WO2012086289A1 - ブレーキシステム及びブレーキ制御方法 - Google Patents

ブレーキシステム及びブレーキ制御方法 Download PDF

Info

Publication number
WO2012086289A1
WO2012086289A1 PCT/JP2011/072951 JP2011072951W WO2012086289A1 WO 2012086289 A1 WO2012086289 A1 WO 2012086289A1 JP 2011072951 W JP2011072951 W JP 2011072951W WO 2012086289 A1 WO2012086289 A1 WO 2012086289A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking force
rear wheel
front wheel
maximum braking
brake
Prior art date
Application number
PCT/JP2011/072951
Other languages
English (en)
French (fr)
Inventor
俊作 小野
純也 岩月
貴洋 小川
宰嗣 鈴田
充弘 斉藤
Original Assignee
ボッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社 filed Critical ボッシュ株式会社
Priority to EP11851039.5A priority Critical patent/EP2657094B1/en
Priority to JP2012549671A priority patent/JP5367916B2/ja
Priority to US13/995,551 priority patent/US8897986B2/en
Publication of WO2012086289A1 publication Critical patent/WO2012086289A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1701Braking or traction control means specially adapted for particular types of vehicles
    • B60T8/1706Braking or traction control means specially adapted for particular types of vehicles for single-track vehicles, e.g. motorcycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1763Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to the coefficient of friction between the wheels and the ground surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/16Curve braking control, e.g. turn control within ABS control algorithm

Definitions

  • the present invention relates to a brake system and a brake control method during turning of a motorcycle.
  • an ABS (anti-lock brake system) for motorcycles is adapted only when traveling on a straight line, and braking of ABS while the vehicle body is turning could result in unstable behavior of the vehicle body.
  • various brake control methods for turning a motorcycle are known.
  • the degree of travel on a curved road and the inclination posture are detected by an acceleration sensor, and before reaching the lock pressure at which the wheel locks, the braking pressure on the front wheels is limited by the ABS adjuster. (For example, see Patent Document 1).
  • a motorcycle brake control method (for example, refer to Patent Document 2) in which the lateral inclination of the motorcycle is measured by a yaw rate sensor and the brake is controlled using the measurement result, and the longitudinal and lateral directions of the vehicle body are the same.
  • a method of calculating a horizontal lateral acceleration applied to a turning motorcycle by detecting acceleration with an acceleration sensor having a detection axis directed in a direction not to be detected see, for example, Patent Document 3).
  • An object of the present invention is to eliminate the above-described problems of the prior art and to suppress the unstable behavior of the vehicle body that occurs during braking during turning.
  • a step of determining whether or not the vehicle is turning, a maximum braking force that does not cause a slip of the front wheel is calculated, and the stored maximum braking of the front wheel is stored.
  • the braking force of the front wheel and the rear wheel is limited to a predetermined ratio of the corresponding maximum braking force, and the restricted front wheel and rear wheel And a step of bringing the braking force close to the corresponding updated maximum braking force.
  • the maximum braking force of the front wheel or the rear wheel may be calculated based on a lateral force acting on the motorcycle during turning.
  • the maximum braking force of the front wheel or the rear wheel may be calculated based on the speed, lean angle, or axle load of the motorcycle.
  • the step of bringing the braking force of the limited front wheel and the rear wheel close to the corresponding maximum braking force may gradually increase the amount of increase in the braking force of the front wheel and the rear wheel.
  • the braking force of the front wheel and the rear wheel may be held at a constant braking force over a predetermined time after the limitation.
  • a step of determining whether or not the ABS is operating may be further included, and the predetermined ratio may be varied depending on whether or not the ABS is operating.
  • the intermittent increase / decrease in braking force due to the operation of the ABS may be smaller when the vehicle is turning than when the vehicle is not turning.
  • the present invention relates to a brake system that performs brake control during turning of a motorcycle, and determines whether or not the vehicle is turning, the maximum value of braking force at which front wheel slip does not occur, and the maximum at which rear wheel slip does not occur.
  • the braking force is calculated, the stored maximum braking force of the front wheel and the rear wheel is updated based on the calculation result, and when a brake operation is performed by the driver during a turn, the front wheel and the rear wheel
  • the braking force is limited to a predetermined ratio of the corresponding maximum braking force, and the limited braking force of the front wheel and the rear wheel is brought close to the corresponding updated maximum braking force.
  • the maximum braking force of the front wheel or the rear wheel may be calculated based on a lateral force acting on the motorcycle during turning.
  • the maximum braking force of the front wheel or the rear wheel may be calculated based on the speed, lean angle, or axle load of the motorcycle.
  • the increase amount of the braking force of the front wheel and the rear wheel may be gradually increased.
  • the restriction of the braking force of the front wheel and the rear wheel may be maintained at a constant braking force over a predetermined time after the restriction.
  • the maximum braking force of the front wheel or the rear wheel may be calculated using the calculated friction coefficient. It may be determined whether the ABS is operating, and the predetermined ratio may be different depending on whether the ABS is operating. The increase / decrease of the intermittent braking force of the ABS may be smaller when the vehicle is turning than when the vehicle is not turning.
  • FIG. 6A is a diagram showing the state of the wheel speed during actual brake control.
  • FIG. 6B is a diagram showing the lean angle during actual brake control.
  • FIG. 6C is a diagram showing a state of actual brake control. It is a flowchart which shows the brake control process in case the vehicle body is turning.
  • FIG. 1 shows a hydraulic circuit of a brake system according to this embodiment.
  • This brake system is mounted on a motorcycle, and includes a front wheel hydraulic circuit 100, a rear wheel hydraulic circuit 200, and a DC motor 300 that drives the hydraulic pumps of the front wheel hydraulic circuit 100 and the rear wheel hydraulic circuit 200. It has.
  • the hydraulic circuit is filled with brake fluid.
  • the front wheel hydraulic circuit 100 includes a brake lever 101 that is operated by the driver's right hand, a front wheel side master cylinder 103 that is pressurized when the brake lever 101 is operated, and a front wheel side that is connected to the front wheel side master cylinder 103.
  • a filter is provided at each of the connection portion between the pipe line 104 and the front wheel side switching valve 107 and the connection portion between the pipe line 104 and the front wheel side intake valve 109.
  • a pressure sensor 111 is provided in the pipe line 104, and the pressure sensor 111 detects a pressure between the front wheel side master cylinder 103, the front wheel side switching valve 107, and the front wheel side intake valve 109, and an electronic control described later. It is provided so that it may transmit to ECU400 which is a unit.
  • the front wheel side first charging valve 113 a is connected via a front wheel side switching valve 107 and a pipe line 106.
  • a filter is also provided at a connection portion between each of the front wheel side switching valve 107 and the front wheel side first charging valve 113 a and the pipe line 106.
  • the front wheel side first charging valve 113a is connected to the front wheel side first caliper 115a via a pipe line 114a.
  • the front wheel side second charging valve 113 b is directly connected to the pipe line 104.
  • a filter is also provided at a connection portion between the front wheel side second charging valve 113 b and the pipe line 104.
  • the front wheel side second charging valve 113b is connected to the front wheel side second caliper 115b via the pipe line 114b.
  • the hydraulic circuit according to the present embodiment is connected to a front wheel brake operated by the front wheel hydraulic circuit 100.
  • the front wheel brake includes a front wheel first brake including a front wheel side first caliper 115a and a front wheel second brake including a front wheel side second caliper 115b.
  • the front wheel side first caliper 115a is connected to the front wheel side first charging valve 113a via the conduit 114a as described above.
  • the front wheel side second caliper 115b is connected to the front wheel side second charging valve 113b via the conduit 114b as described above.
  • the discharge side of the front wheel side hydraulic pump 119 is connected to the pipe line 106 through a throttle.
  • the suction side of the front wheel side hydraulic pump 119 is connected to the pipe line 120 through a filter.
  • the front wheel hydraulic pump 119 is driven by the DC motor 300.
  • one end of a front wheel side first check valve 121 is connected to the pipe line 120.
  • a discharge port of the front wheel side suction valve 109 is connected to the pipe line 120.
  • the other end of the front wheel side first check valve 121 is connected to the pipe line 122.
  • the front wheel side first check valve 121 is disposed so as to prevent a backflow from the pipe 120 to the pipe 122.
  • the pipe 122 is connected to the discharge ports of the front wheel side relaxation valves 123a and 123b. Further, a front wheel side accumulator 125 is connected to the pipe line 122 between the front wheel side check valve 121 and the front wheel side relaxation valves 123a and 123b.
  • the inflow end of the front wheel side first relaxation valve 123a is connected to the front wheel side first caliper 115a via a pipe line 114a.
  • the outflow port of the front wheel side first relaxation valve 123 a is connected to the pipe line 122.
  • a filter is provided at a connection portion between the inflow port of the front wheel side first relaxation valve 123a and the pipe line 114a.
  • a pressure sensor 127a is provided in the pipe line 114a. The pressure sensor 127a measures the pressure in the pipe line 114a and transmits a pressure signal to the ECU 400.
  • the front wheel side second caliper 115b is connected to the inflow port of the front wheel side second relaxation valve 123b via a pipe line 114b.
  • the outflow port of the front wheel side second release valve 123 b is connected to the pipe line 122.
  • a filter is provided at a connection portion between the inflow port of the front wheel side second relaxation valve 123b and the pipe line 114b.
  • a pressure sensor 127b is provided in the pipe line 114b, and the pressure sensor 127b measures the pressure in the pipe line 114b and transmits a pressure signal to the ECU 400. Note that the pressure in the conduit 114b does not become higher than the pressure in the conduit 114a, and the pressure in the conduit 114a is detected by the pressure sensor 127a, so the pressure sensor 127b can be omitted.
  • the rear wheel hydraulic circuit 200 is connected to a brake pedal 201 that is operated with the right foot of the driver, a rear wheel master cylinder 203 that is pressurized when the brake pedal 201 is operated, and a rear wheel master cylinder 203.
  • a filter is provided at each of the connection portion between the pipeline 204 and the rear wheel side switching valve 207 and the connection portion between the pipeline 204 and the rear wheel side intake valve 209.
  • a pressure sensor 211 is provided in the pipe line 204, and the pressure sensor 211 detects the pressure between the rear wheel side master cylinder 203 and the rear wheel side switching valve 207 and the rear wheel side intake valve 209, and the ECU 400 Send to.
  • the rear wheel side valve 213 is connected to the rear wheel side switching valve 207 via a pipe line 206. Filters are also provided at the connection portions between the rear wheel side switching valve 207 and the rear wheel side insertion valve 213 and the pipe line 206, respectively.
  • the rear wheel side containment valve 213 is connected to the rear wheel caliper 215 via the pipe line 214.
  • the rear wheel brake includes a rear wheel caliper 215.
  • the rear wheel caliper 215 is connected to the rear wheel side valve 213 via the conduit 214 as described above.
  • the discharge side of the rear wheel side hydraulic pump 219 is connected to the pipe line 206 via a throttle.
  • the suction side of the rear wheel side hydraulic pump 219 is connected to the pipeline 220 through a filter.
  • the rear wheel hydraulic pump 219 is driven by the DC motor 300.
  • one end of a rear wheel check valve 221 is connected to the pipe line 220.
  • a discharge port of the rear wheel side intake valve 209 is connected to the pipe line 220.
  • the other end of the rear wheel check valve 221 is connected to the pipe line 222.
  • the rear wheel side check valve 221 is arranged so as to prevent a backflow from the pipe line 220 to the pipe line 222.
  • the discharge port of the rear wheel side relaxation valve 223 is connected to the pipe line 222.
  • a rear wheel side accumulator 225 is connected to the pipe line 222 between the rear wheel side check valve 221 and the rear wheel side relaxation valve 223.
  • the rear wheel caliper 215 is connected to the inflow port of the rear wheel side relief valve 223 via the pipe line 214.
  • the outflow port of the rear wheel side relaxation valve 223 is connected to the pipe line 222.
  • a filter is provided at the outflow port of the rear wheel side relaxation valve 223, the pipe line 214, and the connection portion.
  • a pressure sensor 227 is provided in the pipe line 214, and the pressure sensor 227 measures the pressure in the pipe line 214 and transmits a pressure signal to the ECU 400.
  • the hydraulic circuit shown in FIG. 1 is controlled by ECU 400 which is an electronic control unit shown in the block diagram of FIG. ECU 400 is connected to pressure sensors 111, 127a, 127b and a front wheel speed sensor 129 for detecting the front wheel rotational speed.
  • the pressure sensors 111, 127a, 127b transmit the pressure signals in the pipe lines 104, 114a, 114b to the ECU 400, respectively, and the front wheel speed sensor 129 transmits the rotational speed signal of the front wheels to the ECU 400.
  • the ECU 400 is connected with pressure sensors 211 and 227 and a rear wheel speed sensor 229 for detecting the rear wheel rotational speed.
  • the pressure sensors 211 and 227 transmit the pressure signals in the pipe lines 204 and 214 to the ECU 400, respectively, and the rear wheel speed sensor 229 transmits the rotational speed signal of the rear wheels to the ECU 400.
  • the ECU 400 determines that the DC motor 300, the front wheel side switching valve 107, the front wheel side intake valve 109, the front wheel side first charging valve 113a, the front wheel side second charging valve 113b, Each of the front wheel side first release valve 123a and the front wheel side second release valve 123b is operated. Further, the ECU 400 controls each of the rear wheel side switching valve 207, the rear wheel side intake valve 209, the rear wheel side intake valve 213, and the rear wheel side release valve 223 according to predetermined conditions based on the pressure signal and the speed signal. Operate. Each of the valves is an electromagnetic valve having a solenoid, and the open / close state is switched by being energized by the ECU 400.
  • the ECU 400 when the ECU 400 receives a rotational speed signal from the front wheel speed sensor 129 or the rear wheel speed sensor 229 and detects the lock of the wheel, the ECU 400 operates an ABS (anti-lock brake system), Each hydraulic pump is operated, each valve is opened and closed, and the braking force is controlled to prevent the wheels from being locked.
  • ABS anti-lock brake system
  • the motorcycle according to the present embodiment is provided with a lean angle sensor 110 for detecting a lean angle (bank angle), that is, an inclination angle of the vehicle body.
  • the ECU 400 is further connected to the lean angle sensor 110 and is provided so as to obtain a lean angle signal corresponding to the lean angle of the vehicle body from the lean angle sensor 110.
  • ECU 400 acts on the vehicle body that is turning based on the lean angle signal acquired from lean angle sensor 110 and the rotational speed signal of the front wheel or rear wheel acquired from front wheel speed sensor 129 or rear wheel speed sensor 229.
  • a horizontal turning force that is, a centrifugal force that is a lateral force can be calculated.
  • FIG. 3 is a schematic diagram showing an outline of a method for calculating the maximum braking force.
  • ECU 400 calculates the maximum braking force at the time of turning indicated by arrow B in the figure from the turning force of the vehicle body indicated by arrow A in the figure using the theory of tire friction circle.
  • the maximum braking force is the maximum value of the braking force that can be generated in the longitudinal direction, which is the traveling direction of the wheel.
  • ECU 400 calculates the maximum braking force from the calculated turning force using the theory of tire friction circle reflecting the axial load.
  • the ECU 400 stores the previously calculated maximum braking force in a memory (not shown) such as an EEPROM or RAM, and updates the stored maximum braking force based on the newly calculated maximum braking force.
  • the axial load is a load on the wheel shaft that calculates the maximum braking force, and changes according to the acceleration / deceleration of the vehicle body. Therefore, in this embodiment, the axial load is calculated from the longitudinal and lateral accelerations of the vehicle body.
  • the actual coefficient of friction can be calculated based on the ground contact state with respect to the road surface of the rear wheel, such as a slight slip or driving torque of the rear wheel generated when the vehicle body accelerates, or a lean angle signal.
  • the load amount of each wheel is calculated from the vehicle body acceleration, and the calculated load amount of each wheel is corrected based on the moment amount in the roll direction calculated from the vehicle body speed and the lean angle.
  • the road surface ⁇ (friction coefficient) is estimated from the slip amount, the corrected load amount of each wheel, and the installation area with respect to the road surface of the tire estimated from the lean angle, and the ground contact state of the tire is determined.
  • the calculation of the maximum braking force by the ECU 400 may be calculated by applying the value of the turning force to an equation corresponding to the tire friction circle, or a map corresponding to the tire friction circle is stored in the memory in advance and the map is referred to. By doing so, the value of the turning force may be calculated.
  • FIG. 4 is a schematic diagram showing a state of front wheel brake control.
  • the vertical axis represents the hydraulic pressure of the brake fluid supplied to the wheel cylinders provided on the front wheel side first and second calipers 115a and 115b, and the horizontal axis represents the elapsed time.
  • a line L1 indicates the hydraulic pressure of the brake fluid corresponding to the maximum braking force in the longitudinal direction that can occur on the wheel, and when the hydraulic pressure of the brake fluid supplied to the wheel cylinder reaches the line L1, The front wheels produce the maximum braking force.
  • the lines L2 to L5 indicate the actual brake fluid under the control of the ECU 400 when the driver operates the brake lever 101 (see FIG. 1) to apply the braking force to the front wheels without the ABS intervening. The change in hydraulic pressure is shown.
  • the vehicle body When braking force is generated on the vehicle body, the vehicle body decelerates, the load moves forward, the load applied to the front wheels increases, the radius of the friction circle increases, and the lateral turning force decreases. For this reason, the line L1 indicating the maximum braking force of the front wheel rises after the hydraulic pressure of the brake fluid is increased and the braking force is generated as indicated by the line L2.
  • the control of the brake fluid pressure at the front wheels is focused on preventing sudden rises in the bank angle of the vehicle body, that is, preventing sudden lean angles.
  • the ECU 400 controls the front wheel hydraulic circuit 100 so that the driver operates the brake lever 101 as shown by a line L3 when the hydraulic pressure of the brake fluid reaches a predetermined ratio of the maximum braking force. Even so, the hydraulic pressure of the brake fluid supplied to the wheel cylinder is limited so that the hydraulic pressure does not increase any further. At this time, the hydraulic pressure of the brake fluid in the wheel cylinder is obtained by using the pressure sensors 127a and 127b to calculate the hydraulic pressure in the pipe lines 114a and 114b connected to the wheel cylinders of the first and second calipers 115a and 115b. By measuring, the restriction of the hydraulic pressure can be controlled with high accuracy.
  • the predetermined ratio of the maximum braking force is such that the driver will not feel that the bank angle of the vehicle body has risen or the rear wheel slides suddenly, and is within the range of 30% to 60% of the maximum braking force. Is preferable. Even if the maximum braking force fluctuates, the ECU 400 restricts the hydraulic pressure to be constant over a predetermined time from the start of the restriction as shown by the line L3, that is, to maintain a constant braking force. To be done.
  • the ECU 400 When a predetermined time has elapsed from the start of the restriction, the ECU 400 gradually brings the braking force of the front wheels closer to the maximum braking force as indicated by the lines L4 and L5. At this time, the increase amount of the braking force is gradually increased, and the increase amount of the hydraulic pressure is larger in the region of the line L5 than the line L4, and 0.5% after the restriction of the hydraulic pressure of the brake fluid is started. It is preferable to limit the hydraulic pressure so that the maximum braking force is gradually increased within a range of 2 to 2 seconds.
  • FIG. 5 is a schematic diagram showing the state of rear wheel brake control.
  • the vertical axis represents the hydraulic pressure of the brake fluid supplied to the wheel cylinder provided in the rear wheel caliper 215, and the horizontal axis represents the elapsed time.
  • a line L6 indicates the hydraulic pressure of the brake fluid corresponding to the maximum braking force in the longitudinal direction that can occur in the rear wheel, and corresponds to the front wheel line L1 (see FIG. 3).
  • lines L7 to L10 indicate actual brake fluid under the control of the ECU 400 when the driver applies braking force to the rear wheels by operating the brake pedal 201 (see FIG. 1) in a state where ABS is not intervening. The change in hydraulic pressure is shown.
  • the rear wheel brake control is substantially the same as the front wheel brake control, and the rear wheel lines L7 to L10 correspond to the front wheel lines L2 to L5.
  • the maximum braking force of the rear wheel is determined by determining the actual maximum braking force obtained from the load applied to the rear wheel when the braking force is generated on the vehicle body and the turning force in the lateral direction, and the influence of the drag torque of the engine from that value. The value is obtained by subtracting.
  • Control of the brake fluid pressure at the rear wheel keeps the braking force of the wheel low and stabilizes by smoothing the wheel slide so that the wheel does not slip suddenly and the body behavior becomes unstable. Emphasis is placed on ensuring sex.
  • the rear wheel brake control is executed in the same manner as the front wheel brake control. However, the load applied to the rear wheel differs from the front wheel due to the load movement of the vehicle body. For this reason, the maximum braking force of the rear wheels, the value of a predetermined ratio with respect to the maximum braking force when limiting the hydraulic pressure of the brake fluid, the amount of increase in braking force when the braking force gradually approaches the maximum braking force, etc. Is different from the case of front wheel brake control.
  • the brake control according to the present embodiment is also executed at the time of ABS control in which the ABS is operated before the vehicle body starts turning, for example, when turning while the ABS is operating during straight running.
  • the braking force intermittently increases or decreases, but the ECU 400 limits the hydraulic pressure so that the braking force increases, that is, the pressure increase gradient of the hydraulic pressure becomes gentle.
  • the predetermined ratio of the maximum braking force described above is different from that when the ABS is not operating. For example, when the ABS is operating, the braking force is higher than when the ABS is not operating. It is supposed to be limited to.
  • the ECU 400 also reduces the amount of decrease in braking force when the braking force intermittently increases or decreases due to the operation of the ABS, that is, the amount of pressure decrease when the hydraulic pressure is reduced compared to when no turning force is generated in the vehicle body. It is like that.
  • FIG. 6 (a) to 6 (c) are diagrams showing actual brake control.
  • FIG. 6A to FIG. 6C correspond to the horizontal axes, and here, the brake control of the front wheels will be described as an example.
  • FIG. 6 (a) shows the wheel speed (m / s) on the vertical axis and the elapsed time (sec) on the horizontal axis.
  • a line L11 shows a change in the wheel speed accompanying the limitation of the braking force and the operation of the ABS.
  • FIG. 6B shows the lean angle (deg) on the vertical axis and the elapsed time (sec) on the horizontal axis.
  • a line L12 shows the state of the change in the lean angle accompanying the limitation of the braking force and the operation of the ABS.
  • FIG. 6C shows the hydraulic pressure (bar) of the brake fluid supplied to the wheel cylinders provided on the front wheel side first and second calipers 115a, 115b (see FIG. 1) on the vertical axis, and on the horizontal axis. The elapsed time (sec) is shown.
  • lines L13 and L14 indicate front wheel side first and second calipers 115a and 115b when the driver operates the brake lever 101 when the braking force is not limited and the ABS is not operated.
  • the change of the hydraulic pressure of the brake fluid supplied to the wheel cylinder provided in is shown for comparison.
  • lines L14 to L16 indicate changes in the limit value of the hydraulic pressure of the brake fluid supplied to the wheel cylinders provided in the front wheel side first and second calipers 115a and 115b when the braking force is limited.
  • a line L17 indicates a change in the hydraulic pressure of the brake fluid supplied to the wheel cylinder when the ABS is operated.
  • the line L14 corresponds to the line L2 in FIG. 4
  • the lines L15 and L16 correspond to the lines L3 to L5 in FIG. 4, respectively.
  • ECU400 (refer FIG. 2) will restrict
  • the ECU 400 gradually increases the brake fluid pressure limit to 10 bar one second after the start of the fluid pressure limit.
  • the amount of increase in the hydraulic pressure at this time is preferably greater than 0 bar / s and not greater than 10 bar / s.
  • the ECU 400 When one second has elapsed from the start of the hydraulic pressure limitation, the ECU 400 further increases the hydraulic pressure of the brake fluid so that the pressure becomes 20 bar after 0.3 second.
  • the amount of increase in the hydraulic pressure at this time is preferably greater than 0 bar / s and not greater than 50 bar / s.
  • FIG. 7 is a flowchart showing a brake control process while the vehicle body is turning.
  • the ECU 400 determines whether or not the vehicle body is turning (step S1). This determination is made based on a lean angle signal acquired from the lean angle sensor 110.
  • step S1 if it is determined that the vehicle is not turning (step S1: No), ECU 400 repeats the process of step S1 until it is determined that the vehicle is turning.
  • step S1 when it is determined in step S1 that the vehicle is turning (step S1: Yes), the ECU 400 calculates the maximum braking force that does not cause the front wheel to slip, and stores the maximum braking force of the front wheel based on the previous calculation stored. Is updated to the newly calculated maximum braking force (step S2). Next, ECU 400 calculates the maximum braking force at which rear wheel slip does not occur, and updates the stored rear wheel maximum braking force based on the previous calculation to the newly calculated maximum braking force (step S3). . Note that the order of the processes in steps S1 to S3 is arbitrary.
  • step S2 and step S3 when the maximum braking force of the front wheels and the rear wheels is calculated, ECU 400 determines whether or not there has been a brake operation by the driver (step S4).
  • step S4 When it is determined that the driver has not operated the brake (step S4: No), the ECU 400 repeats a series of processes from step S1.
  • step S4 determines whether the driver has operated the brake.
  • step S5 If it is determined in step S5 that the ABS is operating (step S5: Yes), the ECU 400 determines the braking force of the front wheels and the rear wheels corresponding to the maximum braking force calculated in steps S2 and S3, respectively, corresponding to the ABS operation. (Step S6). At this time, the ECU 400 also reduces the amount of decrease in braking force, that is, the amount of pressure reduction when the hydraulic pressure is reduced, compared to the case where no turning force is generated in the vehicle body.
  • step S6 When the braking force of the front wheels and the rear wheels is limited in step S6, the ECU 400 gradually approximates the limited braking force of the front wheels and rear wheels to the updated maximum braking force calculated in step S2 and step S3, respectively ( Step S7).
  • step S5 when it is determined in step S5 that the ABS is not in operation (step S5: No), the ECU 400 responds to the braking force of the front wheels and the rear wheels when the ABS of the maximum braking force calculated in steps S2 and S3 is not activated.
  • the predetermined ratio is limited (step S8). At this time, the restriction of the braking force of the front wheels and the rear wheels is kept constant over a predetermined time.
  • step S8 when the braking force of the front wheels and the rear wheels is limited, ECU 400 gradually approximates the limited braking force of the front wheels and rear wheels to the updated maximum braking force calculated in steps S2 and S3, respectively ( Step S9).
  • step S9 when a slip of the front wheel or the rear wheel is detected in step S8 and step S9, the braking force restriction on the front wheel and the rear wheel is stopped and the ABS is operated.
  • the ECU 400 limits the braking force of the front wheels and the rear wheels and gradually increases the limited braking force to the maximum braking force when the driver performs a braking operation while the vehicle body is turning. Can do.
  • the ECU 400 calculates the maximum braking force for the front wheels and the rear wheels and updates it as a new maximum braking force, and when the brake operation is performed, the braking force for the front wheels and the rear wheels respectively corresponds to the corresponding maximum braking force.
  • the limit of the braking force of the front wheel and the rear wheel can be brought close to the corresponding maximum braking force.
  • the braking force can be prevented from changing suddenly, and the rise of the bank angle of the vehicle body and the sliding of the rear wheels can be made smooth. For this reason, the unstable behavior of the vehicle body that occurs during braking during turning can be suppressed.
  • the driver can make the vehicle body bend as much as possible by loosening the brake during braking and increasing the lateral blip force of the tire,
  • the vehicle body can be further controlled according to the situation by increasing the braking force and increasing the deceleration by continuing to operate the vehicle strongly.
  • the brake control in the present embodiment is executed even when the ABS is operating.
  • the intermittent increase / decrease in the hydraulic pressure of the brake fluid during the ABS operation can moderate the pressure increase gradient when the hydraulic pressure is increased. For this reason, the sudden behavior of the vehicle body can be suppressed even during the operation of the ABS.
  • the performance of the ABS can be made compatible with both straight traveling and turning of the vehicle body.
  • the turning force is calculated based on the lean angle detected by the lean angle sensor 110, but the present invention is not limited to this.
  • a lateral acceleration sensor or the like that simply detects lateral acceleration may be used instead of the lean angle sensor.
  • the control of the hydraulic pressure of the brake fluid supplied to three of the front wheel side first and second calipers 115a and 115b and the rear wheel caliper 215, that is, 3ch (channel) is described.
  • the hydraulic pressure of the brake fluid supplied to the brake caliper is automatically increased, that is, if the braking force limited by pressurizing the brake fluid can be brought close to the maximum braking force, for example, the brake fluid supplied to 2ch or 4ch
  • the hydraulic pressure may be controlled.
  • the ECU 400 gradually changes the braking force of the limited front wheels and the rear wheels to the maximum braking force without changing the maximum braking force calculated once in step S2 and step S3 in step S7. Although it is approaching, it is not limited to this. For example, when the limited braking force is brought close to the maximum braking force, the load amount and lean angle of each wheel change, so the maximum braking force for the front and rear wheels is repeatedly calculated and calculated each time. The maximum braking force used for limiting the braking force may be updated.
  • front wheel hydraulic circuit 101 brake lever 103 front wheel side master cylinder 110 lean angle sensor 115a front wheel side first caliper 115b front wheel side second caliper 119 front wheel side hydraulic pump 200 rear wheel hydraulic circuit 201 brake pedal 203 rear wheel side master cylinder 215 Rear wheel caliper 219 Front wheel hydraulic pump 300 DC motor 400 ECU

Abstract

 本発明は、旋回中の制動時に生じる車体の不安定な挙動を抑えることを目的とする。 自動二輪車の旋回時におけるブレーキ制御方法において、旋回中であるか否かを判断するステップと、前輪のスリップが生じない最大制動力を算出し、記憶している前記前輪の最大制動力を算出結果に基づいて更新するステップと、後輪のスリップが生じない最大制動力を算出し、記憶している前記後輪の最大制動力を算出結果に基づいて更新するステップと、旋回中に運転者によるブレーキ操作があった場合に、前記前輪及び前記後輪の制動力をそれぞれ対応する前記最大制動力の所定の割合に制限するステップと、前記制限された前記前輪及び前記後輪の制動力をそれぞれ対応する更新された前記最大制動力に近づけるステップとを備えるようにした。

Description

ブレーキシステム及びブレーキ制御方法
 本発明は、自動二輪車の旋回時におけるブレーキシステム及びブレーキ制御方法に関する。
 従来、自動二輪車用のABS(アンチロックブレーキシステム)は、直線を走行中にのみに適合されており、車体が旋回中でのABSの制動は車体の挙動が不安定な状態となり得た。これを解消すべく、自動二輪車の旋回時における様々なブレーキ制御方法が知られている。この種のブレーキ制御方法では、例えば、曲線路の走行と傾斜姿勢の程度を加速度センサで検出し、車輪がロックするロック圧力に達する前に、ABSの調整器により前輪の制動圧力を制限していた(例えば、特許文献1参照)。
 また、ヨーレートセンサにより自動二輪車の横方向傾斜を測定し、測定結果を用いてブレーキを制御する自動二輪車のブレーキ制御方法(例えば、特許文献2参照)や、車体の前後方向および左右方向とは一致しない方向に検出軸を向けた加速度センサで加速度を検出することにより、旋回する自動二輪車にかかる水平方向の横加速度を算出する方法(例えば、特許文献3参照)が知られている。
特開平7-2077号公報 特開2004-155412号公報 特開2009-241742号公報
 しかしながら、旋回中のABSの制御閾値を浅くしたり、前輪の制動力をロック圧力近傍で制限したりするブレーキ制御方法では、特に前輪の制動時に車体のバンク角が急激に起き上がってしまい、車体の挙動が不安定になってしまうことがあった。
 本発明の目的は、上述した従来の技術が有する課題を解消し、旋回中の制動時に生じる車体の不安定な挙動を抑えることにある。
 本発明は、自動二輪車の旋回時におけるブレーキ制御方法において、旋回中であるか否かを判断するステップと、前輪のスリップが生じない最大制動力を算出し、記憶している前記前輪の最大制動力を算出結果に基づいて更新するステップと、後輪のスリップが生じない最大制動力を算出し、記憶している前記後輪の最大制動力を算出結果に基づいて更新するステップと、旋回中に運転者によるブレーキ操作があった場合に、前記前輪及び前記後輪の制動力をそれぞれ対応する前記最大制動力の所定の割合に制限するステップと、前記制限された前記前輪及び前記後輪の制動力をそれぞれ対応する更新された前記最大制動力に近づけるステップとを備えたことを特徴とする。
 この場合において、前記前輪または前記後輪の前記最大制動力は、旋回中の前記自動二輪車に作用する横方向の力に基づいて算出してもよい。前記前輪または前記後輪の前記最大制動力は、前記自動二輪車の速度、リーンアングル、または各車軸荷重量に基づいて算出してもよい。前記制限された前記前輪及び前記後輪の制動力をそれぞれ対応する前記最大制動力に近づけるステップは、前記前輪及び前記後輪の制動力の上昇量を次第に大きくしてもよい。前記前輪及び前記後輪の制動力の前記制限を、制限してから所定時間にかけて、一定の制動力に保持してもよい。前記前輪または前記後輪の路面に対する摩擦係数を、予め前記自動二輪車が加速中に前記後輪の路面に対する接地状態に基づいて算出し、前記前輪または前記後輪の前記最大制動力を算出するステップは、算出した前記摩擦係数を用いて前記前輪または前記後輪の前記最大制動力を算出してもよい。ABSが作動中であるか否かを判断するステップをさらに備え、前記ABSが作動中であるか否かに応じて前記所定の割合が異なるようにしてもよい。前記ABSの作動による断続的な制動力の増減は、旋回中である場合の方が旋回中でない場合よりも減少量が小さくしてもよい。
 本発明は、自動二輪車の旋回時におけるブレーキ制御を行うブレーキシステムにおいて、旋回中であるか否かを判断するとともに、前輪のスリップが生じない制動力の最大値及び後輪のスリップが生じない最大制動力を算出し、記憶している前記前輪及び前記後輪の最大制動力を算出結果に基づいて更新し、旋回中に運転者によるブレーキ操作があった場合に、前記前輪及び前記後輪の制動力をそれぞれ対応する前記最大制動力の所定の割合に制限し、前記制限された前記前輪及び前記後輪の制動力をそれぞれ対応する更新された前記最大制動力に近づけることを特徴とする。
 この場合において、前記前輪または前記後輪の前記最大制動力は、旋回中の前記自動二輪車に作用する横方向の力に基づいて算出してもよい。前記前輪または前記後輪の前記最大制動力は、前記自動二輪車の速度、リーンアングル、または各車軸荷重量に基づいて算出してもよい。前記制限された前記前輪及び前記後輪の制動力をそれぞれ対応する前記最大制動力に近づける際に、前記前輪及び前記後輪の制動力の上昇量を次第に大きくしてもよい。前記前輪及び前記後輪の制動力の前記制限は、制限してから所定時間にかけて、一定の制動力に保持してもよい。前記前輪または前記後輪の路面に対する摩擦係数を、予め前記自動二輪車が加速中に前記後輪の路面に対する接地状態に基づいて算出し、前記前輪または前記後輪の前記最大制動力を算出する際に、算出した前記摩擦係数を用いて前記前輪または前記後輪の前記最大制動力を算出してもよい。ABSが作動中であるか否かを判断し、前記ABSが作動中であるか否かに応じて前記所定の割合が異なるようにしてもよい。前記ABSの断続的な制動力の前記増減は、旋回中である場合の方が旋回中でない場合よりも減少量が小さくてもよい。
 本発明では、旋回中の制動時に生じる車体の不安定な挙動を抑えることができる。
本実施形態に係る油圧回路を示す回路図である。 ECUによる機能的構成を示すブロック図である。 最大制動力の算出方法の概要を示す模式図である。 前輪のブレーキ制御の様子を示す模式図である。 後輪のブレーキ制御の様子を示す模式図である。 図6(a)は、実際のブレーキ制御時における車輪速度の様子を示す図である。図6(b)は、実際のブレーキ制御時におけるリーンアングルの様子を示す図である。図6(c)は、実際のブレーキ制御の様子を示す図である。 車体が旋回中のブレーキ制御処理を示すフローチャートである。
 以下、図面を参照して、本発明の好適な実施の形態について説明する。
 図1は、本実施形態に係るブレーキシステムの液圧回路を示している。このブレーキシステムは、自動二輪車に搭載され、前輪液圧回路100と、後輪液圧回路200と、前輪液圧回路100及び後輪液圧回路200の各液圧ポンプを駆動するDCモータ300とを備えている。液圧回路は、ブレーキ液で満たされている。
 前輪液圧回路100は、運転者の右手で操作されるブレーキレバー101と、ブレーキレバー101が操作されると加圧される前輪側マスタシリンダ103と、前輪側マスタシリンダ103に接続される前輪側マスタシリンダ用リザーバ105と、前輪側マスタシリンダ103と管路104を介して接続される前輪側切替弁107と、前輪側マスタシリンダ103と管路104を介して接続される前輪側吸入弁109とを備えている。なお、管路104と前輪側切替弁107との接続部、及び管路104と前輪側吸入弁109との接続部には、それぞれフィルタが設けられている。さらに、管路104には圧力センサ111が設けられ、圧力センサ111は、前輪側マスタシリンダ103と前輪側切替弁107及び前輪側吸入弁109との間の圧力を検知して、後述の電子制御ユニットであるECU400に送信するように設けられている。
 前輪側第1込め弁113aは、前輪側切替弁107と管路106とを介して接続されている。前輪側切替弁107及び前輪側第1込め弁113aの各々と、管路106との接続部にも、フィルタが設けられている。前輪側第1込め弁113aは、管路114aを介して前輪側第1キャリパ115aに接続されている。
 前輪側第2込め弁113bは、管路104に直接接続されている。前輪側第2込め弁113bと管路104との接続部にも、フィルタが設けられている。前輪側第2込め弁113bは、管路114bを介しての前輪側第2キャリパ115bに接続されている。
 本実施形態に係る液圧回路は、前輪液圧回路100によって作動される前輪ブレーキに接続されている。前輪ブレーキは、前輪側第1キャリパ115aを含む前輪第1ブレーキと、前輪側第2キャリパ115bを含む前輪第2ブレーキとから構成される。
 前輪側第1キャリパ115aは、上述のように前輪側第1込め弁113aと管路114aを介して接続されている。一方、前輪側第2キャリパ115bは、上述のように前輪側第2込め弁113bと管路114bを介して接続されている。
 管路106には、前輪側液圧ポンプ119の吐出側が絞りを介して接続されている。前輪側液圧ポンプ119の吸込側は、フィルタを介して管路120に接続されている。前輪側液圧ポンプ119は、DCモータ300により駆動される。また、管路120には、前輪側第1逆止弁121の一端が接続されている。さらに、管路120には、前輪側吸入弁109の吐出ポートが接続されている。また、前輪側第1逆止弁121の他端は、管路122に接続されている。前輪側第1逆止弁121は、管路120から管路122への逆流を防止するように配置されている。
 また、管路122には、前輪側弛め弁123a、123bの吐出ポートが接続されている。さらに、管路122には、前輪側逆止弁121と前輪側弛め弁123a、123bとの間に、前輪側アキュムレータ125が接続されている。
 前輪側第1キャリパ115aには、管路114aを介して前輪側第1弛め弁123aの流入端が接続されている。前輪側第1弛め弁123aの流出ポートは、管路122に接続されている。また、前輪側第1弛め弁123aの流入ポートと管路114aとの接続部には、フィルタが設けられている。管路114aには、圧力センサ127aが設けられている。圧力センサ127aは、管路114a内の圧力を測定して、ECU400に圧力信号を送信する。
 さらに、前輪側第2キャリパ115bには、管路114bを介して前輪側第2弛め弁123bの流入ポートに接続されている。前輪側第2弛め弁123bの流出ポートは、管路122に接続されている。また、前輪側第2弛め弁123bの流入ポートと管路114bとの接続部には、フィルタが設けられている。管路114bには、圧力センサ127bが設けられており、圧力センサ127bは、管路114b内の圧力を測定して、ECU400に圧力信号を送信する。なお、管路114bの圧力は、管路114aの圧力より高くならならず、また管路114aの圧力は圧力センサ127aで検知されるため、圧力センサ127bを省略することもできる。
 次に、図1を用いて後輪液圧回路200の構成を説明する。後輪液圧回路200は、運転者の右足で操作されるブレーキペダル201と、ブレーキペダル201が操作されると加圧される後輪側マスタシリンダ203と、後輪側マスタシリンダ203に接続される後輪側マスタシリンダ用リザーバ205と、後輪側マスタシリンダ203と管路204を介して接続される後輪側切替弁207と、後輪側マスタシリンダ203と管路204を介して接続される後輪側吸入弁209とを備える。なお、管路204と後輪側切替弁207との接続部、及び管路204と後輪側吸入弁209との接続部には、それぞれフィルタが設けられている。さらに、管路204には圧力センサ211が設けられ、圧力センサ211は、後輪側マスタシリンダ203と後輪側切替弁207及び後輪側吸入弁209との間の圧力を検知して、ECU400に送信する。
 また、後輪側込め弁213は、後輪側切替弁207と管路206を介して接続されている。後輪側切替弁207や後輪側込め弁213と管路206との接続部にも、それぞれフィルタが設けられている。後輪側込め弁213は、管路214を介して後輪側キャリパ215に接続されている。後輪ブレーキは、後輪側キャリパ215から構成される。そして、後輪側キャリパ215は、上述のように後輪側込め弁213と管路214を介して接続されている。
 一方、管路206には、後輪側液圧ポンプ219の吐出側が絞りを介して接続されている。後輪側液圧ポンプ219の吸込側は、フィルタを介して管路220に接続されている。後輪側液圧ポンプ219は、DCモータ300により駆動される。また、管路220には、後輪側逆止弁221の一端が接続されている。さらに、管路220には、後輪側吸入弁209の吐出ポートが接続されている。また、後輪側逆止弁221の他端は、管路222に接続されている。後輪側逆止弁221は、管路220から管路222への逆流を防止するように配置されている。
 また、管路222には、後輪側弛め弁223の吐出ポートが接続されている。さらに、管路222には、後輪側逆止弁221と後輪側弛め弁223との間に、後輪側アキュムレータ225が接続されている。
 後輪側キャリパ215は、管路214を介して後輪側弛め弁223の流入ポートに接続されている。後輪側弛め弁223の流出ポートは、管路222に接続されている。また、後輪側弛め弁223の流出ポートと管路214と接続部には、フィルタが設けられている。管路214には、圧力センサ227が設けられており、圧力センサ227は、管路214内の圧力を測定して、ECU400に圧力信号を送信する。
 図1に示した液圧回路は、図2のブロック図に示す電子制御ユニットであるECU400により制御される。ECU400には、圧力センサ111、127a、127bと、前輪回転速度を検知する前輪速度センサ129とが接続されている。圧力センサ111、127a、127bは各管路104、114a、114b内の各圧力信号を、それぞれECU400に送信し、前輪速度センサ129は前輪の回転速度信号をECU400に送信する。さらに、ECU400には、圧力センサ211、227と、後輪回転速度を検知する後輪速度センサ229とが接続されている。圧力センサ211、227は各管路204、214内の各圧力信号を、それぞれECU400に送信し、後輪速度センサ229は後輪の回転速度信号をECU400に送信する。
 また、ECU400は、圧力信号、速度信号に基づき、所定の条件に従って、DCモータ300、前輪側切替弁107、前輪側吸入弁109、前輪側第1込め弁113a、前輪側第2込め弁113b、前輪側第1弛め弁123a、前輪側第2弛め弁123bのそれぞれを作動する。さらに、ECU400は、圧力信号、速度信号に基づき、所定の条件に従って、後輪側切替弁207、後輪側吸入弁209、後輪側込め弁213、後輪側弛め弁223、のそれぞれを作動する。なお、前記各弁はソレノイドを備えた電磁弁であり、ECU400によって通電されて開閉状態が切り換えられる。
 さらに、ブレーキング時に、前輪速度センサ129や後輪速度センサ229からの回転速度信号をECU400が受けて車輪のロックを検知した場合に、ECU400は、ABS(アンチロックブレーキシステム)を作動させて、各液圧ポンプを作動し、各弁を開閉して、制動力を制御して車輪のロックを防止する。
 本実施形態に係る自動二輪車は、リーンアングル(バンク角)、すなわち車体の傾き角を検出するためのリーンアングルセンサ110が車体に設けられている。ECU400は、リーンアングルセンサ110にさらに接続され、リーンアングルセンサ110から車体の傾き角に対応するリーンアングル信号を取得できるように設けられている。これにより、ECU400は、リーンアングルセンサ110から取得したリーンアングル信号と、前輪速度センサ129または後輪速度センサ229から取得した前輪または後輪の回転速度信号とに基づき、旋回中の車体に作用する水平方向の旋回力、すなわち横方向の力である遠心力を算出することができるようになっている。
 図3は、最大制動力の算出方法の概要を示す模式図である。
 本実施形態に係るECU400は、図3に示すように、タイヤの摩擦円の理論を用いて図中矢印Aで示す車体の旋回力から図中矢印Bで示す旋回時の最大制動力を算出する。ここで、最大制動力とは、車輪の進行方向である縦方向に生じ得る制動力の最大値である。ECU400は、算出した旋回力から、軸荷重が反映されたタイヤの摩擦円の理論を用いて最大制動力を算出する。ECU400は、EEPROMやRAM等の図示せぬメモリに、前回算出した最大制動力を記憶しており、新たに算出した最大制動力に基づいて、記憶している最大制動力を更新する。
 軸荷重は、最大制動力を算出する車輪の軸における荷重であり、車体の加減速に応じて変化するため、本実施形態では車体の前後方向及び左右方向の加速度から算出されている。
 タイヤの摩擦円は、軸荷重が大きい程、また、路面の摩擦係数が大きい程、図中矢印Cで示す摩擦円の半径が大きい。このため、本実施形態では、ECU400は、摩擦係数μ=1.0として摩擦円の半径を決定しているが、前輪及び後輪の路面に対する実際の摩擦係数から最大制動力を算出してもよい。実際の摩擦係数は、例えば、車体が加速する際に生じる後輪のわずかなスリップや駆動トルク、またはリーンアングル信号等、後輪の路面に対する接地状態に基づいて算出することができる。具体的には、先ず、車体加速度から各車輪の荷重量を算出し、算出した各車輪の荷重量を、車体速度とリーンアングルとから算出したロール方向のモーメント量に基づいて補正する。次に、スリップ量と、補正後の各車輪の荷重量と、リーンアングルから推定されるタイヤの路面に対する設置面積とから路面μ(摩擦係数)を推定し、タイヤの接地状態を判断する。
 ECU400による最大制動力の算出は、タイヤの摩擦円に対応した方程式に旋回力の値を当てはめて算出してもよいし、予めタイヤの摩擦円に対応したマップをメモリに格納し、マップを参照することにより旋回力の値を算出してもよい。
 図4は、前輪のブレーキ制御の様子を示す模式図である。縦軸は前輪側第1及び第2キャリパ115a,115bに設けられたホイールシリンダに供給されるブレーキ液の液圧を示し、横軸は経過時間を示している。図中、線L1は、車輪に生じ得る縦方向における最大制動力に対応するブレーキ液の液圧を示しており、ホイールシリンダに供給されるブレーキ液の液圧が線L1に達したときに、前輪が最大制動力を生じている。一方、線L2乃至L5は、ABSが介入していない状態で運転者がブレーキレバー101(図1参照)を操作して前輪に制動力をかけたときにおける、ECU400の制御による実際のブレーキ液の液圧変化を示している。
 車体に制動力が発生すると、車体が減速することにより荷重が前方に移動して前輪にかかる荷重が増加し、上述の摩擦円の半径が大きくなるとともに横方向の旋回力は減る。このため、前輪の最大制動力を示す線L1は、線L2で示すようにブレーキ液の液圧が上昇して制動力を発生してから上昇するようになっている。
 前輪におけるブレーキ液の液圧の制御は、急な車体のバンク角の起き上がりを防ぐこと、すなわち急にリーンアングルが浅くなることを防ぐことに重点がおかれる。
 運転者が制動力をかけるべくブレーキレバー101を操作すると、線L2で示すように、ブレーキレバー101の操作に応じてブレーキ液の液圧が上昇する。
 ECU400(図2参照)は、ブレーキ液の液圧が最大制動力の所定の割合になると、線L3で示すように、前輪液圧回路100を制御することにより、運転者がブレーキレバー101を操作してもそれ以上液圧が上昇しないようにホイールシリンダに供給されるブレーキ液の液圧を制限する。このとき、ホイールシリンダ内のブレーキ液の液圧は、前輪側第1及び第2キャリパ115a,115bのホイールシリンダに接続された管路114a,114b内の液圧を圧力センサ127a,127bを用いて測定することにより、液圧の制限を高精度で制御することができる。最大制動力の所定の割合は、車体のバンク角の起き上がりや後輪のスライドが急激に生じたと運転者が感じることのないような割合であり、最大制動力の30%から60%の範囲内とするのが好ましい。このECU400による制限は、最大制動力が変動した場合であっても、線L3で示すように、制限を開始してから所定時間にかけて液圧が一定になるように、すなわち一定の制動力に保持されるように行われる。
 制限を開始してから所定時間が経過すると、ECU400は、線L4及び線L5で示すように、前輪の制動力を徐々に最大制動力に近づける。このとき、制動力の上昇量は、次第に大きくなっており、線L4よりも線L5の領域の方が液圧の上昇量が大きく、ブレーキ液の液圧の制限を開始してから0.5秒から2秒の範囲内で徐々に最大制動力まで上げていくように液圧を制限するのが好ましい。
 図5は、後輪のブレーキ制御の様子を示す模式図である。縦軸は後輪側キャリパ215に設けられたホイールシリンダに供給されるブレーキ液の液圧を示し、横軸は経過時間を示している。図中、線L6は、後輪に生じ得る縦方向における最大制動力に対応するブレーキ液の液圧を示しており、前輪の線L1(図3参照)に対応する。一方、線L7乃至L10は、ABSが介入していない状態で運転者がブレーキペダル201(図1参照)を操作して後輪に制動力をかけたときにおける、ECU400の制御による実際のブレーキ液の液圧変化を示している。後輪のブレーキ制御は前輪のブレーキ制御と略同一であり、後輪の線L7乃至L10が前輪の線L2乃至L5に対応する。
 車体に制動力が発生すると、車体が減速することにより荷重が前方に移動して後輪にかかる荷重が減少して、上述の摩擦円の半径が小さくなるとともに、駆動輪である後輪はエンジンによる引きずりトルクが影響する。このため、後輪の最大制動力は、車体に制動力が発生したときの後輪にかかる荷重、横方向の旋回力から求めた実最大制動力を求め、その値からエンジンの引きずりトルクによる影響を差し引いた値となる。
 後輪におけるブレーキ液の液圧の制御は、車輪の制動力を低く抑えており、車輪が急にスリップして車体の挙動が不安定にならないように、車輪のスライドを滑らかにすることによる安定性の確保に重点がおかれる。後輪のブレーキ制御も前輪のブレーキ制御と同じように実行されるが、車体の荷重移動等により、後輪の荷重のかかり方は前輪と異なる。このため、後輪の最大制動力や、ブレーキ液の液圧を制限するときの最大制動力に対する所定の割合の値や、制動力を徐々に最大制動力に近づける際の制動力の上昇量等は、前輪のブレーキ制御の場合とは異なっている。
 本実施形態に係るブレーキ制御は、例えば、直線走行中からABSが作動した状態で旋回する場合等、車体が旋回を開始する前からABSが作動しているABS制御時においても実行される。ABS制御時においては、制動力が断続的に増減するが、ECU400は、制動力の増加、すなわち液圧の増圧勾配が緩やかになるように液圧を制限する。ABSが作動している作動時は、ABSが作動していない非作動時と上述した最大制動力の所定の割合が異なっており、例えばABS作動時の方がABS非作動時よりも高い制動力に制限されるようになっている。また、ECU400は、ABSの作動により制動力が断続的に増減するときの制動力の減少量、すなわち液圧の減圧時の減圧量も、車体に旋回力が生じていない場合に比べて小さくなるようになっている。
 図6(a)乃至図6(c)は、実際のブレーキ制御の様子を示す図である。図6(a)乃至図6(c)は、それぞれ横軸が対応しており、ここでは前輪のブレーキ制御について一例として説明する。
 図6(a)は、縦軸に車輪の速度(m/s)を示し、横軸に経過時間(sec)を示している。線L11は、制動力の制限及びABSの作動を伴う車輪速度の変化の様子を示している。
 図6(b)は、縦軸にリーンアングル(deg)を示し、横軸に経過時間(sec)を示している。線L12は、制動力の制限及びABSの作動を伴うリーンアングルの変化の様子を示している。
 図6(c)は、縦軸に前輪側第1及び第2キャリパ115a,115b(図1参照)に設けられたホイールシリンダに供給されるブレーキ液の液圧(bar)を示し、横軸に経過時間(sec)を示している。図6(c)において、線L13及び線L14は、制動力の制限及びABSの作動を伴わない場合に運転者がブレーキレバー101を操作したときの、前輪側第1及び第2キャリパ115a,115bに設けられたホイールシリンダに供給されるブレーキ液の液圧の変化を比較対象として示している。一方、線L14乃至線L16は、制動力の制限がされたときの前輪側第1及び第2キャリパ115a,115bに設けられたホイールシリンダに供給されるブレーキ液の液圧の制限値の変化を示している。また、線L17は、ABSが作動したときのホイールシリンダに供給されるブレーキ液の液圧の変化を示している。図6(c)において、線L14は、図4の線L2に対応し、線L15及び線L16は、図4の線L3乃至線L5にそれぞれ対応している。
 ECU400(図2参照)は、ブレーキ液の液圧が立ち上がると、図6(c)に示すように、ブレーキ液の液圧を3barに制限する。ブレーキ液の液圧を3barに制限すると、ECU400は、液圧の制限を開始してから1秒後に10barになるように、ブレーキ液の液圧の制限を徐々に上昇させる。このときの液圧の上昇量は、0bar/sより大きく、10bar/s以下であることが好ましい。
 液圧の制限を開始してから1秒経過すると、ECU400は、さらに0.3秒後に20barになるように、ブレーキ液の液圧を上昇させる。このときの液圧の上昇量は、0bar/sより大きく、50bar/s以下であることが好ましい。
 図7は、車体が旋回中のブレーキ制御処理を示すフローチャートである。
 本実施形態におけるブレーキ制御処理を実行する際には、先ず、ECU400は、車体が旋回中であるか否かを判断する(ステップS1)。この判断は、リーンアングルセンサ110から取得したリーンアングル信号等に基づいて行われる。
 ステップS1において、旋回中でないと判断すると(ステップS1:No)、ECU400は、旋回中であると判断するまでステップS1の処理を繰り返す。
 一方、ステップS1において、旋回中であると判断すると(ステップS1:Yes)、ECU400は、前輪のスリップが生じない最大制動力を算出して、記憶していた前回の算出による前輪の最大制動力を新たに算出した最大制動力に更新する(ステップS2)。次に、ECU400は、後輪のスリップが生じない最大制動力を算出して、記憶していた前回の算出による後輪の最大制動力を新たに算出した最大制動力に更新する(ステップS3)。なお、これらステップS1乃至ステップS3の処理の順序は任意である。
 ステップS2及びステップS3において、前輪及び後輪の最大制動力を算出すると、ECU400は、運転者によるブレーキ操作があったか否かを判断する(ステップS4)。
 運転者によるブレーキ操作がなかったと判断すると(ステップS4:No)、ECU400は、ステップS1から一連の処理を繰り返す。
 一方、運転者によるブレーキ操作があったと判断すると(ステップS4:Yes)、ECU400は、ABSが作動中であるか否かを判断する(ステップS5)。
 ステップS5において、ABSが作動中であると判断すると(ステップS5:Yes)、ECU400は、前輪及び後輪の制動力をそれぞれステップS2及びステップS3で算出した最大制動力のABS作動時に対応した所定の割合に制限する(ステップS6)。このとき、ECU400は、制動力の減少量すなわち液圧の減圧時の減圧量も、車体に旋回力が生じていない場合に比べて小さくなるようにする。
 ステップS6において、前輪及び後輪の制動力を制限すると、ECU400は、制限された前輪及び後輪の制動力をそれぞれステップS2及びステップS3で算出して更新された最大制動力に徐々に近づける(ステップS7)。
 一方、ステップS5において、ABSが作動中でないと判断すると(ステップS5:No)、ECU400は、前輪及び後輪の制動力をそれぞれステップS2及びステップS3で算出した最大制動力のABS非作動時に対応した所定の割合に制限する(ステップS8)。このとき、前輪及び後輪の制動力の制限は、所定時間にわたって一定に保持される。
 ステップS8において、前輪及び後輪の制動力を制限すると、ECU400は、制限された前輪及び後輪の制動力をそれぞれステップS2及びステップS3で算出して更新された最大制動力に徐々に近づける(ステップS9)。なお、本実施形態では、ステップS8及びステップS9において、前輪または後輪のスリップを検出すると、前輪及び後輪の制動力の制限を中止し、ABSを作動させるようになっている。
 以上の処理により、ECU400は、車体の旋回中に運転者によるブレーキ操作があった際に、前輪及び後輪の制動力を制限するとともに、制限した制動力を徐々に最大制動力まで上昇させることができる。
 本実施形態では、ECU400は、前輪及び後輪の最大制動力を算出して新たな最大制動力として更新し、ブレーキ操作があった際に、前輪及び後輪の制動力をそれぞれ対応する最大制動力の所定の割合に制限した後に、前輪及び後輪の制動力の制限をそれぞれ対応する最大制動力に近づけることができる。これにより制動力が急激に変化しないようにすることができ、車体のバンク角の起き上がりや後輪のスライドを滑らかにすることができる。このため、旋回中の制動時に生じる車体の不安定な挙動を抑えることができる。また、車体の挙動が緩やかになって安定性が向上するため、運転者は、制動中のブレーキを緩めてタイヤの横方向のブリップ力を高めることにより可能な限り車体が曲がれるようにしたり、ブレーキを強く操作し続けることにより制動力を高くしてより減速度を高くしたりすることにより、より一層車体を状況に応じてコントロールすることができる。さらに、本実施形態では、摩擦円の理論を用いることにより、車輪がロックするブレーキ液の液圧を厳密に推定する必要がない。
 また、本実施形態におけるブレーキ制御は、ABSの作動時においても実行される。これにより、ABS作動時におけるブレーキ液の液圧の断続的な増減は、液圧が増圧されるときの増圧勾配を緩やかにすることができる。このため、ABSの作動時も、車体の急激な挙動を抑えることができる。また、旋回中でも適切にABSを作動させることができるようになるため、ABSの性能を車体の直進中と旋回中とで両立させることができる。
 以上、実施形態に基づいて本発明を説明したが、本発明は、これに限定されるものではない。例えば、上記実施形態では、リーンアングルセンサ110で検出したリーンアングルに基づいて旋回力を算出しているが、これに限定されることはない。車体にかかる旋回力を検出することができれば、単純に横方向の加速度を検出する横加速度センサ等をリーンアングルセンサに代えて用いてもよい。
 また、上記実施形態では、前輪側第1及び第2キャリパ115a,115b、及び後輪側キャリパ215の3つ、すなわち3ch(チャンネル)に供給されるブレーキ液の液圧の制御について説明しているが、これに限定されることはない。ブレーキキャリパに供給されるブレーキ液の液圧を自動加圧、すなわちブレーキ液を加圧して制限されていた制動力を最大制動力に近づけることができれば、例えば2chや4chに供給されるブレーキ液の液圧を制御してもよい。
 さらに、上記実施形態では、ECU400は、ステップS7において、ステップS2及びステップS3で一度算出した最大制動力を変更することなく、制限された前輪及び後輪の制動力をそれぞれ最大制動力に徐々に近づけているが、これに限定されることはない。例えば、制限された制動力を最大制動力に近づけていく際に、各車輪の荷重量やリーンアングル等が変化していくため、前輪及び後輪の最大制動力を繰り返し算出し、算出する度に制動力の制限に用いる最大制動力を更新してもよい。
100  前輪液圧回路
101  ブレーキレバー
103  前輪側マスタシリンダ
110  リーンアングルセンサ
115a 前輪側第1キャリパ
115b 前輪側第2キャリパ
119  前輪側液圧ポンプ
200  後輪液圧回路
201  ブレーキペダル
203  後輪側マスタシリンダ
215  後輪側キャリパ
219  前輪側液圧ポンプ
300  DCモータ
400  ECU

Claims (16)

  1.  自動二輪車の旋回時におけるブレーキ制御方法において、
     旋回中であるか否かを判断するステップと、
     前輪のスリップが生じない最大制動力を算出し、記憶している前記前輪の最大制動力を算出結果に基づいて更新するステップと、
     後輪のスリップが生じない最大制動力を算出し、記憶している前記後輪の最大制動力を算出結果に基づいて更新するステップと、
     旋回中に運転者によるブレーキ操作があった場合に、前記前輪及び前記後輪の制動力をそれぞれ対応する前記最大制動力の所定の割合に制限するステップと、
     前記制限された前記前輪及び前記後輪の制動力をそれぞれ対応する更新された前記最大制動力に近づけるステップとを備えたことを特徴とするブレーキ制御方法。
  2.  請求項1に記載のブレーキ制御方法において、
     前記前輪または前記後輪の前記最大制動力は、旋回中の前記自動二輪車に作用する横方向の力に基づいて算出することを特徴とするブレーキ制御方法。
  3.  請求項1または2に記載のブレーキ制御方法において、
     前記前輪または前記後輪の前記最大制動力は、前記自動二輪車の速度、リーンアングル、または各車軸荷重量に基づいて算出することを特徴とするブレーキ制御方法。
  4.  請求項1乃至3のいずれか一項に記載のブレーキ制御方法において、
     前記制限された前記前輪及び前記後輪の制動力をそれぞれ対応する前記最大制動力に近づけるステップは、前記前輪及び前記後輪の制動力の上昇量を次第に大きくすることを特徴とするブレーキ制御方法。
  5.  請求項1乃至4のいずれか一項に記載のブレーキ制御方法において、
     前記前輪及び前記後輪の制動力の前記制限を、制限してから所定時間にかけて、一定の制動力に保持することを特徴とするブレーキ制御方法。
  6.  請求項1乃至5のいずれか一項に記載のブレーキ制御方法において、
     前記前輪または前記後輪の路面に対する摩擦係数を、予め前記自動二輪車が加速中に前記後輪の路面に対する接地状態に基づいて算出し、前記前輪または前記後輪の前記最大制動力を算出するステップは、算出した前記摩擦係数を用いて前記前輪または前記後輪の前記最大制動力を算出することを特徴とするブレーキ制御方法。
  7.  請求項1乃至6のいずれか一項に記載のブレーキ制御方法において、
     ABSが作動中であるか否かを判断するステップをさらに備え、前記ABSが作動中であるか否かに応じて前記所定の割合が異なることを特徴とするブレーキ制御方法。
  8.  請求項7に記載のブレーキ制御方法において、
     前記ABSの断続的な制動力の前記増減は、旋回中である場合の方が旋回中でない場合よりも減少量が小さいことを特徴とするブレーキ制御方法。
  9.  自動二輪車の旋回時におけるブレーキ制御を行うブレーキシステムにおいて、
     旋回中であるか否かを判断するとともに、前輪のスリップが生じない制動力の最大値及び後輪のスリップが生じない最大制動力を算出し、記憶している前記前輪及び前記後輪の最大制動力を算出結果に基づいて更新し、
     旋回中に運転者によるブレーキ操作があった場合に、前記前輪及び前記後輪の制動力をそれぞれ対応する前記最大制動力の所定の割合に制限し、
     前記制限された前記前輪及び前記後輪の制動力をそれぞれ対応する更新された前記最大制動力に近づけることを特徴とするブレーキシステム。
  10.  請求項9に記載のブレーキシステムにおいて、
     前記前輪または前記後輪の前記最大制動力は、旋回中の前記自動二輪車に作用する横方向の力に基づいて算出することを特徴とするブレーキシステム。
  11.  請求項9または10に記載のブレーキシステムにおいて、
     前記前輪または前記後輪の前記最大制動力は、前記自動二輪車の速度、リーンアングル、または各車軸荷重量に基づいて算出することを特徴とするブレーキシステム。
  12.  請求項9乃至11のいずれか一項に記載のブレーキシステムにおいて、
     前記制限された前記前輪及び前記後輪の制動力をそれぞれ対応する前記最大制動力に近づける際に、前記前輪及び前記後輪の制動力の上昇量を次第に大きくすることを特徴とするブレーキシステム。
  13.  請求項9乃至12のいずれか一項に記載のブレーキシステムにおいて、
     前記前輪及び前記後輪の制動力の前記制限は、制限してから所定時間にかけて、一定の制動力に保持することを特徴とするブレーキシステム。
  14.  請求項9乃至13のいずれか一項に記載のブレーキシステムにおいて、
     前記前輪または前記後輪の路面に対する摩擦係数を、予め前記自動二輪車が加速中に前記後輪の路面に対する接地状態に基づいて算出し、前記前輪または前記後輪の前記最大制動力を算出する際に、算出した前記摩擦係数を用いて前記前輪または前記後輪の前記最大制動力を算出することを特徴とするブレーキシステム。
  15.  請求項9乃至14のいずれか一項に記載のブレーキシステムにおいて、
     ABSが作動中であるか否かを判断し、前記ABSが作動中であるか否かに応じて前記所定の割合が異なることを特徴とするブレーキシステム。
  16.  請求項15に記載のブレーキシステムにおいて、
     前記ABSの断続的な制動力の前記増減は、旋回中である場合の方が旋回中でない場合よりも減少量が小さいことを特徴とするブレーキシステム。
PCT/JP2011/072951 2010-12-20 2011-10-05 ブレーキシステム及びブレーキ制御方法 WO2012086289A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11851039.5A EP2657094B1 (en) 2010-12-20 2011-10-05 Brake system and brake control method
JP2012549671A JP5367916B2 (ja) 2010-12-20 2011-10-05 ブレーキシステム及びブレーキ制御方法
US13/995,551 US8897986B2 (en) 2010-12-20 2011-10-05 Brake system and brake control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-283195 2010-12-20
JP2010283195 2010-12-20

Publications (1)

Publication Number Publication Date
WO2012086289A1 true WO2012086289A1 (ja) 2012-06-28

Family

ID=46313573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072951 WO2012086289A1 (ja) 2010-12-20 2011-10-05 ブレーキシステム及びブレーキ制御方法

Country Status (4)

Country Link
US (1) US8897986B2 (ja)
EP (1) EP2657094B1 (ja)
JP (1) JP5367916B2 (ja)
WO (1) WO2012086289A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147976A1 (ja) * 2013-03-22 2014-09-25 ヤマハ発動機株式会社 ブレーキ制御装置およびそれを備える鞍乗型車両
JPWO2018065838A1 (ja) * 2016-10-05 2019-06-24 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh モータサイクル用ブレーキシステムの制御装置、モータサイクル用ブレーキシステム、及び、モータサイクル用ブレーキシステムの制御方法
JP2020523248A (ja) * 2017-06-22 2020-08-06 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 二輪車のための運転者アシストシステムを作動させる方法および装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9758205B2 (en) * 2012-07-25 2017-09-12 Bosch Corporation Two-wheeled vehicle overturn prevention method and device
JP5884245B2 (ja) * 2013-06-19 2016-03-15 オートリブ日信ブレーキシステムジャパン株式会社 車両用ブレーキ液圧制御装置
MX2016005374A (es) * 2013-10-25 2017-03-01 Imt Partnership Control de temperatura activo de sensor automotriz y monitoreo de fallas de temperatura.
JP6270181B2 (ja) * 2014-03-03 2018-01-31 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 二輪車用の連動ブレーキ装置の制動力制御方法及び制動力制御装置、及び、二輪車
JP5829307B2 (ja) * 2014-05-13 2015-12-09 ヤマハ発動機株式会社 安定制御システム、安定制御システムを備えた鞍乗り型車両、方法およびコンピュータプログラム
DE102015202115A1 (de) * 2015-02-06 2016-08-11 Robert Bosch Gmbh Verfahren zur Bestimmung des Schräglagenwinkels eines Zweirads
JP6420199B2 (ja) * 2015-04-28 2018-11-07 株式会社シマノ 自転車用装置
US9840239B2 (en) * 2015-10-13 2017-12-12 Robert Bosch Gmbh Cornering brake control
CN109661343B (zh) * 2016-05-15 2021-09-24 机械模拟公司 稳定摩托车的系统和方法
DE102016211427A1 (de) * 2016-06-27 2017-12-28 Robert Bosch Gmbh Verfahren zum Betreiben eines Zweirads, Vorrichtung, Zweirad
JP2018154272A (ja) 2017-03-21 2018-10-04 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 制御装置及び制御方法
WO2019003296A1 (ja) * 2017-06-27 2019-01-03 川崎重工業株式会社 疑似感情生成方法並びに走行評価方法および走行評価システム
AU2022234278A1 (en) * 2021-03-08 2023-09-07 Datapath, Inc. Transportable satellite antenna terminal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072077A (ja) 1992-12-24 1995-01-06 Bayerische Motoren Werke Ag 自動二輪車の滑り防止制御システム
JP2004155412A (ja) 2002-08-02 2004-06-03 Robert Bosch Gmbh 自動二輪車におけるブレーキ制御方法および装置
JP2004189075A (ja) * 2002-12-10 2004-07-08 Denso Corp 車両制動制御装置
JP2009241742A (ja) 2008-03-31 2009-10-22 Nissin Kogyo Co Ltd 横加速度の導出方法、横加速度の導出装置およびバーハンドル車両用ブレーキ制御装置
JP2010012903A (ja) * 2008-07-02 2010-01-21 Toshio Asaumi 自動二輪車のブレーキ制御装置
JP2010173452A (ja) * 2009-01-29 2010-08-12 Nissan Motor Co Ltd 情報提供装置及び情報提供方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63240455A (ja) * 1987-03-27 1988-10-06 Fuji Heavy Ind Ltd 自動車用ブレ−キ液圧制御装置
US4989922A (en) * 1988-11-23 1991-02-05 Lucas Industries Public Limited Company Method of anti-lock brake control for motorcycle vehicle
JPH07101327A (ja) * 1993-10-07 1995-04-18 Nippondenso Co Ltd 車両のアンチスキッド制御装置
JP2002255019A (ja) * 2001-02-28 2002-09-11 Toyota Central Res & Dev Lab Inc 路面状態推定装置
JP2004090886A (ja) * 2002-09-04 2004-03-25 Advics:Kk 車両のトラクション制御装置
WO2006077211A1 (de) * 2005-01-21 2006-07-27 Continental Teves Ag & Co. Ohg Verfahren und vorrichtung zur regelung der brems- und/oder der antriebskräfte eines einspurigen fahrzeugs
DE102005003980B3 (de) * 2005-01-28 2006-09-14 Bayerische Motoren Werke Ag Schlupfregelsystem für ein einspuriges Kraftfahrzeug
JP2007252153A (ja) * 2006-03-20 2007-09-27 Hitachi Ltd 自動車の制御装置及び自動車
JP4636012B2 (ja) * 2006-12-11 2011-02-23 トヨタ自動車株式会社 車両の制動制御装置
DE102008021523A1 (de) * 2007-06-11 2008-12-18 Continental Teves Ag & Co. Ohg Verfahren zur Regelung eines elektronisch gesteuerten Regelungssystems und elektronisches Regelungssystem
ES2765626T3 (es) * 2008-03-31 2020-06-10 Nissin Kogyo Kk Método de derivación y aparato de derivación de aceleración lateral, y controlador de freno de vehículo de manillar

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072077A (ja) 1992-12-24 1995-01-06 Bayerische Motoren Werke Ag 自動二輪車の滑り防止制御システム
JP2004155412A (ja) 2002-08-02 2004-06-03 Robert Bosch Gmbh 自動二輪車におけるブレーキ制御方法および装置
JP2004189075A (ja) * 2002-12-10 2004-07-08 Denso Corp 車両制動制御装置
JP2009241742A (ja) 2008-03-31 2009-10-22 Nissin Kogyo Co Ltd 横加速度の導出方法、横加速度の導出装置およびバーハンドル車両用ブレーキ制御装置
JP2010012903A (ja) * 2008-07-02 2010-01-21 Toshio Asaumi 自動二輪車のブレーキ制御装置
JP2010173452A (ja) * 2009-01-29 2010-08-12 Nissan Motor Co Ltd 情報提供装置及び情報提供方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147976A1 (ja) * 2013-03-22 2014-09-25 ヤマハ発動機株式会社 ブレーキ制御装置およびそれを備える鞍乗型車両
JPWO2018065838A1 (ja) * 2016-10-05 2019-06-24 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh モータサイクル用ブレーキシステムの制御装置、モータサイクル用ブレーキシステム、及び、モータサイクル用ブレーキシステムの制御方法
US11097701B2 (en) 2016-10-05 2021-08-24 Robert Bosch Gmbh Controller of motorcycle brake system, motorcycle brake system, and control method of motorcycle brake system
JP2020523248A (ja) * 2017-06-22 2020-08-06 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 二輪車のための運転者アシストシステムを作動させる方法および装置
US11618522B2 (en) 2017-06-22 2023-04-04 Robert Bosch Gmbh Method and apparatus for operating a driver assistance system for a two-wheeled vehicle

Also Published As

Publication number Publication date
JPWO2012086289A1 (ja) 2014-05-22
JP5367916B2 (ja) 2013-12-11
US20130282253A1 (en) 2013-10-24
EP2657094A1 (en) 2013-10-30
EP2657094B1 (en) 2018-06-27
US8897986B2 (en) 2014-11-25
EP2657094A4 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5367916B2 (ja) ブレーキシステム及びブレーキ制御方法
US7168769B2 (en) Vehicular brake system and method of controlling same brake system
US8924116B2 (en) Motion control apparatus for vehicle
EP2813406B1 (en) Vehicle brake hydraulic pressure controller
JP6270096B2 (ja) ブレーキ制御装置
US8915555B2 (en) Brake control device for vehicle
US8831850B2 (en) Brake hydraulic control method and system
JP5083357B2 (ja) 車両運動制御装置
JP6358627B2 (ja) 車両用ブレーキ液圧制御装置
JP5918671B2 (ja) ブレーキ制御装置
JP6623952B2 (ja) 車両用制動装置
KR20160142519A (ko) 차량 자세제어장치 및 그 제어방법
JP4602186B2 (ja) 車両用ブレーキ液圧制御装置
CN108367739B (zh) 车辆的制动控制装置
JP6098280B2 (ja) 車両用ブレーキ制御装置
JP2012166701A (ja) 制駆動力制御装置
JP5418022B2 (ja) 車両運動制御装置
JP2010260488A (ja) 車両の制動制御装置
JP2012162241A (ja) 制駆動力制御装置
JP5720066B2 (ja) ブレーキ制御装置
JP2019189025A (ja) 車両の走行路判定装置
JP2012144117A (ja) 車両挙動制御装置
JP2010036704A (ja) 制動制御装置
JP2012224105A (ja) 車両のブレーキ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851039

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012549671

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011851039

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13995551

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE