WO2012090541A1 - 多結晶シリコンインゴット鋳造用鋳型及びその製造方法並びに多結晶シリコンインゴット鋳造用鋳型の離型材用窒化珪素粉末及びそれを含有したスラリー - Google Patents

多結晶シリコンインゴット鋳造用鋳型及びその製造方法並びに多結晶シリコンインゴット鋳造用鋳型の離型材用窒化珪素粉末及びそれを含有したスラリー Download PDF

Info

Publication number
WO2012090541A1
WO2012090541A1 PCT/JP2011/067107 JP2011067107W WO2012090541A1 WO 2012090541 A1 WO2012090541 A1 WO 2012090541A1 JP 2011067107 W JP2011067107 W JP 2011067107W WO 2012090541 A1 WO2012090541 A1 WO 2012090541A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
nitride powder
mold
slurry
silicon
Prior art date
Application number
PCT/JP2011/067107
Other languages
English (en)
French (fr)
Inventor
猛 山尾
道夫 本田
慎輔 治田
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2012550747A priority Critical patent/JP5637220B2/ja
Priority to SG2013050331A priority patent/SG191412A1/en
Priority to EP11853890.9A priority patent/EP2660201B1/en
Priority to KR20137019821A priority patent/KR20130133820A/ko
Priority to CN201180062854.7A priority patent/CN103269975B/zh
Priority to US13/994,901 priority patent/US9022343B2/en
Publication of WO2012090541A1 publication Critical patent/WO2012090541A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/44Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
    • B29C33/54Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles made of powdered or granular material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C3/00Selection of compositions for coating the surfaces of moulds, cores, or patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/58Applying the releasing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0687After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a casting mold for polycrystalline silicon ingot, a manufacturing method thereof, a silicon nitride powder for a mold release material of a casting mold for polycrystalline silicon ingot, and a slurry containing the same.
  • Polycrystalline silicon is widely used as a kind of semiconductor substrate for forming solar cells, and its production volume is rapidly increasing year by year.
  • Such polycrystalline silicon is usually placed in a mold in which a release material is applied to the inner surface of a quartz crucible, a separable graphite crucible, or a quartz crucible built in a graphite crucible using a spray, a brush or a spatula. It is formed by pouring and solidifying a silicon melt heated and melted at a high temperature, or once melting a silicon raw material placed in a mold and then solidifying it again.
  • This release layer is important for preventing impurities from entering the silicon ingot, preventing adhesion of the molten silicon melt to the inner wall of the mold crucible, and releasing the solidified silicon ingot from the mold. Plays an important role.
  • this mold release material in general, high-purity powders such as silicon nitride, silicon carbide, silicon oxide, and mixed powders thereof are used because of their high melting point and low contamination to silicon ingots.
  • many researches and developments have been made on a method for forming a release material on the mold surface, a mold subjected to such treatment, and a method for producing a silicon ingot using this mold.
  • silicon nitride powder obtained by thermal decomposition of silicon diimide and fine silica powder are used as a release material, and amorphous on the surface of the silicon nitride particles inside the mold release layer (on the mold side).
  • Silicon formed from a first layer having a high silicon nitride ratio including a silica layer and a second layer in which particles are firmly bonded to each other by mixing fine silica powder on the outside (silicon ingot side) of the release layer A mold release layer of an ingot casting mold is described, and it is described that damage to the solidified silicon ingot and the mold at the time of mold release can be reduced by this mold release layer.
  • Patent Document 2 discloses that a release layer of a mixture base in which coarse fused silica sand is wrapped with silicon nitride powder suppresses the reaction between molten silicon and silica to improve the performance of a photovoltaic power generation battery. Are listed.
  • the second layer (the outer layer of the release layer) in which particles are firmly bonded by mixing fine silica powder has a high oxygen content, and silicon There is a high risk of solid solution with the liquid and sticking to the mold surface.
  • the release layer forming method described in Patent Document 1 it is necessary to prepare release material slurries having different silica concentrations, and there is almost no difference in the color of each slurry.
  • the present invention has been made in view of the above-described conventional problems, and it is possible to suppress the occurrence of chipping or breakage when the silicon ingot is fixed to the mold surface or when the solidified silicon ingot is released.
  • a manufacturing method thereof a silicon nitride powder for a mold release material of a polycrystalline silicon ingot casting mold, and a slurry containing the same.
  • the present inventors have used a silicon nitride powder having a different particle size as a raw material for the release layer, thereby eliminating chipping when releasing the solidified silicon ingot. It has been found that a high-quality silicon ingot can be obtained at a high yield while suppressing the occurrence of breakage. That is, the present invention comprises a silicon nitride powder (A) having an average minor axis particle diameter of 0.6 to 13 ⁇ m and a silicon nitride powder (B) having an average minor axis particle diameter of 0.1 to 0.3 ⁇ m.
  • the present invention relates to a method for producing a polycrystalline silicon ingot casting mold having a release layer.
  • the present invention also provides a silicon nitride powder (A) having an average minor axis particle diameter of 0.6 to 13 ⁇ m and a silicon nitride powder (B) having an average minor axis particle diameter of 0.1 to 0.3 ⁇ m.
  • the present invention relates to a silicon nitride powder for a mold release material for a casting mold for polycrystalline silicon ingot, characterized by being contained in a weight ratio of 5: 5 to 9: 1.
  • the present invention provides a silicon nitride powder-containing slurry for a mold release material of a casting mold for polycrystalline silicon ingot characterized by mixing the silicon nitride powder with water, and a release layer using the silicon nitride powder. Is a mold for casting a polycrystalline silicon ingot characterized by being formed on the inner surface of the mold.
  • high-quality silicon ingots can be obtained with high yield by suppressing the adhesion between the silicon ingot and the mold surface and the occurrence of chipping and breakage when releasing the solidified silicon ingot. It is possible to provide a mold for casting a polycrystalline silicon ingot, a method for producing the same, a silicon nitride powder for a mold release material of a mold for casting a polycrystalline silicon ingot, and a slurry containing the same.
  • the method for producing a casting mold for a polycrystalline silicon ingot having a release layer comprises a silicon nitride powder (A) having an average minor axis particle diameter of 0.6 to 13 ⁇ m and an average minor axis particle diameter of 0.1.
  • A silicon nitride powder
  • B silicon nitride powder-containing slurry prepared by mixing silicon nitride powder (B) of 1 to 0.3 ⁇ m in a weight ratio of 5: 5 to 9: 1 with water to the inside of the mold.
  • By utilizing the difference in moving speed depending on the particle size at the time of water absorption due to the capillary force of the mold fine particles that are easily oxidized are unevenly distributed inside the mold release layer (mold side) as shown in FIG.
  • the method for producing a mold for casting a polycrystalline silicon ingot having a release layer it is possible to produce a mold in which the release layer is formed at a low cost.
  • Low metal impurities, high density, excellent adhesion between the mold release layer and the mold, preventing penetration of the silicon melt due to cracks or breakage of the mold release layer, and solid solution reaction between the silicon melt and the mold release layer By preventing the occurrence of chipping and breakage when releasing the solidified silicon ingot, it is possible to obtain a high quality silicon ingot with a high yield. Can do.
  • the slurry forming step includes silicon nitride powder (A) having an average minor axis particle diameter of 0.6 to 13 ⁇ m, an average minor axis, and Silicon nitride powder (B) having a particle diameter of 0.1 to 0.3 ⁇ m is blended in a weight ratio of 5: 5 to 9: 1 to obtain silicon nitride powder, and then the silicon nitride powder is mixed with water. To make a slurry.
  • the average minor axis particle diameter indicates an average minor axis particle diameter calculated by dimensional measurement using an SEM image.
  • the average minor axis particle diameter calculated by dimensional measurement using the SEM image is a circle of 50 to 200 particles drawn on the SEM image of ⁇ 5000 times shown in FIG. 2, and the short diameter of all the particles in contact with this circle is drawn.
  • the average diameter is calculated by measuring the shaft diameter.
  • the SEM image of ⁇ 10000 magnification is magnified by 400%, and a circle is similarly measured using the copy image.
  • a circle is similarly measured using a SEM image of ⁇ 1000 magnification.
  • the silicon nitride powder used for the release layer is obtained by crystallizing and baking amorphous silicon nitride powder obtained by thermally decomposing a nitrogen-containing silane compound obtained by reacting silicon halide with ammonia.
  • the particle size and particle shape of the silicon nitride powder are controlled by controlling the crystallization rate by the thermal decomposition heating temperature and oxygen concentration when preparing the amorphous silicon nitride powder, and the temperature rise during the crystallization firing. It can be carried out by controlling the particle growth rate by speed.
  • the granular crystal of silicon nitride powder refers to particles that are hexagonal crystals and have an aspect ratio of 1.5 or less that are not needle-like crystals or columnar crystals.
  • the obtained amorphous silicon nitride powder is crushed to a state where it does not contain coarse aggregated particles having a particle size distribution of 50 ⁇ m or more measured by a laser diffraction scattering method so as to be crystallized and fired.
  • Prepare silicon nitride powder with uniform particle size by suppressing the generation of coarse particles, coarse aggregated particles, acicular crystal particles and fine aggregated particles due to abnormal crystal growth at the same time, and generation of particles with non-uniform particle size and particle size It becomes possible to do.
  • the silicon nitride powder prepared by the imide method is fine, and there is a process to lightly crush the agglomeration, but the media used for the crushing is a material in which metal spheres are coated with resin or silicon nitride sintered Since the body is used, the amount of metal impurities mixed is very small, only about a few ppm, and it becomes a powder suitable as a raw material for a mold release material for casting a polycrystalline silicon ingot. As described in Japanese Patent Application Laid-Open No. 2007-261832, the power generation efficiency of a solar cell is reduced by metal impurities contained in a silicon ingot, and it is said that the efficiency reduction due to mixing of polyvalent metals is particularly significant.
  • the imide method for example, methods described in Japanese Patent No. 2907366, Japanese Patent No. 2907367 and Japanese Patent No. 3282456 are preferable.
  • the direct nitriding method is a method in which after silicon metal is heat-treated in an atmosphere of nitrogen or ammonia, the obtained nitrided mass is pulverized and subjected to a purification treatment step to obtain silicon nitride powder.
  • silicon nitride powder is produced by direct nitriding, it takes time to pulverize the mass after nitriding, and a large amount of metal impurities are mixed in the grinding media. Even after the purification treatment, metal impurities of several hundred ppm or more remain.
  • the high-hardness material used for the grinding media contains many polyvalent metals such as Cr and W that are difficult to dissolve during the purification process using mineral acid, and remains in a large amount even after the purification process. Yes. For this reason, the imide method is superior as a method for obtaining the silicon nitride powder used in the present invention.
  • Silicon diimide (Si (NH) 2 ), silicon tetraamide, silicon nitrogen imide, silicon chlorimide and the like can be used as the nitrogen-containing silane compound which is a raw material in the production of the silicon nitride powder.
  • silicon halide such as silicon tetrachloride, silicon tetrabromide, and silicon tetraiodide with ammonia in a gas phase
  • reacting the liquid silicon halide with liquid ammonia It can obtain by the method of making it.
  • the amorphous silicon nitride powder can be obtained by a known method, for example, a method in which a nitrogen-containing silane compound is thermally decomposed at a temperature in the range of 1200 to 1460 ° C. in a nitrogen or ammonia gas atmosphere, silicon tetrachloride, silicon tetrabromide, It can be obtained by a method of reacting silicon halide such as silicon tetraiodide with ammonia at a high temperature.
  • the silicon nitride powder (A) used has an average minor axis particle diameter of 0.6 to 13 ⁇ m, preferably 0.7 to 12 ⁇ m.
  • the average minor axis particle diameter is less than 0.6 ⁇ m, the difference between the particle diameter and the silicon nitride powder (B) is small, the slurry containing the silicon nitride powder is applied, and when water is absorbed by the capillary force of the mold, It is not possible to unevenly distribute the particle size in the release layer using the difference in moving speed depending on the particle size.
  • the thermal decomposition temperature is lowered to less than 500 ° C., or the temperature is increased between 1100 and 1250 ° C. during crystallization firing without performing thermal decomposition. Since it is necessary to lower the temperature rate to less than 10 ° C./hr, the productivity is very poor and impractical.
  • the silicon nitride powder (A) having an average minor axis particle diameter of 0.6 to 13 ⁇ m can be obtained, for example, by an imide method, and is subjected to pyrolysis heating when preparing an amorphous silicon nitride powder during the production process. It can be prepared by adjusting the temperature, the oxygen concentration in the obtained amorphous silicon nitride powder, and the heating rate during crystallization firing.
  • the thermal decomposition heating temperature when preparing the amorphous silicon nitride powder is 500 ° C., and the oxygen concentration in the gas introduced during the thermal decomposition is 1 vol.
  • an amorphous silicon nitride powder that can lower the crystallization start temperature during crystallization firing and slow down the crystallization rate is used.
  • the amorphous silicon nitride powder is crushed to a state where it does not contain coarse aggregated particles having a particle size distribution of 50 ⁇ m or more measured by the laser diffraction scattering method.
  • the temperature rise rate between 1100 and 1250 ° C. is set to 10 ° C./hr, so that the growth of crystallized particles can proceed slowly and preparation becomes possible.
  • the pyrolysis heating temperature when preparing the amorphous silicon nitride powder is 500 to 800 ° C., and the gas introduced during the pyrolysis
  • An amorphous silicon nitride powder that can increase the crystallization start temperature during crystallization and increase the crystallization speed by setting the oxygen concentration therein to 1 to 2 vol% is used.
  • the amorphous silicon nitride powder is crushed to a state where it does not contain coarse aggregated particles having a particle size distribution of 50 ⁇ m or more measured by a laser diffraction scattering method.
  • the temperature rise rate between 1100 and 1250 ° C. is set to 50 ° C./hr or less, so that crystallized particle growth can be progressed slowly and can be prepared.
  • the thermal decomposition heating temperature when preparing the amorphous silicon nitride powder is high and the oxygen concentration in the obtained amorphous silicon nitride powder is high, the crystallization start temperature during crystallization firing is high, and the crystal When the crystallization speed is increased, crystallization is likely to proceed rapidly, and it becomes difficult to prepare silicon nitride powder having a uniform particle size.
  • the thermal decomposition heating temperature at the time of preparing the amorphous silicon nitride powder exceeds 800 ° C.
  • the crystallization firing is performed even when the temperature increase rate between 1100 to 1250 ° C. is 10 to 50 ° C./hr.
  • the average minor axis particle diameter of the post-powder tends to be smaller than 0.6 ⁇ m, and needle crystal grains and fine aggregated particles are generated due to the high crystallization speed, so that silicon nitride powder with uniform particle size can be prepared. It becomes difficult and not preferable.
  • the preparation of the silicon nitride powder (A) having an average minor axis particle diameter of 0.6 to 13 ⁇ m is performed by setting the pyrolysis heating temperature when preparing the amorphous silicon nitride powder to 500 to 800 ° C. and introducing the gas during the pyrolysis.
  • the oxygen concentration in the solution is 0.4-2 vol%, and the resulting amorphous silicon nitride powder does not contain coarse agglomerated particles with a particle size distribution of 50 ⁇ m or more measured by the laser diffraction scattering method. This can be achieved by crushing and adjusting the rate of temperature increase between 1100 and 1250 ° C. during crystallization and firing between 10 and 50 ° C./hr.
  • the silicon nitride powder (B) used has an average minor axis particle diameter of 0.1 to 0.3 ⁇ m, preferably 0.15 to 0.3 ⁇ m.
  • the average minor axis particle diameter exceeds 0.3 ⁇ m, the difference in particle diameter from the silicon nitride powder (A) is small, the slurry containing the silicon nitride powder is applied, and the particle size is reduced when water is absorbed by the capillary force of the mold. It is not possible to unevenly distribute the grain size in the release layer using the difference in moving speed due to.
  • Particles having an average minor axis particle diameter of less than 0.1 ⁇ m for example, raise the thermal decomposition temperature at the time of preparing amorphous silicon nitride powder from 1100 ° C., and the oxygen concentration in the gas introduced at the time of thermal decomposition is 5 vol% or more
  • the oxygen concentration in the amorphous silicon nitride powder obtained can be increased, the crystallization start temperature during crystallization firing can be increased, and the crystallization speed can be increased.
  • the silicon nitride powder (B) having an average minor axis particle diameter of 0.1 to 0.3 ⁇ m can be obtained, for example, by an imide method, and heat during preparation of the amorphous silicon nitride powder during the production process. It can be prepared by adjusting the decomposition heating temperature, the oxygen concentration in the obtained amorphous silicon nitride powder, and the heating rate during crystallization firing.
  • amorphous nitriding is performed by increasing the pyrolysis heating temperature when preparing the amorphous silicon nitride powder and increasing the oxygen concentration in the obtained amorphous silicon nitride powder.
  • Silicon powder is used as a raw material powder.
  • fine crystal particle powder can be obtained by increasing the crystallization speed.
  • volumetric particle size distribution measured by laser diffraction scattering method in amorphous silicon nitride powder.
  • the thermal decomposition temperature when preparing the amorphous silicon nitride powder is 1000 ° C.
  • the oxygen concentration in the gas introduced during the thermal decomposition is set to
  • an amorphous silicon nitride powder that can increase the crystallization start temperature during the crystallization firing and increase the crystallization speed is used.
  • the amorphous silicon nitride powder is crushed to a state where it does not contain coarse aggregated particles having a particle size distribution of 50 ⁇ m or more measured by a laser diffraction scattering method.
  • the temperature rise rate between 1100 and 1250 ° C. is set at 80 to 100 ° C./hr, so that the growth of crystallized particles proceeds rapidly while acicular crystal particles accompany abrupt crystallization.
  • the thermal decomposition temperature when preparing the amorphous silicon nitride powder is 800 to 900 ° C.
  • the oxygen concentration in the gas introduced during the thermal decomposition is 2
  • an amorphous silicon nitride powder that can increase the crystallization start temperature during crystallization and increase the crystallization speed is used.
  • the amorphous silicon nitride powder is crushed to a state where it does not contain coarse aggregated particles having a particle size distribution of 50 ⁇ m or more measured by a laser diffraction scattering method.
  • the temperature rise rate between 1100 and 1250 ° C. is set at 60 to 80 ° C./hr, so that the growth of crystallized particles proceeds rapidly while acicular crystal particles accompany abrupt crystallization.
  • the obtained amorphous silicon nitride powder is used as a raw material.
  • the crystallization start temperature at the time of crystallization is higher and the crystallization rate is further increased. Therefore, even if the temperature increase rate between 1100 and 1250 ° C. is adjusted, the average short axis particle diameter with uniform particle size is maintained.
  • silicon nitride powder (B) having a particle size of 0.1 to 0.3 ⁇ m, and the ratio of generation of acicular crystal particles and fine aggregated particles increases in the powder after crystallization and firing, and the release layer after coating The density decreases, and a slurry containing silicon nitride powder is further applied.
  • silicon nitride powder (B) having a particle size of 0.1 to 0.3 ⁇ m, and the ratio of generation of acicular crystal particles and fine aggregated particles increases in the powder after crystallization and firing, and the release layer after coating The density decreases, and a slurry containing silicon nitride powder is further applied.
  • water is absorbed by the capillary force of the mold, the difference in moving speed due to the particle size is disturbed by the needle crystal particles, which is not preferable.
  • the rate of temperature increase between 1100 and 1250 ° C exceeds 100 ° C / hr crystallization control becomes difficult as abrupt crystallization progresses, and abnormal grain growth, acicular crystal particles and fine aggregated particles are mixed and formed. This makes it difficult to prepare the silicon nitride powder (B) having an average minor axis particle size of 0.1 to 0.3 ⁇ m.
  • Preparation of silicon nitride powder (B) having an average minor axis particle size of 0.1 to 0.3 ⁇ m is carried out at a pyrolysis heating temperature of 800 to 1100 ° C. during the preparation of amorphous silicon nitride powder.
  • the oxygen concentration in the gas to be used is 2.2 to 5 vol%, and the resulting amorphous silicon nitride powder does not contain coarse aggregated particles with a particle size distribution of 50 ⁇ m or more measured by the laser diffraction scattering method. This can be achieved by crushing to a state and adjusting the rate of temperature increase between 1100 and 1250 ° C. during crystallization and firing between 60 and 100 ° C./hr.
  • a silicon nitride powder (A) having an average minor axis particle diameter of 0.6 to 13 ⁇ m and a silicon nitride powder having an average minor axis particle diameter of 0.1 to 0.3 ⁇ m It is important that the high-purity silicon nitride powder blended with B) is blended at a weight ratio of 5: 5 to 9: 1.
  • the weight ratio of the silicon nitride powder (B) is more than 5: 5
  • a slurry containing the silicon nitride powder is applied, and when the water is absorbed by the capillary force of the mold, the release layer due to the difference in moving speed depending on the particle size
  • the proportion of fine particles is increased on the silicon ingot side than the state shown in FIG. 1, and the adhesion and strength of the entire release layer are increased even when the baking temperature is low.
  • the risk of breakage is increased, and the oxygen concentration in the release layer on the silicon ingot side is increased, which increases the reactivity with the silicon melt, which is not preferable.
  • the weight ratio of the silicon nitride powder (B) is less than 9: 1, the adhesion of the release layer to the mold and the decrease in the strength of the release layer are extremely undesirable.
  • the silicon nitride powder-containing slurry used in the slurry forming process is a slurry in which the silicon nitride powder is mixed with water.
  • a predetermined amount of silicon nitride powder is placed in a container together with distilled water, filled with silicon nitride balls and vibrated.
  • Use a mixing pulverizer such as a mill, ball mill, paint shaker, etc., or if not using balls, use a stirrer with wings such as paddle blades or a high-speed revolving stirrer to mix for a specified time. It is done.
  • the silicon nitride powders (A) and (B) obtained by the crystallization firing are in a light agglomerated particle state, and as such, when dispersed in water to form a slurry, the slurry viscosity tends to increase. , Lightly crushed.
  • the media used for crushing is a material in which metal spheres are coated with a resin or a silicon nitride sintered body, and the amount of metal impurities mixed in is very small, only around a few ppm.
  • the powder is suitable as a raw material for a mold release material for casting a polycrystalline silicon ingot.
  • the slurry coating step is a step of coating the silicon nitride powder-containing slurry on the mold surface while maintaining the fluidity of the particles.
  • the above-mentioned slurry containing silicon nitride powder is coated with a release material on the inner surface of a quartz crucible having a porosity of 16 to 26% using a spray, brush or spatula, and nitrided in the applied release layer. It is preferable that the applied slurry has fluidity that does not hinder the movement of silicon particles and does not sag from the mold.
  • the silicon nitride powder-containing slurry applied to the mold is attracted to the mold in the vicinity of the mold surface by the water absorption of capillarity due to the pores in the mold, and on the inner side (mold side) of the release layer.
  • a release layer in which coarse particles are unevenly distributed is formed on the outer side (silicon ingot side) of the release layer, and coarse particles are unevenly distributed on the outer side (silicon ingot side) of the release layer. It will be in the state of a conceptual diagram.
  • the viscosity of the silicon nitride powder-containing slurry is 500 P (poise) or more, the moving speed of the silicon nitride particles in the release layer coated with the silicon nitride powder-containing slurry is slow, and the uneven distribution of the particles hardly occurs.
  • the viscosity of the silicon nitride powder-containing slurry described above is 1.5 cP (centipoise) or less, the release layer coated with the silicon nitride powder-containing slurry tends to sag and cannot hold the release layer. It is necessary to adjust the slurry viscosity so that it does not drip while maintaining fluidity.
  • the method for producing a mold for casting a polycrystalline silicon ingot having a release layer according to the present invention is characterized in that the water content of the slurry is sufficiently absorbed by capillary action due to pores in the mold of the coated silicon nitride powder-containing slurry.
  • a water permeation step for permeating into the mold may be further provided. Examples of the water permeation step include drying at 30 to 120 ° C.
  • the heating step comprises heating the mold coated with the silicon nitride powder-containing slurry at 800 to 1200 ° C. in an atmosphere containing oxygen.
  • Silicon nitride powder oxidizes at 800 ° C. or higher in the atmosphere, and becomes excessively oxidized when it exceeds 1200 ° C. As shown in FIG. 3, the finer the particle, the easier it is to oxidize, and the coarser the particle, the less difficult it is to oxidize. .
  • silicon nitride powder containing fine silicon nitride powder and coarse silicon nitride powder fine particles that are easily oxidized are unevenly distributed inside the mold release layer (on the mold side).
  • the particles oxidized by baking and the particles and the mold are in close contact with each other, and the outer side of the release layer (silicon ingot side) is unevenly distributed with coarse particles that are difficult to oxidize. Infiltration can be prevented by suppressing solid solution.
  • the application of the silicon nitride powder-containing slurry can form the release layer described above even if it is applied once, but the same effect can be obtained even if applied twice or more, and a polycrystalline silicon ingot casting mold can be produced at low cost, This prevents the silicon melt from penetrating and improves the releasability of the solidified silicon ingot so that a high yield silicon ingot can be produced.
  • a polycrystalline silicon ingot casting mold manufactured by a method for manufacturing a polycrystalline silicon ingot casting mold having a release layer according to the present invention is a mold for casting a polycrystalline silicon ingot.
  • a release layer containing silicon nitride powder is formed.
  • fine particles that are easily oxidized are unevenly distributed on the inner side (mold side), and coarse particles that are difficult to be oxidized on the outer side (silicon ingot side). Is unevenly distributed, the oxygen content is high on the mold side and the oxygen content is low on the silicon ingot side.
  • the inside of the release layer is a close contact between particles oxidized by baking in an atmosphere containing oxygen and between the particle and the mold.
  • the outer side of the release layer has a reduced oxygen concentration and can suppress the solid solution of the silicon melt to prevent penetration, greatly improving the mold release properties of the mold and solidified silicon ingot, and solidifying. It is possible to obtain a high quality silicon ingot with a high yield by suppressing the occurrence of chipping and breakage when releasing the silicon ingot.
  • the material of the mold is not particularly limited, but usually, a quartz crucible, a quartz crucible built in a graphite crucible, or the like is used.
  • a silicon diimide was produced by reacting a toluene solution having a silicon tetrachloride concentration of 30 vol% with liquid ammonia, washing with liquid ammonia and drying.
  • the obtained silicon diimide powder is thermally decomposed at 500 to 800 ° C. under a flow of air / nitrogen mixed gas of 70 liters / hour of powder (the oxygen concentration of the mixed gas is 0.4 to 2 vol%) to obtain silicon nitride powder.
  • an amorphous silicon nitride powder for preparing the silicon nitride powder (B).
  • the silicon nitride powder (A) described in Examples 1 to 5 was prepared as follows. First, the thermal decomposition temperature of the silicon diimide powder is 700 ° C., the oxygen concentration in the gas introduced at the time of thermal decomposition is 1 vol%, and the obtained amorphous silicon nitride powder is made of a material in which metal balls are coated with nylon. Using a continuous vibration mill filled with balls, the mixture was crushed to a state where it did not contain coarse agglomerated particles having a particle size distribution of 50 ⁇ m or more measured by the laser diffraction scattering method. The crushed amorphous silicon nitride powder is charged into a graphite crucible and heated up to 1100 ° C. over 4 hours.
  • the temperature rising rate between 1100 and 1250 ° C. is set to 20 ° C./hr and up to 1550 ° C. over 4 hours.
  • the temperature was raised, holding and firing was performed at 1550 ° C. for 1 hour, and the product was taken out after cooling.
  • the fired powder taken out was lightly crushed using a continuous vibration mill filled with balls made of metal balls coated with nylon, so that the average minor axis particle diameter of 6.5 ⁇ m according to Examples 1 to 5 was reduced. Silicon nitride powder was prepared.
  • silicon nitride powders (A) described in Examples 6 to 10 were prepared as follows. First, the silicon diimide powder has a thermal decomposition temperature of 750 ° C., the oxygen concentration in the gas introduced during the thermal decomposition is 2 vol%, and the resulting amorphous silicon nitride powder is made of a material in which metal balls are coated with nylon. Using a continuous vibration mill filled with balls, the mixture was crushed to a state where it did not contain coarse agglomerated particles having a particle size distribution of 50 ⁇ m or more measured by the laser diffraction scattering method. The crushed amorphous silicon nitride powder is charged into a graphite crucible and heated up to 1100 ° C. over 4 hours.
  • the temperature rising rate between 1100 and 1250 ° C. is set to 50 ° C./hr and up to 1550 ° C. over 4 hours.
  • the temperature was raised, holding and firing was performed at 1550 ° C. for 1 hour, and the product was taken out after cooling.
  • the fired powder taken out was lightly crushed using a continuous vibration mill filled with balls made of metal balls coated with nylon, so that the average minor axis particle size of 0.65 ⁇ m according to Examples 6 to 10 was obtained. Silicon nitride powder was prepared.
  • the silicon nitride powder (A) described in Examples 11 to 15 was prepared as follows.
  • the pyrolysis temperature was 500 ° C.
  • the oxygen concentration in the gas introduced during pyrolysis was 0.5 vol%
  • the obtained amorphous silicon nitride powder was continuously filled with balls made of metal balls coated with nylon.
  • the mixture was crushed to a state where it did not contain coarse aggregated particles having a particle size of 50 ⁇ m or more in the volumetric particle size distribution measured by a laser diffraction / scattering method using a mechanical vibration mill.
  • the crushed amorphous silicon nitride powder is charged into a graphite crucible and heated up to 1100 ° C. in 4 hours. The temperature rising rate between 1100 and 1250 ° C.
  • silicon nitride powder (B) described in Examples 1 to 10 was prepared as follows. First, the silicon diimide powder has a thermal decomposition temperature of 1050 ° C., the oxygen concentration in the gas introduced during the thermal decomposition is 4 vol%, and the obtained amorphous silicon nitride powder is made of a material in which metal balls are coated with nylon. Using a continuous vibration mill filled with balls, the mixture was crushed to a state where it did not contain coarse agglomerated particles having a particle size distribution of 50 ⁇ m or more measured by the laser diffraction scattering method. The crushed amorphous silicon nitride powder is charged into a graphite crucible and heated up to 1100 ° C. in 4 hours.
  • the heating rate between 1100 and 1250 ° C. is set to 100 ° C./hr, and up to 1550 ° C. in 4 hours.
  • the temperature was raised, holding and firing was performed at 1550 ° C. for 1 hour, and the product was taken out after cooling.
  • the powder after firing that was taken out was lightly crushed using a continuous vibration mill filled with balls made of a metal ball coated with nylon, so that the average minor axis particle size according to Examples 1 to 10 was 0.18 ⁇ m.
  • a silicon nitride powder was prepared.
  • silicon nitride powder (B) described in Examples 11 to 15 was prepared as follows. First, the thermal decomposition temperature of the silicon diimide powder is 900 ° C., the oxygen concentration in the gas introduced during the thermal decomposition is 4 vol%, and the obtained amorphous silicon nitride powder is made of a material in which metal balls are coated with nylon. Using a continuous vibration mill filled with balls, the mixture was crushed to a state where it did not contain coarse agglomerated particles having a particle size distribution of 50 ⁇ m or more measured by the laser diffraction scattering method. The crushed amorphous silicon nitride powder is charged into a graphite crucible and heated up to 1100 ° C. over 4 hours.
  • the temperature rising rate between 1100 and 1250 ° C. is 60 ° C./hr and up to 1550 ° C. over 4 hours.
  • the temperature was raised, holding and firing was performed at 1550 ° C. for 1 hour, and the product was taken out after cooling.
  • the fired powder taken out was lightly crushed using a continuous vibration mill filled with balls made of nylon coated metal balls, so that the average minor axis particle diameter of 0.28 ⁇ m according to Examples 11 to 15 was obtained. Silicon nitride powder was prepared.
  • the obtained silicon nitride powder (A) has a specific surface area of 0.2 to 3.0 m 2 / g, an average minor axis particle diameter of 12.8 to 0.65 ⁇ m, and the silicon nitride powder (B) has a specific surface area of 7 ⁇ 12.0 m 2 / g, and the average minor axis particle size was 0.29 to 0.18 ⁇ m.
  • 10 g of silicon nitride-containing powder obtained by collecting the silicon nitride powders (A) and (B) at a weight ratio of 5: 5 to 9: 1, 40 g of distilled water and 100 g of 10 ⁇ mm silicon nitride balls are placed in a 100 cc polyethylene bottle and sealed. Then, it was fixed on a vibration mill having an amplitude of 5 mm and a frequency of 1780 spm, and mixed for 5 minutes to prepare a 20 wt% water slurry.
  • the 20 wt% water slurry described above was spray-coated on a quartz crucible having a porosity of 16% and having a porosity of 16% and a depth of 4 cm, and was dried at 40 ° C. After coating, the quartz crucible was further dried overnight at 40 ° C. After drying, using a box-type electric furnace, the temperature was raised to 1100 ° C. in an air atmosphere in 4 hours, held at 1100 ° C. for 4 hours, and then the release layer was baked on the quartz crucible. The thickness of each release layer was 100 to 200 ⁇ m on an average of 5 points.
  • a quartz crucible onto which the release layer was baked was filled with 75 g of Si granules having a purity of 99.999% and 2 to 5 mm, and was used in a box-type electric furnace for 3 hours up to 1000 ° C under an Ar atmosphere at atmospheric pressure. The temperature was lowered to 1450 ° C. for 3 hours and at 1450 ° C. for 4 hours. After cooling down, remove from the furnace, observe and evaluate the mold release situation, visually observe the Si melt infiltration at the center of the crucible bottom, and embed the epoxy at the crucible bottom center with a cross section near the bottom release layer Was cut, and a cross-sectional image of the release layer of ⁇ 100 magnification was taken using FE-SEM, and the Si melt penetration state observation evaluation was performed. The results are shown in Table 1.
  • ⁇ of the silicon melt penetration in the crucible indicates that the penetration of the silicon melt stops at the surface of the release layer
  • indicates that the penetration of the silicon melt stops until the release layer
  • indicates that the silicon melt is quartz
  • x means a state in which the silicon melt penetrates into the quartz crucible and leaks to the opposite surface of the bottom of the crucible.
  • ⁇ of the silicon ingot mold separation state is completely separated from the quartz crucible without partly sticking, ⁇ is slightly adhered to the quartz crucible but separated from the mold, ⁇ is the side of the quartz crucible is separated from the mold but the bottom surface Means fixed, and x means a state in which the entire quartz crucible is fixed and the mold is not separated.
  • Silicon nitride powder (Ube Industries SN-E10) having an average minor axis particle diameter of 0.22 ⁇ m calculated by dimensional measurement using an SEM image obtained by the thermal decomposition method of silicon diimide is 1000 times in a batch electric furnace in an air atmosphere.
  • a silicon nitride powder (A2) having an oxygen concentration of 7.5 wt% was obtained by performing a heat treatment at 0 ° C. for 3 hours. The oxygen concentration was measured using a TC-136 type oxygen-nitrogen simultaneous analyzer manufactured by LECO.
  • the 20 wt% water slurry described above was spray-coated on a quartz crucible having a porosity of 16% and having a porosity of 16% and a depth of 4 cm, and was dried at 40 ° C. After coating, the quartz crucible was further dried overnight at 40 ° C. After drying, using a box-type electric furnace, the temperature was raised to 1100 ° C. in an air atmosphere in 4 hours, held at 1100 ° C. for 4 hours, and then the release layer was baked on the quartz crucible. The thickness of each release layer was 100 ⁇ m on an average of 5 points.
  • the above silicon nitride powder (A2) and silica powder having an average particle diameter of 0.05 ⁇ m measured by a laser diffusion type particle size distribution apparatus confirmed to be amorphous by an X-ray diffractometer are 9: 1 (B2) and 8: 2 (B3) are mixed to prepare a 20 wt% water slurry in the same manner as described above, and spray-coated on each quartz crucible coated with (A1).
  • the release layer was baked in a quartz crucible by maintaining at 4 ° C. for 4 hours. The thickness of each release layer was 200 ⁇ m on an average of five points.
  • the silicon nitride powder (A) described in Examples 1 to 5 was used as the silicon nitride powder (A) described in Comparative Examples 3, 4, and 9.
  • the silicon nitride powder (A) described in Examples 6 to 9 was used as the silicon nitride powder (A) described in Comparative Examples 5, 6, and 10.
  • the silicon nitride powder (B) described in Comparative Examples 9 and 10 was prepared as follows. First, the silicon diimide powder was set to 850 ° C., the oxygen concentration in the gas introduced at the time of thermal decomposition was set to 2 vol%, and the obtained amorphous silicon nitride powder was filled with balls made of a metal sphere coated with nylon. The mixture was crushed to a state where it did not contain coarse aggregated particles having a particle size distribution of 50 ⁇ m or more measured by a laser diffraction scattering method using a continuous vibration mill. The crushed amorphous silicon nitride powder is charged into a graphite crucible and heated up to 1100 ° C. over 4 hours.
  • the temperature rising rate between 1100 and 1250 ° C. is set to 50 ° C./hr and up to 1550 ° C. over 4 hours.
  • the temperature was raised, holding and firing was performed at 1550 ° C. for 1 hour, and the product was taken out after cooling.
  • the fired powder taken out was lightly crushed using a continuous vibration mill filled with balls made of nylon coated metal balls, so that the average minor axis particle diameter of Comparative Examples 9 and 10 was 0.43 ⁇ m. Silicon nitride powder was prepared.
  • the obtained silicon nitride powder (A) has a specific surface area of 0.2 to 3.0 m 2 / g, an average minor axis particle diameter of 12.8 to 0.65 ⁇ m, and the silicon nitride powder (B) has a specific surface area of 4 .5 ⁇ 12.0m 2 / g, an average minor axis particle diameter was 0.43 ⁇ 0.18 .mu.m.
  • silicon nitride powders (A) and (B) described above were combined with the combinations and blending ratios shown in Table 1 and 10 g of silicon nitride-containing powder, 40 g of distilled water and 100 g of 10 ⁇ mm silicon nitride balls were added to 100 cc of polyethylene.
  • a 20 wt% water slurry was prepared by sealing in a bottle and fixing on a vibration mill with an amplitude of 5 mm and a frequency of 1780 spm and mixing for 5 minutes.
  • the 20 wt% water slurry described above was spray-coated on a quartz crucible having a porosity of 16% and a porosity of 16%, which had been heated at 40 ° C.
  • each release layer was 100 to 200 ⁇ m on an average of 5 points.
  • a quartz crucible onto which the release layer was baked was filled with 75 g of Si granules having a purity of 99.999% and 2 to 5 mm, and was used in a box-type electric furnace for 3 hours up to 1000 ° C under an Ar atmosphere at atmospheric pressure. The temperature was lowered to 1450 ° C. for 3 hours and at 1450 ° C. for 4 hours. After cooling down, remove from the furnace and observe the mold release situation, visually observe the Si melt infiltration at the center of the crucible bottom, embed the crucible bottom at the center with epoxy resin, cut the cross section, and use FE-SEM Then, a cross-sectional image of the release layer ⁇ 100 times was taken to observe the Si melt penetration state. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Silicon Compounds (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

 シリコンインゴットと鋳型表面との固着や、凝固したシリコンインゴットを離型する際の欠け、破損の発生を抑えて、品質の高いシリコンインゴットを高い歩留まりで得ることのできる多結晶シリコンインゴット鋳造用鋳型及びその製造方法並びに多結晶シリコンインゴット鋳造用鋳型の離型材用窒化珪素粉末及びそれを含有したスラリーを提供する。平均短軸粒子径が0.6~13μmである窒化珪素粉末(A)と、平均短軸粒子径が0.1~0.3μmである窒化珪素粉末(B)とを重量割合で5:5~9:1に配合した窒化珪素粉末を水に混合してスラリーを形成するスラリー形成工程と、該スラリーを鋳型表面に塗布するスラリー塗布工程と、該スラリー塗布工程後、酸素を含む雰囲気下800~1200℃で、鋳型を加熱する加熱工程と、を備えることを特徴とする離型層を有する多結晶シリコンインゴット鋳造用鋳型の製造方法である。

Description

多結晶シリコンインゴット鋳造用鋳型及びその製造方法並びに多結晶シリコンインゴット鋳造用鋳型の離型材用窒化珪素粉末及びそれを含有したスラリー
 本発明は、多結晶シリコンインゴット鋳造用鋳型及びその製造方法並びに多結晶シリコンインゴット鋳造用鋳型の離型材用窒化珪素粉末及びそれを含有したスラリーに関する。
 太陽電池を形成するための半導体基板の一種として多結晶シリコンが広く用いられ、その生産量は年々急速に増加している。このような多結晶シリコンは、通常、石英坩堝や、分割可能な黒鉛坩堝、或いは黒鉛坩堝に内装した石英坩堝の内表面に、スプレーや刷毛もしくはへらを使用して離型材を塗布した鋳型内に、高温度で加熱溶融させたシリコン融液を注湯して凝固させる、または鋳型内に入れたシリコン原料を一旦溶融した後、再び凝固させることによって形成されている。
 この離型層は、シリコンインゴットへの不純物の混入を防ぎ、また加熱溶融させたシリコン融液の鋳型用坩堝内壁面への接着を防ぎ、凝固したシリコンインゴットと鋳型とを離型させるために重要な役割を果たしている。この離型材としては、一般に、融点が高く、シリコンインゴットへの汚染が少ないという点から、窒化珪素、炭化珪素、酸化珪素などの高純度粉末や、それらの混合粉末が用いられ、シリコンインゴットの生産性を高めるために、離型材を鋳型表面に形成させる方法、そのような処理をした鋳型やこの鋳型を用いたシリコンインゴットの製造方法については、従来、多くの研究開発がなされている。
 例えば、特許文献1には、離型材にシリコンジイミドの熱分解法で得られる窒化珪素粉末と微粒のシリカ粉末が用いられ、離型層の内側(鋳型側)の窒化珪素粒子表面に非晶質シリカ層を含む窒化珪素割合の多い第1層と、離型層の外側(シリコンインゴット側)の微粒のシリカ粉末を混合することで粒子同士が強固に結合した第2層とから形成されたシリコンインゴット鋳造用鋳型の離型層が記載されており、この離型層によって、離型の際の凝固したシリコンインゴットと鋳型へのダメージを軽減できると記載されている。また特許文献2には、粗大な溶融シリカ砂を窒化珪素粉末で包んだ混合体素地の離型層により、溶融シリコンとシリカとの反応を抑えて太陽光発電用電池の性能向上をさせることが記載されている。
特開2005-95924号公報 特開2001-198648号公報
 しかしながら、特許文献1記載のシリコン鋳造用鋳型は、微粒シリカ粉末を混合することで粒子同士が強固に結合した第2層(離型層の外側の層)が、酸素含有量が多く、シリコン融液と固溶して、鋳型表面と固着してしまう危険性が高い。また特許文献1記載の離型層形成方法は、シリカ濃度の異なる離型材スラリーを準備する必要があり、各スラリーの色に差が殆ど無いことから、塗布順序を間違えることも考えられる。
 また、特許文献2による離型層の形成方法は、粗大な溶融シリカ砂を離型層内に包み込ませることが困難で、離型層の外側表面に溶融シリカ砂が分散し、シリコン融液と固溶して、鋳型表面と固着し、凝固したシリコンのインゴットを離型する際に欠けが発生し、歩留まりを低下するという問題がある。
 さらに、特許文献1及び特許文献2に記載の離型材は、添加するシリカ粉末中にアルカリ金属やアルカリ土類金属不純物が多く、高純度な粉末を用意する必要があるが、上述のように多結晶シリコンインゴット鋳造用鋳型に形成する離型層に関して、離型層と鋳型の密着性と離型層内の窒化珪素粒子同士の結合性を高めるためにシリカの添加は有効ではある。しかし、シリコン融液とシリカを含む離型層は、固溶反応して鋳型と密着し、凝固したシリコンインゴットを離型する際の欠けや破損の原因となり、高品質のシリコンインゴットを高い歩留まりで生産することは困難であるという問題がある。
 本発明は、上記のような従来の問題点を鑑みてなされたものであり、シリコンインゴットと鋳型表面との固着や、凝固したシリコンインゴットを離型する際の欠け、破損の発生を抑えて、品質の高いシリコンインゴットを高い歩留まりで得ることのできる多結晶シリコンインゴット鋳造用鋳型及びその製造方法並びに多結晶シリコンインゴット鋳造用鋳型の離型材用窒化珪素粉末及びそれを含有したスラリーを提供することを目的とする。
 そこで、本発明者らは、上記問題を解決するために鋭意検討した結果、異なる粒径の窒化珪素粉末を離型層の原料として用いることによって、凝固したシリコンインゴットを離型する際の欠けや破損の発生を抑えて品質の高いシリコンインゴットを高い歩留まりで得ることができることを見出した。すなわち、本発明は、平均短軸粒子径が0.6~13μmである窒化珪素粉末(A)と、平均短軸粒子径が0.1~0.3μmである窒化珪素粉末(B)とを重量割合で5:5~9:1に配合した窒化珪素粉末を水に混合してスラリーを形成するスラリー形成工程と、該スラリーを鋳型表面に塗布するスラリー塗布工程と、該スラリー塗布工程後、酸素を含む雰囲気下800~1200℃で、鋳型を加熱する加熱工程と、を備えることを特徴とする離型層を有する多結晶シリコンインゴット鋳造用鋳型の製造方法に関する。
 また、本発明は、平均短軸粒子径が0.6~13μmである窒化珪素粉末(A)と、平均短軸粒子径が0.1~0.3μmである窒化珪素粉末(B)とが重量割合5:5~9:1で含まれていることを特徴とする多結晶シリコンインゴット鋳造用鋳型の離型材用窒化珪素粉末に関する。さらに、本発明は、この窒化珪素粉末を水に混合させることを特徴とする多結晶シリコンインゴット鋳造用鋳型の離型材用窒化珪素粉末含有スラリーであり、またこの窒化珪素粉末を用いて離型層が鋳型内面に形成されたことを特徴とする多結晶シリコンインゴット鋳造用鋳型である。
 以上のように、本発明によれば、シリコンインゴットと鋳型表面との固着や、凝固したシリコンインゴットを離型する際の欠け、破損の発生を抑えて、品質の高いシリコンインゴットを高い歩留まりで得ることのできる多結晶シリコンインゴット鋳造用鋳型及びその製造方法並びに多結晶シリコンインゴット鋳造用鋳型の離型材用窒化珪素粉末及びそれを含有したスラリーを提供することができる。
本発明に係る離型層内の粒子の偏在状態を表した概念図である。 短軸粒子径を測定するための×5000倍のSEM画像である。 粒子径の異なる窒化珪素粉末の酸化挙動の違いを示すグラフである。
 本発明に係る離型層を有する多結晶シリコンインゴット鋳造用鋳型の製造方法は、平均短軸粒子径が0.6~13μmである窒化珪素粉末(A)と、平均短軸粒子径が0.1~0.3μmである窒化珪素粉末(B)とを重量割合で5:5~9:1に配合した窒化珪素粉末を水に混合した窒化珪素粉末含有スラリーを鋳型の内側に塗布することにより、鋳型の毛細管力による吸水の際の粒度による移動速度の違いを利用して、図1に記載のように離型層の内側(鋳型側)には酸化され易い微細粒子を偏在させ、離型層の外側(シリコンインゴット側)には酸化され難い粗大粒子を偏在させた離型層を形成することを可能とする。離型層内の鋳型側表面には酸化され易い微細粒子が偏在することによって、焼付けによって酸化された粒子同士と鋳型を密着させ、シリコンインゴット側には酸化され難い粗大粒子が偏在することによって、シリコン融液との反応を防ぎ離型する際の離型性を改善することができる。
 本発明に係る離型層を有する多結晶シリコンインゴット鋳造用鋳型の製造方法によれば、離型層を低コストで形成した鋳型の製造が可能であり、得られた鋳型は、離型層の金属不純物量が少なく、高密度で離型層と鋳型との密着性に優れ、離型層の亀裂や破損によるシリコン融液の浸透を防いで、シリコン融液と離型層との固溶反応を防ぎ、鋳型と凝固したシリコンインゴットの離型性を大幅に改善することで、凝固したシリコンインゴットを離型する際の欠けや破損の発生を抑えて品質の高いシリコンインゴットを高い歩留まりで得ることができる。
 本発明に係る離型層を有する多結晶シリコンインゴット鋳造用鋳型の製造方法において、スラリー形成工程は、平均短軸粒子径が0.6~13μmである窒化珪素粉末(A)と、平均短軸粒子径が0.1~0.3μmである窒化珪素粉末(B)とを重量割合で5:5~9:1に配合して窒化珪素粉末とし、次いで、前記窒化珪素粉末を水に混合してスラリーとする工程である。
 ここで、平均短軸粒子径とは、SEM画像による寸法測定によって算出した平均短軸粒子径を示す。SEM画像による寸法測定によって算出した平均短軸粒子径は、図2に記載の×5000倍のSEM画像に50~200個の粒子に接するような円を描き、この円に接する全ての粒子の短軸径を測定することで平均径を算出する。但し、微粒子の場合は、×10000倍のSEM画像を400%拡大コピーし、そのコピー画像を用い同様に円を描き測定する。また粗大粒子の場合は、×1000倍のSEM画像を用い同様に円を描き測定する。
 本発明において、離型層に用いられる窒化珪素粉末は、ハロゲン化珪素とアンモニアとを反応させて得られた含窒素シラン化合物を熱分解して得られた非晶質窒化珪素粉末を結晶化焼成する方法(イミド法)や、金属珪素粉末の直接窒化により得られた塊状の窒化珪素粉末を粉砕、分級する方法(直接窒化法)によって得ることができる。
 例えば、イミド法において、窒化珪素粉末の粒度と粒子形状の制御は、非晶質窒化珪素粉末を調製する際の熱分解加熱温度と酸素濃度による結晶化速度制御、および結晶化焼成時の昇温速度による粒子成長速度制御によって行うことができる。
 非晶質窒化珪素粉末を調製する際の熱分解加熱温度が高い程、また得られた非晶質窒化珪素粉末中の酸素濃度が高い程、結晶化は高温で開始し、結晶化速度は速くなる。更に1100~1250℃間の昇温速度を速くする程、急激な結晶化の進行に伴う針状結晶粒子や微細凝集粒子を生成し易い。反対に、非晶質窒化珪素粉末を調製する際の熱分解加熱温度が低い程、また非晶質窒化珪素粉末中の酸素濃度が低い程、結晶化は低温で開始し、結晶化速度は遅くなる。更に1100~1250℃間の昇温速度を遅くする程、結晶粒子成長はゆっくり進み、粗大な粒状結晶粒子を得られ易い。窒化珪素粉末の粒状結晶とは、六方晶系の結晶で針状結晶や柱状結晶でないアスペクト比が1.5以下の粒子をいう。上記特性を基に調製条件を調整することによって平均短軸粒子径が0.6~13μmである窒化珪素粉末(A)と、平均短軸粒子径が0.1~0.3μmである窒化珪素粉末(B)とを調製することができる。
 また、得られた非晶質窒化珪素粉末は、レーザー回折散乱法により測定した体積法粒度分布の粒子径で50μm以上の粗大な凝集粒子を含まない状態まで壊砕することで、結晶化焼成の際の異常結晶成長による粗大粒子や粗大な凝集粒子、針状結晶粒子および微細凝集粒子の同時生成による粒度と粒子径の不均一な粒子の生成を抑えて、粒度の揃った窒化珪素粉末を調製することが可能となる。
 イミド法によって調製される窒化珪素粉末は、微粒であり、凝集を軽く壊砕する工程はあるものの、壊砕に用いられているメディアは、金属球を樹脂でコーティングした材質や、窒化珪素焼結体が用いられていることで、金属不純物の混入量は非常に少なく、数ppm程度に止まり、多結晶シリコンインゴット鋳造用鋳型の離型材の原料に適した粉末となる。特開2007-261832号公報記載のように、太陽電池の発電効率は、シリコンインゴット中に含まれる金属不純物によって低下し、特に多価金属の混入による効率低下は著しいと言われ、離型材としての原料粉末自体の純度も発電効率に影響を与えることは公知の事実であり、離型材としての原料粉末は金属不純物混入量の少ないことが好ましいとされている。イミド法としては、例えば、特許第2907366号公報、特許第2907367号公報及び特許第3282456号公報に記載されている方法が好ましい。
 直接窒化法は、金属シリコンを窒素やアンモニア雰囲気下で加熱処理を行った後に、得られた窒化後の塊を粉砕、純化処理工程を経て窒化珪素粉末を得る方法である。直接窒化法によって窒化珪素粉末を製造する場合、窒化後の塊を微粉砕するために、粉砕に時間を要し、粉砕メディアの金属不純物が大量に混入し、粉砕後粉末を、鉱酸を用いて純化処理を行っても数100ppm以上の金属不純物が残存する。特に粉砕メディアに用いられている硬度の高い材質には、鉱酸を用いた純化処理の際に、溶解し難いCrやWの多価金属が多く含まれ、純化処理後にも多量に残存している。このため、本発明に用いられる窒化珪素粉末を得る方法としては、イミド法の方が優れている。
 窒化珪素粉末の製造の際の原料である含窒素シラン化合物としては、シリコンジイミド(Si(NH))、シリコンテトラアミド、シリコンニトロゲンイミド、シリコンクロルイミド等を用いることができる。これらは、公知の方法、例えば、四塩化珪素、四臭化珪素、四沃化珪素等のハロゲン化珪素とアンモニアとを気相で反応させる方法、液状の前記ハロゲン化珪素と液体アンモニアとを反応させる方法などによって得ることができる。また、非晶質窒化珪素粉末は、公知方法、例えば、含窒素シラン化合物を窒素やアンモニアガス雰囲気下で1200~1460℃の範囲の温度で加熱分解する方法、四塩化珪素、四臭化珪素、四沃化珪素等のハロゲン化珪素とアンモニアとを高温で反応させる方法などによって得ることができる。
 スラリー形成工程において、用いられる窒化珪素粉末(A)は、平均短軸粒子径が0.6~13μmであり、0.7~12μmが、好ましい。平均短軸粒子径が0.6μm未満の場合、窒化珪素粉末(B)との粒子径との差が少なく、窒化珪素粉末を配合したスラリーを塗布し、鋳型の毛細管力による吸水の際に、粒度による移動速度の違いを利用した離型層内での粒度を偏在させることができない。また、平均短軸粒子径が13μmを超える粒子を調製するためには、熱分解温度を500℃未満に下げるか、或いは熱分解を行なわないで、更に結晶化焼成時に1100~1250℃間の昇温速度を10℃/hr未満に下げることが必要であることから、生産性が非常に悪く実用的でない。
 平均短軸粒子径が0.6~13μmである窒化珪素粉末(A)は、例えば、イミド法によって得ることができ、その製造工程中の非晶質窒化珪素粉末を調製する際の熱分解加熱温度と得られた非晶質窒化珪素粉末中の酸素濃度と、結晶化焼成時の昇温速度を調整することによって調製できる。
 平均短軸粒子径を大きくする場合は、非晶質窒化珪素粉末を調製する際の熱分解加熱温度を低くし、得られた非晶質窒化珪素粉末中の酸素濃度を低くし、更に結晶化焼成時の1100~1250℃間の昇温速度を遅くすることによって結晶化粒子成長をゆっくり進行させることで調製できる。
 例えば平均短軸粒子径13μmの窒化珪素粉末を調製する場合には、非晶質窒化珪素粉末を調製する際の熱分解加熱温度を500℃とし、熱分解時に導入するガス中の酸素濃度を1vol%未満とすることによって、結晶化焼成時の結晶化開始温度を下げ、結晶化速度を遅くすることのできる非晶質窒化珪素粉末を用いる。更に非晶質窒化珪素粉末中にレーザー回折散乱法により測定した体積法粒度分布の粒子径で50μm以上の粗大な凝集粒子を含まない状態まで壊砕する。この非晶質窒化珪素粉末を用いることで1100~1250℃間の昇温速度を10℃/hrとすることで結晶化粒子成長をゆっくり進行させ、調製可能となる。
 また、例えば平均短軸粒子径0.6μmの窒化珪素粉末を調製する場合には、非晶質窒化珪素粉末を調製する際の熱分解加熱温度を500~800℃とし、熱分解時に導入するガス中の酸素濃度を1~2vol%とすることによって、結晶化時の結晶化開始温度を上げ、結晶化速度を速くすることのできる非晶質窒化珪素粉末を用いる。更に、非晶質窒化珪素粉末中にレーザー回折散乱法により測定した体積法粒度分布の粒子径で50μm以上の粗大な凝集粒子を含まない状態まで壊砕する。この非晶質窒化珪素粉末を用いて1100~1250℃間の昇温速度を50℃/hr以下とすることで結晶化粒子成長をゆっくり進行させ、調製可能となる。
 非晶質窒化珪素粉末を調製する際の熱分解加熱温度が高く、得られた非晶質窒化珪素粉末中の酸素濃度が高い場合は、結晶化焼成時の結晶化開始温度が高く、また結晶化速度が速くなることで、急激に結晶化が進行し易くなり、粒度の揃った窒化珪素粉末を調製することが難しくなる。
 例えば、非晶質窒化珪素粉末を調製する際の熱分解加熱温度が800℃を超えた場合は、1100~1250℃間の昇温速度を10~50℃/hrとした場合でも、結晶化焼成後粉末の平均短軸粒子径は0.6μmよりも小さくなり易く、しかも結晶化速度が速いことで針状結晶粒子や微細凝集粒子が生成し、粒度の揃った窒化珪素粉末を調製することが難しくなり好ましくない。
 さらに、結晶化焼成の際に、1100~1250℃間の昇温速度が50℃/hrを超えると、急激な結晶化により粒子成長速度制御が困難となり、針状結晶粒子や微細凝集粒子を生成し易く、粒度の揃った窒化珪素粉末の調製は困難となる。
 また、非晶質窒化珪素粉末のレーザー回折散乱法により測定した体積法粒度分布で粒子径が50μm以上の粗大凝集粒子が存在する場合は、粗大凝集粒子内では結晶焼成化の際に異常結晶成長による粗大粒子や粗大な凝集粒子、針状結晶粒子および微細粒子の同時生成による粒度と粒子径の不均一な粒子が生成して、粒度の揃った窒化珪素粉末を調製することが不可能で、粒度制御し難く好ましくない。
 平均短軸粒子径が0.6~13μmの窒化珪素粉末(A)の調製は、非晶質窒化珪素粉末を調製する際の熱分解加熱温度を500~800℃とし、熱分解時に導入するガス中の酸素濃度を0.4~2vol%とし、得られた非晶質窒化珪素粉末のレーザー回折散乱法により測定した体積法粒度分布で粒子径が50μm以上の粗大な凝集粒子を含まない状態まで壊砕し、結晶化焼成時の1100~1250℃間の昇温速度を10~50℃/hrの間で調整することで可能となる。
 スラリー形成工程において、用いられる窒化珪素粉末(B)は、平均短軸粒子径が0.1~0.3μmであり、0.15~0.3μmが、好ましい。平均短軸粒子径が0.3μmを超える場合、窒化珪素粉末(A)との粒子径の差が少なく、窒化珪素粉末を配合したスラリーを塗布し、鋳型の毛細管力による吸水の際に、粒度による移動速度の違いを利用した離型層内での粒度を偏在させることができない。また、平均短軸粒子径が0.1μm未満の粒子を調製することは、粉砕工程を経ないイミド法では困難である。平均短軸粒子径が0.1μm未満の粒子は、例えば、非晶質窒化珪素粉末を調製する際の熱分解温度を1100℃より上げ、熱分解時に導入するガス中の酸素濃度を5vol%以上とすることで得られる非晶質窒化珪素粉末中の酸素濃度を高くし、結晶化焼成時の結晶化開始温度を上げ、結晶化速度を速くできる非晶質窒化珪素粉末を原料として用いた場合でも、また結晶化焼成の際の1100~1250℃間の昇温速度を、100℃/hrを超えた速度に速めることで得ることは出来るが、針状結晶粒子や微細凝集粒子の生成割合も増すことから粉砕工程を必要とする。従って、0.1μm未満の粒子を調製するためには粉砕工程を経る必要があり、金属不純物の混入を避けられないことから離型材用原料として好ましくない。
 平均短軸粒子径が0.1~0.3μmである窒化珪素粉末(B)は、例えば、イミド法によって得ることができ、その製造工程中の非晶質窒化珪素粉末を調製する際の熱分解加熱温度と得られた非晶質窒化珪素粉末中の酸素濃度と、結晶化焼成時の昇温速度を調整することによって調製できる。
 平均短軸粒子径を小さくする場合は、非晶質窒化珪素粉末を調製する際の熱分解加熱温度を高くし、得られた非晶質窒化珪素粉末中の酸素濃度を高くした非晶質窒化珪素粉末を原料粉末に用いる。この非晶質窒化珪素粉末を用いた場合、結晶化速度が速くなることで微細な結晶粒子粉末を得ることができる。但し、結晶化焼成時の異常な粒成長や針状結晶粒子および微細凝集粒子の混合粒子の生成を抑えるために、非晶質窒化珪素粉末中にレーザー回折散乱法により測定した体積法粒度分布の粒子径で50μm以上の粗大な凝集粒子を含まない状態まで壊砕する必要がある。更に結晶化焼成時の1100~1250℃間の昇温速度を調整することで、急激な結晶化の進行に伴う針状結晶粒子および微細凝集粒子の生成を抑え、粒度の揃った窒化珪素粉末を調製できる。
 例えば平均短軸粒子径0.1μmの窒化珪素粉末を調製する場合には、非晶質窒化珪素粉末を調製する際の熱分解温度を1000℃とし、熱分解時に導入するガス中の酸素濃度を4~5vol%とすることによって、結晶化焼成時の結晶化開始温度を上げ、結晶化速度を速くできる非晶質窒化珪素粉末を用いる。更に、非晶質窒化珪素粉末中にレーザー回折散乱法により測定した体積法粒度分布の粒子径で50μm以上の粗大な凝集粒子を含まない状態まで壊砕する。この非晶質窒化珪素粉末を用いて1100~1250℃間の昇温速度を80~100℃/hrとすることで結晶化粒子成長を速く進行さながら急激な結晶化の進行に伴う針状結晶粒子および微細凝集粒子の生成を抑えて、粒度の揃った平均短軸粒子径が0.1μmの窒化珪素粉末を調製可能となる。
 また、例えば0.3μmの窒化珪素粉末を調製する場合には、非晶質窒化珪素粉末を調製する際の熱分解温度を800~900℃とし、熱分解時に導入するガス中の酸素濃度を2.2~4vol%とすることによって、結晶化時の結晶化開始温度を上げ、結晶化速度を速くできる非晶質窒化珪素粉末を用いる。更に、非晶質窒化珪素粉末中にレーザー回折散乱法により測定した体積法粒度分布の粒子径で50μm以上の粗大な凝集粒子を含まない状態まで壊砕する。この非晶質窒化珪素粉末を用いて1100~1250℃間の昇温速度を60~80℃/hrとすることで結晶化粒子成長を速く進行さながら急激な結晶化の進行に伴う針状結晶粒子および微細凝集粒子の生成を抑えて、粒度の揃った平均短軸粒子径が0.3μmの窒化珪素粉末を調製可能となる。
 非晶質窒化珪素粉末を調製する際の熱分解温度が1100℃を超え、熱分解時に導入するガス中の酸素濃度が5vol%以上の場合は、得られた非晶質窒化珪素粉末を原料に用いた場合、結晶化時の結晶化開始温度は更に高く、結晶化速度は更に速くなることで、1100~1250℃間の昇温速度を調整しても、粒度の揃った平均短軸粒子径が0.1~0.3μmの窒化珪素粉末(B)を調製することは困難となり、結晶化焼成後粉末中には針状結晶粒子や微細凝集粒子の生成割合が増し、塗布後離型層密度は低下し、更に窒化珪素粉末を配合したスラリーを塗布し、鋳型の毛細管力による吸水の際に、粒度による移動速度の違いを針状結晶粒子が邪魔することで利用できなくなり好ましくない。
 さらに、1100~1250℃間の昇温速度が100℃/hrを超えると、急激な結晶化の進行に伴い結晶化制御は困難となり、異常粒成長や針状結晶粒子および微細凝集粒子が混合生成することで平均短軸粒子径が0.1~0.3μmの窒化珪素粉末(B)を調製することは困難となる。
 平均短軸粒子径が0.1~0.3μmの窒化珪素粉末(B)の調製は、非晶質窒化珪素粉末を調製する際の熱分解加熱温度を800~1100℃とし、熱分解時に導入するガス中の酸素濃度を2.2~5vol%とし、得られた非晶質窒化珪素粉末のレーザー回折散乱法により測定した体積法粒度分布で粒子径が50μm以上の粗大な凝集粒子を含まない状態まで壊砕し、結晶化焼成時の1100~1250℃間の昇温速度を60~100℃/hrの間で調整することで可能となる。
 また、本発明に係る製造方法において、平均短軸粒子径が0.6~13μmである窒化珪素粉末(A)と、平均短軸粒子径が0.1~0.3μmである窒化珪素粉末(B)とを配合した高純度な窒化珪素粉末は、重量割合で5:5~9:1に配合することが重要である。例えば窒化珪素粉末(B)の重量割合が5:5より多い場合は、窒化珪素粉末を配合したスラリーを塗布し、鋳型の毛細管力による吸水の際に、粒度による移動速度の違いによる離型層の粒度勾配はできるものの、図1に示す状態よりもシリコンインゴット側で微細粒子割合が多くなり、焼付け温度は低温でも離型層全体の密着性と強度は高まるが、焼付け時の収縮による亀裂や破損の発生する危険性が増し、更にシリコンインゴット側の離型層の酸素濃度が増すことでシリコン融液との反応性が高くなり好ましくない。また、例えば窒化珪素粉末(B)の重量割合が9:1より少ない場合は、離型層の鋳型への密着性と離型層の強度の低下が著しく好ましくない。
 スラリー形成工程に用いられる窒化珪素粉末含有スラリーは、上記窒化珪素粉末を水に混合させたスラリーであり、所定量の窒化珪素粉末を蒸留水とともに容器に入れ、窒化珪素製ボールを充填して振動ミル、ボールミル、ペイントシェーカーなどの混合粉砕機を用いたり、またボールを用いない場合にはパドル翼等の羽のついた撹拌機や、高速自公転式撹拌機を用いて所定時間混合して得られる。
 上記結晶化焼成によって得られた窒化珪素粉末(A)及び(B)は、軽い凝集粒子状態となっており、そのままでは水に分散させてスラリーとする際に、スラリー粘度が高くなり易いことから、軽く壊砕する処理を行なう。凝集粒子を軽く壊砕する工程では、壊砕に用いるメディアは、金属球を樹脂でコーティングした材質や、窒化珪素焼結体を用い、金属不純物の混入量は非常に少なく、数ppm程度に止まり、多結晶シリコンインゴットを鋳造する鋳型用の離型材の原料に適した粉末となる。
 本発明に係る離型層を有する多結晶シリコンインゴット鋳造用鋳型の製造方法において、スラリー塗布工程は、上記窒化珪素粉末含有スラリーを粒子の流動性を保ったまま、鋳型表面に塗布する工程である。上記窒化珪素粉末含有スラリーは、鋳型である気孔率16~26%の石英坩堝の内表面に、スプレーや刷毛もしくはへらを使用して離型材の塗布を行い、塗布した離型層内での窒化珪素粒子の移動を阻害しない程度で、塗布したスラリーが鋳型から垂れ落ちない程度の流動性を持つことが好ましい。
 鋳型に塗布した窒化珪素粉末含有スラリーは、鋳型内の細孔による毛管現象の吸水によって、鋳型表面近傍においては、微粒であるほど鋳型に引き寄せられて、離型層の内側(鋳型側)には微粒が偏在し、離型層の外側(シリコンインゴット側)には微粒が減ることによって粗粒が偏在した離型層が形成され、図1に示す離型層内の粒子の偏在状態を表した概念図の状態となる。従って、窒化珪素粉末含有スラリーの粘度が500P(ポイズ)以上の場合は、窒化珪素粉末含有スラリーを塗布した離型層内での窒化珪素粒子の移動速度は遅く、粒子の偏在は起こり難い。また、前記記載の窒化珪素粉末含有スラリーの粘度が1.5cP(センチポイズ)以下の場合は、窒化珪素粉末含有スラリーを塗布した離型層は垂れ易く、離型層を保持できないことから、粒子の流動性を保て、垂れないスラリー粘度に調整する必要がある。
 本発明に係る離型層を有する多結晶シリコンインゴット鋳造用鋳型の製造方法は、塗布した窒化珪素粉末含有スラリーの鋳型内の細孔による毛管現象によって吸水を十分に行なうために、スラリーの水分を鋳型内に浸透させる水分浸透工程をさらに備えていても良く、水分浸透工程としては、例えば、30~120℃で乾燥させることなどがある。
 さらに、本発明に係る離型層を有する多結晶シリコンインゴット鋳造用鋳型の製造方法において、加熱工程は、窒化珪素粉末含有スラリーを塗布した鋳型を、酸素を含む雰囲気下で800~1200℃で加熱処理を行う工程である。窒化珪素粉末は、大気下では800℃以上で酸化が進行し、1200℃を超えると過度な酸化状態となり、図3に示すように微粒であるほどより酸化され易く、粗粒になるほど酸化し難い。微細な窒化珪素粉末と粗大な窒化珪素粉末を配合した窒化珪素粉末を用いることによって、離型層の内側(鋳型側)には酸化され易い微細粒子が偏在することで酸素を含む雰囲気下焼成による焼付けによって酸化された粒子同士および粒子と鋳型が密着し、離型層の外側(シリコンインゴット側)は酸化され難い粗大粒子が偏在することで離型層表面の酸素濃度は低く、シリコン融液の固溶を抑えて浸透を防止できる。窒化珪素粉末含有スラリーの塗布は、一度塗りでも上記記載の離型層が形成されるが、二度塗り以上でも同様の効果を得られ、多結晶シリコンインゴット鋳造用鋳型を低コストで製造でき、シリコン融液の浸透を防ぎ、凝固したシリコンインゴットの離型性は改善して、高い歩留まりのシリコンインゴットが生産できる。
 本発明に係る離型層を有する多結晶シリコンインゴット鋳造用鋳型の製造方法によって製造された多結晶シリコンインゴット鋳造用鋳型は、多結晶シリコンインゴットを鋳造するための鋳型であり、鋳型の内側には窒化珪素粉末を含有する離型層が形成されており、その離型層は、内側(鋳型側)には酸化され易い微細粒子が偏在し、外側(シリコンインゴット側)には酸化され難い粗大粒子が偏在することを特徴とするため、鋳型側は酸素含有量が高く、シリコンインゴット側は酸素含有量が低くなる。このような離型層を有する多結晶シリコンインゴット鋳造用鋳型を用いることにより、離型層の内側(鋳型側)は酸素を含む雰囲気下焼成による焼付けによって酸化された粒子同士および粒子と鋳型が密着し、離型層の外側(シリコンインゴット側)は酸素濃度が下がり、シリコン融液の固溶を抑えて浸透を防止でき、鋳型と凝固したシリコンインゴットの離型性を大幅に改善し、凝固したシリコンインゴットを離型する際の欠けや破損の発生を抑えて品質の高いシリコンインゴットを高い歩留まりで得ることができる。鋳型の材料としては、特に限定されないが、通常、石英坩堝や、黒鉛坩堝に内装した石英坩堝等が用いられる。
 以下では、具体的例を挙げ、本発明を更に詳しく説明する。
 (実施例1~15)
 最初に、本発明に係る離型層を有する多結晶シリコンインゴット鋳造用鋳型の製造に必要な結晶質窒化珪素を作製した。
 先ず、四塩化珪素濃度が30vol%のトルエンの溶液を液体アンモニアと反応させ、液体アンモニアを用いて洗浄し乾燥することでシリコンジイミドを作製した。
 得られたシリコンジイミド粉末を、粉末1kg当たり70リッター/時の空気-窒素混合ガス(混合ガスの酸素濃度は0.4~2vol%)流通下、500~800℃で加熱分解して窒化珪素粉末(A)を調製するための非晶質窒化珪素粉末を、また粉末1kg当たり70リッター/時の空気-窒素混合ガス(混合ガスの酸素濃度は2.2~4vol%)流通下800~1100℃で加熱分解して窒化珪素粉末(B)を調製するための非晶質窒化珪素粉末を得ることができる。
 実施例1~5に記載の窒化珪素粉末(A)を次のように調製した。先ず、前記シリコンジイミド粉末の熱分解温度を700℃とし、熱分解時に導入するガス中の酸素濃度を1vol%とし、得られた非晶質窒化珪素粉末を、金属球をナイロンでコーティングした材質のボールを充填した連続式振動ミルを用いてレーザー回折散乱法により測定した体積法粒度分布の粒子径で50μm以上の粗大な凝集粒子を含まない状態まで壊砕した。壊砕後の非晶質窒化珪素粉末を、黒鉛製坩堝に仕込み、1100℃まで4時間で昇温し、1100~1250℃間の昇温速度を20℃/hrとし、1550℃まで4時間で昇温し、1550℃で1時間保持焼成し、冷却後取り出した。取り出した焼成後粉末を、金属球をナイロンでコーティングした材質のボールを充填した連続式振動ミルを用いて軽く壊砕することで、実施例1~5に係る平均短軸粒子径6.5μmの窒化珪素粉末を調製した。
 同様に、実施例6~10に記載の窒化珪素粉末(A)を次のように調製した。先ず、同シリコンジイミド粉末を熱分解温度を750℃とし、熱分解時に導入するガス中の酸素濃度を2vol%とし、得られた非晶質窒化珪素粉末を、金属球をナイロンでコーティングした材質のボールを充填した連続式振動ミルを用いてレーザー回折散乱法により測定した体積法粒度分布の粒子径で50μm以上の粗大な凝集粒子を含まない状態まで壊砕した。壊砕後の非晶質窒化珪素粉末を、黒鉛製坩堝に仕込み、1100℃まで4時間で昇温し、1100~1250℃間の昇温速度を50℃/hrとし、1550℃まで4時間で昇温し、1550℃で1時間保持焼成し、冷却後取り出した。取り出した焼成後粉末を、金属球をナイロンでコーティングした材質のボールを充填した連続式振動ミルを用いて軽く壊砕することで、実施例6~10に係る平均短軸粒子径0.65μmの窒化珪素粉末を調製した。
 また同様に、実施例11~15に記載の窒化珪素粉末(A)を次のように調製した。熱分解温度を500℃とし、熱分解時に導入するガス中の酸素濃度を0.5vol%とし、得られた非晶質窒化珪素粉末を、金属球をナイロンでコーティングした材質のボールを充填した連続式振動ミルを用いてレーザー回折散乱法により測定した体積法粒度分布の粒子径で50μm以上の粗大な凝集粒子を含まない状態まで壊砕した。壊砕後の非晶質窒化珪素粉末を、黒鉛製坩堝に仕込み、1100℃まで4時間で昇温し、1100~1250℃間の昇温速度を10℃/hrとし、1550℃まで4時間で昇温し、1550℃で1時間保持焼成し、冷却後取り出した。取り出した焼成後粉末を、金属球をナイロンでコーティングした材質のボールを充填した連続式振動ミルを用いて軽く壊砕することで、実施例11~15に係る平均短軸粒子径12.8μmの窒化珪素粉末を調製した。
 次いで、実施例1~10に記載の窒化珪素粉末(B)を次のように調製した。先ず、同シリコンジイミド粉末を熱分解温度を1050℃とし、熱分解時に導入するガス中の酸素濃度を4vol%とし、得られた非晶質窒化珪素粉末を、金属球をナイロンでコーティングした材質のボールを充填した連続式振動ミルを用いてレーザー回折散乱法により測定した体積法粒度分布の粒子径で50μm以上の粗大な凝集粒子を含まない状態まで壊砕した。壊砕後の非晶質窒化珪素粉末を、黒鉛製坩堝に仕込み、1100℃まで4時間で昇温し、1100~1250℃間の昇温速度を100℃/hrとし、1550℃まで4時間で昇温し、1550℃で1時間保持焼成し、冷却後取り出した。取り出した焼成後粉末を、金属球をナイロンでコーティングした材質のボールを充填した連続式振動ミルを用いて軽壊砕することで、実施例1~10に係る平均短軸粒子径0.18μmの窒化珪素粉末を調製した。
 同様に、実施例11~15に記載の窒化珪素粉末(B)を次のように調製した。先ず、同シリコンジイミド粉末を熱分解温度を900℃とし、熱分解時に導入するガス中の酸素濃度を4vol%とし、得られた非晶質窒化珪素粉末を、金属球をナイロンでコーティングした材質のボールを充填した連続式振動ミルを用いてレーザー回折散乱法により測定した体積法粒度分布の粒子径で50μm以上の粗大な凝集粒子を含まない状態まで壊砕した。壊砕後の非晶質窒化珪素粉末を、黒鉛製坩堝に仕込み、1100℃まで4時間で昇温し、1100~1250℃間の昇温速度を60℃/hrとし、1550℃まで4時間で昇温し、1550℃で1時間保持焼成し、冷却後取り出した。取り出した焼成後粉末を、金属球をナイロンでコーティングした材質のボールを充填した連続式振動ミルを用いて軽壊砕することで、実施例11~15に係る平均短軸粒子径0.28μmの窒化珪素粉末を調製した。
 得られた窒化珪素粉末(A)の比表面積は0.2~3.0m/g、平均短軸粒子径は12.8~0.65μmで、窒化珪素粉末(B)の比表面積は7~12.0m/g、平均短軸粒子径は0.29~0.18μmであった。
 この窒化珪素粉末(A)と(B)を重量割合5:5~9:1として採取した窒化珪素配合粉末10gと蒸留水40gおよび10φmm窒化珪素ボール100gを、100ccのポリエチレン製の瓶に入れ密栓し、振幅5mm、振動数1780spmの振動ミル上に固定して、5分間混合することで20wt%水スラリーを調製した。
 前記記載の20wt%水スラリーを、予め40℃で加温した気孔率16%の5cm角×深さ4cmの石英坩堝にスプレー塗布し、40℃乾燥した。塗布後石英坩堝は、更に40℃乾燥を一夜行った。乾燥後は、箱型電気炉を用い、大気雰囲気下で1100℃まで4時間で昇温し、1100℃で4時間保持後降温することで離型層を石英坩堝に焼き付けた。各々の離型層の厚みは5点測定の平均で100~200μmとなった。
 離型層を焼き付けた石英坩堝に、純度99.999%で2~5mmのSi顆粒を75g充填し、箱型電気炉を用い、Ar雰囲気大気圧流通下、1000℃まで3時間、1000℃から1450℃まで3時間、1450℃で4時間保持して降温した。降温後、炉から取り出し、型離れ状況の観察評価を行い、坩堝底中央部のSi融液浸透状況の目視観察、および坩堝底中央部をエポキシ樹脂で包埋し、底部離型層付近の断面をカットし、FE-SEMを用いて×100倍の離型層の断面像を撮りSi融液浸透状況観察評価を行った。結果を表1に示す。
 表1中のシリコン融液の坩堝浸透状況の◎は、シリコン融液の浸透が離型層表面で止まる、○はシリコン融液の浸透が離型層までで止まる、△はシリコン融液が石英坩堝の一部に少量浸透、×はシリコン融液が石英坩堝まで浸透し坩堝底の反対面まで漏れ出ている状態を意味する。またシリコンインゴット型離れ状況の◎は石英坩堝と一部の固着も無く完全に型離れする、○は石英坩堝と僅かに固着するが型離れする、△は石英坩堝の側面は型離れするが底面は固着する、×は石英坩堝全体に固着して型離れしない状態を意味する。
Figure JPOXMLDOC01-appb-T000001
 (比較例1~2)
 シリコンジイミドの熱分解法によって得られたSEM画像による寸法測定によって算出した平均短軸粒子径が0.22μmの窒化珪素粉末(宇部興産SN-E10)を、大気雰囲気下、バッチ式電気炉で1000℃×3hr加熱処理を行うことによって酸素濃度7.5wt%の窒化珪素粉末(A2)を得た。酸素濃度はLECO社製TC-136型酸素窒素同時分析装置を用いて測定した。この窒化珪素粉末(A2)10gと蒸留水40gおよび10φmm窒化珪素ボール100gを、100ccのポリエチレン製の瓶に入れ密栓し、振幅5mm、振動数1780spmの振動ミル上に固定して、5分間混合することで20wt%水スラリーを調製した。
 前記記載の20wt%水スラリーを、予め40℃で加温した気孔率16%の5cm角×深さ4cmの石英坩堝にスプレー塗布し、40℃乾燥した。塗布後石英坩堝は、更に40℃乾燥を一夜行った。乾燥後は、箱型電気炉を用い、大気雰囲気下で1100℃まで4時間で昇温し、1100℃で4時間保持後降温することで離型層を石英坩堝に焼き付けた。各々の離型層の厚みは5点測定の平均で100μmとなった。
 次に、上述の窒化珪素粉末(A2)と、X線回折装置により非晶質であることを確認したレーザー法拡散式粒度分布装置で測定した平均粒径が0.05μmのシリカ粉末を9:1(B2)、8:2(B3)の割合で混合し、前記同様に20wt%水スラリーを調製し、前記(A1)を塗布した各石英坩堝の上にスプレー塗布し、大気雰囲気下で1100℃4時間保持して離型層を石英坩堝に焼き付けた。各々の離型層の厚みは5点測定の平均で200μmとなった。
 次に、離型層を焼き付けた石英坩堝に、純度99.999%で2~5mmのSi顆粒を75g充填し、箱型電気炉を用い、Ar雰囲気大気圧流通下、1000℃まで3時間、1000℃から1450℃まで3時間、1450℃で4時間保持して降温した。降温後、炉から取り出し、離型性状況の観察評価を行い、坩堝底中央部のSi融液浸透状況の目視観察、および坩堝底中央部をエポキシ樹脂で包埋し、断面カットし、FE-SEMを用いて×100倍の離型層の断面像を撮りSi融液浸透状況観察評価を行った。結果を表1に示す。
 (比較例3~10)
 実施例1~15と同様に多結晶シリコンインゴット鋳造用鋳型の製造方法に必要な結晶質窒化珪素を作製した。
 比較例3、4、9に記載の窒化珪素粉末(A)は、実施例1~5に記載の窒化珪素粉末(A)を用いた。
 同様に、比較例5、6、10に記載の窒化珪素粉末(A)は、実施例6~9に記載の窒化珪素粉末(A)を用いた。
 また同様に、比較例7、8に記載の窒化珪素粉末(A)は、実施例11~15に記載の窒化珪素粉末(A)を用いた。
 次いで、比較例3~6に記載の窒化珪素粉末(B)は、実施例1~10に記載の窒化珪素粉末(B)を用いた。
 同様に、比較例7、8に記載の窒化珪素粉末(B)は、実施例11~15に記載の窒化珪素粉末(B)を用いた。
 また同様に、比較例9、10に記載の窒化珪素粉末(B)を次のように調製した。先ず、同シリコンジイミド粉末を850℃とし、熱分解時に導入するガス中の酸素濃度を2vol%として、得られた非晶質窒化珪素粉末を、金属球をナイロンでコーティングした材質のボールを充填した連続式振動ミルを用いてレーザー回折散乱法により測定した体積法粒度分布の粒子径で50μm以上の粗大な凝集粒子を含まない状態まで壊砕した。壊砕後の非晶質窒化珪素粉末を、黒鉛製坩堝に仕込み、1100℃まで4時間で昇温し、1100~1250℃間の昇温速度を50℃/hrとし、1550℃まで4時間で昇温し、1550℃で1時間保持焼成し、冷却後取り出した。取り出した焼成後粉末を、金属球をナイロンでコーティングした材質のボールを充填した連続式振動ミルを用いて軽壊砕することで、比較例9、10に係る平均短軸粒子径0.43μmの窒化珪素粉末を調製した。
 得られた窒化珪素粉末(A)の比表面積は0.2~3.0m/g、平均短軸粒子径は12.8~0.65μmで、窒化珪素粉末(B)の比表面積は4.5~12.0m/g、平均短軸粒子径は0.43~0.18μmであった。
 上記の数種の窒化珪素粉末(A)と(B)とを、表1に記載の組み合わせと配合割合で採取した窒化珪素配合粉末10gと蒸留水40gおよび10φmm窒化珪素ボール100gを、100ccのポリエチレン製の瓶に入れ密栓し、振幅5mm、振動数1780spmの振動ミル上に固定して、5分間混合することで20wt%水スラリーを調製した。前記記載の20wt%水スラリーを、予め40℃で加温した気孔率16%の5cm角×深さ4cmの石英坩堝にスプレー塗布し、40℃乾燥した。塗布後石英坩堝は、更に40℃乾燥を一夜行った。乾燥後は、箱型電気炉を用い、大気雰囲気下で1100℃まで4時間で昇温し、1100℃で4時間保持後降温することで離型層を石英坩堝に焼き付けた。各々の離型層の厚みは5点測定の平均で100~200μmとなった。
 離型層を焼き付けた石英坩堝に、純度99.999%で2~5mmのSi顆粒を75g充填し、箱型電気炉を用い、Ar雰囲気大気圧流通下、1000℃まで3時間、1000℃から1450℃まで3時間、1450℃で4時間保持して降温した。降温後、炉から取り出し、型離れ状況観察を行い、坩堝底中央部のSi融液浸透状況の目視観察、および坩堝底中央部をエポキシ樹脂で包埋し、断面カットし、FE-SEMを用いて×100倍の離型層の断面像を撮りSi融液浸透状況観察を行った。結果を表1に示す。
  1  鋳型
  2  粗大な窒化珪素粒子
  3  微細な窒化珪素粒子

Claims (5)

  1.  平均短軸粒子径が0.6~13μmである窒化珪素粉末(A)と、平均短軸粒子径が0.1~0.3μmである窒化珪素粉末(B)とを重量割合で5:5~9:1に配合した窒化珪素粉末を水に混合してスラリーを形成するスラリー形成工程と、
     該スラリーを鋳型表面に塗布するスラリー塗布工程と、
     該スラリー塗布工程後、酸素を含む雰囲気下800~1200℃で、鋳型を加熱する加熱工程と、
     を備えることを特徴とする離型層を有する多結晶シリコンインゴット鋳造用鋳型の製造方法。
  2.  前記鋳型表面に塗布されたスラリーの水分を鋳型内に浸透させる水分浸透工程をさらに備え、
     前記加熱工程は、該水分浸透工程後に行なうことを特徴とする請求項1記載の離型層を有する多結晶シリコンインゴット鋳造用鋳型の製造方法。
  3.  平均短軸粒子径が0.6~13μmである窒化珪素粉末(A)と、平均短軸粒子径が0.1~0.3μmである窒化珪素粉末(B)とが重量割合5:5~9:1で含まれていることを特徴とする多結晶シリコンインゴット鋳造用鋳型の離型材用窒化珪素粉末。
  4.  請求項3記載の窒化珪素粉末を水に混合させることを特徴とする多結晶シリコンインゴット鋳造用鋳型の離型材用窒化珪素粉末含有スラリー。
  5.  請求項3記載の窒化珪素粉末を用いて離型層が鋳型内面に形成されたことを特徴とする多結晶シリコンインゴット鋳造用鋳型。
PCT/JP2011/067107 2010-12-28 2011-07-27 多結晶シリコンインゴット鋳造用鋳型及びその製造方法並びに多結晶シリコンインゴット鋳造用鋳型の離型材用窒化珪素粉末及びそれを含有したスラリー WO2012090541A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012550747A JP5637220B2 (ja) 2010-12-28 2011-07-27 多結晶シリコンインゴット鋳造用鋳型及びその製造方法並びに多結晶シリコンインゴット鋳造用鋳型の離型材用窒化珪素粉末及びそれを含有したスラリー
SG2013050331A SG191412A1 (en) 2010-12-28 2011-07-27 Polycrystalline silicon ingot casting mold and method for producing same, and silicon nitride powder for mold release material for polycrystalline silicon ingot casting mold and slurry containing same
EP11853890.9A EP2660201B1 (en) 2010-12-28 2011-07-27 Polycrystalline silicon ingot casting mold and method for producing the same, and slurry used for its method
KR20137019821A KR20130133820A (ko) 2010-12-28 2011-07-27 다결정 실리콘 잉곳 주조용 주형 및 그 제조 방법, 그리고 다결정 실리콘 잉곳 주조용 주형의 이형재용 질화규소 분말 및 그것을 함유한 슬러리
CN201180062854.7A CN103269975B (zh) 2010-12-28 2011-07-27 多晶硅铸锭铸造用铸模及其制造方法、以及多晶硅铸锭铸造用铸模的脱模材料用氮化硅粉末及含有该粉末的浆料
US13/994,901 US9022343B2 (en) 2010-12-28 2011-07-27 Polycrystalline silicon ingot casting mold and method for producing same, and silicon nitride powder for mold release material for polycrystalline silicon ingot casting mold and slurry containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-293060 2010-12-28
JP2010293060 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012090541A1 true WO2012090541A1 (ja) 2012-07-05

Family

ID=46382666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067107 WO2012090541A1 (ja) 2010-12-28 2011-07-27 多結晶シリコンインゴット鋳造用鋳型及びその製造方法並びに多結晶シリコンインゴット鋳造用鋳型の離型材用窒化珪素粉末及びそれを含有したスラリー

Country Status (7)

Country Link
US (1) US9022343B2 (ja)
EP (1) EP2660201B1 (ja)
JP (1) JP5637220B2 (ja)
KR (1) KR20130133820A (ja)
CN (1) CN103269975B (ja)
SG (1) SG191412A1 (ja)
WO (1) WO2012090541A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192819A1 (ja) * 2013-05-29 2014-12-04 三菱重工業株式会社 精密鋳造用中子及びその製造方法、精密鋳造用鋳型
JP2014231076A (ja) * 2013-05-29 2014-12-11 三菱重工業株式会社 精密鋳造用中子及びその製造方法、精密鋳造用鋳型
WO2015005390A1 (ja) * 2013-07-11 2015-01-15 宇部興産株式会社 多結晶シリコンインゴット鋳造用鋳型の離型剤用窒化珪素粉末およびその製造法、その窒化珪素粉末を含有したスラリー、多結晶シリコンインゴット鋳造用鋳型およびその製造方法、ならびにその鋳型を用いた多結晶シリコンインゴット鋳の製造方法
JPWO2015122388A1 (ja) * 2014-02-12 2017-03-30 宇部興産株式会社 スラリー用窒化珪素粉末とその製造方法、離型材用窒化珪素粉末スラリーとその製造方法、離型材用窒化珪素粉末、離型材、および多結晶シリコン鋳造用鋳型とその製造方法
JP2018030774A (ja) * 2016-07-29 2018-03-01 友達晶材股▲ふん▼有限公司AUO Crystal Corporation シリコンインゴット作製用の容器およびその製造方法、ならびに結晶シリコンインゴットを製造するための方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9246134B2 (en) * 2014-01-20 2016-01-26 3M Innovative Properties Company Lamination transfer films for forming articles with engineered voids
KR101739206B1 (ko) * 2015-12-09 2017-05-23 오씨아이 주식회사 지락 전류 방지 및 실리콘 더스트 제거 효과가 우수한 폴리실리콘 제조 장치
DE102018206982A1 (de) * 2018-05-04 2019-11-07 Alzchem Trostberg Gmbh Tiegel zur Herstellung von multikristallinem Silicium mittels gerichteter Erstarrung, Verfahren zu dessen Herstellung und dessen Verwendung, sowie Verfahren zur Herstellung von multikristallinem Silicium mittels gerichteter Erstarrung
DE102019113008A1 (de) 2019-05-16 2020-11-19 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verwendung eines partikulären Materials umfassend ein teilchenförmiges synthetisches amorphes Siliciumdioxid als Additiv für eine Formstoffmischung, entsprechende Verfahren, Mischungen und Kits
US20230079888A1 (en) * 2021-09-13 2023-03-16 Rohr, Inc. Tooling element and methods for forming and using same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09175809A (ja) * 1995-12-27 1997-07-08 Kyocera Corp シリコンの鋳造法
JP2907367B2 (ja) 1993-05-18 1999-06-21 宇部興産株式会社 結晶質窒化珪素粉末の製造法
JP2907366B2 (ja) 1993-05-18 1999-06-21 宇部興産株式会社 結晶質窒化珪素粉末の製造法
JPH11244988A (ja) * 1998-02-27 1999-09-14 Mitsubishi Materials Corp シリコンインゴット鋳造用鋳型およびその製造方法
JP2001198648A (ja) 2000-01-11 2001-07-24 Mitsubishi Materials Corp シリコンインゴット鋳造用鋳型およびその製造方法
JP3282456B2 (ja) 1995-07-27 2002-05-13 宇部興産株式会社 窒化珪素粉末及びその製造方法
JP2005095924A (ja) 2003-09-24 2005-04-14 Kyocera Corp シリコン鋳造用鋳型
JP2007261832A (ja) 2006-03-27 2007-10-11 Sumco Solar Corp 窒化珪素離型材粉末、離型材の作製方法及び焼成方法
WO2008026688A1 (fr) * 2006-08-30 2008-03-06 Kyocera Corporation Procédé de formation d'un moule pour la production d'un lingot de silicium, procédé de production d'un substrat pour élément de cellule solaire, procédé de production d'un élément de cellule solaire et moule pour la production d'un lingot de silicium
JP2010195675A (ja) * 2009-01-28 2010-09-09 Kyocera Corp 鋳型の形成方法、太陽電池素子用基板の製造方法、太陽電池素子の製造方法、およびシリコンインゴット製造用鋳型

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001091A (en) * 1987-11-02 1991-03-19 Norton Company Readily moldable or castable ceramic powders
US5047186A (en) * 1989-12-28 1991-09-10 Gte Laboratories Incorporated Process for producing silicon nitride based articles of high fracture toughness and strength
US5571760A (en) * 1993-08-27 1996-11-05 Saint-Gobain/Norton Industrial Ceramics Corporation Silicon nitride having a high tensile strength
JPH082907A (ja) * 1994-06-20 1996-01-09 Ube Ind Ltd 窒化ケイ素粉末
US5759481A (en) * 1994-10-18 1998-06-02 Saint-Gobain/Norton Industrial Ceramics Corp. Silicon nitride having a high tensile strength
DE10146227B4 (de) * 2000-09-20 2015-01-29 Hitachi Metals, Ltd. Siliciumnitrid-Sinterkörper, Leiterplatte und thermoelektrisches Modul
JP2004091243A (ja) * 2002-08-30 2004-03-25 Kyocera Corp 窒化珪素質焼結体の製造方法および窒化珪素質焼結体
JP2004202813A (ja) 2002-12-25 2004-07-22 Hitachi Metals Ltd 櫛歯状通路を有するセラミック焼結体の製造方法
JP4089974B2 (ja) * 2004-04-27 2008-05-28 日立金属株式会社 窒化ケイ素質粉末、窒化ケイ素質焼結体及びこれを用いた電子部品用回路基板
DE102005045666A1 (de) 2005-09-14 2007-03-15 Itn Nanovation Gmbh Schicht oder Beschichtung sowie Zusammensetzung zu ihrer Herstellung
TWI400369B (zh) * 2005-10-06 2013-07-01 Vesuvius Crucible Co 用於矽結晶的坩堝及其製造方法
DE102007053284A1 (de) 2007-11-08 2009-05-20 Esk Ceramics Gmbh & Co. Kg Fest haftende siliciumnitridhaltige Trennschicht
CN101844935A (zh) * 2010-05-31 2010-09-29 江西赛维Ldk太阳能高科技有限公司 一种多晶硅或单晶硅用坩埚涂层及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2907367B2 (ja) 1993-05-18 1999-06-21 宇部興産株式会社 結晶質窒化珪素粉末の製造法
JP2907366B2 (ja) 1993-05-18 1999-06-21 宇部興産株式会社 結晶質窒化珪素粉末の製造法
JP3282456B2 (ja) 1995-07-27 2002-05-13 宇部興産株式会社 窒化珪素粉末及びその製造方法
JPH09175809A (ja) * 1995-12-27 1997-07-08 Kyocera Corp シリコンの鋳造法
JPH11244988A (ja) * 1998-02-27 1999-09-14 Mitsubishi Materials Corp シリコンインゴット鋳造用鋳型およびその製造方法
JP2001198648A (ja) 2000-01-11 2001-07-24 Mitsubishi Materials Corp シリコンインゴット鋳造用鋳型およびその製造方法
JP2005095924A (ja) 2003-09-24 2005-04-14 Kyocera Corp シリコン鋳造用鋳型
JP2007261832A (ja) 2006-03-27 2007-10-11 Sumco Solar Corp 窒化珪素離型材粉末、離型材の作製方法及び焼成方法
WO2008026688A1 (fr) * 2006-08-30 2008-03-06 Kyocera Corporation Procédé de formation d'un moule pour la production d'un lingot de silicium, procédé de production d'un substrat pour élément de cellule solaire, procédé de production d'un élément de cellule solaire et moule pour la production d'un lingot de silicium
JP2010195675A (ja) * 2009-01-28 2010-09-09 Kyocera Corp 鋳型の形成方法、太陽電池素子用基板の製造方法、太陽電池素子の製造方法、およびシリコンインゴット製造用鋳型

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2660201A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192819A1 (ja) * 2013-05-29 2014-12-04 三菱重工業株式会社 精密鋳造用中子及びその製造方法、精密鋳造用鋳型
JP2014231076A (ja) * 2013-05-29 2014-12-11 三菱重工業株式会社 精密鋳造用中子及びその製造方法、精密鋳造用鋳型
US10166598B2 (en) 2013-05-29 2019-01-01 Mitsubish Heavy Industries, Ltd. Precision-casting core, precision-casting core manufacturing method, and precision-casting mold
CN105377756B (zh) * 2013-07-11 2017-03-15 宇部兴产株式会社 多晶硅锭铸造用铸模的脱模剂用氮化硅粉末及其制造和使用方法
EP3020686A1 (en) * 2013-07-11 2016-05-18 UBE Industries, Ltd. Silicon nitride powder for mold release agent of casting mold for casting polycrystalline silicon ingot and method for manufacturing said silicon nitride powder, slurry containing said silicon nitride powder, casting mold for casting polycrystalline silicon ingot and method for manufacturing same, and method for manufacturing polycrystalline silicon ingot cast using said casting mold
JP5975176B2 (ja) * 2013-07-11 2016-08-23 宇部興産株式会社 多結晶シリコンインゴット鋳造用鋳型の離型剤用窒化珪素粉末およびその製造法、その窒化珪素粉末を含有したスラリー、多結晶シリコンインゴット鋳造用鋳型およびその製造方法、ならびにその鋳型を用いた多結晶シリコンインゴット鋳の製造方法
CN105377756A (zh) * 2013-07-11 2016-03-02 宇部兴产株式会社 多晶硅锭铸造用铸模的脱模剂用氮化硅粉末及其制造法、含有该氮化硅粉末的浆料、多晶硅锭铸造用铸模及其制造方法、及使用该铸模的多晶硅锭的制造方法
EP3020686A4 (en) * 2013-07-11 2017-03-29 UBE Industries, Ltd. Silicon nitride powder for mold release agent of casting mold for casting polycrystalline silicon ingot and method for manufacturing said silicon nitride powder, slurry containing said silicon nitride powder, casting mold for casting polycrystalline silicon ingot and method for manufacturing same, and method for manufacturing polycrystalline silicon ingot cast using said casting mold
TWI624429B (zh) * 2013-07-11 2018-05-21 Ube Industries Tantalum nitride powder for release agent for mold for casting of polycrystalline ingot, method for producing the same, slurry containing the tantalum nitride powder, mold for casting polycrystalline ingot, method for producing the same, and method for producing polycrystalline ingot using the same
WO2015005390A1 (ja) * 2013-07-11 2015-01-15 宇部興産株式会社 多結晶シリコンインゴット鋳造用鋳型の離型剤用窒化珪素粉末およびその製造法、その窒化珪素粉末を含有したスラリー、多結晶シリコンインゴット鋳造用鋳型およびその製造方法、ならびにその鋳型を用いた多結晶シリコンインゴット鋳の製造方法
JPWO2015122388A1 (ja) * 2014-02-12 2017-03-30 宇部興産株式会社 スラリー用窒化珪素粉末とその製造方法、離型材用窒化珪素粉末スラリーとその製造方法、離型材用窒化珪素粉末、離型材、および多結晶シリコン鋳造用鋳型とその製造方法
JP2018030774A (ja) * 2016-07-29 2018-03-01 友達晶材股▲ふん▼有限公司AUO Crystal Corporation シリコンインゴット作製用の容器およびその製造方法、ならびに結晶シリコンインゴットを製造するための方法
US10450669B2 (en) 2016-07-29 2019-10-22 Auo Crystal Corporation Container for silicon ingot fabrication and manufacturing method thereof, and method for manufacturing crystalline silicon ingot

Also Published As

Publication number Publication date
US9022343B2 (en) 2015-05-05
EP2660201B1 (en) 2017-03-22
EP2660201A1 (en) 2013-11-06
EP2660201A4 (en) 2014-11-05
CN103269975B (zh) 2015-06-10
SG191412A1 (en) 2013-08-30
US20130264460A1 (en) 2013-10-10
JP5637220B2 (ja) 2014-12-10
KR20130133820A (ko) 2013-12-09
JPWO2012090541A1 (ja) 2014-06-05
CN103269975A (zh) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5637220B2 (ja) 多結晶シリコンインゴット鋳造用鋳型及びその製造方法並びに多結晶シリコンインゴット鋳造用鋳型の離型材用窒化珪素粉末及びそれを含有したスラリー
JP5637221B2 (ja) 多結晶シリコンインゴット鋳造用鋳型及びその製造方法並びに多結晶シリコンインゴット鋳造用鋳型の離型材用窒化珪素粉末及びそれを含有したスラリー
JP5975176B2 (ja) 多結晶シリコンインゴット鋳造用鋳型の離型剤用窒化珪素粉末およびその製造法、その窒化珪素粉末を含有したスラリー、多結晶シリコンインゴット鋳造用鋳型およびその製造方法、ならびにその鋳型を用いた多結晶シリコンインゴット鋳の製造方法
JP5700052B2 (ja) 多結晶シリコンインゴット鋳造用鋳型、並びにその離型材用窒化珪素粉末、その離型層用窒化珪素粉末含有スラリー及びその鋳造用離型材
WO2018110560A1 (ja) 窒化ケイ素粉末、多結晶シリコンインゴット用離型剤及び多結晶シリコンインゴットの製造方法
JP6354367B2 (ja) 多結晶シリコンインゴット鋳造用鋳型の離型剤用窒化ケイ素粉末及びその製造方法、多結晶シリコンインゴット鋳造用鋳型の離型剤用窒化ケイ素粉末含有スラリー、ならびに多結晶シリコンインゴット鋳造用鋳型及びその製造方法
JP6690735B2 (ja) 窒化ケイ素粉末、多結晶シリコンインゴット用離型剤及び多結晶シリコンインゴットの製造方法
JP6402726B2 (ja) スラリー用窒化珪素粉末とその製造方法、離型材用窒化珪素粉末スラリーとその製造方法、離型材用窒化珪素粉末、離型材、および多結晶シリコン鋳造用鋳型とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853890

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550747

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13994901

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137019821

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011853890

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011853890

Country of ref document: EP