辺(厚さ方向)を電流の向きと平行に配置(縦置
き)しているのに対し、図9に示すように、短冊形磁性
体5の矩形断面の長辺(幅方向)を電流担体即ちコイル
導体1と平行に配置(横置き)することも可能である。
図10は、磁性体5を縦置きにした場合と横置きにした
場合の磁気シールド効果を比較するグラフを示す。図1
0のグラフから、縦置きと横置きは実質上同等の磁気シ
ールド効果を示すことが確認できた。ただし、コイル導
体1の近傍において横置きの磁気シールド性能が僅かに
優れている。これは隣接する短冊形磁性体5間の間隔
が、横置きの場合に縦置きの場合より小さくなるためと
考えられる。
In FIG. 1A, the short side (thickness direction) of the rectangular cross section of the strip-shaped magnetic body 5 is arranged (vertically) in parallel with the direction of the current, as shown in FIG. It is also possible to arrange the long side (width direction) of the rectangular cross section of the strip-shaped magnetic body 5 in parallel (horizontally) with the current carrier, that is, the coil conductor 1.
FIG. 10 shows a graph for comparing the magnetic shielding effect when the magnetic body 5 is placed vertically and horizontally. FIG.
From the graph of 0, it was confirmed that the vertical and horizontal installations exhibited substantially the same magnetic shielding effect. However, in the vicinity of the coil conductor 1, the horizontal magnetic shield performance is slightly superior. This is presumably because the interval between adjacent strip-shaped magnetic bodies 5 is smaller in the case of horizontal installation than in the case of vertical installation.

【0024】短冊形磁性体5を使用する場合の縦置きと
横置きは、設置場所の条件により適宜に選択することが
できる。好ましくは、一つおきの短冊形磁性体5を矩形
断面の横置き又は縦置きに配置し、他の短冊形磁性体5
を縦置き又は横置きに配置し、横置きの磁性体5と縦置
きの磁性体5を交互に配置する。横置きと縦置きの交互
配置により、所望の磁気シールド性能を維持しつつ、通
気性及び透視性を調整することが可能となる。ここで留
意すべきことに、各短冊形磁性体5の姿勢は、上記横置
き又は縦置きに限定されるものではなく、横置きと縦置
きとの間の任意角度位置とすることができる。また、複
数の短冊形磁性体5のピッチは必ずしも一定である必要
はなく、隣接短冊形磁性体5の間隔が多数の磁性体5の
群中における隣接短冊形磁性体5の位置によって相違し
てもよい。
When the strip-shaped magnetic body 5 is used, the vertical or horizontal installation can be appropriately selected according to the conditions of the installation place. Preferably, every other strip-shaped magnetic body 5 is arranged horizontally or vertically with a rectangular cross section, and the other strip-shaped magnetic bodies 5
Are arranged vertically or horizontally, and the horizontally arranged magnetic bodies 5 and the vertically arranged magnetic bodies 5 are alternately arranged. By alternately disposing the horizontal and vertical arrangements, it is possible to adjust the air permeability and the transparency while maintaining the desired magnetic shield performance. It should be noted here that the orientation of each strip-shaped magnetic body 5 is not limited to the horizontal or vertical orientation described above, but may be at any angular position between the horizontal and vertical orientations. Further, the pitch of the plurality of strip-shaped magnetic bodies 5 is not necessarily required to be constant, and the interval between the adjacent strip-shaped magnetic bodies 5 differs depending on the position of the adjacent strip-shaped magnetic bodies 5 in the group of many magnetic bodies 5. Is also good.

【0025】更に本発明者は、本発明のすだれ型磁気シ
ールドに用いる有限長磁性体6として、長手方向の透磁
率が横断面方向透磁率より大きい方向性ケイ素鋼板等か
らなる方向性磁性材料製のものが適していることを実験
的に見出した。図1及び8の実施例では、方向性ケイ素
鋼板製の短冊型磁性体5を使用しており、無方向性ケイ
素鋼板製のものに比し、磁界方向の透磁率を大きくでき
従って大きなシールド効果を得られることが確認でき
た。また、パーマロイ及び同等の磁性体についても、同
様のシールド効果が得られることが確認できた。
Further, the present inventor has proposed that the finite-length magnetic body 6 used in the interdigital magnetic shield of the present invention be made of a directional magnetic material made of a directional silicon steel sheet or the like having a magnetic permeability in the longitudinal direction larger than the magnetic permeability in the cross-sectional direction. Was found to be suitable. In the embodiment of FIGS. 1 and 8, a strip-shaped magnetic body 5 made of a directional silicon steel sheet is used, and the magnetic permeability in the magnetic field direction can be increased as compared with that of a non-oriented silicon steel sheet. It was confirmed that it could be obtained. It was also confirmed that the same shielding effect was obtained for Permalloy and an equivalent magnetic material.

【0026】図12は、本発明で使用する有限長磁性体
6の各種断面形状を示す。図中(A)は十字型断面、
(B)はY字型断面、(C)は円形断面、(D)は中空
円形断面、(E)は方形(矩形)断面、(F)は中空方
形(矩形)断面、(G)は星形断面、(H)はH字型断
面、(I)はI字型断面、(J)はT字型断面、(K)
は半円形断面、(L)は三角形断面、(M)は渦巻き形
断面、(N)は内部に多層空間を有する円形断面、
(O)は内部に多層空間を有する方形断面を、それぞれ
示す。本発明のすだれ型磁気シールド方法及び装置は、
上記図(A)乃至(O)の何れ断面形状の有限長磁性体
6によっても所期の効果を奏する。また、本発明におけ
る有限長磁性体6の断面形状は、図示例のものに限定さ
れない。
FIG. 12 shows various cross-sectional shapes of the finite magnetic body 6 used in the present invention. (A) in the figure is a cross-shaped cross section,
(B) is a Y-shaped cross section, (C) is a circular cross section, (D) is a hollow circular cross section, (E) is a square (rectangular) cross section, (F) is a hollow rectangular (rectangular) cross section, and (G) is a star. Shape section, (H) is H-shaped section, (I) is I-shaped section, (J) is T-shaped section, (K)
Is a semicircular cross section, (L) is a triangular cross section, (M) is a spiral cross section, (N) is a circular cross section having a multilayer space inside,
(O) shows rectangular cross sections each having a multilayer space inside. The intermittent magnetic shield method and apparatus of the present invention include:
The desired effect is exhibited by the finite length magnetic body 6 having any of the cross-sectional shapes shown in FIGS. Further, the cross-sectional shape of the finite-length magnetic body 6 in the present invention is not limited to the illustrated example.

【0027】図13は、図1の短冊形磁性体6の異なる
実施例の全体形状の模式図である。図中、(A)は単純
短冊型、(B)は中膨らみ型、(C)は穴あき短冊断、
(D)は針型、(E)は三角型、(F)は湾曲短冊型、
(G)は屈曲短冊型、(H)はアングル部材型、(I)
は捻り短冊型、(J)は螺旋型を、それぞれ示す。図1
3の(K)は回転台形の有限長磁性体、(L)は異径鉄
筋状の有限長磁性体を、それぞれ示す。
FIG. 13 is a schematic view of the overall shape of a different embodiment of the strip-shaped magnetic body 6 of FIG. In the figure, (A) is a simple strip type, (B) is a middle swelling type, (C) is a perforated strip cut,
(D) is a needle type, (E) is a triangular type, (F) is a curved strip type,
(G) is a bent strip type, (H) is an angle member type, (I)
Indicates a twisted strip type, and (J) indicates a spiral type. FIG.
3 (K) shows a rotating trapezoidal finite length magnetic body, and (L) shows a finite length magnetic body having a different diameter rebar.

【0028】図14は、本発明のすだれ状配列の有限長
磁性体6を、磁気シールド壁、床又は建具に組込む態様
の説明図である。図中、(A)は有限長磁性体を組込ん
だドア、(B)は有限長磁性体を組込んだ間仕切りパネ
ル、(C)は有限長磁性体を埋め込んだ天井吊下げダク
ト、(D)は例えば極細短冊の有限長磁性体をすだれ状
に組込んだディスプレイ画面又はディスプレイカバー、
(E)は有限長磁性体を組込んだ窓ブラインドを、それ
ぞれ示す。
FIG. 14 is an explanatory view of a mode in which the finite-length magnetic bodies 6 of the interdigital arrangement according to the present invention are incorporated into a magnetic shield wall, a floor or a fitting. In the figure, (A) is a door incorporating a finite-length magnetic material, (B) is a partition panel incorporating a finite-length magnetic material, (C) is a ceiling hanging duct incorporating a finite-length magnetic material, (D) ) Is, for example, a display screen or display cover incorporating a finite-length magnetic material of an ultra-thin strip in an interdigital shape,
(E) shows window blinds each incorporating a finite-length magnetic body.

【0029】図15は本発明の有限長磁性体6によるす
だれ状配列の各種態様を示し、同図(B)は穴明き短冊
型磁性体の列による電線対の磁気シールド、(C)は2
列の短冊型磁性体群により電線対を挟んだ磁気シールド
を示す。同図(B)に示すように、有限長磁性体を矩形
横断面の短冊形とし、各有限長磁性体の一定位置に貫通
孔を穿ち、前記有限長磁性体の群中の各有限長磁性体を
前記貫通孔で位置合わせし、電線を前記有限長磁性体の
位置合わせした前記貫通孔に挿通することにより、電線
の磁気シールド装置とすることができる。
FIGS. 15A and 15B show various modes of the interdigital arrangement by the finite length magnetic body 6 of the present invention. FIG. 15B shows a magnetic shield of a wire pair by a row of perforated strip-shaped magnetic bodies, and FIG. 2
The magnetic shield which sandwiched the electric wire pair by the strip-shaped magnetic substance group of a row is shown. As shown in FIG. 3B, the finite length magnetic body is formed in a rectangular shape with a rectangular cross section, and a through hole is formed at a predetermined position of each finite length magnetic body. By aligning the body with the through hole and inserting the electric wire through the aligned through hole of the finite-length magnetic body, a magnetic shield device for the electric wire can be obtained.

【0030】図15(A)は、有限長磁性体を組込んだ
幕部材による磁気シールド型テントの概念図であり、同
図の磁気シールド型テントを作るためには、本発明のす
だれ型磁気シールド装置用の有限長磁性体を、すだれ状
に組込んだ又は織り込んだ布、フィルム、又は紙などの
柔軟性のある幕とする。
FIG. 15A is a conceptual diagram of a magnetic shield type tent using a curtain member incorporating a finite length magnetic material. In order to make the magnetic shield type tent of FIG. A flexible curtain such as cloth, film, or paper in which a finite-length magnetic body for a shield device is interwoven or woven into an interdigitated shape.

【0031】また図15(D)は多数の中空環状磁性体
の中空部に電線を貫通させた磁気シールドであり、有限
長磁性体の群中の各有限長磁性体を中央に貫通孔が穿た
れた方形磁性体板とし、前記方形磁性体板を前記貫通孔
で位置合わせし且つ前記隣接磁性体間間隙を介して並
べ、電線を前記有限長磁性体の位置合わせした前記貫通
孔に挿通したものである。同図(E)は有限長磁性体6
を利用したケーブルの被覆又は蛇腹を示し、中央に環通
孔が穿たれた円環状断面の磁性版が、同図(D)のよう
にケーブルの長さ方向に沿って並べられている。更に同
図(F)は両端を折曲げた有限長磁性体の列によるケー
ブル・ダクトの磁気シールドを示す。同図はケーブル・
ダクトの一断面を示し、この断面を同図(D)のように
ケーブルの長さ方向に沿って並べることにより長い磁気
シールドダクトを形成することができる。
FIG. 15D shows a magnetic shield in which an electric wire is passed through a hollow portion of a large number of hollow annular magnetic bodies, and a through hole is formed at the center of each finite length magnetic body in the group of finite length magnetic bodies. A rectangular magnetic plate was placed, and the rectangular magnetic plates were aligned with the through holes and arranged through the gap between the adjacent magnetic materials, and an electric wire was inserted into the through holes where the finite length magnetic material was aligned. Things. FIG. 7E shows a finite-length magnetic body 6.
FIG. 2D shows a cable covering or bellows, and magnetic plates having an annular cross section with a ring through hole formed in the center are arranged along the length direction of the cable as shown in FIG. FIG. 5F shows a magnetic shield of a cable duct formed by a row of a finite length magnetic body having both ends bent. The figure shows the cable
A long magnetic shield duct can be formed by showing one section of the duct and arranging this section along the length direction of the cable as shown in FIG.

【0032】図16は、磁気シールドの目的に供する短
冊形磁性体のすだれ状配列の他の態様を示す。図中、
(A)は平行に並べた同一形状の短冊型磁性体の列の二
つを相互に櫛状に噛合わせる配列態様、(B)は広い幅
の短冊型磁性体の列と狭い幅の短冊型磁性体の列とを相
互に櫛状に噛合わせる配列態様、(C)は同一形状の短
冊型磁性体を平行に並べた一つの列と同様に同一形状の
短冊型磁性体を平行に並べた他の列とを相互に直角に隣
接させた配列態様、(D)は可撓性幕体の両面に平行に
並べた同一形状の短冊型磁性体の二つの列をそれぞれ取
付けた配列態様、(E)は平行に並べた同一形状の短冊
型磁性体の列の両側面に可撓性幕体が取付けられた配列
態様を、それぞれ示す。
FIG. 16 shows another embodiment of the interdigital arrangement of the strip-shaped magnetic bodies for the purpose of the magnetic shield. In the figure,
(A) is an arrangement in which two rows of strip-shaped magnetic bodies of the same shape arranged in parallel are interdigitated with each other in a comb shape, and (B) is a row of strip-shaped magnetic bodies having a wide width and a strip having a narrow width. An arrangement mode in which the rows of magnetic bodies are interdigitated with each other in a comb shape, (C) shows strip-shaped magnetic bodies of the same shape arranged in parallel like one row in which strip-shaped magnetic bodies of the same shape are arranged in parallel. An arrangement mode in which the other rows are adjacent to each other at right angles, (D) is an arrangement mode in which two rows of strip-shaped magnetic bodies of the same shape arranged in parallel on both sides of the flexible curtain are attached, respectively. E) shows an arrangement mode in which flexible curtains are attached to both side surfaces of a row of strip-shaped magnetic bodies of the same shape arranged in parallel.

【0033】図17は、磁気暗室(磁気シールド室)を
短冊形磁性体利用の壁面により構成する方法の説明図で
ある。図中、(A)は垂直に並べた同一形状の短冊型磁
性体の列を外側に設けた周囲壁を持つ磁気暗室、(B)
は垂直に並べた同一形状の短冊型磁性体の列を内側及び
外側に設けた周囲壁を持つ磁気暗室、(C)は同一形状
の短冊型磁性体を平行に並べた一つの列と同様に同一形
状の短冊型磁性体を平行に並べた他の列とを周囲壁の内
側及び外側に相互に直角に取付けた磁気暗室、(D)は
水平に並べた同一形状の短冊型磁性体の列を外側に設け
た周囲壁を持つ磁気暗室、(E)は平行に並べた同一形
状の短冊型磁性体の列により全周囲壁を磁気シールドし
た磁気暗室を、それぞれ示す。
FIG. 17 is an explanatory diagram of a method of forming a magnetic dark room (magnetic shield room) with a wall using a strip-shaped magnetic material. In the figure, (A) is a magnetic dark room having a peripheral wall in which rows of strip-shaped magnetic bodies of the same shape vertically arranged are provided outside, (B)
Is a magnetic dark room having a peripheral wall provided on the inner side and the outer side with rows of strip-shaped magnetic bodies of the same shape arranged vertically, and (C) shows the same as a row of strip-shaped magnetic bodies of the same shape arranged in parallel. A magnetic dark room in which other rows in which strip-shaped magnetic bodies of the same shape are arranged in parallel are attached to the inside and outside of the peripheral wall at right angles to each other, and (D) is a row of strip-shaped magnetic bodies of the same shape arranged horizontally. (E) shows a magnetic dark room having a peripheral wall provided outside, and (E) shows a magnetic dark room in which the entire peripheral wall is magnetically shielded by rows of strip-shaped magnetic bodies of the same shape arranged in parallel.

【0034】また図17(F)は複数の垂直短冊型磁性
体が相互に間隔を隔てて水平直交メッシュの交点をそれ
ぞれ通るように配列した流路を、図17(G)は中心軸
線に沿う中空部の周囲に相互に間隔を隔てて放射状に取
付けた複数の短冊型磁性体を有する流路をそれぞれ示
す。
FIG. 17 (F) shows a flow path in which a plurality of vertical strip-shaped magnetic bodies are arranged so as to pass through the intersections of the horizontal orthogonal meshes at an interval from each other, and FIG. 17 (G) is along the center axis. The flow paths each having a plurality of strip-shaped magnetic bodies radially attached around the hollow portion at intervals from each other are shown.

【0035】本発明のすだれ型磁気シールド方法は、土
木関係、建築関係その他の技術分野に広く適用可能であ
る。土木分野では、鉄道の防音壁、床版、ボックスカル
バート、型枠リブ、駅舎、き電線カバー等に磁気シール
ド機能を付与する場合、共同溝などの地下送電線に磁気
シールド機能を付与する場合等への適用が期待できる。
また建築分野では、例えば病院におけるMRIやSQU
ID、半導体工場におけるEB装置や電子顕微鏡、研究
所における電子顕微鏡やNMR等の施設内への外乱磁場
を遮蔽するための磁気シールド(受動的シールド)、例
えば研究所における加速器や核融合等の強磁場施設、変
電所におけるモータやトランス、オフィスにおける電機
室、その他の施設から外部への磁場漏洩を防止する磁気
シールド(能動的シールド)、建築物のコンピュータル
ームや電機室などの磁気シールド壁やスラブ等への応用
が期待できる。ディスプレイカバー等の機器部材として
の利用も期待でき、吸音材等と組み合わせた防音・磁気
シールド壁等のハイブリッド型の建具への応用も期待で
きる。
The intermittent magnetic shield method of the present invention can be widely applied to civil engineering, construction and other technical fields. In the civil engineering field, when applying a magnetic shielding function to railway noise barriers, floor slabs, box culverts, formwork ribs, station buildings, feeder wire covers, etc., or when adding a magnetic shielding function to underground transmission lines such as common trenches, etc. It can be expected to be applied to
In the field of construction, for example, MRI and SQUA in hospitals
Magnetic shields (passive shields) for shielding disturbing magnetic fields into facilities such as IDs, EB devices and electron microscopes in semiconductor factories, electron microscopes and NMR in laboratories, and strong magnetic shields (eg, accelerators and nuclear fusion in laboratories). Magnetic shields (active shields) to prevent magnetic fields from leaking from magnetic fields facilities, motors and transformers in substations, electrical rooms in offices, and other facilities, and magnetic shield walls and slabs in computer rooms and electrical rooms in buildings It can be expected to be applied to such applications. It can be expected to be used as an equipment member such as a display cover, and can be expected to be applied to a hybrid type fitting such as a soundproof / magnetic shield wall combined with a sound absorbing material.

【0036】[0036]

【発明の効果】以上詳細に説明したように、本発明のす
だれ型磁気シールド方法又は装置は、間隔を隔てて複数
の有限長磁性体をすだれ状に配置するので、次の顕著な
効果を奏する。
As described in detail above, the intermittent magnetic shield method or apparatus according to the present invention has the following remarkable effects since a plurality of finite-length magnetic bodies are arranged in an interdigital manner at intervals. .

【0037】(イ)通気性がよい磁気シールドを与え、
温度上昇による材料及び機器の劣化を防止できる。 (ロ)磁気シールド装置に透視性を与え、磁気シールド
を施した機器の保守・管理の容易化を図ることができ
る。 (ハ)短冊型磁性体をブラインド状に可変角度で設けた
磁気シールド装置とし、通気性及び透視性の調節が可能
な磁気遮蔽を実現することができる。 (ニ)有限長磁性体間に設ける所定間隔に相当する磁性
材料の節減が可能になる。 (ホ)所要のシールドレベルに応じ、材料使用量を最適
化した経済的設計が可能になる。
(A) A magnetic shield having good air permeability is provided.
It is possible to prevent deterioration of materials and equipment due to temperature rise. (B) The magnetic shield device can be made transparent so that maintenance and management of the magnetically shielded device can be facilitated. (C) A magnetic shield device in which a strip-shaped magnetic body is provided in a blind manner at a variable angle can realize a magnetic shield capable of adjusting air permeability and transparency. (D) It is possible to reduce the amount of the magnetic material corresponding to a predetermined interval provided between the finite-length magnetic bodies. (E) Economical design that optimizes the amount of material used according to the required shield level becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明の磁気シールド方法の一実施例の説
明図である。
FIG. 1 is an explanatory diagram of one embodiment of a magnetic shield method according to the present invention.

【図2】は、本発明の磁気シールド装置の一実施例の説
明図である。
FIG. 2 is an explanatory diagram of one embodiment of the magnetic shield device of the present invention.

【図3】は、ピッチが異なる有限長磁性体の群を用いた
本発明のシールド効果を示すグラフである。
FIG. 3 is a graph showing a shielding effect of the present invention using a group of finite-length magnetic bodies having different pitches.

【図4】は、磁気センサの高さを変えた場合の本発明の
シールド効果を示すグラフである。
FIG. 4 is a graph showing the shielding effect of the present invention when the height of the magnetic sensor is changed.

【図5】は、磁気シールド板の外周周縁のシールド効果
を確認する実験1の説明図である。
FIG. 5 is an explanatory diagram of an experiment 1 for confirming a shielding effect of a peripheral edge of a magnetic shield plate.

【図6】は、図5の周縁磁気シールド効果を示すグラフ
の一例である。
FIG. 6 is an example of a graph showing the peripheral magnetic shield effect of FIG. 5;

【図7】は、空隙のある磁気シールド板の磁気シールド
効果を確認する実験2の説明図である。
FIG. 7 is an explanatory diagram of an experiment 2 for confirming a magnetic shielding effect of a magnetic shielding plate having a gap.

【図8】は、図7の磁気シールド効果を示すグラフの一
例である。
FIG. 8 is an example of a graph showing the magnetic shield effect of FIG. 7;

【図9】は、短冊形磁性体の矩形断面の長辺を電流と平
行に配置した実施例の説明図である。
FIG. 9 is an explanatory view of an embodiment in which the long sides of the rectangular cross section of the strip-shaped magnetic body are arranged in parallel with the current.

【図10】は、図9の実施例のシールド効果を示すグラ
フの一例である。
FIG. 10 is an example of a graph showing the shielding effect of the embodiment of FIG. 9;

【図11】は、従来の電車線路における磁気シールドの
説明図である。
FIG. 11 is an explanatory diagram of a magnetic shield in a conventional train line.

【図12】は、有限長磁性体の各種断面形状を示す図で
ある。
FIG. 12 is a view showing various cross-sectional shapes of a finite-length magnetic body.

【図13】は、短冊形磁性体の各種立体形状を示す図で
ある。
FIG. 13 is a view showing various three-dimensional shapes of a strip-shaped magnetic body.

【図14】は、壁、床又は建具に有限長磁性体を組込む
態様の説明図である。
FIG. 14 is an explanatory diagram of a mode in which a finite length magnetic body is incorporated into a wall, a floor, or a fitting.

【図15】は、有限長磁性体を用いた電線用磁気シール
ドの説明図である。
FIG. 15 is an explanatory diagram of a magnetic shield for electric wires using a finite-length magnetic body.

【図16】は、短冊形磁性体の各種取付け態様を示す図
である。
FIG. 16 is a view showing various mounting modes of a strip-shaped magnetic body.

【図17】は、短冊形磁性体を用いた磁気暗室の壁面を
示す図である。
FIG. 17 is a diagram showing a wall surface of a magnetic dark room using a strip-shaped magnetic body.

【符号の説明】[Explanation of symbols]

1…電流担体 2…磁気シールド板 3…測定ライン 4…磁気センサ 5…短冊形磁性体 6…有限長磁性体 7…枠体 8…磁気シールド装置 10…電車線路 11…き電線 12…トロリー線 13…レール 14…高架橋 15…変電所 16…電源装置 17…電車 21…往路ケーブル 22…復路ケーブル 23…磁気シールド性ダクト。 DESCRIPTION OF SYMBOLS 1 ... Current carrier 2 ... Magnetic shield plate 3 ... Measurement line 4 ... Magnetic sensor 5 ... Strip magnetic body 6 ... Finite length magnetic body 7 ... Frame 8 ... Magnetic shield device 10 ... Train line 11 ... Feeding wire 12 ... Trolley wire 13 ... rail 14 ... viaduct 15 ... substation 16 ... power supply 17 ... train 21 ... outbound cable 22 ... return cable 23 ... magnetic shield duct.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】有限長磁性体の群を磁界内にすだれ状に並
べ、前記各磁性体の横断面の面積(Sm)と該磁性体の
比透磁率μsとの積(Sm・μs)に対する隣接磁性体間
間隙の断面積(Sa)の割合を(Sm・μs)/Sa>1に
なるように選び、前記すだれ状に並べた磁性体群の対向
面間に磁束密度減衰を生じさせてなるすだれ型磁気シー
ルド方法。
1. A group of finite-length magnetic bodies arranged in an interdigitated manner in a magnetic field, and a group (Sm · μs) of a cross-sectional area (Sm) of each magnetic body and a relative magnetic permeability μs of the magnetic body. The ratio of the cross-sectional area (Sa) of the gap between the adjacent magnetic bodies is selected so as to satisfy (Sm · μs) / Sa> 1, and the magnetic flux density attenuation occurs between the opposing surfaces of the group of magnetic bodies arranged in an interdigitated manner. Naruto blind magnetic shield method.
【請求項2】請求項1のシールド方法において、有限長
磁性体の長さ方向を、前記磁界の磁力線の方向と実質上
平行にしてなるすだれ型磁気シールド方法。
2. The method of claim 1, wherein the length direction of the finite length magnetic body is substantially parallel to the direction of the magnetic field lines of the magnetic field.
【請求項3】請求項1又は2のシールド方法において、
前記有限長磁性体を、長手方向透磁率が横断面方向透磁
率より大きい方向性磁性材料製としてなるすだれ型磁気
シールド方法。
3. The shielding method according to claim 1, wherein
An interdigital magnetic shield method, wherein the finite-length magnetic body is made of a directional magnetic material having a magnetic permeability in a longitudinal direction greater than a magnetic permeability in a cross-sectional direction.
【請求項4】請求項1−3の何れかのシールド方法にお
いて、前記有限長磁性体を横断面が矩形又は円形の短冊
形としてなるすだれ型磁気シールド方法。
4. The method according to claim 1, wherein the finite-length magnetic body has a rectangular or circular rectangular cross section.
【請求項5】請求項4のシールド方法において、前記有
限長磁性体の矩形横断面の長短二辺中の何れか一方を、
前記すだれ状に並べる向きに対し所定の角度だけ傾斜さ
せてなるすだれ型磁気シールド方法。
5. The shielding method according to claim 4, wherein one of two long and short sides of the rectangular cross section of the finite length magnetic body is:
A screen-type magnetic shield method in which the screen is inclined by a predetermined angle with respect to the direction in which the screens are arranged in a screen.
【請求項6】請求項4のシールド方法において、前記有
限長磁性体の矩形横断面の長短二辺中の何れか一方を、
一つおきの前記有限長磁性体ごとに前記すだれ状に並べ
る向きに対し平行にし、残余の前記有限長磁性体ごとに
前記すだれ状に並べる向きに対し直角にしてなるすだれ
型磁気シールド方法。
6. The shielding method according to claim 4, wherein one of two long and short sides of the rectangular cross section of the finite length magnetic body is:
An interdigitated magnetic shield method in which every other finite length magnetic body is parallel to the interdigitated direction and is perpendicular to the interdigitated direction for the remaining finite length magnetic substances.
【請求項7】すだれ状に並べた有限長磁性体の群を備え
てなり、前記各磁性体の横断面の面積(Sm)と該磁性
体の比透磁率μsとの積(Sm・μs)に対する隣接磁性
体間間隙の断面積(Sa)の割合を(Sm・μs)/Sa>
1になるように選び、磁界内に設置された時に前記すだ
れ状磁性体群の対向面間に磁束密度減衰を生じるすだれ
型磁気シールド装置。
7. A magnetic recording medium comprising a group of finite-length magnetic bodies arranged in an interdigitated manner, wherein a product (Sm · μs) of an area (Sm) of a cross section of each magnetic body and a relative magnetic permeability μs of the magnetic body. The ratio of the cross-sectional area (Sa) of the gap between adjacent magnetic materials to (Sm · μs) / Sa>
And a magnetic intermittent shield device which causes magnetic flux density attenuation between opposing surfaces of the interdigital magnetic body group when installed in a magnetic field.
【請求項8】請求項7のシールド装置において、前記有
限長磁性体を長手方向透磁率が横方向透磁率より大きい
方向性磁性材料製としてなるすだれ型磁気シールド装
置。
8. The intermittent magnetic shield device according to claim 7, wherein said finite length magnetic body is made of a directional magnetic material having a magnetic permeability in a longitudinal direction larger than a magnetic permeability in a lateral direction.
【請求項9】請求項7又は8のシールド装置において、
前記有限長磁性体を矩形横断面の短冊形とし、その矩形
横断面の長短二辺中の何れか一方を、前記すだれ状に並
べる向きに対し所定の角度だけ傾斜させてなるすだれ型
磁気シールド装置。
9. The shield device according to claim 7, wherein
A screen-shaped magnetic shield device in which the finite-length magnetic body is formed in a rectangular shape with a rectangular cross section, and one of two long and short sides of the rectangular cross section is inclined at a predetermined angle with respect to the direction in which the screens are arranged in a screen. .
【請求項10】請求項7又は8のシールド装置におい
て、前記有限長磁性体の群中の各有限長磁性体を中央に
貫通孔が穿たれた方形磁性体板とし、前記方形磁性体板
を前記貫通孔で位置合わせし且つ前記隣接磁性体間間隙
を介して並べ、電線を前記有限長磁性体の位置合わせし
た前記貫通孔に挿通してなる電線のすだれ型磁気シール
ド装置。
10. The shield device according to claim 7, wherein each of the finite-length magnetic members in the group of finite-length magnetic members is a rectangular magnetic plate having a through hole formed at the center thereof, and the rectangular magnetic plate is formed as a rectangular magnetic plate. An interdigitated magnetic shield device for an electric wire, wherein the electric wire is aligned in the through hole and arranged through the gap between the adjacent magnetic bodies, and the electric wire is inserted into the aligned through hole in the finite length magnetic body.
【請求項11】請求項7又は8のシールド装置におい
て、前記有限長磁性体を矩形横断面の短冊形とし、各有
限長磁性体の一定位置に貫通孔を穿ち、前記有限長磁性
体の群中の各有限長磁性体を前記貫通孔で位置合わせ
し、電線を前記有限長磁性体の位置合わせした前記貫通
孔に挿通してなる電線のすだれ型磁気シールド装置。
11. The group of finite-length magnetic bodies according to claim 7, wherein the finite-length magnetic bodies are formed in a rectangular shape with a rectangular cross section, and a through hole is formed at a predetermined position of each finite-length magnetic body. An interdigitated magnetic shield device for an electric wire, wherein each of the finite-length magnetic bodies in the medium is aligned with the through-hole, and the electric wire is inserted into the through-hole aligned with the finite-length magnetic body.
【請求項12】請求項7又は8のシールド装置におい
て、前記有限長磁性体の群を、平行に並べた同一形状の
短冊型磁性体の列の二つを相互に櫛状に噛合わせて形成
してなるなるすだれ型磁気シールド装置。
12. A shield device according to claim 7, wherein said group of finite-length magnetic bodies is formed by mutually interdigitating two rows of strip-shaped magnetic bodies of the same shape arranged in parallel. A blind-type magnetic shield device that can be used.
【請求項13】請求項7又は8のシールド装置におい
て、前記有限長磁性体の群を、同一形状の短冊型磁性体
を平行に並べた一つの列と同様に同一形状の短冊型磁性
体を平行に並べた他の列とを相互に直角に隣接させて形
成してなるすだれ型磁気シールド装置。
13. The shield device according to claim 7 or 8, wherein the group of finite-length magnetic bodies is formed of a strip-shaped magnetic body having the same shape in the same manner as one row in which strip-shaped magnetic bodies having the same shape are arranged in parallel. An interdigitated magnetic shield device formed by adjoining other parallel rows at right angles to each other.
【請求項14】磁気暗室の各周囲壁の全面に、請求項7
の磁気シールド装置を設けてなる磁気暗室。
14. The method according to claim 7, wherein the entire surface of each peripheral wall of the magnetic dark room is provided.
A magnetic dark room equipped with a magnetic shield device.
【請求項15】磁気暗室の各周囲壁の全面に、同一形状
の短冊型磁性体を平行に並べた一つの列と同様に同一形
状の短冊型磁性体を平行に並べた他の列とを相互に直角
に隣接させて前記有限長磁性体の群を形成した請求項1
3の磁気シールド装置を設けてなる磁気暗室。
15. A row in which strip-shaped magnetic bodies of the same shape are arranged in parallel, and another row in which strip-shaped magnetic bodies of the same shape are arranged in parallel, on the entire surface of each peripheral wall of the magnetic dark room. 2. The group of finite-length magnetic bodies formed adjacent to each other at right angles to each other.
A magnetic dark room provided with the magnetic shield device of No. 3.
JP2000360033A 2000-11-27 2000-11-27 Interdigital transducer method and panel, and magnetic darkroom Expired - Lifetime JP3633475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000360033A JP3633475B2 (en) 2000-11-27 2000-11-27 Interdigital transducer method and panel, and magnetic darkroom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000360033A JP3633475B2 (en) 2000-11-27 2000-11-27 Interdigital transducer method and panel, and magnetic darkroom

Publications (3)

Publication Number Publication Date
JP2002164686A true JP2002164686A (en) 2002-06-07
JP3633475B2 JP3633475B2 (en) 2005-03-30
JP2002164686A5 JP2002164686A5 (en) 2005-05-26

Family

ID=18831693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000360033A Expired - Lifetime JP3633475B2 (en) 2000-11-27 2000-11-27 Interdigital transducer method and panel, and magnetic darkroom

Country Status (1)

Country Link
JP (1) JP3633475B2 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004084603A1 (en) * 2003-03-17 2004-09-30 Kajima Corporation Open magnetic shield structure and its magnetic frame
WO2005026462A1 (en) * 2003-09-12 2005-03-24 Nippon Steel Corporation Magnetic shield panel
JP2006014401A (en) * 2004-06-22 2006-01-12 Nittetsu Steel Sheet Corp Cable duct
JP2006032433A (en) * 2004-07-12 2006-02-02 Nippon Steel Corp Magnetic shielding apparatus
WO2006054414A1 (en) * 2004-11-16 2006-05-26 Nabtesco Corporation Magnetic shield door and magnetic shield room
JP2006269662A (en) * 2005-03-23 2006-10-05 Nippon Steel Corp Magnetic shield wall and magnetic shield room
JP2006351598A (en) * 2005-06-13 2006-12-28 Kajima Corp Magnetic-shield blind and its linking structure
JP2007035767A (en) * 2005-07-25 2007-02-08 Kajima Corp Joining structure of translucent electromagnetic shield plate, and joining tool
JP2007149822A (en) * 2005-11-25 2007-06-14 Nippon Steel Corp Magnetic shield device
WO2007074690A1 (en) * 2005-12-28 2007-07-05 Kajima Corporation Blade material for magnetic shield and louver body for magnetic shielding
JP2009111032A (en) * 2007-10-26 2009-05-21 Nippon Steel Engineering Co Ltd Designing device for magnetic shield device, designing method of magnetic shield device, and computer program
JP2009131359A (en) * 2007-11-29 2009-06-18 Nippon Steel Engineering Co Ltd Magnetic shielding apparatus and magnetic shielding system
US7728311B2 (en) 2005-11-18 2010-06-01 Still River Systems Incorporated Charged particle radiation therapy
JP2010153657A (en) * 2008-12-25 2010-07-08 Tokyu Construction Co Ltd Magnetic shield structure and magnetic shield joint
EP2217049A1 (en) * 2007-11-19 2010-08-11 Takenaka Corporation Magnetic shield body and magnetic shield room
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8952634B2 (en) 2004-07-21 2015-02-10 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US9155186B2 (en) 2012-09-28 2015-10-06 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
US9185789B2 (en) 2012-09-28 2015-11-10 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
US9723705B2 (en) 2012-09-28 2017-08-01 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US10258810B2 (en) 2013-09-27 2019-04-16 Mevion Medical Systems, Inc. Particle beam scanning
US10646728B2 (en) 2015-11-10 2020-05-12 Mevion Medical Systems, Inc. Adaptive aperture
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
KR20220033868A (en) 2020-09-10 2022-03-17 한국전력공사 Structure for shielding magnetic field having dissimilar composite material
US11291861B2 (en) 2019-03-08 2022-04-05 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101489238B1 (en) 2012-09-07 2015-02-04 한국전력공사 Shielding apparatus for magnetic field

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1605742A4 (en) * 2003-03-17 2010-03-03 Kajima Corp Open magnetic shield structure and its magnetic frame
KR101080052B1 (en) 2003-03-17 2011-11-07 신닛떼쯔 엔지니어링 가부시끼가이샤 Open magnetic shield structure and its magnetic frame
EP1605742A1 (en) * 2003-03-17 2005-12-14 Kajima Corporation Open magnetic shield structure and its magnetic frame
US7964803B2 (en) 2003-03-17 2011-06-21 Nippon Steel Corporation Magnetic shield structure having openings and a magnetic material frame therefor
WO2004084603A1 (en) * 2003-03-17 2004-09-30 Kajima Corporation Open magnetic shield structure and its magnetic frame
JP4679519B2 (en) * 2003-09-12 2011-04-27 新日本製鐵株式会社 Magnetic shield panel
US7589285B2 (en) 2003-09-12 2009-09-15 Nippon Steel & Sumikin Coated Sheet Corporation Magnetic shield panel
WO2005026462A1 (en) * 2003-09-12 2005-03-24 Nippon Steel Corporation Magnetic shield panel
JP2007505241A (en) * 2003-09-12 2007-03-08 新日本製鐵株式会社 Magnetic shield panel
JP2006014401A (en) * 2004-06-22 2006-01-12 Nittetsu Steel Sheet Corp Cable duct
JP4658528B2 (en) * 2004-06-22 2011-03-23 日鉄住金鋼板株式会社 Duct for cable
JP2006032433A (en) * 2004-07-12 2006-02-02 Nippon Steel Corp Magnetic shielding apparatus
USRE48047E1 (en) 2004-07-21 2020-06-09 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US8952634B2 (en) 2004-07-21 2015-02-10 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US7501588B2 (en) 2004-11-16 2009-03-10 Nabtesco Corporation Magnetic shielding door and magnetic shielding room
JP4602053B2 (en) * 2004-11-16 2010-12-22 ナブテスコ株式会社 Magnetic shield door and magnetic shield room
JP2006147669A (en) * 2004-11-16 2006-06-08 Nabtesco Corp Magnetic shielding door and magnetic shielding chamber
WO2006054414A1 (en) * 2004-11-16 2006-05-26 Nabtesco Corporation Magnetic shield door and magnetic shield room
JP2006269662A (en) * 2005-03-23 2006-10-05 Nippon Steel Corp Magnetic shield wall and magnetic shield room
JP4605778B2 (en) * 2005-06-13 2011-01-05 鹿島建設株式会社 Magnetic shield housing and connection structure thereof
JP2006351598A (en) * 2005-06-13 2006-12-28 Kajima Corp Magnetic-shield blind and its linking structure
JP2007035767A (en) * 2005-07-25 2007-02-08 Kajima Corp Joining structure of translucent electromagnetic shield plate, and joining tool
US9452301B2 (en) 2005-11-18 2016-09-27 Mevion Medical Systems, Inc. Inner gantry
US10722735B2 (en) 2005-11-18 2020-07-28 Mevion Medical Systems, Inc. Inner gantry
US8344340B2 (en) 2005-11-18 2013-01-01 Mevion Medical Systems, Inc. Inner gantry
US10279199B2 (en) 2005-11-18 2019-05-07 Mevion Medical Systems, Inc. Inner gantry
US9925395B2 (en) 2005-11-18 2018-03-27 Mevion Medical Systems, Inc. Inner gantry
US7728311B2 (en) 2005-11-18 2010-06-01 Still River Systems Incorporated Charged particle radiation therapy
US8907311B2 (en) 2005-11-18 2014-12-09 Mevion Medical Systems, Inc. Charged particle radiation therapy
US8916843B2 (en) 2005-11-18 2014-12-23 Mevion Medical Systems, Inc. Inner gantry
JP2007149822A (en) * 2005-11-25 2007-06-14 Nippon Steel Corp Magnetic shield device
WO2007074690A1 (en) * 2005-12-28 2007-07-05 Kajima Corporation Blade material for magnetic shield and louver body for magnetic shielding
US8941083B2 (en) 2007-10-11 2015-01-27 Mevion Medical Systems, Inc. Applying a particle beam to a patient
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
JP2009111032A (en) * 2007-10-26 2009-05-21 Nippon Steel Engineering Co Ltd Designing device for magnetic shield device, designing method of magnetic shield device, and computer program
EP2217049A1 (en) * 2007-11-19 2010-08-11 Takenaka Corporation Magnetic shield body and magnetic shield room
EP2217049A4 (en) * 2007-11-19 2013-07-31 Takenaka Corp Magnetic shield body and magnetic shield room
US8531185B2 (en) 2007-11-19 2013-09-10 Takenaka Corporation Magnetic shield body and magnetic shielded room
JP2009131359A (en) * 2007-11-29 2009-06-18 Nippon Steel Engineering Co Ltd Magnetic shielding apparatus and magnetic shielding system
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8970137B2 (en) 2007-11-30 2015-03-03 Mevion Medical Systems, Inc. Interrupted particle source
USRE48317E1 (en) 2007-11-30 2020-11-17 Mevion Medical Systems, Inc. Interrupted particle source
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
JP2010153657A (en) * 2008-12-25 2010-07-08 Tokyu Construction Co Ltd Magnetic shield structure and magnetic shield joint
US9706636B2 (en) 2012-09-28 2017-07-11 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9155186B2 (en) 2012-09-28 2015-10-06 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
US9723705B2 (en) 2012-09-28 2017-08-01 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US10368429B2 (en) 2012-09-28 2019-07-30 Mevion Medical Systems, Inc. Magnetic field regenerator
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9185789B2 (en) 2012-09-28 2015-11-10 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
US10155124B2 (en) 2012-09-28 2018-12-18 Mevion Medical Systems, Inc. Controlling particle therapy
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
US10258810B2 (en) 2013-09-27 2019-04-16 Mevion Medical Systems, Inc. Particle beam scanning
US10456591B2 (en) 2013-09-27 2019-10-29 Mevion Medical Systems, Inc. Particle beam scanning
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US11717700B2 (en) 2014-02-20 2023-08-08 Mevion Medical Systems, Inc. Scanning system
US10434331B2 (en) 2014-02-20 2019-10-08 Mevion Medical Systems, Inc. Scanning system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US10646728B2 (en) 2015-11-10 2020-05-12 Mevion Medical Systems, Inc. Adaptive aperture
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US11786754B2 (en) 2015-11-10 2023-10-17 Mevion Medical Systems, Inc. Adaptive aperture
US11213697B2 (en) 2015-11-10 2022-01-04 Mevion Medical Systems, Inc. Adaptive aperture
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
US11291861B2 (en) 2019-03-08 2022-04-05 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor
US11311746B2 (en) 2019-03-08 2022-04-26 Mevion Medical Systems, Inc. Collimator and energy degrader for a particle therapy system
US11717703B2 (en) 2019-03-08 2023-08-08 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor
KR20220033868A (en) 2020-09-10 2022-03-17 한국전력공사 Structure for shielding magnetic field having dissimilar composite material

Also Published As

Publication number Publication date
JP3633475B2 (en) 2005-03-30

Similar Documents

Publication Publication Date Title
JP2002164686A (en) Method and device for reed screen type magnetic shielding
JP4347847B2 (en) Open type magnetic shield structure and magnetic body frame thereof
JP2002164686A5 (en)
US7589285B2 (en) Magnetic shield panel
JP4982171B2 (en) Magnetic shield body and magnetic shield room
JPH09172290A (en) Fluctuating magnetic field shielding technique
JP6022411B2 (en) Wide frequency compatible magnetic shield panel and structure
JP4260648B2 (en) Magnetic shield structure
JP4980171B2 (en) Magnetic shield room, magnetic shield panel
JP4605778B2 (en) Magnetic shield housing and connection structure thereof
JP2011082228A (en) Open type magnetic shielding structure and belt-like laminate magnetic plate for magnetic shielding
JP4368761B2 (en) Magnetic shield structure and magnetic shield panel on load receiving surface
EP0977474B1 (en) Shielding of low frequency electromagnetic fields
JP7072214B2 (en) Radio shield material, mortar, snow melting device, radio shield, and structure
JP2008223481A (en) Magnetic shield structure
CN109481870B (en) Quick fireproof mud blocking device and method for electrical control cabinet of transformer substation
JP5238367B2 (en) Magnetic shield structure
JP4395018B2 (en) Magnetic shield sash
JP3825287B2 (en) Social electromagnetic environment protection system
KR20150035663A (en) Ground structures for induced magentic current and cable trough having thereof
JP2003119924A (en) Magnetic reduction device and its method
JP2009046857A (en) Shield panel, shield panel connecting structure, shield wall body using them, shield room, and its construction method
JP2003258478A (en) Magnetic shielding structure
JP2008118083A (en) Magnetic fresnel plate structure
JP2000101286A (en) Magnetic shield room

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040728

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040728

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

R150 Certificate of patent or registration of utility model

Ref document number: 3633475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term