WO2012083674A1 - 一种制革废水处理循环利用装置及其方法 - Google Patents

一种制革废水处理循环利用装置及其方法 Download PDF

Info

Publication number
WO2012083674A1
WO2012083674A1 PCT/CN2011/076759 CN2011076759W WO2012083674A1 WO 2012083674 A1 WO2012083674 A1 WO 2012083674A1 CN 2011076759 W CN2011076759 W CN 2011076759W WO 2012083674 A1 WO2012083674 A1 WO 2012083674A1
Authority
WO
WIPO (PCT)
Prior art keywords
wastewater
tank
filter
outlet
sedimentation
Prior art date
Application number
PCT/CN2011/076759
Other languages
English (en)
French (fr)
Inventor
张世文
Original Assignee
波鹰(厦门)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 波鹰(厦门)科技有限公司 filed Critical 波鹰(厦门)科技有限公司
Priority to US13/992,755 priority Critical patent/US8715509B2/en
Priority to EP11850287.1A priority patent/EP2657197B1/en
Publication of WO2012083674A1 publication Critical patent/WO2012083674A1/zh
Priority to IN1221MUN2013 priority patent/IN2013MN01221A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/463Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/465Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electroflotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/22Nature of the water, waste water, sewage or sludge to be treated from the processing of animals, e.g. poultry, fish, or parts thereof
    • C02F2103/24Nature of the water, waste water, sewage or sludge to be treated from the processing of animals, e.g. poultry, fish, or parts thereof from tanneries
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/46135Voltage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4614Current
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/4615Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/19SO4-S
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/24Separation of coarse particles, e.g. by using sieves or screens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to a tannery wastewater treatment, in particular to a tannery wastewater treatment recycling method based on nano catalytic electrolysis technology and biochemical technology.
  • China's tannery industry discharges more than 100 million tons of wastewater per year to the environment, accounting for about 0.3% of China's total industrial wastewater discharge.
  • the leather industry's output value per 10,000 yuan is the third in the light industry.
  • the wastewater discharged from the tanning industry has problems such as high organic pollution concentration, large suspended matter, large amount of water, and complex wastewater components, including toxic substances such as sulfur and chromium.
  • the tanning industrial wastewater consists of seven parts: raw skin washing water and acid immersion water with high concentration of chloride, strong alkaline depilatory ash wastewater containing lime and sodium sulfide, and blue chrome tanning wastewater containing trivalent chromium. , brown-tanned vegetable waste water containing tannin and gallic acid, degreasing waste water containing fat and saponification, fat-staining wastewater and washing wastewater in each section. Among them, degreasing wastewater, hair removal ash wastewater, and chrome tanning wastewater are the most serious.
  • Degreasing wastewater China's pig skin production accounts for 80% of the leather production. In the degreasing wastewater produced by pig skin, the oil content is up to 10,000 (mg/L) and COD Cr 20000 (mg/L). Grease wastewater accounts for 4% of total wastewater, but the oxygen consumption of oil wastewater accounts for 30% to 40% of the total load.
  • Hair removal ash wastewater is a source of sulfide pollution. Waste water COD Cr 20000 ⁇ 40000 (mg / L), BOD 5 4000 (mg / L), sodium sulfide 1200 ⁇ 1500 (mg / L), pH 12, hair removal ash wastewater accounted for 10% of total wastewater, and oxygen consumption The load accounts for 40% of the total load.
  • chrome-tantalum wastewater is a source of trivalent chromium.
  • the adhesion rate of the chromium salt is 60% to 70%, that is, 30% to 40% of the chromium salt enters the wastewater.
  • the traditional tannery wastewater treatment technology collects and mixes wastewater from various processes. It is included in the sewage treatment system together, but because the wastewater contains a large amount of sulfides and chromium ions, it is easy to inhibit microorganisms. Therefore, it is more reasonable at present that 'separate treatment of raw liquid and comprehensive treatment of integrated wastewater'
  • the process route separates the degreasing wastewater, the liming depilatory wastewater, and the chrome tanning wastewater separately and recovers valuable resources, and then mixes them with other wastewaters.
  • tanning comprehensive wastewater After the wastewater from the tannery is concentrated, it is called tanning comprehensive wastewater.
  • the content of organic matter and the content of sulfide and chromium in the tannery wastewater is high, and the oxygen consumption is large.
  • the pollution of the wastewater is very serious, mainly in the following Aspects:
  • Chromaticity The color of leather wastewater is relatively large, mainly caused by vegetable tannins, dyeing, chrome tanning and ash alkali waste liquid;
  • the leather wastewater is generally alkaline, and the pH of the integrated wastewater is 8-12. Between.
  • the alkalinity is mainly derived from lime, caustic soda and sodium sulfide used in processes such as depilation;
  • Sulfide The sulfide in the tannery wastewater mainly comes from the ash-alkali hair removal waste liquid, and a small part comes from the sulphide-assisted soft water effluent waste liquid and protein decomposition products.
  • the sulfur-containing waste liquid is liable to generate H 2 S gas in case of acid, and the sulfur-containing sludge also releases H 2 S gas under anaerobic conditions;
  • Chromium ion The chromium ion in the tannery wastewater mainly exists in the form of Cr 3+ , and the content is generally in the range of 100 to 3000 mg/L. Usually, it is first neutralized and precipitated, filtered and then remitted into the integrated wastewater pool;
  • Organic pollutants The content of organic substances such as protein in tannery wastewater is high, and it contains a certain amount of reducing substances, so BOD 5 and COD Cr are very high.
  • Tanning process waste water discharged each section differ greatly, synthetic wastewater effluent pH after collection of each discharge station between 8 and 12, color, COD Cr, SS, BOD 5 concentration are very high, toxic, harmful The concentration of substances and salts is also very high. See Table 1 for the comprehensive wastewater quality (test average) of the tanning industry.
  • the unit is mg/L except pH and chromaticity.
  • the methods used for the treatment of tannery wastewater mainly include: coagulation sedimentation method, adsorption method, advanced oxidation technology, direct circulation back usage, air floatation method, acid absorption method, catalytic oxidation method, biochemical method, etc., each method All have various advantages and disadvantages. Since a single treatment method is difficult to achieve, in practice, several methods are usually used in combination according to the actual conditions of the wastewater to be treated. Huang Zhenxiong introduced a tannery in Guangdong to use a flocculation sedimentation + activated sludge process + contact oxidation process to treat tannery wastewater. Since it was put into operation in December 2003, the treatment effect is stable.
  • the effluent COD Cr is about 100 mg/L, which is far below the national standard (COD Cr ⁇ 300 mg/L).
  • the operating cost is 0.8 yuan / ton.
  • the operation results show that the SBR process is used to treat the tannery wastewater, which has good adaptability to water quality changes and strong impact resistance. It is especially suitable for the relatively concentrated discharge of tannery wastewater and the change of water quality. Moreover, the SBR process investment is relatively low, and the operating cost is lower than that of the general activated sludge process.
  • Jia Qiuping used the vortex air flotation + two-stage contact oxidation process to transform the wastewater treatment facilities of a tannery in Shenyang, which not only enabled the treated wastewater to meet the discharge requirements, but also improved the treatment capacity and effect, and recovered 80. More than % of Cr 3+ makes the treated wastewater partially reused.
  • the influent COD was 3647 mg/L
  • the concentration of COD Cr in the effluent was 77 mg/L after the treatment, which was lower than the new standard of DB21-60-89 in Liaoning province (COD Cr ⁇ 100 mg/ L).
  • Yang Jianjun and Gao Zhongbai introduced the physicochemical + oxidation ditch process in the tannery camp of Xinji City.
  • the original jet aeration sewage treatment system was reformed and increased.
  • the amount of treated water increased to 4800 m 3 /d.
  • the influent COD Cr is about 6100 mg / L of wastewater for effective treatment.
  • the actual operation shows that the treatment efficiency of the transformation process is high, and the effluent water quality meets the national secondary standard of Integrated Wastewater Discharge Standard.
  • Tao Ruzhen introduced that a certain leather industry zone in Zhejiang uses coagulation sedimentation + hydrolysis acidification + CAST process to treat the comprehensive wastewater from preparation, tanning and other wet processing sections.
  • the maximum influent flow rate is designed to be 6000 m 3 /d.
  • the biochemical treatment uses a combination of anaerobic and aerobic processes, and the facultative oxygenation uses a contact hydrolysis acidification process to improve the biodegradability of the wastewater while removing some of the COD Cr and SS. Aerobic uses the CAST process as a modified SBR process with high organic removal rate and strong impact load resistance.
  • Sun Yabing et al. disclosed a method for electrolytically treating tannery wastewater in Chinese patent CN100371268C.
  • the treated wastewater has a COD Cr removal rate of 60% to 80%, an ammonia nitrogen removal rate of 50% to 70%, and a sulfide removal rate of 95%. More than %, the suspended matter removal rate is 70% to 80%, the chroma removal rate is over 85%, and the killing rate against Escherichia coli is over 99%. However, this method has a large amount of anode consumption and high energy consumption.
  • the existing methods not only have large material consumption, large sludge discharge, but also fail to meet the water reuse standards in industrial wastewater after wastewater treatment, waste water discharge, large waste of water resources, high cost, and complicated operation. It is easy to bring about a series of problems such as secondary pollution and difficult application. Therefore, there is an urgent need for a new wastewater treatment that consumes less raw materials, has a small amount of sludge discharge, can be reused after treatment of wastewater, and has low cost and easy operation.
  • the method is beneficial to reduce the material consumption of the unit product in the leather production, save fresh water resources and protect the environment.
  • the object of the invention is that the existing tannery wastewater has a large consumption of chemical agents, a large amount of sludge discharge, a standard of reuse of industrial wastewater after wastewater treatment, a large amount of waste water discharge, a large waste of water resources, a high cost, and complicated operation. And it is easy to bring secondary pollution and other disadvantages, and provides a tannery wastewater treatment based on catalytic electrolysis and biochemical technology with high COD Cr removal rate, less chemical consumption, less sludge generation, more thorough treatment, and high water reuse rate. Recycling device and method therefor.
  • the tannery wastewater according to the present invention refers to a mixed wastewater discharged from various sections, which is called comprehensive wastewater.
  • the tannery wastewater treatment recycling device of the invention is provided Coarse grid filter, conditioning tank, hydraulic screen, desulfurization reaction tank, nano catalytic electrolysis machine, flocculation reaction tank, sedimentation tank, air flotation device, biochemical pool, secondary sedimentation tank, secondary nano catalytic electrolysis machine, filter and pressure Filter machine;
  • the waste water inlet of the coarse grid filter is externally connected to the integrated wastewater source.
  • the filtered waste water outlet of the coarse grid filter is connected to the inlet of the regulating tank.
  • the inlet of the hydraulic screen is connected to the wastewater outlet of the regulating tank, and the inlet of the desulfurization reaction tank is connected to the hydraulic power.
  • the outlet of the sieve, the sedimentation outlet of the desulfurization reaction tank is connected to the filter press through the pipeline and the pump, the inlet of the nano catalytic electrolysis machine is connected to the waste water outlet of the desulfurization reaction tank, the outlet of the nano catalytic electrolysis machine is connected to the inlet of the reaction tank, and the outlet of the reaction tank is connected.
  • the inlet of the sedimentation tank, the sedimentation outlet of the sedimentation tank is connected to the filter press through the pipeline and the pump, the waste water outlet of the sedimentation tank is connected to the inlet of the air flotation device, the slag outlet of the air flotation device is connected to the filter press through the pipeline and the pump, and the air flotation device
  • the waste water outlet is pumped to the biochemical pool, and the outlet of the biochemical tank is connected to the inlet of the second settling tank.
  • the waste water outlet is connected to the inlet of the secondary nano catalytic electrolyzer, and the sinking of the second settling tank
  • the outlet of the lake is connected to the filter press through the pipeline and the pump.
  • the waste water outlet of the secondary nano catalytic electrolysis machine is connected to the inlet of the filter.
  • the outlet of the filter is connected back to the water pool, and the filtrate outlet of the filter press is connected to the biochemical tank inlet.
  • the filter residue is connected to the sludge tank via a conveyor belt.
  • the slag outlet of the air flotation device may be disposed at an upper portion of the air flotation device, and the waste water outlet of the air flotation device may be disposed at a lower portion of the air flotation device; the biochemical treatment waste water outlet of the second settling tank may be disposed at an upper portion of the second settling tank The sedimentation outlet of the secondary settling tank may be disposed at the bottom of the secondary settling tank.
  • the anode of the nano catalytic electrolysis machine can be made of titanium as a substrate and the surface thereof is covered with crystal grains of 15 to 32 nm.
  • An inert electrode of the nano catalytic coating, the cathode of the nano catalytic electrolysis machine may be a cathode such as iron, aluminum, stainless steel or zinc.
  • the method for recycling the tannery wastewater according to the present invention comprises the following steps:
  • the tanning integrated wastewater enters the coarse grid filter to filter, removes the large granular solids and then flows into the regulating tank to mix. Then, the wastewater in the regulating tank is pumped into the hydraulic sieve to filter the hair and other impurities, then flows into the desulfurization reaction tank, and the ferrous sulfate solution is added. Desulfurization, separation into iron sulfide sludge and desulfurization wastewater;
  • the desulfurization may be first The equivalent concentration of negative divalent sulfur in the wastewater is measured, and then the ferrous sulfate solution is added in an amount of 1:1.1, desulfurized, and separated into iron sulfide sludge and desulfurization wastewater.
  • the working voltage of the electrolysis may be 2 to 500V, the voltage between the two electrodes may be 2 to 8 V, and the electrolytic density may be 10 to 300 mA/cm 2 to keep the wastewater in the nano catalytic electrolysis machine.
  • the residence time can be 5 to 15 minutes.
  • the wastewater after electrolytic treatment of the nano catalytic electrolysis machine flows into the reaction tank, and the prepared flocculant, coagulant and air flotation agent are added to the reaction tank, and the flocculation reaction is carried out, and then enters into the sedimentation tank for separation, and the sedimentation in the lower part of the sedimentation tank is passed through the pipeline pump.
  • the filter is separated into filtrate and sludge by filtration, and the wastewater from the sedimentation tank flows into the air flotation device for air flotation separation.
  • the slag separated from the upper part of the air flotation device is pumped into the filter press to be separated into filtrate and sludge, and the filtrate flows through the pipeline.
  • the biochemical pool and the waste water in the lower part of the air flotation device are pumped into the biochemical pool;
  • the flocculating agent may be ferrous sulfate, ferric sulfate, polyferric iron, aluminum sulfate, aluminum chloride, polyaluminum, One of ferric chloride, polyferric sulfate, and the like, and the coagulant may be lime or polyacrylamide (PAM) or the like, and the air flotation agent may be polyacrylamide (PAM) or the like.
  • the biochemical treatment wastewater flowing out from the upper part of the second settling tank is sent to the secondary nano catalytic electrolysis machine for electrolysis;
  • the working voltage of the electrolysis may be 2 to 400 V
  • the voltage between the two electrodes may be 2 to 8 V
  • the current density may be 10 to 300 mA/cm 2
  • the residence time of the wastewater in the electrolysis machine may be It is 2 to 6 minutes.
  • the waste water obtained by electrolysis of the secondary catalytic electrolysis machine is filtered through a filter to remove solid impurities and returned to water;
  • the filter may be a sand filter, a multi-media filter or a microfiltration membrane system or the like.
  • the filtered water is a colorless or nearly colorless liquid with a chroma of less than 3, a COD Cr of less than 50 mg/L, an ammonia nitrogen of less than 1 mg/L, a SS of no detectable, a turbidity of less than 3, and a water reuse rate of greater than 95.
  • % can be used as production water for production processes such as washing and liming.
  • the invention is a design of a wastewater treatment and purification recycling process which is completed after in-depth systematic comparative study on the composition, properties and existing treatment schemes of the existing tannery wastewater.
  • the present invention Compared with the existing flocculation + biochemical method, the present invention has the following outstanding advantages:
  • Waste water treated 95% It can be recycled, which not only reduces wastewater discharge, avoids environmental pollution of wastewater, but also reduces water waste, and can also produce certain economic benefits.
  • the present invention Compared with the existing electrolysis method, the present invention has the following outstanding advantages:
  • the crystal grains are 15 ⁇ 32nm.
  • the inert electrode of the nano catalytic coating is used as an anode, the anode is not consumed, the cost is low, and the electrical efficiency is high;
  • Fig. 1 is a schematic view showing the structural composition of a tannery wastewater treatment recycling device according to the present invention.
  • the embodiment of the tannery wastewater treatment recycling device of the present invention is provided with a coarse grid filter 1, a regulating tank 2, a hydraulic screen 3, a desulfurization reaction tank 4, a nano catalytic electrolysis machine 5, a flocculation reaction tank 6, The sedimentation tank 7, the air flotation device 8, the biochemical pool 9, the secondary sedimentation tank 10, the secondary nano catalytic electrolysis machine 11, the filter 12, and the filter press 13.
  • the wastewater inlet of the coarse grid filter 1 is externally connected to the integrated wastewater source, the filtered wastewater outlet of the coarse grid filter 1 is connected to the inlet of the conditioning tank 2, the inlet of the hydraulic screen 3 is connected to the wastewater outlet of the conditioning tank 2, and the inlet of the desulfurization reaction tank 4 Connected to the outlet of the water screen 3, the sedimentation outlet of the desulfurization reaction tank 4 is connected to the filter press 13 through the pipeline and the pump, and the inlet of the nano catalytic electrolysis machine 5 is connected to the waste water outlet of the desulfurization reaction tank 4, and the flocculation reaction of the outlet of the nano catalytic electrolysis machine 5
  • the inlet of the pool 6, the outlet of the flocculation reaction tank 6 is connected to the inlet of the sedimentation tank 7, the sedimentation outlet of the sedimentation tank 7 is connected to the filter press 13 through a pipeline and a pump, and the waste water outlet of the sedimentation tank 7 is connected to the inlet of the air flotation device 8, air flotation
  • the waste water outlet at the lower part of the air floatation device 8 is pumped to the biochemical pool 9.
  • the outlet of the biochemical pool 9 is connected to the inlet of the secondary settling tank 10, and the upper part of the secondary settling tank 10
  • the wastewater outlet is connected to the inlet of the secondary nano catalytic electrolysis machine 11
  • the sediment outlet at the bottom of the secondary sedimentation tank 10 is connected to the filter press 13 through the pipeline and the pump
  • the waste water outlet of the secondary nano catalytic electrolysis machine 11 is connected to the inlet of the filter 12.
  • the outlet of the filter 12 is connected to the reclaimed water storage
  • the pool, the filtrate outlet of the filter press 13 is connected to the inlet of the biochemical tank 9 through a pipeline and a pump, and the filtrate outlet is connected to the sludge tank via a conveyor belt.
  • Tannery wastewater enters the coarse grid filter 1 Filters to remove large particles of solids and then flows into the conditioning tank 2 Mix, then adjust the tank 2
  • the wastewater is pumped into the hydraulic screen. 3 After filtering and removing impurities such as hair, it flows into the desulfurization reaction tank. 4, the on-line determination of the equivalent concentration of divalent sulfur ions, according to the equivalent concentration of 1: 1.1
  • the amount of ferrous sulfate solution is added to desulfurization at room temperature, and the divalent sulfur ion reacts with divalent iron ions to form a ferrous sulfide precipitate, which is separated into iron sulfide sludge and desulfurization wastewater.
  • the working voltage of electrolysis is 2 to 500V
  • the voltage between the two electrodes is 2 to 8 V
  • the electrolytic density is 10 to 300 mA/cm 2
  • the residence time in the nano-catalytic electrolysis machine is 5 to 15 minutes, and the electricity consumption of the electrolysis of the wastewater is controlled to be 0.8 to 1.2 degrees/m 3 .
  • the waste water flows into the flocculation reaction tank 6 to the reaction tank 6
  • the prepared flocculant ferrous sulfate solution, coagulant lime, air flotation agent polyacrylamide (PAM), etc. are added to the sedimentation tank 7 for separation.
  • Sedimentation tank 7 The lower sediment is pumped into the filter press and separated into filtrate and sludge through the pipeline; the sedimentation tank 7 upper waste water flows into the air flotation device 8 for air flotation separation, air flotation device 8
  • the slag separated from the upper part is pumped into a filter press to be separated into filtrate and sludge, and the filtrate flows into the biochemical tank 9 through the pipeline; the waste water in the lower part of the air flotation device 8 is pumped into the biochemical tank 9.
  • the waste water in the lower part of the flotation device 8 which has been flocculated in step 3 is pumped into the biochemical tank 9, treated by a method of aerobic or anaerobic + aerobic, and then separated by the second settling tank 10, and the upper part of the second settling tank 10 is discharged.
  • the sediment at the bottom of the secondary sedimentation tank 10 is pumped into a filter press to be separated into filtrate and sludge, and the filtrate flows into the biochemical pool 9 through the pipeline.
  • the biochemical treatment wastewater obtained from the sedimentation of the secondary sedimentation tank has a chromaticity of 60 to 200, a COD Cr of 50 to 100 mg / L, and an ammonia nitrogen of 0 to 30 mg / L.
  • the biochemical treatment wastewater flowing out from the upper part of the secondary settling tank 10 is sent to the secondary nano catalytic electrolysis machine 11 for electrolysis.
  • the working voltage of the electrolysis is 2 to 400 V
  • the optimum working voltage is 13 to 200 V
  • the voltage between the two electrodes is 2 to 8 V.
  • the optimum voltage between the two poles is 3 ⁇ 5V
  • the current density is 10 ⁇ 300mA / cm 2
  • the optimal current density is 150 ⁇ 230mA / cm 2
  • the residence time of wastewater in the electrolysis machine is 2 ⁇ 6min
  • the optimal residence time For 3 to 4 minutes
  • the degree of electrolysis is 0.8 to 1.0 degrees / m 3 .
  • the wastewater obtained by electrolysis of the secondary catalytic electrolysis machine 11 is filtered through a filter 12 to remove solid impurities.
  • the filter 12 is one of a sand filter, a multi-media filter, or a microfiltration membrane system.
  • the wastewater obtained by the secondary catalytic electrolysis is filtered through a filter 12 to obtain recycled water for recycling, and the obtained recycled water is a colorless or nearly colorless liquid, the chroma is less than 3, the COD Cr is less than 50 mg / L, and the ammonia nitrogen Less than 1 mg / L, SS should not be detected, the turbidity is less than 3, and the wastewater reuse rate is greater than 95%.
  • the following is an example of a tannery wastewater treatment recycling device based on catalytic electrolysis and biochemical technology shown in FIG.
  • Serial number project unit measured value Serial number project unit measured value 1 COD Cr Mg/ L 3560 6 S 2- Mg/ L 82 2 SS Mg/ L 3110 7 Chroma 3200 3 NH 3 -N Mg/ L 265 8 pH 9.3 4 Cr Mg/ L 120 9 Conductivity ⁇ S/cm 3200 5 BOD5 Mg/ L 1730 10 Sodium chloride ⁇ twenty three
  • the wastewater enters the coarse grid filter through water at a flow rate of 15 m 3 /h. 1 Filter to remove large particles of solids and then flow into the conditioning tank 2 to mix, and then pump the wastewater from the conditioning tank 2 to the hydraulic screen at a flow rate of 15 m 3 /h. 3 After filtering and removing impurities such as hair, it flows into the desulfurization reaction tank 4, and measures the equivalent concentration of divalent sulfur ions on-line.
  • the ferrous sulfate solution is added in an amount of 1:1.1 of the equivalent concentration, and the desulfurization reaction is carried out at normal temperature, and the desulfurized wastewater flows in.
  • the nano catalytic electrolysis machine 5 electrolysis the working voltage of the nano catalytic electrolysis is 48V, the current intensity is 375A, the voltage between the two poles is 4.2 V, and the nascent chlorine [Cl] generated by the nano catalytic microelectrolysis kills microorganisms in the wastewater, Oxidative decomposition of organic matter in wastewater, and the suspension, colloid and charged particles in the wastewater form larger particles under the action of an electric field.
  • the electrolyzed wastewater is subjected to flocculation reaction tank 6, adding lime, ferrous sulfate and polyacrylamide, and then entering the sedimentation tank 7 after coagulation reaction, and the lower sediment of the sedimentation tank 7 is pumped into the filter press to be separated into filtrate and sludge.
  • the upper part of the sedimentation tank 7 flows into the air flotation device 8 for air flotation separation, and the slag separated from the upper part of the air flotation device 8 is pumped into the filter press to be separated into filtrate and sludge; the waste water in the lower part of the air flotation device 8 is pumped into the biochemical pool. 9 in.
  • the upper part of the secondary sedimentation tank 10 flows out of the biochemical treatment wastewater, and the sediment at the bottom of the secondary sedimentation tank 10 is pumped into the filter press to be separated into filtrate and sewage. mud.
  • the color of the biochemical treatment wastewater obtained from the sedimentation of the secondary sedimentation tank was 80, the COD Cr was 85 mg/L, and the ammonia nitrogen was 2.7 mg/L.
  • the biochemical treatment wastewater flowing out from the upper part of the secondary sedimentation tank 10 is sent to the secondary nano catalytic electrolysis machine for electrolysis.
  • the electrolysis has a working voltage of 40 V, a current of 375 A, and a residence time of the wastewater in the electrolysis machine of 4 min.
  • the wastewater obtained by electrolysis machine 11 was filtered through a multi-media filter 12 to obtain water with a color of 1, COD Cr of 37 mg/L, ammonia nitrogen of 0 mg/L, SS was not detected, and the yield of recycled water was 96. %, the quality of recycled water is shown in Table 2.
  • the wastewater enters the coarse grid filter through water at a flow rate of 150 m 3 /h. 1 After filtration, large solids are removed to flow into the conditioning tank 2, and the wastewater from the conditioning tank 2 is pumped into the hydraulic screen at a flow rate of 150 m 3 /h. 3 After filtering and removing impurities such as hair, it flows into the desulfurization reaction tank 4, and measures the equivalent concentration of divalent sulfur ions on-line.
  • the ferrous sulfate solution is added in an amount of 1:1.1 of the equivalent concentration, and the desulfurization reaction is carried out at normal temperature, and the desulfurized wastewater flows in.
  • the nano catalytic electrolysis machine 5 electrolysis the working voltage of the nano catalytic electrolysis is 380V, the current intensity is 3475A, the voltage between the two poles is 4.2 V, the electrolytic density is 230 mA/cm 2 , and the initial ecological chlorine generated by the nano catalytic microelectrolysis [ Cl] kills microorganisms in wastewater, oxidizes and decomposes organic matter in wastewater, and causes suspended solids, colloids and charged particles in wastewater to form larger particles under the action of electric field.
  • the electrolyzed wastewater is subjected to flocculation reaction tank 6, adding lime, ferrous sulfate and polyacrylamide, and then entering the sedimentation tank 7 after coagulation reaction, and the lower sediment of the sedimentation tank 7 is pumped into the filter press to be separated into filtrate and sludge.
  • the upper part of the sedimentation tank 7 flows into the air flotation device 8 for air flotation separation, and the slag separated from the upper part of the air flotation device 8 is pumped into the filter press to be separated into filtrate and sludge; the waste water in the lower part of the air flotation device 8 is pumped into the biochemical pool. 9 in.
  • biochemical treatment wastewater obtained from the sedimentation of the secondary sedimentation tank has a color of 85, a COD Cr of 75 mg/L and an ammonia nitrogen of 1.5 mg / L.
  • the biochemical treatment wastewater from the upper part of the secondary sedimentation tank 10 is sent to the secondary nano catalytic electrolysis machine 11 for electrolysis.
  • the working voltage of electrolysis is 380V, the current is 3670A, and the residence time of the wastewater in the electrolysis machine is 3min.
  • the wastewater obtained by electrolysis of the electrolysis machine 11 was filtered through a multi-media filter 12 to obtain a wastewater having an chromaticity of 8, a COD Cr of 42 mg / L, an ammonia nitrogen of 0.9 mg / L and an SS of 1 mg / L.
  • the wastewater obtained by electrolysis machine 11 is filtered through multi-media filter 12 to obtain water.
  • the sensory index is colorless liquid, COD Cr is 33mg/L, ammonia nitrogen is 0mg/L, SS is not detected, and water is returned.
  • the rate is 95%, and the quality of recycled water is shown in Table 4.
  • Tannery wastewater enters the coarse grid filter 1 Filters to remove large particles of solids and then flows into the conditioning tank 2 Mix, then adjust the tank 2
  • the wastewater is pumped into the hydraulic screen. 3 After filtering and removing impurities such as hair, it flows into the desulfurization reaction tank. 4, the on-line determination of the equivalent concentration of divalent sulfur ions, according to the equivalent concentration of 1: 1.1
  • the amount of ferrous sulfate solution is added to desulfurization at room temperature, and the divalent sulfur ion reacts with divalent iron ions to form a ferrous sulfide precipitate, which is separated into iron sulfide sludge and desulfurization wastewater.
  • Tannery wastewater nanocatalytic electrolytic synthesis strong oxidizing substance produced oxidative decomposition of organic matter in the wastewater; OH electrolytically produced - with a number of metal ions (e.g., Fe 3+) precipitation, these small particles precipitated from coagulant
  • the function is to promote the aggregation and sedimentation of the suspended matter in the solution; at the same time, the waste water is destabilized under the action of the electric field, and the colloidal flocculation and sedimentation dissolved in the water is reduced, and the dosage of the flocculating agent, the coagulant and the air flotation agent is reduced in the step 2 flocculation process. .
  • the flocculating agent may be ferrous sulfate, ferric sulfate, polyferric iron, aluminum sulfate, aluminum chloride, polyaluminum or the like, and the coagulant may be lime or polyacrylamide ( PAM), etc., the air floatation agent may be a polyacrylamide (PAM) or the like.
  • the nano-catalytic electrolysis is an electrode with titanium as a substrate and an oxide coating having a good catalytic effect on a surface of 15 to 32 nm, and an anode, titanium, stainless steel, aluminum, zinc, copper and graphite as a cathode.
  • the tannery waste water is filtered by a grid filter and dehydrated by a hydrofilament and then passed through a catalytic electrolysis machine with a working voltage of 2 to 500 V, a voltage between the two electrodes of 2 to 8 V, and an electrolytic density of 10 to 260 mA/cm 2 to maintain the wastewater.
  • the electrolysis time is 5 to 15 minutes, and the degree of electrolysis of the wastewater is controlled to be 0.8 to 1.2 degrees/m 3 .
  • nano catalytic electrolysis has the following effects:
  • OH produced during electrolysis - precipitation can settle some heavy metal ions (e.g., Fe 3+), these small particles can act as precipitation coagulant promote aggregation of suspended matter in the solution to settle.
  • the electric field can rapidly destroy the colloidal structure in the water body, causing it to destabilize and flocculate and sediment, greatly reducing the amount of flocculating agent, coagulant and air flotation agent added in the flocculation process;
  • the strong oxidizing free radicals produced by the electrolysis process can rapidly degrade the molecular structure of the leather dye in the wastewater and reduce the influence of the colored substances on the water color chromaticity;
  • nascent chlorine a large number of free radicals with strong oxidizing properties, such as nascent chlorine, can quickly kill microorganisms and viruses such as bacteria in the wastewater, and have strong sterilization and disinfection effects;
  • the hydrogen produced by the cathode can form a large number of tiny bubbles. As the gas rises, it will bring out a large amount of solid suspended matter and oil, and achieve the effect of solid-liquid separation through air flotation, thereby further reducing COD Cr , chromaticity, and Turbidity, etc.
  • the working voltage between the two poles during electrolysis is related to the distance between the two poles.
  • the catalytic electrolysis described in step 2 has the following advantages:
  • step 2 The flocculation agent, the coagulant and the air flotation agent are added to the comprehensive wastewater after the catalytic electrolysis treatment, and after flocculation reaction, the air floats to remove impurities.
  • flocculation is the addition of a flocculating agent, a coagulant and an air flotation agent to the tanning integrated wastewater after catalytic electrolysis;
  • the flocculating agent is one of ferrous sulfate, ferric sulfate, ferric chloride, and polyferric sulfate.
  • the coagulant is polyacrylamide or the like;
  • the air floatation agent is a polyacrylamide (PAM) or the like.
  • the wastewater that has been subjected to the flocculation treatment in step 3 is subjected to aerobic or anaerobic treatment.
  • a method of aerobic treatment and then separated by sedimentation in a secondary settling tank to obtain a wastewater after biochemical treatment.
  • the biochemical treatment wastewater obtained by biochemical treatment and sedimentation by the secondary sedimentation tank has a chromaticity of 80 to 200, a COD Cr of 50 to 100 mg/L, and an ammonia nitrogen of 0 to 30 mg/L.
  • the treated wastewater obtained by the biochemical treatment in step 4 is subjected to secondary catalytic electrolysis to remove colored substances and oxidative decomposition of organic matter in the wastewater, thereby further reducing COD Cr in the wastewater.
  • the secondary catalytic electrolysis as described above is that the wastewater obtained by the biochemical treatment in step 3 flows into the secondary settling tank, and after being precipitated, the catalytic electrolysis machine with a working voltage of 2 to 400 V and a voltage between the two poles of 2 to 8 V is subjected to catalytic electrolysis.
  • the density is 10 to 300 mA/cm 2
  • the electrolysis time of the wastewater is 2 to 6 minutes
  • the degree of electrolysis is 0.8 to 1.0 degrees/m 3 .
  • the optimum working voltage for electrolysis is 13 to 200V
  • the optimum voltage between the two electrodes is 3 to 5V
  • the optimum current density is 150 to 230mA/cm 2 .
  • the strong oxidizing substances generated by electrolysis oxidize and decompose organic matter in the wastewater to make the wastewater
  • the dye in the oxidative decomposition decolorizes and reduces COD Cr , kills bacteria and other microorganisms in the wastewater, and at the same time, under the action of an electric field, the wastewater is destabilized and flocculation occurs.
  • Step 6 Filtration The wastewater obtained by the second catalytic electrolysis in step 5 is filtered to remove solid impurities.
  • the filtration described in the step 6 is one of sand filtration, multi-media filtration or microfiltration.
  • the wastewater obtained by the secondary catalytic electrolysis is subjected to sand filtration, multi-media filtration or microfiltration, which is used for recycling of recycled water (recycled water), and the obtained recycled water has a color of less than 3 and a COD Cr of less than 50 mg/L.
  • Ammonia nitrogen is less than 1 mg/L and SS is 0.
  • the present invention consists of the following three parts:
  • the first part includes the desulfurization of step 1, the nanocatalytic electrolysis of step 2, and the pretreatment section of flocculation settling of step 3.
  • This part uses coarse grid filtration to remove large particles of impurities such as fur and residual meat in the wastewater, and then mixes in the adjustment tank. After de-hairing and removing impurities by hydraulic sieve filtration, the ferrous sulfate is metered and desulfurized, and then the nano-catalyzed micro-electrolysis is used to decompose the organic matter.
  • the Cr index is reduced from 3000 to 4000 mg/L to less than 1500 mg/L to ensure long-term stable operation of the biochemical system (Part 2).
  • the second part is the biochemistry of step 4, which removes most of the COD Cr , pigment and ammonia nitrogen in the wastewater by biochemicals, thus ensuring the water quality of the third part.
  • Step 4 Biochemistry includes aerobic treatment alone or a combination of anaerobic and aerobic use, secondary sedimentation and the like.
  • the third part includes the secondary catalytic electrolysis of step 5 and the filtration of step 6.
  • the wastewater treated by the second part is subjected to the secondary catalytic electrolysis of step 5 and the filtration of step 6, and further decolorizes and removes impurities such as solid suspended matter to satisfy the regeneration water for production recycling, which is also referred to as water reuse, and is used again for production.
  • the dosage of the flocculant of the invention is reduced by 1/2 to 4/5, the consumption of chemical agents per unit product is reduced and the cost of the medicament is saved; the discharge of sludge is reduced by 1/2 to 4/5.
  • the wastewater treatment cost is greatly reduced; 95% of the wastewater can be recycled, which not only reduces wastewater discharge, avoids environmental pollution of wastewater, but also reduces water waste, and can also generate certain economic benefits.
  • the invention adopts an inert electrode whose surface is covered with a nano catalytic coating with a good catalytic effect of 15 to 32 nm as an anode, the anode is not consumed, the cost is low, and the electric efficiency is high; for the wastewater COD Cr , Ammonia nitrogen, suspended solids, chroma removal rate is higher, the killing rate of microorganisms is over 99%, most of the treated water can be recycled, the reuse rate is over 95%; the energy consumed by tons of wastewater treatment is greatly reduced Significantly reduce the production water consumption and wastewater discharge per unit of product, significantly reduce water consumption indicators and wastewater discharge indicators; total wastewater discharge and total COD Cr emissions are greatly reduced.

Description

一种制革废水处理循环利用装置及其方法 技术领域
本发明涉及一种制革废水处理,尤其是涉及一种 基于纳米催化电解技术和生化技术的制革废水处理循环利用方法 。
背景技术
据统计,我国制革行业每年向环境排放废水达 10000 万 t 以上,约占我国工业废水排放总量的 0.3% ;皮革工业万元产值排污量在轻工行业居第 3 位,仅次于造纸和酿造行业,可见,制革工业不仅每年消耗大量的淡水资源,同时也排放了大量的废水,对人类健康和整个社会的可持续发展造成了严重威胁。因此应加大制革废水的治理力度,开展制革废水处理和中水回用无论是从节约淡水资源角度还是从环保角度而言都是十分必要的,具有重要的现实意义和战略意义。
制革工业排放的废水存在有机污染浓度高、悬浮物质多、水量大、废水成份复杂等问题,其中含有有毒物质硫与铬。按照生产工艺过程,制革工业废水由七部分组成:高浓度氯化物的原皮洗涤水和酸浸水、含石灰与硫化钠的强碱性脱毛浸灰废水、含三价铬的兰色铬鞣废水、含丹宁与没食子酸的茶褐色植鞣废水、含油脂及其皂化物的脱脂废水、加脂染色废水和各工段冲洗废水。其中,以脱脂废水,脱毛浸灰废水、铬鞣废水污染最为严重。
( 1 )脱脂废水:我国猪皮生产占制革生产的 80 %,在猪皮生产的脱脂废水中,油脂含量高达 10000 ( mg/L ), CODCr20000 ( mg/ L )。油脂废水占总废水 4% ,但油脂废水的耗氧负荷却占到总负荷的 30% ~ 40% 。
( 2 )脱水浸灰废水:脱毛浸灰废水是硫化物的污染源。废水 CODCr20000 ~ 40000 ( mg/L ), BOD54000 ( mg/ L ),硫化钠 1200 ~ 1500 ( mg/ L ), pH 为 12 ,脱毛浸灰废水占总废水的 10% ,而耗氧负荷占总负荷 40% 。
( 3 )铬鞣废水:铬鞣废水是三价铬的污染源。铬鞣过程,铬盐的附着率 60% ~ 70% ,即有 30% ~ 40% 的铬盐进入废水。铬鞣度水 Cr3 + 3000 ~ 4000 ( mg/ L ), CODCr10000 ( mg/ L ), BOD52000mg/ L 。
传统的制革废水处理技术是将各工序废水收集混合 , 一起纳入污水处理系统,但由于废水中含有大量的硫化物和铬离子,极易对微生物产生抑制作用。所以 目前比较合理的是 ' 原液单独处理、综合废水统 一处理 ' 的工艺路线 , 将脱脂废水、浸灰脱毛废水、 铬鞣废水分别进行处理并回收有价值的资源 , 然后与其它废水混合统一处理。
制革厂的各路废水集中后,称为制革综合废水,制革废水中有机物含量及硫化物、铬化物含量高,耗氧量大,其废水的污染情况十分严重,主要表现在以下几个方面:
( 1 )色度:皮革废水色度较大,主要由植鞣、染色、铬鞣和灰碱废液造成;
( 2 )碱性:皮革废水总体上呈碱性,综合废水 pH 值在 8 ~ 12 之间。其碱性主要来自于脱毛等工序用的石灰、烧碱和硫化钠;
( 3 )硫化物:制革废水中的硫化物主要来自于灰碱法脱毛废液,少部分来自于硫化物助软的浸水废液及蛋白质的分解产物。含硫废液遇酸易产生 H2S 气体,含硫污泥在厌氧条件下也会释放出 H2S 气体;
( 4 )铬离子:制革废水中的铬离子主要以 Cr3+ 形态存在,含量一般在 100 ~ 3000mg/ L 。通常是先经过中和沉淀,过滤后汇入综合废水池中;
( 5 )有机污染物:制革废水中蛋白质等有机物含量较高,又含有一定量的还原性物质,所以 BOD5 和 CODCr 很高。
制革过程中各个工段排放的废水水质相差很大,各工段排放的废水汇集后的综合废水 pH 在 8 ~ 12 之间,色度、 CODCr 、 SS 、 BOD5 浓度都很高,有毒、有害物质及盐类的浓度也很高,制革行业综合废水水质(测试平均值)参见表 1 。
表 1
pH 色度(倍) CODCr SS NH3-N S2- Cr BOD5
8~12 500~3500 3000~4000 2000~4000 250~300 50~100 100~3000 1500~2000
注:单位除 pH、色度外其余均为 mg/ L
目前,用于制革废水治理的方法主要有:混凝沉淀法、吸附法、高级氧化技术、直接循环回用法、气浮法、加酸吸收法、催化氧化法、生化法等,每种方法都具有各种的优缺点。由于单一的处理方法很难达到效果,在实际运用中,通常是根据要处理废水的实际情况,将几种方法结合使用。黄振雄介绍了广东某皮革厂采用絮凝沉淀 + 活性污泥法 + 接触氧化法组合工艺处理制革废水 , 自 2003 年 12 月投产至今处理效果稳定,进水 CODCr 为 3000 ~ 3500 mg/ L 时,出水 CODCr 约 40 mg/ L ,各项出水指标均 达到广东省地方标准 ( DB44/26-2001 ) 一级标准。张杰等应用序批式活性污泥法 (SBR) 对河南某制革厂的废水进行处理。首先采用物化法除去废水中的大量有毒物质和部分有机物,再经过 SBR 法生化降解可溶性有机物。设计日处理量为 800 m3 , 当进水 CODCr 在 2500 mg/ L 时,出水 CODCr 在 100 mg/ L 左右,远低于国标二级标准 ( CODCr<300 mg/L ), 该工程的运行成本为 0.8 元 / 吨。运行结果表明,用 SBR 工艺处理制革废水,对水质变化的适应性好 , 耐负荷冲击能力强 , 尤其适合制革废水相对集中排放及水质多变的特点。而且, SBR 处理工艺投资较省,运行成本较一般活性污泥法低。贾秋平等采用涡凹气浮 + 二段接触氧化工艺,对沈阳市某制革厂的废水处理设施进行改造,不仅使处理后的废水达到排放要求,提高了处理能力和效果,而且回收了 80% 以上的 Cr3+ , 使处理后的废水部分回用。在进水 COD 3647 mg/ L 时 , 经本工艺处理后,出水 CODCr 浓度为 77 mg/ L , 低于辽宁省《 DB21-60-89 》新扩改二级标准 ( CODCr <100 mg/ L ) 。杨建军、高忠柏介绍了辛集市试炮营制革小区采用物化 + 氧化沟工艺,对原有射流曝气污水处理系统进行改造和增容,改造后的处理水量增至 4800 m3/d ,可对进水 CODCr 为 6100 mg/ L 左右的废水进行有效处理。实际运行表明 , 该改造工艺的处理效率较高,出水水质达到国家《污水综合排放标准》二级标准。陶如钧介绍好浙江某制革工业区采用混凝沉淀 + 水解酸化 +CAST 工艺 , 对来自于准备、鞣制和其它湿加工工段的综合废水进行处理。设计最大进水流量 6000 m3/d ,废水中的硫离子通过预曝气,并在反应池加 FeSO4 和助凝剂 PAC ,从而沉淀去除, Cr3+ 通过在反应池中与 NaOH 发生沉淀反应而去除。生化处理采用兼氧和好氧相结合的工艺 , 兼氧采用接触式水解酸化工艺,可提高废水的可生化性,同时去除部分 CODCr 和 SS 。好氧采用 CAST 工艺为改良 的 SBR 工艺,具有有机物去除率高、抗冲击负荷能力强等特点。孙亚兵等人在中国专利 CN100371268C 公开一种采用电解处理制革废水的方法,处理后的废水 CODCr 去除率达 60% ~ 80% 、氨氮去除率达 50% ~ 70% 、硫化物去除率达 95% 以上、悬浮物去除率达 70% ~ 80% 、色度去除率达 85% 以上,对大肠杆菌的灭杀率达 99% 以上,但是,这一方法存在阳极消耗量多,能耗高。
综上所述,现有的方法不仅存在材料消耗多、污泥排放量大,废水处理后都没有达到工业废水中水回用标准,废水排放多,水资源浪费大,成本高,而且操作复杂,容易带来二次污染、难以推广应用等一系列问题,故急需一种原材料消耗少、污泥排放量小、废水经过处理后能够进行中水回用且成本低、操作简易的新废水处理方法,以利于降低皮革生产中的单位产品物料消耗,节约淡水资源,保护环境。
技术问题
本发明的目的是针对现有的制革废水存在化学药剂消耗多、污泥排放量大、废水处理后达不到工业废水回用标准、废水排放多、水资源浪费大、成本高、操作复杂以及容易带来二次污染等缺点,提供一种 CODCr 去除率高、化学药剂消耗少、产生污泥少、处理比较彻底、水回用率高的 基于催化电解和生化技术的制革废水处理循环利用装置及其方法。
技术解决方案
本发明所述制革废水是指汇集各工段排放的混合废水,称为综合废水。
本发明所述 制革废水处理循环利用装置设有 粗格栅过滤机、调节池、水力筛、脱硫反应池、纳米催化电解机、絮凝反应池、沉淀池、气浮装置、生化池、二沉池、二次纳米催化电解机、过滤器和压滤机;粗格栅过滤机的废水入口外接综合废水源,粗格栅过滤机的过滤废水出口接调节池的入口,水力筛的入口接调节池的废水出口,脱硫反应池的入口接接水力筛的出口,脱硫反应池的沉淀出口经管道和泵接压滤机,纳米催化电解机的入口接脱硫反应池的废水出口,纳米催化电解机的出口接反应池的入口,反应池的出口接沉淀池的入口,沉淀池的沉淀出口经管道和泵接压滤机,沉淀池的废水出口接气浮装置的入口,气浮装置的渣出口经管道和泵接压滤机,气浮装置的废水出口经泵接生化池,生化池的出口接二沉池的入口,二沉池的生化处理后废水出口接二次纳米催化电解机的入口,二沉池的沉淀出口经管道和泵接压滤机,二次纳米催化电解机的废水出口接过滤器的入口,过滤器的出水口接回用水水池,压滤机的滤液出口接生化池入口,压滤机的滤渣经传送带接污泥池。
所述气浮装置的渣出口可设在气浮装置上部,所述气浮装置的废水出口可设在气浮装置下部;所述二沉池的生化处理后废水出口可设在二沉池上部的,所述二沉池的沉淀出口可设在二沉池底部。
所述纳米催化电解机的阳极可为以钛为基板在其表面覆盖有晶粒为 15 ~ 32nm 的纳米催化涂层的惰性电极,所述纳米催化电解机的阴极可为铁、铝、不锈钢或锌等阴极。
本发明所述 制革废水处理循环利用方法 包括如下步骤:
1)脱硫
制革综合废水进入粗格栅过滤机过滤,除去大颗粒固体物后流入调节池混合,再将调节池的废水泵入水力筛过滤脱毛发等杂质后流入脱硫反应池,加入硫酸亚铁溶液,脱硫,分离成硫化铁污泥和脱硫废水;
在步骤 1 ),所述脱硫可先 测定废水中负二价硫的当量浓度,然后按1∶1.1的量加入硫酸亚铁溶液,脱硫,分离成硫化铁污泥和脱硫废水。
2 )纳米催化电解
将经步骤 1 )脱硫处理的废水泵入纳米催化电解机电解;
在步骤 2 )中,所述电解的工作电压可为 2 ~ 500V ,两电极间的电压可为 2 ~ 8 V ,电解密度可为 10 ~ 300mA/cm2 ,保持废水在纳米催化电解机中的停留时间可为 5 ~ 15min 。
3 )絮凝
将经步骤 2 )纳米催化电解机电解处理后的废水流入反应池,向反应池中加入已配制好的絮凝剂、助凝剂和气浮剂,进行絮凝反应后进入沉淀池进行分离,沉淀池下部沉淀经管道泵入压滤机过滤分离成滤液和污泥,沉淀池部废水流入气浮装置进行气浮分离,气浮装置上部分离的渣经管道泵入压滤机过滤分离成滤液和污泥,滤液经管道流入生化池,气浮装置下部的废水泵入生化池中;
在步骤 3 )中,所述絮凝剂可采用硫酸亚铁、硫酸铁、聚铁、硫酸铝、氯化铝、聚铝、 氯化铁、聚合硫酸铁 等中的一种,所述助凝剂可采用石灰或聚丙酰胺( PAM ) 等,所述气浮剂可采用聚丙酰胺( PAM )等。
4 )生化处理
将经过步骤 3 )絮凝的气浮装置下部的废水泵入生化池中,经过好氧或厌氧 + 好氧的处理,再经二沉池沉淀分离,二沉池上部流出生化处理后废水,二沉池底部的沉淀经管道泵入压滤机过滤分离成滤液和污泥,滤液经管道流入生化池,经过生化处理,从二沉池沉淀分离得生化处理废水;
5 )二次催化电解
将二沉池上部流出的生化处理废水送入二次纳米催化电解机电解;
在步骤 5 )中,所述电解的工作电压可为 2 ~ 400V ,两电极间的电压可为 2 ~ 8 V ,电流密度可为 10 ~ 300mA/cm2 ,废水在电解机内的停留时间可为 2 ~ 6min 。
6 )过滤
将二次催化电解机机电解所得废水经过滤器过滤,除去固体杂质得回用水;
在步骤 6 )中,所述过滤器可采用砂滤机、多介质过滤机或微滤膜系统等。
经过过滤处理的水为无色或接近无色的液体,色度小于 3 , CODCr 小于 50mg/ L ,氨氮小于 1mg/ L , SS 不得检出,浊度小于 3 ,水的回用率大于 95% ,可作洗皮、浸灰等生产工序的生产用水。
本发明是在对现有制革废水的成份、性质和现有处理方案进行深入系统的对比研究之后完成的废水处理和净化循环利用工艺的设计。
有益效果
与现有的絮凝 + 生化方法比较,本发明具有以下突出优点:
1 )絮凝剂的用量减少 1/2 ~ 4/5 ,减少单位产品化学药剂的消耗和节约药剂成本;
2 )污泥的排放量减少 1/2 ~ 4/5 ,大幅度减少污泥处理成本;
3 )废水经过处理, 95% 可以再生利用,既减少废水排放,避免废水对环境污染,又减少水资源浪费,还可以产生一定的经济效益。
与现有电解法比较,本发明具有以下突出优点:
1 )采用表面覆盖有 具有良好催化效果 晶粒为 15 ~ 32nm 的纳米催化涂层的惰性电极作阳极,阳极不消耗,成本低,电效率高;
2 )对 废水 CODCr 、氨氮、 悬浮物、色度去除率更高,对微生物的灭杀率达 99% 以上,处理后的水大部分可以循环利用,回用率达 95% 以上;
3 )吨废水处理消耗的电能大幅度减少;
4 )大幅度减少单位产品生产用水量和废水排放量,大幅度降低水消耗指标和废水排放指标;
5 )废水总排放量和总 COD Cr 排放量大幅度减少。
附图说明
图 1 为本发明所述 制革废水处理循环利用 装置的结构组成示意图。
本发明的最佳实施方式
以下实施例将结合附图对本发明作进一步的说明。
参见图1,本发明所述制革废水处理循环利用装置实施例设有粗格栅过滤机1、调节池2、水力筛3、脱硫反应池4、纳米催化电解机5、絮凝反应池6、沉淀池7、气浮装置8、生化池9、二沉池10、二次纳米催化电解机11、过滤器12和压滤机13。粗格栅过滤机1的废水入口外接综合废水源,粗格栅过滤机1的过滤废水出口接调节池2的入口,水力筛3的入口接调节池2的废水出口,脱硫反应池4的入口接水力筛3的出口,脱硫反应池4的沉淀出口经管道和泵接压滤机13,纳米催化电解机5的入口接脱硫反应池4的废水出口,纳米催化电解机5的出口接絮凝反应池6的入口,絮凝反应池6的出口接沉淀池7的入口,沉淀池7的沉淀出口经管道和泵接压滤机13,沉淀池7的废水出口接气浮装置8的入口,气浮装置8上部的渣出口经管道和泵接压滤机13,气浮装置8下部的废水出口经泵接生化池9,生化池9的出口接二沉池10的入口,二沉池10上部的生化处理后废水出口接二次纳米催化电解机11的入口,二沉池10底部的沉淀出口经管道和泵接压滤机13,二次纳米催化电解机11的废水出口接过滤器12的入口,过滤机12的出口接再生水贮水池,压滤机13的滤液出口经管道和泵接生化池9入口,滤渣出口经传送带接污泥池。
本发明的实施方式
以下给出所述 制革废水处理循环利用 方法的具体实施例。
实施例 1
步骤 1 脱硫
制革废水进入粗格栅过滤机 1 过滤除去大颗粒固体物后流入调节池 2 混合,再将调节池 2 的废水泵入水力筛 3 过滤脱毛发等杂质后流入脱硫反应池 4 ,在线测定二价硫离子的的当量浓度,按当量浓度的 1 ∶ 1.1 的量加入硫酸亚铁溶液,在常温反应脱硫,二价硫离子与二价铁离子反应,生成硫化亚铁沉淀,分离成硫化铁污泥和脱硫废水。
步骤 2 纳米催化电解
经过步骤 1 脱硫的废水流入纳米催化电解机 5 电解,电解的工作电压为 2 ~ 500V ,两极间的电压为 2 ~ 8 V ,电解密度为 10 ~ 300mA/cm2 的催化电解机,保持废水在纳米催化电解机中的停留时间为 5 ~ 15min ,废水的电解的用电量控制为 0.8 ~ 1.2 度 / m 3
步骤 3 絮凝
经过步骤 2 纳米催化电解机 5 电解处理后的废水流入絮凝反应池 6 中,向反应池 6 中加入已配制好的絮凝剂硫酸亚铁溶液、助凝剂石灰、气浮剂聚丙酰胺( PAM ) 等,进行絮凝反应后进入沉淀池 7 进行分离。沉淀池 7 下部沉淀经管道泵入压滤机过滤分离成滤液和污泥;沉淀池 7 上部废水流入气浮装置 8 进行气浮分离,气浮装置 8 上部分离的渣经管道泵入压滤机过滤分离成滤液和污泥,滤液经管道流入生化池 9 中;气浮装置 8 下部的废水泵入生化池 9 中。
步骤 4 生化处理
将经过步骤 3 絮凝的气浮装置 8 下部的废水泵入生化池 9 中,经过好氧或厌氧 + 好氧的一种方法处理,再经二沉池 10 沉淀分离,二沉池 10 上部流出生化处理后废水,二沉池 10 底部的沉淀经管道泵入压滤机过滤分离成滤液和污泥,滤液经管道流入生化池 9 中。经过生化处理,从二沉池沉淀分离所得生化处理废水的色度为 60 ~ 200 , CODCr 为 50 ~ 100 ㎎ / L ,氨氮为 0 ~ 30 ㎎ / L 。
步骤 5 二次催化电解
将二沉池 10 上部流出的生化处理废水送入二次纳米催化电解机 11 电解,电解的工作电压为 2 ~ 400V ,最佳工作电压为 13 ~ 200V ,两极间的电压为 2 ~ 8 V ,两极间的最佳电压为 3 ~ 5V ,电流密度为 10 ~ 300mA/cm2 ,最佳电流密度为 150 ~ 230mA/cm2 ,废水在电解机内的停留时间为 2 ~ 6min ,最佳停留时间为 3 ~ 4min ,电解程度为 0.8 ~ 1.0 度 / m 3
步骤 6 过滤
将二次催化电解机 11 电解所得废水经过滤器 12 过滤,除去固体杂质。
所述过滤器 12 为砂滤器、多介质过滤器或微滤膜系统的一种。将二次催化电解所得废水经过过滤器 12 过滤,得用于循环利用的回用水,其所得回用水为无色或接近无色的液体,色度小于 3 , CODCr 小于 50 ㎎ / L ,氨氮小于 1 ㎎ / L , SS 不得检出,浊度小于 3 ,废水回用率大于 95% 。
实施例 2
以下结合图 1 所示的 基于催化电解和生化技术的制革废水处理循环利用 装置实施例,给出 基于催化电解和生化技术的制革废水处理循环利用 方法的实例。
300 吨 / 日制革 废水处理及净化回用工程。
所述的制革废水(综合废水)经测定指标如表 1 所示。
表 1
序号 项目 单位 测定值 序号 项目 单位 测定值
1 CODCr mg/ L 3560 6 S2- mg/ L 82
2 SS mg/ L 3110 7 色度 3200
3 NH3-N mg/ L 265 8 pH 9.3
4 Cr mg/ L 120 9 电导率 µS/cm 3200
5 BOD5 mg/ L 1730 10 氯化钠 23
废水经水按 15 m 3 /h 的流速进入粗格栅过滤机 1 过滤除去大颗粒固体物后流入调节池 2 混合,再将调节池 2 的废水按 15 m 3 /h 的流速泵入水力筛 3 过滤脱毛发等杂质后,流入脱硫反应池 4 ,在线测定二价硫离子的的当量浓度,按当量浓度的 1 ∶ 1.1 的量加入硫酸亚铁溶液,在常温反应脱硫, 经过脱硫的废水流入纳米催化电解机 5 电解,所述纳米催化电解的工作电压为 48V ,电流强度为 375A ,两极间的电压为了 4.2 V ,纳米催化微电解产生的初生态的氯 [Cl] 杀灭废水中微生物、氧化分解废水中的有机物,并使废水中的悬浮物、胶体、带电微粒在电场作用下形成较大颗粒。电解后的废水进行絮凝反应池 6 ,加入石灰、硫酸亚铁和聚丙烯酰胺,进行混凝反应后进入沉淀池 7 ,沉淀池 7 下部沉淀经管道泵入压滤机过滤分离成滤液和污泥;沉淀池 7 上部废水流入气浮装置 8 进行气浮分离,气浮装置 8 上部分离的渣经管道泵入压滤机过滤分离成滤液和污泥;气浮装置 8 下部的废水泵入生化池 9 中。在生化池 9 中经过好氧处理,再进入二沉池 10 沉淀分离,二沉池 10 上部流出生化处理后废水,二沉池 10 底部的沉淀经管道泵入压滤机过滤分离成滤液和污泥。经过生化处理,从二沉池沉淀分离所得生化处理废水的色度为 80 , CODCr 为 85mg/L ,氨氮为 2.7mg/L 。二沉池 10 上部流出的生化处理废水送入二次纳米催化电解机 11 电解,电解的工作电压为 40V ,电流为 375A ,废水在电解机内的停留时间为 4min 。电解机 11 机电解所得废水经多介质过滤器 12 过滤,得回用水,其色度为 1 , CODCr 为 37mg/ L ,氨氮为 0mg/ L , SS 未检出,回用水的得率为 96% ,回用水的质量如表 2 所示。
表 2
序号 项目 单位 测定值 序号 项目 单位 测定值
1 CODCr mg/ L 37 4 色度 1
2 SS mg/ L 0 5 pH 7.7
3 浊度 NTU 2 6 电导率 µS/cm 2100
实施例 3
3000 吨 / 日制革 处理废水回用工程。
所述的制革废水(综合废水)经测定指标如表 3 所示。
表 3
序号 项目 单位 测定值 序号 项目 单位 测定值
1 CODCr mg/ L 3900 6 S2- mg/ L 92
2 SS mg/ L 4070 7 色度 2900
3 NH3-N mg/ L 283 8 pH 9.3
4 Cr mg/ L 93 9 电导率 µS/cm 3766
5 BOD5 mg/ L 1950 10 氯化钠 25
废水经水按 150 m 3 /h 的流速进入粗格栅过滤机 1 过滤除去大颗粒固体物后流入调节池 2 混合,再将调节池 2 的废水按 150 m 3 /h 的流速泵入水力筛 3 过滤脱毛发等杂质后,流入脱硫反应池 4 ,在线测定二价硫离子的的当量浓度,按当量浓度的 1 ∶ 1.1 的量加入硫酸亚铁溶液,在常温反应脱硫, 经过脱硫的废水流入纳米催化电解机 5 电解,所述纳米催化电解的工作电压为 380V ,电流强度为 3475A ,两极间的电压为了 4.2 V ,电解密度为 230mA/cm2 ,纳米催化微电解产生的初生态的氯 [Cl] 杀灭废水中微生物、氧化分解废水中的有机物,并使废水中的悬浮物、胶体、带电微粒在电场作用下形成较大颗粒。电解后的废水进行絮凝反应池 6 ,加入石灰、硫酸亚铁和聚丙烯酰胺,进行混凝反应后进入沉淀池 7 ,沉淀池 7 下部沉淀经管道泵入压滤机过滤分离成滤液和污泥;沉淀池 7 上部废水流入气浮装置 8 进行气浮分离,气浮装置 8 上部分离的渣经管道泵入压滤机过滤分离成滤液和污泥;气浮装置 8 下部的废水泵入生化池 9 中。在生化池 9 中经过厌氧处理后,再经过好氧处理后进入二沉池 10 沉淀分离,二沉池 10 上部流出生化处理后废水,二沉池 10 底部的沉淀经管道泵入压滤机过滤分离成滤液和污泥。经过生化处理,从二沉池沉淀分离所得生化处理废水的色度为 85 , CODCr 为 75mg/L ,氨氮为 1.5 ㎎ /L 。二沉池 10 上部流出的生化处理废水送入二次纳米催化电解机 11 电解,电解的工作电压为 380V ,电流为 3670A ,废水在电解机内的停留时间为 3min 。电解机 11 机电解所得废水经多介质过滤器 12 过滤,得电解后废水,其色度为 8 , CODCr 为 42 ㎎ / L ,氨氮为 0.9 ㎎ / L , SS 为 1 ㎎ / L 。电解机 11 机电解所得废水经多介质过滤器 12 过滤,得回用水,其感观指标为无色液体, CODCr 为 33mg/ L ,氨氮为 0mg/ L , SS 未检出,回用水的得率为 95% ,回用水的质量如表 4 所示。
表 4
序号 项目 单位 测定值 序号 项目 单位 测定值
1 CODCr mg/ L 33 4 色度 无色
2 SS mg/ L 0 5 pH 7.5
3 浊度 NTU 2 6 电导率 µS/cm 2465
实施例 4
制革 处理废水回用工程的具体步骤如下:
步骤 1 脱硫
制革废水进入粗格栅过滤机 1 过滤除去大颗粒固体物后流入调节池 2 混合,再将调节池 2 的废水泵入水力筛 3 过滤脱毛发等杂质后流入脱硫反应池 4 ,在线测定二价硫离子的的当量浓度,按当量浓度的 1 ∶ 1.1 的量加入硫酸亚铁溶液,在常温反应脱硫,二价硫离子与二价铁离子反应,生成硫化亚铁沉淀,分离成硫化铁污泥和脱硫废水。
步骤 2 纳米催化电解
制革综合废水经纳米催化电解,产生的强氧化性物质将废水中有机物氧化分解;电解产生的 OH- 与一些金属离子作用(如 Fe3+ )产生沉淀,这些沉淀小颗粒起助凝剂的作用,促进溶液中的悬浮物质聚集沉降;同时, 在电场作用下使废水脱稳,使其溶解在水中的胶体絮凝沉降,降低步骤 2 絮凝过 程投加絮凝剂 、 助凝剂 和 气浮剂的用量。
所述絮凝剂可采用硫酸亚铁、硫酸铁、聚铁、硫酸铝、氯化铝、聚铝等,所述助凝剂可采用石灰、聚丙酰胺( PAM ) 等,所述气浮剂可采用聚丙酰胺( PAM )等。
所述的纳米催化电解是以钛为基板并在表面涂有具有良好催化效果晶粒为 15 ~ 32nm 的氧化物涂层的电极为阳极,钛、不锈钢、铝、锌、铜、石墨为阴极,将制革废水经过格栅过滤和水力筛脱毛并后的流过工作电压为 2 ~ 500V ,两极间的电压为 2 ~ 8 V ,电解密度为 10 ~ 260mA/cm2 的催化电解机,保持废水的电解时间为 5 ~ 15min ,废水的电解程度控制为 0.8 ~ 1.2 度 / m 3 。电解过程中会产生大量具有强氧化性的自由基(在有氯化钠存在的情况下,产生的是初生态的氯和羟基),它能快速氧化分解废水中的有机物质,使废水中难于生化降解的大有机分子开环、断链、 大分子分解为小分子 ,为生化提供更好的条件;使废水中的染料分子 的发色基团、助色基团氧化或还原为无色基团,达到脱色的目的 ,降低 COD Cr 和提高废水的可生化, 将废水的 BOD5 提高 15% ~ 40% 。
此外, 纳米催化电解还有以下作用:
1 絮凝作用
电解过程中产生的 OH- 可以与一些重金属离子作用(如、 Fe3+ )产生沉淀沉降下来,这些沉淀小颗粒可起助凝剂的作用,促进溶液中的悬浮物质聚集沉降。另外电解过程中,电场可以迅速破坏水体中的胶体结构,使其脱稳絮凝沉降,极大限度降低絮凝工序投加的絮凝剂、助凝剂和气浮剂的用量;
2 脱色作用
电解过程产生的具有强氧化性的自由基可以快速降解废水中制革染料的分子结构,减少有色物质对水质色度的影响;
3 杀菌消毒作用
电解过程中会产生大量具有强氧化性的自由基,如初生态的氯,它能快速杀灭废水中的细菌等微生物和病毒,具有强大的 杀菌消毒作用;
4 气浮效应
阴极产生的氢能形成大量的微小气泡,随着气体的上浮,会带出大量的固体悬浮物和油脂,经过气浮达到固液分离的效果,从而进一步降低废水中的 CODCr 、色度、浊度等。
实践证明,废水的电解时间以 5 ~ 15min 为宜,时间过短,电解不充分,絮凝效果和脱色效果均较差;时间过长,絮凝效果和脱色效果虽较好,但消耗的电量大,经济上不合理。
实践还证明,电解时间与废水的浓度有关,浓度越高,电解的时间要相应延长。
实践还证明,电解时两极间的工作电压大小与两极间的距离有关,距离越小,电压越小,通常两极间的电压为 2 ~ 8 V ,最佳电压为 3 ~ 5 V 。
步骤 2 所述的催化电解具有如下优点:
( 1 )使步骤 3 絮凝所需的絮凝剂、助凝剂的用量减少 40% ~ 70% ,不必加入脱色剂。这既可以大幅度减少化学药品消耗,又可以减少化学二次污染;
( 2 )污泥的排放量减少 40% ~ 70% 。
步骤 3 絮凝
向经过步骤 2 催化电解处理后的综合废水中加入絮凝剂、助凝剂和气浮剂,进行絮凝反应后,气浮除去杂质。
如上所述,絮凝是向经过催化电解处理后的制革综合废水中加入絮凝剂、助凝剂和气浮剂;絮凝剂采用硫酸亚铁、硫酸铁、氯化铁、聚合硫酸铁中的一种;助凝剂为聚丙烯酰胺等; 气浮剂采用聚丙酰胺( PAM )等。
步骤 4 生化处理
将经过步骤 3 絮凝处理的废水经过好氧或厌氧 + 好氧的一种方法处理,再经二沉池沉淀分离,得生化处理后废水。
如上所述,经过生化处理,再经二沉池沉淀分离所得生化处理废水的色度为 80 ~ 200 , CODCr 为 50 ~ 100 mg/ L ,氨氮为 0 ~ 30 mg/ L 。
步骤 5 二次催化电解
将步骤 4 生化处理所得的处理废水进行二次催化电解,脱除废水中有色物质和氧化分解有机物,进一步降低废水中的 CODCr
如上所述二次催化电解是将步骤 3 生化处理所得的废水流入二沉池,经沉淀后流入工作电压为 2 ~ 400V ,两极间的电压为 2 ~ 8 V 的催化电解机进行催化电解,电流密度为 10 ~ 300mA/cm2 ,废水的电解时间为 2 ~ 6min ,电解程度为 0.8 ~ 1.0 度 / m 3 。电解的最佳工作电压为 13 ~ 200V ,两极间的最佳电压为 3 ~ 5V ,最佳电流密度为 150 ~ 230mA/cm2 ,电解产生的强氧化性物质氧化分解废水中的有机物,使废水中的染料氧化分解脱色并降低 CODCr ,杀灭废水中的细菌等微生物,同时,在电场作用下,使废水脱稳,产生絮凝作用。
步骤 6 过滤 将步骤 5 二次催化电解所得废水经过滤,除去固体杂质。
如上所述,步骤 6 所述的过滤为砂滤、多介质过滤或微滤的一种。将二次催化电解所得废水经过砂滤、多介质过滤或微滤,即得用于生产的循环利用的再生水(回用水),所得回用水的色度小于 3 , CODCr 小于 50 mg/ L ,氨氮小于 1 mg/ L , SS 为 0 。
如上所述,本发明由以下三大部分组成:
第一部分包括步骤 1 的脱硫、步骤 2 的纳米催化电解和步骤 3 的絮凝沉降的前处理部分。该部分采用粗格栅过滤除去废水中的皮毛、残肉等大颗粒杂质后于调节池混合,经水力筛过滤脱毛除去杂质后,计量加入硫酸亚铁脱硫,再进行纳米催化微电解氧化分解有机物,沉降固体悬浮物和胶体物,再经气浮分离除去上浮于表面的固体杂质和油脂,然后加入絮凝剂、助凝剂和气浮剂进行絮凝反应,沉降分离大部分有机物和盐类,使 CODCr 指标由 3000 ~ 4000mg/ L 降至 1500mg/ L 以下,以确保生化系统(第二部分)能够长期稳定地运行。
第二部分为步骤 4 的生化、通过生化去除废水中大部分 CODCr 、色素、氨氮,从而保证第三部分回用水的水质。步骤 4 生化包括单独使用好氧处理或厌氧、好氧的组合使用、二次沉降等工序。
第三部分包括步骤5的二次催化电解和步骤6的过滤。经过第二部分处理的废水经过步骤5的二次催化电解和步骤6的过滤,进一步脱色和去除固体悬浮物等杂质后得满足生产循环利用的再生水,又称回用水,再次用于生产。
工业实用性
与现有的絮凝 + 生化方法比较:本发明絮凝剂的用量减少 1/2 ~ 4/5 ,减少单位产品化学药剂的消耗和节约药剂成本;污泥的排放量减少 1/2 ~ 4/5 ,大幅度减少污泥处理成本;废水经过处理, 95% 可以再生利用,既减少废水排放,避免废水对环境污染,又减少水资源浪费,还可以产生一定的经济效益。 与现有电解法比较:本发明采用表面覆盖有 具有良好催化效果 晶粒为 15 ~ 32nm 的纳米催化涂层的惰性电极作阳极,阳极不消耗,成本低,电效率高;对 废水 CODCr 、氨氮、 悬浮物、色度去除率更高,对微生物的灭杀率达 99% 以上,处理后的水大部分可以循环利用,回用率达 95% 以上;吨废水处理消耗的电能大幅度减少;大幅度减少单位产品生产用水量和废水排放量,大幅度降低水消耗指标和废水排放指标;废水总排放量和总 COD Cr 排放量大幅度减少。
序列表自由内容

Claims (9)

  1. 一种制革废水处理循环利用装置,其特征在于设有 粗格栅过滤机、调节池、水力筛、脱硫反应池、纳米催化电解机、絮凝反应池、沉淀池、气浮装置、生化池、二沉池、二次纳米催化电解机、过滤器和压滤机;
    粗格栅过滤机的废水入口外接综合废水源,粗格栅过滤机的过滤废水出口接调节池的入口,水力筛的入口接调节池的废水出口,脱硫反应池的入口接接水力筛的出口,脱硫反应池的沉淀出口经管道和泵接压滤机,纳米催化电解机的入口接脱硫反应池的废水出口,纳米催化电解机的出口接反应池的入口,反应池的出口接沉淀池的入口,沉淀池的沉淀出口经管道和泵接压滤机,沉淀池的废水出口接气浮装置的入口,气浮装置的渣出口经管道和泵接压滤机,气浮装置的废水出口经泵接生化池,生化池的出口接二沉池的入口,二沉池的生化处理后废水出口接二次纳米催化电解机的入口,二沉池的沉淀出口经管道和泵接压滤机,二次纳米催化电解机的废水出口接过滤器的入口,过滤器的出水口接回用水水池,压滤机的滤液出口接生化池入口,压滤机的滤渣经传送带接污泥池。
  2. 如权利要求 1 所述的 一种制革废水处理循环利用装置,其特征在于 所述气浮装置的渣出口设在气浮装置上部,所述气浮装置的废水出口设在气浮装置下部;所述二沉池的生化处理后废水出口设在二沉池上部的,所述二沉池的沉淀出口设在二沉池底部。
  3. 如权利要求 1 所述的 一种制革废水处理循环利用装置,其特征在于 所述纳米催化电解机的阳极是为以钛为基板在其表面覆盖有晶粒为 15 ~ 32nm 的纳米催化涂层的惰性电极,所述纳米催化电解机的阴极为铁阴极、铝阴极、不锈钢阴极或锌阴极。
  4. 制革废水处理循环利用方法,其特征在于,采用如权利要求 1 所述的一种制革废水处理循环利用装置,所述方法 包括如下步骤:
    1)脱硫
    制革综合废水进入粗格栅过滤机过滤,除去大颗粒固体物后流入调节池混合,再将调节池的废水泵入水力筛过滤脱毛发等杂质后流入脱硫反应池,加入硫酸亚铁溶液,脱硫,分离成硫化铁污泥和脱硫废水;
    2 )纳米催化电解
    将经步骤 1 )脱硫处理的废水泵入纳米催化电解机电解;
    3 )絮凝
    将经步骤 2 )纳米催化电解机电解处理后的废水流入反应池,向反应池中加入已配制好的絮凝剂、助凝剂和气浮剂,进行絮凝反应后进入沉淀池进行分离,沉淀池下部沉淀经管道泵入压滤机过滤分离成滤液和污泥,沉淀池部废水流入气浮装置进行气浮分离,气浮装置上部分离的渣经管道泵入压滤机过滤分离成滤液和污泥,滤液经管道流入生化池,气浮装置下部的废水泵入生化池中;
    4 )生化处理
    将经过步骤 3 )絮凝的气浮装置下部的废水泵入生化池中,经过好氧或厌氧 + 好氧的处理,再经二沉池沉淀分离,二沉池上部流出生化处理后废水,二沉池底部的沉淀经管道泵入压滤机过滤分离成滤液和污泥,滤液经管道流入生化池,经过生化处理,从二沉池沉淀分离得生化处理废水;
    5 )二次催化电解
    将二沉池上部流出的生化处理废水送入二次纳米催化电解机电解;
    6 )过滤
    将二次催化电解机机电解所得废水经过滤器过滤,除去固体杂质得回用水。
  5. 如权利要求 4 所述的 制革废水处理循环利用方法,其特征在于 在步骤 1 ),所述脱硫是先 测定废水中负二价硫的当量浓度,然后按1∶1.1的量加入硫酸亚铁溶液,脱硫,分离成硫化铁污泥和脱硫废水。
  6. 如权利要求 4 所述的 制革废水处理循环利用方法,其特征在于 在步骤 2 )中,所述电解的工作电压为 2 ~ 500V ,两电极间的电压为 2 ~ 8 V ,电解密度为 10 ~ 300mA/cm2 ,保持废水在纳米催化电解机中的停留时间为 5 ~ 15min 。
  7. 如权利要求 4 所述的 制革废水处理循环利用方法,其特征在于 在步骤 3 )中,所述絮凝剂采用硫酸亚铁、硫酸铁、聚铁、硫酸铝、氯化铝、聚铝、 氯化铁、聚合硫酸铁中的一种 ,所述助凝剂采用石灰或聚丙酰胺,所述气浮剂采用聚丙酰胺。
  8. 如权利要求 4 所述的 制革废水处理循环利用方法,其特征在于 在步骤 5 )中,所述电解的工作电压为 2 ~ 400V ,两电极间的电压为 2 ~ 8 V ,电流密度为 10 ~ 300mA/cm2 ,废水在电解机内的停留时间为 2 ~ 6min 。
  9. 如权利要求 4 所述的 制革废水处理循环利用方法,其特征在于 在步骤 6 )中,所述过滤器采用砂滤机、多介质过滤机或微滤膜系统。
PCT/CN2011/076759 2010-12-24 2011-07-01 一种制革废水处理循环利用装置及其方法 WO2012083674A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/992,755 US8715509B2 (en) 2010-12-24 2011-07-01 Tanning wastewater treatment and reuse apparatus and method therefor
EP11850287.1A EP2657197B1 (en) 2010-12-24 2011-07-01 Tanning wastewater treatment and reuse apparatus and method therefor
IN1221MUN2013 IN2013MN01221A (zh) 2010-12-24 2013-06-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010605706.2 2010-12-24
CN201010605706A CN102010107B (zh) 2010-12-24 2010-12-24 一种制革废水处理循环利用装置及其方法

Publications (1)

Publication Number Publication Date
WO2012083674A1 true WO2012083674A1 (zh) 2012-06-28

Family

ID=43840466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076759 WO2012083674A1 (zh) 2010-12-24 2011-07-01 一种制革废水处理循环利用装置及其方法

Country Status (5)

Country Link
US (1) US8715509B2 (zh)
EP (1) EP2657197B1 (zh)
CN (1) CN102010107B (zh)
IN (1) IN2013MN01221A (zh)
WO (1) WO2012083674A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102992542A (zh) * 2012-11-26 2013-03-27 常州大学 二硝基重氮酚生产过程中的重氮母液处理方法
CN103113002A (zh) * 2013-03-04 2013-05-22 广东新大禹环境工程有限公司 有机污水的处理方法
CN106082501A (zh) * 2016-08-11 2016-11-09 上海洗霸科技股份有限公司 基于离子交换与化学沉淀的锅炉排污水回收处理工艺
CN108455751A (zh) * 2018-01-19 2018-08-28 四川大学 高效去除铬鞣废液中的有机物及铬鞣废液循环利用的方法
CN112707587A (zh) * 2020-12-07 2021-04-27 天津天星科生皮革制品有限公司 一种皮革制品生产过程中的废水处理方法
CN112808102A (zh) * 2021-01-28 2021-05-18 江西同建机械发展有限公司 一种石油化工废水处理系统

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101921029B (zh) * 2009-12-21 2014-06-18 波鹰(厦门)科技有限公司 纳米催化微电解水净化消毒装置及其方法
CN102010107B (zh) * 2010-12-24 2011-12-28 波鹰(厦门)科技有限公司 一种制革废水处理循环利用装置及其方法
CN102260013A (zh) * 2011-05-19 2011-11-30 波鹰(厦门)科技有限公司 一种基于电解和双膜技术的再生水制造装置及其方法
CN103073163B (zh) * 2013-02-01 2014-07-30 波鹰(厦门)科技有限公司 一种退浆废水的处理和污泥减量装置及其方法
CN103387310A (zh) * 2013-05-27 2013-11-13 三达膜科技(厦门)有限公司 一种皮革废水处理方法
CN103708659B (zh) * 2013-12-17 2015-05-20 陕西科技大学 一种毛皮含铬染色废液电化学处理及回用的方法
JP5880602B2 (ja) * 2014-03-17 2016-03-09 栗田工業株式会社 湿式塗装ブース循環水処理剤
WO2016187878A1 (zh) * 2015-05-28 2016-12-01 鹤山市新科达企业有限公司 一种合成革生产废水的处理工艺
CN105403607B (zh) * 2015-11-28 2017-12-01 浙江大学 一种掺杂聚铁的新型碳糊电极及其制备方法和应用
CN106621766A (zh) * 2016-12-05 2017-05-10 中国华电集团科学技术研究总院有限公司 一种利用脱硫废水脱除锅炉烟气中so3的方法及脱除系统
WO2018184391A1 (zh) * 2017-04-05 2018-10-11 同济大学 一种磁分离同步去除络合态重金属和有机物的方法
CN107382001A (zh) * 2017-08-04 2017-11-24 安吉晨源环保资源再生利用有限公司 一种城市污泥处理装置及方法
CN108249642A (zh) * 2018-02-06 2018-07-06 杭州英普环境技术股份有限公司 一种六价铬污水处理系统
CN110606618B (zh) * 2018-06-15 2022-01-28 碧兴(福建)环保科技有限公司 一种应用纯微生物处理高浓度工业废水的处理工艺
CN109110967B (zh) * 2018-09-11 2021-09-10 博天环境集团股份有限公司 一种基于膜化学反应器的铝土矿选矿废水回用系统及方法
CN111115936A (zh) * 2019-12-30 2020-05-08 杭州蓝然环境技术股份有限公司 一种没食子酸结晶母液的膜法处理工艺
CN111204921A (zh) * 2020-01-09 2020-05-29 昆山水清华环保科技有限公司 一种喷涂工厂污水处理工艺
CN111153528A (zh) * 2020-01-22 2020-05-15 江苏鼎弘环境科技有限公司 一种皮革生产含铬废水处理方法
CN111635022A (zh) * 2020-05-30 2020-09-08 中国石油天然气股份有限公司 一种特低渗透油田含硫采出水处理集成式橇装成套装置及其处理工艺
CN111747585A (zh) * 2020-07-16 2020-10-09 辛集市梅花皮业有限公司 一种含铬有机废水处理和铬泥减量方法和装置
CN112320956A (zh) * 2020-12-02 2021-02-05 天津大学 一种串联式多级跌水充氧小型污水处理系统
CN114605026A (zh) * 2020-12-09 2022-06-10 枣阳市华星纺织有限公司 一种纺织废水处理工艺
CN112707600A (zh) * 2020-12-31 2021-04-27 河南双辰环保工程有限公司 一种以丙二酸二甲酯和尿素为原料的巴比妥酸生产废水处理方法
CN112897734A (zh) * 2021-01-16 2021-06-04 佰利天控制设备(北京)股份有限公司 一种煤气精脱硫外排水排放系统
CN113018954A (zh) * 2021-03-05 2021-06-25 南宁兴科净医疗科技有限公司 一种分离式重金属废水处理系统
CN113003890B (zh) * 2021-03-24 2022-11-11 广州市天河区林和粤财技术服务中心 一种连续循环式工业污水处理系统
CN112939373A (zh) * 2021-03-25 2021-06-11 四川恩特普环保科技有限公司 一种氧化法脱硫脱硝废水的处理方法
CN114291981A (zh) * 2022-02-11 2022-04-08 贵州中车绿色环保有限公司 赤泥渗滤液生化处理系统及处理方法
CN114516709A (zh) * 2022-02-21 2022-05-20 中国水利水电第六工程局有限公司 一种活性混合覆盖材料及其使用方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1830841A (zh) * 2006-03-16 2006-09-13 南京大学 一种制革废水的处理方法
CN101665311A (zh) * 2009-09-24 2010-03-10 中南大学 高浓度难降解有机废水的催化微电解组合工艺
CN102010107A (zh) * 2010-12-24 2011-04-13 波鹰(厦门)科技有限公司 一种制革废水处理循环利用装置及其方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031006A (en) * 1976-03-12 1977-06-21 Swift And Company Limited Vortex coagulation means and method for wastewater clarification
CN1044999C (zh) * 1991-08-23 1999-09-08 广东省环境工程装备总公司 一种制革综合废水处理的方法
US5328677A (en) * 1992-06-17 1994-07-12 Pvl Limited Partnership I Recovery of sulfides from tannery waste liquor
CN100368324C (zh) * 2006-03-09 2008-02-13 绵阳市勤生技术开发有限公司 一种高浓度有机污水的处理方法
CN101085694B (zh) * 2007-03-15 2010-11-03 归建明 电解催化裂解污水处理装置
CN101830595B (zh) * 2009-03-11 2013-06-26 江西金达莱环保股份有限公司 一种制革工业废水的处理方法
CN101979344B (zh) * 2010-10-28 2012-07-25 波鹰(厦门)科技有限公司 基于纳米催化电解技术和膜技术的制革废水处理回用方法
CN201842735U (zh) * 2010-10-28 2011-05-25 波鹰(厦门)科技有限公司 基于纳米催化电解技术和膜技术的制革废水处理回用装置
CN102050555B (zh) * 2010-12-24 2012-07-25 波鹰(厦门)科技有限公司 一种印染废水处理循环利用装置及其方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1830841A (zh) * 2006-03-16 2006-09-13 南京大学 一种制革废水的处理方法
CN100371268C (zh) 2006-03-16 2008-02-27 南京大学 一种制革废水的处理方法
CN101665311A (zh) * 2009-09-24 2010-03-10 中南大学 高浓度难降解有机废水的催化微电解组合工艺
CN102010107A (zh) * 2010-12-24 2011-04-13 波鹰(厦门)科技有限公司 一种制革废水处理循环利用装置及其方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2657197A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102992542A (zh) * 2012-11-26 2013-03-27 常州大学 二硝基重氮酚生产过程中的重氮母液处理方法
CN103113002A (zh) * 2013-03-04 2013-05-22 广东新大禹环境工程有限公司 有机污水的处理方法
CN103113002B (zh) * 2013-03-04 2014-11-19 广东新大禹环境工程有限公司 有机污水的处理方法
CN106082501A (zh) * 2016-08-11 2016-11-09 上海洗霸科技股份有限公司 基于离子交换与化学沉淀的锅炉排污水回收处理工艺
CN108455751A (zh) * 2018-01-19 2018-08-28 四川大学 高效去除铬鞣废液中的有机物及铬鞣废液循环利用的方法
CN112707587A (zh) * 2020-12-07 2021-04-27 天津天星科生皮革制品有限公司 一种皮革制品生产过程中的废水处理方法
CN112808102A (zh) * 2021-01-28 2021-05-18 江西同建机械发展有限公司 一种石油化工废水处理系统

Also Published As

Publication number Publication date
CN102010107B (zh) 2011-12-28
EP2657197A1 (en) 2013-10-30
IN2013MN01221A (zh) 2015-06-05
US8715509B2 (en) 2014-05-06
EP2657197A4 (en) 2015-02-25
EP2657197B1 (en) 2016-08-17
US20130256224A1 (en) 2013-10-03
CN102010107A (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
WO2012083674A1 (zh) 一种制革废水处理循环利用装置及其方法
WO2012055263A1 (zh) 基于纳米催化电解技术和膜技术的制革废水处理回用装置及方法
WO2013010388A1 (zh) 垃圾渗滤液的处理装置及其处理方法
WO2012083673A1 (zh) 一种印染废水处理循环利用装置及其方法
WO2012088867A1 (zh) 一种纳米催化电解絮凝装置
WO2013163963A1 (zh) 一种污水处理及再生循环利用装置及其方法
WO2013143506A1 (zh) 垃圾渗滤液的处理方法
WO2013156002A1 (zh) 一种纳米催化电解絮凝气浮装置
WO2011063769A1 (zh) 一种印染深度处理废水净化装置及净化方法
WO2012126316A2 (zh) 基于电解和mbr技术的污水循环利用装置及其方法
WO2017067161A1 (zh) 一种采油废水的处理装置和方法
WO2012155607A1 (zh) 一种基于电解和双膜技术的再生水制造装置及其方法
WO2012171365A1 (zh) 基于电化学和电渗析技术的造纸废水循环利用装置及方法
WO2014187296A1 (zh) 一种造纸深度处理废水的再生循环利用装置及方法
CN102249501B (zh) 一种发制品废水的处理装置及其处理方法
WO2014036804A1 (zh) 一种丙烯腈及其聚合废水的处理方法
WO2013156003A1 (zh) 一种新型纳米催化电解装置
WO2014198179A1 (zh) 基于化学脱钙的造纸深度处理废水回用装置及方法
CN112794555A (zh) 一种新型强化混凝处理废水的方法
KR101221565B1 (ko) 전기응집을 이용한 폐수처리장치
KR20090047641A (ko) 전기분해에 의한 폐수처리장치
KR101339303B1 (ko) 전기응집과 전기분해를 이용한 불소가 함유된 질소 함유 병합처리방법
CN201915009U (zh) 基于催化电解和生化技术的制革废水处理循环利用装置
CN201842735U (zh) 基于纳米催化电解技术和膜技术的制革废水处理回用装置
KR20010068172A (ko) 전기 분해를 이용한 펜턴 산화 처리의 폐수 처리 장치 및공법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850287

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13992755

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011850287

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011850287

Country of ref document: EP