WO2012086239A1 - 単結晶炭化ケイ素エピタキシャル成長用フィード材及び単結晶炭化ケイ素のエピタキシャル成長方法 - Google Patents

単結晶炭化ケイ素エピタキシャル成長用フィード材及び単結晶炭化ケイ素のエピタキシャル成長方法 Download PDF

Info

Publication number
WO2012086239A1
WO2012086239A1 PCT/JP2011/064877 JP2011064877W WO2012086239A1 WO 2012086239 A1 WO2012086239 A1 WO 2012086239A1 JP 2011064877 W JP2011064877 W JP 2011064877W WO 2012086239 A1 WO2012086239 A1 WO 2012086239A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
epitaxial growth
crystal
crystal plane
feed material
Prior art date
Application number
PCT/JP2011/064877
Other languages
English (en)
French (fr)
Inventor
聡 鳥見
暁 野上
強資 松本
Original Assignee
東洋炭素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010288478A external-priority patent/JP5724124B2/ja
Priority claimed from JP2010288468A external-priority patent/JP5724121B2/ja
Priority claimed from JP2010288474A external-priority patent/JP5724123B2/ja
Priority claimed from JP2010288471A external-priority patent/JP5724122B2/ja
Application filed by 東洋炭素株式会社 filed Critical 東洋炭素株式会社
Priority to CN201180062452.7A priority Critical patent/CN103270203B/zh
Priority to KR1020137016234A priority patent/KR101788905B1/ko
Priority to EP11851354.8A priority patent/EP2657377B1/en
Priority to US13/995,722 priority patent/US9725822B2/en
Publication of WO2012086239A1 publication Critical patent/WO2012086239A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/12Production of homogeneous polycrystalline material with defined structure directly from the gas state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension

Definitions

  • the present invention relates to a feed material for epitaxial growth of single crystal silicon carbide and a method for epitaxial growth of single crystal silicon carbide using the same.
  • Silicon carbide can realize high temperature resistance, high voltage resistance, high frequency resistance, and high environmental resistance that cannot be realized by conventional semiconductor materials such as silicon (Si) and gallium arsenide (GaAs). It is believed that. For this reason, silicon carbide is expected as a semiconductor material for next-generation power devices and a semiconductor material for high-frequency devices.
  • a sublimation recrystallization method (improved Rayleigh method) has been proposed.
  • a seed material made of single-crystal silicon carbide is disposed in the low temperature side region in the crucible, and a raw material powder containing Si as a raw material is disposed in the high temperature side region.
  • the inside of the crucible is made an inert atmosphere and heated to a high temperature of 1450 ° C. to 2400 ° C., thereby sublimating the raw material powder arranged in the high temperature region.
  • silicon carbide can be epitaxially grown on the surface of the seed material disposed in the low temperature region.
  • the improved Rayleigh method is a method for growing a silicon carbide crystal by providing a temperature gradient in the gas phase. For this reason, when the improved Rayleigh method is used, a large apparatus is required for epitaxial growth of silicon carbide, and process control of silicon carbide epitaxial growth becomes difficult. Therefore, there is a problem that the manufacturing cost of the silicon carbide epitaxial growth film is increased. Also, silicon carbide epitaxial growth in the gas phase is non-equilibrium. For this reason, there are problems that crystal defects are likely to occur in the formed silicon carbide epitaxially grown film and that the crystal structure is likely to be rough.
  • MSE metastable solvent epitaxy
  • a seed material made of crystalline silicon carbide such as single crystal silicon carbide or polycrystalline silicon carbide and a feed material made of silicon carbide are opposed to each other with a small interval of, for example, 100 ⁇ m or less, and Si is interposed therebetween. A molten layer is interposed. And silicon carbide is epitaxially grown on the surface of the seed material by heat treatment in a vacuum high temperature environment.
  • a silicon carbide epitaxial growth film can be formed on a seed substrate having a large area, and since the Si melt layer is extremely thin, carbon from the feed material is easily diffused, and the temperature of the epitaxial growth process of silicon carbide can be reduced. There is also an advantage.
  • the MSE method is considered to be an extremely useful method as an epitaxial growth method of single crystal silicon carbide, and research on the MSE method is actively conducted.
  • Patent Document 2 describes that the free energy is made different between the feed substrate and the seed substrate by making the crystal polymorph of the feed substrate and the seed substrate different.
  • the feed substrate is constituted by a polycrystalline 3C-SiC substrate
  • the seed substrate is constituted by a single crystal 4H-SiC substrate having a lower free energy than that of the 3C-SiC substrate.
  • the polycrystalline 3C-SiC substrate can be easily produced by the CVD method. For this reason, as described in Patent Document 2, by using a 3C—SiC substrate as a feed substrate, the formation cost of the silicon carbide epitaxial growth film can be kept low. Therefore, the present inventor has advanced research on using a 3C—SiC substrate as a feed substrate. As a result, it has been found that some 3C-SiC substrates have a silicon carbide epitaxial growth rate that is fast and slow.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a feed material for single crystal silicon carbide epitaxial growth capable of increasing the silicon carbide epitaxial growth rate.
  • the present inventor has found that the epitaxial growth rate when using a feed material having a crystal polymorphism of 3C correlates with a diffraction peak observed by X-ray diffraction.
  • the inventor of the present invention has a diffraction peak corresponding to polycrystalline silicon carbide whose crystal polymorph is 3C, rather than a diffraction peak other than the diffraction peak corresponding to the (111) crystal plane is observed ( It has been found that the epitaxial growth rate is higher when a diffraction peak other than the diffraction peak corresponding to the 111) crystal plane is observed.
  • the inventors have also found that the higher the peak intensity of diffraction peaks other than the diffraction peak corresponding to the (111) crystal plane, the higher the epitaxial growth rate. As a result, the present inventor came to make the present invention.
  • the feed material for epitaxial growth of single crystal silicon carbide according to the present invention is a feed material used in the epitaxial growth method of single crystal silicon carbide.
  • the feed material for epitaxial growth of single crystal silicon carbide according to the present invention has a surface layer containing polycrystalline silicon carbide whose crystal polymorph is 3C. Diffraction peaks other than the diffraction peak corresponding to the (111) crystal plane and the diffraction peak corresponding to the (111) crystal plane as diffraction peaks corresponding to the polycrystalline silicon carbide whose crystal polymorph is 3C by X-ray diffraction of the surface layer A peak is observed. For this reason, the epitaxial growth rate of a single crystal silicon carbide can be improved by using the feed material which concerns on this invention.
  • the epitaxial growth rate of the single crystal silicon carbide can be increased more than the (111) crystal plane. This is probably because the crystal face is more reactive.
  • a crystal plane other than the (111) crystal plane is more likely to elute than the (111) crystal plane, and thus a diffraction peak corresponding to the (111) crystal plane. It is considered that the epitaxial growth rate of single-crystal silicon carbide can be increased by using a feed material in which diffraction peaks other than those are observed.
  • the “epitaxial growth method” includes a liquid phase epitaxial growth method such as a metastable solvent epitaxy (MSE) method and a vapor phase epitaxial growth method such as an improved Rayleigh method.
  • MSE method a concentration gradient of dissolved graphite is formed in the silicon melt layer by heating the seed material and the feed material facing each other through the silicon melt layer.
  • X-ray diffraction refers to diffraction using X-rays (CuK ⁇ - rays) of 8.048 keV.
  • diffraction peak is observed means that a diffraction peak having a peak intensity of 3% or more of the peak intensity of the first-order diffraction peak corresponding to the (111) crystal plane is observed.
  • the “diffraction peak corresponding to the (111) crystal plane” includes a first-order diffraction peak and a higher-order diffraction peak corresponding to the (111) crystal plane.
  • the “feed material” refers to a member that supplies a material for epitaxial growth of single crystal silicon carbide such as Si, C, and SiC.
  • the “seed material” refers to a member in which single crystal silicon carbide grows on the surface.
  • the first-order diffraction peak corresponding to the (111) crystal plane is the main diffraction peak having the largest diffraction intensity among the first-order diffraction peaks corresponding to polycrystalline silicon carbide whose crystal polymorph is 3C. It is preferable.
  • diffraction peaks other than the diffraction peak corresponding to the (111) crystal plane include a diffraction peak corresponding to at least one of the (200) crystal plane, the (220) crystal plane, and the (311) crystal plane. It is preferably included. According to this configuration, the epitaxial growth rate of single crystal silicon carbide can be increased more effectively. This is presumably because the (200) crystal plane, the (220) crystal plane, and the (311) crystal plane are highly reactive with respect to the (111) crystal plane.
  • diffraction peaks other than the diffraction peak corresponding to the (111) crystal plane include (200) crystal plane, (220) crystal plane and (311) crystal. More preferably, a diffraction peak corresponding to each of the surfaces is included.
  • the sum of the intensities of the first order diffraction peaks other than the first order diffraction peak corresponding to the (111) crystal plane is preferably 10% or more of the sum of the intensities of all the first order diffraction peaks, and 20% More preferably. According to this configuration, it is possible to increase the proportion of crystal planes other than the (111) crystal plane that is more reactive than the (111) crystal plane. Therefore, the epitaxial growth rate of single crystal silicon carbide can be increased more effectively.
  • the average crystallite diameter calculated from the first-order diffraction peak corresponding to polycrystalline silicon carbide having a crystal polymorph of 3C, which is observed by X-ray diffraction of the surface layer is 700 mm or less. preferable. According to this configuration, the epitaxial growth rate of single crystal silicon carbide can be further effectively increased. This is presumably because the proportion of the grain boundaries having high reactivity of the polycrystalline silicon carbide crystal in the surface layer increases and the reactivity of the surface layer is further enhanced.
  • I 0 The intensity of the first order diffraction peak corresponding to the (111) crystal plane and the total intensity of the first order diffraction peak corresponding to at least one of the (200) crystal plane, the (220) crystal plane and the (311) crystal plane Sum with I 1 : total intensity of first-order diffraction peaks corresponding to at least one of the (200) crystal plane, the (220) crystal plane, and the (311) crystal plane, D: average crystallite diameter calculated from a first-order diffraction peak corresponding to at least one of (200) crystal plane, (220) crystal plane, and (311) crystal plane, It is.
  • the epitaxial growth rate of single crystal silicon carbide can be further effectively increased. This is considered to be because the proportion of the (200) crystal plane, (220) crystal plane, and (311) crystal plane with relatively high reactivity increases, and the average crystallite diameter decreases.
  • crystallite diameter refers to a crystallite diameter calculated based on the Hall formula shown in the following formula (1).
  • half width
  • Black angle of diffraction line
  • wavelength of X-ray used for measurement
  • value of non-uniform strain of the crystal
  • average size of crystallite diameter
  • the proportion of the (111) crystal planes observed by X-ray diffraction of the surface layer with an orientation angle of 67.5 ° or more is less than 80%. According to this configuration, the epitaxial growth rate of single crystal silicon carbide can be further effectively increased. This is because the degree of exposure of the surface having a lower stability than the (111) crystal plane of the crystal exposing the (111) crystal plane is high, and the reactivity of the crystal exposing the (111) crystal plane is high. This is thought to be due to the increase.
  • an L0 peak derived from polycrystalline silicon carbide having a crystal polymorphism of 3C was observed by Raman spectroscopic analysis with an excitation wavelength of 532 nm on the surface layer, and the absolute value of the shift amount from 972 cm ⁇ 1 of the L0 peak was 4 cm. It is preferably less than -1 . In this case, the epitaxial growth rate of single crystal silicon carbide can be further improved.
  • the absolute value is small, the internal stress in the surface layer of the feed material is small and the denseness of the surface layer is low, so that it is considered that elution from the surface layer is likely to occur.
  • the “L0 peak derived from polycrystalline silicon carbide” is a peak derived from a longitudinal optical mode among optical modes that vibrate between two Si—C atoms in a silicon carbide crystal. Usually, in the case of the 3C polymorph, the peak appears at 972 cm ⁇ 1 .
  • the half width of the L0 peak is preferably 7 cm ⁇ 1 or more.
  • the epitaxial growth rate of the single crystal silicon carbide can be further improved because the crystallinity of the polycrystalline silicon carbide in the surface layer is lower as the half width of the L0 peak is larger. It is considered that the elution from the surface layer is more likely to occur because the impurity concentration is high.
  • the surface layer preferably contains polycrystalline silicon carbide having a crystal polymorphism of 3C as a main component, and is preferably substantially composed of polycrystalline silicon carbide having a crystal polymorphism of 3C. According to this configuration, the epitaxial growth rate of single crystal silicon carbide can be further effectively increased.
  • the “main component” refers to a component contained by 50% by mass or more.
  • substantially consists of polycrystalline silicon carbide whose crystal polymorph is 3C means that it contains no components other than impurities other than polycrystalline silicon carbide whose crystal polymorph is 3C. To do.
  • the impurity contained in the case of “substantially consisting of polycrystalline silicon carbide whose crystal polymorph is 3C” is 5% by mass or less.
  • the feed material for single crystal silicon carbide epitaxial growth according to the present invention may include a support material and a polycrystalline silicon carbide film that is formed on the support material and forms a surface layer.
  • the thickness of the polycrystalline silicon carbide film is preferably in the range of 30 ⁇ m to 800 ⁇ m.
  • the feed material for single crystal silicon carbide epitaxial growth according to the present invention may be composed of a polycrystalline silicon carbide material such as a polycrystalline silicon carbide substrate containing polycrystalline silicon carbide having a crystal polymorph of 3C.
  • single crystal silicon carbide is epitaxially grown using the feed material for epitaxial growth of single crystal silicon carbide according to the present invention. Therefore, single crystal silicon carbide can be epitaxially grown at a high rate.
  • the seed material is heated by heating the surface layer of the feed material and the surface layer of the seed material having a surface layer containing silicon carbide through the silicon fusion layer. It is preferable to epitaxially grow single crystal silicon carbide on the surface layer. That is, the single crystal silicon carbide epitaxial growth method according to the present invention is preferably a single crystal silicon carbide liquid phase epitaxial growth method. In this case, it is not always necessary to provide a temperature difference between the seed material and the feed material. Therefore, the single crystal silicon carbide epitaxial growth process can be easily controlled with a simple apparatus, and a high-quality single crystal silicon carbide epitaxial growth film can be stably formed.
  • FIG. 1 is a schematic view for explaining an epitaxial growth method of single crystal silicon carbide in an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a feed substrate according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a seed substrate according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a feed substrate according to a modification.
  • FIG. 5 is a schematic cross-sectional view of a seed substrate in a modified example.
  • FIG. 6 is an X-ray diffraction chart of Samples 1 to 4.
  • FIG. 7 is a schematic diagram for explaining a method of measuring the orientation of the (111) crystal plane.
  • FIG. 1 is a schematic view for explaining an epitaxial growth method of single crystal silicon carbide in an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a feed substrate according to an embodiment of the present invention.
  • FIG. 3 is a schematic
  • FIG. 8 is a graph showing the orientation of the (111) crystal plane in Sample 1.
  • FIG. 9 is a graph showing the orientation of the (111) crystal plane in Sample 2.
  • FIG. 10 is a graph showing the orientation of the (111) crystal plane in Sample 3.
  • FIG. 11 is a graph showing the orientation of the (111) crystal plane in Sample 4.
  • FIG. 12 is a graph showing the results of Raman spectroscopic analysis of the surface layers of Samples 1 to 4.
  • FIG. 13 is a graph showing the shift amount ( ⁇ ) of the L0 peak from 972 cm ⁇ 1 and the half width (FWHM) of the L0 peak in samples 1 to 4.
  • FIG. 14 is a graph showing the growth rate of single-crystal silicon carbide epitaxial growth films in Samples 1, 2, and 4.
  • FIG. 15 is a graph showing the growth rate of the single crystal silicon carbide epitaxial growth film in Samples 3 and 4.
  • FIG. 1 is a schematic diagram for explaining an epitaxial growth method of single crystal silicon carbide in the present embodiment.
  • a seed substrate 12 as a seed material and a feed substrate 11 as a feed material are combined with a main surface 12 a of the seed substrate 12 and a main surface of the feed substrate 11. It arrange
  • the seed substrate 12 and the feed substrate 11 are heated to melt the silicon plate. By doing so, the seed substrate 12 and the feed substrate 11 are opposed to each other with the silicon melt layer 13 therebetween.
  • raw materials such as silicon, carbon and silicon carbide are eluted from the seed substrate 12 side into the silicon melt layer 13. As a result, a concentration gradient is formed in the silicon melt layer 13.
  • single crystal silicon carbide is epitaxially grown on main surface 12a of seed substrate 12, and single crystal silicon carbide epitaxial growth film 20 is formed.
  • the thickness of the silicon melt layer 13 is extremely thin, and can be, for example, about 10 ⁇ m to 100 ⁇ m.
  • FIG. 2 shows a schematic cross-sectional view of the feed substrate 11.
  • the feed substrate 11 has a surface layer containing polycrystalline silicon carbide whose crystal polymorph is 3C.
  • the feed substrate 11 includes a support material 11b made of graphite and a polycrystalline silicon carbide film 11c.
  • the support material 11b made of graphite has high heat resistance that can sufficiently withstand the epitaxial growth process of silicon carbide.
  • the support material 11 b made of graphite has a thermal expansion coefficient similar to that of the single crystal silicon carbide epitaxial growth film 20. Therefore, the silicon carbide epitaxial growth film 20 can be suitably formed by using the support material 11b made of graphite.
  • graphite examples include natural graphite, artificial graphite, petroleum coke, coal coke, pitch coke, carbon black, and mesocarbon.
  • Examples of the method for producing the support material 11b made of graphite include the production method described in JP-A-2005-132711.
  • the polycrystalline silicon carbide film 11c is formed so as to cover the main surface and side surfaces of the support material 11b.
  • Polycrystalline silicon carbide film 11c includes polycrystalline silicon carbide.
  • the surface layer of the feed substrate 11 is formed by the polycrystalline silicon carbide film 11c.
  • Polycrystalline silicon carbide film 11c preferably includes polycrystalline silicon carbide having a polymorphic form of 3C (hereinafter referred to as “polycrystalline 3C—SiC”) as a main component, and substantially includes polycrystalline 3C. It is preferably made of -SiC. That is, the surface layer of the feed substrate 11 preferably contains polycrystalline 3C—SiC as a main component, and is preferably substantially made of polycrystalline 3C—SiC. By doing so, the growth rate of the single crystal silicon carbide epitaxial growth film 20 can be increased.
  • the thickness t11 of the polycrystalline silicon carbide film 11c is preferably in the range of 30 ⁇ m to 800 ⁇ m, more preferably in the range of 40 ⁇ m to 600 ⁇ m, and still more preferably in the range of 100 ⁇ m to 300 ⁇ m. If the thickness t11 of the polycrystalline silicon carbide film 11c is too thin, the support material 11b made of graphite is exposed when the single crystal silicon carbide epitaxial growth film 20 is formed, and suitable single crystal carbonization due to elution from the support material 11b. The silicon epitaxial growth film 20 may not be obtained. On the other hand, if the thickness t11 of the polycrystalline silicon carbide film 11c is too thick, cracks may easily occur in the polycrystalline silicon carbide film 11c.
  • the method for forming the polycrystalline silicon carbide film 11c is not particularly limited.
  • the polycrystalline silicon carbide film 11c can be formed by, for example, a CVD (Chemical Vapor Deposition) method or a sputtering method.
  • CVD Chemical Vapor Deposition
  • a sputtering method a method for forming the polycrystalline silicon carbide film 11c.
  • the polycrystalline silicon carbide film 11c contains polycrystalline 3C—SiC, a dense polycrystalline silicon carbide film 11c can be easily and inexpensively formed by the CVD method.
  • the polycrystalline silicon carbide film 11c constituting the surface layer of the feed substrate 11 has a diffraction peak corresponding to the (111) crystal plane as a diffraction peak corresponding to polycrystalline 3C-SiC by X-ray diffraction. , Diffraction peaks other than the diffraction peak corresponding to the (111) crystal plane are observed.
  • the diffraction peak corresponding to the polycrystal 3C-SiC whose crystal polymorph is polycrystal 3C-SiC the diffraction peak corresponding to the (111) crystal plane, the diffraction peak corresponding to the (200) crystal plane, ( 220) a diffraction peak corresponding to the crystal plane, and (311) a diffraction peak corresponding to the diffraction peak corresponding to the crystal plane. Therefore, specifically, the polycrystalline silicon carbide film 11c has a diffraction peak corresponding to the (111) crystal plane as a diffraction peak corresponding to polycrystalline 3C-SiC by X-ray diffraction.
  • the single crystal silicon carbide epitaxial growth film 20 can be formed at a high growth rate. The reason for this is that elution into the silicon melt layer 13 is more likely to occur from crystal planes other than the (111) crystal plane rather than from the (111) crystal plane.
  • the polycrystalline silicon carbide film 11c has a diffraction peak corresponding to the (111) crystal plane as well as a (200) crystal plane, (220) as a diffraction peak corresponding to polycrystalline 3C-SiC by X-ray diffraction.
  • a diffraction peak corresponding to at least one of the crystal plane and the (311) crystal plane is observed, and each of the (200) crystal plane, the (220) crystal plane, and the (311) crystal plane is observed. More preferably, a corresponding diffraction peak is observed.
  • the growth rate of the single crystal silicon carbide epitaxial growth film 20 can be further increased.
  • the sum of the intensities of the first order diffraction peaks other than the first order diffraction peak corresponding to the (111) crystal plane is more preferably 10% or more of the sum of the intensities of all the first order diffraction peaks, and 20% or more. It is more preferable that In this case, the growth rate of the single crystal silicon carbide epitaxial growth film 20 can be further increased.
  • the polycrystalline silicon carbide film 11c corresponds to the (111) crystal plane among a plurality of first-order diffraction peaks whose crystal polymorphism is observed as a diffraction peak corresponding to polycrystalline 3C-SiC by X-ray diffraction.
  • the primary diffraction peak is preferably the main diffraction peak having the largest diffraction intensity.
  • the diffraction peak intensity ratio ((200) plane / (111) plane) of the (200) plane of silicon carbide to the (111) plane is preferably in the range of 0.1 to 0.6.
  • the polycrystalline silicon carbide film 11c has an average crystallite diameter calculated from a first-order diffraction peak corresponding to polycrystalline silicon carbide whose crystal polymorph is 3C, which is observed by X-ray diffraction, is 700 mm or less. It is preferable. In this case, the growth rate of the single crystal silicon carbide epitaxial growth film 20 can be further increased. This is considered to be because the proportion of the grain boundaries having high reactivity of the polycrystalline silicon carbide crystal in the polycrystalline silicon carbide film 11c increases and elution from the polycrystalline silicon carbide film 11c is more likely to occur. .
  • the polycrystalline silicon carbide film 11c has a first-order diffraction peak corresponding to the (111) crystal plane and at least one of the (200) crystal plane, the (220) crystal plane, and the (311) crystal plane by X-ray diffraction.
  • a first-order diffraction peak corresponding to the two is observed, and (I 1 / I 0 ) ⁇ 1 ⁇ D 2 is preferably 10 8 or less.
  • I 0 The intensity of the first order diffraction peak corresponding to the (111) crystal plane and the total intensity of the first order diffraction peak corresponding to at least one of the (200) crystal plane, the (220) crystal plane and the (311) crystal plane Sum with I 1 : total intensity of first-order diffraction peaks corresponding to at least one of the (200) crystal plane, the (220) crystal plane, and the (311) crystal plane, D: an average crystallite diameter calculated by using the Hall equation from a first-order diffraction peak corresponding to at least one of the (200) crystal plane, the (220) crystal plane, and the (311) crystal plane, It is.
  • the growth rate of the single crystal silicon carbide epitaxial growth film 20 can be further effectively increased. This is because the proportion of the (200) crystal plane, (220) crystal plane, and (311) crystal plane with relatively high reactivity in the polycrystalline silicon carbide film 11c increases, and the average crystallite diameter decreases. It is thought that.
  • the polycrystalline silicon carbide film 11c is preferably such that the proportion of the (111) crystal plane observed by X-ray diffraction with the orientation angle of 67.5 ° or more is less than 80%. .
  • the growth rate of the single crystal silicon carbide epitaxial growth film 20 can be further effectively increased. This is because the degree of exposure of the surface having a lower stability than the (111) crystal plane of the crystal exposing the (111) crystal plane is high, and the reactivity of the crystal exposing the (111) crystal plane is high. This is thought to be due to the increase.
  • the half width of the L0 peak is preferably 7 cm ⁇ 1 or more.
  • the epitaxial growth rate of single crystal silicon carbide can be further improved. This is presumably because the larger the half width of the L0 peak, the lower the crystallinity of the polycrystalline silicon carbide in the surface layer and the higher the impurity concentration, so that elution from the surface layer is more likely to occur.
  • the seed substrate 12 is not particularly limited as long as the surface layer on the main surface 12a side is made of silicon carbide and is less likely to elute into the silicon melt layer 13 than the feed substrate 11.
  • the seed substrate 12 may be made of a single-crystal silicon carbide surface layer, or may be made of silicon carbide whose crystal polymorph is 4H, 6H, or the like.
  • the seed substrate 12 includes, for example, a polycrystalline silicon carbide whose surface layer has a crystal polymorphism of 3C, and a diffraction peak corresponding to the polycrystalline silicon carbide whose crystal polymorphism is 3C by X-ray diffraction of the surface layer.
  • the seed substrate 12 can be manufactured at low cost by the CVD method. Therefore, the formation cost of the single crystal silicon carbide epitaxial growth film 20 can be reduced.
  • the seed substrate 12 includes, for example, a polycrystalline silicon carbide whose surface layer includes polycrystalline silicon carbide having a crystal polymorphism of 3C, and whose surface polycrystal has a crystal polymorphism of 3C by Raman spectroscopic analysis with an excitation wavelength of 532 nm. to be observed L0 peak derived from the absolute value of the shift amount from the L0 peak of 972 cm -1 may be those at 4 cm -1 or more.
  • the seed substrate 12 can be manufactured at low cost by the CVD method. Therefore, the formation cost of the single crystal silicon carbide epitaxial growth film 20 can be reduced.
  • the seed substrate 12 includes a support material 12b made of graphite and a polycrystalline silicon carbide film 12c.
  • the support 12b made of graphite has high heat resistance that can sufficiently withstand the epitaxial growth process of silicon carbide.
  • the support material 12b made of graphite has a thermal expansion coefficient similar to that of the single crystal silicon carbide epitaxial growth film 20. Therefore, silicon carbide epitaxial growth film 20 can be suitably formed by using support material 12b made of graphite.
  • graphite examples include natural graphite, artificial graphite, petroleum coke, coal coke, pitch coke, carbon black, and mesocarbon.
  • Examples of the method for producing the support material 12b made of graphite include the production method described in JP-A-2005-132711.
  • the polycrystalline silicon carbide film 12c is formed so as to cover the main surface and side surfaces of the support material 12b.
  • Polycrystalline silicon carbide film 12c includes polycrystalline silicon carbide.
  • the surface layer of the seed substrate 12 is formed by the polycrystalline silicon carbide film 12c.
  • the polycrystalline silicon carbide film 12c in this embodiment preferably contains polycrystalline 3C—SiC as a main component, and is preferably substantially made of polycrystalline 3C—SiC. That is, in the present embodiment, the surface layer of the seed substrate 12 preferably contains polycrystalline 3C—SiC as a main component, and is preferably substantially made of polycrystalline 3C—SiC. By doing so, the growth rate of the single crystal silicon carbide epitaxial growth film 20 can be increased.
  • the thickness t12 of the polycrystalline silicon carbide film 12c is preferably in the range of 30 ⁇ m to 800 ⁇ m, more preferably in the range of 40 ⁇ m to 600 ⁇ m, and still more preferably in the range of 100 ⁇ m to 300 ⁇ m. If the thickness t12 of the polycrystalline silicon carbide film 12c is too thin, the support material 12b made of graphite is exposed when the single crystal silicon carbide epitaxial growth film 20 is formed, and suitable single crystal carbonization due to elution from the support material 12b. The silicon epitaxial growth film 20 may not be obtained. On the other hand, if the thickness t12 of the polycrystalline silicon carbide film 12c is too thick, cracks may easily occur in the polycrystalline silicon carbide film 12c.
  • the formation method of the polycrystalline silicon carbide film 12c is not particularly limited.
  • the polycrystalline silicon carbide film 12c can be formed by, for example, a CVD (Chemical Vapor Deposition) method or a sputtering method.
  • CVD Chemical Vapor Deposition
  • a sputtering method a method for forming a dense polycrystalline silicon carbide film 12c.
  • each of the feed substrate 11 and the seed substrate 12 is configured by the support materials 11b and 12b and the polycrystalline silicon carbide films 11c and 12c has been described.
  • the present invention is not limited to this configuration.
  • the feed substrate 11 may be formed of a polycrystalline silicon substrate containing polycrystalline silicon carbide whose crystal polymorph is 3C.
  • seed substrate 12 may be formed of a silicon carbide substrate containing silicon carbide.
  • the silicon carbide substrate can be produced, for example, by coating a graphite base material with polycrystalline silicon carbide by a CVD method and then mechanically or chemically removing the graphite.
  • the silicon carbide substrate can also be produced by reacting a graphite material with a silicate gas to convert the graphite material into silicon carbide.
  • the silicon carbide substrate can also be produced by adding a sintering aid to silicon carbide powder and sintering at a high temperature of 1600 ° C. or higher.
  • the single crystal silicon carbide epitaxial growth film may be formed by a vapor phase epitaxial growth method such as an improved Rayleigh method.
  • Table 2 summarizes the relative intensities of the first order diffraction peaks corresponding to each crystal plane when the intensity of the first order diffraction peak corresponding to the (111) crystal plane in Samples 1 to 4 is taken as 100.
  • samples 1 and 2 have an average crystallite diameter of 700 mm or less, more specifically 500 mm or less, while samples 3 and 4 have an average crystallite diameter of more than 700 mm and more details.
  • Table 4 shows the ratio of the intensity integral value of the region where the orientation angle ( ⁇ ) is 67.5 ° or more with respect to the intensity integral value of the entire region when the orientation angle ( ⁇ ) is 15 ° to 90 ° ((orientation angle ( ⁇ ) is the integrated intensity value of the region where 67.5 ° or more) / (intensity integrated value of the entire region when the orientation angle ( ⁇ ) is 15 ° to 90 °)).
  • ((intensity integrated value of region where orientation angle ( ⁇ ) is 67.5 ° or more) / (intensity integrated value of entire region when orientation angle ( ⁇ ) is 15 ° to 90 °)) is obtained by X-ray diffraction. This corresponds to the proportion of the observed (111) crystal plane with an orientation angle of 67.5 ° or more.
  • a single crystal silicon carbide epitaxial growth film 20 was produced under the following conditions using Samples 1 to 4 as a feed substrate. And the thickness of the silicon carbide epitaxial growth film
  • membrane 20 was measured by observing the cross section of the silicon carbide epitaxial growth film
  • Results are shown in FIG. 14 and FIG. 14 and 15, the vertical axis represents the growth rate of the single crystal silicon carbide epitaxial growth film 20, and the horizontal axis represents the reciprocal (1 / L) of the thickness (L) of the silicon melt layer 13.
  • the polycrystalline silicon carbide film 11 c constituting the surface layer of the feed substrate 11 has a diffraction peak corresponding to polycrystalline 3C—SiC as a crystal polymorph by X-ray diffraction.
  • the polycrystalline silicon carbide film 11c constituting the surface layer of the feed substrate 11 has a diffraction peak corresponding to the (111) crystal plane as a diffraction peak corresponding to polycrystalline 3C-SiC by X-ray diffraction.
  • the growth rate of the single crystal silicon carbide epitaxial growth film 20 was low.
  • Seed substrate silicon carbide substrate with a crystal polymorph of 4H Atmospheric pressure: 10 ⁇ 6 to 10 ⁇ 4 Pa Atmospheric temperature: 1900 ° C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 炭化ケイ素エピタキシャル成長速度を高くできる単結晶炭化ケイ素エピタキシャル成長用フィード材を提供する。 単結晶炭化ケイ素エピタキシャル成長用フィード材11は、結晶多形が3Cである多結晶炭化ケイ素を含む表層を有する。表層のX線回折により、結晶多形が3Cである多結晶炭化ケイ素に対応した回折ピークとして、(111)結晶面に対応した回折ピークと、(111)結晶面に対応した回折ピーク以外の回折ピークとが観察される。

Description

単結晶炭化ケイ素エピタキシャル成長用フィード材及び単結晶炭化ケイ素のエピタキシャル成長方法
 本発明は、単結晶炭化ケイ素エピタキシャル成長用フィード材及びそれを用いた単結晶炭化ケイ素のエピタキシャル成長方法に関する。
 炭化ケイ素(SiC)は、ケイ素(Si)やガリウムヒ素(GaAs)等の従来の半導体材料では実現できない高温耐性、高耐電圧性、耐高周波性及び高耐環境性を実現することが可能であると考えられている。このため、炭化ケイ素は、次世代のパワーデバイス用の半導体材料や高周波デバイス用半導体材料として期待されている。
 従来、単結晶炭化ケイ素を成長させる方法として、例えば、下記の特許文献1などにおいて、昇華再結晶法(改良レーリー法)が提案されている。この改良レーリー法では、坩堝内の低温側領域に単結晶炭化ケイ素からなるシード材を配置し、高温側領域に原料となるSiを含む原料粉末を配置する。そして、坩堝内を不活性雰囲気とした上で、1450℃~2400℃の高温に加熱することにより、高温側領域に配置されている原料粉末を昇華させる。その結果、低温側領域に配置されているシード材の表面上に炭化ケイ素をエピタキシャル成長させることができる。
 しかしながら、改良レーリー法は、気相中で温度勾配を設けることにより炭化ケイ素結晶を成長させる方法である。このため、改良レーリー法を用いた場合、炭化ケイ素のエピタキシャル成長に大型の装置を要し、かつ、炭化ケイ素エピタキシャル成長のプロセス制御が困難となる。よって、炭化ケイ素エピタキシャル成長膜の製造コストが高くなるという問題がある。また、気相中における炭化ケイ素エピタキシャル成長は、非平衡である。このため、形成される炭化ケイ素エピタキシャル成長膜に結晶欠陥が生じやすく、また、結晶構造に荒れが生じやすいという問題がある。
 改良レーリー法以外の炭化ケイ素のエピタキシャル成長法としては、例えば特許文献2などで提案されている、液相において炭化ケイ素をエピタキシャル成長させる方法である準安定溶媒エピタキシー(Metastable Solvent Epitaxy:MSE)法が挙げられる。
 MSE法では、単結晶炭化ケイ素や多結晶炭化ケイ素などの結晶性炭化ケイ素からなるシード材と、炭化ケイ素からなるフィード材とを、例えば100μm以下といった小さな間隔をおいて対向させ、その間にSiの溶融層を介在させる。そして、真空高温環境で加熱処理することにより、シード材の表面上に炭化ケイ素をエピタキシャル成長させる。
 このMSE法では、シード材の化学ポテンシャルと、フィード材の化学ポテンシャルとの差に起因して、Si溶融層に炭素が溶解し、Si溶融層に炭素の濃度勾配が生じることにより炭化ケイ素エピタキシャル成長膜が形成されるものと考えられている。このため、改良レーリー法を用いる場合とは異なり、シード材とフィード材との間に温度差を設ける必要が必ずしもない。従って、MSE法を用いた場合、簡素な装置で、炭化ケイ素のエピタキシャル成長プロセスを容易に制御できるばかりか、高品位な炭化ケイ素エピタキシャル成長膜を安定して形成することができる。
 また、大きな面積を有するシード基板の上にも炭化ケイ素エピタキシャル成長膜を形成できるという利点、Si溶融層が極めて薄いため、フィード材からの炭素が拡散しやすく、炭化ケイ素のエピタキシャル成長プロセスの低温化を図れるという利点もある。
 従って、MSE法は、単結晶炭化ケイ素のエピタキシャル成長法として極めて有用な方法であると考えられており、MSE法に関する研究が盛んに行われている。
特開2005-97040号公報 特開2008-230946号公報
 上述のように、MSE法においては、フィード材の自由エネルギーがシード材の自由エネルギーよりも高くなるように、フィード材及びシード材を選択する必要があるものと考えられている。このため、例えば上記特許文献2には、フィード基板とシード基板との結晶多形を異ならしめることにより、フィード基板とシード基板とで自由エネルギーを異ならしめることが記載されている。具体的には、フィード基板を多結晶3C-SiC基板により構成した場合は、3C-SiC基板よりも低い自由エネルギーを有する単結晶4H-SiC基板などによりシード基板を構成することが記載されている。
 ここで、多結晶3C-SiC基板は、CVD法により容易に作製できる。このため、特許文献2に記載のように、3C-SiC基板をフィード基板として用いることにより、炭化ケイ素エピタキシャル成長膜の形成コストを低く抑えることができる。よって、本発明者は、3C-SiC基板をフィード基板として用いることに関して研究を進めてきた。その結果、3C-SiC基板の中にも炭化ケイ素のエピタキシャル成長速度が速いものと遅いものとがあることを見出した。
 本発明は、係る点に鑑みてなされたものであり、その目的は、炭化ケイ素エピタキシャル成長速度を高くできる単結晶炭化ケイ素エピタキシャル成長用フィード材を提供することにある。
 本発明者は、鋭意研究の結果、結晶多形が3Cであるフィード材を用いた場合のエピタキシャル成長速度は、X線回折により観察される回折ピークと相関することを見出した。具体的には、本発明者は、結晶多形が3Cである多結晶炭化ケイ素に対応した回折ピークとして、(111)結晶面に対応した回折ピーク以外の回折ピークが観察されないものよりも、(111)結晶面に対応した回折ピーク以外の回折ピークが観察されるものの方がエピタキシャル成長速度が高いことを見出した。また、本発明者は、(111)結晶面に対応した回折ピーク以外の回折ピークのピーク強度が強いほどエピタキシャル成長速度が高いことを見いだした。その結果、本発明者は、本発明を成すに至った。
 すなわち、本発明に係る単結晶炭化ケイ素エピタキシャル成長用フィード材は、単結晶炭化ケイ素のエピタキシャル成長方法に用いられるフィード材である。本発明に係る単結晶炭化ケイ素エピタキシャル成長用フィード材は、結晶多形が3Cである多結晶炭化ケイ素を含む表層を有する。表層のX線回折により、結晶多形が3Cである多結晶炭化ケイ素に対応した回折ピークとして、(111)結晶面に対応した回折ピークと、(111)結晶面に対応した回折ピーク以外の回折ピークとが観察される。このため、本発明に係るフィード材を用いることによって、単結晶炭化ケイ素のエピタキシャル成長速度を向上できる。
 (111)結晶面に対応した回折ピーク以外の回折ピークが観察された場合に単結晶炭化ケイ素のエピタキシャル成長速度を高めることができるのは、(111)結晶面よりも、(111)結晶面以外の結晶面の方が反応性が高いためであるものと考えられる。例えば、単結晶炭化ケイ素の液相エピタキシャル成長を行う場合は、(111)結晶面よりも、(111)結晶面以外の結晶面の方が溶出しやすいため、(111)結晶面に対応した回折ピーク以外の回折ピークが観察されるフィード材を用いることによって、単結晶炭化ケイ素のエピタキシャル成長速度を高めることができるものと考えられる。
 なお、本発明において、「エピタキシャル成長方法」には、準安定溶媒エピタキシー(Metastable Solvent Epitaxy:MSE)法などの液相エピタキシャル成長方法と、改良レーリー法などの気相エピタキシャル成長方法とが含まれるものとする。「MSE法」とは、シード材とフィード材とをケイ素溶融層を介して対向させた状態で加熱することによりケイ素溶融層中に、溶解した黒鉛の濃度勾配を形成し、その濃度勾配により、シード材の上に単結晶炭化ケイ素をエピタキシャル成長させる方法をいう。
 本発明において、「X線回折」とは、8.048keVであるX線(CuKα線)を用いた回折をいう。
 本発明において、「回折ピークが観察される」とは、(111)結晶面に対応した1次回折ピークのピーク強度の3%以上のピーク強度を有する回折ピークが観察されることをいう。
 本発明において、「(111)結晶面に対応した回折ピーク」には、(111)結晶面に対応した1次回折ピークと高次回折ピークとが含まれる。
 本発明において、「フィード材」とは、例えば、Si、C、SiCなどの単結晶炭化ケイ素エピタキシャル成長の材料となるものを供給する部材をいう。一方、「シード材」とは、表面上に単結晶炭化ケイ素が成長していく部材をいう。
 本発明において、(111)結晶面に対応した1次回折ピークは、結晶多形が3Cである多結晶炭化ケイ素に対応した1次回折ピークのなかで最も大きな回折強度を有する主回折ピークであることが好ましい。
 本発明において、(111)結晶面に対応した回折ピーク以外の回折ピークには、(200)結晶面、(220)結晶面及び(311)結晶面のうちの少なくとも一つに対応した回折ピークが含まれていることが好ましい。この構成によれば、単結晶炭化ケイ素のエピタキシャル成長速度をより効果的に高めることができる。これは、(200)結晶面、(220)結晶面及び(311)結晶面は、(111)結晶面に対して反応性が高いためであると考えられる。単結晶炭化ケイ素のエピタキシャル成長速度をさらに効果的に高める観点からは、(111)結晶面に対応した回折ピーク以外の回折ピークには、(200)結晶面、(220)結晶面及び(311)結晶面のそれぞれに対応した回折ピークが含まれることがより好ましい。
 本発明において、(111)結晶面に対応した1次回折ピーク以外の1次回折ピークの強度の総和が、すべての1次回折ピークの強度の総和の10%以上であることが好ましく、20%以上であることがより好ましい。この構成によれば、(111)結晶面よりも反応性が高い(111)結晶面以外の結晶面の割合をより多くすることができる。従って、単結晶炭化ケイ素のエピタキシャル成長速度をより効果的に高めることができる。
 また、本発明において、表層のX線回折により観察される、結晶多形が3Cである多結晶炭化ケイ素に対応した1次回折ピークから算出される平均結晶子径が、700Å以下であることが好ましい。この構成によれば、単結晶炭化ケイ素のエピタキシャル成長速度をさらに効果的に高めることができる。これは、表層において多結晶炭化ケイ素結晶の高い反応性を有する粒界が占める割合が多くなり、表層の反応性がより高められるためであると考えられる。
 さらには、表層のX線回折により、(111)結晶面に対応した1次回折ピークと、(200)結晶面、(220)結晶面及び(311)結晶面の少なくとも一つに対応した1次回折ピークとが観察され、(I/I-1・Dが10以下であることが好ましい。
 但し、
 I:(111)結晶面に対応した1次回折ピークの強度と、(200)結晶面、(220)結晶面及び(311)結晶面の少なくとも一つに対応した1次回折ピークの合計強度との和、
 I:(200)結晶面、(220)結晶面及び(311)結晶面の少なくとも一つに対応した1次回折ピークの合計強度、
 D:(200)結晶面、(220)結晶面及び(311)結晶面の少なくとも一つに対応した1次回折ピークから算出される平均結晶子径、
である。
 この構成によれば、単結晶炭化ケイ素のエピタキシャル成長速度をさらに効果的に高めることができる。これは、反応性が比較的高い(200)結晶面、(220)結晶面、(311)結晶面の割合が多くなり、かつ、平均結晶子径が小さくなるためであると考えられる。
 なお、本発明において、「結晶子径」は、下記の式(1)に示すHallの式に基づいて算出された結晶子径をいう。
 β・(cosθ)/λ=2η・(sinθ)/λ+1/ε ……… (1)
 但し、
 β:半値幅、
 θ:回折線のブラック角、
 λ:測定に用いたX線の波長、
 η:結晶の不均一歪みの値、
 ε:結晶子径の平均の大きさ、
である。
 本発明において、表層のX線回折により観察される(111)結晶面のうち、配向角度が67.5°以上であるものの占める割合が80%未満であることが好ましい。この構成によれば、単結晶炭化ケイ素のエピタキシャル成長速度をさらに効果的に高めることができる。これは、(111)結晶面を露出させている結晶の(111)結晶面よりも安定性が低い面の露出度が高くなるため、(111)結晶面を露出させている結晶の反応性が高くなるためであると考えられる。
 また、表層の、励起波長を532nmとするラマン分光解析によって結晶多形が3Cである多結晶炭化ケイ素に由来のL0ピークが観察され、L0ピークの972cm-1からのシフト量の絶対値が4cm-1未満であることが好ましい。この場合、単結晶炭化ケイ素のエピタキシャル成長速度をさらに向上できる。
 なお、L0ピークの972cm-1からのシフト量の絶対値が4cm-1未満である場合に単結晶炭化ケイ素のエピタキシャル成長速度を高めることができるのは、L0ピークの972cm-1からのシフト量の絶対値が小さい場合は、フィード材の表層における内部応力が小さく、表層の緻密性が低いため、表層からの溶出が生じやすいためであるものと考えられる。
 本発明において、「多結晶炭化ケイ素に由来のL0ピーク」とは、炭化ケイ素結晶中のSi-Cの2原子間で振動する光学モードのうち縦光学(longitudinal optical)モードに由来するピークであり、通常3C多形の場合、972cm-1に現れるピークである。
 本発明において、L0ピークの半値幅が7cm-1以上であることが好ましい。この構成を有するフィード材を用いることによって、単結晶炭化ケイ素のエピタキシャル成長速度をさらに向上できる。
 L0ピークの半値幅が7cm-1以上である場合に、単結晶炭化ケイ素のエピタキシャル成長速度をさらに向上できるのは、L0ピークの半値幅が大きいほど、表層における多結晶炭化ケイ素の結晶性が低かったり、不純物濃度が高かったりするため、表層からの溶出がさらに生じやすくなるためであると考えられる。
 本発明において、表層は、結晶多形が3Cである多結晶炭化ケイ素を主成分として含むことが好ましく、実質的に、結晶多形が3Cである多結晶炭化ケイ素からなることが好ましい。この構成によれば、単結晶炭化ケイ素のエピタキシャル成長速度をさらに効果的に高めることができる。
 なお、本発明において、「主成分」とは、50質量%以上含まれる成分のことをいう。
 本発明において、「実質的に、結晶多形が3Cである多結晶炭化ケイ素からなる」とは、不純物以外に、結晶多形が3Cである多結晶炭化ケイ素以外の成分を含まないことを意味する。通常、「実質的に、結晶多形が3Cである多結晶炭化ケイ素からなる」場合に含まれる不純物は、5質量%以下である。
 本発明に係る単結晶炭化ケイ素エピタキシャル成長用フィード材は、支持材と、支持材の上に形成されており、表層を構成している多結晶炭化ケイ素膜とを備えていてもよい。その場合において、多結晶炭化ケイ素膜の厚みは、30μm~800μmの範囲内にあることが好ましい。
 また、本発明に係る単結晶炭化ケイ素エピタキシャル成長用フィード材は、結晶多形が3Cである多結晶炭化ケイ素を含む多結晶炭化ケイ素基板などの多結晶炭化ケイ素材により構成されていてもよい。
 本発明に係る単結晶炭化ケイ素のエピタキシャル成長方法では、上記本発明に係る単結晶炭化ケイ素エピタキシャル成長用フィード材を用いて単結晶炭化ケイ素のエピタキシャル成長を行う。従って、単結晶炭化ケイ素を高い速度でエピタキシャル成長させることができる。
 本発明に係る単結晶炭化ケイ素のエピタキシャル成長方法では、フィード材の表層と、炭化ケイ素を含む表層を有するシード材の表層とをケイ素溶融層を介して対向させた状態で加熱することによりシード材の表層上に単結晶炭化ケイ素をエピタキシャル成長させることが好ましい。すなわち、本発明に係る単結晶炭化ケイ素のエピタキシャル成長方法は、単結晶炭化ケイ素の液相エピタキシャル成長方法であることが好ましい。この場合、シード材とフィード材との間に温度差を設ける必要が必ずしもない。従って、簡素な装置で、単結晶炭化ケイ素のエピタキシャル成長プロセスを容易に制御できるばかりか、高品位な単結晶炭化ケイ素エピタキシャル成長膜を安定して形成することができる。
 本発明によれば、単結晶炭化ケイ素エピタキシャル成長速度を高くできる単結晶炭化ケイ素エピタキシャル成長用フィード材を提供することができる。
図1は、本発明の一実施形態における単結晶炭化ケイ素のエピタキシャル成長方法を説明するための模式図である。 図2は、本発明の一実施形態におけるフィード基板の略図的断面図である。 図3は、本発明の一実施形態におけるシード基板の略図的断面図である。 図4は、変形例におけるフィード基板の略図的断面図である。 図5は、変形例におけるシード基板の略図的断面図である。 図6は、サンプル1~4のX線回折チャートである。 図7は、(111)結晶面の配向性の測定方法を説明するための模式図である。 図8は、サンプル1における(111)結晶面の配向性を示すグラフである。 図9は、サンプル2における(111)結晶面の配向性を示すグラフである。 図10は、サンプル3における(111)結晶面の配向性を示すグラフである。 図11は、サンプル4における(111)結晶面の配向性を示すグラフである。 図12は、サンプル1~4の表層のラマン分光解析結果を表すグラフである。 図13は、サンプル1~4におけるL0ピークの972cm-1からのシフト量(Δω)と、L0ピークの半値幅(FWHM)とを表すグラフである。 図14は、サンプル1,2及び4における単結晶炭化ケイ素エピタキシャル成長膜の成長速度を示すグラフである。 図15は、サンプル3,4における単結晶炭化ケイ素エピタキシャル成長膜の成長速度を示すグラフである。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、以下の実施形態は単なる例示である。本発明は、以下の実施形態に何ら限定されない。
 図1は、本実施形態における単結晶炭化ケイ素のエピタキシャル成長方法を説明するための模式図である。
 本実施形態では、MSE法を用いて単結晶炭化ケイ素のエピタキシャル成長膜を形成する例について説明する。
 本実施形態では、図1に示すように、容器10内において、シード材としてのシード基板12と、フィード材としてのフィード基板11とを、シード基板12の主面12aとフィード基板11の主面11aとがシリコンプレートを介して対向するように配置する。その状態でシード基板12及びフィード基板11を加熱し、シリコンプレートを溶融する。そうすることにより、シード基板12とフィード基板11とがケイ素溶融層13を介して対向した状態となる。この状態を維持することにより、シード基板12側からケイ素、炭素、炭化ケイ素などの原料がケイ素溶融層13に溶出する。これにより、ケイ素溶融層13に濃度勾配が形成される。その結果、シード基板12の主面12a上に単結晶炭化ケイ素がエピタキシャル成長し、単結晶炭化ケイ素エピタキシャル成長膜20が形成される。なお、ケイ素溶融層13の厚みは、極めて薄く、例えば、10μm~100μm程度とすることができる。
 (フィード基板11)
 図2にフィード基板11の略図的断面図を示す。フィード基板11は、結晶多形が3Cである多結晶炭化ケイ素を含む表層を有する。具体的には、本実施形態では、フィード基板11は、黒鉛からなる支持材11bと、多結晶炭化ケイ素膜11cとを有する。黒鉛からなる支持材11bは、炭化ケイ素のエピタキシャル成長プロセスに十分に耐えることのできる高い耐熱性を有している。また、黒鉛からなる支持材11bは、単結晶炭化ケイ素エピタキシャル成長膜20と似通った熱膨張率を有する。従って、黒鉛からなる支持材11bを用いることにより、炭化ケイ素エピタキシャル成長膜20を好適に形成することができる。
 なお、黒鉛の具体例としては、例えば、天然黒鉛、人造黒鉛、石油コークス、石炭コークス、ピッチコークス、カーボンブラック、メソカーボン等が挙げられる。黒鉛からなる支持材11bの製造方法は、例えば、特開2005-132711号公報に記載の製造方法などが挙げられる。
 多結晶炭化ケイ素膜11cは、支持材11bの主面及び側面を覆うように形成されている。多結晶炭化ケイ素膜11cは、多結晶炭化ケイ素を含む。この多結晶炭化ケイ素膜11cによって、フィード基板11の表層が形成されている。なお、多結晶炭化ケイ素膜11cは、結晶多形が3Cである多結晶炭化ケイ素(以下、「多結晶3C-SiC」とする。)を主成分として含むことが好ましく、実質的に多結晶3C-SiCからなることが好ましい。すなわち、フィード基板11の表層は、多結晶3C-SiCを主成分として含むことが好ましく、実質的に多結晶3C-SiCからなることが好ましい。そうすることにより単結晶炭化ケイ素エピタキシャル成長膜20の成長速度を高めることができる。
 多結晶炭化ケイ素膜11cの厚みt11は、30μm~800μmの範囲内にあることが好ましく、40μm~600μmの範囲内にあることがより好ましく、100μm~300μmの範囲内にあることがさらに好ましい。多結晶炭化ケイ素膜11cの厚みt11が薄すぎると、単結晶炭化ケイ素エピタキシャル成長膜20の形成時に、黒鉛からなる支持材11bが露出し、支持材11bからの溶出に起因して好適な単結晶炭化ケイ素エピタキシャル成長膜20が得られなくなる場合がある。一方、多結晶炭化ケイ素膜11cの厚みt11が厚すぎると、多結晶炭化ケイ素膜11cにクラックが生じやすくなる場合がある。
 多結晶炭化ケイ素膜11cの形成方法は特に限定されない。多結晶炭化ケイ素膜11cは、例えばCVD(Chemical Vapor Deposition)法や、スパッタリング法などにより形成することができる。特に、本実施形態では、多結晶炭化ケイ素膜11cが多結晶3C-SiCを含むものであるため、CVD法により緻密な多結晶炭化ケイ素膜11cを容易かつ安価に形成することができる。
 フィード基板11の表層を構成している多結晶炭化ケイ素膜11cは、X線回折により、結晶多形が多結晶3C-SiCに対応した回折ピークとして、(111)結晶面に対応した回折ピークと共に、(111)結晶面に対応した回折ピーク以外の回折ピークが観察されるものである。
 結晶多形が多結晶3C-SiCに対応した回折ピークとしては、以下の表1にも示すように、(111)結晶面に対応した回折ピーク、(200)結晶面に対応した回折ピーク、(220)結晶面に対応した回折ピーク、(311)結晶面に対応した回折ピークに対応した回折ピークが挙げられる。このため、具体的には、多結晶炭化ケイ素膜11cは、X線回折により、結晶多形が多結晶3C-SiCに対応した回折ピークとして、(111)結晶面に対応した回折ピークと共に、(200)結晶面、(220)結晶面及び(311)結晶面のうちの少なくとも一つに対応した回折ピークが観察されるものである。従って、本実施形態においては、単結晶炭化ケイ素エピタキシャル成長膜20を高い成長速度で形成することができる。この理由としては、(111)結晶面からよりも、(111)結晶面以外の結晶面からの方がケイ素溶融層13への溶出が生じやすいことが考えられる。
Figure JPOXMLDOC01-appb-T000001
 多結晶炭化ケイ素膜11cは、X線回折により、結晶多形が多結晶3C-SiCに対応した回折ピークとして、(111)結晶面に対応した回折ピークと共に、(200)結晶面、(220)結晶面及び(311)結晶面のうちの少なくとも一つに対応した回折ピークが観察されるものであることが好ましく、(200)結晶面、(220)結晶面及び(311)結晶面のそれぞれに対応した回折ピークが観察されるものであることがより好ましい。この場合、単結晶炭化ケイ素エピタキシャル成長膜20の成長速度をより高めることができる。これは、(111)結晶面以外の結晶面の中でも、(200)結晶面、(220)結晶面及び(311)結晶面は、特に高い反応性を有するため、ケイ素溶融層13への溶出がより生じやすくなるためであると考えられる。
 また、(111)結晶面に対応した1次回折ピーク以外の1次回折ピークの強度の総和が、すべての1次回折ピークの強度の総和の10%以上であることがより好ましく、20%以上であることがより好ましい。この場合、単結晶炭化ケイ素エピタキシャル成長膜20の成長速度をさらに高めることができる。
 また、多結晶炭化ケイ素膜11cは、X線回折により、結晶多形が多結晶3C-SiCに対応した回折ピークとして観察される複数の1次回折ピークのうち、(111)結晶面に対応した1次回折ピークが、最も大きな回折強度を有する主回折ピークであることが好ましい。この場合、炭化ケイ素の(200)面の(111)面に対する回折ピーク強度比((200)面/(111)面)が0.1~0.6の範囲内であることが好ましい。
 また、多結晶炭化ケイ素膜11cは、X線回折により観察される、結晶多形が3Cである多結晶炭化ケイ素に対応した1次回折ピークから算出される平均結晶子径が、700Å以下であるものであることが好ましい。この場合、単結晶炭化ケイ素エピタキシャル成長膜20の成長速度をさらに高めることができる。これは、多結晶炭化ケイ素膜11cにおいて多結晶炭化ケイ素結晶の高い反応性を有する粒界が占める割合が多くなり、多結晶炭化ケイ素膜11cからの溶出がより生じやすくなるためであると考えられる。
 さらには、多結晶炭化ケイ素膜11cは、X線回折により、(111)結晶面に対応した1次回折ピークと、(200)結晶面、(220)結晶面及び(311)結晶面の少なくとも一つに対応した1次回折ピークとが観察され、(I/I-1・Dが10以下であるものであることが好ましい。
 但し、
 I:(111)結晶面に対応した1次回折ピークの強度と、(200)結晶面、(220)結晶面及び(311)結晶面の少なくとも一つに対応した1次回折ピークの合計強度との和、
 I:(200)結晶面、(220)結晶面及び(311)結晶面の少なくとも一つに対応した1次回折ピークの合計強度、
 D:(200)結晶面、(220)結晶面及び(311)結晶面の少なくとも一つに対応した1次回折ピークからHallの式を用いて算出される平均結晶子径、
である。
 この場合、単結晶炭化ケイ素エピタキシャル成長膜20の成長速度をさらに効果的に高めることができる。これは、多結晶炭化ケイ素膜11cにおける、反応性が比較的高い(200)結晶面、(220)結晶面、(311)結晶面の割合が多くなり、かつ、平均結晶子径が小さくなるためであると考えられる。
 また、多結晶炭化ケイ素膜11cは、X線回折により観察される(111)結晶面のうち、配向角度が67.5°以上であるものの占める割合が80%未満であるものであることが好ましい。この場合、単結晶炭化ケイ素エピタキシャル成長膜20の成長速度をさらに効果的に高めることができる。これは、(111)結晶面を露出させている結晶の(111)結晶面よりも安定性が低い面の露出度が高くなるため、(111)結晶面を露出させている結晶の反応性が高くなるためであると考えられる。
 また、本実施形態のフィード基板11の表層を構成している多結晶炭化ケイ素膜11cを、励起波長を532nmとするラマン分光解析すると、結晶多形が3Cである多結晶炭化ケイ素に由来のL0ピークが観察される。そして、その観察されたL0ピークの972cm-1からのシフト量の絶対値が4cm-1未満である。このため、本実施形態においては、単結晶炭化ケイ素のさらに高いエピタキシャル成長速度を実現することができる。これは、L0ピークの972cm-1からのシフト量の絶対値が小さい場合は、フィード材の表層における内部応力が小さく、表層の緻密性が低いため、表層からの溶出が生じやすいからであると考えられる。
 また、上記L0ピークの半値幅は、7cm-1以上であることが好ましい。この場合、単結晶炭化ケイ素のエピタキシャル成長速度をさらに向上できる。これは、L0ピークの半値幅が大きいほど、表層における多結晶炭化ケイ素の結晶性が低かったり、不純物濃度が高かったりするため、表層からの溶出がさらに生じやすくなるためであると考えられる。
 (シード基板12)
 シード基板12は、主面12a側の表層が炭化ケイ素からなり、フィード基板11よりもケイ素溶融層13に溶出しにくいものである限りにおいて特に限定されない。シード基板12は、例えば、表層が単結晶炭化ケイ素からなるものであってもよいし、結晶多形が4H、6Hなどである炭化ケイ素からなるものであってもよい。また、シード基板12は、例えば、表層が、結晶多形が3Cである多結晶炭化ケイ素を含み、その表層のX線回折により、結晶多形が3Cである多結晶炭化ケイ素に対応した回折ピークとして、(111)結晶面に対応した1次回折ピークが観察され、前記(111)結晶面に対応した1次回折ピークの回折強度の10%以上の回折強度を有する他の1次回折ピークが観察されないものであってもよい。この場合、シード基板12をCVD法により安価に作製することができる。従って、単結晶炭化ケイ素エピタキシャル成長膜20の形成コストを低減することができる。
 シード基板12は、例えば、表層が、結晶多形が3Cである多結晶炭化ケイ素を含み、その表層の、励起波長を532nmとするラマン分光解析により、結晶多形が3Cである多結晶炭化ケイ素に由来のL0ピークが観察され、L0ピークの972cm-1からのシフト量の絶対値が4cm-1以上であるものであってもよい。この場合、シード基板12をCVD法により安価に作製することができる。従って、単結晶炭化ケイ素エピタキシャル成長膜20の形成コストを低減することができる。
 以下、本実施形態では、図3に示すシード基板12を用いる例について説明する。図3に示すように、本実施形態では、シード基板12は、黒鉛からなる支持材12bと、多結晶炭化ケイ素膜12cとを有する。黒鉛からなる支持材12bは、炭化ケイ素のエピタキシャル成長プロセスに十分に耐えることのできる高い耐熱性を有している。また、黒鉛からなる支持材12bは、単結晶炭化ケイ素エピタキシャル成長膜20と似通った熱膨張率を有する。従って、黒鉛からなる支持材12bを用いることにより、炭化ケイ素エピタキシャル成長膜20を好適に形成することができる。
 なお、黒鉛の具体例としては、例えば、天然黒鉛、人造黒鉛、石油コークス、石炭コークス、ピッチコークス、カーボンブラック、メソカーボン等が挙げられる。黒鉛からなる支持材12bの製造方法は、例えば、特開2005-132711号公報に記載の製造方法などが挙げられる。
 多結晶炭化ケイ素膜12cは、支持材12bの主面及び側面を覆うように形成されている。多結晶炭化ケイ素膜12cは、多結晶炭化ケイ素を含む。この多結晶炭化ケイ素膜12cによって、シード基板12の表層が形成されている。なお、本実施形態における多結晶炭化ケイ素膜12cは、多結晶3C-SiCを主成分として含むことが好ましく、実質的に多結晶3C-SiCからなることが好ましい。すなわち、本実施形態において、シード基板12の表層は、多結晶3C-SiCを主成分として含むことが好ましく、実質的に多結晶3C-SiCからなることが好ましい。そうすることにより単結晶炭化ケイ素エピタキシャル成長膜20の成長速度を高めることができる。
 多結晶炭化ケイ素膜12cの厚みt12は、30μm~800μmの範囲内にあることが好ましく、40μm~600μmの範囲内にあることがより好ましく、100μm~300μmの範囲内にあることがさらに好ましい。多結晶炭化ケイ素膜12cの厚みt12が薄すぎると、単結晶炭化ケイ素エピタキシャル成長膜20の形成時に、黒鉛からなる支持材12bが露出し、支持材12bからの溶出に起因して好適な単結晶炭化ケイ素エピタキシャル成長膜20が得られなくなる場合がある。一方、多結晶炭化ケイ素膜12cの厚みt12が厚すぎると、多結晶炭化ケイ素膜12cにクラックが生じやすくなる場合がある。
 多結晶炭化ケイ素膜12cの形成方法は特に限定されない。多結晶炭化ケイ素膜12cは、例えばCVD(Chemical Vapor Deposition)法や、スパッタリング法などにより形成することができる。特に、本実施形態では、多結晶炭化ケイ素膜12cが多結晶3C-SiCを含むものであるため、CVD法により緻密な多結晶炭化ケイ素膜12cを容易かつ安価に形成することができる。
 なお、上記実施形態では、フィード基板11及びシード基板12のそれぞれが支持材11b、12bと、多結晶炭化ケイ素膜11c、12cとによって構成されている例について説明した。但し、本発明は、この構成に限定されない。例えば、図4に示すように、フィード基板11は、結晶多形が3Cである多結晶炭化ケイ素を含む多結晶ケイ素基板により構成されていてもよい。また、図5に示すように、シード基板12は、炭化ケイ素を含む炭化ケイ素基板により構成されていてもよい。
 なお、炭化ケイ素基板は、例えば、黒鉛基材にCVD法により多結晶炭化ケイ素を被覆し、その後、黒鉛を機械的あるいは化学的に除去することにより作製することができる。また、炭化ケイ素基板は、黒鉛材とケイ酸ガスとを反応させて黒鉛材を炭化ケイ素に転化させることによっても作製することができる。また、炭化ケイ素基板は、炭化ケイ素粉末に焼結助剤を添加して1600℃以上の高温で焼結させることによっても作製することができる。
 また、上記実施形態では、単結晶炭化ケイ素の液相エピタキシャル成長方法であるMSE法により単結晶炭化ケイ素エピタキシャル成長膜を形成する例について説明した。但し、本発明は、これに限定されない。例えば、改良レーリー法などの気相エピタキシャル成長方法により単結晶炭化ケイ素エピタキシャル成長膜を形成してもよい。
 以下、具体例に基づいて、本発明についてさらに説明するが、本発明は、以下の具体例に何ら限定されない。
 (作製例1)
 かさ密度1.85g/cm、灰分5ppm以下である高純度等方性黒鉛材料からなる黒鉛材(15mm×15mm×2mm)を基材として用いた。この基材をCVD反応装置内に入れ、CVD法により基材上に厚み30μmの多結晶炭化ケイ素被膜を形成し、サンプル1を作製した。なお、原料ガスとしては、四塩化ケイ素及びプロパンガスを用いた。成膜は、常圧、1200℃で行った。成膜速度は、30μm/hとした。
 (作製例2)
 反応温度を1400℃とし、成膜速度を60μm/hとしたこと以外は、上記作製例1と同様にして黒鉛材の表面上に50μmの多結晶炭化ケイ素被膜を形成し、サンプル2を作製した。
 (作製例3)
 反応温度を1250℃とし、成膜速度10μm/hとし、四塩化ケイ素に代えてCHSiClを用いたこと以外は、上記作製例1と同様にして黒鉛材の表面上に50μmの多結晶炭化ケイ素被膜を形成し、サンプル3を作製した。
 (作製例4)
 四塩化ケイ素及びプロパンガスに代えてジクロロシラン(SiHCl)及びアセチレンを用い、反応温度を1300℃とし、成膜速度10μm/hとしたこと以外は、上記作製例1と同様にして黒鉛材の表面上に50μmの多結晶炭化ケイ素被膜を形成し、サンプル4を作製した。なお、サンプル4では、多結晶炭化ケイ素被膜の厚みは、約1mmであった。
 (X線回折測定)
 上記作製のサンプル1~4の表層のX線回折を行った。なお、X線回折は、リガク社製アルティマ(Ulutima)を用いて行った。測定結果を図6に示す。
 図6に示すように、サンプル1,2では、(111)結晶面に対応した回折ピーク(2θ=35.6°)と共に、(111)結晶面以外の結晶面に対応した回折ピークが観察された。具体的には、サンプル1,2では、(111)結晶面に対応した回折ピーク(2θ=35.6°)以外にも、(200)結晶面に対応した回折ピーク(2θ=41.4°)、(220)結晶面に対応した回折ピーク(2θ=60.0°)、(311)結晶面に対応した回折ピーク(2θ=71.7°)が観察された。
 一方、サンプル3,4では、(111)結晶面に対応した回折ピーク(2θ=35.6°)と、その高次回折ピークである(222)結晶面に対応した回折ピーク(2θ=75.5°)とが観察されたものの、それ以外には、(111)結晶面に対応した回折ピークの強度の3%を超える回折ピークは観察されなかった。
 下記の表2に、サンプル1~4における、(111)結晶面に対応した1次回折ピークの強度を100としたときの各結晶面に対応した1次回折ピークの相対強度をまとめる。
Figure JPOXMLDOC01-appb-T000002
 (平均結晶子径の算出)
 上記X線回折測定の結果に基づいて、Hallの式を用いて、サンプル1~4のそれぞれの平均結晶子径を算出した。なお、算出には、(111)結晶面、(200)結晶面、(220)結晶面及び(311)結晶面に関する回折ピークのデータを用いた。結果を、下記の表3に示す。
Figure JPOXMLDOC01-appb-T000003
 上記表3に示す結果から、サンプル1,2では、平均結晶子径が700Å以下、より詳細には、500Å以下である一方、サンプル3,4では、平均結晶子径が700Åより大きく、より詳細には、1000Å以上であった。
 ((111)結晶面の配向性評価)
 次に、サンプル1~4について、図7に示すように、サンプルを回転させながら(111)面の回折ピークが現れる角度を測定した。結果を図8~図11に示す。なお、図8~図11に示すグラフにおいて、横軸は、図7に示す配向角度(α)である。縦軸は強度である。
 また、下記の表4に、配向角度(α)が15°~90°における全領域の強度積分値に対する配向角度(α)が67.5°以上の領域の強度積分値の割合((配向角度(α)が67.5°以上の領域の強度積分値)/(配向角度(α)が15°~90°における全領域の強度積分値))を示す。なお、((配向角度(α)が67.5°以上の領域の強度積分値)/(配向角度(α)が15°~90°における全領域の強度積分値))は、X線回折により観察された(111)結晶面のうち、配向角度が67.5°以上であるものの占める割合に相当する。
Figure JPOXMLDOC01-appb-T000004
 図8及び図9並びに上記表4に示すように、サンプル1,2では、配向角度(α)が67.5°未満の領域にも大きな強度分布が存在し、(111)結晶面のうち、配向角度(α)が67.5°以上であるものの割合が80%未満であった。それに対して、サンプル3,4では、図10及び図11並びに上記表4に示すように、配向角度(α)が67.5°未満の領域には大きな強度分布が存在せず、配向角度(α)が67.5°以上であるものの割合が80%以上であった。
 (ラマン分光解析)
 上記作製のサンプル1~4の表層のラマン分光解析を行った。なお、ラマン分光解析には、532nmの励起波長を用いた。測定結果を図12に示す。
 次に、図12に示す測定結果から、サンプル1~4におけるL0ピークの972cm-1からのシフト量(Δω)と、L0ピークの半値幅(FWHM)とを求めた。結果を図13に示す。
 図13に示すように、サンプル1,2は、Δωの絶対値が4cm-1未満であり、FWHMが7cm-1以上であった。一方、サンプル3,4は、FWHMに関しては、サンプル1,2と同様に7cm-1以上であったが、Δωの絶対値は、4cm-1以上であった。
 (単結晶炭化ケイ素液相エピタキシャル成長膜の成長速度評価)
 上記実施形態において説明した液相エピタキシャル成長方法により、サンプル1~4をフィード基板として用い、下記の条件で単結晶炭化ケイ素エピタキシャル成長膜20を作製した。そして、炭化ケイ素エピタキシャル成長膜20の断面を光学顕微鏡を用いて観察することにより、炭化ケイ素エピタキシャル成長膜20の厚みを測定した。測定された厚みを炭化ケイ素エピタキシャル成長を行った時間で除算することにより、単結晶炭化ケイ素エピタキシャル成長膜20の成長速度を求めた。
 結果を図14及び図15に示す。なお、図14及び図15において、縦軸は、単結晶炭化ケイ素エピタキシャル成長膜20の成長速度であり、横軸はケイ素溶融層13の厚み(L)の逆数(1/L)である。
 図14及び図15に示す結果から、フィード基板11の表層を構成している多結晶炭化ケイ素膜11cが、X線回折により、結晶多形が多結晶3C-SiCに対応した回折ピークとして、(111)結晶面に対応した回折ピークと共に、(111)結晶面に対応した回折ピーク以外の回折ピークが観察されるものであるサンプル1,2を用いた場合は、単結晶炭化ケイ素エピタキシャル成長膜20の成長速度が高かった。一方、フィード基板11の表層を構成している多結晶炭化ケイ素膜11cが、X線回折により、結晶多形が多結晶3C-SiCに対応した回折ピークとして、(111)結晶面に対応した回折ピークのみが観察され、(111)結晶面に対応した回折ピーク以外の回折ピークが観察されなかったサンプル3,4を用いた場合は、単結晶炭化ケイ素エピタキシャル成長膜20の成長速度が低かった。
 (単結晶炭化ケイ素エピタキシャル成長膜20の成長速度の測定条件)
 シード基板:結晶多形が4Hである炭化ケイ素基板
 雰囲気の圧力:10-6~10-4Pa
 雰囲気温度:1900℃
10…容器
11…フィード基板
11a…主面
11b…支持材
11c…多結晶炭化ケイ素膜
12…シード基板
12a…主面
12b…支持材
12c…多結晶炭化ケイ素膜
13…ケイ素溶融層
20…単結晶炭化ケイ素エピタキシャル成長膜

Claims (17)

  1.  単結晶炭化ケイ素のエピタキシャル成長方法に用いられるフィード材であって、
     結晶多形が3Cである多結晶炭化ケイ素を含む表層を有し、
     前記表層のX線回折により、結晶多形が3Cである多結晶炭化ケイ素に対応した回折ピークとして、(111)結晶面に対応した回折ピークと、前記(111)結晶面に対応した回折ピーク以外の回折ピークとが観察される、単結晶炭化ケイ素エピタキシャル成長用フィード材。
  2.  前記(111)結晶面に対応した1次回折ピークは、前記結晶多形が3Cである多結晶炭化ケイ素に対応した1次回折ピークのなかで最も大きな回折強度を有する主回折ピークである、請求項1に記載の単結晶炭化ケイ素エピタキシャル成長用フィード材。
  3.  前記(111)結晶面に対応した回折ピーク以外の回折ピークには、(200)結晶面、(220)結晶面及び(311)結晶面のうちの少なくとも一つに対応した回折ピークが含まれる、請求項1または2に記載の単結晶炭化ケイ素エピタキシャル成長用フィード材。
  4.  前記(111)結晶面に対応した回折ピーク以外の回折ピークには、(200)結晶面、(220)結晶面及び(311)結晶面のそれぞれに対応した回折ピークが含まれる、請求項3に記載の単結晶炭化ケイ素エピタキシャル成長用フィード材。
  5.  前記(111)結晶面に対応した1次回折ピーク以外の1次回折ピークの強度の総和が、すべての1次回折ピークの強度の総和の10%以上である、請求項1~4のいずれか一項に記載の単結晶炭化ケイ素エピタキシャル成長用フィード材。
  6.  前記表層のX線回折により観察される、結晶多形が3Cである多結晶炭化ケイ素に対応した1次回折ピークから算出される平均結晶子径が、700Å以下である、請求項1~5のいずれか一項に記載の単結晶炭化ケイ素エピタキシャル成長用フィード材。
  7.  前記表層のX線回折により、(111)結晶面に対応した1次回折ピークと、(200)結晶面、(220)結晶面及び(311)結晶面の少なくとも一つに対応した1次回折ピークとが観察され、
     前記(111)結晶面に対応した1次回折ピークの強度と、前記(200)結晶面、(220)結晶面及び(311)結晶面の少なくとも一つに対応した1次回折ピークの合計強度との和をIとし、
     前記(200)結晶面、(220)結晶面及び(311)結晶面の少なくとも一つに対応した1次回折ピークの合計強度をIとし、
     前記(200)結晶面、(220)結晶面及び(311)結晶面の少なくとも一つに対応した1次回折ピークから算出される平均結晶子径をDとしたときに、
     (I/I-1・Dが10以下である、請求項6に記載の単結晶炭化ケイ素エピタキシャル成長用フィード材。
  8.  前記表層のX線回折により観察される前記(111)結晶面のうち、配向角度が67.5°以上であるものの占める割合が80%未満である、請求項1~7のいずれか一項に記載の単結晶炭化ケイ素エピタキシャル成長用フィード材。
  9.  前記表層の、励起波長を532nmとするラマン分光解析によって、結晶多形が3Cである多結晶炭化ケイ素に由来のL0ピークが観察され、前記L0ピークの972cm-1からのシフト量の絶対値が4cm-1未満である、請求項1~8のいずれか一項に記載の単結晶炭化ケイ素エピタキシャル成長用フィード材。
  10.  前記L0ピークの半値幅が7cm-1以上である、請求項9に記載の単結晶炭化ケイ素エピタキシャル成長用フィード材。
  11.  前記表層は、結晶多形が3Cである多結晶炭化ケイ素を主成分として含む、請求項1~10のいずれか一項に記載の単結晶炭化ケイ素エピタキシャル成長用フィード材。
  12.  前記表層は、実質的に、結晶多形が3Cである多結晶炭化ケイ素からなる、請求項11に記載の単結晶炭化ケイ素エピタキシャル成長用フィード材。
  13.  支持材と、前記支持材の上に形成されており、前記表層を構成している多結晶炭化ケイ素膜とを備える、請求項1~12のいずれか一項に記載の単結晶炭化ケイ素エピタキシャル成長用フィード材。
  14.  前記多結晶炭化ケイ素膜の厚みは、30μm~800μmの範囲内にある、請求項13に記載の単結晶炭化ケイ素エピタキシャル成長用フィード材。
  15.  結晶多形が3Cである多結晶炭化ケイ素を含む多結晶炭化ケイ素基板により構成されている、請求項1~12のいずれか一項に記載の単結晶炭化ケイ素エピタキシャル成長用フィード材。
  16.  請求項1~15のいずれか一項に記載の単結晶炭化ケイ素エピタキシャル成長用フィード材を用いる、単結晶炭化ケイ素のエピタキシャル成長方法。
  17.  前記フィード材の表層と、炭化ケイ素を含む表層を有するシード材の前記表層とをケイ素溶融層を介して対向させた状態で加熱することにより前記シード材の表層上に単結晶炭化ケイ素をエピタキシャル成長させる、請求項16に記載の単結晶炭化ケイ素のエピタキシャル成長方法。
PCT/JP2011/064877 2010-12-24 2011-06-29 単結晶炭化ケイ素エピタキシャル成長用フィード材及び単結晶炭化ケイ素のエピタキシャル成長方法 WO2012086239A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180062452.7A CN103270203B (zh) 2010-12-24 2011-06-29 单晶碳化硅外延生长用供料件和单晶碳化硅的外延生长方法
KR1020137016234A KR101788905B1 (ko) 2010-12-24 2011-06-29 단결정 탄화규소 에피택셜 성장용 피드재 및 단결정 탄화규소의 에피택셜 성장 방법
EP11851354.8A EP2657377B1 (en) 2010-12-24 2011-06-29 Method for epitaxial growth of monocrystalline silicon carbide
US13/995,722 US9725822B2 (en) 2010-12-24 2011-06-29 Method for epitaxial growth of monocrystalline silicon carbide using a feed material including a surface layer containing a polycrystalline silicon carbide with a 3C crystal polymorph

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010-288478 2010-12-24
JP2010288478A JP5724124B2 (ja) 2010-12-24 2010-12-24 単結晶炭化ケイ素エピタキシャル成長用フィード材及び単結晶炭化ケイ素のエピタキシャル成長方法
JP2010288468A JP5724121B2 (ja) 2010-12-24 2010-12-24 単結晶炭化ケイ素エピタキシャル成長用フィード材及び単結晶炭化ケイ素のエピタキシャル成長方法
JP2010-288471 2010-12-24
JP2010-288474 2010-12-24
JP2010-288468 2010-12-24
JP2010288474A JP5724123B2 (ja) 2010-12-24 2010-12-24 単結晶炭化ケイ素エピタキシャル成長用フィード材及び単結晶炭化ケイ素のエピタキシャル成長方法
JP2010288471A JP5724122B2 (ja) 2010-12-24 2010-12-24 単結晶炭化ケイ素エピタキシャル成長用フィード材及び単結晶炭化ケイ素のエピタキシャル成長方法

Publications (1)

Publication Number Publication Date
WO2012086239A1 true WO2012086239A1 (ja) 2012-06-28

Family

ID=46313526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064877 WO2012086239A1 (ja) 2010-12-24 2011-06-29 単結晶炭化ケイ素エピタキシャル成長用フィード材及び単結晶炭化ケイ素のエピタキシャル成長方法

Country Status (6)

Country Link
US (1) US9725822B2 (ja)
EP (1) EP2657377B1 (ja)
KR (1) KR101788905B1 (ja)
CN (1) CN103270203B (ja)
TW (1) TWI566274B (ja)
WO (1) WO2012086239A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014071420A1 (en) * 2012-11-05 2014-05-08 Nusola Inc. Wide band gap photovoltaic device and process of manufacture
WO2023234159A1 (ja) * 2022-05-30 2023-12-07 株式会社ニューフレアテクノロジー ホルダ及び気相成長装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086238A1 (ja) * 2010-12-24 2012-06-28 東洋炭素株式会社 単結晶炭化ケイ素液相エピタキシャル成長用シード材及び単結晶炭化ケイ素の液相エピタキシャル成長方法
CN108884593B (zh) * 2016-04-05 2021-03-12 株式会社希克斯 多晶SiC基板及其制造方法
KR101866869B1 (ko) * 2016-08-18 2018-06-14 주식회사 티씨케이 SiC 소재 및 SiC 복합 소재
KR102183258B1 (ko) * 2019-04-18 2020-11-26 주식회사 티씨케이 SiC 소재 및 이의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160343A (ja) * 1998-08-27 2000-06-13 Toyo Tanso Kk 耐食性CVD―SiC及び耐食性CVD―SiC被覆材
JP2005097040A (ja) 2003-09-25 2005-04-14 New Industry Research Organization 単結晶炭化ケイ素基板の表面改良方法及びその改良された単結晶炭化ケイ素基板、並びに、単結晶炭化ケイ素成長方法
JP2005132711A (ja) 2003-10-10 2005-05-26 Toyo Tanso Kk 高純度炭素系材料及びセラミックス膜被覆高純度炭素系材料
JP2008230946A (ja) 2007-03-23 2008-10-02 Kwansei Gakuin 単結晶炭化ケイ素の液相エピタキシャル成長方法、単結晶炭化ケイ素基板の製造方法、及び単結晶炭化ケイ素基板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879450A (en) 1997-08-13 1999-03-09 City University Of Hong Kong Method of heteroepitaxial growth of beta silicon carbide on silicon
US6936102B1 (en) 1999-08-02 2005-08-30 Tokyo Electron Limited SiC material, semiconductor processing equipment and method of preparing SiC material therefor
EP1403404A4 (en) * 2001-06-04 2007-08-01 New Ind Res Organization SINGLE CRYSTAL SILICON CARBIDE AND PROCESS FOR PRODUCING THE SAME
US20060249073A1 (en) * 2003-03-10 2006-11-09 The New Industry Research Organization Method of heat treatment and heat treatment apparatus
JP5207427B2 (ja) * 2006-08-03 2013-06-12 学校法人関西学院 単結晶炭化ケイ素の液相生成方法、単結晶炭化ケイ素基板の液相エピタキシャル生成方法、単結晶炭化ケイ素基板の生成方法
JP5360639B2 (ja) 2008-02-05 2013-12-04 学校法人関西学院 表面改質単結晶SiC基板、エピ成長層付き単結晶SiC基板、半導体チップ、単結晶SiC成長用種基板及び単結晶成長層付き多結晶SiC基板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160343A (ja) * 1998-08-27 2000-06-13 Toyo Tanso Kk 耐食性CVD―SiC及び耐食性CVD―SiC被覆材
JP2005097040A (ja) 2003-09-25 2005-04-14 New Industry Research Organization 単結晶炭化ケイ素基板の表面改良方法及びその改良された単結晶炭化ケイ素基板、並びに、単結晶炭化ケイ素成長方法
JP2005132711A (ja) 2003-10-10 2005-05-26 Toyo Tanso Kk 高純度炭素系材料及びセラミックス膜被覆高純度炭素系材料
JP2008230946A (ja) 2007-03-23 2008-10-02 Kwansei Gakuin 単結晶炭化ケイ素の液相エピタキシャル成長方法、単結晶炭化ケイ素基板の製造方法、及び単結晶炭化ケイ素基板

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J. JEONG ET AL.: "Raman scattering studies of polycrystalline 3C-SiC deposited on Si02 and A1N thin films", PHYSICA B, vol. 404, 2009, pages 7 - 10, XP025816154 *
R. J. IWANOWSKI ET AL.: "XPS and XRD study of crystalline 3C-SiC grown by sublimation method", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 286, 1999, pages 143 - 147, XP004182468 *
S. R. NISHITANI ET AL.: "Metastable solvent epitaxy of SiC", JOURNAL OF CRYSTAL GROWTH, vol. 310, 2008, pages 1815 - 1818, XP022587697 *
See also references of EP2657377A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014071420A1 (en) * 2012-11-05 2014-05-08 Nusola Inc. Wide band gap photovoltaic device and process of manufacture
WO2023234159A1 (ja) * 2022-05-30 2023-12-07 株式会社ニューフレアテクノロジー ホルダ及び気相成長装置

Also Published As

Publication number Publication date
US9725822B2 (en) 2017-08-08
KR20130132873A (ko) 2013-12-05
EP2657377B1 (en) 2018-11-21
CN103270203B (zh) 2016-05-25
US20130269596A1 (en) 2013-10-17
EP2657377A1 (en) 2013-10-30
KR101788905B1 (ko) 2017-10-20
TWI566274B (zh) 2017-01-11
TW201227805A (en) 2012-07-01
CN103270203A (zh) 2013-08-28
EP2657377A4 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
WO2012086239A1 (ja) 単結晶炭化ケイ素エピタキシャル成長用フィード材及び単結晶炭化ケイ素のエピタキシャル成長方法
WO2012086238A1 (ja) 単結晶炭化ケイ素液相エピタキシャル成長用シード材及び単結晶炭化ケイ素の液相エピタキシャル成長方法
WO2012086237A1 (ja) 単結晶炭化ケイ素液相エピタキシャル成長用ユニット及び単結晶炭化ケイ素の液相エピタキシャル成長方法
JP5793816B2 (ja) 単結晶炭化ケイ素液相エピタキシャル成長用シード材及び単結晶炭化ケイ素の液相エピタキシャル成長方法
JP5724122B2 (ja) 単結晶炭化ケイ素エピタキシャル成長用フィード材及び単結晶炭化ケイ素のエピタキシャル成長方法
JP5724124B2 (ja) 単結晶炭化ケイ素エピタキシャル成長用フィード材及び単結晶炭化ケイ素のエピタキシャル成長方法
JP5707614B2 (ja) 単結晶炭化ケイ素液相エピタキシャル成長用ユニット及び単結晶炭化ケイ素の液相エピタキシャル成長方法
JP5724123B2 (ja) 単結晶炭化ケイ素エピタキシャル成長用フィード材及び単結晶炭化ケイ素のエピタキシャル成長方法
JP5793814B2 (ja) 単結晶炭化ケイ素液相エピタキシャル成長用シード材及び単結晶炭化ケイ素の液相エピタキシャル成長方法
JP5793815B2 (ja) 単結晶炭化ケイ素液相エピタキシャル成長用シード材及び単結晶炭化ケイ素の液相エピタキシャル成長方法
JP5707613B2 (ja) 単結晶炭化ケイ素液相エピタキシャル成長用ユニット及び単結晶炭化ケイ素の液相エピタキシャル成長方法
JP5644004B2 (ja) 単結晶炭化ケイ素液相エピタキシャル成長用ユニット及び単結晶炭化ケイ素の液相エピタキシャル成長方法
JP5724121B2 (ja) 単結晶炭化ケイ素エピタキシャル成長用フィード材及び単結晶炭化ケイ素のエピタキシャル成長方法
JP5793813B2 (ja) 単結晶炭化ケイ素液相エピタキシャル成長用シード材及び単結晶炭化ケイ素の液相エピタキシャル成長方法
JP5707612B2 (ja) 単結晶炭化ケイ素液相エピタキシャル成長用ユニット及び単結晶炭化ケイ素の液相エピタキシャル成長方法
JP5793817B2 (ja) 単結晶炭化ケイ素液相エピタキシャル成長用シード材及び単結晶炭化ケイ素の液相エピタキシャル成長方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851354

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13995722

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137016234

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011851354

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE