WO2012086378A1 - 中空体成形装置 - Google Patents

中空体成形装置 Download PDF

Info

Publication number
WO2012086378A1
WO2012086378A1 PCT/JP2011/077642 JP2011077642W WO2012086378A1 WO 2012086378 A1 WO2012086378 A1 WO 2012086378A1 JP 2011077642 W JP2011077642 W JP 2011077642W WO 2012086378 A1 WO2012086378 A1 WO 2012086378A1
Authority
WO
WIPO (PCT)
Prior art keywords
floating core
hollow
hollow body
main cavity
molten resin
Prior art date
Application number
PCT/JP2011/077642
Other languages
English (en)
French (fr)
Inventor
知義 坂本
実 尾城
孝志 広瀬
羽田 康彦
寛機 片桐
Original Assignee
アァルピィ東プラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アァルピィ東プラ株式会社 filed Critical アァルピィ東プラ株式会社
Priority to EP11851965.1A priority Critical patent/EP2656999B1/en
Priority to CN201180062158.6A priority patent/CN103269842B/zh
Priority to US13/988,079 priority patent/US8827690B2/en
Publication of WO2012086378A1 publication Critical patent/WO2012086378A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2628Moulds with mould parts forming holes in or through the moulded article, e.g. for bearing cages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0053Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
    • B29C45/0055Shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1703Introducing an auxiliary fluid into the mould
    • B29C45/1704Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1703Introducing an auxiliary fluid into the mould
    • B29C45/1704Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles
    • B29C45/1711Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles and removing excess material from the mould cavity by the introduced fluid, e.g. to an overflow cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2669Moulds with means for removing excess material, e.g. with overflow cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C2045/0087Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor making hollow articles using a floating core movable in the mould cavity by fluid pressure and expelling molten excess material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1703Introducing an auxiliary fluid into the mould
    • B29C45/1704Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles
    • B29C2045/1719Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles making tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/261Moulds having tubular mould cavities

Definitions

  • the present invention relates to a hollow body forming apparatus for manufacturing a hollow body, particularly a pipe having a curved pipe part by an injection molding method.
  • the blow molding method is the best known method for forming a hollow portion in a synthetic resin molded body, and is widely used in the manufacture of bottles, containers, pipes and the like.
  • the blow molding method has many design limitations, and there is a problem that the range of selection of applicable materials is narrow and the dimensional accuracy is not so good.
  • Patent Documents 1 to 3 As a molding method for solving these problems, a method using a floating core is known (Patent Documents 1 to 3).
  • the floating core stops in the middle of the molten resin, and only the pressurized fluid is ahead of it.
  • a hollow portion may be formed.
  • the inner diameter can not be kept uniform and the inner surface is not smooth, but there are inconveniences, but since hollow parts are formed at both ends of the hollow body, it is difficult to distinguish it from non-defective products. It is difficult to find such defects on site. Therefore, there has been a demand for means that can easily confirm whether or not the floating core has passed through the molded product, which is a product, immediately after molding, and easy on-site quality control.
  • the present invention has been made in view of the above-described problems.
  • a hollow molded body having excellent appearance and dimensional stability, uniform inner diameter and smooth inner surface is obtained, and a floating core passes through the molded body immediately after molding.
  • An object of the present invention is to provide a hollow body forming apparatus that can easily confirm that the quality control has been performed and that can be easily quality controlled on site.
  • the hollow body forming apparatus of the present invention is A pressurized port having a floating core at one end is arranged, and after injecting molten resin into a main cavity having an outlet at the other end, pressurized fluid is injected from the pressurized port to bring the floating core to the outlet side.
  • a floating core storage unit connected to the main cavity and storing the floating core moved by the pressurized fluid;
  • a sub-cavity for containing the molten resin discharged from the main cavity and the floating core storage unit;
  • a communication path for communicating the floating core housing and the subcavity; Opening and closing means for opening and closing the communication path by sliding movement;
  • Inlet cross-sectional area B of said communication passage B ⁇ A 2/4 ( A , the maximum diameter of the floating core), characterized in that a.
  • a hollow molded article having excellent appearance and dimensional stability, uniform inner diameter and smooth inner surface can be obtained. Moreover, it can confirm easily that the floating core passed the hollow molded object, and the outstanding effect that quality control on the spot is easy is exhibited.
  • FIG. 2 is a schematic view showing a state in which a main cavity and a floating core housing portion are filled with a molten resin in the hollow body forming apparatus of FIG. 1.
  • FIG. 2 is a schematic diagram showing a state where the floating core is moved by press-fitting a pressurized fluid to form a hollow portion and the excess resin is discharged into a subcavity in the hollow body forming apparatus of FIG. 1.
  • FIG. 10 is a schematic diagram illustrating a state where the main cavity and the floating core housing portion are filled with a molten resin in the hollow body forming apparatus of FIG. 9.
  • FIG. 10 is a schematic diagram illustrating a state where the communication path is opened before forming the hollow portion in the hollow body forming apparatus of FIG. 9.
  • FIG. 10 is a schematic view showing a state where the floating core is moved by press-fitting a pressurized fluid to form a hollow portion and the excess resin is discharged into the subcavity in the hollow body forming apparatus of FIG. 9.
  • It is the schematic which shows the spherical floating core in 2nd Embodiment. It is an enlarged view which shows the vicinity of the floating core accommodating part of FIG.
  • 2nd Embodiment it is the schematic which shows the state which took out the hollow molded object and cut
  • 3rd Embodiment it is the schematic which shows the state which took out the hollow molded object and cut
  • FIG. 1 is a schematic view showing a hollow body forming apparatus of the present embodiment, showing a state where a floating core is mounted on a pressure port.
  • FIG. 1 for convenience of explanation, a fixed mold and a movable mold are illustrated so that the inside of the apparatus 11 can be seen even in the assembled state.
  • the hollow body molding apparatus 11 of the present embodiment is an injection mold, and includes a fixed mold having a molten resin injection gate 4 and a movable mold that moves when the mold is opened and assembled.
  • a molding apparatus 11 according to this embodiment includes a main cavity 1 that molds a hollow molded body such as a pipe, an injection gate 4 that injects resin into the main cavity 1, a floating core 2, and a pressure port 3. , Molded body end 5, floating core storage 6, discharge path 7, opening / closing means 8 for opening and closing discharge path 7 by sliding movement, subcavity 10 as a waste cavity for storing discharged molten resin, and subcavity 10 and a runner 9 communicating with the discharge path 7.
  • the discharge path 7 and the runner 9 are communication paths that allow the floating core housing 6 and the subcavity 10 to communicate with each other.
  • the main cavity 1 forms a molding space along the outer shape of a hollow molded body (pipe) having a bent portion (elbow portion), and a pressure port 3 to which a floating core 2 is attached at one end (base end) thereof. Is arranged.
  • An injection gate 4 for injecting molten resin into the main cavity 1 is opened in the middle of the straight pipe portion on the base end side of the main cavity 1.
  • a molded body end portion 5 that defines the end portion of the hollow molded body molded inside the main cavity 1 is formed.
  • a convex portion larger than the outer diameter of the main cavity 1 is formed on the outer periphery of the molded body end portion 5 of the present embodiment.
  • the molded body end 5 may be provided with only a simple mark for separating the floating core housing 6 and the hollow molded body 12 (see FIG. 7) as a product.
  • a rubber pipe, a metal part, etc. It is a more preferable aspect that a concavo-convex portion for coupling with a member made of another material is provided.
  • a floating core storage portion 6 that stores the floating core 2 that has passed through the main cavity 1 is connected to the downstream side of the main cavity 1 in the molten resin flow direction.
  • the inner diameter of the floating core housing 6 is formed to be equal to or larger than the inner diameter of the main cavity 1.
  • the length L (see FIG. 6) of the floating core storage portion 6 is preferably set in consideration of workability when the floating core 2 can be stored with sufficient margin and is separated from the hollow molded body 12, L> It is preferable that it is 1.1K.
  • K is the maximum length of the floating core 2 (see FIG. 5).
  • the floating core housing 6 is formed of a straight pipe, but may be formed of a curved pipe in order to adapt to the sliding direction and mold structure of the opening / closing means 8.
  • a discharge path 7 through which molten resin flows is connected to the downstream side of the floating core housing 6.
  • Inlet cross-sectional area of the discharge channel 7 (the inlet cross-sectional area of the communication passage) B (see FIG. 6) is a B ⁇ A 2/4.
  • A is the maximum diameter of the floating core 2 (see FIG. 5).
  • the floating core 2 closes the inlet of the discharge path 7 that is the outlet of the floating core housing 6, and then seals the discharge path 7 to maintain the internal pressure of the hollow molded body 12 immediately after molding, thereby preventing it from being pulled. and, in order to improve the appearance and dimensional stability, it is necessary that B ⁇ A 2/4.
  • the length of the discharge path 7 is arbitrary, is determined by the stroke of the opening / closing means 8, and may be long enough to branch the runner 9 communicating with the sub-cavity 10 at a part of the discharge path 7. This is not preferable because a resin-molded part is formed.
  • the runner 9 is connected to the middle part of the discharge path 7 and branched to this.
  • a sub cavity 10 is communicated with the discharge path 7 through the runner 9.
  • the subcavity 10 is a space for storing excess resin discharged by the floating core 2 pressed into the resin.
  • the opening / closing means 8 opens and closes the communication path (in this embodiment, the discharge path 7 and the runner 9) by sliding in the discharge path 7.
  • the opening / closing means 8 slides in the discharge path 7 to close the inlet of the runner 9, and when the surplus resin discharged by the floating core 2 is stored in the sub cavity 10. Opening and closing operations are performed so that the runner 9 entrance is opened by sliding in the discharge path 7.
  • the opening / closing means 13 is not particularly limited.
  • a means (shutoff pin) for opening / closing with a means such as hydraulic pressure using a pin that opens and closes in a sliding manner can be applied.
  • the cross-sectional shape of the shut-off pin is arbitrary, such as a triangle, a square, a rectangle, and a circle, but a circle is preferable for manufacturing a mold.
  • FIGS. 1 to 4 and 6 for convenience of explanation, the inside of the apparatus 11 is shown so that the inside of the apparatus 11 can be seen even when the fixed mold and the movable mold are assembled.
  • the floating core 2 is attached to the pressure port 3 on the proximal end side of the main cavity 1, and the movable mold is moved to bring the hollow body forming apparatus 11 into the mold assembly state.
  • the opening / closing means 8 is in a state where the communication path is closed.
  • the floating core 2 can be made of any material such as resin, metal, ceramic, etc., but it is possible to use a resin that does not require separation from the subcavity 10 and can be easily discarded. Preferably, it is more preferable to employ the same resin as the hollow molded body that can be regenerated together with the subcavity 10 and the like. Although the floating core 2 can be prepared in advance, the floating core 2 can be molded simultaneously with the molding of the hollow molded body as a product by the hollow molding method disclosed in Patent Document 4.
  • the shape of the floating core 2 is preferably a spherical shape, a hemispherical shape, a conical shape, a bullet shape, or the like, and in this embodiment, for example, a bullet shape having a conical shape at the tip is adopted.
  • the bullet shape is the shape illustrated in FIG. 5, and is connected to one surface of the cylindrical portion 2 a and the cylindrical portion 2 a, and the cross-sectional area perpendicular to the central axis of the cylindrical portion 2 a is one of the cylindrical portions 2 a.
  • the shape which consists of the top part 2b which has the shape which decreases gradually from the surface side.
  • the molten resin is injected from the injection gate 4 to fill the main cavity 1 with the molten resin.
  • the molten resin is filled in the main cavity 1 and the floating core housing 6.
  • a short shot with a small amount of resin may be used as long as at least the main cavity 1 is filled with a molten resin, but a full shot is desirable when the appearance of the molded product is important.
  • thermoplastic resin examples include any thermoplastic resin and thermosetting resin capable of injection-molding a hollow molded body, and a thermoplastic resin is preferable from the viewpoint of hollow part moldability in injection molding.
  • thermoplastic resin examples include polystyrene resins such as polystyrene, AS, and ABS, polyolefin resins such as polypropylene and polyethylene, polyamide resins such as nylon 66 or nylon 6, polyester resins such as PET and PBT, and POM.
  • thermosetting resin for example, an unsaturated polyester resin, a phenol resin, or the like can be used as long as it is a thermosetting resin known as BMC and capable of injection molding.
  • the open / close means (shutoff pin) 8 is slid back to open the communication path.
  • the shutoff pin is slid backward using an appropriate drive source (not shown) such as a hydraulic cylinder to open the runner 9 inlet.
  • an appropriate drive source such as a hydraulic cylinder to open the runner 9 inlet.
  • the timing of sliding backward is arbitrary, for example, even during the injection filling shown in FIG. 2, but the molten resin on the surface of the molded body in the main cavity 1 is solidified, and the inside is not yet solidified, that is, It is preferable to slide back with some time lag after completion of injection filling.
  • a pressurized fluid is press-fitted through a pressurized port 3 from a pressurized fluid source (not shown), and the floating core 2 is moved from the proximal end of the main cavity 1 to the molded body end 5. Move towards. At that time, the floating core 2 forms a hollow molded body 12 through the molded body end portion 5 while forming a hollow portion having a uniform inner diameter and a smooth inner surface in the molten resin. invade.
  • the floating core 2 that has entered the floating core storage 6 is stopped and stored from the floating core storage 6 toward the discharge path 7 with its sharp tip slightly protruding. Therefore, the internal pressure of the hollow molded body 12 is maintained.
  • the molten resin pushed out by the floating core 2 is discharged into the subcavity 10 through the discharge path 7 and the runner 9 in this order.
  • the pressurized fluid a gas or liquid that does not react with or compatible with the resin used under the temperature and pressure of injection molding is used.
  • nitrogen gas, carbon dioxide gas, air, water, glycerin, liquid paraffin and the like can be used, but inert gas including nitrogen gas is preferable.
  • the pressurized fluid is introduced into the pressurized port 16 through a pipe with the pressurized gas that has been previously pressurized and stored in the animal pressure tank (not shown) by a compressor.
  • the pressure can be increased by feeding a pressurized gas directly into the pressure port 3 with a compressor.
  • the pressure of the pressurized gas supplied to the pressurized port 3 varies depending on the type of resin used and the size of the floating core 2, but is usually 4.90 to 29.42 MPaG (50 to 300 kg / cm 2 G). Degree.
  • the molten resin is cooled until solidified, and then the movable mold is moved to open the mold, and the hollow molded body 12, the floating core housing 6, the discharge path 7, the runner 9, and the auxiliary The molded body in a state where the molded parts formed in the cavity 10 are connected is taken out.
  • the molded part formed in the floating core housing part 6 and the molded part formed in the discharge path 7 are integrated in a state where they are slightly welded to each other at the tip of the floating core. It has become. And since the floating core 2 protrudes to some extent in the shape of a wedge, the interface 13 between the tip of the floating core and the molded part formed in the discharge path 7 is cut out in shape. Therefore, the interface 13 is weak in strength, and the worker can easily cut off the molding portion on the downstream side of the floating core housing portion 6 by bending the vicinity of the interface 13.
  • FIG. 7 shows a cross section of the molded product thus cut off.
  • the leading end of the floating core 2 protrudes from the molded part formed in the floating core housing part 6.
  • the fact that the tip of the floating core 2 protrudes means that the floating core 2 passes through the main cavity 1 and a good hollow portion is formed in the hollow molded body 12, which can be easily confirmed on site. can do.
  • the inlet cross-sectional area of the communication passage (the discharge passage 7 in the present embodiment).
  • inlet cross-sectional area) B (see FIG. 6), B>? pa is preferably 2/80, B> more preferably ⁇ A 2/25.
  • A is the maximum diameter of the floating core 2 (see FIG. 5).
  • the boundary 14 on the floating core housing 6 side of the molded body end 5 is cut by a cutting means such as a saw, and the hollow molded body (pipe molding) as the final product shown in FIG. Product).
  • a cutting means such as a saw
  • the hollow molded body pipe molding
  • the hollow molded body 12 having excellent appearance and dimensional stability, uniform inner diameter, and smooth inner surface can be obtained. Further, it can be easily confirmed that the floating core 2 has passed through the main cavity 1, and quality control on site is easy.
  • the floating core 2 of the present embodiment has a bullet shape with a sharp tip, it is easy to separate the molded portion on the downstream side of the floating core storage portion 6 as compared to a spherical shape, The protrusion of the floating core can be easily visually recognized at the separation part.
  • FIG. 9 is a schematic view showing the hollow body forming apparatus of the present embodiment, showing a state where a floating core is attached to the pressure port.
  • FIG. 9 for convenience of explanation, the inside of the apparatus 11 is shown so that the inside of the apparatus 11 can be seen even when the fixed mold and the movable mold are assembled. Note that components having the same functions as those in the first embodiment will be described with the same reference numerals.
  • the hollow body molding apparatus 21 of this embodiment is an injection mold as in the first embodiment, and includes a fixed mold having a molten resin injection gate 4, a movable mold that moves when the mold is opened and when the mold is assembled. It is made up of. As shown in FIG. 9, the molding apparatus 21 of the present embodiment includes a main cavity 1 that molds a hollow molded body such as a pipe, an injection gate 4 that injects resin into the main cavity 1, a floating core 2, and a pressure port 3.
  • Molded body end 5 moldinged body end 5, floating core storage 6, opening / closing means 8 for opening and closing discharge path 7 by sliding movement, subcavity 10 as a waste cavity for storing discharged molten resin, and subcavity 10 and floating core It is comprised from the runner 9 which connects the accommodating part 6. As shown in FIG.
  • a runner 9 that is branched to the floating core housing portion 6 and connected to the subcavity 10 is connected, and the runner 9 is connected to the floating core housing portion 6 and the subcavity. 10 is different from the first embodiment in that it is a communication path that communicates with 10.
  • the opening / closing means 8 is different from the first embodiment in that it opens and closes the communication path (runner 9 in this embodiment) by sliding in the floating core housing 6.
  • the opening / closing means 8 slides in the floating core housing 6 to close the runner 9 inlet, and stores the surplus resin discharged by the floating core 2 in the sub cavity 10.
  • the opening / closing operation is performed so as to open the runner 9 entrance by sliding in the floating core housing 6.
  • the inlet cross-sectional area of the communication passage (inlet cross-sectional area of the runners 9) B (see FIG. 14) is, for the same reason as the first embodiment, a B ⁇ A 2/4.
  • A is the maximum diameter 2 of the floating core (see FIG. 13).
  • the length L (see FIG. 14) of the floating core storage unit 6 is preferably 1.1K ⁇ L ⁇ 20K for the same reason as in the first embodiment.
  • A is the maximum diameter of the floating core 2 (see FIG. 13).
  • the floating core 2 is attached to the pressure port 3 on the proximal end side of the main cavity 1, and the movable mold is moved to bring the hollow body forming apparatus 21 into the mold assembly state.
  • the opening / closing means 8 is in a state where the communication path is closed.
  • the material and shape of the floating core 2 are as described in the first embodiment, but a spherical floating core is employed in this embodiment.
  • molten resin is injected from the injection gate 4 to fill the inside of the main cavity 1 and the floating core housing 6. Also in the present embodiment, full shot is desirable when importance is attached to the appearance of the molded product.
  • a resin similar to the resin described in the first embodiment can be used as the resin to be filled.
  • the open / close means (shutoff pin) 8 is slid back to open the communication path.
  • the shutoff pin is slid backward using an appropriate drive source (not shown) such as a hydraulic cylinder to open the runner 9 inlet.
  • the timing of sliding back is the same as in the first embodiment.
  • pressurized fluid is press-fitted from a pressurized fluid source (not shown) through the pressurized port 3, and the floating core 2 is moved from the base end of the main cavity 1 to the molded body end 5.
  • the floating core 2 forms a hollow molded body 12 through the molded body end 5 while forming a hollow portion in the molten resin, and enters the floating core housing section 6.
  • the floating core 2 that has entered the floating core housing portion 6 moves toward the runner 9 inlet along the flow of the molten resin, forming a curved hollow portion, and finally from the floating core housing portion 6 to the runner 9 side.
  • the spherical surface is stopped and stored in a protruding state. That is, the floating core 2 closes the inlet of the runner 9 and the internal pressure of the hollow molded body 12 is maintained.
  • the molten resin extruded by the floating core 2 is discharged into the subcavity 10 through the runner 9.
  • the molten resin is cooled until solidified, and then the movable mold is moved to open the mold to form the hollow molded body 12, the floating core housing 6, the runner 9 and the subcavity 10.
  • the molded body in a state where the formed molded parts are connected is taken out.
  • the molded portion formed in the floating core housing portion 6 and the molded portion formed in the runner 9 are integrated with each other on the spherical surface of the floating core 2 so as to be slightly welded to each other. ing.
  • the interface 13 between the tip of the floating core and the molded part formed on the runner 9 is cut out in shape. Therefore, the interface 13 is weak in strength, and the worker can easily cut off the molding portion on the downstream side of the floating core housing portion 6 by bending the vicinity of the interface 13.
  • FIG. 15 shows a cross section of the molded product thus cut off.
  • the spherical surface of the floating core 2 protrudes from a portion corresponding to the inlet of the runner 9 in the molding portion formed in the floating core housing portion 6.
  • the fact that the spherical surface of the floating core 2 protrudes means that the floating core 2 passes through the main cavity 1 and a good hollow portion is formed in the hollow molded body 12, which can be easily confirmed on site. can do.
  • the inlet cross-sectional area of the communication passage (in this embodiment, the inlet of the runner 9) cross-sectional area) B (see FIG. 14) is, B>? pa is preferably 2/80, B> it is more preferably ⁇ A 2/25.
  • A is the maximum diameter 2 of the floating core (see FIG. 13).
  • boundary portion 14 is cut in the same manner as in the first embodiment, and finished as a hollow molded body (pipe molded product) 12 as a final product, as shown in FIG.
  • the present embodiment there are basically the same functions and effects as those of the first embodiment.
  • it has a structure suitable for use of the spherical floating core 2.
  • the hollow body forming apparatus of the present embodiment is the same as the hollow body forming apparatus of the second embodiment except that the floating core housing portion 6 is formed in a bent shape.
  • the length L of the floating core housing portion 6 is the length of the straight pipe portion of the main cavity 1 in the extending direction (sliding direction of the opening / closing means 8).
  • the bent floating core housing 6 can be adapted to the sliding direction of the opening / closing means 8, the mold structure, and the like.
  • Example 1 A hollow molded body (pipe molded product, outer diameter: 26 mm, inner diameter: 18 mm, wall thickness: 4 mm, length: 300 mm) shown in FIG. 8 was molded using the apparatus 11 of FIG.
  • the discharge channel 7 has a circular cross section with a diameter of 14 mm (inlet cross-sectional area B is 1.5 cm 2 ) and a length of 20 mm. Moreover, the length L of the floating core storage part 6 is 38 mm.
  • the opening / closing means (shutoff pin) 8 has a circular cross-sectional shape, the diameter of which is slightly smaller than the diameter of the discharge passage 7, and can slide smoothly, but has a clearance that does not allow the pressurized molten resin to pass therethrough. Have.
  • the floating core 2 is shaped like a bullet as shown in FIG. 5, and has a maximum length K: 22 mm and a maximum diameter A: 18 mm (cross-sectional area is 2.5 cm 2 ).
  • the floating core cavity is not shown, but the floating core 2 and the hollow molded body 12 were simultaneously molded by a molding method similar to Patent Document 4.
  • GF reinforced polyamide resin (“Leona 1402G” manufactured by Asahi Kasei Chemicals; hereinafter referred to as “GFPA”) was used as the molding material of the hollow molded body 12.
  • GFPA was injected from the injection gate 4 at a resin temperature of 280 ° C. and an injection pressure of 11.8 MPa using an injection molding machine (TP-180H manufactured by Toyo Machine Metal Co., Ltd.), and the main cavity 1 was melted as shown in FIG. Filled with resin.
  • TP-180H manufactured by Toyo Machine Metal Co., Ltd.
  • the shut-off pin 8 was slid back with a hydraulic cylinder (not shown), and the discharge path 7 was opened.
  • nitrogen gas having a pressure of 22.6 MPa was press-fitted from the pressure port 3 connected to a gas generator for gas hollow molding (Asahi Engineering Air Mold), and the floating core 2 was inserted into the end of the molded body as shown in FIG. It was moved to the part 5 side and reached the end of the floating core storage part 6. At this time, the molten GFPA discharged by the floating core 2 flowed into the sub cavity 10 through the discharge path 7 and the runner 9 in this order.
  • the molding part on the downstream side of the floating core housing part 6 can be easily separated, and the hollow molded body 12 shown in FIG. A molded body in which the molded portions formed in the core storage portion 6 were integrated was obtained.
  • the pointed tip of the floating core 2 protrudes from the end of the molded part formed in the floating core housing part 6, and it was confirmed that a good hollow part was obtained on site. Furthermore, it cut
  • Example 2 A hollow molded body shown in FIG. 8 was molded in the same manner as in Example 1 except that the apparatus 21 in FIG. 9 was used.
  • the runner 9 has a circular cross section and a diameter of 14 mm (inlet cross-sectional area B is 1.5 cm 2 ). Moreover, the length L of the floating core storage part 6 is 38 mm. Further, the opening / closing means (shutoff pin) 8 has a circular cross-sectional shape, and its diameter is slightly smaller than the diameter of the floating core housing 6 and can slide smoothly, but it does not allow pressurized molten resin to pass through. Has clearance.
  • the shape of the floating core 2 is spherical as shown in FIG. 13, and its maximum diameter A (diameter) is 18 mm (cross-sectional area is 2.5 cm 2 ), and maximum length K (diameter) is 18 mm.
  • the floating core 2 was molded simultaneously with the hollow molded body 12 as in Example 1.
  • the molded part formed in the pipe molded product 12 and the floating core housing part 6, the runner 9 and the subcavity 10 was taken out as a unit. Thereafter, when the worker manually bends the vicinity of the interface 13 (see FIG. 14), the molding part on the downstream side from the floating core housing part 6 can be easily separated, and the hollow molded body 12 shown in FIG. A molded body in which the molded portion formed in the floating core housing portion 6 was integrated was obtained. The spherical surface of the floating core 2 protrudes from the portion corresponding to the inlet of the runner 9 in the molded portion formed in the floating core housing portion 6, and it was confirmed that a good hollow portion was obtained on site. Furthermore, it cut
  • the hollow body forming apparatus according to the present invention can be applied to the manufacture of hollow molded bodies (pipe molded products) having bent portions such as automobile cooling system pipes and various heat exchanger pipes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

 フローティングコアが成形体を通過したことを容易に確認することができ、現場での品質管理の容易な中空体成形装置を提供する。 主キャビティ1内に溶融樹脂を射出した後、加圧ポート3から加圧流体を圧入してフローティングコア2を出口側に移動させると共に、出口から溶融樹脂を押し出させて中空成形体12を成形する中空体成形装置において、主キャビティ1に接続され、加圧流体によって移動したフローティングコア2を収納するフローティングコア収納部6と、主キャビティ1及びフローティングコア収納部6から排出される溶融樹脂を収容する副キャビティ10と、フローティングコア収納部6と副キャビティ10とを連通させる連通路7,9と、スライド移動により連通路7,9を開閉する開閉手段8と、を備え、連通路7,9の入口断面積Bが、B<πA2/4(Aは、フローティングコア2の最大径)である。

Description

中空体成形装置
 本発明は、中空成形体、特に曲管部を有するパイプを射出成形法にて製造する中空体成形装置に関する。
 一般に、合成樹脂成形体に中空部を形成する方法としては、ブロー成形法が最も良く知られており、ボトルや容器、パイプ等の製造に幅広く用いられている。しかし、ブロー成形法はデザイン上の制限が多く、適応可能な材料の選択の幅が狭く、さらに寸法精度があまり良くない等の課題がある。
 そこで近年、射出成形による中空成形方法が種々提案されており、例えば、ロストコア法、2シェル成形溶着法、及びダイスライド射出成形法等が挙げられる(特許文献1参照)。しかしながら、これらの成形方法を用いて、曲管部を有する長尺の3次元屈曲パイプを製造するのは困難であった。
 これらの問題を解決する成形法として、フローティングコアを用いる方法が知られている(特許文献1~3)。
プラスチックエージ、Apr.2010、103頁~108頁 特開平4-208425号公報 特開平8-229992号公報 特開平8-229993号公報
 フローティングコアを用いる方法では、成形条件、樹脂温度、射出圧力、フローティングコアを飛ばすタイミング等の条件が最適化されていないと、フローティングコアが溶融樹脂の途中で停止し、その先に加圧流体のみで中空部が形成される場合がある。この場合、内径が均一に保てなくなり、内面がスムーズではないなどの不都合が生じてしまうが、中空体の両端には中空部が形成されているため、見かけ上は良品と区別がつきにくく、この様な不良を現場で発見するのは困難である。そのため、成形直後にフローティングコアが製品である成形体を通過したか否かを容易に確認でき、現場での品質管理が容易な手段が求められていた。
 本発明は、上記の課題に鑑みてなされたもので、外観や寸法安定性に優れ、かつ内径が均一で内面がスムーズな中空成形体が得られ、かつ成形直後にフローティングコアが成形体を通過したことを容易に確認することができ、現場での品質管理の容易な中空体成形装置を提供することを目的とする。
 即ち、本発明の中空体成形装置は、
 一端にフローティングコアを備えた加圧ポートが配され、他端に出口を有する主キャビティ内に溶融樹脂を射出した後、前記加圧ポートから加圧流体を圧入して前記フローティングコアを出口側に移動させると共に、前記出口から溶融樹脂を押し出させて中空成形体を成形する中空体成形装置において、
 前記主キャビティに接続され、前記加圧流体によって移動した前記フローティングコアを収納するフローティングコア収納部と、
 前記主キャビティ及び前記フローティングコア収納部から排出される溶融樹脂を収容する副キャビティと、
 前記フローティングコア収納部と前記副キャビティとを連通させる連通路と、
 スライド移動により前記連通路を開閉する開閉手段と、
を備え、
 前記連通路の入口断面積Bが、B<πA2/4(Aは、前記フローティングコアの最大径)であることを特徴とする。
 本発明によれば、外観や寸法安定性に優れ、かつ内径が均一で内面が円滑な中空成形体が得られる。また、フローティングコアが中空成形体を通過したことを容易に確認することができ、現場での品質管理が容易であるという優れた効果を発揮する。
第1の実施形態の中空体成形装置を示す概略図である。 図1の中空体成形装置において、主キャビティとフローティングコア収納部に溶融樹脂を充填した状態を示す概略図である。 図1の中空体成形装置において、中空部の形成前に連通路を開いた状態を示す概略図である。 図1の中空体成形装置において、加圧流体の圧入によりフローティングコアを移動させ、中空部を形成すると共に余剰樹脂を副キャビティに排出した状態を示す概略図である。 第1の実施形態における砲弾形状のフローティングコアを示す概略図である。 図4のフローティングコア収納部の近傍を示す拡大図である。 第1の実施形態において、中空成形体を取り出し、フローティングコア収納部と排出路との境界部を切り離した状態を示す概略図である。 製品としての中空成形体の外観を示す概略図である。 第2の実施形態の中空体成形装置を示す概略図である。 図9の中空体成形装置において、主キャビティとフローティングコア収納部に溶融樹脂を充填した状態を示す概略図である。 図9の中空体成形装置において、中空部の形成前に連通路を開いた状態を示す概略図である。 図9の中空体成形装置において、加圧流体の圧入によりフローティングコアを移動させ、中空部を形成すると共に余剰樹脂を副キャビティに排出した状態を示す概略図である。 第2の実施形態における球形状のフローティングコアを示す概略図である。 図12のフローティングコア収納部の近傍を示す拡大図である。 第2の実施形態において、中空成形体を取り出し、フローティングコア収納部とランナーとの境界部を切り離した状態を示す概略図である。 第3の実施形態のフローティングコア収納部の近傍を示す拡大図である。 第3の実施形態において、中空成形体を取り出し、フローティングコア収納部とランナーとの境界部を切り離した状態を示す概略図である。
 以下、図面を参照して、本発明の実施の形態を説明するが、本発明はこれらの実施形態に限定されない。なお、本明細書で特に図示または記載されない部分に関しては、当該技術分野の周知または公知技術を適用する。
 <第1の実施形態>
 まず図1を参照して、本実施形態の中空体成形装置について説明する。図1は、本実施形態の中空体成形装置であり、加圧ポートにフローティングコアを装着した状態を示す概略図である。図1では、説明の便宜上、固定型と可動型とを型組み状態においても、装置11の内部が見えるように図示している。
 本実施形態の中空体成形装置11は射出成形金型であり、溶融樹脂の射出ゲート4を有する固定型と、型開き時及び型組み時に移動する可動型とからなっている。図1に示すように、本実施形態の成形装置11は、パイプ等の中空成形体を成形する主キャビティ1、主キャビティ1内に樹脂を射出する射出ゲート4、フローティングコア2、加圧ポート3、成形体端部5、フローティングコア収納部6、排出路7、スライド移動により排出路7を開閉する開閉手段8、排出された溶融樹脂が収容される捨てキャビティとしての副キャビティ10、及び副キャビティ10と排出路7を連通するランナー9から構成されている。本実施形態では、排出路7及びランナー9がフローティングコア収納部6と副キャビティ10とを連通させる連通路である。
 主キャビティ1は、屈曲部(エルボ部)を有する中空成形体(パイプ)の外形に沿った成形空間をなすもので、その一端(基端)にはフローティングコア2が装着される加圧ポート3が配されている。主キャビティ1の基端側の直管部中間には、この主キャビティ1の内部に溶融樹脂を射出する射出ゲート4が開口されている。
 また主キャビティ1の他端(出口側の端部)には、主キャビティ1の内部で成形される中空成形体の末端部を規定する成形体端部5が形成されている。本実施形態の成形体端部5の外周には、主キャビティ1の外径よりも大きな凸部が形成されている。成形体端部5には、フローティングコア収納部6と製品としての中空成形体12(図7参照)とを切り離す際の単なる印のみが設けられているだけでもよいが、例えばゴムパイプや金属部品等の他の材料からなる部材と結合させるための凹凸部が設けられていることがより好ましい態様である。
 主キャビティ1の溶融樹脂流れ方向の後流側には、主キャビティ1を通過したフローティングコア2を収納するフローティングコア収納部6が接続されている。フローティングコア収納部6の内径は、主キャビティ1の内径と同径以上に形成されている。また、フローティングコア収納部6の長さL(図6参照)は、余裕をもってフローティングコア2を収納でき、かつ中空成形体12と切り離す際の作業性を考慮して設定することが好ましく、L>1.1Kであることが好ましい。ここで、Kはフローティングコア2の最大長さである(図5参照)。また長過ぎると無駄な成形部を成形することになるので、L<20Kであることが好ましい。なお、本実施形態では、フローティングコア収納部6は直管で形成されているが、開閉手段8のスライド方向や型構造に適応するために、曲管で形成してもよい。
 フローティングコア収納部6の後流側には、溶融樹脂が流入する排出路7が接続されている。排出路7の入口断面積(連通路の入口断面積)B(図6参照)は、B<πA2/4である。ここで、Aは、フローティングコア2の最大径である(図5参照)。フローティングコア2でフローティングコア収納部6の出口である排出路7の入口を閉塞させ、その後も排出路7を封止して成形直後の中空成形体12の内部圧力を保持させて引け等を防止し、外観や寸法安定性を向上させるためには、B<πA2/4であることが必要である。排出路7の長さは任意であり、開閉手段8のストロークによって決まり、排出路7の一部に副キャビティ10と連通させるランナー9を分岐させる程度の長さがあればよく、長すぎると無駄な樹脂成形部を形成することになるので好ましくない。
 排出路7の中間部には、これに分岐してランナー9が接続されている。そして、このランナー9を介して、排出路7に副キャビティ10が連通されている。副キャビティ10は、樹脂中へ押圧されるフローティングコア2によって排出される余剰樹脂を収納する空間である。
 開閉手段8は、排出路7内をスライド移動することにより連通路(本実施形態では排出路7及びランナー9)を開閉する。この開閉手段8は、主キャビティ1内へ溶融樹脂を充填する際に排出路7内をスライド移動してランナー9入口を閉じ、フローティングコア2によって排出される余剰樹脂を副キャビティ10に収納するときには排出路7内をスライド移動してランナー9入口を開くように開閉操作される。開閉手段13は、特に限定されないが、例えば、スライド式に開閉するピン等を用いて油圧などの手段で開閉動作させる手段(シャットオフピン)などが適用できる。シャットオフピンの断面形状は三角、四角、矩形、円形など任意であるが、金型製作上は円形が好ましい。
 次に図1から図8を参照して、本実施形態の中空体成形装置11を用いた成形方法を説明する。なお、図1から図4及び図6では、説明の便宜上、固定型と可動型とを型組み状態においても、装置11の内部が見えるように図示している。
 まず図1に示すように、主キャビティ1の基端側の加圧ポート3にフローティングコア2を装着して、可動型を移動させ中空体成形装置11を型組み状態にする。なお、開閉手段8は連通路を閉じた状態である。
 フローティングコア2の材質は、樹脂、金属、セラミックなどあらゆる材質を用いることが可能であるが、副キャビティ10等との分別処理が不要で副キャビティ10等の廃棄が容易な樹脂を採用することが好ましく、副キャビティ10等と共に再生可能である、中空成形体と同一樹脂を採用することがより好ましい。フローティングコア2は予め用意しておくこともできるが、特許文献4に示されている中空成形方法により、製品としての中空成形体の成形と同時に、フローティングコア2を成形することも可能である。
 フローティングコア2の形状は、球形状、半球形状、円錐形状あるいは砲弾形状等が好ましく、特に本実施形態では、例えば、先端部が円錐形状を有する砲弾形状のものを採用した。ここで砲弾形状とは、図5に例示したような形状であり、円柱部2aと円柱部2aの一方の面に連接し、円柱部2aの中心軸と垂直な断面積が円柱部2aの一方の面側から漸減する形状を有する頂部2bからなる形状をいう。
 次に図2に示すように、中空体成形装置11の型組み状態において、射出ゲート4から溶融樹脂を射出して主キャビティ1に溶融樹脂を充填する。図2では、主キャビティ1及びフローティングコア収納部6の内部に溶融樹脂が充填されている。少なくとも主キャビティ1の内部に溶融樹脂が充填されれば樹脂量の少ないショートショットでもよいが、成形品の外観を重視する場合はフルショットが望ましい。
 本発明で用いる樹脂としては、中空成形体を射出成形可能なあらゆる熱可塑性樹脂、熱硬化性樹脂が挙げられるが、射出成形での中空部成形性という観点からは熱可塑性樹脂が好ましい。熱可塑性樹脂としては、例えば、ポリスチレン、AS,ABS等のポリスチレン系樹脂、ポリプロピレン、ポリエチレンなどのポリオレフィン系樹脂、ナイロン66、あるいはナイロン6などのポリアミド系樹脂、PET,PBTなどのポリエステル系樹脂、POM、ポリカーボネート、PPS、変性PPE、PMMA樹脂、ポリ塩化ビニル樹脂など種々の樹脂が挙げられ、これら樹脂にガラス繊維、タルク、炭酸カルシウム、カオリンなどの強化材、無機フィラーなどを添加したものでもよい。また、熱硬化性樹脂としては、例えば不飽和ポリエステル樹脂、フェノール樹脂などもBMCとして知られている射出成形が可能な熱硬化性樹脂であれば用いることができる。
 次いで図3に示すように、開閉手段(シャットオフピン)8をスライド後退させて、連通路が開の状態になる。具体的には、シャットオフピンを油圧シリンダー等適宜な駆動源(図示せず)を用いてスライド後退させて、ランナー9入口を開く。ここで、スライド後退させるタイミングは任意であり、例えば図2に示した射出充填中でも可能であるが、主キャビティ1中の成形体表面の溶融樹脂が固化し、その内部がまだ固化しない状態、すなわち射出充填完了後いくらかのタイムラグをおいてスライド後退させることが好ましい。
 次に図4に示すように、加圧流体源(図示せず)から加圧ポート3を介して加圧流体を圧入し、フローティングコア2を主キャビティ1の基端から成形体端部5へ向かって移動せしめる。その際、フローティングコア2は溶融樹脂中に内径が均一で内面が円滑な中空部を形成しつつ、成形体端部5を通過して中空成形体12を形成し、フローティングコア収納部6へと侵入する。フローティングコア収納部6へと侵入したフローティングコア2は、フローティングコア収納部6から排出路7側に、その尖った先端を僅かに突出した状態で停止して収納される。そのため、中空成形体12の内部圧力が保持される。フローティングコア2によって押し出される溶融樹脂は、排出路7及びランナー9を順に経て、副キャビティ10の内部に排出される。
 加圧流体としては、射出成形の温度及び圧力下で使用樹脂と反応又は相溶しない気体又は液体が使用される。具体的には、例えば窒素ガス、炭酸ガス、空気、水、グリセリン、流動パラフィン等が使用できるが、窒素ガスをはじめとする不活性ガスが好ましい。この加圧流体の圧入は、例えば窒素ガス等の気体を用いる場合、予め圧縮機で畜圧タンク(図示されていない)内に昇圧して蓄えた加圧ガスを配管を通じて加圧ポート16に導くことや、圧縮機で直接加圧ポート3に加圧ガスを送り込んで昇圧させることでおこなう事ができる。加圧ポート3に供給する加圧ガスの圧力は、使用する樹脂の種類やフローティングコア2の大きさなどによっても相違するが、通常4.90~29.42MPaG(50~300kg/cm2G)程度である。
 この中空部の形成後、溶融樹脂が固化するまで冷却した後に、可動型を移動させて金型を型開きし、中空成形体12と、フローティングコア収納部6、排出路7、ランナー9及び副キャビティ10に形成された成形部が連なった状態の成形体を取り出す。
 図6に示したように、フローティングコア収納部6に形成された成形部と、排出路7に形成された成形部は、フローティングコア先端部において、僅かに互いに溶着している程度の状態で一体化している。かつ、フローティングコア2が楔状にある程度突出しているために、フローティングコア先端部と排出路7に形成された成形部の界面13は、形状的に切り欠き状態である。したがって、この界面13は強度的に弱く、作業員がこの界面13近傍を屈曲させることにより、フローティングコア収納部6より下流側の成形部を簡単に切り離すことができる。
 このようにして切り離した成形品の断面を図7に示す。図7に示すように、フローティングコア2の先端がフローティングコア収納部6に形成された成形部から突出している。フローティングコア2の先端が突出しているということは、フローティングコア2が主キャビティ1を通過し、中空成形体12に良好な中空部が形成されているということであり、現場においてこれを容易に確認することができる。
 このようにフローティングコア収納部6より下流側の成形部を簡単に切り離し、かつ切り離し部でフローティングコアの突出を確実に視認するためには、連通路の入口断面積(本実施形態では排出路7の入口断面積)B(図6参照)が、B>πA2/80であることが好ましく、B>πA2/25であることがより好ましい。ここで、Aは、フローティングコア2の最大径である(図5参照)。連通路の入口断面積BがπA2/80以下であると、フローティングコア収納部6より下流側の成形部の切り離しが困難になる可能性があるし、切り離し部でのフローティングコアの突出を視認し難くなる可能性がある。さらに、排出路7の溶融樹脂の固化が早まって樹脂の排出が困難になるなどの不具合が生じる可能性もある。
 次いで図7に示したように、鋸等の切断手段で成形体端部5のフローティングコア収納部6側の境界部14を切断して、図8に示す最終製品である中空成形体(パイプ成形品)12として仕上げられる。その際、本実施形態のように成形体端部5に凹凸部や印が付帯されていれば切断部を容易に決定することができる。
 以上説明したように、本実施形態によれば、外観や寸法安定性に優れ、かつ内径が均一で内面が円滑な中空成形体12が得られる。また、フローティングコア2が主キャビティ1を通過したことを容易に確認することができ、現場での品質管理が容易である。
 また、本実施形態のフローティングコア2は先端が尖った砲弾形状を呈しているので、球形である場合に比較して、フローティングコア収納部6より下流側の成形部の切り離しが容易であるし、切り離し部でフローティングコアの突出を容易に視認できる。
 <第2の実施形態>
 次に図9を参照して、本実施形態の中空体成形装置について説明する。図9は、本実施形態の中空体成形装置であり、加圧ポートにフローティングコアを装着した状態を示す概略図である。図9では、説明の便宜上、固定型と可動型とを型組み状態においても、装置11の内部が見えるように図示している。なお、第1の実施形態と同一の機能を有する構成要素については同一の符号を付して説明する。
 本実施形態の中空体成形装置21は、第1の実施形態と同様に射出成形金型であり、溶融樹脂の射出ゲート4を有する固定型と、型開き時及び型組み時に移動する可動型とからなっている。図9に示すように、本実施形態の成形装置21は、パイプ等の中空成形体を成形する主キャビティ1、主キャビティ1内に樹脂を射出する射出ゲート4、フローティングコア2、加圧ポート3、成形体端部5、フローティングコア収納部6、スライド移動により排出路7を開閉する開閉手段8、排出された溶融樹脂が収容される捨てキャビティとしての副キャビティ10、及び副キャビティ10とフローティングコア収納部6を連通するランナー9から構成されている。
 すなわち、本実施形態の中空体成形装置21では、フローティングコア収納部6に分岐されて副キャビティ10への連通路であるランナー9が接続されており、ランナー9がフローティングコア収納部6と副キャビティ10とを連通させる連通路である点が第1の実施形態と異なっている。
 また、開閉手段8は、フローティングコア収納部6内をスライド移動することにより連通路(本実施形態ではランナー9)を開閉する点が第1の実施形態と異なっている。この開閉手段8は、主キャビティ1内へ溶融樹脂を充填する際にフローティングコア収納部6内をスライド移動してランナー9入口を閉じ、フローティングコア2によって排出される余剰樹脂を副キャビティ10に収納するときにはフローティングコア収納部6内をスライド移動してランナー9入口を開くように開閉操作される。
 本実施形態においても、連通路の入口断面積(ランナー9の入口断面積)B(図14参照)は、第1の実施形態と同様の理由で、B<πA2/4である。ここで、Aは、フローティングコアの2の最大径である(図13参照)。
 また、フローティングコア収納部6の長さL(図14参照)は、第1の実施形態と同様の理由で、1.1K<L<20Kであることが好ましい。ここで、Aは、フローティングコア2の最大径である(図13参照)。
 次に図9から図15を参照して、本実施形態の中空体成形装置21を用いた成形方法を説明する。なお、図9から図12及び図14では、説明の便宜上、固定型と可動型とを型組み状態においても、装置21の内部が見えるように図示している。
 まず図9に示すように、主キャビティ1の基端側の加圧ポート3にフローティングコア2を装着して、可動型を移動させ中空体成形装置21を型組み状態にする。なお、開閉手段8は連通路を閉じた状態である。フローティングコア2の材質、形状は、第1の実施形態において説明した通りであるが、本実施形態では球形状のフローティングコアを採用している。
 次に図10に示すように、中空体成形装置21の型組み状態において、射出ゲート4から溶融樹脂を射出して主キャビティ1及びフローティングコア収納部6の内部に充填する。本実施形態においても、成形品の外観を重視する場合はフルショットが望ましい。充填する樹脂としては、第1の実施形態において挙げた樹脂と同様の樹脂を採用することができる。
 次いで図11に示すように、開閉手段(シャットオフピン)8をスライド後退させて、連通路が開の状態になる。具体的には、シャットオフピンを油圧シリンダー等適宜な駆動源(図示せず)を用いてスライド後退させて、ランナー9入口を開く。スライド後退させるタイミングは第1の実施形態と同様である。
 次に図12に示すように、加圧流体源(図示せず)から加圧ポート3を介して加圧流体を圧入し、フローティングコア2を主キャビティ1の基端から成形体端部5へ向かって移動せしめる。その際、フローティングコア2は溶融樹脂中に中空部を形成しつつ、成形体端部5を通過して中空成形体12を形成し、フローティングコア収納部6へと侵入する。フローティングコア収納部6へと侵入したフローティングコア2は、溶融樹脂の流れに沿ってランナー9入口に向かい、湾曲した中空部を形成しつつ、最終的にはフローティングコア収納部6からランナー9側にその球面を突出した状態で停止して収納される。すなわち、フローティングコア2はランナー9の入口を閉塞し、中空成形体12の内部圧力が保持される。フローティングコア2によって押し出される溶融樹脂は、ランナー9を経て副キャビティ10の内部に排出される。
 この中空部の形成後、溶融樹脂が固化するまで冷却した後に、可動型を移動させて金型を型開きし、中空成形体12と、フローティングコア収納部6、ランナー9及び副キャビティ10に形成された成形部が連なった状態の成形体を取り出す。
 図14に示したように、フローティングコア収納部6に形成された成形部とランナー9に形成された成形部は、フローティングコア2の球面において、僅かに互いに溶着している程度の状態で一体化している。かつ、フローティングコア2が球形状にある程度突出しているために、フローティングコア先端部とランナー9に形成された成形部の界面13は、形状的に切り欠き状態である。したがって、この界面13は強度的に弱く、作業員がこの界面13近傍を屈曲させることにより、フローティングコア収納部6より下流側の成形部を簡単に切り離すことができる。
 このようにして切り離した成形品の断面を図15に示す。図15に示すように、フローティングコア2の球面がフローティングコア収納部6に形成された成形部のランナー9入口に相当する部分から突出している。フローティングコア2の球面が突出しているということは、フローティングコア2が主キャビティ1を通過し、中空成形体12に良好な中空部が形成されているということであり、現場においてこれを容易に確認することができる。
 このようにフローティングコア収納部6より下流側の成形部を簡単に切り離し、かつ切り離し部でフローティングコアの突出を確実に視認するためには、連通路の入口断面積(本実施形態ではランナー9入口断面積)B(図14参照)が、B>πA2/80であることが好ましく、B>πA2/25であることがより好ましい。ここで、Aは、フローティングコアの2の最大径である(図13参照)。連通路の入口断面積BがπA2/80以下であると、フローティングコア収納部6より下流側の成形部の切り離しが困難になる可能性があるし、切り離し部でのフローティングコアの突出を視認し難くなる可能性がある。さらに、ランナー9の溶融樹脂の固化が早まって溶融状態で樹脂の排出が困難になるなどの不具合が生じる可能性もある。また、本実施形態においては、フローティングコア収納部6へと侵入したフローティングコア2がランナー9入口に向かわずに直進する可能性もある。
 次いで、実施形態1と同様にして境界部14を切断して、図8に示したと同様に最終製品である中空成形体(パイプ成形品)12として仕上げられる。
 以上説明したように、本実施形態によれば、第1の実施形態と基本的に同様の作用効果を奏する。特に本実施形態によれば、球形状のフローティングコア2の使用に適した構造を有している。
 <第3の実施形態>
 本実施形態の中空体成形装置は、図16及び図17に示すように、フローティングコア収納部6を屈曲形状に形成した以外は、第2の実施形態の中空体成形装置と同様である。尚、この場合、図16に示すようにフローティングコア収納部6の長さLは、主キャビティ1の直管部の延長方向(開閉手段8のスライド方向)の長さである。
 このような構造を採用することにより、フローティングコア2をランナー9の入口へと誘導し易く、ランナー9の入口を確実に閉塞することができる。また、第1の実施形態で用いた様な砲弾形状のフローティングコアの使用にも適している。さらに、屈曲形状のフローティングコア収納部6は、開閉手段8のスライド方向や型構造等に適応させることができる。
 以上、本発明の好適な実施形態を説明したが、これは本発明の説明のための例示であり、本発明の要旨を逸脱しない範囲で、上記実施形態とは異なる種々の態様で実施することができる。
 <実施例1>
 図1の装置11を用いて、図8に示す中空成形体(パイプ成形品、外径;26mm、内径;18mm、肉厚;4mm、長さ;300mm)を成形した。
 図1の装置11において、排出路7の断面は円形でその直径は14mm(入口断面積Bは1.5cm2)であり、長さは20mmである。また、フローティングコア収納部6の長さLは38mmである。また、開閉手段(シャットオフピン)8の断面形状は円形で、その直径は排出路7の径よりも僅かに小さく滑らかにスライドしうるが、加圧された溶融樹脂を通過させない程度のクリアランスを有している。
 フローティングコア2の形状は図5に示した様に砲弾形状を呈しており、最大長さK;22mm、最大径A;18mm(断面積は2.5cm2)である。図1では、フローティングコア用キャビティは図示していないが、特許文献4と類似の成形方法でフローティングコア2と中空成形体12を同時に成形した。
 また、中空成形体12の成形素材には、GF強化ポリアミド樹脂(旭化成ケミカルズ社製「レオナ1402G」;以下、「GFPA」と記す。)を用いた。
 まず、射出成形機(東洋機械金属社製TP-180H)を用いてGFPAを樹脂温度280℃、射出圧力11.8MPaにて射出ゲート4から射出し、図2に示すように主キャビティ1を溶融樹脂にて充填した。次いで図3に示すように、樹脂充填完了1秒後にシャットオフピン8を不図示の油圧シリンダーにてスライド後退させ、排出路7を開いた。
 続いて、圧力22.6MPaの窒素ガスをガス中空成形用ガス発生装置(旭エンジニアリング製エアモールド)に接続した加圧ポート3より圧入して、図4に示すようにフローティングコア2を成形体端部5側に移動せしめ、フローティングコア収納部6の端部に到達せしめた。この時、フローティングコア2によって排出される溶融GFPAは、排出路7及びランナー9を順に経て副キャビティ10中へ流入した。
 主キャビティ1、フローティングコア収納部6、排出路7、ランナー9及び副キャビティ10内のGFPAが固化するまで冷却後、金型を開いて、中空成形体12並びにフローティングコア収納部6、排出路7、ランナー9及び副キャビティ10に形成された成形部を一体として取り出した。
 その後、界面13(図6参照)近傍を作業員が手作業で屈曲させると、簡単にフローティングコア収納部6より下流側の成形部を切り離すことができ、図7に示す中空成形体12とフローティングコア収納部6に形成された成形部が一体となった成形体が得られた。フローティングコア2の尖った先端がフローティングコア収納部6に形成された成形部の末端から突出しており、現場にて良好な中空部が得られていることを確認できた。さらに、境界部14にて切断し、図8に示す最終製品としての中空成形体(パイプ成形品)12を得た。
 <実施例2>
 図9の装置21を用いた以外は実施例1と同様にして、図8に示す中空成形体を成形した。
 図9の装置21において、ランナー9の断面は円形でその直径は14mm(入口断面積Bは1.5cm2)である。また、フローティングコア収納部6の長さLは38mmである。また、開閉手段(シャットオフピン)8の断面形状は円形で、その直径はフローティングコア収納部6の径よりも僅かに小さく滑らかにスライドしうるが、加圧された溶融樹脂を通過させない程度のクリアランスを有している。
 フローティングコア2の形状は図13に示した様に球形状であり、その最大径A(直径)は18mm(断面積は2.5cm2)、最大長さK(直径)は18mmである。尚、フローティングコア2は、実施例1と同様に中空成形体12と同時に成形した。
 成形終了後に、パイプ成形品12並びにフローティングコア収納部6、ランナー9及び副キャビティ10に形成された成形部を一体として取り出した。その後に、界面13(図14参照)近傍を作業員が手作業で屈曲させると、簡単にフローティングコア収納部6より下流側の成形部を切り離すことができ、図15に示す中空成形体12とフローティングコア収納部6に形成された成形部とが一体になった成形体が得られた。フローティングコア2の球面がフローティングコア収納部6に形成された成形部のランナー9入口に相当する部分から突出しており、現場にて良好な中空部が得られていることが確認できた。さらに、境界部14にて切断し、図8に示した最終製品としての中空成形体(パイプ成形品)12を得た。
 本発明に係る中空体成形装置は、自動車の冷却系パイプや各種熱交換器用パイプ等の屈曲部を有する中空成形体(パイプ成形品)の製造に適用可能である。
1 主キャビティ
2 フローティングコア
3 加圧ポート
4 射出ゲート
5 成形体端部
6 フローティングコア収納部
7 排出路
8 開閉手段
9 ランナー
10 副キャビティ
11、21 中空体成形装置
12 中空成形体(パイプ成形品)
13 界面
14 境界部

Claims (6)

  1.  一端にフローティングコアを備えた加圧ポートが配され、他端に出口を有する主キャビティ内に溶融樹脂を射出した後、前記加圧ポートから加圧流体を圧入して前記フローティングコアを出口側に移動させると共に、前記出口から溶融樹脂を押し出させて中空成形体を成形する中空体成形装置において、
     前記主キャビティに接続され、前記加圧流体によって移動した前記フローティングコアを収納するフローティングコア収納部と、
     前記主キャビティ及び前記フローティングコア収納部から排出される溶融樹脂を収容する副キャビティと、
     前記フローティングコア収納部と前記副キャビティとを連通させる連通路と、
     スライド移動により前記連通路を開閉する開閉手段と、
    を備え、
     前記連通路の入口断面積Bが、B<πA2/4(Aは、前記フローティングコアの最大径)であることを特徴とする中空体成形装置。
  2.  前記連通路は、前記フローティングコア収納部に接続された排出路と、該排出路と前記副キャビティとを連通させるランナーからなり、前記開閉手段は前記排出路内をスライド移動することを特徴とする請求項1に記載の中空体成形装置。
  3.  前記フローティングコアの形状が砲弾形状であることを特徴とする請求項2に記載の中空体成形装置。
  4.  前記連通路は、前記フローティングコア収納部と前記副キャビティとを連通させるランナーからなり、前記開閉手段は前記フローティングコア収納部内をスライド移動することを特徴とする請求項1に記載の中空体成形装置。
  5.  前記連通路の入口断面積Bが、B>πA2/80(Aは、前記フローティングコアの最大径)であることを特徴とする請求項1~4のいずれか1項に記載の中空体成形装置。
  6.  前記フローティングコア収納部の長さLが、L>1.1K(Kは前記フローティングコアの最大長さ)であることを特徴とする請求項1~5のいずれか1項に記載の中空体成形装置。
PCT/JP2011/077642 2010-12-22 2011-11-30 中空体成形装置 WO2012086378A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11851965.1A EP2656999B1 (en) 2010-12-22 2011-11-30 Hollow body molding device
CN201180062158.6A CN103269842B (zh) 2010-12-22 2011-11-30 中空体成形装置
US13/988,079 US8827690B2 (en) 2010-12-22 2011-11-30 Hollow body molding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-285716 2010-12-22
JP2010285716A JP5416080B2 (ja) 2010-12-22 2010-12-22 中空体成形装置

Publications (1)

Publication Number Publication Date
WO2012086378A1 true WO2012086378A1 (ja) 2012-06-28

Family

ID=46313660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077642 WO2012086378A1 (ja) 2010-12-22 2011-11-30 中空体成形装置

Country Status (5)

Country Link
US (1) US8827690B2 (ja)
EP (1) EP2656999B1 (ja)
JP (1) JP5416080B2 (ja)
CN (1) CN103269842B (ja)
WO (1) WO2012086378A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013111719B4 (de) * 2013-10-24 2016-02-11 Geiger Automotive Gmbh Werkzeug und Verfahren zur Trennung eines Überlaufbutzens
JP5855635B2 (ja) * 2013-12-24 2016-02-09 東海興業株式会社 成形品の製造方法
KR101480027B1 (ko) * 2014-03-11 2015-01-07 한일튜브 주식회사 수지곡관 제조장치
DE102014112262B4 (de) * 2014-08-27 2017-07-06 Geiger Automotive Gmbh Verfahren und Vorrichtung zur Herstellung eines hohlen Kunststoffbauteils
DE102014226500A1 (de) * 2014-12-18 2016-06-23 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines Hohlkörpers aus Kunststoff sowie Projektil zur Verwendung in diesem Verfahren
JP6310385B2 (ja) * 2014-12-24 2018-04-11 豊田鉄工株式会社 中空体成形装置
DE102015225938A1 (de) * 2015-12-18 2017-06-22 Kautex Textron Gmbh & Co. Kg Verfahren zur Herstellung eines Rohres sowie Spritzgießvorrichtung
DE102015225937A1 (de) * 2015-12-18 2017-06-22 Kautex Textron Gmbh & Co. Kg Spritzgießvorrichtung zur Herstellung von Mehrkomponenten-Formteilen sowie Verfahren zur Herstellung von Mehrkomponenten-Formteilen
DE102016103280B3 (de) * 2016-02-24 2017-05-24 Geiger Automotive Gmbh Verfahren und Spritzgussvorrichtung mit Projektilentnahme mit Drehbewegung
DE102017121939A1 (de) * 2017-09-21 2019-03-21 Webasto SE Fahrzeugdachrahmen mit Kabelkanal und Verfahren zu dessen Herstellung
US20210299916A1 (en) * 2018-08-09 2021-09-30 Hummingbird Nano, Inc. Microfluidic device and method of manufacture

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208425A (ja) 1990-11-30 1992-07-30 Aaru Pii Toupura Kk 中空体の製造法
JPH07108562A (ja) * 1993-10-12 1995-04-25 Aaru Pii Toupura Kk ゴルフクラブシャフトの成形方法
JPH08229992A (ja) 1995-02-23 1996-09-10 Rp Topla Ltd 中空成形装置
JPH08229993A (ja) 1995-02-23 1996-09-10 Rp Topla Ltd 中空成形方法
JPH11114997A (ja) * 1997-10-21 1999-04-27 Nippon Plast Co Ltd 分岐中空体の製造方法
JP2010195032A (ja) * 2009-01-30 2010-09-09 Rp Topla Ltd 分岐部付パイプの製造方法
WO2010116580A1 (ja) * 2009-04-10 2010-10-14 アァルピィ東プラ株式会社 中空体の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3771295B2 (ja) * 1995-02-23 2006-04-26 アァルピィ東プラ株式会社 分岐部付パイプの製造方法及びその装置
US5948343A (en) * 1995-02-23 1999-09-07 Rp Topla Limited Hollow shaped molded article, hollow shaped molding process and hollow shaped molding device
JP5275682B2 (ja) * 2008-05-21 2013-08-28 アァルピィ東プラ株式会社 樹脂製熱交換器ユニットの製造方法及び熱交換器の製造方法
WO2010000001A1 (en) 2008-07-02 2010-01-07 Karen Gasparyan Bar clamping and tightening tool
JP5378729B2 (ja) * 2008-08-29 2013-12-25 アァルピィ東プラ株式会社 樹脂成形体及びその製造方法
JP2010110934A (ja) * 2008-11-04 2010-05-20 Shisuko:Kk 中空品の成形装置及び成形方法
DE102010015453B3 (de) * 2010-04-17 2011-06-22 Wittmann Battenfeld Gmbh Vorrichtung und Verfahren zum Spritzgießen eines mindestens einen Hohlraum aufweisenden Formteils

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208425A (ja) 1990-11-30 1992-07-30 Aaru Pii Toupura Kk 中空体の製造法
JPH07108562A (ja) * 1993-10-12 1995-04-25 Aaru Pii Toupura Kk ゴルフクラブシャフトの成形方法
JPH08229992A (ja) 1995-02-23 1996-09-10 Rp Topla Ltd 中空成形装置
JPH08229993A (ja) 1995-02-23 1996-09-10 Rp Topla Ltd 中空成形方法
JPH11114997A (ja) * 1997-10-21 1999-04-27 Nippon Plast Co Ltd 分岐中空体の製造方法
JP2010195032A (ja) * 2009-01-30 2010-09-09 Rp Topla Ltd 分岐部付パイプの製造方法
WO2010116580A1 (ja) * 2009-04-10 2010-10-14 アァルピィ東プラ株式会社 中空体の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PLASTIC AGE, April 2010 (2010-04-01), pages 103 - 108
See also references of EP2656999A4

Also Published As

Publication number Publication date
CN103269842B (zh) 2016-04-13
JP2012131136A (ja) 2012-07-12
EP2656999B1 (en) 2018-07-25
US20130236591A1 (en) 2013-09-12
CN103269842A (zh) 2013-08-28
EP2656999A4 (en) 2015-01-21
JP5416080B2 (ja) 2014-02-12
US8827690B2 (en) 2014-09-09
EP2656999A1 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5416080B2 (ja) 中空体成形装置
JP5242519B2 (ja) 分岐部付パイプの製造方法
CN101678594B (zh) 由热塑性塑料通过挤吹成型来制造容器的方法
US10456966B2 (en) Hollow-body molding device
US11478968B2 (en) Method for producing a tube and injection-molding device
US11014278B2 (en) Injection-molding device for producing multi component moldings and method for producing multi-component moldings
JP5658577B2 (ja) 中空体成形装置
EP0692360A1 (en) Mold apparatus and process for injection molding
JP2009148970A (ja) 二層中空成形品の成形方法
JP6749825B2 (ja) 管状樹脂成形体の製造方法
JP2018062061A (ja) 管状樹脂成形体の製造方法
JP5038118B2 (ja) 二層中空成形品の成形方法
JP7460449B2 (ja) 樹脂製パイプの製造方法
US10981308B2 (en) Method and device for producing a tube from thermoplastic synthetic material via injection moulding
JP2018069543A (ja) 管状樹脂成形体の製造方法
CN204869607U (zh) 由型坯吹塑成型的塑料储箱
JP2022101221A (ja) 樹脂製パイプの製造方法
JP3808011B2 (ja) 中実部及び中空部を有する成形品の射出成形方法及び金型組立体
CN114555324A (zh) 注塑成型系统
JPH0747572A (ja) 射出成形用のガス注入装置
JP3768161B2 (ja) 加圧流体導入用ノズル組立体及び射出成形方法
CN104129038A (zh) 用于制造螺旋形密封件的制造方法和模具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851965

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13988079

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE