WO2012087033A1 - 수중 이동 장치 및 그의 이동 방법 - Google Patents

수중 이동 장치 및 그의 이동 방법 Download PDF

Info

Publication number
WO2012087033A1
WO2012087033A1 PCT/KR2011/009951 KR2011009951W WO2012087033A1 WO 2012087033 A1 WO2012087033 A1 WO 2012087033A1 KR 2011009951 W KR2011009951 W KR 2011009951W WO 2012087033 A1 WO2012087033 A1 WO 2012087033A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame member
underwater
moving
buoyancy
cover
Prior art date
Application number
PCT/KR2011/009951
Other languages
English (en)
French (fr)
Inventor
김재훈
박영준
은종호
최종웅
이재용
주성문
정희용
이동훈
Original Assignee
삼성중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성중공업 주식회사 filed Critical 삼성중공업 주식회사
Priority to US13/997,188 priority Critical patent/US9051036B2/en
Priority to EP11850803.5A priority patent/EP2657125B1/en
Publication of WO2012087033A1 publication Critical patent/WO2012087033A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/48Means for searching for underwater objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/08Propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • B63G8/16Control of attitude or depth by direct use of propellers or jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • B63G8/22Adjustment of buoyancy by water ballasting; Emptying equipment for ballast tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/004Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned autonomously operating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/005Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned remotely controlled
    • B63G2008/007Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned remotely controlled by means of a physical link to a base, e.g. wire, cable or umbilical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • B63G8/26Trimming equipment

Definitions

  • the present invention relates to an underwater mobile device and a method of moving the same.
  • underwater mobile devices are used for exploration of seabed resources, lifting of sunken ships, oil removal, installation of submarine cables, repair of underwater structures, etc., and are being developed in various forms according to their use and operation method.
  • Underwater vehicles are controlled by remotely-operated vehicles (ROVs) with cables connected to them, and by autonomous underwater vehicles, AUV, etc., and determines the direction and distance to be surveyed according to the topography of the seabed and transmits the data from the seabed to the mothership.
  • ROVs remotely-operated vehicles
  • AUV autonomous underwater vehicles
  • Figure 1 is a conceptual diagram showing a conventional remote control submersible underwater mobile device.
  • the underwater mobile device which is currently developed at home and abroad, has a mother ship 1 for overall operation, an underwater mobile device 2 that performs work while moving on the seabed, and a mother ship 1 and underwater movement.
  • a cable 3 for power supply between the devices 2 and for transmitting image information and various signals and control signals transmitted by the underwater mobile device 2.
  • these underwater mobile devices usually have floats on the top to control the position by attaching thrusters in various directions, and move on the sea floor mainly on the thrusters, so that the movement and attitude control when the speed of the current is fast. Is not easy.
  • the underwater mobile device movable only by the thruster and the thruster has a problem that is difficult to move in a state seated on the bottom surface of the deep seabed.
  • One embodiment of the present invention is to provide an underwater mobile device and a method for moving the underwater mobile device which can be easily accessed to a desired position.
  • an embodiment of the present invention is to provide an underwater mobile device and a method of moving the same easy to move in a state seated on the bottom surface of the water.
  • an embodiment of the present invention is to provide an underwater mobile device and a method of moving the same easy to control posture underwater.
  • the body A thruster installed on the rear side of the body; There is provided a thruster including a vertical thruster and a horizontal thruster installed in the body and positioned on both sides of the body, and including a plurality of legs including a multi-articular module.
  • the front and rear cross-section of the body is formed in a circular or oval
  • the cross section of the front side of the body may be formed in a streamlined narrow cross section of the rear side.
  • the body may include at least one arm including a multi-articular module.
  • the underwater movement device may further include a tail wing portion located on the front side of the propeller.
  • the tail wing portion may include a vertical tail wing including a vertical stabilizer plate located on the upper and lower portions of the body and a horizontal tail wing including a horizontal stabilizer plate located on both sides of the body.
  • the underwater moving device further includes a buoyancy generating unit located inside the body, the buoyancy generating unit, a fluid storage tank; A stretchable bag member connected to the fluid storage tank; And a pump installed between the fluid storage tank and the bag member to move the fluid stored in the fluid storage tank to the bag member.
  • the buoyancy generating unit may be formed in a pair in the front portion and the rear portion of the body.
  • the underwater moving device further includes a center of gravity moving unit installed inside the body, the center of gravity moving unit, the weight body is formed to be movable within the body; A ball screw coupled with the weight to move the weight; And a pair of LM guides arranged side by side with the ball screw to guide the movement of the drive motor and the weight body for rotating the ball screw.
  • the underwater moving device may further include a sensor unit for measuring at least one of the water depth, the inclination, the attitude, the distance from the external object and the orientation.
  • the underwater mobile device may further include a communication unit for performing communication with the mothership for controlling the body.
  • the underwater mobile device may include a control unit for controlling to convert the body to a vertical depth at the water surface into which the underwater mobile device is put into a vertical position, and to convert the body to a horizontal position at the set depth. .
  • the articulated module includes a rotation shaft member rotatably coupled to the body about a first rotation axis extending in an outward direction of the body; A joint member rotatably coupled to one end of the rotation shaft member about a second rotation shaft perpendicular to the first rotation shaft; A first frame member coupled to one end of the joint member so as to be rotatable about a third axis of rotation perpendicular to the first axis of rotation and the second axis of rotation; And a second frame member rotatably coupled to a fourth rotation shaft parallel to the third rotation shaft at one end of the first frame member.
  • the leg portion may further include a foot member rotatably installed at the end of the second frame member.
  • one end surface of the foot member may be formed with a fixing projection extending in the outward direction from the end surface.
  • openings may be formed in the first frame member and the second frame member in the longitudinal direction.
  • one end is installed on one side of the first frame member and the other end is coupled to one side of the second frame member so as to rotate the second frame member relative to the first frame member.
  • the second frame member may be arranged to be parallel to the first frame member by rotating about the fourth rotation axis.
  • the leg portion is formed in three pairs, the three pair of leg portion may be arranged side by side from the front side to the rear side.
  • the underwater moving device may further include a first frame member cover portion surrounding the first frame member and a second frame member cover portion surrounding the second frame member.
  • each of the first frame member cover portion and the second frame member cover portion a streamlined cover having a airfoil cross section;
  • a plate-shaped cover coupled to a concave surface of the streamlined cover and having a fourth rotation shaft hole through which the fourth rotation shaft penetrates, and formed in any one of the streamlined cover and the plate-shaped cover to form the first frame member or the second frame member. It may include a support fixed to the inside of the streamlined cover and the plate-shaped cover.
  • the plate-shaped cover of the first frame member cover portion has a third rotation shaft hole through which a third rotation shaft through which the first frame member is coupled to the joint member passes, and movement of the piston end of the hydraulic cylinder of the first frame member.
  • a cylinder guide hole formed so as not to interfere with each other, and the plate-shaped cover of the second frame member cover part may be formed with holes corresponding to the fourth rotation shaft hole and the cylinder guide hole of the plate-shaped cover of the first frame member cover part. have.
  • the streamlined cover of the first frame member cover portion and the streamlined cover of the second frame member cover portion are in a state in which the second frame member is rotated about the fourth rotational axis to be parallel with the first frame member.
  • a method for overcoming the algae and moving to the seabed target point comprising the steps of: a) converting the body into a vertical posture toward the target point when put into the water surface; b) vertically descending to the target point and slowing down or stopping when reaching a set depth; c) converting the body into a horizontal position; And d) moving to the target point using at least one of the propeller, thruster and leg.
  • the step a) generating a negative buoyancy in the front portion of the body, by adjusting the buoyancy to generate a positive buoyancy in the rear portion converting the front portion to the vertical position toward the target point; And generating a moment for changing and maintaining the vertical posture by moving the center of gravity toward the front side.
  • if it is determined that the inclination of the body is perpendicular to the allowable range may include the step of driving the propeller.
  • step b) the step of determining whether the one of the set target depth and the target distance from the seabed; And it may include the step of stopping the operation of the propeller or generating a reverse propulsion to stop.
  • step c) generating a negative buoyancy in the rear portion of the body, by adjusting the buoyancy to generate a positive buoyancy in the front portion to generate a neutral buoyancy when the horizontal posture; And generating a moment for changing and maintaining the horizontal posture by moving the center of gravity of the front side toward the center.
  • the method may further include folding the plurality of leg portions.
  • step d when the work is completed and ascends to generate a positive buoyancy in the front portion, and to adjust the buoyancy to issue a negative buoyancy in the rear portion to convert the front portion into a vertical attitude toward the water surface; Moving the center of gravity toward the rear side to generate a moment for change and maintenance of the vertical posture towards the water surface; And generating a thrust of the thruster to vertically ascend to the water surface.
  • the underwater movement apparatus can easily move to the target depth by converting the posture vertically through buoyancy control and center of gravity movement, generating thrust and rapidly descending to a desired depth. Then, the vehicle can be safely operated by stopping at a predetermined depth or distance from the seabed, then shifting the posture horizontally and moving to a target point.
  • the streamlined body shape and the folding of the multi-joint legs during swimming can reduce the resistance of the fluid and adapt to the strong flow rate due to the effects of algae / currents.
  • FIG. 1 is a conceptual diagram showing a conventional underwater mobile device.
  • Figure 2 is a block diagram schematically showing the configuration of an underwater mobile device for the bird overturning movement according to an embodiment of the present invention.
  • Figure 3 shows the body shape of the underwater mobile device and the existing submersible according to an embodiment of the present invention.
  • FIG. 4 is a perspective view of the underwater movement device according to an embodiment of the present invention.
  • FIG. 5 is a side view of the underwater mobile device according to an embodiment of the present invention.
  • FIG. 6 is a plan view of the underwater movement apparatus according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a buoyancy generating unit of the underwater mobile device according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the center of gravity moving unit of the underwater movement apparatus according to an embodiment of the present invention.
  • FIG. 9 is a perspective view of an example of a multi-joint module constituting the leg of the underwater mobile device according to an embodiment of the present invention.
  • FIG. 10 is a perspective view illustrating a state in which the articulated module of FIG. 9 is folded.
  • FIG. 11 is a perspective view of another example of a multi-joint module constituting the leg of the underwater mobile device according to an embodiment of the present invention.
  • FIG. 12 is a perspective view illustrating a state in which the articulated module of FIG. 11 is folded.
  • FIG. 13 is an exploded perspective view of the articulated module of FIG. 11.
  • FIG. 14 is a cross-sectional view taken along line AA ′ in FIG. 12.
  • FIG. 15 is a state diagram in which the articulated module of FIG. 14 is inclined.
  • 16 is a graph showing a change in flow velocity according to a general depth.
  • 17 is a conceptual diagram showing a bird overcoming movement step according to an embodiment of the present invention.
  • FIG. 18 is a flowchart illustrating a bird overcoming movement method according to an embodiment of the present invention.
  • the underwater mobile device according to the embodiment of the present invention is submerged in water, and the power supply and control method as an underwater mobile device used for salvage ship rescue, underwater construction, underwater structure inspection, resource search, seabed biological survey and underwater topography It can be applied to ROV method or AUV method.
  • an embodiment of the present invention will be described assuming an AUV method for convenience of description, but the present invention is not limited thereto.
  • FIG. 2 is a block diagram schematically showing the configuration of an underwater mobile device according to an embodiment of the present invention.
  • Figure 3 shows the body shape of the underwater mobile device and the existing submersible in accordance with an embodiment of the present invention.
  • 4 is a perspective view of the underwater movement device according to an embodiment of the present invention.
  • 5 is a side view of the underwater mobile device according to an embodiment of the present invention.
  • 6 is a plan view of the underwater movement apparatus according to an embodiment of the present invention.
  • 7 is a schematic diagram of a buoyancy generating unit of the underwater mobile device according to an embodiment of the present invention.
  • the direction in which the arm 70 of the underwater moving device 10 is located is defined as the front of the underwater moving device 10 and the direction in which the propeller 30 is located underwater It demonstrates and defines by the back of the mobile apparatus 10.
  • the underwater moving device 10 includes a body 20, a propeller 30, a tail wing portion 40, a thruster portion 50, and a leg portion 60. ), The buoyancy generating unit 80, the center of gravity moving unit 160, the sensor unit 170, the communication unit 180 and the controller 190. And, the underwater moving device 10 according to an embodiment of the present invention may include an arm 70 in the front side of the body (20).
  • the body 20 is formed in a structure in which the front portion is formed in a streamlined shape and the rear portion is narrowed in a longitudinal cone shape from the front portion in order to minimize the drag coefficient received in the water.
  • the body 20 is formed in an elliptical or circular streamline in the front and rear direction.
  • the front side cross section of the body 20 is formed to be thick, that is, to have a wide cross section
  • the rear side cross section is formed to have a thin, that is to have a narrow cross section.
  • the body 20 is streamlined from the front end to the rear end, it is formed so that the resistance of the water is reduced when the body moves in the water.
  • the drag coefficient of the box-type submersible without considering the existing body shape of FIG. 3A is 2.5, whereas the streamlined body according to the embodiment of the present invention of FIG.
  • the drag coefficient of 20) is 0.05 to minimize the influence of the fluid.
  • the body 20 has a robust waterproof structure to protect the electronic equipment embedded for driving the underwater mobile device from high water pressure on the seabed, and may be coated to reduce the drag coefficient of the surface.
  • a buoyancy generator 80 for allowing the body to move up and down in the water and a drive unit for driving the leg portion 60 and the arm 70 coupled to the body 20 (not shown) ) May be located.
  • the propeller 30 is installed at the rear side of the body 20.
  • the propeller 30 includes a propeller 32 installed at the rear end of the body 20 and a drive motor (not shown) located inside the body to rotate the propeller 32.
  • the underwater movement device can obtain a driving force that can move forward by rotating the propeller 32 by driving the drive motor.
  • Tail wing portion 40 is located on the surface of the body located on the front side of the propeller (30). Tail wing portion 40 is configured to maintain a stable posture of the body (20).
  • the tail wing portion 40 may include a vertical tail wing 42 and a horizontal tail wing 44.
  • the vertical tail wing 42 may include a vertical stabilizer plate positioned on the upper side and the lower side of the body 20. At this time, a rudder (not shown) may be rotatably installed on the vertical stabilizer plate.
  • the horizontal tail blade 44 may include a horizontal stabilizer plate of the plate-shaped horizontal position is located on the left and right sides of the vertical tail blades 42.
  • the elevator (not shown) may be rotatably installed on the horizontal stabilizer plate.
  • the body 20 is provided with a thruster part 50 to control the attitude of the underwater mobile device or to assist the movement.
  • the thruster part 50 includes up and down thrusters 52 and 54 and left and right thrusters 56 and 58.
  • the up and down thrusters 52 and 54 may be formed of two thrusters formed to be vertically arranged at the front and rear portions of the body 20.
  • the up and down thrusters 52 and 54 rotate the propeller to discharge the fluid, for example, seawater in the downward direction when the body 20 is to be moved upward, or move the body 20 downward. If you want to rotate the propeller is configured to discharge the seawater in the upward direction.
  • the left and right direction thrusters (56, 58) may be composed of two thrusters formed to be arranged in the transverse direction above and below the central portion in the longitudinal direction of the body 20. .
  • the left and right thrusters 56 and 58 rotate the propeller so as to discharge the fluid, for example, seawater in the opposite direction when the body 20 is to be moved leftward or rightward, and the body 20 is leftward. Or move in the right direction.
  • the fluid for example, seawater
  • the underwater moving device when the two vertical thruster and the two left and right direction thrusters rotate in different directions, respectively, the body may be formed to rotate in place.
  • up and down thrusters 52 and 54 are provided at the front and rear portions of the body 20, respectively, and left and right thrusters 56 and 58 are provided at the upper and lower sides of the central portion in the longitudinal direction of the body.
  • the installation position and the number of the up and down direction thruster and the left and right direction thrusters can be varied in a range that can be easily invented by those skilled in the art in order to control the posture of the body 20 and to generate an auxiliary thrust. can be changed.
  • the buoyancy generating unit 80 is installed in the body 20 to move the body 20 up and down in the water.
  • the buoyancy generator 80 is located at the center of the body 20 and includes a fluid storage tank 82, a pump 84, a valve 86, and a bag member 88. can do.
  • a predetermined fluid is stored in the fluid storage tank 82.
  • the fluid may be a gas. Fluid is formed within the fluid storage tank 82 to move toward the bag member 88 by the pump 84 as needed to increase the volume of the bag member 88.
  • a pump 84 is positioned between the fluid storage tank 82 and the bag member 88 to transfer fluid within the fluid storage tank 82 to the bag member 88.
  • a valve 86 is provided between the pump 84 and the bag member 88 in order to keep the amount of fluid stored in the bag member 88 constant.
  • the bag member 88 is made of a stretchable material and is formed so that the volume of the bag member 88 can be adjusted according to the amount of fluid stored therein.
  • the buoyancy generating unit 80 increases or decreases the volume of the bag member 88 when the volume of the bag member 88 increases or decreases in the inner space of the body in which the buoyancy generator is installed.
  • Corresponding amounts of water, i.e., fluids surrounding the underwater mobile device for example, when the underwater mobile device is in the sea, has a structure in which seawater can flow into or out of the body 20.
  • the overall density of the body 20 varies according to the degree to which the fluid is filled in the bag member 88.
  • the fluid increases the volume of the bag member 88 by the volume shown by the dashed-dotted line from the volume shown by the solid line in FIG. 7, the amount of seawater is the body 20 provided with the buoyancy generator 80. Exhaust from the inner space (89) of the body 20 to the outside, thereby lowering the density of the entire body (20).
  • the underwater movement device 10 can adjust the amount of buoyancy of the entire body 20 by adjusting the amount of fluid stored in the bag member 88.
  • the buoyancy generating unit 80 may be installed in pairs in the front and rear of the body 20.
  • the buoyancy generators 80 installed as a pair can be adjusted independently of each other, it may be formed so that the internal space of the body in which each buoyancy generator is installed in communication with each other.
  • the buoyancy generating unit 80 is positive buoyancy, voice buoyancy and The neutral buoyancy can be adjusted to generate.
  • positive buoyancy is a state in which buoyancy is greater than gravity and injured
  • negative buoyancy is in a state where gravity is greater than buoyancy and sinks
  • neutral buoyancy means a state in which gravity and buoyancy do not float or sink, respectively.
  • the buoyancy generating unit 80 generates a negative buoyancy in the front portion of the body 20 when the underwater mobile device is introduced into the sea area with a strong flow rate under the influence of algae, the rear portion Adjust the buoyancy to generate positive buoyancy, so that the underwater mobile device is in a vertical position so that it can descend quickly and vertically toward the target.
  • the underwater moving device may generate a neutral buoyancy portion at the front and rear portions of the body to take a horizontal posture.
  • the underwater moving device 10 may include a center of gravity moving unit 160 installed inside the body 20.
  • FIG. 8 is a diagram schematically illustrating the center of gravity moving unit 160.
  • the center of gravity moving unit 160 includes a ball screw 164, a moving support 166, a weight body 168, an LM guide 162, and a driving motor 169.
  • the ball screw 164 is arranged in the front and rear direction inside the body 20 and is formed such that the shaft 164a rotates by the drive motor 169. As the shaft 164a rotates, the nut 164b coupled to the shaft 164a moves in the front-rear direction.
  • the moving support 166 is coupled to the nut 164b.
  • the moving support 166 is formed to be movable together as the nut 164b moves.
  • the weight body 168 is coupled to the movement support 166 and is formed to move the weight body 168 together with the movement support 166 as the movement support 166 moves.
  • a pair of LM guides 162 are installed at both sides of the ball screw 164 to guide the movement of the movement support 166.
  • the ball screw 164 of the center of gravity moving unit 160 of the underwater moving device may be arranged not only in the front and rear direction of the body but also in the left and right directions of the body.
  • the weight body 168 coupled to the movable support 166 moves back and forth in the front and rear directions of the body 20, the position of the center of gravity of the body 20 may be changed, and the weight According to the position of the sieve 168, the posture and the inclination of the body 20 may be changed.
  • the underwater mobile device 10 includes a sensor unit 170.
  • the sensor unit 170 may include various sensors for measuring an external environment for driving the underwater mobile device 10.
  • the depth sensor 171 for checking the currently located depth and the tilt sensor for measuring tilt and posture.
  • 172 also called a sonar, may include an ultrasonic sensor 173 for measuring distance and orientation from an object below the sea floor and the front.
  • the underwater mobile device 10 includes a communication unit 180.
  • the communication unit 180 is a wireless communication module for communicating with a bus that manages the operation of the underwater mobile device 10 on the water surface, a wired communication module for receiving power and control signals through the bus and a cable, and with the bus at hand. It may include at least one of the ultrasonic communication module for performing the communication.
  • the underwater mobile device 10 includes a control unit 190.
  • the controller 190 controls the overall operation of each unit for the operation of the underwater mobile device 10.
  • the controller 190 controls the posture for the bird overcoming movement when the underwater moving device 10 is introduced into the sea area with a strong flow rate under the influence of the algae to move to a safe target point.
  • the legs 60 are provided on both sides of the body 20 of the underwater movement device 10.
  • the leg part 60 is configured to move in the manner of walking on the floor without using a propeller when the underwater mobile device 10 is seated on the bottom of the ocean, for example.
  • the leg portion 60 is formed in three pairs on both sides of the body (20). At this time, the three pairs of legs 60 may be arranged side by side from the front to the rear on both sides of the body (20).
  • the leg portion 60 may include a multi-articular module 100 and a foot member 62 installed in the multi-articular module 100.
  • FIG. 9 is a perspective view of an example of the articulated module 100 constituting the leg portion 60 of the underwater moving device 10 according to an embodiment of the present invention.
  • 10 is a perspective view illustrating a state in which the articulated module 100 of FIG. 9 is folded.
  • the multi-joint module 100 of the leg part 60 may include the rotation shaft member 110, the joint member 120, the first frame member 130, and the second frame.
  • the member 140 is included.
  • the rotating shaft member 110 is formed such that one end thereof is coupled to the body 20 and the other end thereof extends outward of the body 20. At this time, the rotating shaft member 110 is formed so as to rotate about the first rotating shaft (A1) arranged in the outward direction of the body (20).
  • joint member 120 One end of the joint member 120 is rotatably installed at the other end of the rotation shaft member 110. At this time, the joint member 120 is formed to be able to rotate about the second rotation axis A2 perpendicular to the first rotation axis A1. At this time, the rotary shaft member 110 and the joint member 120 may be formed in a structure corresponding to the universal joint.
  • One end of the first frame member 130 is coupled to the other end of the joint member 120 so as to rotate about a third rotation axis A3 perpendicular to the first rotation axis A1 and the second rotation axis A2. .
  • the other end of the first frame member 130 is coupled to the second frame member 140 that can rotate around the fourth axis of rotation (A4).
  • the first frame member 130 and the second frame member 140 coupled to the fourth rotational axis A4 are not arranged on the same plane, but are arranged next to each other in the extending direction of the fourth rotational axis A4.
  • the first frame member 130 and the second frame member 140 support the armature of the leg portion 60 that supports the body 20 with respect to the bottom surface when the underwater movement device 10 is seated on the bottom surface underwater. Forming component.
  • the hydraulic cylinder 150 is installed on one side on the same plane as the first frame member 130 in the first frame member 130.
  • An end of the piston 154 of the hydraulic cylinder 150 is rotatably coupled to one side of the second frame member 140. Accordingly, the second frame member 140 may be rotated about the fourth rotation axis A4 by adjusting the piston length of the hydraulic cylinder 150.
  • the first frame member 130 and the second frame member 140 is extended in one direction and predetermined in the extending direction of the fourth rotation axis (A4) It may be made in the form of a flat plate having a thickness of.
  • the first frame member 130 and the second frame member 140 have openings in the longitudinal direction to reduce the weight of the first frame member 130 and the second frame member 140, respectively.
  • 132 and 142 may be formed.
  • the second frame member 140 is rotated in the clockwise direction with respect to the fourth rotation axis A4 to be positioned adjacent to the third rotation axis A3. 140 is folded about the first frame member 130 ".
  • the foot member 62 coupled to the second frame member 140 by extending the piston 154 of the hydraulic cylinder 150 to rotate the second frame member 140 as much as possible about the fourth rotational axis A4. ) Is a state where the second frame member 140 is folded to the first frame member 130 as much as possible.
  • the second frame member 140 is rotated counterclockwise about the fourth rotation axis A4 in the counterclockwise direction and positioned away from the third rotation axis A3. 140 is extended with respect to the first frame member 130 ".
  • the state located farthest to the third rotation axis A3 is a state in which the second frame member 140 is fully extended with respect to the first frame member 130.
  • the second frame member 140 is positioned between the maximum folded state and the maximum unfolded state with respect to the first frame member 130.
  • the underwater moving device 10 maintains the state in which the second frame member 140 of the leg portion 60 is folded to the first frame member 130 as much as possible when swimming underwater. It is formed to.
  • the leg part 60 of the underwater moving device 10 when the underwater moving device 10 swims underwater, the leg part 60 of the underwater moving device 10 has the smallest area among the surfaces forming the leg part 60.
  • the face having it is arranged to face the front side of the body.
  • the fourth rotating shaft A4 of the first frame member 130 is arranged in the vertical direction of the body 20 to be arranged as described above.
  • the foot member 62 is located on the other end side of the second frame member 140.
  • the foot member 62 is formed to be rotatable about the fifth axis of rotation A5 of the second frame member 140.
  • the foot member 62 is a component for widening the area touching the bottom surface in the state where the underwater moving device 10 is placed on the bottom surface, and for this purpose, the bottom surface 66 of a plate shape rotatable about the fifth rotation axis A5. ).
  • the projection 64 is a projection 64 in a state in which the bottom surface of the foot member 62 is in contact with the bottom surface when the bottom surface on which the underwater mobile device 10 is seated is a surface formed of a material that is easy to sink, such as sand. ) So that the bottom surface 66 can be more firmly fixed to the floor surface so that the underwater mobile device 10 can stably stop or walk on the floor surface. .
  • the arm portion 70 is located on the front side of the body 20.
  • the arm 70 may be formed of one or more, for example, two on the front side of the body 20.
  • the arm portion 70 may be formed of a multi-joint module 100 forming the leg portion (60).
  • One end of the articulated module 100 forming the arm 70 is provided with an operating structure 72 made of a tong structure instead of the foot member of the leg 60. Accordingly, the underwater moving device 10 according to an embodiment of the present invention is formed so that the underwater moving device can pick up a predetermined object using the operation structure 72 of the forceps structure of the arm 70.
  • the forceps structure actuating structure 72 which can be installed on the arm 70 of the underwater mobile device, may be, for example, a finger structure formed at the end of the robot arm of a known type, and thus a detailed description thereof will be omitted. do.
  • the articulated module 100 applied to the leg portion 60 is formed to have five axes of rotation (A1, A2, A3, A4, A5) to form the articulated module 100. Since the rotating shaft member 110, the joint member 120, the first frame member 130 and the second frame member 140 and the foot member 62 can move freely, such an articulated module 100 is arm In addition, since the forceps structure of the arm part 70 can be freely moved by using the articulated module 100, various operations can be easily performed using the arm part 70 in the water.
  • the articulated module constituting the leg portion 60 may be formed differently from the previous embodiment.
  • Another example of the articulated module 100 constituting the leg portion 60 of the present invention will be described with different drawings.
  • FIG. 11 is a perspective view of another example of a multi-joint module constituting the leg portion 60 of the underwater mobile device according to an embodiment of the present invention.
  • 12 is a perspective view illustrating a state in which the articulated module of FIG. 11 is folded.
  • FIG. 13 is an exploded perspective view of the articulated module of FIG. 11.
  • FIG. 14 is a cross-sectional view taken along line AA ′ in FIG. 12.
  • FIG. 15 is a state diagram in which the articulated module of FIG. 14 is inclined.
  • the articulated module 200 constituting the leg part 60 of the underwater mobile device has a first frame member 130 and a second frame as compared with the previous embodiment.
  • the first frame member cover part 260 and the second frame member cover part 270 are further included outside the member 140.
  • Each of the first and second frame member cover parts 270 has an airfoil shape and is formed to surround the first frame member 230 and the second frame member 240, respectively.
  • the first and second frame member cover parts 260 and 270 surround the first frame member 230 and the second frame member 240, which means that the first and second frame member cover parts are included. It may mean that 260, 270 surrounds the first and second frame members 230, 240 to keep them tight, but is positioned around the first and second frame members 230, 240.
  • the first and second frame members 230 and 240 to reduce the resistance of the water due to the shape of the first and second frame members 230 and 240 when moving underwater.
  • first and second frame member covers 260 and 270 may not surround the first and second frame members 230 and 240 in a watertight state. That is, a plurality of openings may be formed in the first and second frame member cover parts 260 and 270 so as not to interfere with the mutual operation of the members connected to the first and second frame members 230 and 240.
  • the underwater moving device 10 including the first frame member cover part 260 and the second frame member cover part 270 may have a resistance of water generated by the leg part 60 when swimming underwater. Can be very small.
  • the first frame member cover portion 260 and the second frame member cover portion 270 include streamlined covers 262 and 272 and plate-shaped covers 264 and 274, respectively. do.
  • the streamlined covers 262 and 272 have an airfoil cross section and have a space in which the first frame member 230 or the second frame member 240 can be positioned.
  • the plate cover 264, 274 is coupled to one end surface of the streamlined cover 262, 272 so that the streamlined cover 262, 272 and the plate cover 264, 274 are the first frame member 230 or the second frame member. Surround 240.
  • the plate-shaped cover 264 of the first frame member cover 260 has a third rotation shaft through which a third rotation shaft A3 through which the first frame member 230 is coupled to the joint member 220 passes.
  • a cylinder guide hole 266 is formed so as not to interfere with the movement of the end of the piston 254.
  • the plate cover 274 of the second frame member cover part 270 corresponds to the fourth rotation shaft hole 265 and the cylinder guide hole 266 of the plate cover 264 of the first frame member cover part 260. Holes 275 and 276 are also formed.
  • the second frame member cover portion 270 is located at one end of the second frame member cover portion 270.
  • One end side of the can be made in an open form so as not to interfere with the rotation of the foot member.
  • the multi-joint module 100 includes the first frame member. Movement of the frame member 230, the second frame member 240, and the foot member 62 is not limited by the first frame member cover part 260 and the second frame member cover part 270.
  • Supports 263 and 273 are formed in any one of the streamlined covers 262 and 272 and the plate covers 264 and 274 of each of the first frame member cover part 260 and the second frame member cover part 270.
  • the first frame member 230 or the second frame member 240 may be fixed in the first frame member cover 260 or the second frame member cover 270, respectively.
  • supporters 263 and 273 are formed in the streamlined covers 262 and 272.
  • the supporters 263 and 273 have one end of the streamlined cover ( 262, 272 is coupled to the inner side, the other end is coupled to one side of the first and second frame members 230, 240, the first and second frame member 230 inside the streamlined cover (262, 272) , 240 is formed to support.
  • the first frame member cover portion 260 is a second One airfoil is formed in contact with the frame member cover part 270.
  • the first frame member cover part 260 may be disposed in a symmetrical form in contact with the second frame member cover part 270, but is not limited thereto.
  • the second frame member 240 in the state where the second frame member 240 is fully folded with respect to the first frame member 230, swimming in the water of the underwater moving device 10 is performed.
  • the first frame member cover part 260 and the second frame member cover part 270 are formed to surround the first frame member 230 and the second frame member 240, the outer circumferential surface of the leg part 60 is formed. This streamlined shape can reduce resistance while the underwater mobile device is swimming.
  • the leg portion 60 is formed in the airfoil by the first frame member cover portion 260 and the second frame member cover portion 270, the leg portion 60 of the underwater moving device 10 is moved as needed.
  • the underwater mobile device 10 may be balanced.
  • the position and position of the underwater movement device 10 may be controlled by the lift and drag generated by rotating the leg having the airfoil outer surface.
  • first frame member cover part 260 and the second frame member cover part 270 are hollowed out so that the first frame member 230 and the second frame member 240 may be positioned.
  • the interior of the first frame member cover portion 260 and the second frame member cover portion 270 is necessary for the operation of the first frame member 230 and the second frame member 240. Except for all, it may be made in a filled form.
  • first frame member cover part 260 and the second frame member cover part 270 are illustrated as having separate configurations from the first frame member 230 and the second frame member 240, but the first frame member cover part 260 and the second frame member cover part 270 are not shown.
  • the first frame member 230 and the second frame member so that the frame member 230 and the second frame member 240 are integrally formed with the first frame member cover portion 260 and the second frame member cover portion 270. It is also possible to fabricate the 240 or to configure the cross-sectional shape of the first frame member 230 and the second frame member 240 itself in a streamlined or airfoil form symmetrical with each other.
  • the underwater moving device is made of a streamlined body, it can be easily moved with less resistance to fluid when moving in water.
  • the underwater moving device includes a plurality of leg parts formed of a multi-joint member, and moves on the floor by using the leg, and thus, the movement on the bottom is easy. And because the underwater moving device according to an embodiment of the present invention is walking on the floor surface so that sand or soil of the floor surface is not scattered while moving the floor surface.
  • the underwater movement apparatus is formed so that the leg portion can be folded when the underwater movement apparatus swims in the water so that the leg portion receives less resistance of the fluid during the underwater movement of the underwater movement apparatus. .
  • the leg portion of the underwater mobile device when the leg portion is configured to have a cover portion that can be made in a streamlined form, the leg portion of the underwater mobile device can be used as a fin for attitude and position control of the underwater mobile device.
  • 16 is a graph showing a change in flow velocity according to a general depth.
  • 17 is a conceptual diagram showing a bird overcoming movement step according to an embodiment of the present invention.
  • 18 is a flowchart showing a bird overcoming movement method according to an embodiment of the present invention.
  • the underwater moving device 10 in general, the flow rate distribution varies according to the depth of water, and the flow rate of the water surface portion is the fastest, and the flow rate decreases as the distance from the water surface increases. Therefore, the underwater moving device 10 according to the embodiment of the present invention is operated so as to quickly move away from the portion having a high flow rate by the current and the current to the target point.
  • the underwater moving device 10 according to the embodiment of the present invention is injected into the water surface at the position considering the target point of the seabed in the mother ship (S101). Since the underwater mobile device 10 introduced to the surface should be flowed to the target point, the legs 60 are folded to minimize the resistance of the fluid.
  • Underwater mobile device 10 is converted to a vertical attitude toward the target point (sea bottom direction) by adjusting the buoyancy and moving the center of gravity (S102).
  • the buoyancy generating unit 80 of the underwater mobile device 10 generates negative buoyancy in the front part and adjusts the buoyancy to generate positive buoyancy in the rear part so that it can move down quickly and vertically toward the target point of the seabed. Take a pose.
  • center of gravity moving unit 160 generates a moment for changing and maintaining the vertical posture by moving the center of gravity toward the front in response to the operation according to the buoyancy control.
  • the target point is a position input from the bus bar and can be detected through a location tracking device using ultrasonic waves.
  • Underwater moving device 10 has the moment to maintain a vertical posture always works according to the principle of stepping, so the energy consumption for posture control is low, and since the resistance of the fluid is linear, it can descend to the desired depth with minimum energy. Do.
  • the driving device 30 stops operation or generates reverse propulsion to reduce or stop the descending speed ( S106).
  • the target depth is setting information for reducing or stopping the speed of the underwater mobile device 10 for horizontal posture conversion before reaching the target point depth in consideration of the depth of the target point.
  • the target distance because the height of the bottom of the sea floor may be irregular depending on the terrain, it is possible to prevent the collision with the protruding sea bottom by further setting the target distance.
  • the underwater mobile device 10 converts the buoyancy control and the center of gravity in a low speed or stop state to convert to a horizontal position (S107). That is, the buoyancy generating unit 80 of the underwater mobile device 10 in the operation opposite to the step S102 above generates a positive buoyancy in the front, and adjusts the buoyancy to generate a negative buoyancy in the rear, the body is horizontal When neutral buoyancy occurs, take a horizontal position.
  • center of gravity moving unit 160 generates a moment for changing and maintaining the horizontal posture by moving the center of gravity to the center in response to the operation according to the buoyancy control.
  • the underwater moving device 10 moves to the target point using at least one of the propeller 30 and the tail wing 40, the thruster 50, and the leg 60 after the horizontal posture is taken. (S104).
  • the underwater mobile device 10 may be seated on the sea floor by unfolding the folded leg 60 after moving to the target point.
  • the underwater moving device 10 converts the posture vertically using the buoyancy generating unit 80 and the center of gravity moving unit 160, and generates a thrust to quickly descend to a desired depth. It is effective to overcome the current and move to the target depth.
  • the method of the underwater mobile device 10 to overcome the algae and to move to the target point of the water was described mainly, but is not limited to this, also applies to the surface injury can do.
  • the positive portion is generated in the front side and the negative portion is adjusted to issue the negative portion in the rear side as opposed to the above embodiment. Convert to vertical position.
  • the underwater mobile device 10 injured on the surface may be recovered by transmitting location information (eg, GPS) to the bus bar.
  • location information eg, GPS
  • the underwater mobile device 10 has the advantage that can be recovered safely by overcoming the algae and quickly rise after finishing work.
  • the underwater movement apparatus can easily move to the target depth by converting the posture vertically through buoyancy control and center of gravity movement, generating thrust and rapidly descending to a desired depth. Then, the vehicle can be safely operated by stopping at a predetermined depth or distance from the seabed, then shifting the posture horizontally and moving to a target point.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • Ocean & Marine Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Toys (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

수중 이동 장치 및 그 방법이 개시된다. 본 발명의 실시예에 따른 수중 이동 장치는, 몸체; 몸체 후방측에 설치된 추진기; 몸체에 설치된 상하 방향 스러스터 및 좌우 방향 스러스터를 포함하는 스러스터부 및 몸체의 양 측부에 위치되며, 다관절 모듈을 포함하는 복수의 다리부를 포함한다.

Description

수중 이동 장치 및 그의 이동 방법
본 발명은 수중 이동 장치 및 그의 이동 방법에 관한 것이다.
일반적으로 수중 이동 장치는 해저 자원탐사, 침몰된 선박의 인양작업, 기름제거작업, 해저케이블 설치, 수중구조물의 수리 등에 이용되는데, 그 용도 및 작동방식에 따라 다양한 형태로 개발되고 있다.
수중 이동 장치는 제어 방식에 따라 케이블이 수중 이동 장치에 연결된 원격조정잠수정(Remotely-operated vehicle, ROV)과 케이블 없이 자체 동력으로 움직이는 무인잠수정(Autonomous Underwater Vehicles, AUV) 등으로 구분될 수 있으며, 해저의 지형에 따라 조사할 방향과 거리를 결정하고 조사한 자료를 해저에서 모선에 송신하는 시스템을 갖추고 있다.
한편, 도 1은 종래의 원격조정잠수정형 수중 이동 장치를 나타낸 개념도이다.
첨부된 도 1을 참조하면, 현재 국내외에서 개발되고 있는 수중 이동 장치는 전반적인 운용을 위한 모선(1)과 해저에서 이동하면서 작업을 수행하는 수중 이동 장치(2) 그리고, 모선(1)과 수중 이동 장치(2)간의 전원 공급과 수중 이동 장치(2)에서 전송하는 영상정보와 각종신호 및 제어 신호 송신을 위한 케이블(3)이 존재한다.
그러나, 이러한 종래의 수중 이동 장치(2)는 한국의 서해안과 같이 조류의 영향으로 유속이 강한 곳에서는 자세 및 운동 제어가 어려워 원하는 위치에 접근하기가 용이하지 않다. 즉, 도 1에서와 같이 강한 유속에 의해 자세를 잡지 못하고 떠내려가거나 자세 및 운동 제어가 어려워 많은 에너지를 소모하게 되는 문제점이 있다.
또한, 이러한 수중 이동 장치는 대개 상부에 부유체를 두고 여러 방향의 스러스터(thruster)를 달아 위치를 제어하는데, 해저에서 주로 스러스터에 의지하여 이동하므로, 해류의 속도가 빠른 경우 이동 및 자세 제어가 용이하지 않다. 또한 스러스터 및 추진기 만으로 이동가능한 수중 이동 장치는 심해저의 바닥면에 안착된 상태에서 이동하기 어려운 문제가 있다.
본 발명의 일 실시예는 수중 이동 장치가 원하는 위치까지 용이하게 접근할 수 있는 수중 이동 장치 및 그의 이동 방법을 제공하고자 한다.
또한, 본 발명의 일 실시예는 수중의 바닥면에 안착된 상태에서 이동이 용이한 수중 이동 장치 및 그의 이동 방법을 제공하고자 한다.
또한, 본 발명의 일 실시예는 수중에서 자세 제어가 용이한 수중 이동 장치 및 그의 이동 방법을 제공하고자 한다.
본 발명의 일 측면에 따르면, 몸체; 상기 몸체 후방측에 설치된 추진기; 상기 몸체에 설치된 상하 방향 스러스터 및 좌우 방향 스러스터를 포함하는 스러스터부 및 상기 몸체의 양 측부에 위치되며, 다관절 모듈을 포함하는 복수의 다리부를 포함하는, 수중 이동 장치가 제공된다.
이 때, 상기 몸체는 전후 방향 단면이 원형 또는 타원형으로 형성되되, 상기 몸체의 전방 측의 단면이 넓고 후방 측의 단면이 좁은 유선형으로 형성될 수 있다.
이 때, 상기 몸체의 전방측에 위치되며, 다관절 모듈을 포함하는 적어도 하나의 팔부를 포함할 수 있다.
이 때, 수중 이동 장치는 상기 추진기의 전방측에 위치된 꼬리날개부를 더 포함할 수 있다.
이 때, 상기 꼬리 날개부는, 상기 몸체의 상측부 및 하측부에 위치되는 수직 안정판을 포함하는 수직 꼬리 날개 및 상기 몸체의 양 측부에 위치되는 수평 안정판을 포함하는 수평 꼬리 날개를 포함할 수 있다.
이 때, 수중 이동 장치는, 상기 몸체 내부에 위치되는 부력 발생부를 더 포함하고, 상기 부력 발생부는, 유체 저장 탱크; 상기 유체 저장 탱크와 연결된 신축가능한 주머니 부재; 및 상기 유체 저장 탱크 및 상기 주머니 부재 사이에 설치되어 상기 유체 저장 탱크 내부에 저장된 유체를 상기 주머니 부재로 이동시킬 수 있는 펌프를 포함할 수 있다.
상기 부력 발생부는 상기 몸체의 전방부 및 후방부에 한 쌍으로 형성될 수 있다.
한편, 수중 이동 장치는, 상기 몸체 내부에 설치되는 무게 중심 이동부를 더 포함하되, 상기 무게 중심 이동부는, 상기 몸체 내부에서 이동가능하게 형성되는 중량체; 상기 중량체를 이동시키기 위하여 상기 중량체와 결합되는 볼 스크류; 상기 볼 스크류를 회전시키기 위한 구동 모터 및 상기 중량체의 이동을 가이드 하도록 상기 볼 스크류와 나란하게 배열되는 한 쌍의 LM 가이드를 포함할 수 있다.
한편, 수중 이동 장치는, 상기 몸체의 수심, 기울기, 자세, 외부 물체로부터의 거리 및 방위 중 적어도 하나를 측정하는 센서부를 더 포함할 수 있다.
한편, 수중 이동 장치는, 상기 몸체를 조종하는 모선과 통신을 수행하는 통신부를 더 포함할 수 있다.
한편, 수중 이동 장치는, 상기 수중 이동 장치가 투입되는 수면에서 상기 몸체를 수직자세로 변환시켜 설정된 수심으로 이동하고, 상기 설정된 수심에서 상기 몸체를 수평자세로 변환하도록 제어하는 제어부를 포함할 수 있다.
이 때, 상기 다관절 모듈은, 상기 몸체에 상기 몸체의 외측 방향으로 연장된 제 1 회전축을 중심으로 회전 가능하게 결합되는 회전축 부재; 상기 회전축 부재의 일단부에 상기 제 1 회전축에 수직한 제 2 회전축을 중심으로 회전가능하게 결합된 조인트 부재; 상기 조인트 부재의 일단부에 상기 제 1 회전축 및 상기 제 2 회전축에 수직한 제 3 회전축을 중심으로 회전가능하도록 결합되는 제 1 프레임 부재; 및 상기 제 1 프레임 부재의 일 단부에 상기 제 3 회전축과 나란한 제 4 회전축을 중심으로 회전가능하게 결합되는 제 2 프레임 부재를 포함할 수 있다.
이 때, 상기 다리부는 상기 제 2 프레임 부재의 단부에 회전가능하게 설치되는 발 부재를 더 포함할 수 있다.
이 때, 상기 발 부재의 일 단부면에는 상기 단부면으로부터 외측 방향으로 연장된 고정 돌기가 형성될 수 있다.
이 때, 상기 제 1 프레임 부재 및 상기 제 2 프레임 부재에는 길이 방향으로 개구가 형성될 수 있다.
이 때, 상기 제 2 프레임 부재를 상기 제 1 프레임 부재에 대하여 회전시킬 수 있도록 상기 제 1 프레임 부재의 일측에 일단부가 설치되며 타단부가 상기 제 2 프레임 부재의 일측에 결합되는 유압 실린더를 포함할 수 있다.
이 때, 상기 제 2 프레임 부재는 상기 제 4 회전축을 중심으로 회전하여 상기 제 1 프레임 부재와 나란하게 배열될 수 있다.
이 때, 상기 다리부는 3 쌍으로 형성되며, 상기 3 쌍의 다리부는 전방측으로부터 후방측으로 나란하게 배열될 수 있다.
이 때, 수중 이동 장치는 상기 제 1 프레임 부재를 둘러싸는 제 1 프레임 부재 커버부 및 상기 제 2 프레임 부재를 둘러싸는 제 2 프레임 부재 커버부를 더 포함할 수 있다.
이 때, 상기 제 1 프레임 부재 커버부 및 상기 제 2 프레임 부재 커버부 각각은, 익형 단면을 가지는 유선형 커버; 상기 유선형 커버의 오목한 면에 결합되되 상기 제 4 회전축이 관통하는 제 4 회전축 홀이 형성된 판형 커버 및 상기 유선형 커버 및 상기 판형 커버 중 어느 하나에 형성되어 상기 제 1 프레임 부재 또는 상기 제 2 프레임 부재를 상기 유선형 커버와 상기 판형 커버의 내측에 고정시키는 지지대를 포함할 수 있다.
이 때, 상기 제 1 프레임 부재 커버부의 판형 커버에는 상기 제 1 프레임 부재가 상기 조인트 부재와 결합되는 제 3 회전축이 관통하는 제 3 회전축 홀, 및 상기 제 1 프레임 부재의 유압 실린더의 피스톤 단부의 이동을 방해하지 않도록 형성된 실린더 가이드 홀이 형성되고, 상기 제 2 프레임 부재 커버부의 판형 커버에는 상기 제 1 프레임 부재 커버부의 판형 커버의 상기 제 4 회전축 홀 및 상기 실린더 가이드 홀에 대응하는 홀들이 형성될 수 있다.
이 때, 상기 제 1 프레임 부재 커버부의 유선형 커버 및 상기 제 2 프레임 부재 커버부의 유선형 커버는, 상기 제 2 프레임 부재가 상기 제 4 회전축을 중심으로 회전하여 상기 제 1 프레임 부재와 나란하게 된 상태에서 익형을 형성하도록 형성되고, 상기 제 1 프레임 부재 커버부의 판형 커버 및 상기 제 2 프레임 부재 커버부의 판형 커버는, 상기 제 2 프레임 부재가 상기 제 4 회전축을 중심으로 회전하여 상기 제 1 프레임 부재와 나란하게 된 상태에서 서로 포개어지도록 형성될 수 있다.
한편, 본 발명의 다른 측면에 따르면, 상기 수중 이동 장치가 조류를 극복하고 해저 목표지점으로 이동하는 방법은, a) 수면에 투입되면 몸체를 상기 목표지점으로 향하는 수직자세로 변환하는 단계; b) 상기 목표지점으로 수직 하강하고, 설정된 수심에 도달하면 속도를 줄이거나 정지하는 단계; c) 상기 몸체를 수평자세로 변환하는 단계; 및 d) 상기 추진기, 스러스터부 및 다리부 중 적어도 어느 하나를 이용하여 상기 목표지점으로 이동하는 단계를 포함한다.
이 때, 상기 a) 단계는, 상기 몸체의 전방부에 음성부력을 발생하고, 후방부에 양성부력을 발생하도록 부력을 조절하여 상기 전방부가 상기 목표지점을 향한 상기 수직자세로 변환하는 단계; 및 상기 전방부 측으로 무게중심을 이동시켜 상기 수직자세의 변화 및 유지를 위한 모멘트를 발생하는 단계를 포함할 수 있다.
한편, 상기 a) 단계와 b) 단계 사이에, 상기 몸체의 기울기가 허용치 범위 내에서 수직한 것으로 판단되면 상기 추진기를 구동하는 단계를 포함할 수 있다.
한편, 상기 b) 단계는, 설정된 목표수심 및 해저로부터의 목표거리 중 어느 하나에 도달한 것으로 판단 하는 단계; 및 상기 추진기의 가동을 중단하거나 역추진을 발생하여 정지하는 단계를 포함할 수 있다.
한편, 상기 c) 단계는, 상기 몸체의 후방부에 음성부력을 발생하고, 전방부에 양성부력을 발생하도록 부력을 조절하여 상기 수평자세가 되면 중성부력을 발생하는 단계; 및 상기 전방부 측의 무게중심을 중앙으로 이동시켜 상기 수평자세의 변화 및 유지를 위한 모멘트를 발생하는 단계를 포함할 수 있다.
한편, 상기 a) 단계 이전에, 상기 복수의 다리부를 접는 단계를 더 포함할 수 있다.
한편, 상기 d) 단계 이후에, 작업을 완료하여 상승하는 경우 전방부에 양성부력을 발생하고, 후방부에 음성부력을 발행하도록 부력을 조절하여 상기 전방부가 수면을 향한 수직자세로 변환하는 단계; 상기 후방부 측으로 무게중심을 이동시켜 상기 수면을 향한 수직자세의 변화 및 유지를 위한 모멘트를 발생하는 단계; 및 추진기의 추력을 발생하여 상기 수면으로 수직 상승하는 단계를 더 포함할 수 있다.
본 발명의 실시예에 따른 수중 이동 장치는 부력 조절 및 무게중심 이동을 통해 자세를 수직으로 변환하고, 추력을 발생하여 원하는 수심까지 빠르게 하강함으로써 용이하게 목표수심으로 이동할 수 있다. 그리고, 설정된 수심 또는 해저로부터의 거리에서 정지한 다음 자세를 수평으로 변환하고 목표지점으로 이동함으로써 안전하게 운용할 수 있다.
또한, 유선형 몸체 형상과 유영시 다관절 다리를 접어둠으로써 유체의 저항을 줄이고 조류/해류의 영향에 따른 강한 유속에 적응할 수 있다.
도 1은 종래의 수중 이동 장치를 나타낸 개념도이다.
도 2는 본 발명의 일 실시예에 따른 조류극복 이동을 위한 수중 이동 장치의 구성을 개략적으로 나타낸 블록도이다.
도 3은 본 발명의 일 실시예에 따른 수중 이동 장치와 기존 잠수정의 몸체형상을 나타낸다.
도 4는 본 발명의 일 실시예에 따른 수중 이동 장치의 사시도이다.
도 5는 본 발명의 일 실시예에 따른 수중 이동 장치의 측면도이다.
도 6은 본 발명의 일 실시예에 따른 수중 이동 장치의 평면도이다.
도 7은 본 발명의 일 실시예에 따른 수중 이동 장치의 부력 발생부의 개략도이다.
도 8은 본 발명의 일 실시예에 따른 수중 이동 장치의 무게 중심 이동부의 개략도이다.
도 9는 본 발명의 일 실시예에 따른 수중 이동 장치의 다리부를 구성하는 다관절 모듈의 일 예의 사시도이다.
도 10은 도 9의 다관절 모듈이 접힌 상태를 도시한 사시도이다.
도 11은 본 발명의 일 실시예에 따른 수중 이동 장치의 다리부를 구성하는 다관절 모듈의 다른 예의 사시도이다.
도 12는 도 11의 다관절 모듈이 접힌 상태를 도시한 사시도이다.
도 13은 도 11의 다관절 모듈의 분해 사시도이다.
도 14는 도 12에서 A-A'의 단면도이다.
도 15는 도 14의 다관절 모듈이 기울어진 상태도이다.
도 16은 일반적인 수심에 따른 유속의 변화를 나타낸 그래프이다.
도 17은 본 발명의 일 실시예에 따른 조류극복 이동 단계를 나타낸 개념도이다.
도 18은 본 발명의 일 실시예에 따른 조류극복 이동 방법을 나타낸 흐름도이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부", "…기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미한다.
설명에 앞서 본 발명의 실시예에 따른 수중 이동 장치는 수중에 잠수하여 침몰선 구난, 수중 건설, 수중 구조물 검사, 자원 탐색, 해저 생물 조사 및 해저 지형 탐사 등에 사용되는 수중 이동 장치로 전원공급 및 제어방식에 따라 ROV 방식 또는 AUV 방식 등에 적용할 수 있다. 다만, 설명의 편의상 본 발명의 실시예에서는 설명의 편의상 AUV 방식을 가정하여 설명하되 본 발명이 이에 한정되지 않는다.
또한, 명세서 전체에서 수중 이동 장치가 바다에서 운용되는 것을 가정하여 설명하되 이에 한정되지 않으며, 강이나 저수지와 같은 내수면에서도 적용 가능한 것이다.
이제 본 발명의 일 실시예에 따른 수중 이동 장치 및 그 방법에 대하여 도면을 참조로 하여 상세하게 설명한다.
도 2는 본 발명의 일 실시예에 따른 수중 이동 장치의 구성을 개략적으로 나타낸 블록도이다. 도 3은 본 발명의 실시예에 따른 수중 이동 장치와 기존 잠수정의 몸체형상을 나타낸다. 도 4는 본 발명의 일 실시예에 따른 수중 이동 장치의 사시도이다. 도 5는 본 발명의 일 실시예에 따른 수중 이동 장치의 측면도이다. 도 6은 본 발명의 일 실시예에 따른 수중 이동 장치의 평면도이다. 도 7은 본 발명의 일 실시예에 따른 수중 이동 장치의 부력 발생부의 개략도이다. 이하 도면을 참조하여 수중 이동 장치를 설명함에 있어, 수중 이동 장치(10)의 팔부(70)가 위치되는 방향을 수중 이동 장치(10)의 전방으로 규정하고 추진기(30)가 위치되는 방향을 수중 이동 장치(10)의 후방으로 규정하여 설명한다.
첨부된 도 2를 참조하면, 본 발명의 실시예에 따른 수중 이동 장치(10)은 몸체(20), 추진기(30), 꼬리날개부(40), 스러스터부(50), 다리부(60), 부력 발생부(80), 무게중심 이동부(160), 센서부(170), 통신부(180) 및 제어부(190)를 포함한다. 그리고, 본 발명의 일 실시예에 따른 수중 이동 장치(10)는 몸체(20)의 전방측에 팔부(70)를 포함할 수 있다.
몸체(20)는 수중에서 받는 항력계수를 최소화 하기 위해 전방부가 유선형으로 형성되고 후방부가 전방부로부터 길이방향의 원뿔형태로 좁아지는 구조로 형성된다.
보다 상세히, 몸체(20)는, 도 4 내지 도 6에서 알 수 있는 바와 같이, 전후 방향으로 단면이 타원형 또는 원형의 유선형으로 형성된다. 이 때, 몸체(20)의 전방측 단면은 두껍게, 즉 넓은 단면을 가지도록 형성되며, 후방 측 단면은 얇은, 즉 좁은 단면을 갖도록 형성된다. 그리고, 몸체(20)는 전방 단부로부터 후방 단부에 이르기까지 유선형으로 이루어져, 몸체가 수중에서 이동할 때 물의 저항이 적어질 수 있도록 형성된다.
첨부된 도 3을 참조하면, 도 3(A)의 기존 몸체형상을 고려하지 않은 박스형태의 잠수정의 항력계수는 2.5인 것에 비해 도 3(B)의 본 발명의 일 실시예에 따른 유선형 몸체(20)의 항력계수는 0.05로 유체의 영향을 최소화 할 수 있다.
또한, 몸체(20)는 해저에서의 높은 수압으로부터 수중 이동 장치의 구동을 위해 내장된 전자장비를 보호하기 위해 견고한 방수구조를 가지며, 표면의 항력계수를 줄이기 위해 코팅 처리될 수 있다.
몸체(20)의 내부에는 몸체가 수중에서 상하로 이동할 수 있도록 하기 위한 부력 발생부(80) 및 몸체(20)에 결합되는 다리부(60)와 팔부(70)를 구동하기 위한 구동부(미도시) 등이 위치될 수 있다.
몸체(20)의 후방측에는 추진기(30)가 설치된다. 추진기(30)는 몸체(20)의 후방 단부에 설치되는 프로펠러(32)와, 프로펠러(32)를 회전시키도록 몸체 내부에 위치되는 구동 모터(미도시)를 포함한다.
이에 따라, 본 발명의 일 실시예에 따른 수중 이동 장치는 구동 모터를 구동하여 프로펠러(32)를 회전시킴으로써 전방으로 이동할 수 있는 추진력을 얻을 수 있다.
상기 추진기(30) 전방 측에 위치된 몸체의 표면에는 꼬리날개부(40)가 위치된다. 꼬리날개부(40)는 몸체(20)의 자세를 안정적으로 유지하기 위한 구성이다.
도 4을 참조하면, 꼬리날개부(40)는 수직꼬리날개(42) 및 수평꼬리날개(44)를 포함할 수 있다.
수직꼬리날개(42)는 몸체(20)의 상측부 및 하측부에 위치되는 수직 안정판을 포함할 수 있다. 이 때, 수직 안정판에는 방향타(미도시)가 회전가능하게 설치될 수 있다.
수평꼬리날개(44)는 수직꼬리날개(42)의 좌측부 및 우측부에 위치되며 몸체에 수평으로 배열된 판형의 수평 안정판을 포함할 수 있다. 이 때, 수평 안정판에는 승강타(미도시)가 회전가능하게 설치될 수 있다.
몸체(20)에는 수중 이동 장치의 자세를 제어하거나 이동을 보조하기 위하여 스러스터부(50)가 설치된다. 본 발명의 일 실시예에 따르면, 스러스터부(50)는 상하 방향 스러스터(52, 54) 및 좌우 방향 스러스터(56, 58)를 포함한다.
도 4 내지 도 6을 참조하면, 상하 방향 스러스터(52, 54)는 몸체(20)의 전방부 및 후방부에 수직 방향으로 배열되도록 형성된 두 개의 스러스터로 이루어질 수 있다.
상하방향 스러스터(52, 54)는 몸체(20)를 상측 방향으로 이동시키고자 할 경우 프로펠러를 회전하여 하측 방향으로 유체, 예를 들어 해수가 배출되도록 하거나, 몸체(20)를 하측 방향으로 이동시키고자 할 경우 프로펠러를 회전하여 상측 방향으로 해수가 배출되도록 구성된다.
좌우 방향 스러스터(56, 58)는, 도 4 내지 도 6에서 알 수 있는 바와 같이, 몸체(20)의 길이 방향으로 중앙부 상측 및 하측에 횡방향으로 배열되도록 형성된 두개의 스러스터로 이루어질 수 있다.
좌우 방향 스러스터(56, 58)는 몸체(20)를 좌측 방향 또는 우측 방향으로 이동시키고자 할 경우 그 역방향으로 유체, 예를 들어 해수를 배출시키도록 프로펠러를 회전시켜 몸체(20)를 좌측 방향 또는 우측 방향으로 이동시키도록 구성된다.
한편, 본 발명에 따른 수중 이동 장치는, 두 개의 상하 방향 스러스터 및 두 개의 좌우 방향 스러스터를 각각 서로 다른 방향으로 회전시키면 몸체가 제자리에서 회전하도록 형성될 수 있다.
본 실시예에서는 상하 방향 스러스터(52, 54)를 몸체(20)의 전방부 및 후방부에 한 개씩 구비하고, 좌우 방향 스러스터(56, 58)를 몸체의 길이 방향 중앙부 상측 및 하측에 한 개씩 구비하였으나, 상하 방향 스러스터 및 좌우 방향 스러스터의 설치 위치 및 개수는 몸체(20)의 자세를 제어하고 보조 추력을 발생시킬 수 있도록 하기 위하여 당업자가 용이하게 발명할 수 있는 범위 내에서 다양하게 변경될 수 있다.
한편, 본 발명의 일 실시예에 따르면, 몸체(20) 내부에는 수중에서 몸체(20)를 상하로 이동시킬 수 있도록 하기 위하여 부력 발생부(80)가 설치된다.
도 6 및 도 7을 참조하면, 부력 발생부(80)는 몸체(20)의 중앙부에 위치되며, 유체 저장 탱크(82), 펌프(84), 밸브(86) 및 주머니 부재(88)를 포함할 수 있다.
유체 저장 탱크(82) 내부에는 소정의 유체가 저장된다. 이 때, 유체는 기체일 수 있다. 유체는 유체 저장 탱크(82) 내부에서 필요에 따라 펌프(84)에 의하여 주머니 부재(88) 측으로 이동하여 주머니 부재(88)의 부피를 증가시키도록 형성된다.
유체 저장 탱크(82) 내부의 유체를 주머니 부재(88)로 이송하기 위하여 펌프(84)가 유체 저장 탱크(82)와 주머니 부재(88) 사이에 위치된다.
그리고, 주머니 부재(88)에 저장된 유체의 양을 일정하게 유지하기 위하여 펌프(84)와 주머니 부재(88) 사이에는 밸브(86)가 설치된다.
주머니 부재(88)는 신축가능한 소재로 이루어지며, 주머니 부재(88)의 부피가 그 내부에 저장된 유체의 양에 따라 조절될 수 있도록 형성된다.
본 발명의 일 실시예에 따른 부력 발생부(80)는 부력 발생부가 설치된 몸체 내부 공간에서 주머니 부재(88)의 부피가 증가 또는 감소하면 주머니 부재(88)의 부피가 증가 또는 감소함에 따라, 그에 대응하는 양의 물, 즉 수중 이동 장치를 둘러싸고 있는 유체, 예를 들어 수중 이동 장치가 바다 속에 있는 경우 해수가 몸체(20) 내부로 유입 또는 유출될 수 있는 구조로 이루어진다.
이에 따라, 본 발명의 일 실시예에 따른 수중 이동 장치(10)는, 유체가 주머니 부재(88)에 채워지는 정도에 따라 몸체(20)의 전체 밀도가 달라지게 된다.
예를 들어, 유체가 주머니 부재(88)의 부피를, 도 7에서 실선으로 도시된 부피로부터 2점 쇄선으로 도시된 부피만큼 증가시키면 그만큼의 해수가, 부력 발생부(80)가 설치된 몸체(20)의 내부 공간(89)으로부터 몸체(20)의 외부로 배출되고, 이에 따라 몸체(20) 전체의 밀도가 낮아진다.
이 때, 몸체(20) 전체의 밀도가, 수중 이동 장치를 둘러싸는 해수의 밀도보다 낮아지게 되면, 몸체(20)에 양의 부력이 생성되어 몸체가 해수 속에서 상측 방향으로 떠오르게 된다.
반대로, 주머니 부재(88)의 부피가 감소되면, 부피가 감소된 만큼 몸체(20) 외부로부터 해수가 유입되고, 그에 따라 몸체(20) 전체의 밀도가 높아진다.
이 때, 몸체(20) 전체의 밀도가, 수중 이동 장치(10)를 둘러싸고 있는 해수의 밀도보다 높아지게 되면, 몸체(20)에 음의 부력이 생성되어 몸체가 해수 속에서 하측 방향으로 가라앉게 된다.
이와 같은 방식으로, 본 발명의 일 실시예에 따른 수중 이동 장치(10)는 주머니 부재(88)에 저장되는 유체의 양을 조절하여 몸체(20) 전체의 부력의 크기를 조절할 수 있다.
한편, 본 발명의 다른 실시예에 따르면, 부력 발생부(80)가 몸체(20)의 전방부 및 후방부에 한 쌍으로 설치될 수 있다.
한 쌍으로 설치되는 부력 발생부(80)는 각각 독립하여 부력을 조절할 수 있으며, 각각의 부력 발생부가 설치되는 몸체의 내부 공간이 서로 연통하도록 형성될 수 있다.
이와 같이 부력 발생부가 몸체의 전방부 및 후방부에 한 쌍으로 형성되면, 본 발명의 실시예에 따른 부력 발생부(80)는 몸체(20)의 전방부 및 후방부에 양성부력, 음성부력 및 중성부력이 발생하도록 조절될 수 있다. 이 때, 양성부력은 부력이 중력보다 커서 부상하는 상태이고, 음성부력은 중력이 부력보다 커서 가라앉는 상태이며, 중성부력은 중력과 부력이 같은 상태에서 뜨지도 가라앉지도 않는 상태를 각각 의미한다.
예를 들어, 본 발명의 실시예에 따른 부력 발생부(80)는 수중 이동 장치가 조류의 영향으로 유속이 강한 해역에 투입되는 경우 몸체(20)의 전방부에 음성부력을 발생시키고, 후방부에 양성부력이 발생하도록 부력을 조절하여, 수중 이동 장치가 목표지점을 향해 수직으로 빠르게 하강할 수 있도록 수직한(오뚝이) 자세를 취하도록 한다. 그리고, 수중 이동 장치는 미리 설정된 목표수심 또는 해저로부터의 목표거리에 도달하면 몸체의 전방부 및 후방부에 중성부력을 발생시켜 수평한 자세를 취할 수 있다.
한편, 수중 이동 장치(10)는 몸체(20) 내부에 설치되는 무게 중심 이동부(160)를 포함할 수 있다.
도 8은 무게 중심 이동부(160)를 개략적으로 도시한 도면이다.
도 8을 참조하면, 무게 중심 이동부(160)는 볼 스크류(164), 이동 지지대(166), 중량체(168), LM 가이드(162) 및 구동 모터(169)를 포함한다.
볼 스크류(164)는 몸체(20) 내부에 전후 방향으로 배열되며 구동 모터(169)에 의하여 축(164a)이 회전하도록 형성된다. 축(164a)이 회전함에 따라 축(164a)에 결합된 너트(164b)가 전후 방향으로 이동한다.
너트(164b)에는 이동 지지대(166)가 결합된다. 이동 지지대(166)는 너트(164b)가 이동함에 따라 함께 이동가능하도록 형성된다. 이동 지지대(166) 상에는 중량체(168)가 결합되어 이동 지지대(166)가 이동함에 따라 이동 지지대(166)와 함께 중량체(168)가 이동할 수 있도록 형성된다.
한편, 이동 지지대(166)의 이동을 가이드 하기 위하여 볼 스크류(164)의 양 측부에는 한 쌍의 LM 가이드(162)가 설치된다.
이 때, 본 발명의 일 실시예에 따른 수중 이동 장치의 무게 중심 이동부(160)의 볼 스크류(164)는 몸체의 전후 방향 뿐 아니라 몸체의 좌우 방향으로도 배열될 수 있다.
본 발명의 일 실시예에 따르면 이동 지지대(166)에 결합된 중량체(168)가 몸체(20)의 전후 방향으로 전후로 이동함에 따라 몸체(20)의 무게 중심의 위치가 변경될 수 있으며, 중량체(168)의 위치에 따라 몸체(20)의 자세 및 기울기가 변경될 수 있다.
한편, 도 2를 참조하면, 본 발명의 일 실시예에 따른 수중 이동 장치(10)는 센서부(170)를 포함한다.
센서부(170)는 수중 이동 장치(10)의 구동을 위해 외부환경을 측정하는 다양한 센서를 포함할 수 있는데, 예컨대 현재 위치한 수심을 체크하는 수심 센서(171), 기울기 및 자세 측정을 위한 틸트 센서(172), 소나(Sonar)라고도 불리며 해저 및 전방의 물체로부터의 거리 및 방위를 측정하는 초음파 센서(173) 등을 포함할 수 있다.
한편, 도 2를 참조하면, 본 발명의 일 실시예에 따른 수중 이동 장치(10)는 통신부(180)를 포함한다.
통신부(180)는 수면상에서 수중 이동 장치(10)의 운용을 관리하는 모선과 통신을 수행하는 무선통신모듈, 상기 모선과 케이블을 통해 전원 및 제어신호를 수신하는 유선통신모듈 및 수중에서 상기 모선과의 통신을 수행하는 초음파통신모듈 중 적어도 하나를 포함할 수 있다.
한편, 도 2를 참조하면, 본 발명의 일 실시예에 따른 수중 이동 장치(10)는 제어부(190)를 포함한다.
제어부(190)는 수중 이동 장치(10)의 운용을 위한 상기 각부의 전반적인 동작을 제어한다. 특히, 제어부(190)는 수중 이동 장치(10)이 조류의 영향으로 유속이 강한 해역에 투입되는 경우 조류극복 이동을 위한 자세를 제어하여 안전한 목표지점으로의 이동을 수행한다.
한편, 본 발명의 일 실시예에 따르면, 수중 이동 장치(10)의 몸체(20)의 양 측부에 다리부(60)가 설치된다. 다리부(60)는 수중 이동 장치(10)가 예를 들어 해양의 바닥면에 안착된 경우 추진기를 이용하지 않고 바닥면 상에서 걷는 방식으로 이동하기 위한 구성이다. 본 발명의 일 실시예에 따르면, 다리부(60)는 몸체(20) 양 측부에 3쌍으로 형성된다. 이 때 3쌍의 다리부(60)는 몸체(20)의 양 측부에 전방으로부터 후방으로 서로 나란하게 배열될 수 있다.
보다 상세히 다리부(60)의 구성을 살펴보면, 다리부(60)는 다관절 모듈(100) 및 다관절 모듈(100)에 설치된 발 부재(62)를 포함할 수 있다.
이하 본 발명의 일 실시예에 따른 다리부(60)를 구성하는 다관절 모듈(100)에 대하여 도면을 달리하여 보다 상세히 설명한다.
도 9는 본 발명의 일 실시예에 따른 수중 이동 장치(10)의 다리부(60)를 구성하는 다관절 모듈(100)의 일 예의 사시도이다. 도 10은 도 9의 다관절 모듈(100)이 접힌 상태를 도시한 사시도이다.
도 9를 참조하면, 본 발명의 일 실시예에 따른 다리부(60)의 다관절 모듈(100)은 회전축 부재(110), 조인트 부재(120), 제 1 프레임 부재(130) 및 제 2 프레임 부재(140)를 포함한다.
회전축 부재(110)는, 일단부가 몸체(20)에 결합되며 타단부가 몸체(20)의 외측 방향으로 연장되도록 형성된다. 이 때, 회전축 부재(110)는 몸체(20)의 외측 방향으로 배열되는 제 1 회전축(A1)을 중심으로 회전할 수 있도록 형성된다.
조인트 부재(120)는 일단부가 회전축 부재(110)의 타단부에 회전가능하게 설치된다. 이 때, 조인트 부재(120)는 제 1 회전축(A1)에 대하여 수직한 제 2 회전축(A2)을 중심으로 회전할 수 있도록 형성된다. 이 때, 회전축 부재(110)와 조인트 부재(120)는 유니버셜 조인트에 대응하는 구조로 형성될 수 있다.
조인트 부재(120)의 타단부에는 제 1 프레임 부재(130)의 일단부가 제 1 회전축(A1) 및 제 2 회전축(A2)에 수직한 제 3 회전축(A3)을 중심으로 회전할 수 있도록 결합된다.
제 1 프레임 부재(130)의 타단부에는 제 4 회전축(A4)을 중심으로 회전할 수 있는 제 2 프레임 부재(140)가 결합된다.
제 4 회전축(A4)에 결합되는 제 1 프레임 부재(130) 및 제 2 프레임 부재(140)는 동일 평면 상에 배열되지 않고 제 4 회전축(A4)의 연장방향으로 서로 이웃하여 배열된다.
제 1 프레임 부재(130) 및 제 2 프레임 부재(140)는 수중 이동 장치(10)가 수중의 바닥면에 안착하였을 때 몸체(20)를 바닥면에 대하여 지지하는 다리부(60)의 뼈대를 형성하는 구성요소이다.
이 때, 본 발명의 일 실시예에 따르면, 제 1 프레임 부재(130)에는 유압 실린더(150)가 제 1 프레임 부재(130)와 동일 평면 상의 일 측부에 설치된다.
유압 실린더(150)의 피스톤(154)의 단부는 제 2 프레임 부재(140)의 일측에 회전가능하게 결합된다. 이에 따라, 제 2 프레임 부재(140)는 유압 실린더(150)의 피스톤 길이를 조절함으로써 제 4 회전축(A4)을 중심으로 회전될 수 있다.
본 발명의 일 실시예에 따르면, 도 9에서 알 수 있는 바와 같이, 제 1 프레임 부재(130) 및 제 2 프레임 부재(140)는 일 방향으로 연장되되 제 4 회전축(A4)의 연장 방향으로 소정의 두께를 갖는 납작한 판 형태로 이루어질 수 있다.
이 때, 도 9를 참조하면, 제 1 프레임 부재(130) 및 제 2 프레임 부재(140)에는 각각 제 1 프레임 부재(130) 및 제 2 프레임 부재(140)를 경량화하기 위하여 길이 방향으로 개구(132, 142)가 형성될 수 있다.
한편, 도 10을 참조하면, 유압 실린더(150)의 피스톤(154)을 연장시키면 제 2 프레임 부재(140)가 제 4 회전축(A4)을 중심으로 제 3 회전축(A3) 방향으로 회전하여 제 2 프레임 부재(140)의 타단부에 위치된 발 부재(62)가 제 1 프레임 부재(130)의 제 3 회전축(A3)에 매우 인접하게 위치된다.
본 명세서에서는, 이와 같이 제 2 프레임 부재(140)를 제 4 회전축(A4)을 중심으로 도 9에서 볼 때 시계 방향으로 회전시켜 제 3 회전축(A3)에 인접하게 위치시키는 것을 "제 2 프레임 부재(140)를 제 1 프레임 부재(130)에 대하여 접는다"라고 표현한다.
이 때, 유압 실린더(150)의 피스톤(154)을 연장시켜 제 2 프레임 부재(140)가 제 4 회전축(A4)을 중심으로 최대한 회전하여 제 2 프레임 부재(140)에 결합된 발 부재(62)가 제 1 프레임 부재(130)의 제 3 회전축(A3)에 가장 인접하게 배치된 상태가, 제 2 프레임 부재(140)가 제 1 프레임 부재(130)에 대하여 최대한 접혀진 상태이다.
그리고 본 명세서에서는, 제 2 프레임 부재(140)를 제 4 회전축(A4)을 중심으로 도 9에서 볼 때 반시계 방향으로 회전시켜 제 3 회전축(A3)으로부터 멀어지게 위치시키는 것을 "제2 프레임 부재(140)를 제 1 프레임 부재(130)에 대하여 펼친다"라고 표현한다.
이 때, 유압 실린더(150)의 피스톤(154)을 최대한 신축시켜 제 2 프레임 부재(140)가 제 4 회전축(A4)을 중심으로 회전하여 제 2 프레임 부재(A2)의 발 부재(62)가 제 3 회전축(A3)에 가장 멀리 위치된 상태가, 제 2 프레임 부재(140)가 제 1 프레임 부재(130)에 대하여 최대한 펼쳐진 상태이다.
따라서, 제 2 프레임 부재(140)는 제 1 프레임 부재(130)에 대하여 최대한 접혀진 상태와 최대한 펼쳐진 상태 사이에 위치된다.
한편, 본 발명의 일 실시예에 따른 수중 이동 장치(10)는 수중에서 유영할 때 다리부(60)의 제 2 프레임 부재(140)가 제 1 프레임 부재(130)에 대하여 최대한 접혀진 상태를 유지하도록 형성된다.
그리고, 본 발명의 일 실시예에 따르면 수중 이동 장치(10)가 수중에서 유영할 경우 수중 이동 장치(10)의 다리부(60)는, 다리부(60)를 형성하는 면 중 가장 작은 면적을 갖는 면이 몸체의 전방측으로 향하도록 배치된다.
이와 같이 배열되기 위하여 본 발명의 일 실시예에 따르면, 제 1 프레임 부재(130)의 제 4 회전축(A4)이 몸체(20)의 상하 방향으로 배열된다.
이와 같이 배열되면, 몸체(20)가 전방측으로 이동하는 동안 제 1 프레임 부재(130) 및 제 2 프레임 부재(140)의 두께 방향 단면이 몸체(20)의 전진 방향에 대하여 전방을 향하도록 배열되므로 수중 이동 장치가 유영하는 동안, 다리부(60)의 저항을 감소시킬 수 있다.
한편, 제 2 프레임 부재(140)의 타단부측에 발 부재(62)가 위치된다.
발 부재(62)는 제 2 프레임 부재(140)의 제 5 회전축(A5)을 중심으로 회전가능하도록 형성된다. 발 부재(62)는 수중 이동 장치(10)가 바닥면에 놓인 상태에서 바닥면에 닿는 면적을 넓히기 위한 구성 요소이며, 이를 위하여 제 5 회전축(A5)을 중심으로 회전가능한 판재 형상의 저면(66)을 구비한다.
그리고, 발 부재(62)의 저면(66)에는 하측 방향으로 돌출된 돌기(64)가 형성된다. 돌기(64)는, 수중 이동 장치(10)가 안착되는 바닥면이 예를 들어 모래와 같이 함몰되기 쉬운 소재로 형성된 면인 경우, 발 부재(62)의 저면이 바닥면에 접한 상태에서 돌기(64)가 바닥면에 박히도록 형성되어 저면(66)이 바닥면에 보다 견고하게 고정될 수 있도록 함으로써 수중 이동 장치(10)가 바닥면에서 안정적으로 정지 자세를 취하거나 바닥면을 걸어 다닐 수 있도록 한다.
한편, 본 발명의 일 실시예에 따르면, 몸체(20)의 전방측에는 팔부(70)가 위치된다.
도 4 내지 도 7을 참조하면, 팔부(70)는 몸체(20)의 전방측에 하나 이상, 예를 들어 두 개로 이루어질 수 있다. 이 때, 본 발명의 일 실시예에 따르면, 팔부(70)는, 다리부(60)를 형성하는 다관절 모듈(100)로 이루어질 수 있다.
팔부(70)를 형성하는 다관절 모듈(100)의 일단부에는 다리부(60)의 발 부재 대신 집게 구조로 이루어진 작동 구조체(72)가 설치된다. 이에 따라 본 발명의 일 실시예에 따른 수중 이동 장치(10)는 수중에서 수중 이동 장치가 팔부(70)의 집게 구조의 작동 구조체(72)를 이용하여 소정의 대상물을 집을 수 있도록 형성된다.
수중 이동 장치의 팔부(70)에 설치될 수 있는 집게 구조의 작동 구조체(72)는 예를 들어, 공지된 형태의 로봇 팔 단부에 형성되는 손가락 구조로 이루어질 수 있는 바 그에 대한 상세한 설명은 생략하도록 한다.
본 발명의 일 실시예에 따르면, 다리부(60)에 적용된 다관절 모듈(100)은 5축의 회전축(A1, A2, A3, A4, A5)을 구비하도록 형성되어 다관절 모듈(100)을 형성하는 회전축 부재(110), 조인트 부재(120), 제 1 프레임 부재(130) 및 제 2 프레임 부재(140) 및 발 부재(62)가 자유로이 움직일 수 있으므로, 이와 같은 다관절 모듈(100)을 팔부에도 적용할 경우 팔부(70)의 집게 구조가 다관절 모듈(100)을 이용하여 자유로이 움직일 수 있기 때문에, 수중에서 팔부(70)를 이용하여 다양한 작업을 용이하게 수행할 수 있다.
한편, 본 발명의 일 실시예에 따른 수중 이동 장치(10)는 다리부(60)를 구성하는 다관절 모듈이 앞선 실시예와 다르게 형성될 수 있다. 이하 본 발명의 다리부(60)를 구성하는 다관절 모듈(100)의 다른 예에 대하여 도면을 달리하여 설명한다.
도 11은 본 발명의 일 실시예에 따른 수중 이동 장치의 다리부(60)를 구성하는 다관절 모듈의 다른 예의 사시도이다. 도 12는 도 11의 다관절 모듈이 접힌 상태를 도시한 사시도이다. 도 13은 도 11의 다관절 모듈의 분해 사시도이다. 도 14는 도 12에서 A-A'의 단면도이다. 도 15는 도 14의 다관절 모듈이 기울어진 상태도이다.
도 11을 참조하면, 본 발명의 일 실시예에 따른 수중 이동 장치의 다리부(60)를 구성하는 다관절 모듈(200)은 앞선 실시예와 비교할 때 제 1 프레임 부재(130) 및 제 2 프레임 부재(140)의 외부에 제 1 프레임 부재 커버부(260) 및 제 2 프레임 부재 커버부(270)를 더 포함한다.
제 1 및 제 2 프레임 부재 커버부(270)는 각각 익형의 외형을 가지며, 각각 제 1 프레임 부재(230) 및 제 2 프레임 부재(240)를 둘러싸도록 형성된다. 이 때, 본 명세서에서 제 1 및 제 2 프레임 부재 커버부(260, 270)가 제 1 프레임 부재(230) 및 제 2 프레임 부재(240)를 둘러싼다는 의미는 제 1 및 제 2 프레임 부재 커버부(260, 270)가 제 1 및 제 2 프레임 부재(230, 240)를 수밀한 상태로 유지시키도록 둘러싸는 것을 의미할 수도 있으나, 제 1 및 제 2 프레임 부재(230, 240)의 주위에 위치되어 제 1 및 제 2 프레임 부재(230, 240)를 구비한 수중 이동 장치가 수중에서 이동할 때 제 1 및 제 2 프레임 부재(230, 240)의 형상에 의한 물의 저항을 감소시킬 수 있도록 제 1 및 제 2 프레임 부재(230, 240) 주위에 위치된다는 의미도 포함되는 것으로 해석되어야 한다. 이와 같은 경우에는 제 1 및 제 2 프레임 부재 커버부(260, 270)가 제 1 및 제 2 프레임 부재(230, 240)를 수밀 상태로 둘러싸지 않을 수도 있다. 즉 제 1 및 제 2 프레임 부재 커버부(260, 270)에는 제 1 및 제 2 프레임 부재(230, 240)와 연결된 부재들의 상호 작동을 방해하지 않도록 하기 위하여 복수의 개구가 형성되어 있을 수 있다.
이에 따라 제 1 프레임 부재 커버부(260) 및 제 2 프레임 부재 커버부(270)를 구비한 수중 이동 장치(10)는, 수중을 유영할 때, 다리부(60)에 의하여 생성되는 물의 저항이 매우 작아질 수 있다.
보다 상세히, 도 11 내지 도 15을 참조하면, 제 1 프레임 부재 커버부(260) 및 제 2 프레임 부재 커버부(270)는 각각 유선형 커버(262, 272) 및 판형 커버(264, 274)를 포함한다.
유선형 커버(262, 272)는 익형의 단면을 가지되, 내부에 제 1 프레임 부재(230) 또는 제 2 프레임 부재(240)가 위치될 수 있는 공간을 구비한다.
판형 커버(264, 274)는 유선형 커버(262, 272)의 일단부면에 결합되어, 유선형 커버(262, 272)와 판형 커버(264, 274)가 제 1 프레임 부재(230) 또는 제 2 프레임 부재(240)를 둘러싸도록 한다.
도 13를 참조하면, 제 1 프레임 부재 커버부(260)의 판형 커버(264)에는 제 1 프레임 부재(230)가 조인트 부재(220)와 결합되는 제 3 회전축(A3)이 관통하는 제 3 회전축홀(267), 제 1 프레임 부재(230)가 제 2 프레임 부재(240)와 결합되는 제 4 회전축(A4)이 관통하는 제 4 회전축홀(265) 및 제 1 프레임 부재(230)의 유압 실린더(250)의 피스톤(254)의 단부가 제 2 프레임 부재(240)의 일측과 회전가능하게 결합할 때 피스톤(254) 단부의 이동을 방해하지 않도록 형성된 실린더 가이드 홀(266)이 형성된다.
또한, 제 2 프레임 부재 커버부(270)의 판형 커버(274)에는 제 1 프레임 부재 커버부(260)의 판형 커버(264)의 제 4 회전축 홀(265) 및 실린더 가이드 홀(266)에 대응하는 홀들(275, 276)이 또한 형성된다.
한편, 제 2 프레임 부재 커버부(270)의 일단부측에는 발 부재(62)가 제 2 프레임 부재의 제 5 회전축(A5)을 중심으로 회전가능하게 위치되므로, 제 2 프레임 부재 커버부(270)의 일 단부측은 발 부재의 회전을 방해하지 않도록 개방된 형태로 이루어질 수 있다.
이에 따라, 제 1 프레임 부재(230) 및 제 2 프레임 부재(240)를 제 1 프레임 부재 커버부(260) 및 제 2 프레임 부재 커버부(270)가 둘러싸더라도 다관절 모듈(100)에서 제 1 프레임 부재(230) 및 제 2 프레임 부재(240), 그리고 발 부재(62)의 움직임이 제 1 프레임 부재 커버부(260) 및 제 2 프레임 부재 커버부(270)에 의하여 제한을 받지 않는다.
그리고 제 1 프레임 부재 커버부(260) 및 제 2 프레임 부재 커버부(270) 각각의 유선형 커버(262, 272) 및 판형 커버(264, 274) 중 어느 하나에는 지지대(263, 273)가 형성되어 제 1 프레임 부재(230) 또는 제 2 프레임 부재(240)가 각각 제 1 프레임 부재 커버부(260) 또는 제 2 프레임 부재 커버부(270) 내에 고정될 수 있도록 한다.
본 실시예에서는, 도 13에서 알 수 있는 바와 같이 유선형 커버(262, 272)에 지지대(263, 273)가 형성되었으며, 도 14를 참조하면, 지지대(263, 273)는 일측단이 유선형 커버(262, 272)의 내측면에 결합되고, 타측단이 제 1 및 제 2 프레임 부재(230, 240)의 일측과 결합되어 유선형 커버(262, 272)의 내측에서 제 1 및 제 2 프레임 부재(230, 240)를 지지하도록 형성된다.
한편, 본 실시예에서, 제 2 프레임 부재(240)가 제 1 프레임 부재(230)에 최대한 접힌 상태가 될 경우 도 12에서 알 수 있는 바와 같이, 제 1 프레임 부재 커버부(260)는 제 2 프레임 부재 커버부(270)와 맞접하여 하나의 익형을 형성한다. 이 때, 제 1 프레임 부재 커버부(260)는 제 2 프레임 부재 커버부(270)와 맞접한 상태에서 대칭인 형태로 배치될 수 있으나, 이에 제한되는 것은 아니다.
이와 같이 제 1 및 제 2 프레임 부재 커버부(260, 270)가 맞접한 상태에서의 단면이 도 14에 도시되어 있다.
본 발명의 일 실시예에 따르면, 제 2 프레임 부재(240)가 제 1 프레임 부재(230)에 대하여 최대한 접힌 상태에서, 수중 이동 장치(10)의 수중에서의 유영이 이루어지는데, 본 실시예에서와 같이 제 1 프레임 부재 커버부(260)와 제 2 프레임 부재 커버부(270)가 제 1 프레임 부재(230) 및 제 2 프레임 부재(240)를 둘러싸도록 형성되면, 다리부(60)의 외주면이 유선형으로 형성되어 수중에서의 수중 이동 장치가 유영하는 동안 저항을 줄일 수 있다.
또한 다리부(60)가 제 1 프레임 부재 커버부(260) 및 제 2 프레임 부재 커버부(270)에 의하여 익형으로 형성되면, 수중 이동 장치(10)의 다리부(60)를 필요에 따라 움직여 수중 이동 장치(10)의 균형을 유지할 수도 있다.
예를 들어 도 15에 도시된 바와 같이, 수중 이동 장치(10)의 이동 방향에 대하여 다리부(60)의 제 1 회전축(A1)을 중심으로 다리부(60)의 전단부를 상측 방향으로 α 각도만큼 회전시키면 각도의 크기에 따라 양력과 항력이 발생한다.
본 발명의 일 실시예에 따르면, 익형의 외표면을 갖는 다리부를 회전시킴으로써 발생할 수 있는 양력 및 항력에 의하여 수중 이동 장치(10)의 자세 및 위치에 대한 제어가 이루어질 수 있다.
한편, 전술한 실시예에서 제 1 프레임 부재 커버부(260) 및 제 2 프레임 부재 커버부(270)는 제 1 프레임 부재(230) 및 제 2 프레임 부재(240)가 위치될 수 있도록 내부가 비워진 형태로 이루어진 것으로 예시하였으나, 제 1 프레임 부재 커버부(260) 및 제 2 프레임 부재 커버부(270)의 내부는 제 1 프레임 부재(230) 및 제 2 프레임 부재(240)의 작동을 위하여 필요한 공간을 제외하고 모두 채워진 형태로 이루어질 수도 있다.
그리고 본 실시예에서는 제 1 프레임 부재 커버부(260) 및 제 2 프레임 부재 커버부(270)가 제 1 프레임 부재(230) 및 제 2 프레임 부재(240)와 별개의 구성인 것으로 예시하였으나 제 1 프레임 부재(230) 및 제 2 프레임 부재(240)가 제 1 프레임 부재 커버부(260) 및 제 2 프레임 부재 커버부(270)와 일체로 형성되도록 제 1 프레임 부재(230) 및 제 2 프레임 부재(240)를 제작하거나 또는 제 1 프레임 부재(230) 및 제 2 프레임 부재(240) 자체의 단면의 형태를 서로 대칭되는 유선형 또는 익형의 형태로 구성하는 것도 가능할 것이다.
이상에서 설명한 바와 같이, 본 발명의 일 실시예에 따른 수중 이동 장치는 몸체가 유선형으로 이루어져, 수중에서 이동하는 경우 유체에 의한 저항을 덜 받으며 용이하게 이동할 수 있다.
그리고 본 발명의 일 실시예에 따른 수중 이동 장치는 다관절 부재로 이루어진 복수의 다리부를 구비하여 바닥면에서 다리부를 이용하여 걸으며 이동하므로, 바닥면에서의 이동이 용이하다. 그리고 본 발명의 일 실시예에 따른 수중 이동 장치는 바닥면에서 걸으며 이동하므로 바닥면을 이동하는 동안 바닥면의 모래 또는 흙등이 비산되지 않도록 할 수 있다.
그리고, 본 발명의 일 실시예에 따른 수중 이동 장치는, 수중 이동 장치가 수중에서 유영하는 경우 다리부가 접혀질 수 있도록 형성되어 다리부가 수중 이동 장치의 수중 이동시 유체의 저항을 덜 받을 수 있도록 구성된다.
그리고, 본 발명의 수중 이동 장치의 다른 예로서, 다리부가 유선형으로 이루어질 수 있는 커버부를 구비하도록 구성된 경우, 수중 이동 장치의 다리부를 수중 이동 장치의 자세 및 위치 제어를 위한 지느러미로 사용할 수 있다.
이하, 본 발명의 일 실시예에 따른 수중 이동 장치의 이동 방법을 도면을 참조하여 설명한다.
도 16은 일반적인 수심에 따른 유속의 변화를 나타낸 그래프이다. 도 17은 본 발명의 실시예에 따른 조류극복 이동 단계를 나타낸 개념도이다. 도 18은 본 발명의 실시예에 따른 조류극복 이동 방법을 나타낸 흐름도이다.
첨부된 도 16을 참조하면, 일반적으로 유속분포는 수심에 따라 변하며 수면부의 유속이 가장 빠르고, 수면으로부터 거리가 멀어질수록 유속이 약해진다. 따라서, 본 발명의 실시예에 따른 수중 이동 장치(10)는 조류 및 해류에 의해 유속이 빠른 부분에서 신속하게 벗어나 목표 지점으로 이동할 수 있도록 운용된다.
도 17 및 도 18을 참조하면, 본 발명의 실시예에 따른 수중 이동 장치(10)는 모선에서 해저의 목표지점을 고려한 위치의 수면에 투입된다(S101). 수면에 투입되는 수중 이동 장치(10)는 목표지점까지 유영해야 하므로 유체의 저항을 최소화 하기 위해 다리부(60)를 접는다.
수중 이동 장치(10)는 부력조절 및 무게중심이동으로 선수가 목표지점(해저방향)으로 향하는 수직한 자세로 변환한다(S102).
수중 이동 장치(10)의 부력 발생부(80)는 전방부에 음성부력을 발생하고, 후방부에 양성부력을 발생하도록 부력을 조절하여 해저의 목표지점을 향해 수직으로 빠르게 하강 유영할 수 있도록 오뚝이 자세를 취한다.
또한, 무게중심 이동부(160)는 상기 부력조절에 따른 동작에 대응하여 전방부쪽으로 무게중심을 이동시켜 수직자세의 변화 및 유지를 위한 모멘트를 발생시킨다.[1단계]
수중 이동 장치(10)는 몸체의 기울기가 허용치 범위 내에서 수직한 것으로 판단되면(S103; 예), 추진기(30) 및 꼬리날개부(40)을 이용하여 목표지점으로 빠르게 수직 하강한다(S104). 상기 목표지점은 모선으로부터 입력된 위치이며 초음파를 이용한 위치추적 장치를 통해 파악할 수 있다.
수중 이동 장치(10)는 오뚝이의 원리에 의해 항상 수직한 자세를 유지하려는 모멘트가 작용하므로 자세 제어를 위한 에너지 소모가 적으며, 유체의 저항이 작은 선형이므로 최소의 에너지로 원하는 수심까지 하강이 가능하다.
수중 이동 장치(10)는 미리 설정된 목표수심 및 해저로부터의 목표거리에 도달한 것으로 판단되면(S105; 예), 추진기(30)의 가동을 중단하거나 역추진을 발생하여 하강 속도를 줄이거나 정지한다(S106).
이 때, 상기 목표수심은 목표지점의 수심을 고려하여 목표지점 수심에 도달되기 이전에 수평자세 변환을 위해 수중 이동 장치(10)의 속도를 줄이거나 정지하기 위한 설정 정보이다. 다만, 여기에 지형에 따라 해저바닥의 높이가 불규칙할 수 있으므로 목표거리를 더 설정하여 돌출된 해저바닥과의 충돌을 예방할 수 있다.[2단계]
수중 이동 장치(10)는 저속 혹은 정지상태에서 부력조절 및 무게중심을 이동하여 수평한 자세로 변환한다(S107). 즉, 위의 S102 단계와 반대되는 동작으로 수중 이동 장치(10)의 부력 발생부(80)는 전방부에 양성부력을 발생하고, 후방부에 음성부력을 발생하도록 부력을 조절하여 몸체가 수평이 되면 중성부력을 발생하여 수평한 자세를 취한다.
또한, 무게중심 이동부(160)는 상기 부력조절에 따른 동작에 대응하여 무게중심을 중앙으로 이동시켜 수평자세의 변화 및 유지를 위한 모멘트를 발생시킨다.[3단계]
수중 이동 장치(10)은 수평 한 자세를 취한 이후에 추진기(30) 및 꼬리날개부(40), 스러스터부(50) 및 다리부(60) 중 적어도 어느 하나를 이용하여 목표지점까지 이동한다(S104). 수중 이동 장치(10)은 상기 목표지점까지 이동한 이후에 접혀있는 다리부(60)를 펴서 해저에 안착할 수도 있다.[4단계]
이와 같이 본 발명의 실시예에 따른 수중 이동 장치(10)는 부력 발생부(80) 및 무게중심 이동부(160)를 이용하여 자세를 수직으로 변환하고, 추력을 발생하여 원하는 수심까지 빠르게 하강함으로써 조류를 극복하고 목표수심으로 이동할 수 있는 효과가 있다.
그리고, 설정된 수심 또는 해저로부터의 일정 거리에서 정지한 다음 자세를 수평으로 변환하고 목표지점으로 이동함으로써 안전하게 운용할 수 있는 효과가 있다.
또한, 유선형 몸체와 유영시 다관절 다리를 접어둠으로써 유체의 저항을 줄이고 조류/해류의 영향에 따른 강한 유속에 적응할 수 있는 효과가 있다.
이상에서는 본 발명의 실시예에 대하여 설명하였으나, 본 발명은 상기한 실시예에만 한정되는 것은 아니며 그 외의 다양한 변경이 가능하다.
예컨대, 도 17 및 도 18에 도시한 본 발명의 실시예에서는 수중 이동 장치(10)이 조류를 극복하고 수중의 목표지점으로 이동하는 방법을 위주로 설명하였으나 이에 한정되지 않으며, 수면으로 부상 시에도 적용할 수 있다.
즉, 수중 이동 장치(10)가 작업을 완료하여 상승 하는 경우 위에서의 실시예와는 반대로 전방부에 양성부력을 발생하고, 후방부에 음성부력을 발행하도록 부력을 조절하여 상기 전방부가 수면을 향한 수직자세로 변환한다.
그리고, 상기 후방부 측으로 무게중심을 이동시켜 상기 수면을 향한 수직자세의 변화 및 유지를 위한 모멘트를 발생시킨다. 다음, 추력을 발생하여 수면으로 수직 상승한다. 수면으로 부상된 수중 이동 장치(10)는 모선으로 위치정보(예; GPS)를 전송하여 회수될 수 있다.
이로써, 본 발명의 실시예에 따른 수중 이동 장치(10)는 작업을 마친 이후 조류를 극복하고 빠르게 부상함으로써 안전하게 회수될 수 있는 이점이 있다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
본 발명의 실시예에 따른 수중 이동 장치는 부력 조절 및 무게중심 이동을 통해 자세를 수직으로 변환하고, 추력을 발생하여 원하는 수심까지 빠르게 하강함으로써 용이하게 목표수심으로 이동할 수 있다. 그리고, 설정된 수심 또는 해저로부터의 거리에서 정지한 다음 자세를 수평으로 변환하고 목표지점으로 이동함으로써 안전하게 운용할 수 있다.

Claims (29)

  1. 몸체;
    상기 몸체 후방측에 설치된 추진기;
    상기 몸체에 설치된 상하 방향 스러스터 및 좌우 방향 스러스터를 포함하는 스러스터부; 및
    상기 몸체의 양 측부에 위치되며, 다관절 모듈을 포함하는 복수의 다리부를 포함하는,
    수중 이동 장치.
  2. 제 1 항에 있어서,
    상기 몸체는 전후 방향 단면이 원형 또는 타원형으로 형성되되,
    상기 몸체의 전방 측의 단면이 넓고 후방 측의 단면이 좁은 유선형으로 형성되는, 수중 이동 장치.
  3. 제 1 항에 있어서,
    상기 몸체의 전방측에 위치되며, 다관절 모듈을 포함하는 적어도 하나의 팔부를 포함하는, 수중 이동 장치.
  4. 제 1 항에 있어서,
    상기 추진기의 전방측에 위치된 꼬리날개부를 더 포함하는, 수중 이동 장치.
  5. 제 4 항에 있어서,
    상기 꼬리 날개부는,
    상기 몸체의 상측부 및 하측부에 위치되는 수직 안정판을 포함하는 수직 꼬리 날개 및
    상기 몸체의 양 측부에 위치되는 수평 안정판을 포함하는 수평 꼬리 날개를 포함하는, 수중 이동 장치.
  6. 제 1 항에 있어서,
    상기 몸체 내부에 위치되는 부력 발생부를 더 포함하고,
    상기 부력 발생부는,
    유체 저장 탱크;
    상기 유체 저장 탱크와 연결된 신축가능한 주머니 부재; 및
    상기 유체 저장 탱크 및 상기 주머니 부재 사이에 설치되어 상기 유체 저장 탱크 내부에 저장된 유체를 상기 주머니 부재로 이동시킬 수 있는 펌프를 포함하는, 수중 이동 장치.
  7. 제 6 항에 있어서,
    상기 부력 발생부는 상기 몸체의 전방부 및 후방부에 한 쌍으로 형성되는, 수중 이동 장치.
  8. 제 1 항에 있어서,
    상기 몸체 내부에 설치되는 무게 중심 이동부를 더 포함하되,
    상기 무게 중심 이동부는,
    상기 몸체 내부에서 이동가능하게 형성되는 중량체;
    상기 중량체를 이동시키기 위하여 상기 중량체와 결합되는 볼 스크류;
    상기 볼 스크류를 회전시키기 위한 구동 모터 및
    상기 중량체의 이동을 가이드 하도록 상기 볼 스크류와 나란하게 배열되는 한 쌍의 LM 가이드를 포함하는, 수중 이동 장치.
  9. 제 1 항에 있어서,
    상기 몸체의 수심, 기울기, 자세, 외부 물체로부터의 거리 및 방위 중 적어도 하나를 측정하는 센서부를 더 포함하는, 수중 이동 장치.
  10. 제 1 항에 있어서,
    상기 몸체를 조종하는 모선과 통신을 수행하는 통신부를 더 포함하는, 수중 이동 장치.
  11. 제 1 항에 있어서,
    상기 수중 이동 장치가 투입되는 수면에서 상기 몸체를 수직자세로 변환시켜 설정된 수심으로 이동하고, 상기 설정된 수심에서 상기 몸체를 수평자세로 변환하도록 제어하는 제어부를 포함하는, 수중 이동 장치.
  12. 제 1 항에 있어서,
    상기 다관절 모듈은,
    상기 몸체에 상기 몸체의 외측 방향으로 연장된 제 1 회전축을 중심으로 회전 가능하게 결합되는 회전축 부재;
    상기 회전축 부재의 일단부에 상기 제 1 회전축에 수직한 제 2 회전축을 중심으로 회전가능하게 결합된 조인트 부재;
    상기 조인트 부재의 일단부에 상기 제 1 회전축 및 상기 제 2 회전축에 수직한 제 3 회전축을 중심으로 회전가능하도록 결합되는 제 1 프레임 부재; 및
    상기 제 1 프레임 부재의 일 단부에 상기 제 3 회전축과 나란한 제 4 회전축을 중심으로 회전가능하게 결합되는 제 2 프레임 부재를 포함하는,
    수중 이동 장치.
  13. 제 12 항에 있어서,
    상기 다리부는 상기 제 2 프레임 부재의 단부에 회전가능하게 설치되는 발 부재를 더 포함하는, 수중 이동 장치.
  14. 제 13 항에 있어서,
    상기 발 부재의 일 단부면에는 상기 단부면으로부터 외측 방향으로 연장된 고정 돌기가 형성되는, 수중 이동 장치.
  15. 제 12 항에 있어서,
    상기 제 1 프레임 부재 및 상기 제 2 프레임 부재에는 길이 방향으로 개구가 형성되는, 수중 이동 장치.
  16. 제 12 항에 있어서,
    상기 제 2 프레임 부재를 상기 제 1 프레임 부재에 대하여 회전시킬 수 있도록 상기 제 1 프레임 부재의 일측에 일단부가 설치되며 타단부가 상기 제 2 프레임 부재의 일측에 결합되는 유압 실린더를 포함하는, 수중 이동 장치.
  17. 제 12 항에 있어서,
    상기 제 2 프레임 부재는 상기 제 4 회전축을 중심으로 회전하여 상기 제 1 프레임 부재에 대하여 접혀진 상태로 배열될 수 있는, 수중 이동 장치.
  18. 제 1 항 내지 제 17항 중 어느 한 항에 있어서,
    상기 다리부는 3 쌍으로 형성되며, 상기 3 쌍의 다리부는 전방측으로부터 후방측으로 나란하게 배열되는, 수중 이동 장치.
  19. 제 12 항 내지 제 17항 중 어느 한 항에 있어서,
    상기 제 1 프레임 부재를 둘러싸는 제 1 프레임 부재 커버부 및
    상기 제 2 프레임 부재를 둘러싸는 제 2 프레임 부재 커버부를 더 포함하는, 수중 이동 장치.
  20. 제 19 항에 있어서,
    상기 제 1 프레임 부재 커버부 및 상기 제 2 프레임 부재 커버부 각각은,
    익형 단면을 가지는 유선형 커버;
    상기 유선형 커버의 오목한 면에 결합되되 상기 제 4 회전축이 관통하는 제 4 회전축 홀이 형성된 판형 커버 및
    상기 유선형 커버 및 상기 판형 커버 중 어느 하나에 형성되어 상기 제 1 프레임 부재 또는 상기 제 2 프레임 부재를 상기 유선형 커버와 상기 판형 커버의 내측에 고정시키는 지지대를 포함하는,
    수중 이동 장치.
  21. 제 20 항에 있어서,
    상기 제 1 프레임 부재 커버부의 판형 커버에는 상기 제 1 프레임 부재가 상기 조인트 부재와 결합되는 제 3 회전축이 관통하는 제 3 회전축 홀, 및 상기 제 1 프레임 부재의 유압 실린더의 피스톤 단부의 이동을 방해하지 않도록 형성된 실린더 가이드 홀이 형성되고,
    상기 제 2 프레임 부재 커버부의 판형 커버에는 상기 제 1 프레임 부재 커버부의 판형 커버의 상기 제 4 회전축 홀 및 상기 실린더 가이드 홀에 대응하는 홀들이 형성되는, 수중 이동 장치.
  22. 제 20 항에 있어서,
    상기 제 1 프레임 부재 커버부의 유선형 커버 및 상기 제 2 프레임 부재 커버부의 유선형 커버는, 상기 제 2 프레임 부재가 상기 제 4 회전축을 중심으로 회전하여 상기 제 1 프레임 부재와 나란하게 된 상태에서 익형을 형성하도록 형성되고,
    상기 제 1 프레임 부재 커버부의 판형 커버 및 상기 제 2 프레임 부재 커버부의 판형 커버는, 상기 제 2 프레임 부재가 상기 제 4 회전축을 중심으로 회전하여 상기 제 1 프레임 부재와 나란하게 된 상태에서 서로 포개어지도록 형성되는, 수중 이동 장치.
  23. 제 1 항에 기재된 수중 이동 장치가 조류를 극복하고 해저 목표지점으로 이동하는 방법에 있어서,
    a) 수면에 투입되면 몸체를 상기 목표지점으로 향하는 수직자세로 변환하는 단계;
    b) 상기 목표지점으로 수직 하강하고, 설정된 수심에 도달하면 속도를 줄이거나 정지하는 단계;
    c) 상기 몸체를 수평자세로 변환하는 단계; 및
    d) 상기 추진기, 스러스터부 및 다리부 중 적어도 어느 하나를 이용하여 상기 목표지점으로 이동하는 단계
    를 포함하는 수중 이동 장치의 이동 방법.
  24. 제 23 항에 있어서,
    상기 a) 단계는,
    상기 몸체의 전방부에 음성부력을 발생하고, 후방부에 양성부력을 발생하도록 부력을 조절하여 상기 전방부가 상기 목표지점을 향한 상기 수직자세로 변환하는 단계; 및
    상기 전방부 측으로 무게중심을 이동시켜 상기 수직자세의 변화 및 유지를 위한 모멘트를 발생하는 단계
    를 포함하는 것을 특징으로 하는 수중 이동 장치의 이동 방법.
  25. 제 23 항 또는 제 24 항에 있어서,
    상기 a) 단계와 b) 단계 사이에,
    상기 몸체의 기울기가 허용치 범위 내에서 수직한 것으로 판단되면 상기 추진기를 구동하는 단계를 포함하는 것을 특징으로 하는 수중 이동 장치의 이동 방법.
  26. 제 23 항에 있어서,
    상기 b) 단계는,
    설정된 목표수심 및 해저로부터의 목표거리 중 어느 하나에 도달한 것으로 판단 하는 단계; 및
    상기 추진기의 가동을 중단하거나 역추진을 발생하여 정지하는 단계
    를 포함하는 것을 특징으로 하는 수중 이동 장치의 이동 방법.
  27. 제 26 항에 있어서,
    상기 c) 단계는,
    상기 몸체의 후방부에 음성부력을 발생하고, 전방부에 양성부력을 발생하도록 부력을 조절하여 상기 수평자세가 되면 중성부력을 발생하는 단계; 및
    상기 전방부 측의 무게중심을 중앙으로 이동시켜 상기 수평자세의 변화 및 유지를 위한 모멘트를 발생하는 단계
    를 포함하는 것을 특징으로 하는 수중 이동 장치의 이동 방법.
  28. 제 23 항에 있어서,
    상기 a) 단계 이전에,
    상기 복수의 다리부를 접는 단계를 더 포함하는 것을 특징으로 하는 수중 이동 장치의 이동 방법.
  29. 제 23 항에 있어서,
    상기 d) 단계 이후에,
    작업을 완료하여 상승하는 경우 전방부에 양성부력을 발생하고, 후방부에 음성부력을 발행하도록 부력을 조절하여 상기 전방부가 수면을 향한 수직자세로 변환하는 단계;
    상기 후방부 측으로 무게중심을 이동시켜 상기 수면을 향한 수직자세의 변화 및 유지를 위한 모멘트를 발생하는 단계; 및
    상기 추진기의 추력을 발생하여 상기 수면으로 수직 상승하는 단계
    를 더 포함하는 것을 특징으로 하는 수중 이동 장치의 이동 방법.
PCT/KR2011/009951 2010-12-22 2011-12-21 수중 이동 장치 및 그의 이동 방법 WO2012087033A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/997,188 US9051036B2 (en) 2010-12-22 2011-12-21 Underwater moving apparatus and moving method thereof
EP11850803.5A EP2657125B1 (en) 2010-12-22 2011-12-21 Underwater mobile apparatus and moving method thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20100132653 2010-12-22
KR10-2010-0132653 2010-12-22
KR10-2011-0035106 2011-04-15
KR20110035106 2011-04-15
KR10-2011-0137454 2011-12-19
KR1020110137454A KR20120071330A (ko) 2010-12-22 2011-12-19 수중 이동 장치 및 그의 이동 방법

Publications (1)

Publication Number Publication Date
WO2012087033A1 true WO2012087033A1 (ko) 2012-06-28

Family

ID=46706388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009951 WO2012087033A1 (ko) 2010-12-22 2011-12-21 수중 이동 장치 및 그의 이동 방법

Country Status (4)

Country Link
US (1) US9051036B2 (ko)
EP (1) EP2657125B1 (ko)
KR (2) KR20120071330A (ko)
WO (1) WO2012087033A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104249807A (zh) * 2013-06-28 2014-12-31 武汉理工大学 可拆卸龙虾仿生五体新能源游艇
CN109085597A (zh) * 2017-06-13 2018-12-25 株式会社Posco 用于水下地形测量的无人艇
US10632804B2 (en) 2015-06-01 2020-04-28 Imperial College Innovations Limited Robotic vehicle
CN111806592A (zh) * 2020-07-14 2020-10-23 天津理工大学 一种具有自主复位功能的复合运动模式移动机器人
EP2762279B1 (en) * 2013-02-01 2021-01-20 ABB Power Grids Switzerland AG Device And Method For Transformer In-Situ Inspection
CN113448354A (zh) * 2021-05-31 2021-09-28 青岛海洋地质研究所 一种深海摄像系统及其控制方法
CN116812118A (zh) * 2023-08-30 2023-09-29 自然资源部第一海洋研究所 一种基于保形支撑式的auv海底着陆装置及其方法

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120071330A (ko) * 2010-12-22 2012-07-02 삼성중공업 주식회사 수중 이동 장치 및 그의 이동 방법
KR101379458B1 (ko) * 2012-07-12 2014-03-31 한국해양과학기술원 내압 수밀 구조를 갖는 다관절 해저로봇용 다리 겸용 로봇팔
KR101379815B1 (ko) * 2012-07-12 2014-03-31 한국해양과학기술원 내압 수밀 구조를 갖는 다관절 해저 로봇용 다리
KR101402318B1 (ko) * 2012-12-04 2014-06-05 주식회사코어벨 수중 작업 로봇
KR101479634B1 (ko) * 2013-09-17 2015-01-07 한국해양과학기술원 수면노이즈를 방지하는 다관절 해저로봇 및 다관절 해저로봇의 수면노이즈 방지 방법
CN103708003B (zh) * 2013-12-16 2016-05-04 浙江海洋学院 一种海底探测装置母船
DE102014001074A1 (de) * 2014-01-30 2015-07-30 Wälischmiller Engineering GmbH Vorrichtung mit einer Manipulatoreinheit
ES2544007B2 (es) * 2014-02-25 2016-02-19 Universidad Politécnica de Madrid Robot submarino humanoide transformable
KR101621143B1 (ko) * 2014-06-19 2016-05-16 포항공과대학교 산학협력단 수중 에이전트 도킹 시스템 및 이를 이용한 도킹방법
ES2525773B2 (es) * 2014-10-20 2015-04-28 Universidad Politécnica de Madrid Robot submarino modular
JP6493912B2 (ja) * 2015-02-18 2019-04-03 学校法人金沢工業大学 水陸探査用ロボット
JP2016155467A (ja) * 2015-02-25 2016-09-01 五洋建設株式会社 海底への資機材運搬方法および資機材運搬支援装置
ES2796699T3 (es) * 2015-03-16 2020-11-30 Saudi Arabian Oil Co Comunicaciones entre robots móviles de medio acuático
KR101685916B1 (ko) * 2015-05-12 2016-12-13 한국과학기술원 2족 고속 주행을 위한 자세보정 메커니즘
CA2994419C (en) 2015-08-03 2020-06-02 Apium Inc. Water drone
US10322783B2 (en) * 2015-10-16 2019-06-18 Seabed Geosolutions B.V. Seismic autonomous underwater vehicle
JP6761216B2 (ja) * 2015-12-09 2020-09-23 国立研究開発法人 海上・港湾・航空技術研究所 水中航走体の経路設定方法、それを用いた水中航走体の最適制御方法及び水中航走体並びに移動体の経路設定方法
JP6591301B2 (ja) * 2016-01-27 2019-10-16 国立研究開発法人産業技術総合研究所 水上ロボットの位置制御システムおよび位置制御方法
EP3257740B1 (en) * 2016-06-13 2019-08-14 Korea Institute of Ocean Science and Technology A glass sphere type pressure housing including titanium band and a multi-joint underwater robot system for deep sea exploration using the same
US10301017B2 (en) * 2016-08-26 2019-05-28 Patrick del Castillo Flying and walking drone
KR101887385B1 (ko) * 2016-12-05 2018-08-13 한국해양과학기술원 해양 탐사 로봇 및 해양 탐사 로봇에 장착되는 다리
WO2018154424A1 (en) 2017-02-21 2018-08-30 Induna Robotics (Pty) Ltd Robotic limb arrangement and associated robot
US10450040B2 (en) 2017-03-03 2019-10-22 Houston Mechatronics, Inc. Re-configurable subsea robot
CN107499476B (zh) * 2017-08-21 2019-06-21 江苏科技大学 水下机器人控制系统及运动控制方法
USD922301S1 (en) * 2018-03-13 2021-06-15 RJE Oceanbotics LLC Underwater robotic vehicle
CN108674613B (zh) * 2018-04-16 2020-02-14 哈尔滨工程大学 一种水下机器人重心辅助调节系统及控制方法
CN108545162B (zh) * 2018-06-20 2023-04-28 天津中德应用技术大学 基于水射流驱动的水下滑翔机器人
CN109050846A (zh) * 2018-09-05 2018-12-21 哈尔滨工程大学 一种无人潜水器近底行走装置
CN109649096A (zh) * 2018-12-17 2019-04-19 上海交通大学 一种水陆两栖仿生机器人
US11155326B2 (en) * 2019-03-29 2021-10-26 The Hong Kong Polytechnic University Bio-inspired underwater robot
CN110171500B (zh) * 2019-04-26 2020-08-21 北京交通大学 一种变躯干多足步行平台
CN110077564B (zh) * 2019-05-15 2021-02-05 河海大学常州校区 一种水下八足机器人
CN110422301A (zh) * 2019-08-02 2019-11-08 天津大学 一种海底垃圾清理机器人
CN110641660B (zh) * 2019-10-21 2021-03-12 中国科学院自动化研究所 面向海产品打捞的水下作业机器人
US20230001757A1 (en) * 2019-11-22 2023-01-05 Northeastern University Morpho-functional robots with legged and aerial modes of locomotion
US11559905B2 (en) * 2020-02-05 2023-01-24 Nauticus Robotics Holdings, Inc. Subsea manipulator
CN113022822B (zh) * 2021-03-11 2023-08-08 南方科技大学 一种水下外肢体及其应用
CN113148076B (zh) * 2021-04-25 2022-09-02 哈尔滨工程大学 一种水下仿生球形/半球形机器人及其运动控制方法
CN113353217B (zh) * 2021-07-23 2022-11-22 西北工业大学 一种水下机器人定向和稳定行走方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727786U (ja) * 1992-03-10 1995-05-23 運輸省第三港湾建設局長 水中構造物板厚計測用ロボット
JP2002196818A (ja) * 2000-12-26 2002-07-12 Mitsubishi Heavy Ind Ltd 航走体の制御装置
KR20040069648A (ko) * 2003-01-30 2004-08-06 대우조선해양 주식회사 자율 무인잠수정 및 운용방법

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1227342A (ko) * 1967-03-31 1971-04-07
US3434295A (en) * 1967-06-29 1969-03-25 Mobil Oil Corp Pipe laying method
FR2512410A1 (fr) * 1981-09-04 1983-03-11 Kroczynski Patrice Systeme de robots a pattes
JPS619391A (ja) * 1984-06-21 1986-01-16 Agency Of Ind Science & Technol 中折れ形海中作業ロボツト
JPS6116192A (ja) * 1984-07-03 1986-01-24 Agency Of Ind Science & Technol 水中作業ロボツト
JPS6228181A (ja) * 1985-07-29 1987-02-06 工業技術院長 作業部移動型海中作業ロボツト
JPH0699889A (ja) 1992-09-18 1994-04-12 Shin Meiwa Ind Co Ltd 曳航体の浮力装置
JPH06335876A (ja) 1993-05-26 1994-12-06 Mitsubishi Heavy Ind Ltd 水中ロボット位置・姿勢制御装置
SE507352C2 (sv) * 1994-04-29 1998-05-18 Aelvsjoe Data Ab Av ledade ben uppburet och framdrivet fordon
IL138695A (en) * 2000-09-26 2004-08-31 Rafael Armament Dev Authority Unmanned mobile device
JP3870257B2 (ja) * 2002-05-02 2007-01-17 独立行政法人 宇宙航空研究開発機構 オフセット回転関節を有するロボット
US6974356B2 (en) * 2003-05-19 2005-12-13 Nekton Research Llc Amphibious robot devices and related methods
US7769487B2 (en) * 2003-07-24 2010-08-03 Northeastern University Process and architecture of robotic system to mimic animal behavior in the natural environment
KR100556285B1 (ko) 2004-06-03 2006-03-03 (주)우남마린 전후밸런스 조절장치가 구비된 소형선박
US20070022935A1 (en) * 2005-04-11 2007-02-01 Griffith Ian E Unmanned submersible vehicle with on-board generating capability
KR100518628B1 (ko) 2005-06-15 2005-09-30 주식회사 코스코 영상데이터를 초음파로 송수신하는 무선무인잠수정
US7427220B2 (en) * 2006-08-02 2008-09-23 Mcgill University Amphibious robotic device
KR20100028376A (ko) 2008-09-04 2010-03-12 전남대학교산학협력단 자이로 모멘텀을 이용한 수중로봇
US8317555B2 (en) * 2009-06-11 2012-11-27 Raytheon Company Amphibious robotic crawler
US8297214B2 (en) * 2010-08-31 2012-10-30 Lotz Jeffrey Paul Remotely operated submersible vehicle
KR20120071330A (ko) * 2010-12-22 2012-07-02 삼성중공업 주식회사 수중 이동 장치 및 그의 이동 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727786U (ja) * 1992-03-10 1995-05-23 運輸省第三港湾建設局長 水中構造物板厚計測用ロボット
JP2002196818A (ja) * 2000-12-26 2002-07-12 Mitsubishi Heavy Ind Ltd 航走体の制御装置
KR20040069648A (ko) * 2003-01-30 2004-08-06 대우조선해양 주식회사 자율 무인잠수정 및 운용방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUN, BONG HWAN ET AL., DEVELOPMENT PLAN FOR NEW CONCEPT SUBSEA ROBOT CR200 (-), 28 October 2010 (2010-10-28), XP008176664 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2762279B1 (en) * 2013-02-01 2021-01-20 ABB Power Grids Switzerland AG Device And Method For Transformer In-Situ Inspection
CN104249807A (zh) * 2013-06-28 2014-12-31 武汉理工大学 可拆卸龙虾仿生五体新能源游艇
CN104249807B (zh) * 2013-06-28 2018-08-07 武汉理工大学 可拆卸龙虾仿生五体新能源游艇
US10632804B2 (en) 2015-06-01 2020-04-28 Imperial College Innovations Limited Robotic vehicle
CN109085597A (zh) * 2017-06-13 2018-12-25 株式会社Posco 用于水下地形测量的无人艇
CN111806592A (zh) * 2020-07-14 2020-10-23 天津理工大学 一种具有自主复位功能的复合运动模式移动机器人
CN113448354A (zh) * 2021-05-31 2021-09-28 青岛海洋地质研究所 一种深海摄像系统及其控制方法
CN113448354B (zh) * 2021-05-31 2022-06-14 青岛海洋地质研究所 一种深海摄像系统及其控制方法
CN116812118A (zh) * 2023-08-30 2023-09-29 自然资源部第一海洋研究所 一种基于保形支撑式的auv海底着陆装置及其方法
CN116812118B (zh) * 2023-08-30 2023-12-22 自然资源部第一海洋研究所 一种基于保形支撑式的auv海底着陆装置及其方法

Also Published As

Publication number Publication date
US20130269585A1 (en) 2013-10-17
EP2657125B1 (en) 2019-08-21
KR101407461B1 (ko) 2014-06-16
US9051036B2 (en) 2015-06-09
KR20130101487A (ko) 2013-09-13
EP2657125A4 (en) 2017-05-10
KR20120071330A (ko) 2012-07-02
EP2657125A1 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
WO2012087033A1 (ko) 수중 이동 장치 및 그의 이동 방법
WO2013089442A1 (ko) 보행과 유영의 복합 이동 기능을 갖는 다관절 해저 로봇 및 이를 이용한 해저탐사시스템
CN106809358B (zh) 核电站冷却水引水涵洞检测机器人系统及实施方法
KR102265363B1 (ko) 수중 운송 수단의 부력 제어를 위한 재사용 가능한 부력 모듈
CN104260863B (zh) 自治式潜器搭载和释放装置
AU2014305225B2 (en) System for subsea operations
KR101128032B1 (ko) 다자유도 무인 수상 로봇 기반의 수중 작업 로봇
WO2017073948A1 (ko) 와이어를 이용한 동력 전달식 파력 발전장치
CN109050840B (zh) 一种六自由度定位水下机器人
US10604218B2 (en) Manoeuvring device and method therof
EP2914483B1 (en) Device for and method of transferring personnel, equipment and/or structural elements from a surface vessel to an offshore structure
JP2007276609A (ja) 水中グライダー
US20100260553A1 (en) Method and device for survey of sea floor
CN109625220A (zh) 带光、声、磁设备的有缆遥控水下机器人巡检系统及方法
KR20130003043A (ko) 무인수상로봇
TWI770460B (zh) 浮體構造物設置系統、以及浮體構造物設置方法
CN109263830A (zh) 一种无人艇的回收保护装置
KR101789775B1 (ko) 잠수함 내 무인잠수정을 탑재하여 운용하기 위한 장치
DK181253B1 (en) An offshore drilling vessel with an external cable connection and method therefor
WO2024172269A1 (ko) 접안형 청소 플랜트 및 이를 이용한 청소 방법
CN220500416U (zh) 一种水下双模式桥墩检测机器人
JP2020011690A (ja) 船舶
WO2023132420A1 (ko) 태양광 발전으로 운영되는 세일요트
Tolstonogov et al. The Concept of the Unmanned Surface Vehicle for the Observation-class ROV
RU2026233C1 (ru) Судовой комплекс для подводного туризма

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850803

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13997188

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011850803

Country of ref document: EP