WO2012086494A1 - 耐食性に優れる塗料組成物 - Google Patents

耐食性に優れる塗料組成物 Download PDF

Info

Publication number
WO2012086494A1
WO2012086494A1 PCT/JP2011/078924 JP2011078924W WO2012086494A1 WO 2012086494 A1 WO2012086494 A1 WO 2012086494A1 JP 2011078924 W JP2011078924 W JP 2011078924W WO 2012086494 A1 WO2012086494 A1 WO 2012086494A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating composition
resin
acid
coating
magnesium
Prior art date
Application number
PCT/JP2011/078924
Other languages
English (en)
French (fr)
Inventor
松田 英樹
Original Assignee
関西ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西ペイント株式会社 filed Critical 関西ペイント株式会社
Priority to JP2012549751A priority Critical patent/JP5814941B2/ja
Publication of WO2012086494A1 publication Critical patent/WO2012086494A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Definitions

  • the present invention relates to a non-chromium-containing coating composition having excellent corrosion resistance and a coated metal plate using the same, and more particularly, a steel plate that is not plated, and a plated steel plate whose plating component is mainly composed of aluminum.
  • the present invention relates to a coating composition effective for improving the corrosion resistance of a coating and a coated metal plate using the same.
  • coating-formed galvanized steel sheets such as pre-coated steel sheets painted by coil coating, etc. are used for building materials such as roofs, walls, shutters, garages, various household appliances, switchboards, frozen showcases, steel furniture, Widely used as housing-related products such as kitchen appliances.
  • the coating-formed galvanized steel sheet such as a pre-coated steel sheet is usually cut, press-molded and joined. Therefore, these house-related products often have a metal exposed portion that is a cut surface and a crack generating portion due to press working.
  • the exposed metal parts and cracking parts are less likely to have corrosion resistance than other parts, so to improve corrosion resistance, chrome-containing anticorrosive pigments should be included in the undercoat film of the coating-formed galvanized steel sheet.
  • chrome-containing anticorrosive pigments should be included in the undercoat film of the coating-formed galvanized steel sheet.
  • chromium-containing rust preventive pigments contain or produce hexavalent chromium that is excellent in rust prevention, and this hexavalent chromium is used to protect human health and the environment. It is a problem from the point of view.
  • Patent Document 1 discloses a paint composition in which a predetermined amount of a specific vanadium compound, a specific metal silicate, and a specific hydrogen phosphate metal salt are blended as a rust preventive pigment in a hydroxyl group-containing film-forming resin system. Is described.
  • Patent Document 2 discloses a rust preventive coating composition in which a specific amount of a specific vanadium compound, a specific silicon-containing material, and a phosphate calcium salt are blended as a rust preventive pigment in a hydroxyl group-containing film-forming resin system.
  • a coating-forming metal material in which a rust-proof coating film is formed on both front and back surfaces of a metal material is described.
  • the metal material on which the coating film by the coating composition described in Patent Documents 1 and 2 is formed has generally good corrosion resistance, a steel plate that is not particularly plated, or a metal material is used.
  • a galvanized steel sheet there is a problem that the corrosion resistance is insufficient compared to a metal material on which a coating film is formed by a coating composition using a chromium-containing pigment, and in particular, the corrosion resistance in the processed part and the end face part is insufficient. was there.
  • the object of the present invention is not only the corrosion resistance of general parts in coated metal plates, but also excellent corrosion resistance of processed parts and end face parts in the process of coating deterioration due to photolysis and hydrolysis in an outdoor environment.
  • Non-chromium-containing paint composition capable of forming a coated film, particularly a non-chromium-containing paint composition effective for improving the corrosion resistance of a steel sheet that has not been plated, and a plated steel sheet whose main component is aluminum. It is to provide a coated metal sheet using
  • the present inventors have found that a specific vanadium compound, a specific phosphate metal salt, and a magnesium ion exchange as a rust preventive pigment in a hydroxyl group-containing film-forming resin system With a coating composition containing a predetermined amount of silica, not only the corrosion resistance of the flat surface part, but also the coating film excellent in the corrosion resistance of the processed part and the end face part in the coated metal plate, etc.
  • the present inventors have found that a coated film having excellent corrosion resistance can be formed on a plated steel sheet as a main component, and have completed the present invention.
  • the present invention includes the following embodiments: Item 1, (A) hydroxyl group-containing coating film-forming resin, (B) A coating composition containing a crosslinking agent and (C) a rust preventive pigment mixture,
  • the rust preventive pigment mixture (C) is (1) at least one vanadium compound selected from the group consisting of vanadium pentoxide, calcium vanadate, magnesium vanadate and ammonium metavanadate, (2) a phosphate metal salt which is a salt of at least one acid selected from the group consisting of phosphoric acid, phosphorous acid and tripolyphosphoric acid, containing at least magnesium; (3) It consists of magnesium ion-exchanged silica, Based on the total solid content of the resin (A) and the crosslinking agent (B) The amount of the vanadium compound (1) is 3 to 50% by mass, The amount of the phosphate metal salt (2) is 1 to 50% by mass, and The amount of the magnesium ion exchanged silica (3) is 1 to 50% by mass A coating composition characterized in
  • Item 2 The coating composition according to Item 1, wherein the hydroxyl group-containing coating film-forming resin (A) is at least one selected from the group consisting of a hydroxyl group-containing epoxy resin and a hydroxyl group-containing polyester resin.
  • the hydroxyl group-containing coating film-forming resin (A) is at least one selected from the group consisting of a hydroxyl group-containing epoxy resin and a hydroxyl group-containing polyester resin.
  • Item 3 The coating composition according to Item 1 or 2, wherein the crosslinking agent (B) is at least one crosslinking agent selected from the group consisting of an amino resin, a phenol resin, and an optionally blocked polyisocyanate compound. object.
  • the crosslinking agent (B) is at least one crosslinking agent selected from the group consisting of an amino resin, a phenol resin, and an optionally blocked polyisocyanate compound. object.
  • Item 4 and further comprising at least one pigment component selected from the group consisting of a rust preventive pigment other than the rust preventive pigment mixture (C), a titanium dioxide pigment, and an extender pigment
  • a pigment component selected from the group consisting of a rust preventive pigment other than the rust preventive pigment mixture (C), a titanium dioxide pigment, and an extender pigment
  • Item 5 The coating composition according to any one of Items 1 to 4, further comprising at least one selected from the group consisting of an ultraviolet absorber and an ultraviolet stabilizer.
  • Item 6 a vanadium compound (1) constituting a rust preventive pigment mixture (C) blended with respect to 100 parts by mass of the total solid content of the resin (A) and the crosslinking agent (B), a phosphate metal salt (2 ) And magnesium ion-exchanged silica (3) in an amount of each part by mass is added to 10000 parts by mass of a 5% strength by weight sodium chloride aqueous solution at 25 ° C., stirred for 6 hours, and allowed to stand at 25 ° C. for 48 hours.
  • Item 6 The coating composition according to any one of Items 1 to 5, wherein the pH of the filtrate obtained by filtering the supernatant is 3 to 9.
  • Item 8 A method for producing a coated metal plate, comprising a step of forming a cured coating film based on the coating composition according to any one of Items 1 to 6 on a metal plate.
  • Item 9 A method for producing a coated metal sheet, comprising a step of forming a cured coating film based on the coating composition according to any one of Items 1 to 6 on a plated steel sheet whose main component is aluminum as a plating component .
  • the coating composition of the present invention does not contain a chromium-containing rust preventive pigment, and is a coating composition advantageous in terms of environmental hygiene.
  • the coating composition of the present invention not only has excellent corrosion resistance at the flat surface, but also has excellent corrosion resistance at the processed and end surface portions of coated metal plates that have been difficult to achieve with non-chromium-containing anticorrosive coating materials.
  • the present invention exerts an effect that a coating film having excellent corrosion resistance can be formed on a steel plate not subjected to plating or a plated steel plate whose main component is aluminum.
  • the coating composition of the present invention also has an effect that rust appears to be clearly reduced when rust is generated on an object to be coated. Such an effect is particularly remarkable when the object to be coated contains zinc. Such an effect is considered to be due to the fact that magnesium hydroxide is contained in the corrosion product, thereby inhibiting the growth of a large crystalline corrosion product.
  • the coated metal plate on which the cured coating film based on the coating composition of the present invention is formed has excellent corrosion resistance of the flat portion, processed portion and end face portion, and uses a conventional chromate-containing anticorrosive pigment such as strontium chromate. It has a corrosion resistance equal to or higher than that of a coated metal plate on which a cured coating film based on a paint is formed.
  • the coated metal plate on which the cured coating film based on the coating composition of the present invention is formed has excellent corrosion resistance at the flat portion, processed portion and end face portion.
  • an unplated steel plate, galvanized steel plate or aluminum-zinc alloy plated steel plate is used as the metal plate to be coated, especially when the plating component is used for a plated steel plate whose main component is aluminum
  • excellent corrosion resistance can be obtained not only in the flat portion but also in the end face portion and the processed portion.
  • the coating composition of the present invention (hereinafter sometimes referred to as “the present coating”) is a coating composition containing the following hydroxyl group-containing film-forming resin (A), crosslinking agent (B), and antirust pigment mixture (C). It is a thing.
  • the hydroxyl group-containing coating film-forming resin in the coating composition of the present invention can be used without particular limitation as long as it is a hydroxyl group-containing resin having a coating film-forming ability that can be usually used in the coating material field.
  • Representative examples of the hydroxyl group-containing coating film-forming resin include a hydroxyl group-containing polyester resin, epoxy resin, acrylic resin, fluororesin, vinyl chloride resin, or a mixed resin containing two or more of the above resins. .
  • the film-forming resin among them, at least one organic resin selected from a hydroxyl group-containing polyester resin and a hydroxyl group-containing epoxy resin can be preferably used.
  • the hydroxyl group-containing polyester resin examples include oil-free polyester resins, oil-modified alkyd resins, and modified products of these resins such as urethane-modified polyester resins, urethane-modified alkyd resins, epoxy-modified polyester resins, and acrylic-modified polyester resins. It is done.
  • the hydroxyl group-containing polyester resin has a number average molecular weight of 1500 to 35000, preferably 2000 to 25000, a glass transition temperature (Tg point) of 10 to 100 ° C., preferably 20 ° C. to 80 ° C., and a hydroxyl value of 2 to 100 mgKOH / g, preferably Those having 5 to 80 mg KOH / g are preferred.
  • the “number average molecular weight” of the resin is a value calculated based on the molecular weight of standard polystyrene from a chromatogram measured by gel permeation chromatograph (“HLC8120GPC” manufactured by Tosoh Corporation). There are four columns: “TSK-gel G4000 HXL ”, “TSK-gel G3000 HXL ”, “TSK-gel G2500 HXL ”, “TSK-gel G2000 HXL ” (both manufactured by Tosoh Corporation, trade name). , Mobile phase: tetrahydrofuran, measurement temperature: 40 ° C., flow rate: 1 cc / min, detector: RI. Moreover, in this specification, the glass transition temperature (Tg) of resin is based on a differential thermal analysis (DSC).
  • DSC differential thermal analysis
  • the oil-free polyester resin is an esterified product of a polybasic acid component and a polyhydric alcohol component.
  • the polybasic acid component include one or more selected from phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, succinic acid, fumaric acid, adipic acid, sebacic acid, maleic anhydride, and the like.
  • Diacids and lower alkyl esterified products of these acids herein, “lower alkyl” in the present specification refers to alkyl having about 1 to 5 carbon atoms, for example) are mainly used.
  • monobasic acids such as benzoic acid, crotonic acid, and pt-butylbenzoic acid
  • tribasic or higher polybasic acids such as trimellitic anhydride, methylcyclohexeric carboxylic acid, and pyromellitic anhydride as necessary. be able to.
  • polyhydric alcohol component examples include divalent compounds such as ethylene glycol, diethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 3-methylpentanediol, 1,4-hexanediol, and 1,6-hexanediol. Alcohol is mainly used. Furthermore, trihydric or higher polyhydric alcohols such as glycerin, trimethylolethane, trimethylolpropane, and pentaerythritol can be used in combination as necessary. These polyhydric alcohols can be used alone or in admixture of two or more.
  • An esterified product of a polybasic acid component and a polyhydric alcohol component can be obtained, for example, by esterification or transesterification of both components.
  • the esterification or transesterification reaction of both components can be carried out by a method known per se.
  • oil-modified alkyd resin examples include a resin obtained by reacting an oil fatty acid by a method known per se in addition to the polybasic acid component and the polyhydric alcohol component of the oil-free polyester resin.
  • oil fatty acid examples include coconut oil fatty acid, soybean oil fatty acid, linseed oil fatty acid, safflower oil fatty acid, tall oil fatty acid, dehydrated castor oil fatty acid, and kiri oil fatty acid.
  • the oil length of the alkyd resin is preferably 30% or less, particularly about 5 to 20%.
  • a low molecular weight oil-free polyester resin obtained by reacting the above-mentioned oil-free polyester resin, or a polybasic acid component and a polyhydric alcohol component used in the production of the oil-free polyester resin, Examples thereof include resins obtained by reacting with a polyisocyanate compound by a method known per se.
  • the urethane-modified alkyd resin is obtained by reacting the alkyd resin or a low molecular weight alkyd resin obtained by reacting each component used in the production of the alkyd resin with a polyisocyanate compound by a method known per se.
  • the resin obtained in (1) is included.
  • Polyisocyanate compounds that can be used in the production of urethane-modified polyester resins and urethane-modified alkyd resins include hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 4,4 ′. -Methylenebis (cyclohexyl isocyanate), 2,4,6-triisocyanatotoluene and the like.
  • the solid content of the polyisocyanate compound forming the urethane-modified resin is 30% by mass or less based on the solid content of the urethane-modified resin. Those modified in this manner can be suitably used.
  • the epoxy-modified polyester resin a polyester resin produced from each component (polybasic acid component and polyhydric alcohol component) used for the production of the polyester resin is used, and the reaction between the carboxyl group and the epoxy group-containing resin in the resin is used. Reaction products by reaction such as addition, condensation and grafting of polyester resin and epoxy resin, such as products and products in which hydroxyl groups in polyester resin and hydroxyl groups in epoxy resin are bonded via polyisocyanate compound Can be mentioned.
  • such an epoxy-modified polyester resin is preferably modified so that the solid content of the epoxy resin is 0.1 to 30% by mass with respect to the solid content of the epoxy-modified polyester resin.
  • the acrylic-modified polyester resin a polyester resin produced from each component used in the production of the polyester resin is used, and a carboxyl group or a hydroxyl group in the resin is reactive with these groups (for example, carboxyl group, hydroxyl group or Reaction product with acrylic resin containing (epoxy group) or reaction product obtained by graft polymerization of polyester resin with (meth) acrylic acid, (meth) acrylic acid ester etc. using peroxide compound polymerization initiator Can be mentioned.
  • such an acrylic-modified polyester resin is preferably modified so that the solid content of the acrylic resin is 0.1 to 50% by mass with respect to the solid content of the acrylic-modified polyester resin.
  • (meth) acrylic acid refers to acrylic acid or methacrylic acid.
  • polyester resins described above among them, oil-free polyester resins and epoxy-modified polyester resins are preferable from the viewpoint of balance between processability and corrosion resistance.
  • the epoxy resin suitable as the hydroxyl group-containing coating film-forming resin examples include bisphenol-type epoxy resins, novolac-type epoxy resins; and modified epoxy resins in which various modifiers are reacted with epoxy groups or hydroxyl groups in these epoxy resins. Can do.
  • the modification time with the modifier is not particularly limited, and it may be modified in the middle of the epoxy resin production or in the final stage of the epoxy resin production.
  • the bisphenol-type epoxy resin is, for example, a resin obtained by condensing epichlorohydrin and bisphenol to a high molecular weight in the presence of a catalyst such as an alkali catalyst, if necessary, epichlorohydrin and bisphenol, and if necessary, an alkali catalyst or the like. Any of resins obtained by condensing into a low molecular weight epoxy resin in the presence of a catalyst and polyaddition reaction of the low molecular weight epoxy resin and bisphenol may be used.
  • a catalyst such as an alkali catalyst, if necessary, epichlorohydrin and bisphenol, and if necessary, an alkali catalyst or the like.
  • bisphenol examples include bis (4-hydroxyphenyl) methane [bisphenol F], 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], 2, 2-bis (4-hydroxyphenyl) butane [bisphenol B], bis (4-hydroxyphenyl) -1,1-isobutane, bis (4-hydroxy-tert-butyl-phenyl) -2,2-propane, p- (4-hydroxyphenyl) phenol, oxybis (4-hydroxyphenyl), sulfonylbis (4-hydroxyphenyl), 4,4′-dihydroxybenzophenone, bis (2-hydroxynaphthyl) methane, and the like.
  • Bisphenol A and bisphenol F are preferably used That.
  • the bisphenols can be used alone or as a mixture of two or more.
  • Examples of commercially available bisphenol-type epoxy resins include Epicoat 828, Epicoat 812, Epicoat 815, Epicoat 820, Epicoat 834, Epicoat 1001, Epicoat 1004, Epicoat 1007, Epicoat 1009, Epicoat 1010, manufactured by Mitsubishi Chemical Corporation.
  • Examples include Araldite AER6099 manufactured by Asahi Kasei E-Materials Co., Ltd., and Epomic R-309 manufactured by Mitsui Chemicals.
  • novolac type epoxy resin which is an epoxy resin suitable as a hydroxyl group-containing coating film-forming resin
  • examples of the novolac type epoxy resin include, for example, phenol novolac type epoxy resins, cresol novolac type epoxy resins, and phenol glyoxal type epoxy having a large number of epoxy groups in the molecule.
  • phenol novolac type epoxy resins such as resins can be mentioned.
  • modified epoxy resin examples include an epoxy ester resin obtained by reacting, for example, a dry oil fatty acid with the bisphenol type epoxy resin or the novolac type epoxy resin; and a polymerizable unsaturated monomer component containing acrylic acid or methacrylic acid.
  • An amine-modified epoxy resin obtained by introducing an ammonium salt can be used.
  • Cross-linking agent (B) The crosslinking agent (B) reacts with the hydroxyl group-containing coating film-forming resin (A) to form a cured coating film, and reacts with the hydroxyl group-containing coating film-forming resin (A) by heating or the like. Any material that can be cured can be used without particular limitation. Of these, amino resins, phenol resins and polyisocyanate compounds which may be blocked are preferred. These crosslinking agents can be used alone or in combination of two or more.
  • amino resin examples include methylolated amino resins obtained by reacting amino components such as melamine, urea, benzoguanamine, acetogranamamine, sterogutamine, spiroguanamine, and dicyandiamide with aldehyde.
  • aldehyde used in the reaction examples include formaldehyde, paraformaldehyde, acetaldehyde, and benzaldehyde.
  • etherified the said methylolated amino resin with suitable alcohol can also be used as an amino resin.
  • alcohols used for etherification include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, 2-ethylbutanol, 2-ethylhexanol and the like.
  • the phenol resin that can be used as the cross-linking agent undergoes a cross-linking reaction with the hydroxyl group-containing film-forming resin (A).
  • A hydroxyl group-containing film-forming resin
  • some or all of the methylol groups of a methylolated phenol resin obtained by introducing a methylol group by heating and condensation reaction of a phenol component and formaldehyde in the presence of a catalyst are alkyl etherified with alcohol.
  • Resol type phenolic resin are alkyl etherified with alcohol.
  • a phenol compound such as a bifunctional phenol compound, a trifunctional phenol compound, or a tetrafunctional or higher functional phenol compound can be used as the above-described phenol component as a starting material.
  • the phenol compound examples include, for example, bifunctional phenol compounds such as o-cresol, p-cresol, p-tert-butylphenol, p-ethylphenol, 2,3-xylenol, and 2,5-xylenol. it can.
  • the trifunctional phenol compound examples include carboxylic acid, m-cresol, m-ethylphenol, 3,5-xylenol, m-methoxyphenol and the like.
  • the tetrafunctional phenol compound examples include bisphenol A and bisphenol F. Among these, from the viewpoint of improving scratch resistance, it is preferable to use a trifunctional or higher functional phenol compound, particularly carboxylic acid and / or m-cresol. These phenol compounds can be used alone or in combination of two or more.
  • Formaldehydes used in the production of phenolic resins include formaldehyde, paraformaldehyde, trioxane and the like, and can be used alone or in combination of two or more.
  • a monohydric alcohol having 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms can be suitably used as the alcohol used for alkyl etherifying a part of the methylol group of the methylolated phenol resin.
  • Suitable monohydric alcohols include methanol, ethanol, n-propanol, n-butanol, isobutanol and the like.
  • the phenol resin has an average of 0.5 or more, preferably 0.6 to 3.0, alkoxymethyl groups per benzene nucleus from the viewpoint of reactivity with the hydroxyl group-containing film-forming resin (A). What you have is suitable.
  • non-blocked polyisocyanate compound in the optionally-blocked polyisocyanate compound that can be used as the crosslinking agent examples include aliphatic diisocyanates such as hexamethylene diisocyanate or trimethylhexamethylene diisocyanate; hydrogenated xylylene diisocyanate Or cycloaliphatic diisocyanates such as isophorone diisocyanate; organic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate or 4,4'-diphenylmethane diisocyanate, aromatic diisocyanates such as crude MDI, or each of these organic diisocyanates Adducts with monohydric alcohol, low molecular weight polyester resin or water, or the above Cyclic polymer of the organic diisocyanate comrades can, further include isocyanate-biuret, or the like.
  • the blocked polyisocyanate compound is obtained by blocking free isocyanate groups of the polyisocyanate compound with a blocking agent.
  • the blocking agent include phenols such as phenol, cresol and xylenol; ⁇ -caprolactam; lactones such as ⁇ -valerolactam and ⁇ -butyrolactam; methanol, ethanol, n-, i- or t-butyl alcohol, ethylene Alcohols such as glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, and benzyl alcohol; oximes such as formamidoxime, acetaldoxime, acetoxime, methyl ethyl ketoxime, diacetyl monooxime, benzophenone oxime, cyclohexane oxime System: Active methylene such as dimethyl malonate, diethyl malonate, ethyl
  • the mixing ratio of the hydroxyl group-containing coating film-forming resin (A) and the crosslinking agent (B) is based on the total solid content of 100 parts by mass of the components (A) and (B), and the hydroxyl group-containing coating film-forming resin.
  • Corrosion resistance is such that (A) is in the range of 55 to 95 parts by mass, more preferably 60 to 95 parts by mass, and the crosslinking agent (B) is in the range of 5 to 45 parts by mass, more preferably 5 to 40 parts by mass. From the viewpoints of boiling water resistance, processability, curability and the like.
  • ⁇ A curing catalyst can be blended as needed to improve the curability of the paint.
  • the crosslinking agent (B) contains an amino resin, particularly a low molecular weight, methyl etherified or mixed etherified melamine resin of methyl ether and butyl ether, sulfonic acid compound or amine neutralization of sulfonic acid compound as a curing catalyst A thing is used suitably.
  • the sulfonic acid compound include p-toluenesulfonic acid, dodecylbenzenesulfonic acid, dinonylnaphthalenesulfonic acid, dinonylnaphthalenedisulfonic acid, and the like.
  • the amine in the amine neutralized product of the sulfonic acid compound may be any of primary amine, secondary amine, and tertiary amine.
  • an amine neutralized product of p-toluenesulfonic acid and / or an amine neutralized product of dodecylbenzenesulfonic acid is preferable. .
  • the crosslinking agent (B) is a phenol resin
  • the sulfonic acid compound or an amine neutralized product of the sulfonic acid compound is preferably used as the curing catalyst.
  • a curing catalyst that promotes dissociation of the blocking agent is suitable.
  • suitable curing catalysts include tin octylate and dibutyltin di (2-ethyl). Hexanoates), dioctyltin di (2-ethylhexanoate), dioctyltin diacetate, dibutyltin dilaurate, dibutyltin oxide, dioctyltin oxide, lead 2-ethylhexanoate, etc. it can.
  • crosslinking agent (B) is a combination of two or more kinds of crosslinking agents
  • an effective curing catalyst can be used in combination with each crosslinking agent.
  • Antirust pigment mixture (C) In the coating composition of the present invention, the rust preventive pigment mixture (C) is composed of the following vanadium compound (1), phosphate metal salt (2) and magnesium ion exchanged silica (3).
  • Vanadium compound (1) is at least one vanadium compound selected from the group consisting of vanadium pentoxide, calcium vanadate, magnesium vanadate, and ammonium metavanadate. Vanadium pentoxide, calcium vanadate, magnesium vanadate and ammonium metavanadate are excellent in elution of pentavalent vanadium ions into water, and the pentavalent vanadium ions released from the vanadium compound (1) It works effectively to improve corrosion resistance by reacting and reacting with ions from other antirust pigment mixtures.
  • the phosphoric acid metal salt (2) is a phosphate metal salt which is a salt of at least one acid selected from the group consisting of phosphoric acid, phosphorous acid and tripolyphosphoric acid containing at least magnesium.
  • it is a phosphoric acid metal salt that is a salt of at least one acid selected from the group consisting of phosphoric acid, phosphorous acid, and tripolyphosphoric acid, and is a compound that contains at least magnesium.
  • the phosphoric acid metal salt (2) can also be said to be a salt of at least one acid selected from the group consisting of phosphoric acid, phosphorous acid, and tripolyphosphoric acid containing at least magnesium.
  • Phosphoric acid, phosphorous acid and tripolyphosphoric acid are all phosphorus-containing oxoacids.
  • Examples of the phosphate metal salt (2) include magnesium phosphate, magnesium phosphate / ammonium eutectoid, magnesium monohydrogen phosphate, magnesium dihydrogen phosphate, magnesium phosphate / calcium eutectoid, magnesium phosphate ⁇ Cobalt eutectoid, Magnesium phosphate / nickel eutectoid, Magnesium phosphite, Magnesium phosphite / calcium eutectoid, Tripolyphosphate, Magnesium oxide treatment of aluminum trihydrogenphosphate, Zinc trihydrogenphosphate And the like, and the like. Further, it may be a compound modified with silica, such as silica-modified magnesium phosphate.
  • Phosphorus metal salts include magnesium phosphate / ammonium eutectoid, magnesium phosphate / calcium eutectoid, magnesium phosphate / cobalt eutectoid, magnesium phosphate / nickel eutectoid, magnesium phosphite / calcium coprecipitate
  • a eutectoid such as a precipitate
  • the phosphoric acid metal salt (2) (at least one salt selected from the group consisting of phosphoric acid, phosphorous acid and tripolyphosphoric acid containing at least magnesium) is a salt of phosphorous acid or tripolyphosphoric acid.
  • phosphorous acid or tripolyphosphoric acid is produced from the salt, and phosphorous acid and tripolyphosphoric acid are phosphorous due to the presence of oxidizing metal ions such as pentavalent vanadium ions and trivalent iron ions in the antirust pigment mixture. It is thought to change to an acid ion.
  • Magnesium ion exchange silica (3) is silica fine particles in which magnesium ions are introduced into a fine porous silica carrier by ion exchange.
  • the ion exchange can be performed by a known method. For example, a method of immersing a silica carrier in an aqueous solution containing 0.1 to 10% of a magnesium salt such as magnesium chloride is exemplified.
  • silica fine particles having a surface having an average particle diameter of 0.5 to 15 ⁇ m, preferably 1 to 10 ⁇ m, untreated or treated with an organic substance can be used.
  • the magnesium ion exchanged silica (3) preferably has an average particle size of 0.5 to 15 ⁇ m, particularly 1 to 10 ⁇ m.
  • the average primary particle diameter in the present invention is a median diameter (d50) of a volume-based particle size distribution measured by a dynamic light scattering method, and is measured using, for example, a nanotrack particle size distribution measuring apparatus manufactured by Nikkiso Co., Ltd. be able to.
  • oils having an oil absorption of 30 to 300 ml / 100 g, particularly 30 to 150 ml / 100 g can be preferably used.
  • the oil absorption is a numerical value measured according to the description of JIS K 5101.
  • Magnesium ions released from magnesium ion-exchanged silica are involved in electrochemical action and various salt forming actions, and effectively act to improve corrosion resistance. Moreover, the silica fixed in the coating effectively acts to suppress peeling of the coating in a corrosive atmosphere.
  • the rust preventive pigment mixture (C) contains the vanadium compound (1), a phosphoric acid metal salt ( From the viewpoint of corrosion resistance, 2) and the magnesium ion exchanged silica (3) are within the following range, and the amount of the rust preventive pigment mixture (C) is 10 to 150% by mass, preferably 15 to 90% by mass. Is preferred.
  • Vanadium compound (1) 3 to 50% by mass, preferably 5 to 40% by mass
  • Phosphate metal salt (2) 1 to 50% by mass, preferably 2 to 30% by mass
  • Magnesium ion exchanged silica (3) 1 to 50% by mass, preferably 2 to 30% by mass.
  • the corrosion resistance can be synergistically improved by combining a predetermined amount of these (1), (2) and (3) as the anticorrosive pigment mixture (C). is there.
  • the vanadium compound (1) which comprises the antirust pigment mixture (C) mix
  • the solubility of the vanadium compound (1), the phosphate metal salt (2) and the magnesium ion-exchanged silica (3) due to moisture is that the pH of the filtrate obtained by filtering the supernatant is 3 to 9, preferably 5 to 8. And it is suitable from the viewpoint of the reactivity between the solution of the anticorrosive pigment and the metal plate, and being in this range is more preferred from the viewpoint of corrosion resistance.
  • the dissolved metal salt (2) is added in any amount within the range of 1 to 50 parts by mass
  • the magnesium ion-exchanged silica (3) is added in any amount within the range of 1 to 50 parts by mass.
  • the paint composition of the present invention includes a rust preventive pigment.
  • An additive such as an agent can be blended as necessary.
  • Examples of the rust preventive pigment other than the rust preventive pigment used in the rust preventive pigment mixture (C) include a phosphate metal salt other than the phosphate metal salt (2) and a silica other than the magnesium ion exchange silica (3). Examples thereof include fine particles, metal silicate, zinc molybdate, a fired product of manganese oxide and vanadium oxide, and a fired product of calcium phosphate and vanadium oxide. These rust preventive pigments can be used alone or in combination of two or more.
  • Examples of the phosphate metal salt other than the phosphate metal salt (2) include a phosphate metal salt not containing magnesium.
  • examples thereof include aluminum aluminum; tripolyphosphate metal salts in which the metal element such as aluminum tripolyphosphate and aluminum dihydrogenphosphate is aluminum, zinc, or calcium.
  • silica fine particles other than magnesium ion exchanged silica (3) silica fine particles other than magnesium ion exchanged silica can be used without particular limitation.
  • silica fine powder whose surface is untreated silica whose surface is treated with organic matter Fine powder, organic solvent dispersible colloidal silica, and the like can be mentioned.
  • silica fine particles whose surface is untreated or treated with an organic substance include silica fine powder having an average particle diameter of 0.5 to 15 ⁇ m, preferably 1 to 10 ⁇ m, and organic solvent-dispersible colloidal silica.
  • silica fine powder those having an oil absorption in the range of 30 to 350 ml / 100 g, preferably 30 to 150 ml / 100 g can be suitably used, and commercially available products include Silicia 710, Silicia 740, Silicia 550, Aerosil R972 (all of which are manufactured by Fuji Silysia Chemical Co., Ltd.), Mizukacil P-73 (manufactured by Mizusawa Chemical Industry Co., Ltd.), Gasil 200DF (manufactured by Crossfield Co., Ltd.) and the like can be mentioned.
  • the organic solvent-dispersible colloidal silica is also called an organosilica sol, in which silica fine particles having a particle size of about 5 to 120 nm are stably dispersed in an organic solvent such as an alcohol compound, a glycol compound, or an ether compound.
  • organic solvent such as an alcohol compound, a glycol compound, or an ether compound.
  • examples of commercially available products include the OSCAL series (manufactured by JGC Catalysts & Chemicals Co., Ltd.), organosol (manufactured by Nissan Chemical Co., Ltd.), and the like.
  • the silicate metal salt is a salt composed of silicon dioxide and a metal oxide, and may be any of orthosilicate, polysilicate, and the like.
  • metal silicate salt examples include calcium silicate, zinc silicate, aluminum silicate, aluminum orthosilicate, hydrated aluminum silicate, aluminum calcium silicate, sodium aluminum silicate, aluminum beryllium silicate, sodium silicate, Calcium orthosilicate, calcium metasilicate, sodium calcium silicate, zirconium silicate, magnesium orthosilicate, magnesium metasilicate, magnesium calcium silicate, manganese silicate, barium silicate, olivine, garnet, tortuitite, Ikki ore , Benitoite, Neptunite, Ryokuchu, Toki, Keikai, Baraki, Tosen, Zonotra, Talc, Gyogan, Aluminosilicate, Borosilicate, Berylsilicate Butterfly stone, mention may be made of fluoride stones and the like.
  • metal silicate among them, calcium silicate, calcium orthosilicate, and calcium metasilicate can be preferably used.
  • the colored pigment examples include organic colored pigments such as cyanine blue, cyanine green, organic red pigments such as azo and quinacridone; and inorganic colored pigments such as titanium white, titanium yellow, bengara, carbon black, and various fired pigments. Among them, titanium white can be preferably used.
  • extender pigment examples include talc, clay, silica, mica, alumina, calcium carbonate, barium sulfate and the like.
  • Examples of the ultraviolet absorber include 2- (2-hydroxy-3,5-di-t-amylphenyl) -2H-benzotriazole, isooctyl-3- (3- (2H-benzotriazol-2-yl)- 5-t-butyl-4-hydroxyphenylpropionate, 2- [2-hydroxy-3,5-di (1,1-dimethylbenzidine) phenyl] -2H-benzotriazole, 2- [2-hydroxy-3- Dimethylbenzyl-5- (1,1,3,3-tetramethylbutyl) phenyl] -2H-benzotriazole, methyl- 3-[3-tert-butyl-5- (2H-benzotriazol-2-yl)- Benzotriazole derivatives such as 4-hydroxyphenyl] propionate / condensate with polyethylene glycol 300; 2- [4- (2-hydride) Triazine derivatives such as xy-3-dodecyloxypropyl) oxy] -2
  • ultraviolet stabilizer examples include, for example, hindered amine compounds, hindered phenol compounds; CHIMASORB 944, TINUVIN 144, TINUVIN 292, TINUVIN 770, IRGANOX 1010, IRGANOX 1098 (all of these products are products of Ciba Japan Co., Ltd.) Product)).
  • a UV absorber or UV stabilizer By blending a UV absorber or UV stabilizer into the paint, it is possible to suppress deterioration of the coating surface due to light.
  • this paint is used as a primer, deterioration of the primer surface due to light passing through the upper layer coating and reaching the surface of the primer coating can be suppressed. Delamination with the film can be prevented, and excellent corrosion resistance can be maintained.
  • blended with this invention coating composition is mix
  • Specific solvents include, for example, hydrocarbons such as toluene, xylene, high boiling petroleum hydrocarbons, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, isophorone, ethyl acetate, butyl acetate, ethylene glycol monoethyl ether acetate, Examples include esters such as diethylene glycol monoethyl ether acetate, alcohols such as methanol, ethanol, isopropanol, and butanol, ether alcohols such as ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, and diethylene glycol monobutyl ether. Alternatively, two or more kinds can be mixed and used.
  • the glass transition temperature of the cured coating film obtained from the composition of the present invention is 40 to 115 ° C., preferably 50 to 105 ° C., in terms of the corrosion resistance, acid resistance, workability, etc. of the coating film.
  • the glass transition temperature of the coating film was tan ⁇ by temperature dispersion measurement at a frequency of 110 Hz using a DYNAMIC VISCOELASTOMETER MODEL VIBRON (dynamic viscoelastometer model vibron) DDV-IIEA type (manufactured by Toyo Baldwin, automatic dynamic viscoelasticity measuring machine). It is the maximum temperature obtained from the change in.
  • the coating film formed by coating the coating composition of the present invention on a metal plate exhibits excellent corrosion resistance.
  • the reason for this is that the present inventor has found that a metal ion generated by dissolution of a raw material metal by chloride ion or the like in a corrosive environment and a pentavalent vanadium ion (VO 3 ⁇ or VO 4 3 ⁇ vanadate ion).
  • VO 3 ⁇ or VO 4 3 ⁇ vanadate ion a pentavalent vanadium ion
  • Magnesium ion-exchanged silica is not only effective due to magnesium ions released into the corrosive atmosphere, but also has a strong effect of adjusting the pH of the wet atmosphere in the vicinity to weakly acidic due to the effect of weakly acidic functional groups on the surface. Accelerates the redox reaction between pentavalent vanadium ions and the material metal, and further, the magnesium ion exchanged silica is immobilized in the coating film, so the pH can be adjusted even during long-term corrosion. It is thought that the second reason is that the silicate ions are sustained by the further progress of the hydrolysis reaction in the case of a stronger corrosion progress atmosphere, and the release of silicate ions. .
  • the edge and deep cut parts are more resistant to rust-preventive pigments.
  • magnesium ions have a relatively small atomic weight and are divalent ions, so that the ion radius is small and the transport number is high. For this reason, since the ability as a charged body of a corrosion current is higher than other ions, it is considered that the movement in the corrosive atmosphere is faster than sodium ions or the like when the corrosion reaction proceeds. Therefore, since it becomes possible to quickly interact with ions dissolved from the raw metal, an effective synergistic effect with the above-described corrosion inhibition reaction can be obtained.
  • the anticorrosive pigment (C) by using the above (1), (2) and (3) in combination, the acid resistance and alkali resistance of each of the above (1), (2) and (3) and The weak water resistance can be effectively canceled out. It is thought that the synergistic effect of the action based on these rust preventive pigments worked greatly and achieved excellent corrosion resistance.
  • Painted metal plate The painted metal plate of the present invention can be obtained by coating the above-mentioned coating composition on a metal plate and curing it (that is, forming a cured coating film).
  • the metal sheet to be coated include cold rolled steel sheet, hot dip galvanized steel sheet, electrogalvanized steel sheet, iron-zinc alloy plated steel sheet (galvanyl steel sheet), aluminum-zinc alloy plated steel sheet (containing approximately 55% aluminum in the alloy).
  • nickel-zinc alloy plated steel plate stainless steel plate, aluminum plate, copper plate, copper plated steel plate, tin plated steel plate, etc. it can.
  • the coating composition of the present invention is excellent in the effect of improving the corrosion resistance of a plated steel sheet whose main component is aluminum, among these metal plates. Specifically, it is particularly excellent in the corrosion resistance improving effect of the plated steel sheet in which the aluminum content in the plating component such as “galvalume steel sheet” containing about 55% aluminum in the alloy is 50% or more. Moreover, the corrosion resistance improvement effect of the steel plate which is not plated is also very excellent.
  • These metal plate surfaces may be subjected to chemical conversion treatment.
  • chemical conversion treatment include phosphate treatment such as zinc phosphate treatment and iron phosphate treatment, composite oxide film treatment, chromium phosphate treatment, and chromate treatment.
  • the coating composition of the present invention can be applied to the metal plate by a known method such as a roll coating method, a curtain flow coating method, a spray method, a brush coating method, or a dipping method.
  • the cured film thickness of the coating film obtained from the coating composition of the present invention is not particularly limited, but is usually in the range of 2 to 10 ⁇ m, preferably 3 to 6 ⁇ m. What is necessary is just to set hardening of a coating film suitably according to the kind etc. of resin to be used. For example, when a coating composition applied by a coil coating method or the like is baked continuously, it is usually baked for 15 to 60 seconds under the condition that the maximum material temperature reaches 160 to 250 ° C., preferably 180 to 230 ° C. .
  • the coating composition When the coating composition is baked in batch mode, it can also be performed by baking at 80 to 200 ° C. for 10 to 30 minutes. Further, when a non-blocked polyisocyanate is used as the crosslinking agent (B), and when a bisphenol type epoxy resin is used as the resin (A) and an amine compound is used as the crosslinking agent (B), a coating film is formed. In the case of a combination that does not particularly require heating for the crosslinking reaction in the process, it can be cured by drying at room temperature according to a conventional method. The step of forming the cured coating film on the metal plate may be performed on only one side of the metal plate, performed on each side of the metal plate, or performed on both sides of the metal plate at the same time.
  • the coated metal plate of the present invention has a coating film formed of the above-described coating composition of the present invention on a metal plate which may be subjected to chemical conversion treatment, and the coated metal plate formed with the coating film of the present coating composition
  • the product itself can be used.
  • a top coat film can also be provided on the coat film by this coating composition of this invention.
  • the film thickness of the top coat film is usually 8 to 30 ⁇ m, preferably 10 to 25 ⁇ m.
  • top coatings such as polyester resin-based, alkyd resin-based, silicon-modified polyester resin-based, silicon-modified acrylic resin-based, and fluororesin-based coatings that are known for precoated steel sheets. Can do. When workability is particularly important, a coated steel sheet having particularly excellent workability can be obtained by using a polyester-based top coat for advanced processing.
  • the coated metal plate of this invention can show the coating-film performance excellent in corrosion resistance.
  • a plated steel sheet with a high aluminum content in the plating component such as a “galvalume steel plate” in which the plating component contains about 55% aluminum in the alloy, and an aluminum-zinc alloy plated steel plate, is used as the metal plate to be coated. While the corrosion resistance of the flat surface portion has been considerably improved, until now, the corrosion resistance has been insufficient in the cut end surface portion and the processed portion processed by molding, but by coating the coating composition of the present invention, the end surface has been improved. Excellent corrosion resistance can be obtained also in the part and the processed part.
  • the coating film by this invention coating composition may be provided in both surfaces of to-be-coated article. Furthermore, the said top coat film may be formed on the coating film by this invention coating composition as needed.
  • the coating composition of the present invention on both sides, that is, on the back side, it is possible to obtain a coated metal plate that does not contain chromium-containing anticorrosive pigments, is advantageous in terms of environmental hygiene and has excellent corrosion resistance. .
  • Production and production example 1 of resol type phenolic resin In a reaction vessel, 100 parts of bisphenol A, 178 parts of 37% formaldehyde aqueous solution and 1 part of sodium hydroxide were blended, reacted at 60 ° C. for 3 hours, and dehydrated at 50 ° C. for 1 hour under reduced pressure. Subsequently, 100 parts of n-butanol and 3 parts of phosphoric acid were added, and the reaction was carried out at 110 to 120 ° C. for 2 hours. After completion of the reaction, the resulting solution was filtered to remove sodium phosphate, which was obtained, thereby obtaining a solution of a resol type phenol resin (B1) having a solid content of about 50%. The obtained resin had a number average molecular weight of 880, an average number of methylol groups per benzene nucleus of 0.4, and an average number of alkoxymethyl groups of 1.0.
  • Example 2 to 30, Comparative Examples 1 to 7 and Reference Examples 1 and 2 The coating compositions 2 to 39 were obtained in the same manner as in Example 1 except that the hydroxyl group-containing resin, the crosslinking agent, the rust preventive pigment, and other pigments used in Example 1 were as shown in Table 1 below. .
  • Reference Examples 1 and 2 are rust preventive coating compositions containing conventional chromate-containing rust preventive pigments. The amounts of the hydroxyl group-containing resin, the crosslinking agent, the pigment component, etc. in Table 1 are all expressed by solid mass.
  • the total amount of each rust preventive pigment relative to the resin component (total solid mass of hydroxyl group-containing resin and crosslinking agent is 100 parts by mass) is added to 10000 parts by mass of a 5% by mass sodium chloride aqueous solution at 25 ° C.
  • the pH of the filtrate obtained by filtering the supernatant liquid stirred for 6 hours and allowed to stand at 25 ° C. for 48 hours is also shown.
  • the pH of the rust preventive pigment solution of Example 1 is 10000 parts by mass of a 5% strength by weight sodium chloride aqueous solution at 25 ° C., 5 parts by mass of vanadium pentoxide, 3 parts of magnesium phosphate and 2 parts of magnesium ion exchanged silica. It is pH of the filtrate which filtered the supernatant liquid which added and dissolved on the said conditions.
  • (Note) in the table has the following meanings.
  • Epokey 837 manufactured by Mitsui Chemicals, Inc., trade name, urethane-modified epoxy resin, hydroxyl group-containing resin, primary hydroxyl value of about 35, acid value of about 0.
  • Byron 296 manufactured by Toyobo Co., Ltd., trade name, epoxy-modified polyester resin, hydroxyl group-containing resin, hydroxyl value 7, acid value 6.
  • Sumidur N3300 manufactured by Sumika Bayer Urethane Co., Ltd., isocyanurate type polyisocyanate compound, solid content 100%.
  • Cymel 303 manufactured by Mitsui Chemicals, Inc., trade name, methyl etherified melamine resin.
  • K-White G105 manufactured by Teika Co., Ltd., trade name, magnesium oxide treated product of aluminum dihydrogen tripolyphosphate.
  • CRF62 Kikuchi Color Co., Ltd., trade name, silica-modified magnesium phosphate.
  • Coating specification 1 (Material: Galvalume steel plate) Galvalume steel sheet with chemical conversion treatment on the front and back surfaces (thickness 0.35 mm, aluminum-zinc alloy plated steel sheet, about 55% aluminum in alloy, alloy plating basis weight 150 g / m 2 , “GL steel sheet in Table 1”
  • the above coating compositions 1 to 39 are coated with a bar coater so as to have a film thickness of 5 ⁇ m, and baked for 30 seconds so that the maximum material temperature reaches 220 ° C. Formed.
  • the same coating composition 1 to 39 is applied with a bar coater to a thickness of 5 ⁇ m on the surface of the steel sheet opposite to the back coating film on which the back coating film is formed. Baking was performed for 40 seconds at a temperature of 0 ° C. to form each primer coating film of the surface coating film and the back coating film.
  • KP Color 1580B40 Korean Paint Co., Ltd., trade name, polyester-containing top coating, blue, glass transition temperature of cured coating about 70 ° C.
  • bar coater was coated to a thickness of 15 ⁇ m, and baked for 40 seconds so that the maximum material temperature reached 220 ° C., to obtain a coated plate for each test.
  • Coating specification 2 (Material: Cold-rolled steel sheet)
  • SPC chemical conversion treatment
  • a bar coater to a film thickness of 5 ⁇ m.
  • the back surface coating film was formed by baking for 30 seconds such that the maximum material arrival temperature was 220 ° C.
  • the same coating composition 1 to 39 is applied to the steel plate surface opposite to the back coating film of the coated plate on which this back coating film is formed with a bar coater so as to have a film thickness of 10 ⁇ m. Baking was performed for 40 seconds at a temperature of 0 ° C. to form each primer coating film of the surface coating film and the back coating film.
  • each test was carried out by coating KP color 1580B40 on these primer coatings with a bar coater to a film thickness of 15 ⁇ m and baking for 40 seconds so that the maximum material temperature reached 220 ° C. A painted plate was obtained.
  • Coating Film Performance Test The following test methods were used for the coating compositions for tests obtained by applying the coating compositions obtained in Examples 1 to 30, Comparative Examples 1 to 7 and Reference Examples 1 and 2 and the top coating. The coating film performance test was conducted according to The test results are also shown in Table 1.
  • Test method Boiling water resistance After each test coating plate cut to a size of 5 cm ⁇ 10 cm is immersed in boiling water at about 100 ° C. for 5 hours, it is pulled up to evaluate the appearance of the coating film on the surface side, and a cross-cut tape An adhesion test was performed and evaluated.
  • the cross-cut tape adhesion test is performed according to JIS K-5400 8.5.2 (1990) cross-cut tape method, the gap spacing of the cuts is 1 mm, 100 cross-cuts are made, and cellophane adhesive tape is adhered to the surface. And the number of grids remaining on the coated surface after abrupt peeling was examined.
  • S There is no abnormality such as blistering or whitening in the coating film, and there are 100 remaining grids
  • A There is no abnormality such as blistering or whitening in the coating film, and there are 91 to 99 residual grids.
  • B Slightly abnormalities such as blistering or whitening were observed in the coating and the number of remaining grids was 91 or more, or there were no abnormalities such as blistering or whitening in the coatings, but the remaining grids were 71 to 90 Pieces
  • C Significant or significant occurrence of swelling in the coating film is observed, or the number of remaining grids is 70 or less.
  • Alkali resistance The back surface and the cut surface of each test paint plate cut to a size of 5 cm ⁇ 10 cm were sealed with a rust-proof paint, and a cross cut reaching the substrate was put in the center of the front side of the paint plate.
  • This coated plate was immersed in a 5% aqueous sodium hydroxide solution at 40 ° C. for 48 hours, then taken out, washed, and evaluated for the appearance of the coating on the surface side of the coated plate dried at room temperature. Was peeled off, and the peel width (one side) from the cut portion in the coating film after peeling off was evaluated.
  • Scratch resistance Using a coin scratch tester (manufactured by Kayaku Giken Kogyo Co., Ltd.) at a room temperature of 20 ° C., keep the edge of the 10-yen copper coin at a 45 ° angle on the surface of each test coating plate, 3 kg The degree of scratching when the coated surface was scratched by pulling a 10-yen copper coin at a speed of 10 mm / second for about 30 mm while being pressed with a load of was evaluated according to the following criteria. S: There is no metal base on the scratched part, A: A slight metal base is seen on the scratched part. B: There is a considerable metal base on the scratched part, C: The coating is hardly left on the scratched part, and the metal base is clearly seen.
  • Composite corrosion resistance test (CCT): Test specimens used for the composite corrosion resistance test are prepared as follows. Each test coating plate cut to a width of 7 cm x 15 cm in advance was subjected to an accelerated weathering test for 500 hours with a xenon accelerated weathering tester, and then cut with a shearing cutter at 5 mm from each end of the long side. Then, the burrs were cut so that the burrs faced to the front surface side on the right side and faced to the back side on the left side toward the surface-side coating surface.
  • the coating specification 1 (GL steel plate) was evaluated according to the following criteria.
  • Processed part The following criteria evaluated by the total length of the rust part in a 3T bending process part, and the presence or absence of generation
  • Edge portion The test piece was evaluated according to the following criteria based on the average value of edge creep widths on the left and right long sides of the test piece and the presence or absence of red rust. S: No occurrence of red rust, edge creep width average value less than 3 mm, A: No occurrence of red rust, the average value of edge creep width is 3 mm or more and less than 7 mm, B: No occurrence of red rust, an average value of edge creep width of 7 mm or more and less than 20 mm, C: The average value of edge creep width is 20 mm or more, or red rust is observed.
  • Cross cut portion Corrosion state of the cross cut portion of the test piece, white rust occurrence length ratio in the bare metal exposed portion of 0.5 mm cut width, average value of the left and right swelling width (sum of both sides) of the cut portion, and Evaluation was made according to the following criteria depending on whether red rust occurred.
  • the white rust generation length ratio in the bare metal exposed part is less than 30% and the swelling width is less than 2 mm
  • A The white rust generation length ratio in the bare metal exposed portion is 30% or more and the swelling width is less than 2 mm, or the white rust occurrence length ratio in the bare metal exposed portion is less than 30% and the swelling width is 2 mm or more and less than 5 mm
  • C The white rust generation length ratio in the bare metal exposed portion is 50% or more and the swelling width is 10 mm or more, or red rust is generated.
  • the coating specification 2 (SPC) was evaluated according to the following criteria.
  • Cross cut portion Corrosion state of the cross cut portion of the test piece, white rust occurrence length ratio in the bare metal exposed portion of 0.5 mm cut width, average value of the left and right swelling width (sum of both sides) of the cut portion, and Evaluation was made according to the following criteria depending on whether red rust was generated.
  • S The swelling width is less than 3 mm and the occurrence of red rust is small.
  • A Although the occurrence of red rust is somewhat large, the occurrence of red rust is small when the swelling width is less than 3 mm, the swelling width is 3 mm or more and less than 5 mm.
  • C The swelling width is 10 mm or more.
  • Flat part The discontinuous and sporadic swelling of the flat part, which occurs in a part away from the tip of the corrosion part from the cross cut part, was evaluated according to the following criteria.
  • C The bulge diameter is about 2 mm or more and the number is 10 or more.
  • each of the obtained coating films has a high boiling water resistance, alkali resistance, acid resistance, scratch resistance, and each evaluation performance based on a combined corrosion resistance test.
  • Each of the coating specification 1 (GL steel plate) and the coating specification 2 (SPC) was comprehensively evaluated according to the following criteria.
  • A Evaluation of each evaluation performance by boiling water resistance, alkali resistance, acid resistance, scratch resistance, and composite corrosion resistance test is A.
  • B Boiling water resistance, alkali resistance, acid resistance, scratch resistance, and evaluation of each evaluation performance by the combined corrosion resistance test are all S, A or B, and at least one is B C: Boiling water resistance, At least one of the evaluations of the evaluation performance based on the alkali resistance, acid resistance, scratch resistance, and composite corrosion resistance test is C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paints Or Removers (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本願は、塗装金属板等における一般部の耐食性のみならず、加工部や端面部の耐食性に優れた塗膜を形成できる非クロム含有塗料組成物、特にめっきが施されていない鋼板、又、アルミニウムを主成分とするめっき鋼板の耐食性向上に効果的な非クロム含有塗料組成物及びそれを用いた塗装金属板を提供することを課題とする。 斯かる課題を発明として、(A)水酸基含有塗膜形成性樹脂、(B)架橋剤及び(C)防錆顔料混合物を含有する塗料組成物であって、該防錆顔料混合物(C)が、(1)五酸化バナジウム、バナジン酸カルシウム、バナジン酸マグネシウム及びメタバナジン酸アンモニウムからなる群から選択される少なくとも1種のバナジウム化合物、(2)少なくともマグネシウムを含有する、リン酸、亜リン酸、トリポリリン酸からなる群から選択される少なくとも1種の酸の塩であるリン酸含有金属塩、(3)マグネシウムイオン交換シリカからなるものであることを特徴とする塗料組成物を提供する。

Description

耐食性に優れる塗料組成物
 本発明は、耐食性に優れた非クロム含有塗料組成物及びそれを用いた塗装金属板に関し、さらに詳しくは特に、めっきが施されていない鋼板、また、めっき成分がアルミニウムを主成分とするめっき鋼板の耐食性向上に効果的な塗料組成物及びそれを用いた塗装金属板に関する。
 従来、コイルコーティングなどによって塗装されたプレコート鋼板などの塗膜形成亜鉛めっき鋼板は、建築物の屋根、壁、シャッター、ガレージなどの建築資材、各種家電製品、配電盤、冷凍ショーケース、鋼製家具及び厨房器具などの住宅関連商品として幅広く使用されている。
 塗膜形成亜鉛めっき鋼板からこれらの住宅関連商品を製造するには、通常、プレコート鋼板などの塗膜形成亜鉛めっき鋼板を切断しプレス成型し接合される。したがって、これらの住宅関連商品には、切断面である金属露出部やプレス加工によるワレ発生部が存在することが多い。上記金属露出部やワレ発生部は、他の部分に比べて耐食性が低下しやすいので耐食性の向上のため、塗膜形成亜鉛めっき鋼板の下塗塗膜中にクロム含有の防錆顔料を含ませることが一般的に行われてきたが、クロム含有の防錆顔料は、防錆性に優れた6価クロムを含有していたり生成したりし、この6価クロムは人体への健康面、環境保護の観点から問題となっている。
 これまで、非クロム含有顔料を組合せた塗料組成物及び該塗料組成物が塗装された塗膜が形成された良好な耐食性を有する金属材として、種々のものが提案されている。
 例えば、特許文献1には、水酸基含有塗膜形成性樹脂系に、防錆顔料として、特定のバナジウム化合物、特定の金属ケイ酸塩及び特定のリン酸水素金属塩を所定量配合した塗料組成物が記載されている。
 また、特許文献2には、水酸基含有塗膜形成性樹脂系に、防錆顔料として、特定のバナジウム化合物、特定のケイ素含有物及びリン酸系カルシウム塩を所定量配合した防錆塗料組成物による防錆塗膜が金属材の表裏両面に形成された塗膜形成金属材が記載されている。
 しかしながら、特許文献1及び2に記載された塗料組成物による塗膜が形成された金属材は、概ね良好な耐食性を有しているが、特にめっきが施されていない鋼板、又、金属材が亜鉛めっき鋼板である場合、クロム含有顔料を使用した塗料組成物による塗膜が形成された金属材に比べ、耐食性が不十分であり、特に加工部及び端面部における耐食性が不十分であるという問題があった。
特開2008-291160号公報 特開2008-266444号公報
 本発明の目的は、塗装金属板などにおける一般部の耐食性のみならず、塗膜が屋外環境で光分解や加水分解による劣化が進行していく過程においても、加工部や端面部の耐食性に優れた塗膜を形成できる非クロム含有塗料組成物、特にめっきが施されていない鋼板、又、めっき成分がアルミニウムを主成分とするめっき鋼板の耐食性向上に効果的な非クロム含有塗料組成物及びそれを用いた塗装金属板を提供することである。
 本発明者らは、上記課題を解決するため鋭意研究を行なった結果、水酸基含有塗膜形成性樹脂系に、防錆顔料として、特定のバナジウム化合物、特定のリン酸系金属塩及びマグネシウムイオン交換シリカを所定量配合した塗料組成物によって、平面部の耐食性のみならず、塗装金属板などにおける加工部や端面部の耐食性に優れた塗膜、特にめっきが施されていない鋼板、又、アルミニウムを主成分とするめっき鋼板において耐食性に優れた塗膜を形成できることを見出し、本発明を完成するに至った。
 即ち、本発明は下記の態様を包含する:
 項1、(A)水酸基含有塗膜形成性樹脂、
(B)架橋剤及び
(C)防錆顔料混合物を含有する塗料組成物であって、
 該防錆顔料混合物(C)が、
(1)五酸化バナジウム、バナジン酸カルシウム、バナジン酸マグネシウム及びメタバナジン酸アンモニウムからなる群から選択される少なくとも1種のバナジウム化合物、
(2)少なくともマグネシウムを含有する、リン酸、亜リン酸及びトリポリリン酸からなる群から選択される少なくとも1種の酸の塩であるリン酸系金属塩、
(3)マグネシウムイオン交換シリカからなるものであり、
 該樹脂(A)及び該架橋剤(B)の固形分総量に対して 
 該バナジウム化合物(1)の量が3~50質量%、
 該リン酸系金属塩(2)の量が1~50質量%、及び 
 該マグネシウムイオン交換シリカ(3)の量が1~50質量%
 であって、かつ該防錆顔料混合物(C)の量が10~150質量%であることを特徴とする塗料組成物。
 項2、水酸基含有塗膜形成性樹脂(A)が、水酸基含有エポキシ樹脂及び水酸基含有ポリエステル樹脂からなる群から選択される少なくとも1種である項1に記載の塗料組成物。
 項3、架橋剤(B)が、アミノ樹脂、フェノール樹脂及びブロック化されていてもよいポリイソシアネート化合物からなる群から選択される少なくとも1種の架橋剤である項1又は2に記載の塗料組成物。
 項4、さらに、防錆顔料混合物(C)以外の防錆性顔料、二酸化チタン顔料及び体質顔料からなる群から選択される少なくとも1種の顔料成分を含有する項1~3のいずれか一項に記載の塗料組成物。
 項5、さらに、紫外線吸収剤及び紫外線安定剤からなる群から選択される少なくとも1種を含有する項1~4のいずれか一項に記載の塗料組成物。
 項6、前記樹脂(A)及び架橋剤(B)の合計固形分100質量部に対して配合される防錆顔料混合物(C)を構成するバナジウム化合物(1)、リン酸系金属塩(2)及びマグネシウムイオン交換シリカ(3)の各顔料の各質量部量の混合物を、25℃の5質量%濃度の塩化ナトリウム水溶液10000質量部に添加して6時間攪拌し25℃で48時間静置した上澄み液を濾過した濾液のpHが3~9であることを特徴とする項1~5のいずれか一項に記載の塗料組成物。
 項7、アルミニウムを主成分とするめっき鋼板の塗装に用いられる請求項1~6のいずれか一項に記載の塗料組成物。
 項8、金属板上に、項1~6のいずれか一項に記載の塗料組成物に基づく硬化塗膜を形成する工程を含む、塗装金属板の製造方法。
 項9、めっき成分がアルミニウムを主成分とするめっき鋼板上に、項1~6のいずれか一項に記載の塗料組成物に基づく硬化塗膜を形成する工程を含む、塗装金属板の製造方法。
 項10、項8又は9に記載の方法により得られる、塗装金属板。
 本発明の塗料組成物は、クロム含有防錆顔料を含まず、環境衛生面で有利な塗料組成物である。本発明の塗料組成物によって、平面部の耐食性に優れるのみならず、これまで非クロム含有防錆塗料では達成が困難であった塗装金属板などにおける加工部や端面部の耐食性に優れた塗膜、特にめっきが施されていない鋼板、又、めっき成分がアルミニウムを主成分とするめっき鋼板において耐食性に優れた塗膜を形成できるという効果を発揮する。
 また、本発明の塗料組成物は、被塗物にさびが発生した場合において、見た目としてさびがすっきり少なく見えるとの効果も奏する。このような効果は、被塗物が亜鉛を含有する場合、特に顕著である。斯かる効果は、水酸化マグネシウムが腐食生成物に含まれることで、大きな結晶の腐食生成物が成長するのを阻害するためと考えられる。
 本発明の塗料組成物に基づく硬化塗膜が形成された塗装金属板は、平面部、加工部や端面部の耐食性に優れるものであり、ストロンチウムクロメートなど、従来のクロメート含有防錆顔料を使用した塗料に基く硬化塗膜が形成された塗装金属板と同等以上の耐食性を有するものである。
 本発明の塗料組成物に基く硬化塗膜が形成されてなる塗装金属板は、平面部、加工部や端面部の耐食性に優れるものである。被塗物となる金属板として、めっきが施されていない鋼板、又、亜鉛メッキ鋼板、アルミニウム-亜鉛合金メッキ鋼板を使用した場合、特にめっき成分がアルミニウムを主成分とするめっき鋼板に使用した場合、本発明塗料組成物を塗装することによって、平面部のみならず、端面部、加工部においても優れた耐食性を得ることができる。
 本発明の塗料組成物(以下、「本塗料」ということがある)は、下記水酸基含有塗膜形成性樹脂(A)、架橋剤(B)及び防錆顔料混合物(C)を含有する塗料組成物である。
 水酸基含有塗膜形成性樹脂(A)
 本発明塗料組成物における水酸基含有塗膜形成樹脂としては、塗料分野で通常使用できる塗膜形成能を有する水酸基含有樹脂である限り特に制限なく使用することができる。水酸基含有塗膜形成樹脂の代表例として、水酸基を含有する、ポリエステル樹脂、エポキシ樹脂、アクリル樹脂、フッ素樹脂、塩化ビニル樹脂などの1種又は上記樹脂を2種以上含む混合樹脂を挙げることができる。塗膜形成性樹脂としては、なかでも、水酸基含有ポリエステル樹脂及び水酸基含有エポキシ樹脂から選ばれる少なくとも1種の有機樹脂を好適に使用することができる。
 上記水酸基含有ポリエステル樹脂としては、オイルフリーポリエステル樹脂、油変性アルキド樹脂、及び、これらの樹脂の変性物、例えばウレタン変性ポリエステル樹脂、ウレタン変性アルキド樹脂、エポキシ変性ポリエステル樹脂、アクリル変性ポリエステル樹脂などが挙げられる。上記水酸基含有ポリエステル樹脂は、数平均分子量1500~35000、好ましくは2000~25000、ガラス転移温度(Tg点)10~100℃、好ましくは20℃~80℃、水酸基価2~100mgKOH/g、好ましくは5~80mgKOH/gを有するものが好適である。
 本明細において、樹脂の「数平均分子量」は、ゲルパーミエーションクロマトグラフ(東ソー(株)社製、「HLC8120GPC」)で測定したクロマトグラムから標準ポリスチレンの分子量を基準にして算出した値である。カラムは、「TSK-gel G4000HXL」、「TSK-gel G3000HXL」、「TSK-gel G2500HXL」、「TSK-gel G2000HXL」(いずれも東ソー(株)社製、商品名)の4本を用い、移動相:テトラヒドロフラン、測定温度:40℃、流速:1cc/分、検出器:RIの条件で行ったものである。また、本明細書において、樹脂のガラス転移温度(Tg)は、示差熱分析(DSC)によるものである。
 上記オイルフリーポリエステル樹脂は、多塩基酸成分と多価アルコール成分とのエステル化物である。多塩基酸成分としては、例えば無水フタル酸、イソフタル酸、テレフタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、コハク酸、フマル酸、アジピン酸、セバシン酸、無水マレイン酸等から選ばれる1種以上の二塩基酸及びこれらの酸の低級アルキルエステル化物(ここで、本明細書において、「低級アルキル」とは、例えば、炭素数1~5程度のアルキルを指す。)が主として用いられる。必要に応じて安息香酸、クロトン酸、p-t-ブチル安息香酸などの一塩基酸、無水トリメリット酸、メチルシクロヘキセントリカルボン酸、無水ピロメリット酸などの3価以上の多塩基酸などを併用することができる。
 多価アルコール成分としては、例えばエチレングリコール、ジエチレングリコール、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、3-メチルペンタンジオール、1,4-ヘキサンジオール、1,6-ヘキサンジオールなどの二価アルコールが主に用いられる。さらに必要に応じてグリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトールなどの3価以上の多価アルコールを併用することができる。これらの多価アルコールは単独で、あるいは2種以上を混合して使用することができる。
 多塩基酸成分と多価アルコール成分とのエステル化物は、例えば、両成分のエステル化又はエステル交換反応により得ることができる。両成分のエステル化又はエステル交換反応は、それ自体既知の方法によって行うことができる。
 上記油変性アルキド樹脂としては、上記オイルフリーポリエステル樹脂の多塩基酸成分及び多価アルコール成分に加えて、油脂肪酸をそれ自体既知の方法で反応することで得られる樹脂が挙げることができる。油脂肪酸としては、例えばヤシ油脂肪酸、大豆油脂肪酸、アマニ油脂肪酸、サフラワー油脂肪酸、トール油脂肪酸、脱水ヒマシ油脂肪酸、キリ油脂肪酸などを挙げることができる。アルキド樹脂の油長は30%以下、特に5~20%程度のものが好ましい。
 ウレタン変性ポリエステル樹脂としては、上記オイルフリーポリエステル樹脂、又は上記オイルフリーポリエステル樹脂の製造の際に用いられる多塩基酸成分及び多価アルコール成分を反応させて得られる低分子量のオイルフリーポリエステル樹脂を、ポリイソシアネート化合物とそれ自体既知の方法で反応することで得られる樹脂が挙げられる。また、ウレタン変性アルキド樹脂は、上記アルキド樹脂、又は上記アルキド樹脂製造の際に用いられる各成分を反応させて得られる低分子量のアルキド樹脂を、ポリイソシアネート化合物とそれ自体既知の方法で反応することで得られる樹脂を包含する。ウレタン変性ポリエステル樹脂及びウレタン変性アルキド樹脂を製造する際に使用しうるポリイソシアネート化合物としては、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、トリレンジイソシアネート、4,4´-ジフェニルメタンジイソシアネート、4,4´-メチレンビス(シクロヘキシルイソシアネート)、2,4,6-トリイソシアナトトルエンなどが挙げられる。上記のウレタン変性樹脂(ウレタン変性ポリエステル樹脂及びウレタン変性アルキド樹脂)は、一般に、ウレタン変性樹脂を形成するポリイソシアネート化合物の固形分量がウレタン変性樹脂の固形分量に対して30質量%以下の量となるように変性したものを好適に使用することができる。
 エポキシ変性ポリエステル樹脂としては、上記ポリエステル樹脂の製造に使用する各成分(多塩基酸成分及び多価アルコール成分)から製造したポリエステル樹脂を用い、この樹脂中のカルボキシル基とエポキシ基含有樹脂との反応生成物や、ポリエステル樹脂中の水酸基とエポキシ樹脂中の水酸基とをポリイソシアネート化合物を介して結合した生成物などの、ポリエステル樹脂とエポキシ樹脂との付加、縮合、グラフトなどの反応による反応生成物を挙げることができる。かかるエポキシ変性ポリエステル樹脂は、一般に、エポキシ樹脂の固形分量がエポキシ変性ポリエステル樹脂の固形分量に対して、0.1~30質量%となる量で変性したものあることが好適である。
 アクリル変性ポリエステル樹脂としては、上記ポリエステル樹脂の製造に使用する各成分から製造したポリエステル樹脂を用い、この樹脂中のカルボキシル基又は水酸基にこれらの基と反応性を有する基(例えばカルボキシル基、水酸基又はエポキシ基)を含有するアクリル樹脂との反応生成物や、ポリエステル樹脂に(メタ)アクリル酸、(メタ)アクリル酸エステルなどをパーオキサイド化合物重合開始剤を使用してグラフト重合してなる反応生成物を挙げることができる。かかるアクリル変性ポリエステル樹脂は、一般に、アクリル樹脂の固形分量がアクリル変性ポリエステル樹脂の固形分量に対して、0.1~50質量%となる量で変性したものあることが好適である。
 なお、本明細書において、「(メタ)アクリル酸」とは、アクリル酸又はメタクリル酸を示す。
 以上に述べたポリエステル樹脂のうち、なかでもオイルフリーポリエステル樹脂、エポキシ変性ポリエステル樹脂が、加工性、耐食性などのバランスの点から好適である。
 前記水酸基含有塗膜形成樹脂として好適なエポキシ樹脂としては、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂;これらのエポキシ樹脂中のエポキシ基又は水酸基に各種変性剤が反応せしめられた変性エポキシ樹脂を挙げることができる。変性エポキシ樹脂の製造において、その変性剤による変性時期は、特に限定されるものではなく、エポキシ樹脂製造の途中段階に変性してもエポキシ樹脂製造の最終段階に変性してもよい。
 上記ビスフェノール型エポキシ樹脂は、例えばエピクロルヒドリンとビスフェノールとを、必要に応じてアルカリ触媒などの触媒の存在下に高分子量まで縮合させてなる樹脂、エピクロルヒドリンとビスフェノールとを、必要に応じてアルカリ触媒などの触媒の存在下に、縮合させて低分子量のエポキシ樹脂とし、この低分子量エポキシ樹脂とビスフェノールとを重付加反応させることにより得られた樹脂のいずれであってもよい。
 上記ビスフェノールとしては、ビス(4-ヒドロキシフェニル)メタン[ビスフェノールF]、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン[ビスフェノールA]、2,2-ビス(4-ヒドロキシフェニル)ブタン[ビスフェノールB]、ビス(4-ヒドロキシフェニル)-1,1-イソブタン、ビス(4-ヒドロキシ-tert-ブチル-フェニル)-2,2-プロパン、p-(4-ヒドロキシフェニル)フェノール、オキシビス(4-ヒドロキシフェニル)、スルホニルビス(4-ヒドロキシフェニル)、4,4´-ジヒドロキシベンゾフェノン、ビス(2-ヒドロキシナフチル)メタンなどを挙げることができ、なかでもビスフェノールA、ビスフェノールFが好適に使用される。上記ビスフェノール類は、1種で又は2種以上の混合物として使用することができる。
 ビスフェノール型エポキシ樹脂の市販品としては、例えば、三菱化学(株)製の、エピコート828、エピコート812、エピコート815、エピコート820、エピコート834、エピコート1001、エピコート1004、エピコート1007、エピコート1009、エピコート1010;旭化成イーマテリアルズ(株)製の、アラルダイトAER6099;及び三井化学(株)製の、エポミックR-309などを挙げることができる。
 また、水酸基含有塗膜形成樹脂として好適なエポキシ樹脂である前記ノボラック型エポキシ樹脂としては、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、分子内に多数のエポキシ基を有するフェノールグリオキザール型エポキシ樹脂など、各種のノボラック型エポキシ樹脂を挙げることができる。
 前記変性エポキシ樹脂としては、前記ビスフェノール型エポキシ樹脂又は上記ノボラック型エポキシ樹脂に、例えば、乾性油脂肪酸を反応させたエポキシエステル樹脂;アクリル酸又はメタクリル酸などを含有する重合性不飽和モノマー成分を反応させたエポキシアクリレート樹脂;イソシアネート化合物を反応させたウレタン変性エポキシ樹脂;上記ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂又は上記各種変性エポキシ樹脂中のエポキシ基にアミン化合物を反応させて、アミノ基又は4級アンモニウム塩を導入してなるアミン変性エポキシ樹脂などを挙げることができる。
 架橋剤(B)
 架橋剤(B)は、前記水酸基含有塗膜形成性樹脂(A)と反応し、硬化塗膜を形成するものであり、加熱などにより前記水酸基含有塗膜形成性樹脂(A)と反応して硬化させることができるものであれば特に制限なく使用することができる。なかでもアミノ樹脂、フェノール樹脂及びブロック化されていてもよいポリイソシアネート化合物が好適である。これらの架橋剤は、1種で又は2種以上組合せて使用することができる。
 上記アミノ樹脂としては、メラミン、尿素、ベンゾグアナミン、アセトグラナミン、ステログタナミン、スピログアナミン、ジシアンジアミド等のアミノ成分とアルデヒドとの反応によって得られるメチロール化アミノ樹脂が挙げられる。上記反応に用いられるアルデヒドとしては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、ベンツアルデヒド等が挙げられる。また、上記メチロール化アミノ樹脂を適当なアルコールによってエーテル化したものもアミノ樹脂として使用できる。エーテル化に用いられるアルコールの例としてはメチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、2-エチルブタノール、2-エチルヘキサノールなどが挙げられる。
 上記架橋剤として使用できるフェノール樹脂は、上記水酸基含有塗膜形成性樹脂(A)と架橋反応するものでる。具体例として、フェノール成分とホルムアルデヒド類とを触媒の存在下で加熱して縮合反応させてメチロール基を導入して得られるメチロール化フェノール樹脂のメチロール基の一部または全てをアルコールでアルキルエーテル化してなるレゾール型フェノール樹脂が挙げられる。
 レゾール型フェノール樹脂の製造においては、出発原料である上記フェノール成分として、2官能性フェノール化合物、3官能性フェノール化合物、4官能性以上のフェノール化合物などのフェノール化合物を使用することができる。
 上記フェノール化合物として、例えば、2官能性フェノール化合物としては、o-クレゾール、p-クレゾール、p-tert-ブチルフェノール、p-エチルフェノール、2,3-キシレノール、2,5-キシレノールなどを挙げることができる。3官能性フェノール化合物としては、石炭酸、m-クレゾール、m-エチルフェノール、3,5-キシレノール、m-メトキシフェノールなどが挙げられる。4官能性フェノール化合物としては、ビスフェノールA、ビスフェノールFなどを挙げることができる。中でも耐スクラッチ性の向上の観点から3官能性以上のフェノール化合物、特に石炭酸及び/又はm-クレゾールを用いることが好ましい。これらのフェノール化合物は1種で、又は2種以上組合せて使用することができる。
 フェノール樹脂の製造に用いられるホルムアルデヒド類としては、ホルムアルデヒド、パラホルムアルデヒド又はトリオキサンなどが挙げられ、1種で又は2種以上組合せて使用することができる。
 メチロール化フェノール樹脂のメチロール基の一部をアルキルエーテル化するのに用いられるアルコールとしては、炭素原子数1~8個、好ましくは1~4個の1価アルコールを好適に使用することができる。 好適な1価アルコールとしてはメタノール、エタノール、n-プロパノール、n-ブタノール、イソブタノールなどを挙げることができる。
 フェノール樹脂は、水酸基含有塗膜形成性樹脂(A)との反応性などの点からベンゼン核1核当りアルコキシメチル基を平均して0.5個以上、好ましくは0.6~3.0個有するものが適している。
 上記架橋剤として使用できるブロック化されていてもよいポリイソシアネート化合物におけるブロック化されていないポリイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネートもしくはトリメチルヘキサメチレンジイソシアネートの如き脂肪族ジイソシアネート類;水素添加キシリレンジイソシアネートもしくはイソホロンジイソシアネートの如き環状脂肪族ジイソシアネート類;トリレンジイソシアネート、キシリレンジイソシアネートもしくは4,4’-ジフェニルメタンジイソシアネート、クルードMDIの如き芳香族ジイソシアネート類の如き有機ジイソシアネートそれ自体、またはこれらの各有機ジイソシアネートと多価アルコール、低分子量ポリエステル樹脂もしくは水等との付加物、あるいは上記した如き各有機ジイソシアネート同志の環化重合体、更にはイソシアネート・ビウレット体等が挙げられる。
 ブロック化ポリイソシアネート化合物は、上記ポリイソシアネート化合物のフリーのイソシアネート基をブロック化剤によってブロック化したものである。上記ブロック化剤としては、例えばフェノール、クレゾール、キシレノールなどのフェノール系;ε-カプロラクタム;δ-バレロラクタム、γ-ブチロラクタムなどラクタム系;メタノール、エタノール、n-,i-又はt-ブチルアルコール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、ベンジルアルコールなどのアルコール系;ホルムアミドキシム、アセトアルドキシム、アセトキシム、メチルエチルケトキシム、ジアセチルモノオキシム、ベンゾフェノンオキシム、シクロヘキサンオキシムなどオキシム系;マロン酸ジメチル、マロン酸ジエチル、アセト酢酸エチル、アセチルアセトンなどの活性メチレン系などのブロック化剤を好適に使用することができる。上記ポリイソシアネート化合物と上記ブロック化剤とを混合することによって容易に上記ポリイソシアネート化合物のフリーのイソシアネート基をブロックすることができる。
 前記水酸基含有塗膜形成性樹脂(A)と上記架橋剤(B)との配合割合は、(A)及び(B)成分の合計固形分100質量部に基づいて、水酸基含有塗膜形成性樹脂(A)が55~95質量部、さらに好ましくは60~95質量部であって、架橋剤(B)が5~45質量部、さらに好ましくは5~40質量部の範囲内であることが耐食性、耐沸騰水性、加工性、硬化性等の点から好適である。
 本塗料の硬化性向上のため必要に応じて硬化触媒を配合することができる。架橋剤(B)がアミノ樹脂、特に低分子量の、メチルエーテル化またはメチルエーテルとブチルエーテルとの混合エーテル化メラミン樹脂を含有する場合には、硬化触媒としてスルホン酸化合物又はスルホン酸化合物のアミン中和物が好適に用いられる。スルホン酸化合物の代表例としては、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、ジノニルナフタレンスルホン酸、ジノニルナフタレンジスルホン酸などを挙げることができる。スルホン酸化合物のアミン中和物におけるアミンとしては、1級アミン、2級アミン、3級アミンのいずれであってもよい。これらのうち、塗料の安定性、反応促進効果、得られる塗膜の物性などの点から、p-トルエンスルホン酸のアミン中和物及び/又はドデシルベンゼンスルホン酸のアミン中和物が好適である。
 架橋剤(B)がフェノール樹脂である場合、硬化触媒として、上記スルホン酸化合物又はスルホン酸化合物のアミン中和物が好適に用いられる。
 架橋剤(B)がブロック化ポリイソシアネート化合物である場合には、ブロック剤の解離を促進する硬化触媒が好適であり、好適な硬化触媒として、例えば、オクチル酸錫、ジブチル錫ジ(2-エチルヘキサノエート)、ジオクチル錫ジ(2-エチルヘキサノエート)、ジオクチル錫ジアセテート、ジブチル錫ジラウレート、ジブチル錫オキサイド、ジオクチル錫オキサイド、2-エチルヘキサン酸鉛などの有機金属触媒等を挙げることができる。
 架橋剤(B)が2種以上の架橋剤の組合せである場合には、各架橋剤に有効な硬化触媒を組合せて使用することができる。
 防錆顔料混合物(C)
 本発明の塗料組成物において、防錆顔料混合物(C)は、下記バナジウム化合物(1)、リン酸系金属塩(2)及びマグネシウムイオン交換シリカ(3)からなるものである。
 バナジウム化合物(1)
 バナジウム化合物(1)は、五酸化バナジウム、バナジン酸カルシウム、バナジン酸マグネシウム及びメタバナジン酸アンモニウムからなる群から選択される少なくとも1種のバナジウム化合物である。五酸化バナジウム、バナジン酸カルシウム、バナジン酸マグネシウム及びメタバナジン酸アンモニウムは、5価バナジウムイオンの水への溶出性に優れており、バナジウム化合物(1)から放出される5価バナジウムイオンが、素材金属と反応すること、他の防錆顔料混合物からのイオンと反応することなどにより耐食性向上に効果的に働く。
 リン酸系金属塩(2)
 リン酸金属塩(2)は、少なくともマグネシウムを含有する、リン酸、亜リン酸、トリポリリン酸からなる群から選択される少なくとも1種の酸の塩であるリン酸系金属塩である。いいかえれば、リン酸、亜リン酸、トリポリリン酸からなる群から選択される少なくとも1種の酸の塩であるリン酸系金属塩であり、かつ、少なくともマグネシウムを含有する化合物である。上記リン酸金属塩(2)は、少なくともマグネシウムを含有する、リン酸、亜リン酸、トリポリリン酸からなる群から選択される少なくとも1種の酸の塩と換言することもできる。リン酸、亜リン酸およびトリポリリン酸は、いずれもリン含有オキソ酸である。
 リン酸系金属塩(2)としては、例えば、リン酸マグネシウム、リン酸マグネシウム・アンモニウム共析物、リン酸一水素マグネシウム、リン酸二水素マグネシウム、リン酸マグネシウム・カルシウム共析物、リン酸マグネシウム・コバルト共析物、リン酸マグネシウム・ニッケル共析物、亜リン酸マグネシウム、亜リン酸マグネシウム・カルシウム共析物、トリポリリン酸マグネシウム、トリポリリン酸二水素アルミニウムの酸化マグネシウム処理物、トリポリリン酸二水素亜鉛の酸化マグネシウム処理物等を挙げることができる。また、シリカ変性リン酸マグネシウム等のような、該化合物に対してシリカで変性した化合物であってもよい。リン酸系金属塩が、リン酸マグネシウム・アンモニウム共析物、リン酸マグネシウム・カルシウム共析物、リン酸マグネシウム・コバルト共析物、リン酸マグネシウム・ニッケル共析物、亜リン酸マグネシウム・カルシウム共析物等の共析物である場合、共析物における金属量のモル総量100モル%に対して、50モル%以上がマグネシウムであることが好ましい。
 リン酸系金属塩(2)から放出されるマグネシウムイオン、リン酸イオンが耐食性の向上に効果的に働く。なお、リン酸金属塩(2)(少なくともマグネシウムを含有する、リン酸、亜リン酸、トリポリリン酸からなる群から選択される少なくとも1種の酸の塩)が亜リン酸又はトリポリリン酸の塩を含む場合、該塩からは亜リン酸又はトリポリリン酸が生じ、防錆顔料混合物中において5価バナジウムイオン、3価鉄イオン等の酸化性金属イオンの存在化で、亜リン酸及びトリポリリン酸はリン酸イオンに変化すると考えられる。
 マグネシウムイオン交換シリカ(3)
 マグネシウムイオン交換シリカ(3)は、微細な多孔質のシリカ担体にイオン交換によってマグネシウムイオンが導入されたシリカ微粒子である。イオン交換は、公知の手法によって行うことができる。例えば、シリカ担体を塩化マグネシウムなどのマグネシウム塩を0.1~10%含む水溶液に浸漬する方法が例示される。
 上記微細な多孔質のシリカ担体としては、平均粒子径0.5~15μm、好ましくは1~10μmを有する表面が無処理又は有機物で処理されたシリカ微粒子を用いることができる。市販品として、サイリシア710、サイリシア740、サイリシア550、アエロジルR972(以上、いずれも富士シリシア化学(株)製)、ミズカシルP-73(水澤化学工業(株)製)、ガシル200DF(クロスフィールド社製)などを挙げることができる。
 マグネシウムイオン交換シリカ(3)としては、平均粒子径0.5~15μm、特に1~10μmを有することが好ましい。本発明における平均一次粒子径は、動的光散乱法によって測定される体積基準粒度分布のメジアン径(d50)であって、例えば日機装(株)製のナノトラック粒度分布測定装置を用いて測定することができる。
 また、吸油量が30~300ml/100g、特に、30~150ml/100gの範囲内であるものを好適に使用することができる。上記吸油量は、JIS K 5101号の記載に準じて測定した数値である。
 マグネシウムイオン交換シリカから放出されるマグネシウムイオンは、電気化学的作用、種々の塩生成作用に関与し、耐食性の向上に効果的に作用する。また、塗膜中に固定化されるシリカは、腐食雰囲気での塗膜の剥離抑制等に効果的に作用する。
 本発明の塗料組成物において、前記樹脂(A)及び該架橋剤(B)の固形分総量に対して、防錆顔料混合物(C)は、上記バナジウム化合物(1)、リン酸系金属塩(2)及びマグネシウムイオン交換シリカ(3)が下記範囲内にあり、かつ、防錆顔料混合物(C)の量が10~150質量%、好ましくは15~90質量%であることが耐食性の観点から好適である。
 バナジウム化合物(1):3~50質量%、好ましくは5~40質量%、
 リン酸系金属塩(2):1~50質量%、好ましくは2~30質量%、
 マグネシウムイオン交換シリカ(3):1~50質量%、好ましくは2~30質量%。
 本発明の塗料組成物においては、防錆顔料混合物(C)として、これら(1)、(2)及び(3)を所定量組合せることによって、相乗的に耐食性を向上させることができるものである。
 また、前記樹脂(A)及び架橋剤(B)の合計固形分100質量部に対して配合される防錆顔料混合物(C)を構成するバナジウム化合物(1)、リン酸系金属塩(2)及びマグネシウムイオン交換シリカ(3)の各顔料の各質量部量の混合物を、25℃の5質量%濃度の塩化ナトリウム水溶液10000質量部に添加して6時間攪拌し25℃で48時間静置した上澄み液を濾過した濾液のpHが3~9、好ましくは5~8であることが、バナジウム化合物(1)、リン酸系金属塩(2)及びマグネシウムイオン交換シリカ(3)の水分による溶解性及び防錆顔料の溶解液と金属板との反応性の観点から好適であり、この範囲にあることが耐食性の点からより好適である。
 すなわち、上記pH測定をする濾液は、25℃の5質量%濃度の塩化ナトリウム水溶液10000質量部に対して、バナジウム化合物(1)が3~50質量部の範囲内のいずれかの量、リン酸系金属塩(2)が1~50質量部の範囲内のいずれかの量、及びマグネシウムイオン交換シリカ(3)が1~50質量部の範囲内のいずれかの量添加し溶解した溶解液の濾液である。
 本発明塗料組成物には、前記水酸基含有塗膜形成性樹脂(A)、架橋剤(B)、防錆顔料混合物(C)、及び必要に応じて配合される硬化触媒以外に、防錆顔料混合物(C)に使用される防錆顔料以外の防錆顔料、塗料分野で使用できる着色顔料、体質顔料、紫外線吸収剤、紫外線安定剤、有機溶剤;沈降防止剤、消泡剤、塗面調整剤などの添加剤等を必要に応じて配合することができる。
 防錆顔料混合物(C)に使用される防錆顔料以外の防錆顔料としては、例えば、リン酸系金属塩(2)以外のリン酸系金属塩、マグネシウムイオン交換シリカ(3)以外のシリカ微粒子、ケイ酸金属塩、モリブデン酸亜鉛、酸化マンガンと酸化バナジウムとの焼成物、リン酸カルシウムと酸化バナジウムとの焼成物等を挙げることができる。これらの防錆顔料は1種で又は2種以上を組合せて使用することができる。
 リン酸系金属塩(2)以外のリン酸系金属塩としては、マグネシウムを含有しないリン酸系金属塩を挙げることができる。
 具体的には、例えば、リン酸カルシウム、リン酸カルシウムアンモニウム、リン酸一水素カルシウム、リン酸二水素カルシウム、リン酸塩化フッ化カルシウム、リン酸亜鉛、リン酸アルミニウム、リン酸水素亜鉛、リン酸アルミニウム、リン酸水素アルミニウム;トリポリリン酸アルミニウム、トリポリリン酸ニ水素アルミニウム等の金属元素がアルミニウム、亜鉛、又はカルシウムであるトリポリリン酸金属塩等を挙げることができる。
 マグネシウムイオン交換シリカ(3)以外のシリカ微粒子としては、マグネシウムイオン交換シリカ以外のシリカ微粒子である限り特に制限なく使用でき、例えば、表面が無処理のシリカ微粉末、表面が有機物で処理されたシリカ微粉末、有機溶剤分散性コロイダルシリカ等を挙げることができる。
 表面が無処理又は有機物で処理されたシリカ微粒子としては、平均粒子径0.5~15μm、好ましくは1~10μmを有するシリカ微粉末、有機溶剤分散性コロイダルシリカ等を挙げることができる。
 シリカ微粉末としては、吸油量が30~350ml/100g、好ましくは30~150ml/100gの範囲内にあるものを好適に使用することができ、市販品として、サイリシア710、サイリシア740、サイリシア550、アエロジルR972(以上、いずれも富士シリシア化学(株)製)、ミズカシルP-73(水澤化学工業(株)製)、ガシル200DF(クロスフィールド社製)などを挙げることができる。
 有機溶剤分散性コロイダルシリカは、オルガノシリカゾルとも呼称され、アルコール化合物、グリコール化合物、エーテル化合物などの有機溶剤中に、粒子径が約5~120nm程度のシリカ微粒子が安定に分散されたものであって、市販品としては、オスカル(OSCAL)シリーズ(日揮触媒化成(株)製)、オルガノゾル(日産化学(株)製)等を挙げることができる。
 ケイ酸金属塩は、二酸化ケイ素と金属酸化物とからなる塩であり、オルトケイ酸塩、ポリケイ酸塩等のいずれであってもよい。
 ケイ酸金属塩としては、例えば、ケイ酸カルシウム、ケイ酸亜鉛、ケイ酸アルミニウム、オルトケイ酸アルミニウム、水化ケイ酸アルミニウム、ケイ酸アルミニウムカルシウム、ケイ酸アルミニウムナトリウム、ケイ酸アルミニウムベリリウム、ケイ酸ナトリウム、オルトケイ酸カルシウム、メタケイ酸カルシウム、ケイ酸カルシウムナトリウム、ケイ酸ジルコニウム、オルトケイ酸マグネシウム、メタケイ酸マグネシウム、ケイ酸マグネシウムカルシウム、ケイ酸マンガン、ケイ酸バリウム、カンラン石、ザクロ石、トルトバイタイト、イキョク鉱、ベニトアイト、ネプチュナイト、リョクチュウ石、トウキ石、ケイカイ石、バラキ石、トウセン石、ゾノトラ石、タルク、ギョガン石、アルミノケイ酸塩、ホウケイ酸塩、ベリロケイ酸塩、チョウ石、フッ石等を挙げることができる。
 金属ケイ酸塩としては、なかでもケイ酸カルシウム、オルトケイ酸カルシウム、メタケイ酸カルシウムを好適に使用することができる。
 上記着色顔料としては、例えばシアニンブルー、シアニングリーン、アゾ系やキナクリドン系等の有機赤顔料等の有機着色顔料;チタン白、チタンエロー、ベンガラ、カーボンブラック、各種焼成顔料等の無機着色顔料を挙げることができ、なかでもチタン白を好適に使用することができる。
 上記体質顔料としては、例えばタルク、クレー、シリカ、マイカ、アルミナ、炭酸カルシウム、硫酸バリウム等を挙げることができる。
 上記紫外線吸収剤としては、例えば2-(2-ヒドロキシ-3,5-ジ-t-アミルフェニル)-2H-ベンゾトリアゾール、イソオクチル-3-(3-(2H-ベンゾトリアゾール-2-イル)-5-t-ブチル-4-ヒドロキシフェニルプロピオネート、2-[2-ヒドロキシ-3,5-ジ(1,1-ジメチルベンジン)フェニル]-2H-ベンゾトリアゾール、2-[ 2-ヒドロキシ-3-ジメチルベンジル-5-(1,1,3,3-テトラメチルブチル)フェニル]-2H-ベンゾトリアゾール、メチル- 3 -[3-t-ブチル-5-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェニル]プロピオネート/ポリエチレングリコール300との縮合物などのベンゾトリアゾール系誘導体;2-[4-(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ]-2 -ヒドロキシフェニル-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジンなどのトリアジン系誘導体;エタンジアミド-N-(2-エトキシフェニル)-N’-(2-エチルフェニル)-(オキサリックアミド)、エタンジアミド-N-(2-エトキシフェニル)-N'-(4-イソドデシルフェニル)-(オキサリックアミド)等の蓚酸アニリド系誘導体などを挙げることができる。
 上記紫外線安定剤としては、例えば、ヒンダードアミン系化合物、ヒンダードフェノール系化合物;CHIMASORB944、TINUVIN144、TINUVIN292、TINUVIN770、IRGANOX1010、IRGANOX1098(以上、これらの商品名の製品は、いずれもチバ・ジャパン(株)の製品である。)等を挙げることができる。
 紫外線吸収剤や紫外線安定剤を塗料中に配合することによって、この塗膜表面の光による劣化を抑制することができる。この塗料をプライマーとして使用した場合、上層塗膜を通過してプライマー塗膜表面に到達した光によるプライマー表面の劣化を抑制することができるので、プライマー塗膜表面の劣化によるプライマー塗膜と上層塗膜との層間剥離を防止でき、優れた耐食性を維持できる。
 本発明塗料組成物に配合できる前記有機溶剤は、本発明組成物の塗装性改善等のために必要に応じて配合されるものであり、水酸基含有塗膜形成性樹脂(A)及び架橋剤(B)を溶解ないし分散できるものが使用できる。具体的な溶剤としては、例えば、トルエン、キシレン、高沸点石油系炭化水素などの炭化水素、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロンなどのケトン、酢酸エチル、酢酸ブチル、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテートなどのエステル、メタノール、エタノール、イソプロパノール、ブタノールなどのアルコール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルなどのエーテルアルコール等を挙げることができ、これらは単独で、あるいは2種以上を混合して使用することができる。
 本発明塗料組成物は、本発明組成物から得られる硬化塗膜のガラス転移温度が40~115℃、好ましくは50~105℃であることが塗膜の耐食性、耐酸性及び加工性などの点から好適である。塗膜のガラス転移温度は、DYNAMIC VISCOELASTOMETER MODEL VIBRON(ダイナミックビスコエラストメータ モデルバイブロン)DDV-IIEA型(東洋ボールドウィン社製、自動動的粘弾性測定機)を用いて周波数110Hzにおける温度分散測定によるtanδの変化から求めた極大値の温度である。
 本発明塗料組成物が金属板上に塗装され形成された塗膜は、優れた耐食性を示す。その理由として本発明者は、腐食環境下での塩化物イオンなどによる素材金属の溶解により生成される金属イオンと5価のバナジウムイオン(VO やVO 3-のバナジン酸イオン)との酸化還元反応を経ない直接的な沈殿性塩の生成、5価バナジウムイオンと素材金属との酸化還元反応により生成する3価バナジウムイオン及び素材金属イオンが、腐食環境中でのマグネシウムイオン交換シリカの加水分解により放出されるマグネシウムイオンやケイ酸イオンと効果的に沈殿性の塩又は化合物を生成することで、素材露出面を効果的に被覆することが第一の理由であると考えている。
 また、マグネシウムイオン交換シリカは、腐食雰囲気中に放出されるマグネシウムイオンによる効果だけではなく、表面の弱酸性官能基の効果により、その近傍の湿潤雰囲気のpHを弱酸性に調整する作用が強く、5価バナジウムイオンと素材金属との酸化還元反応を促進すること、さらにはマグネシウムイオン交換シリカが塗膜中に固定化されるため、長期にわたる腐食雰囲気下での腐食進行下においても、pH調整能力が持続すること、また、より強い腐食進行雰囲気となった場合には加水分解反応がさらに進行することにより、ケイ酸イオンを放出する持続性があることが第二の理由であると考えている。
 更には、同時に溶出するリン酸イオンにより、腐食進行部位及びその周辺が、特に5価バナジウムイオンと素材金属との酸化還元反応が進行するのに好適なpH域に調整されるためであることが第三の理由と考えている。
 また、特にめっきが施されていない鋼板、アルミのような不導体化作用の強い金属の合金中の含有量の少ないタイプの亜鉛めっき鋼板では、エッジ部や深いカット部などにおいて、防錆顔料より溶出する成分がいち早く皮膜形成により不導体化することが防食性の観点からは望ましいが、マグネシウムイオンは、原子量が比較的小さくかつ2価のイオンであるため、イオン半径が小さく輸率が高い。このため、腐食電流の荷電体としての能力が他のイオンに比較して高いため、該腐食反応が進行した場合における腐食雰囲気中での移動がナトリウムイオン等よりも早いのではないかと考えられる。従って、素材金属より溶解するイオンといち早く相互作用が可能となるために、これまで述べてきた上記の腐食抑制反応との効果的な相乗効果が得られる。
 また、防錆顔料(C)として、前記(1)、(2)及び(3)を併用することで、前記(1)、(2)及び(3)のそれぞれが有する耐酸性や耐アルカリ性及び耐水性の弱さを効果的に打ち消すことができる。これら防錆顔料に基づく作用の相乗効果が大きく働き、優れた耐食性を達成できたものと考えている。
 塗装金属板
 本発明の塗装金属板は、上記塗料組成物を、金属板上に塗装し硬化させる(すなわち、硬化塗膜を形成する)ことによって塗装金属板を得ることができる。塗装される金属板としては、冷延鋼板、溶融亜鉛メッキ鋼板、電気亜鉛メッキ鋼板、鉄-亜鉛合金メッキ鋼板(ガルバニル鋼板)、アルミニウム-亜鉛合金メッキ鋼板(合金中アルミニウムを約55%含有する「ガルバリウム鋼板」、めっき合金中アルミニウムを約5%含有する「ガルファン」など)、ニッケル-亜鉛合金メッキ鋼板、ステンレス鋼板、アルミニウム板、銅板、銅メッキ鋼板、錫メッキ鋼板等の金属板をあげることができる。
 本発明塗料組成物は、これら金属板のうち、特に、めっき成分がアルミニウムを主成分とするめっき鋼板の耐食性向上効果に優れている。具体的には、上記合金中アルミニウムを約55%含有する「ガルバリウム鋼板」等のめっき成分中のアルミニウム含有量が50%以上であるめっき鋼板の耐食性向上効果に特に優れている。また、めっきが施されていない鋼板の耐食性向上効果にも非常に優れている。
 これらの金属板表面は、化成処理がなされていてもよい。化成処理としては、例えば、リン酸亜鉛処理やリン酸鉄処理などのリン酸塩処理、複合酸化膜処理、リン酸クロム処理、クロメート処理等を挙げることができる。
 本発明塗料組成物は、上記金属板上に、ロールコート法、カーテンフローコート法、スプレー法、刷毛塗り法、浸漬法等の公知の方法により塗装することができる。本発明塗料組成物から得られる塗膜の硬化膜厚は、特に限定されるものではないが、通常2~10μm、好ましくは3~6μmの範囲である。塗膜の硬化は、使用する樹脂の種類等に応じて適宜設定すればよい。例えば、コイルコーティング法等によって塗装した塗料組成物を連続的に焼付ける場合には、通常、素材到達最高温度が160~250℃、好ましくは180~230℃となる条件で15~60秒間焼付ける。塗料組成物をバッチ式で焼付ける場合には、80~200℃で10~30分間焼付けることによっても行うことができる。また、架橋剤(B)として、ブロック化していないポリイソシアネートを用いる場合、及び、樹脂(A)としてビスフェノール型エポキシ樹脂を用い、架橋剤(B)としてアミン化合物を用いる場合などの、塗膜形成過程における架橋反応に特に加熱を必要としない組合せの場合には、常法に従い、常温で乾燥することにより硬化させることができる。金属板上に硬化塗膜を形成する工程は、金属板の片面のみに行うもの、金属板の片面ごとに行うもの又は金属板の両面同時に行うもののいずれであってもよい。
 本発明の塗装金属板は、化成処理されていてもよい金属板上に、上記本発明塗料組成物による塗膜が設けられており、この本発明塗料組成物による塗膜を形成した塗装金属板そのものを使用に供することができる。さらに、この本発明塗料組成物による塗膜の上に、上塗塗膜を設けることもできる。上塗塗膜の膜厚は、通常、8~30μm、好ましくは10~25μmとすることができる。
 上記上塗塗膜を形成する上塗塗料としては、例えばプレコート鋼板用として公知の、ポリエステル樹脂系、アルキド樹脂系、シリコン変性ポリエステル樹脂系、シリコン変性アクリル樹脂系、フッ素樹脂系等の上塗塗料を挙げることができる。加工性が特に重視される場合には高度加工用のポリエステル系上塗塗料を使用することによって加工性の特に優れた塗装鋼板を得ることができる。本発明の塗装金属板は、耐食性に優れた塗膜性能を示すことができる。
 被塗物となる金属板として、めっき成分が合金中アルミニウムを約55%含有する「ガルバリウム鋼板」、アルミニウム-亜鉛合金メッキ鋼板等のめっき成分中のアルミニウム含有量が高いめっき鋼板を使用した場合、平面部の耐食性はかなり向上してきている一方で、これまでは、切断した端面部、成型加工した加工部において、耐食性は不十分であったが、本発明塗料組成物を塗装することによって、端面部、加工部においても優れた耐食性を得ることができる。
 また、被塗物の両面に本発明塗料組成物による塗膜が設けられていてもよい。さらに必要に応じて、本発明塗料組成物による塗膜の上に、上記上塗塗膜が形成されていてもよい。本発明塗料組成物を両面に形成する、すなわち裏面にも形成することによって、クロム含有の防錆顔料を含まず、環境衛生面にも有利でかつ耐食性に優れた塗装金属板を得ることができる。
 以下、製造例、実施例及び比較例を挙げて、本発明をより具体的に説明する。但し、本発明は、これらにより限定されない。各例において、「部」及び「%」は、特記しない限り、質量基準による。また、塗膜の膜厚は硬化塗膜に基づく。
 レゾール型フェノール樹脂の製造
 製造例1
 反応容器に、ビスフェノールA100部、37%ホルムアルデヒド水溶液178部及び水酸化ナトリウム1部を配合し、60℃で3時間反応させた後、減圧下、50℃で1時間脱水した。ついでn-ブタノール100部とリン酸3部を加え、110~120℃で2時間反応を行った。反応終了後、得られた溶液を濾過して生成したリン酸ナトリウムを濾別し、固形分約50%のレゾール型フェノール樹脂(B1)の溶液を得た。得られた樹脂は、数平均分子量880で、ベンゼン核1核当たり平均メチロール基数が0.4個及び平均アルコキシメチル基数が1.0個であった。
 塗料組成物の製造
 実施例1
 エピコート#1009(三菱化学(株)製、ビスフェノールA型エポキシ樹脂、水酸基含有樹脂)85部を混合溶剤1[シクロヘキサノン/エチレングリコールモノブチルエーテル/ソルベッソ150(エッソ石油社製、高沸点芳香族炭化水素化合物溶剤)=3/1/1(質量比)]135部に溶解したエポキシ樹脂溶液220部に、五酸化バナジウム5部、リン酸マグネシウム3部、マグネシウムイオン交換シリカ2部、チタン白20部、バリタ20部及び混合溶剤2[ソルベッソ150(エッソ石油社製、高沸点芳香族炭化水素化合物溶剤)/シクロヘキサノン=1/1(質量比)]の適当量を混合し、ツブ(顔料粗粒子の粒子径)が20μm以下となるまで顔料分散を行った。次いで、この分散物にデスモジュールBL-3175(住化バイエルウレタン社製、メチルエチルケトオキシムでブロック化したHDIイソシアヌレート型ポリイソシアネート化合物溶液、固形分約75%)20部(固形分量で15部)、タケネートTK-1(武田薬品工業(株)製、有機錫化合物ブロック剤解離触媒、固形分約10%)2部を加えて均一に混合し、さらに上記混合溶剤2を加えて粘度約80秒(フォードカップ#4/25℃)に調整して塗料組成物1を得た。
 実施例2~30、比較例1~7ならびに参考例1及び2
 実施例1において、使用する水酸基含有樹脂、架橋剤、防錆顔料、その他顔料を下記表1に示すとおりとする以外は、実施例1と同様に行い、各塗料組成物2~39を得た。参考例1及び2は、従来のクロメート含有防錆顔料を含有する防錆塗料組成物である。表1における水酸基含有樹脂、架橋剤及び顔料成分等の量は、いずれも固形分質量による表示である。
 表1に樹脂成分(水酸基含有樹脂と架橋剤との合計固形分質量100質量部)に対する各防錆顔料の量の合計を、25℃の5質量%濃度の塩化ナトリウム水溶液10000質量部に添加して6時間攪拌し25℃で48時間静置した上澄み液を濾過した濾液のpH(防錆顔料溶解液のpH)も併せて示す。例えば、実施例1の防錆顔料溶解液のpHは、25℃の5質量%濃度の塩化ナトリウム水溶液10000質量部に、五酸化バナジウム5質量部、リン酸マグネシウム3部及びマグネシウムイオン交換シリカ2部を添加して上記条件にて溶解させた上澄み液を濾過した濾液のpHである。
 上記表1において、表中の(注)は、それぞれ下記の意味を有する。
(注1)エポキー837:三井化学(株)社製、商品名、ウレタン変性エポキシ樹脂、水酸基含有樹脂、一級水酸基価約35、酸価約0。
(注2)バイロン296:東洋紡績(株)社製、商品名、エポキシ変性ポリエステル樹脂、水酸基含有樹脂、水酸基価7、酸価6。
(注3)スミジュールN3300:住化バイエルウレタン(株)社製、イソシアヌレート型ポリイソシアネート化合物、固形分100%。
(注4)サイメル303:三井化学(株)社製、商品名、メチルエーテル化メラミン樹脂。
(注5)K-WhiteG105:テイカ(株)製、商品名、トリポリリン酸二水素アルミニウムの酸化マグネシウム処理物。
(注6)CRF62:キクチカラー(株)製、商品名、シリカ変性リン酸マグネシウム。
(注7)マグネシウムイオン交換シリカ:濃度5質量%の塩化マグネシウム水溶液10000質量部中に10質量部のサイリシア710(富士シリシア化学(株)製、商品名、シリカ微粒子、吸油量約105ml/100g。)を5時間攪拌混合した後、ろ過して固形分を取り出し、固形分をよく水洗し乾燥してマグネシウムイオン交換シリカを得た。
(注8)sandvor3058:クラリアント社製、商品名、ヒンダードアミン化合物紫外線安定剤。
(注9)Nacure5225:米国キングインダストリイズ社製、ドデシルベンゼンスルホン酸のアミン中和溶液。
 試験用塗装板の作成
 上記実施例1~30、比較例1~7ならびに参考例1及び2で得た各塗料組成物1~39及び上塗塗料を用い、下記の塗装仕様にて各素材に塗装し、各試験用塗装板を得た。
 塗装仕様1(素材;ガルバリウム鋼板)
 表面及び裏面に化成処理が施されたガルバリウム鋼板(板厚0.35mm、アルミニウム-亜鉛合金メッキ鋼板、合金中アルミニウムを約55%含有、合金メッキ目付量150g/m、表1中「GL鋼板」と表示する。)に、上記各塗料組成物1~39を膜厚5μmとなるようにバーコーターにて塗装し、素材到達最高温度が220℃となるようにして30秒間焼付けて裏面塗膜を形成した。この裏面塗膜を形成した塗装板の裏面塗膜と反対側の鋼板面に、同じ各塗料組成物1~39を膜厚5μmとなるようにバーコーターにて塗装し、素材到達最高温度が220℃となるようにして40秒間焼付けて、表面塗膜及び裏面塗膜の各プライマー塗膜を形成した。
 冷却後、これらのプライマー塗膜上に、KPカラー1580B40(関西ペイント(株)製、商品名、ポリエステル含有上塗塗料、青色、硬化塗膜のガラス転移温度約70℃)をバーコーターにて膜厚が15μmとなるように塗装し、素材到達最高温度が220℃となるようにして40秒間焼付けることにより各試験用塗装板を得た。
 塗装仕様2(素材:冷延鋼板)
 化成処理が施された冷延鋼板(板厚0.6mm、表1中「SPC」と表示する。)に、上記各塗料組成物1~39を膜厚5μmとなるようにバーコーターにて塗装し、素材到達最高温度が220℃となるようにして30秒間焼付けて裏面塗膜を形成した。この裏面塗膜を形成した塗装板の裏面塗膜と反対側の鋼板面に、同じ各塗料組成物1~39を膜厚10μmとなるようにバーコーターにて塗装し、素材到達最高温度が220℃となるようにして40秒間焼付けて、表面塗膜及び裏面塗膜の各プライマー塗膜を形成した。
 冷却後、これらのプライマー塗膜上に、KPカラー1580B40をバーコーターにて膜厚が15μmとなるように塗装し、素材到達最高温度が220℃となるようにして40秒間焼付けることにより各試験用塗装板を得た。
 塗膜性能試験
 上記実施例1~30、比較例1~7ならびに参考例1及び2で得られた塗料組成物、及び上塗塗料を塗装して得られた各試験用塗装板について、下記試験方法に従って塗膜性能試験を行った。試験結果を併せて表1に示す。
 試験方法
 耐沸騰水性:5cm×10cmの大きさに切断した各試験用塗装板を約100℃の沸騰水中に5時間浸漬した後、引き上げて表面側の塗膜外観を評価するとともに、碁盤目テープ付着試験を行い評価した。碁盤目テープ付着試験は、JIS K-5400 8.5.2(1990)碁盤目テープ法に準じて、切り傷の隙間間隔を1mmとし、碁盤目100個を作り、その表面にセロハン粘着テープを密着させ、急激に剥がした後の塗面に残存する碁盤目の数を調べた。
S:塗膜にフクレの発生、白化などの異常がなく、残存碁盤目数100個、
A:塗膜にフクレの発生、白化などの異常がなく、残存碁盤目数91~99個、
B:塗膜にフクレ又は白化などの異常がわずかに認められ、残存碁盤目数91個以上である、又は塗膜にフクレの発生、白化などの異常がないが、残存碁盤目数71~90個、
C:塗膜にフクレの発生がかなりもしくは著しく認められる、又は残存碁盤目数70個以下。
 耐アルカリ性:5cm×10cmの大きさに切断した各試験用塗装板裏面及び切断面を防錆塗料にてシールし、塗装板の表面側中央部に素地に達するクロスカットを入れた。この塗装板を40℃の5%水酸化ナトリウム水溶液に48時間浸漬した後、取出し洗浄し、室温にて乾燥した塗装板の表面側の塗膜外観を評価するとともに、クロスカット部にセロハン粘着テープを密着させ、急激に剥がした後の塗膜におけるカット部からの剥離幅(片側)を評価した。
S:フクレの発生がなく、カット部からの剥離幅が1.5mm以下、
A:フクレの発生がなく、カット部からの剥離幅が1.5mmを超え、3mm以下、
B:フクレの発生が少し認められるが、カット部からのテープ剥離幅が3mm以下、又はフクレの発生が認められないが、カット部からのテープ剥離幅が3mmを超える、
C:フクレの発生が認められ、かつカット部からのテープ剥離幅が3mmを超える。
 耐酸性:5cm×10cmの大きさに切断した各試験用塗装板裏面及び切断面を防錆塗料にてシールし、塗装板の表面側中央部に素地に達するクロスカットを入れた。この塗装板を40℃の5%硫酸水溶液に48時間浸漬した後、取出し水洗し、室温にて乾燥した塗装板の表面側の塗膜外観を評価するとともに、クロスカット部にセロハン粘着テープを密着させ、急激に剥がした後の塗膜におけるカット部からの剥離幅(片側)を評価した。
S:フクレの発生がなく、カット部からのテープ剥離幅が1.5mm以下、
A:フクレの発生がなく、カット部からのテープ剥離幅が1.5mmを超え3mm以下、
B:フクレの発生が少し認められるが、カット部からのテープ剥離幅が3mm以下、又はフクレの発生が認められないが、カット部からのテープ剥離幅が3mmを超える、
C:フクレの発生が認められ、かつカット部からのテープ剥離幅が3mmを超える。
 耐スクラッチ性:20℃の室温において、コインスクラッチテスター(自動化技研工業社製)を用いて、各試験用塗装板の表面側の塗面に10円銅貨の縁を45度の角度に保ち、3kgの荷重をかけて押し付けながら10円銅貨を10mm/秒の速度で約30mm引っ張って塗面に傷を付けた時の傷の程度を下記基準に従って評価した。
S:傷の部分に金属の素地は見られない、
A:傷の部分に金属の素地がわずかに見られる、
B:傷の部分に金属の素地がかなり見られる、
C:傷の部分に塗膜がほとんど残らず金属の素地がきれいに見られる。
 複合耐食性試験(CCT):複合耐食性試験に供する試験片は以下のように作成する。予め幅7cm×15cmに切断した各試験用塗装板を、キセノン促進耐候性試験機にて500時間促進耐候性試験を行った後、長辺両側それぞれ端から5mmの箇所でシャーリング切断機にて切断を行い、バリが表面側塗膜面に向かって右側において表面側に向き、左側において裏面側に向くように切断した。その試験片の表側中央部に素地に達する狭角30度、線幅0.5mmのクロスカットをカッターナイフの背中を用いて入れ、塗装板の上端エッジ部を防錆塗料にてシールし、上端部に3T折り曲げ加工部(塗装板の表面側を外側にして折り曲げ、その内側に塗装板と同じ厚さの板を3枚挟み、上記塗装板を万力にて180度折り曲げする加工)を設けて試験片を作成した。得られた各試験片について、JIS K-5621(1990)に準じた複合サイクル腐食試験を行った。複合サイクル腐食試験の条件は、(30℃で5%食塩水噴霧0.5時間)-(30℃でRH(相対湿度)95%以上の耐湿試験器内で試験1.5時間)-(50℃で乾燥2時間)-(30℃で乾燥2時間)を1サイクルとしたものであり、200サイクル(合計1200時間)試験を行った。この試験後の試験片の3T折り曲げ加工部、エッジ部、クロスカット部、平面部の状態を評価した。
 塗装仕様1(GL鋼板)については以下の基準に従って評価した。
 加工部:3T折り曲げ加工部における錆部の合計長さ及び赤錆の発生有無により、次の基準で評価した。
S:白錆が認められない、又は白錆が認められるが5mm未満、
A:白錆が認められるが5mm以上でかつ20mm未満、
B:白錆が20mm以上でかつ40mm未満、
C:白錆が40mm以上、又は赤錆の発生が認められる。
 エッジ部:試験片の左右の長辺のエッジクリープ幅の平均値及び赤錆の発生有無により、次の基準で評価した。
S:赤錆の発生なく、エッジクリープ幅の平均値3mm未満、
A:赤錆の発生なく、エッジクリープ幅の平均値3mm以上でかつ7mm未満、
B:赤錆の発生なく、エッジクリープ幅の平均値7mm以上でかつ20mm未満、
C:エッジクリープ幅の平均値20mm以上、又は赤錆の発生が認められる。
 クロスカット部:試験片のクロスカット部の腐食状態を、0.5mmのカット幅の地金露出部における白錆発生長さ割合、カット部の左右のフクレ幅(両側の和)の平均値及び赤錆の発生有無により、次の基準で評価した。
S:地金露出部における白錆発生長さ割合30%未満でかつフクレ幅2mm未満、
A:地金露出部における白錆発生長さ割合30%以上でかつフクレ幅2mm未満、又は地金露出部における白錆発生長さ割合30%未満でかつフクレ幅2mm以上で5mm未満、
B:地金露出部における白錆発生長さ割合50%以上でかつフクレ幅5mm以上で10mm未満、
C:地金露出部における白錆発生長さ割合50%以上でかつフクレ幅10mm以上、又は赤錆の発生が認められる。
 平面部:連続的なエッジからの腐食部位先端より離れた部位に発生する、平面部の非連続かつ散発的なフクレについて、以下の基準により評価した。
S:フクレの発生が認められない、
A:フクレの直径がおよそ2mm未満であり、個数も10個未満、
B:フクレの直径がおよそ2mm以上かつ個数10個未満であるか、フクレ直径が2mm未満でかつ個数が10個以上、
C:フクレ直径がおよそ2mm以上かつ個数10個以上。
 塗装仕様2(SPC)については以下の基準に従って評価した。
 クロスカット部:試験片のクロスカット部の腐食状態を、0.5mmのカット幅の地金露出部における白錆発生長さ割合、カット部の左右のフクレ幅(両側の和)の平均値及び赤錆の発生有無により、以下の基準で評価した。
S:フクレ幅3mm未満、赤錆の発生も少ない。
A:赤錆の発生はやや多いもののフクレ幅3mm未満、フクレ幅3mm以上かつ5mm未満で赤錆の発生は少ない。
B:フクレ幅5mm以上で10mm未満。
C:フクレ幅10mm以上。
 平面部:クロスカット部からの腐食部位先端より離れた部位に発生する、平面部の非連続かつ散発的なフクレについて、以下の基準により評価した。
S:フクレの発生が認められない。
A:フクレの直径がおよそ2mm未満であり、個数も10個未満。
B:フクレの直径がおよそ2mm以上かつ個数10個未満であるか、フクレ直径が2mm未満でかつ個数が10個以上。
C:フクレ直径がおよそ2mm以上かつ個数10個以上。
 総合評価:塗料組成物においては、得られる塗膜の耐沸騰水性、耐アルカリ性、耐酸性、耐スクラッチ性、及び、複合耐食性試験による各評価性能の全てが高いことが重要である。塗装仕様1(GL鋼板)及び塗装仕様2(SPC)の各々について、以下の基準にて総合評価を行なった。
S:耐沸騰水性、耐アルカリ性、耐酸性、耐スクラッチ性、及び、複合耐食性試験による各評価性能の評価がすべてS又はAであり、かつ少なくとも1つがSである、
A:耐沸騰水性、耐アルカリ性、耐酸性、耐スクラッチ性、及び、複合耐食性試験による各評価性能の評価がすべてAである、
B:耐沸騰水性、耐アルカリ性、耐酸性、耐スクラッチ性、及び、複合耐食性試験による各評価性能の評価がすべてS、A又はBであり、かつ少なくとも1つがBである
C:耐沸騰水性、耐アルカリ性、耐酸性、耐スクラッチ性、及び、複合耐食性試験による各評価性能の評価のうち少なくとも1つがCである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (10)

  1.  (A)水酸基含有塗膜形成性樹脂、
    (B)架橋剤及び
    (C)防錆顔料混合物を含有する塗料組成物であって、
     該防錆顔料混合物(C)が、
    (1)五酸化バナジウム、バナジン酸カルシウム、バナジン酸マグネシウム及びメタバナジン酸アンモニウムからなる群から選択される少なくとも1種のバナジウム化合物、
    (2)少なくともマグネシウムを含有する、リン酸、亜リン酸及びトリポリリン酸からなる群から選択される少なくとも1種の酸の塩であるリン酸系金属塩、
    (3)マグネシウムイオン交換シリカからなるものであり、
     該樹脂(A)及び該架橋剤(B)の固形分総量に対して 
     該バナジウム化合物(1)の量が3~50質量%、
     該リン酸系金属塩(2)の量が1~50質量%、及び 
     該マグネシウムイオン交換シリカ(3)の量が1~50質量%
     であって、かつ該防錆顔料混合物(C)の量が10~150質量%であることを特徴とする塗料組成物。
  2.  水酸基含有塗膜形成性樹脂(A)が、水酸基含有エポキシ樹脂及び水酸基含有ポリエステル樹脂からなる群から選択される少なくとも1種である請求項1に記載の塗料組成物。
  3.  架橋剤(B)が、アミノ樹脂、フェノール樹脂及びブロック化されていてもよいポリイソシアネート化合物からなる群から選択される少なくとも1種の架橋剤である請求項1に記載の塗料組成物。
  4.  さらに、防錆顔料混合物(C)以外の防錆性顔料、二酸化チタン顔料及び体質顔料からなる群から選択される少なくとも1種の顔料成分を含有する請求項1に記載の塗料組成物。
  5.  さらに、紫外線吸収剤及び紫外線安定剤からなる群から選択される少なくとも1種を含有する請求項1に記載の塗料組成物。
  6.  前記樹脂(A)及び架橋剤(B)の合計固形分100質量部に対して配合される防錆顔料混合物(C)を構成するバナジウム化合物(1)、リン酸系金属塩(2)及びマグネシウムイオン交換シリカ(3)の各顔料の各質量部量の混合物を、25℃の5質量%濃度の塩化ナトリウム水溶液10000質量部に添加して6時間攪拌し25℃で48時間静置した上澄み液を濾過した濾液のpHが3~9であることを特徴とする請求項1に記載の塗料組成物。
  7.  アルミニウムを主成分とするめっき鋼板の塗装に用いられる請求項1に記載の塗料組成物。
  8.  金属板上に、請求項1に記載の塗料組成物に基づく硬化塗膜を形成する工程を含む、塗装金属板の製造方法。
  9.  めっき成分がアルミニウムを主成分とするめっき鋼板上に、請求項1に記載の塗料組成物に基づく硬化塗膜を形成する工程を含む、塗装金属板の製造方法。
  10.  請求項8又は9に記載の方法により得られる、塗装金属板。
PCT/JP2011/078924 2010-12-22 2011-12-14 耐食性に優れる塗料組成物 WO2012086494A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012549751A JP5814941B2 (ja) 2010-12-22 2011-12-14 耐食性に優れる塗料組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-285545 2010-12-22
JP2010285545 2010-12-22

Publications (1)

Publication Number Publication Date
WO2012086494A1 true WO2012086494A1 (ja) 2012-06-28

Family

ID=46313770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078924 WO2012086494A1 (ja) 2010-12-22 2011-12-14 耐食性に優れる塗料組成物

Country Status (3)

Country Link
JP (1) JP5814941B2 (ja)
TW (1) TWI500717B (ja)
WO (1) WO2012086494A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5857156B2 (ja) * 2013-07-25 2016-02-10 日本ペイント・インダストリアルコ−ティングス株式会社 塗料組成物、塗膜、および塗装鋼板
CN106471157A (zh) * 2014-04-11 2017-03-01 蒂森克虏伯钢铁欧洲股份公司 活化待磷化处理的金属表面、优选镀锌的钢板的方法
KR20180025877A (ko) 2016-04-26 2018-03-09 닛테쓰 스미킨 고한 가부시키가이샤 표면처리강재
JP2020084245A (ja) * 2018-11-21 2020-06-04 日鉄鋼板株式会社 被覆めっき鋼板
KR20200129122A (ko) * 2018-05-25 2020-11-17 닛폰세이테츠 가부시키가이샤 표면 처리 강판
CN112852259A (zh) * 2021-01-12 2021-05-28 广西建工集团建筑产业投资有限公司 一种蒸压加气混凝土板用钢筋防腐漆及其制备方法
CN113773705A (zh) * 2021-11-11 2021-12-10 伊恩斯国际新材料技术(北京)有限公司 一种水性聚偏二氯乙烯单组分防锈底漆及其制备方法
CN114790353A (zh) * 2022-04-28 2022-07-26 赢固(厦门)环保新材料有限公司 一种石墨烯带锈涂装用水性底漆及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105400353A (zh) * 2015-12-29 2016-03-16 奎克化学(中国)有限公司 一种无铬耐指纹液
JP6927668B2 (ja) * 2016-05-12 2021-09-01 日鉄鋼板株式会社 塗装めっき鋼板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222833A (ja) * 2007-03-12 2008-09-25 Kansai Paint Co Ltd 耐食性に優れた塗料組成物
JP2008284539A (ja) * 2007-04-20 2008-11-27 Nippon Steel Corp 塗装鋼材及び防錆塗料
JP2009051196A (ja) * 2007-07-31 2009-03-12 Jfe Steel Kk 塗装鋼板
JP2009220518A (ja) * 2008-03-18 2009-10-01 Nippon Steel Corp 塗装金属板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4403205B2 (ja) * 2007-04-19 2010-01-27 関西ペイント株式会社 耐食性に優れた塗膜形成金属材
JP4988434B2 (ja) * 2007-05-28 2012-08-01 関西ペイント株式会社 耐食性に優れた塗料組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222833A (ja) * 2007-03-12 2008-09-25 Kansai Paint Co Ltd 耐食性に優れた塗料組成物
JP2008284539A (ja) * 2007-04-20 2008-11-27 Nippon Steel Corp 塗装鋼材及び防錆塗料
JP2009051196A (ja) * 2007-07-31 2009-03-12 Jfe Steel Kk 塗装鋼板
JP2009220518A (ja) * 2008-03-18 2009-10-01 Nippon Steel Corp 塗装金属板

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5857156B2 (ja) * 2013-07-25 2016-02-10 日本ペイント・インダストリアルコ−ティングス株式会社 塗料組成物、塗膜、および塗装鋼板
US10480080B2 (en) 2014-04-11 2019-11-19 Thyssenkrupp Steel Europe Ag Method for activating metal surfaces to be phosphated
CN106471157A (zh) * 2014-04-11 2017-03-01 蒂森克虏伯钢铁欧洲股份公司 活化待磷化处理的金属表面、优选镀锌的钢板的方法
JP2017510709A (ja) * 2014-04-11 2017-04-13 ティッセンクルップ スチール ヨーロッパ アーゲーThyssenkrupp Steel Europe Ag リン酸塩処理すべき金属表面、好適には亜鉛メッキされた鋼板を活性化するための方法
US11136659B2 (en) 2016-04-26 2021-10-05 Nippon Steel Coated Sheet Corporation Surface-treated steel material
KR20180025877A (ko) 2016-04-26 2018-03-09 닛테쓰 스미킨 고한 가부시키가이샤 표면처리강재
KR20200129122A (ko) * 2018-05-25 2020-11-17 닛폰세이테츠 가부시키가이샤 표면 처리 강판
KR102425853B1 (ko) * 2018-05-25 2022-07-28 닛폰세이테츠 가부시키가이샤 표면 처리 강판
JP2020084245A (ja) * 2018-11-21 2020-06-04 日鉄鋼板株式会社 被覆めっき鋼板
JP7216525B2 (ja) 2018-11-21 2023-02-01 日鉄鋼板株式会社 被覆めっき鋼板
JP7441342B2 (ja) 2018-11-21 2024-02-29 日鉄鋼板株式会社 被覆めっき鋼板
JP7457846B2 (ja) 2018-11-21 2024-03-28 日鉄鋼板株式会社 被覆めっき鋼板
CN112852259A (zh) * 2021-01-12 2021-05-28 广西建工集团建筑产业投资有限公司 一种蒸压加气混凝土板用钢筋防腐漆及其制备方法
CN112852259B (zh) * 2021-01-12 2022-06-14 广西建工集团建筑产业投资有限公司 一种蒸压加气混凝土板用钢筋防腐漆及其制备方法
CN113773705A (zh) * 2021-11-11 2021-12-10 伊恩斯国际新材料技术(北京)有限公司 一种水性聚偏二氯乙烯单组分防锈底漆及其制备方法
CN114790353A (zh) * 2022-04-28 2022-07-26 赢固(厦门)环保新材料有限公司 一种石墨烯带锈涂装用水性底漆及其制备方法

Also Published As

Publication number Publication date
JPWO2012086494A1 (ja) 2014-05-22
TWI500717B (zh) 2015-09-21
TW201237126A (en) 2012-09-16
JP5814941B2 (ja) 2015-11-17

Similar Documents

Publication Publication Date Title
JP5669299B2 (ja) 耐食性に優れた塗料組成物
JP4323530B2 (ja) 耐食性に優れた塗料組成物
JP5814941B2 (ja) 耐食性に優れる塗料組成物
JP4443581B2 (ja) 耐食性に優れた塗料組成物
JP5547415B2 (ja) 防錆塗料組成物
JP4988434B2 (ja) 耐食性に優れた塗料組成物
JP4403205B2 (ja) 耐食性に優れた塗膜形成金属材
JP5231754B2 (ja) 耐食性に優れた塗料組成物
JP5547376B2 (ja) 防錆塗料組成物
JP5547375B2 (ja) 防錆塗料組成物
JP5086288B2 (ja) クロムフリー塗装金属板の塗膜形成方法及び塗装金属板
JP4374034B2 (ja) 耐食性に優れる塗料組成物
JP5665845B2 (ja) 耐白さび性に優れた塗膜形成亜鉛めっき鋼板
JP5161164B2 (ja) 耐食性に優れる塗料組成物
JP5737803B2 (ja) 耐食性に優れる塗料組成物
JP5835775B2 (ja) 亜鉛メッキ又は亜鉛合金メッキ鋼板用防錆塗料組成物
JP2010031297A (ja) 耐食性に優れた塗料組成物
JP5584108B2 (ja) 耐食性に優れる塗料組成物
JP5547438B2 (ja) 耐食性に優れる塗料組成物
JP2010083975A (ja) 耐食性塗料組成物及び塗装金属板
TWI393754B (zh) 塗料組成物及使用該組成物之塗裝金屬板
JP2015199803A (ja) プレコートメタル用下塗り塗料組成物、塗膜、塗膜の形成方法、プレコート鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851871

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012549751

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851871

Country of ref document: EP

Kind code of ref document: A1