WO2013143506A1 - 垃圾渗滤液的处理方法 - Google Patents

垃圾渗滤液的处理方法 Download PDF

Info

Publication number
WO2013143506A1
WO2013143506A1 PCT/CN2013/076203 CN2013076203W WO2013143506A1 WO 2013143506 A1 WO2013143506 A1 WO 2013143506A1 CN 2013076203 W CN2013076203 W CN 2013076203W WO 2013143506 A1 WO2013143506 A1 WO 2013143506A1
Authority
WO
WIPO (PCT)
Prior art keywords
landfill leachate
tank
membrane
electrolysis
treatment
Prior art date
Application number
PCT/CN2013/076203
Other languages
English (en)
French (fr)
Inventor
张世文
Original Assignee
波鹰(厦门)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 波鹰(厦门)科技有限公司 filed Critical 波鹰(厦门)科技有限公司
Publication of WO2013143506A1 publication Critical patent/WO2013143506A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4691Capacitive deionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5254Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using magnesium compounds and phosphoric acid for removing ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention belongs to the field of environmental engineering, and relates to a method for treating sewage, in particular to a method for treating landfill leachate with lower cost and better effect.
  • Landfill leachate is a high-concentration organic landfill leachate that is difficult to process. It mainly comes from the following three aspects: Natural rainfall and runoff in the landfill; 2, water contained in the garbage itself; 3 Water produced by anaerobic decomposition of microorganisms after landfill; the precipitation in the landfill is the main part.
  • the typical values of municipal landfill leachate pollutants are shown in Table 1.
  • Table 1 Main components of general landfill leachate (in addition to pH and sensory indicators, the unit is mg/L) project Concentration range project Concentration range Sensory index Black / stench chloride 189 ⁇ 3262 pH value 3.7 ⁇ 8.5 Fe 50 ⁇ 600 total hardness 3000 ⁇ 10000 Cu 0.1 to 1.43 COD Cr 1200 ⁇ 300000 Ca 200 to 300 BOD 5 200 ⁇ 60000 Pb 0.1 to 2.0 NH3-N 20 to 7400 Cr 0.01 to 2.61 Total phosphorus 1 to 70 Hg 0 to 0.032
  • Ammonia nitrogen content and COD of landfill leachate The high concentration makes the surface water body lack of oxygen and the water quality deteriorates; nutrients such as nitrogen and phosphorus are the cause of eutrophication of water bodies, and may also seriously affect drinking water sources; in general, COD, BOD, BOD / COD will accompany the landfill of 'age' The growth is reduced and the alkalinity is increased. In addition, with the increase of the stacking period, the fresh garbage gradually turns into old garbage, and the organic matter content in the leachate decreases, but the ammonia nitrogen content increases and the biodegradability decreases, so the treatment is very difficult.
  • landfill leachate is focused on the treatment of COD and ammonia nitrogen, especially the treatment of ammonia nitrogen.
  • a variety of processes and equipment for treating landfill leachate have appeared in the prior art.
  • a treatment process for landfill leachate by immersion combustion evaporation process is disclosed, which mainly processes the permeate by oxidizing organic matter into carbon dioxide and water and by evaporation and concentration.
  • the invention discloses a technique for treating landfill leachate by using an anaerobic molecular decomposition method, which comprises a pre-decomposition step, an anaerobic step, a decomposition oxidation step, an adsorption step, a flocculation precipitation step, and a filtration step, which combines physical and chemical treatment. And biological treatment of both aspects.
  • anaerobic molecular decomposition method which comprises a pre-decomposition step, an anaerobic step, a decomposition oxidation step, an adsorption step, a flocculation precipitation step, and a filtration step, which combines physical and chemical treatment. And biological treatment of both aspects.
  • the patent document CN1478737 The landfill leachate disclosed in the present invention adopts a combination of electrolytic oxidation and membrane treatment. In this process, the leachate subjected to electrolytic oxidation treatment is filtered by a ceramic membrane and then subjected to reverse osmosis treatment.
  • the well-known electrolysis technology can effectively remove harmful substances in landfill leachate, but the conventional electrolysis has low current density, high working potential, low electric efficiency, large energy consumption, short life and high cost, so The effect on the treatment of landfill leachate is not satisfactory.
  • the object of the present invention is to overcome the defects of the prior art, such as complicated processing technology, large consumption of chemical agents, high cost, and unsatisfactory discharge of landfill leachate after treatment, and organically combining the electrolysis process, the membrane process and the biochemical process, thereby complementing each other, thereby Form a high ammonia nitrogen removal rate, high chroma removal rate and high COD Landfill leachate treatment method with high removal rate, stable operation, strong adaptability to water quality changes, low cost and high treatment efficiency.
  • the landfill leachate enters the regulating tank through the pipeline to adjust the water quality, equalize the water volume, and add the pH adjuster through the dosing device in the regulating tank, adjust the pH value, then flow into the ammonia nitrogen stripping device or the reaction tank, and pass the steam in the ammonia nitrogen stripping device.
  • the air is blown off to convert the high concentration ammonia nitrogen in the landfill leachate into free ammonia, or the appropriate amount of Mg(OH) 2 and H 3 PO 4 is added to the reaction tank through the dosing device, and NH 4+
  • the reaction produces MgNH 4 PO 4 • 6H 2 O (streptite) precipitate to achieve the purpose of removing ammonia nitrogen, and the ammonia nitrogen concentration is ⁇ 200 mg/L, and then enters the subsequent treatment process;
  • the landfill leachate is denitrified and then flows into the coagulation tank.
  • an appropriate amount of flocculant is added through the dosing device.
  • the sediment of the primary settling tank ie sludge
  • the sediment of the primary settling tank is sent through the pump and pipeline.
  • the landfill leachate COD is reduced by 10 ⁇ 35%;
  • the landfill leachate treated by flocculation and sedimentation is pumped into the electrolysis machine for electrolysis, and after electrolysis, it enters the intermediate tank, and a reducing agent is added to remove residual radicals generated by electrolysis; the voltage between adjacent electrodes of the electrolysis machine is 2-12V. , current density is 10 ⁇ 320mA / cm 2 ;
  • the first step is Capacitor desalination treatment
  • the conductivity is reduced to 500 ⁇ 3000 ⁇ s / cm, and then enter step e anaerobic treatment
  • the electrolytic treatment of step c electrolysis treatment the conductivity of landfill leachate ⁇ 5000 When ⁇ s/cm, go directly to step e anaerobic treatment;
  • the landfill leachate after electrolytic treatment or capacitor desalination treatment enters the hydrolysis acidification tank and the anoxic tank in turn, and the residence time is 8 to 72.
  • the macromolecular organic matter in the landfill leachate in the hydrolysis acidification tank is hydrolyzed and acidified into small molecule organic matter by the acid-producing bacteria, and then subjected to adsorption, fermentation and methanogenesis of anaerobic bacteria and facultative bacteria in the anoxic tank. Decompose into methane and carbon dioxide, improve B/C value to improve biodegradability; and further remove ammonia nitrogen from landfill leachate by denitrification of denitrifying bacteria in an anoxic tank;
  • the anaerobic treated landfill leachate enters an aerobic tank containing microorganisms such as aerobic bacteria, nitrifying bacteria and nitrosated bacteria, and the residence time is 16 ⁇ 360 hours, further oxidative decomposition of organic matter in landfill leachate by aerobic microorganisms, deep removal of COD and BOD in landfill leachate
  • the nitrification of nitrifying bacteria and the nitrosation of nitrosating bacteria convert the ammonia nitrogen into nitrate nitrogen or nitrite nitrogen; in addition, part of the mixture of the aerobic tank is returned to the anoxic tank through the reflux pump;
  • the aerobic treated landfill leachate is subjected to secondary electrolysis, so that the macromolecular organic matter is opened and broken, the biodegradability is improved, and the electrolysis is performed.
  • the electrolysis machine has a voltage between 3 and 18 V and a current density of 20 to 320 mA/cm 2
  • the COD of the landfill leachate after aerobic treatment is ⁇ 400 mg/L, it directly enters step h.
  • the landfill leachate after aerobic treatment or secondary electrolysis treatment flows into the secondary settling tank, and the COD in the landfill leachate is further removed by sedimentation.
  • BOD and SS After the membrane filtration, the effluent reaches the standard of reclaimed water.
  • a part of the sludge at the bottom of the secondary sedimentation tank is returned to the anoxic tank through the pump, and the other part flows into the sludge tank through the pipeline, and then is separated into filtrate and mud by the sludge dewatering device.
  • the cake and the filtrate are returned to the conditioning tank through the pipeline, and the mud cake is shipped out;
  • Step h The concentrated liquid produced by membrane filtration is desalted by a capacitor, and then recycled to the anoxic tank through a pump.
  • the ammonia nitrogen stripping device is one of a stripping tower, a packed tower or a gravity machine;
  • the blown off ammonia gas is absorbed by hydrochloric acid to form ammonium chloride, which can be used for the production of soda ash as a mother liquor, or can be produced by water absorption or by absorption of sulfuric acid to produce ammonium sulfate by-product;
  • the MgNH 4 PO 4 • 6H 2 O (streptite) precipitate may be developed and used as a compound fertilizer after granulation or the like.
  • the flocculating agent is aluminum salt (aluminum sulfate, aluminum chloride), iron salt (iron sulfate, ferrous sulfate, ferric chloride), poly aluminum (polyaluminum chloride, polyaluminum sulfate, polyaluminum silicate) , poly iron (polyferric chloride, polymeric ferric sulfate, polymeric iron silicate), One or a combination of two or more of an organic polymer flocculant or a microbial flocculant; and the pH adjuster is one of sulfuric acid, hydrochloric acid, sodium hydroxide, sodium carbonate, sodium hydrogencarbonate, and lime.
  • the best flocculant is polyferric sulfate (PFS), and the dosage is 200-2000g per ton of landfill leachate. .
  • PFS polyferric sulfate
  • the best flocculant is ferrous sulfate (FeSO 4 ), which is added in an amount of 230 to 1800 g per ton of landfill leachate.
  • the electrolysis machine is provided with a power source and an electrolysis cell, and the electrode material in the electrolysis cell is one of graphite, titanium, iron, aluminum, zinc, copper, lead, nickel, molybdenum, chromium, metal alloy and nano catalytic inert electrode.
  • the surface layer of the nano catalytic inert electrode is coated with crystal grains of 10 to 35 nm.
  • the metal oxide inert catalytic coating; the substrate of the nano catalytic inert electrode may be a titanium plate or a plastic plate.
  • the optimal electrolysis is nano-catalytic electrolysis, and the structure of the nano-catalytic electrolysis machine is shown in Chinese patent CN102010038A.
  • the working voltage of electrolysis is 2 to 500V, and the voltage between adjacent electrodes is 2 to 8 V, current density is 10 to 300 mA/cm 2 .
  • Free radical chlorine [Cl], free radical oxygen [O] and hydroxyl group [OH] produced by nano-catalyzed electrolysis of landfill leachate
  • the strong oxidizing substances kill the microorganisms in the landfill leachate, oxidize and decompose the organic matter and ammonium ions in the landfill leachate, and make the organic matter in the landfill leachate open-loop and long-chain broken, which eliminates the landfill leachate.
  • the chromaticity also removes the odor, and also improves the biodegradability of the landfill leachate, and destabilizes the landfill leachate under the action of the electric field.
  • the suspended matter, colloids and charged particles in the landfill leachate form larger particles.
  • the cations and anions in the landfill leachate move to the cathode and the anode, respectively, and an electric double layer and a multi-electrode layer act on the cathode and the anode to form a precipitation-induced flocculation and accelerate the sedimentation of the impurities; Air float effect.
  • the macrocyclic compound in the landfill leachate is opened by electrolysis, and the long chain is broken, and the generated radical oxidizes and decomposes the organic matter, thereby rapidly decreasing.
  • COD improves the biodegradability of landfill leachate, thus creating better biochemical conditions for subsequent anaerobic units.
  • the various free radicals (strong oxidizing substances) produced by electrolysis kill the microorganisms in the landfill leachate, so that the subsequent anaerobic treatment can cultivate a larger dominant flora and exert better biochemical effects.
  • the effluent quality of anaerobic treatment is better.
  • the color of landfill leachate is greatly reduced, and chlorine [Cl], hydroxyl [OH] and oxygen [O] produced by electrolysis are greatly reduced.
  • the strong oxidizing free radical can oxidize and decompose the chromophore group and the color-assisting group remaining in the landfill leachate, and reduce the color of the landfill leachate to achieve the purpose of decolorization.
  • step f the reflux ratio of the mixture is 3:1 or 2:1 It is beneficial to denitrification of denitrifying bacteria in the anoxic tank to remove ammonia nitrogen from landfill leachate.
  • the membrane is filtered as a landfill leachate separated by a secondary settling tank and passed through a membrane bioreactor (MBR).
  • MBR membrane bioreactor
  • the MBR membrane module is selected from the group consisting of a polyvinylidene fluoride hollow fiber membrane, a polypropylene hollow fiber membrane, a polysulfone hollow fiber membrane, a polyethersulfone, a polyacrylonitrile, and a polyvinyl chloride hollow fiber membrane.
  • Aperture is 0.10 ⁇ 0.2 ⁇ m
  • working pressure is -1 ⁇ -50kPa
  • working temperature is 5 ⁇ 45 °C.
  • the membrane is filtered
  • the landfill leachate separated by sedimentation in the secondary settling tank is filtered by immersion ultrafiltration or column ultrafiltration, and then filtered by nanofiltration; the ultrafiltration is immersion ultrafiltration, column ultrafiltration, tubular ultrafiltration, and volume
  • the nanofiltration membrane module is a wound membrane module, and the membrane material of the nanofiltration membrane is an acetate membrane or a composite nanofiltration membrane in an organic membrane.
  • the molecular weight of the nanofiltration membrane is 200-500 MWCO, and the inlet pressure is 6.0-45.0. Bar The pressure is 4.5 to 43.5 bar.
  • step h the membrane is filtered
  • the landfill leachate separated by sedimentation in the secondary sedimentation tank is subjected to ultrafiltration filtration and then subjected to reverse osmosis (RO) filtration;
  • the reverse osmosis membrane module is a wound membrane module, and
  • the membrane material is an acetate membrane or a composite membrane in an organic membrane.
  • the molecular weight cutoff of the membrane material is 50-200 MWCO
  • the pressure can be 6.0 to 45.0 bar and the pressure can be 4.5 to 35 bar.
  • non-chlorinated aromatic compounds such as naphthalene and phenanthrene, chlorinated aromatic compounds, phosphates, phthalates, phenolic compounds and anilines are difficult to be biodegraded in landfill leachate. Ring, broken chain, not only can be reduced COD, and improve the biodegradability of landfill leachate, and the removal rate of residual ammonia nitrogen after deamination of nitrogen can reach 80-90% At the same time, the heavy metal ions in the landfill leachate are effectively removed by electrolytic flocculation and sedimentation, thereby creating better biochemical conditions for the subsequent treatment process.
  • the nano-catalytic electrolysis machine adopts a surface covering with a good catalytic effect, and the crystal grains are 10 to 35 nm.
  • the inert electrode of the nano catalytic coating is used as the anode, the anode is not consumed, the cost is low, the electric efficiency is high, and the electrolysis efficiency of the ordinary electrode is more than 10 times, and the electric energy consumed by the treatment of the landfill leachate is greatly reduced.
  • the membrane filtration concentrate is desalted by capacitive ion adsorption, and then refluxed into the biological system to completely solve the problem of membrane filtration concentrate discharge.
  • Figure 1 is a process flow diagram of the present invention.
  • the water quality of the raw water of the landfill leachate is determined as shown in Table 2.
  • Serial number project unit measured value Serial number project unit measured value 1 COD Cr Mg/L 16800 5 Ammonia nitrogen Mg/L 1240 2 SS Mg/L 570 6 Chroma Times 1200 3 Turbidity NTU 505 7 pH value - 6.8 4 BOD 5 Mg/L 2866 8 Conductivity ⁇ S/cm 4300
  • the landfill leachate enters the regulation tank through the pipeline to adjust the water quality and equalize the water volume, so that the flow and parameters of the different types of landfill leachate from all parts of the landfill can be fully adjusted to facilitate the subsequent unit treatment.
  • the landfill leachate is denitrified and then flows into the coagulation tank. 200g of polyferric sulfate is added per ton of landfill leachate ( PFS After the reaction is completed, it enters the primary sedimentation tank.
  • the sedimentation of the primary sedimentation tank ie sludge
  • the pump and pipeline and finally filtered and separated in the sludge dewatering device; the COD of the landfill leachate is reduced by 10 ⁇ 35% After entering the electrolysis machine.
  • the above polymeric ferric sulfate is a flocculating agent.
  • the flocculating agent may be aluminum salt (aluminum sulfate, aluminum chloride), iron salt (ferric sulfate, ferrous sulfate, ferric chloride), polyaluminum (polyaluminum chloride, polyaluminum sulfate, polyaluminum silicate), polyferric iron One or a combination of two or more of (polyferric chloride, polymeric ferric sulfate, polymeric ferric silicate), an organic polymer flocculant or a microbial flocculant.
  • the landfill leachate flows into the electrolysis machine by flocculation and sedimentation, then enters the intermediate tank, and a reducing agent is added to remove residual free radicals generated by electrolysis.
  • the electrolysis machine is a nano catalytic electrolysis machine having an operating voltage of 40 V, a current density of 20 mA/cm 2 , and a voltage between the two electrodes of 3.5 V.
  • the highly oxidizing free radicals chlorine [Cl], oxygen [O] and hydroxyl [OH] produced by nanocatalytic microelectrolysis can rapidly oxidize and decompose organic matter in landfill leachate, making large organic molecules difficult to biodegrade in landfill leachate.
  • the group is oxidized or reduced to a colorless group to achieve the purpose of decolorization; in addition, the cations and anions in the landfill leachate move to the cathode and anode of the electrolysis cell, respectively, forming a precipitate near the cathode and the anode, thereby reducing the leakage of the garbage.
  • the content of heavy metal ions in the filtrate thereby reducing the inhibition and toxic effects of heavy metal ions on anaerobic and aerobic microorganisms in subsequent units; in addition, it can kill microorganisms in landfill leachate and make suspended matter and colloid in landfill leachate
  • the charged particles form larger particles under the action of an electric field.
  • the conductivity of the landfill leachate after electrolysis is ⁇ 5000 ⁇ s/cm, so Enter the hydrolysis acidification tank and the anoxic tank, the residence time is 10 In the hour, the macromolecular organic matter in the landfill leachate in the hydrolysis acidification tank is hydrolyzed and acidified into small molecule organic matter by the acid-producing bacteria, and then subjected to adsorption, fermentation and methanogenesis of anaerobic bacteria and facultative bacteria in the anoxic tank. Decompose into methane and carbon dioxide, improve The B/C value improves the biodegradability; at the same time, the ammonia nitrogen in the landfill leachate is further removed by denitrification of denitrifying bacteria in the anoxic tank.
  • the anaerobic treated landfill leachate enters an aerobic tank containing microorganisms such as aerobic bacteria, nitrifying bacteria and nitrosated bacteria, and the residence time is 18 Hours, further oxidative decomposition of organic matter in landfill leachate by aerobic microorganisms, deep removal of COD and BOD in landfill leachate
  • the nitrification of nitrifying bacteria and the nitrosation of nitrosating bacteria convert ammonia nitrogen into nitrate nitrogen or nitrite nitrogen; in addition, the mixture of aerobic tanks is refluxed by a reflux pump at a ratio of 2:1.
  • Anoxic pool is anoxic pool.
  • Step f membrane filtration
  • the aerobic treated landfill leachate has a COD of ⁇ 400 mg/L, which flows directly into the secondary settling tank and is further removed by sedimentation. COD, BOD, SS, etc., after MBR Filtration and separation make the effluent reach the standard of reclaimed water.
  • Part of the sludge at the bottom of the secondary sedimentation tank is returned to the anoxic tank through the pump, and the other part flows into the sludge tank through the pipeline, and then is separated into filtrate and mud cake by the sludge dewatering device. It is returned to the conditioning tank through the pipeline, while the mud cake is shipped out.
  • the MBR membrane module is a polypropylene hollow fiber membrane with a membrane pore diameter of 0.10-0.2 ⁇ m and a working pressure of -1 ⁇ -50kPa, working temperature is 5 ⁇ 45 °C.
  • step f the concentrated liquid produced by the MBR filtration is desalted by a capacitor, and then recycled to the anoxic tank through the pump.
  • Serial number project unit measured value Serial number project unit measured value 1 COD Cr Mg/L 89600 5 Ammonia nitrogen Mg/L 3660 2 SS Mg/L 802 6 Chroma Times 2500 3 Turbidity NTU 730 7 pH value - 9.3 4 BOD 5 Mg/L 17900 8 Conductivity ⁇ S/cm 9030
  • the landfill leachate enters the regulation tank through the pipeline to adjust the water quality and equalize the water volume, so that the flow and parameters of the different types of landfill leachate from all parts of the landfill can be fully adjusted to facilitate the subsequent unit treatment.
  • adding lime adjustment through the dosing device in the adjustment tank The pH value is 10 ⁇ 11, then flows into the stripping tower, and the high-concentration ammonia nitrogen in the landfill leachate is converted into free ammonia by steam stripping, and is blown out to achieve the purpose of removing ammonia nitrogen, so that the ammonia nitrogen concentration is ⁇ 200mg/ L
  • the ammonia gas blown out is absorbed by hydrochloric acid to form ammonium chloride and used for the production of soda ash.
  • the landfill leachate is denitrified and then flows into the coagulation tank. 250 g of ferrous sulfate (FeSO 4 ) is added per ton of landfill leachate. After the reaction is completed, it enters the primary settling tank. The sedimentation of the primary settling tank (ie sludge) is sent through the pump and pipeline. In the sludge tank, the filtration and separation are finally carried out in the sludge dewatering device; the COD of the landfill leachate is reduced by 10 to 35% and then flows into the electrolysis machine.
  • FeSO 4 ferrous sulfate
  • the above ferrous sulfate is a flocculating agent.
  • the flocculating agent may be aluminum salt (aluminum sulfate, aluminum chloride), iron salt (ferric sulfate, ferrous sulfate, ferric chloride), polyaluminum (polyaluminum chloride, polyaluminum sulfate, polyaluminum silicate), polyferric iron One or a combination of two or more of (polyferric chloride, polymeric ferric sulfate, polymeric ferric silicate), an organic polymer flocculant or a microbial flocculant.
  • the landfill leachate flows into the electrolysis machine after flocculation and sedimentation. After electrolysis, it enters the intermediate tank and is added with a reducing agent to remove residual free radicals generated by electrolysis.
  • the working voltage of the electrolyzer is 4V, and the current density is 150mA/cm 2 .
  • the voltage between the two poles is 2V.
  • Step c After the electrolytic treatment, the conductivity of the landfill leachate is > 5000 ⁇ s/cm, first The capacitor is desalted to reduce the conductivity to 500-3000 ⁇ s/cm and then enter step e for anaerobic treatment.
  • the landfill leachate after the desalination treatment of the capacitor enters the hydrolysis acidification tank and the anoxic tank in turn, and the residence time is 36.
  • the macromolecular organic matter in the landfill leachate in the hydrolysis acidification tank is hydrolyzed and acidified into small molecule organic matter by the acid-producing bacteria, and then subjected to adsorption, fermentation and methanogenesis of anaerobic bacteria and facultative bacteria in the anoxic tank.
  • Decompose into methane and carbon dioxide improve The B/C value improves the biodegradability; at the same time, the ammonia nitrogen in the landfill leachate is further removed by denitrification of denitrifying bacteria in the anoxic tank.
  • the anaerobic treated landfill leachate enters an aerobic tank containing microorganisms such as aerobic bacteria, nitrifying bacteria and nitrosated bacteria, and the residence time is 180 hours.
  • the aerobic microorganisms are further oxidized to decompose the organic matter in the landfill leachate, and the garbage is deeply removed.
  • COD Cr and BOD 5 in the leachate while using the nitrification of nitrifying bacteria and the nitrosation of nitrosating bacteria to convert ammonia nitrogen into nitrate nitrogen or nitrite nitrogen; in addition, the mixture of aerobic tanks is 2
  • the ratio of 1:1 is returned to the anoxic tank by a reflux pump.
  • the COD of the landfill leachate after aerobic treatment is ⁇ 400mg/L, so it flows into the electrolysis machine for secondary electrolysis, which causes the macromolecular organic matter to be opened and broken, improving biodegradability, and the two adjacent electrodes of the electrolysis machine during electrolysis The voltage between them is 5V and the current density is 190mA/cm 2 ;
  • the landfill leachate after secondary electrolysis treatment flows into the secondary settling tank, and further removes COD, BOD and After SS, pass through submerged ultrafiltration and nanofiltration Filtration makes the effluent reach the standard of reclaimed water.
  • a part of the sludge at the bottom of the secondary sedimentation tank is returned to the anoxic tank through the pump, and the other part flows into the sludge tank through the pipeline, and then is separated into the filtrate and the mud cake by the sludge dewatering device.
  • the pipe is returned to the conditioning tank while the mud cake is shipped out.
  • the working condition of the immersion ultrafiltration is: normal temperature to 45 ° C, working pressure is -1 to -50 kPa
  • the nanofiltration membrane module is a wound membrane module, and the membrane material is a composite nanofiltration membrane, the inlet pressure is 6.0 to 45.0 bar, and the outlet pressure is 4.5 to 43.5 bar.
  • the above ultrafiltration device is submerged ultrafiltration.
  • the ultrafiltration device may be one of submerged ultrafiltration, column ultrafiltration, tubular ultrafiltration, coil ultrafiltration or plate ultrafiltration.
  • Step i treatment of membrane filtration concentrate
  • Step h Submerged ultrafiltration and nanofiltration
  • the concentrated liquid produced by the filtration is desalted by a capacitor and then recycled to the anoxic tank through a pump.
  • Serial number project unit measured value Serial number project unit measured value 1 COD Cr Mg/L 284300 5 Ammonia nitrogen Mg/L 4510 2 SS Mg/L 1381 6 Chroma Times 4500 3 Turbidity NTU 1200 7 pH value - 9.5 4 BOD 5 Mg/L 42800 8 Conductivity ⁇ S/cm 11290
  • the landfill leachate enters the regulation tank through the pipeline to adjust the water quality and equalize the water volume, so that the flow and parameters of the different types of landfill leachate from all parts of the landfill can be fully adjusted to facilitate the subsequent unit treatment.
  • Lime adjusts the pH value to 10 ⁇ 11, then flows into the gravity machine, and the high concentration ammonia nitrogen in the landfill leachate is converted into free ammonia by air stripping, and is blown out to achieve the purpose of removing ammonia nitrogen, so that the ammonia nitrogen concentration is ⁇ After 200mg/L, it enters the coagulation tank, and the ammonia gas that is blown off is absorbed by sulfuric acid to produce ammonium sulfate by-product.
  • the landfill leachate is denitrified and then flows into the coagulation tank. 1500g of ferrous sulfate (FeSO 4 ) is added per ton of landfill leachate. After the reaction is completed, it enters the primary settling tank. The sedimentation of the primary settling tank (ie sludge) is sent through the pump and pipeline. In the sludge tank, the filtration and separation are finally carried out in the sludge dewatering device; the COD of the landfill leachate is reduced by 10 to 35% and then enters the electrolysis machine.
  • FeSO 4 ferrous sulfate
  • the above ferrous sulfate is a flocculating agent.
  • the flocculating agent may be aluminum salt (aluminum sulfate, aluminum chloride), iron salt (ferric sulfate, ferrous sulfate, ferric chloride), polyaluminum (polyaluminum chloride, polyaluminum sulfate, polyaluminum silicate), polyferric iron One or a combination of two or more of (polyferric chloride, polymeric ferric sulfate, polymeric ferric silicate), an organic polymer flocculant or a microbial flocculant.
  • the landfill leachate treated by flocculation and sedimentation is pumped into the electrolysis machine for electrolysis, and then electrolyzed into the intermediate tank, and a reducing agent is added to remove residual radicals generated by electrolysis; the current density of the electrolysis machine is 320 mA/cm 2 , between the two poles The voltage is 12 V.
  • the conductivity of the landfill leachate is ⁇ 5000 ⁇ s/cm, so After the capacitor desalination treatment, the conductivity is reduced to 500-3000 ⁇ s/cm, and then proceeds to step e anaerobic treatment.
  • the landfill leachate after the desalination treatment of the capacitor enters the hydrolysis acidification tank and the anoxic tank in turn, and the residence time is 72.
  • the macromolecular organic matter in the landfill leachate in the hydrolysis acidification tank is hydrolyzed and acidified into small molecule organic matter by the acid-producing bacteria, and then subjected to adsorption, fermentation and methanogenesis of anaerobic bacteria and facultative bacteria in the anoxic tank.
  • Decompose into methane and carbon dioxide improve The B/C value improves the biodegradability; at the same time, the ammonia nitrogen in the landfill leachate is further removed by denitrification of denitrifying bacteria in the anoxic tank.
  • the anaerobic treated landfill leachate enters an aerobic tank containing microorganisms such as aerobic bacteria, nitrifying bacteria and nitrosated bacteria, and the residence time is 280 hours.
  • the aerobic microorganisms are further oxidized to decompose the organic matter in the landfill leachate, and the garbage is deeply removed.
  • COD Cr and BOD 5 in the leachate while using the nitrification of nitrifying bacteria and the nitrosation of nitrosating bacteria to convert ammonia nitrogen into nitrate nitrogen or nitrite nitrogen; in addition, the mixture of aerobic tanks is 3
  • the ratio of 1:1 is returned to the anoxic tank by a reflux pump.
  • the COD of the landfill leachate after aerobic treatment is ⁇ 400mg/L, so it flows into the electrolysis machine for secondary electrolysis, which causes the macromolecular organic matter to be opened and broken, improving biodegradability, and the two adjacent electrodes of the electrolysis machine during electrolysis The voltage between them is 16V and the current density is 300mA/cm 2 ;
  • the landfill leachate after secondary electrolysis treatment flows into the secondary settling tank, and further removes COD, BOD and After SS, it passes through column ultrafiltration and reverse osmosis. Filtration makes the effluent reach the standard of reclaimed water.
  • a part of the sludge at the bottom of the secondary sedimentation tank is returned to the anoxic tank through the pump, and the other part flows into the sludge tank through the pipeline, and then is separated into the filtrate and the mud cake by the sludge dewatering device.
  • the pipe is returned to the conditioning tank while the mud cake is shipped out.
  • the working condition of the column ultrafiltration is: normal temperature ⁇ 45 ° C, working pressure is 3 ⁇ 300 kPa
  • the reverse osmosis membrane module is a roll membrane module, and the membrane material is a composite membrane, the inlet pressure can be 6.0-45.0 bar, and the outlet pressure can be 4.5-35 bar.
  • the above ultrafiltration device is column ultrafiltration.
  • the ultrafiltration device may be one of submerged ultrafiltration, column ultrafiltration, tubular ultrafiltration, coil ultrafiltration or plate ultrafiltration.
  • Step i treatment of membrane filtration concentrate
  • Step h The concentrated liquid produced by column ultrafiltration and reverse osmosis filtration is desalted by a capacitor, and then recycled to the anoxic tank through a pump.
  • the method of the present invention can be carried out industrially and has good industrial applicability.

Abstract

一种垃圾渗滤液的处理方法,包括如下步骤:脱氨氮、絮凝沉淀、电解、电容脱盐、厌氧处理、好氧处理、膜过滤和膜浓缩液处理。该处理方法通过电解工艺、膜工艺和生化工艺的结合,运行稳定,处理效率高,能有效降低垃圾渗滤液中氨氮、COD、SS、色度等指标,使出水达标排放。

Description

垃圾渗滤液的处理方法 技术领域
本发明属于环境工程领域,它涉及一种污水的处理方法,特别是指一种成本较低、效果较好的垃圾渗滤液的处理方法。
背景技术
垃圾渗滤液是一种难于进行处理的高浓度有机垃圾渗滤液,其主要来自以下三个方面: 1 、填埋场内的自然降雨和径流; 2 、垃圾自身含有的水; 3 、在垃圾填埋后由于微生物的厌氧分解而产生的水;其中填埋场内的降水为主要部分。城市垃圾渗滤液污染物含量典型值如表 1 所示。
表 1 一般垃圾渗滤液的主要成分 ( 除 pH 、和感观指标外,单位为mg/L)
项目 浓度变化范围 项目 浓度变化范围
感观指标 黑色 / 恶臭 氯化物 189 ~ 3262
pH 值 3.7 ~ 8.5 Fe 50 ~ 600
总硬度 3000 ~ 10000 Cu 0.1 ~ 1.43
CODCr 1200 ~ 300000 Ca 200 ~ 300
BOD5 200 ~ 60000 Pb 0.1 ~ 2.0
NH3-N 20 ~ 7400 Cr 0.01 ~ 2.61
总磷 1 ~ 70 Hg 0 ~ 0.032
由表 1 可知,垃圾渗滤液的水质具有以下基本特征:
( 1 )污染物浓度高,COD 、BOD和氨氮大多为工业污染物国家排放标准的几十至几百倍以上。
( 2 )既有有机污染成分,也有无机污染成分,同时还含有一些微量重金属污染成分,综合污染特征明显。
( 3 )有机污染物种类多,成分复杂。垃圾渗滤液中有机污染物多,高达 77 种,其中有难以生物降解的萘、菲等非氯化芳香族化合物、氯化芳香族化物,磷酸酯,邻苯二甲酸酯,酚类化合物和苯胺类化合物等。
( 4 )垃圾渗滤液中含有 10 多种金属离子,其中的重金属离子会对生物处理过程产生严重抑制作用。
( 5 )渗滤液中微生物营养元素比例严重失调。其中的氨氮浓度很高,C/N 比例失调,其营养比例比生物法处理时微生物生长所需要的营养比例相去甚远,给生物处理带来一定的难度。
垃圾渗滤液的氨氮含量和 COD 浓度高,使地面水体缺氧,水质恶化;氮磷等营养物质是导致水体富营养化的诱因,还可能严重影响饮用水水源;一般而言,COD,BOD,BOD /COD 会随填埋场的 ' 年龄 ' 增长而降低,碱度含量则升高。此外,随着堆放年限的增加,新鲜垃圾逐渐变为陈腐垃圾,渗滤液中有机物含量有所下降,但氨氮含量增加,且可生化性降低,因此处理难度非常大。
对垃圾渗滤液进行治理的重点是COD和氨氮的处理,尤其是氨氮的处理。现有技术中出现了多种用于对垃圾渗滤液进行处理的工艺和设备。例如在专利文件CN1485280A中就公开了一种利用浸没燃烧蒸发工艺来填埋垃圾渗滤液的处理工艺,该工艺主要是通过将有机物氧化成二氧化碳和水,并通过蒸发和浓缩的方式处理渗透液。而在专利文件CN1440941 中则公开了利用厌氧分子分解方法来处理垃圾渗滤液的技术,该方法包括预分解步骤、厌氧步骤、分解氧化步骤、吸附步骤、絮凝沉淀步骤以及过滤步骤,该方法结合了物理化学处理和生物处理两方面的手段。与此类似,专利文件CN1478737 中所公开的垃圾渗滤液采用电解氧化与膜处理相结合的方案,在该工艺中,利用陶瓷膜对经过电解氧化处理的渗滤液进行过滤后再进行反渗透处理。
另外,现有公知的电解技术能有效去除垃圾渗滤液中的有害物质,但是传统的电解的电流密度低、工作电位高、电效率很低、耗能大、寿命短、成本高,因此将其应用于垃圾渗滤液处理方面效果并不理想。
技术问题
本发明的目的在于克服现有技术存在的处理工艺复杂、化学药剂消耗量大、成本高、处理后垃圾渗滤液排放不达标等缺陷,通过电解工艺、膜工艺与生化工艺有机结合,取长补短,从而形成一种高氨氮去除率、高色度去除率和高COD 去除率、运行稳定、对水质变化适应能力强、费用较低、处理效率高的垃圾渗滤液处理方法。
技术解决方案
本发明的技术方案包括以下步骤:
a 、脱氨氮
垃圾渗滤液经管道进入调节池调节水质,均衡水量,并在调节池中通过加药装置加入 pH 调节剂,调节 pH 值后流入氨氮吹脱装置或者反应池中,在氨氮吹脱装置中通过蒸汽或空气吹脱使垃圾渗滤液中的高浓度氨氮转换成游离的氨而被吹出,或者在反应池中通过加药装置投加适量的 Mg(OH)2和 H3PO4,与 NH4+反应生成 MgNH4PO4 • 6H2O(鸟粪石)沉淀, 以达到去除氨氮的目的,使其氨氮浓度≤ 200mg/L 后进入后续处理工序;
b 、絮凝沉淀
垃圾渗滤液脱氨氮后流入混凝池,在混凝池中通过加药装置加入适量絮凝剂,反应完全后进入初沉池,初沉池的沉淀物(即污泥)经过泵和管道送入污泥池中,最后在污泥脱水装置中进行过滤分离,将垃圾渗滤液的 COD 降低10~35% ;
c 、电解
将絮凝沉淀处理后的垃圾渗滤液泵入电解机电解,电解后进入中间池,并投加还原剂,脱除电解产生的残余自由基;电解机的相邻两电极间的电压为2~12V,电流密度为10~320mA/cm2
d 、电容脱盐
当经过步骤 c 电解处理后垃圾渗滤液的电导率≥ 5000 µs/cm 时,先 经过步骤 d 电容脱盐处理,使其电导率降低为500~3000 µs/cm ,然后进入步骤 e 厌氧处理 ;当 经过步骤 c 电解处理后垃圾渗滤液的电导率<5000 µs/cm 时 ,直接进入步骤 e 厌氧处理 ;
e 、厌氧处理
电解处理或电容脱盐处理后的垃圾渗滤液依次进入水解酸化池和缺氧池中,停留时间为 8 ~ 72 小时,在水解酸化池内垃圾渗滤液中的大分子有机物在产酸菌的作用下水解酸化成小分子有机物,再经过缺氧池中厌氧菌、兼氧菌的吸附、发酵、产甲烷共同作用下分解成甲烷和二氧化碳,提高 B/C 值,改善可生化性;同时通过缺氧池中反硝化细菌的反硝化作用进一步脱除垃圾渗滤液中的氨氮;
f 、好氧处理
厌氧处理后的垃圾渗滤液进入含有好氧菌、硝化细菌和亚硝化细菌等微生物的好氧池内,停留时间为 16 ~ 360 小时,利用好氧微生物进一步氧化分解垃圾渗滤液中的有机物,深度去除垃圾渗滤液中的 COD 和 BOD ,同时利用硝化细菌的硝化作用和亚硝化细菌的亚硝化作用使氨态氮转化为硝态氮或亚硝态氮;此外,好氧池的部分混合液通过回流泵回流至缺氧池;
g 、二次电解
当经过好氧处理后的垃圾渗滤液的 COD ≥ 400mg/L 时,将 经过好氧处理后的垃圾渗滤液进行二次电解,使其中大分子有机物开环断链,提高可生化性,且电解时,电解机的相邻两电极间的电压为3~18V ,电流密度为20~320mA/cm2 ;当经过好氧处理后的垃圾渗滤液的 COD < 400mg/L时,则直接进入步骤 h 膜过滤;
h 、膜过滤
好氧处理或二次电解处理后的垃圾渗滤液流入二沉池,经过沉淀进一步去除垃圾渗滤液中的 COD 、 BOD 和 SS 后,经过膜过滤使出水达到再生水标准,二沉池底部的污泥一部分经泵回流至缺氧池中,另一部分通过管道流入污泥池中,再经污泥脱水装置过滤分离成滤液和泥饼,滤液经管道回流至调节池中,而泥饼则外运;
i 、膜过滤浓缩液的处理
步骤 h 膜过滤产生的浓缩液经过电容脱盐处理后,再经泵回流循环至缺氧池。
在步骤 a 中 , 所述氨氮吹脱装置为吹脱塔、填料塔或重力机的一种; 所述吹脱出的氨气用盐酸吸收生成氯化铵可回用于纯碱生产作母液,也可用水吸收生产氨水或用硫酸吸收生产硫酸铵副产品;
在 步骤 a 中, 所述 MgNH4PO4 • 6H2O (鸟粪石) 沉淀物经造粒等过程后,可开发作为复合肥使用。
在 步骤 b 中,所述絮凝剂为铝盐(硫酸铝、氯化铝)、铁盐(硫酸铁、硫酸亚铁、氯化铁)、聚铝(聚合氯化铝、聚合硫酸铝、聚合硅酸铝)、聚铁(聚合氯化铁、聚合硫酸铁、聚合硅酸铁)、 有机高分子絮凝剂或微生物絮凝剂中的一种或任意二种以上组合 ;所述 pH 调节剂为硫酸、盐酸、氢氧化钠、碳酸钠、碳酸氢钠、石灰中的一种。
在步骤 b 中,最佳絮凝剂为聚合硫酸铁(PFS),其投加量为每吨垃圾渗滤液200~2000g 。
在步骤 b 中,最佳絮凝剂为硫酸亚铁(FeSO4 ),其投加量为每吨垃圾渗滤液230~1800g 。
在步骤 c 中, 所述电解机设有电源和电解槽,电解槽内的电极材料为石墨、钛、铁、铝、锌、铜、铅、镍、钼、铬、金属的合金和纳米催化惰性电极等中的一种;所述纳米催化惰性电极的表层涂覆有晶粒为10~35nm 的金属氧化物惰性催化涂层;所述纳米催化惰性电极的基板可为钛板或塑料板。
进一步的,在步骤 c 中,所述的最佳电解是纳米催化电解,所述的纳米催化电解机的结构见中国专利CN102010038A ,电解的工作电压为2~500V , 相邻两电极间的电压为2~8 V ,电流密度为10~300mA/cm2
纳米催化电解垃圾渗滤液时,产生的游离基氯 [Cl] 、游离基氧 [O] 和羟基 [OH] 等强氧化性物质杀灭垃圾渗滤液中微生物、氧化分解垃圾渗滤液中的有机物、铵离子,使垃圾渗滤液中的有机物质大环开环,长链断链,既消除了垃圾渗滤液的色度,也去除了臭味,还提高垃圾渗滤液的可生化性,并使垃圾渗滤液在电场作用下脱稳,垃圾渗滤液中的悬浮物、胶体、带电微粒,形成较大颗粒。此外,垃圾渗滤液中的阳离子、阴离子分别向阴极和阳极移动,在阴极和阳极发生双电层作用和多电层作用,形成沉淀诱发絮凝作用,加速杂质沉降;电解产生的氢气小气泡还具有气浮效果。
采用纳米催化电解具有如下突出效果:
首先,通过电解使垃圾渗滤液中的大环化合物开环,长链断链,产生的游离基氧化分解有机物,快速降低 COD ,提高了垃圾渗滤液的可生化性,从而为后续的厌氧单元创造了更好的生化条件。
其次,通过电解产生的多种游离基(强氧化性物质)杀灭垃圾渗滤液中的微生物,使后续的厌氧处理中能培育出更大的优势菌群,发挥更好的生化效果,使厌氧处理的出水水质更好。
第三,氧化分解垃圾渗滤液中的无机铵,使铵离子转化为氮气、硝酸根、亚硝酸根和水,氨氮的脱除率可达80~90%,使进入生化前垃圾渗滤液的氨氮小于100mg/L ,同时消除水中臭味。
第四,大幅度降低垃圾渗滤液的色度,电解产生的氯 [Cl] 、羟基 [OH] 和氧 [O] 等强氧化性自由基可以氧化分解残留于垃圾渗滤液中发色基团、助色基团,降低垃圾渗滤液色度,达到脱色的目的。
第五,除臭,电解产生的多种游离基(强氧化性物质)氧化分解垃圾渗滤液中的发臭基团,去除垃圾渗滤液中的恶臭。
第六,电解时垃圾渗滤液中的阳离子和阴离子分别向电解机电解槽的阴极和阳极移动,发生双电层作用,在阴极和阳极附近形成沉淀,从而降低垃圾渗滤液中的重金属离子含量,从而减轻重金属离子对后续单元中厌氧、好氧微生物的抑制、毒害作用。
在步骤 f 中,所述混合液的回流比为3:1或2:1 ,有利于缺氧池中反硝化细菌的反硝化作用脱除垃圾渗滤液的氨氮。
在步骤 h 中, 所述膜过滤为 经过二沉池沉淀分离的垃圾渗滤液再经过 膜生物反应器( MBR )过滤; 所述 MBR 膜组件选自聚偏氟乙烯中空纤维膜、聚丙烯中空纤维膜、聚砜中空纤维膜、聚醚砜、聚丙烯腈和聚氯乙烯中空纤维膜中的一种,膜孔径为 0.10~0.2μm ,工作压力为 -1~ -50kPa ,工作温度为5~45 ℃。
在步骤 h 中, 所述膜过滤为 经过二沉池沉淀分离的垃圾渗滤液经过浸没式超滤或柱式超滤过滤后,再经过纳滤过滤;所述超滤为浸没式超滤、柱式超滤、管式超滤、卷式超滤或板式超滤的一种,截留分子量为1000 ~100000MWCO ,工作条件为:常温~45 ℃,浸没式超滤的工作压力为 -1~ -50kPa ,柱式超滤、管式超滤、卷式超滤和板式超滤的工作压力为3~300kPa ;所述纳滤的膜组件为卷式膜组件,纳滤膜的膜材料为有机膜中醋酸纤维膜或复合纳滤膜,纳滤膜的截留分子量为200~500MWCO ,进压为 6.0~45.0bar ,出压为4.5~43.5 bar 。
在 步骤 h 中, 所述膜过滤为 经过二沉池沉淀分离的垃圾渗滤液经过超滤过滤后,再经过反渗透(RO)过滤;所述反渗透的膜组件为卷式膜组件,膜材料为有机膜中醋酸纤维膜或复合膜,膜材料的截留分子量为50~200MWCO ,进压可为6.0~45.0bar ,出压可为4.5~35 bar 。
有益效果
由上述对本发明的描述可知,和现有技术相比,本发明的优点在于:
( 1 )通过电解步骤,使垃圾渗滤液中难以生物降解的萘、菲等非氯化芳香族化合物、氯化芳香族化物,磷酸酯,邻苯二甲酸酯,酚类化合物和苯胺类化合物等开环、断链,不仅可以降低 COD ,而且提高了垃圾渗滤液的可生化性,同时对脱氨氮后的残余氨氮的脱除率可达80~90% ,同时通过电解絮凝沉淀作用有效去除垃圾渗滤液中重金属离子,为后续的处理工艺创造更好的生化条件。
( 2 )纳米催化电解机采用表面覆盖有具有良好催化效果晶粒为10~35nm 的纳米催化涂层的惰性电极作阳极,阳极不消耗,成本低,电效率高,是普通电极电解效率的 10 倍以上,吨垃圾渗滤液处理消耗的电能大幅度减少。
( 3 )通过厌氧处理和好氧处理的生物处理方法能进一步有效降低垃圾渗滤液中的氨氮、COD 和 BOD 。
( 4 )通过上述各步骤有序配合能保证垃圾渗滤液处理后各项指标均达到《生活垃圾填埋场污染控制标准》(GB16889-2008 )排放标准的要求,为填埋场渗滤液的处理提供了可靠的保证。
( 5 ) 通过将膜过滤浓缩液再经过电容离子吸附脱盐后,再回流入生物系统,彻底解决膜过滤浓缩液的排放问题。
附图说明
图 1 为本发明的工艺流程图。
本发明的最佳实施方式
实施例 1
某垃圾卫生填埋场 1000 吨 / 日的渗滤液处理工程
所述的垃圾渗滤液原水经测定水质情况如表 2 所示。
表 2 垃圾渗滤液原水的水质情况。
序号 项目 单位 测定值 序号 项目 单位 测定值
1 CODCr mg/L 16800 5 氨氮 mg/L 1240
2 SS mg/L 570 6 色度 1200
3 浊度 NTU 505 7 pH 值 - 6.8
4 BOD5 mg/L 2866 8 电导率 µS/cm 4300
步骤 a 、脱氨氮
垃圾渗滤液经管道进入调节池调节水质,均衡水量,使得来自垃圾填埋场各处的不同性质的垃圾渗滤液的流量及参数得以充分调节,便于后续单元的处理。并在调节池中通过加药装置加入 氢氧化钠溶液 调节 pH 值至 9~11 ,然后流入反应池中,在反应池中通过加药装置投加 Mg (OH)2和 H3PO4 ,使其 与 NH4+ 反应生成 MgNH4PO4 • 6H2O (鸟粪石)沉淀, 以达到去除氨氮的目的,使其氨氮浓度≤ 200mg/L 后进入混凝池; 鸟粪石 沉淀物则经造粒等过程后,开发作为复合肥使用 。
步骤 b 、絮凝沉淀
垃圾渗滤液脱氨氮后流入混凝池,每吨垃圾渗滤液加入 200g 聚合硫酸铁( PFS )反应完全后进入初沉池,初沉池的沉淀(即污泥)经过泵和管道送入污泥池中,最后在污泥脱水装置中进行过滤分离;将垃圾渗滤液的 COD降低10~35% 后进入电解机。
上述聚合硫酸铁为絮凝剂。絮凝剂可以是铝盐(硫酸铝、氯化铝)、铁盐(硫酸铁、硫酸亚铁、氯化铁)、聚铝(聚合氯化铝、聚合硫酸铝、聚合硅酸铝)、聚铁(聚合氯化铁、聚合硫酸铁、聚合硅酸铁)、有机高分子絮凝剂或微生物絮凝剂中的一种或任意二种以上组合。
步骤 c 、电解
垃圾渗滤液经过絮凝沉淀后流入电解机电解,然后进入中间池,并投加还原剂,脱除电解产生的残余自由基。所述电解机为纳米催化电解机,其工作电压为40V ,电流密度为 20mA/cm2 ,两极间的电压为 3.5 V 。纳米催化微电解产生的强氧化性的自由基氯 [Cl] 、氧 [O] 和羟基 [OH] 能快速氧化分解垃圾渗滤液中的有机物质,使垃圾渗滤液中难于生化降解的大有机分子开环、断链、大分子分解为小分子,降低 COD 和提高垃圾渗滤液的可生化,为生化提供更好的条件;同时使垃圾渗滤液中的染料分子的发色基团、助色基团氧化或还原为无色基团,达到脱色的目的;再者,垃圾渗滤液中的阳离子和阴离子分别向电解机电解槽的阴极和阳极移动,在阴极和阳极附近形成沉淀,从而降低垃圾渗滤液中的重金属离子含量,从而减轻重金属离子对后续单元中厌氧、好氧微生物的抑制、毒害作用;此外,还可以杀灭垃圾渗滤液中微生物,并使垃圾渗滤液中的悬浮物、胶体、带电微粒在电场作用下形成较大颗粒。
步骤 d 、厌氧处理
电解处理后的垃圾渗滤液的电导率< 5000 µs/cm ,因此直接 进入水解酸化池和缺氧池中,停留时间为 10 小时,在水解酸化池内垃圾渗滤液中的大分子有机物在产酸菌的作用下水解酸化成小分子有机物,再经过缺氧池中厌氧菌、兼氧菌的吸附、发酵、产甲烷共同作用下分解成甲烷和二氧化碳,提高 B/C 值,改善可生化性;同时通过缺氧池中反硝化细菌的反硝化作用进一步脱除垃圾渗滤液中的氨氮。
步骤 e 、好氧处理
厌氧处理后的垃圾渗滤液进入含有好氧菌、硝化细菌和亚硝化细菌等微生物的好氧池内,停留时间为 18 小时,利用好氧微生物进一步氧化分解垃圾渗滤液中的有机物,深度去除垃圾渗滤液中的 COD 和 BOD ,同时利用硝化细菌的硝化作用和亚硝化细菌的亚硝化作用使氨态氮转化为硝态氮或亚硝态氮;此外,好氧池的混合液以 2:1 的比例通过回流泵回流至缺氧池。
步骤 f 、膜过滤
好氧处理后的垃圾渗滤液的 COD<400mg/L ,直接 流入二沉池,经过沉淀进一步去除垃圾渗滤液中的 COD 、 BOD 、 SS 等,经过 MBR 过滤分离使出水达到再生水标准,二沉池底部的污泥一部分经泵回流至缺氧池中,另一部分通过管道流入污泥池中,再经污泥脱水装置过滤分离成滤液和泥饼,滤液经管道回流至调节池中,而泥饼则外运。
所述 MBR 膜组件为聚丙烯中空纤维膜,膜孔径为0.10~0.2μm ,工作压力为 -1~-50kPa,工作温度为5~45 ℃。
g 、膜过滤浓缩液的处理
步骤 f 中 MBR 过滤产生的浓缩液经过电容脱盐处理后,再经泵回流循环至缺氧池。
表 3 处理后的垃圾渗滤液的出水水质情况
序号 项目 单位 测定值 序号 项目 单位 测定值
1 CODCr mg/L 58 5 氨氮 mg/L ≤ 5
2 SS mg/L ≤ 5 6 色度 8
3 浊度 NTU ≤ 5 7 pH 值 - 7.2
4 BOD5 mg/L 16 8 电导率 µS/cm ≤ 3500
本发明的实施方式
实施例 2
某垃圾卫生填埋场 300 吨 / 日的渗滤液处理工程
所述的垃圾渗滤液原水经测定指标如表 4 所示。
表 4 垃圾渗滤液原水的水质情况。
序号 项目 单位 测定值 序号 项目 单位 测定值
1 CODCr mg/L 89600 5 氨氮 mg/L 3660
2 SS mg/L 802 6 色度 2500
3 浊度 NTU 730 7 pH 值 - 9.3
4 BOD5 mg/L 17900 8 电导率 µS/cm 9030
步骤 a 、脱氨氮
垃圾渗滤液经管道进入调节池调节水质,均衡水量,使得来自垃圾填埋场各处的不同性质的垃圾渗滤液的流量及参数得以充分调节,便于后续单元的处理。并在调节池中通过加药装置加入石灰调节 pH 值至 10~11 ,然后流入吹脱塔中,通过蒸汽吹脱使垃圾渗滤液中的高浓度氨氮转换成游离的氨而被吹出,以达到去除氨氮的目的,使其氨氮浓度≤ 200mg/L 后进入后混凝池;吹脱出的氨气则用盐酸吸收生成氯化铵回用于纯碱生产作母液。
步骤 b 、絮凝沉淀
垃圾渗滤液脱氨氮后流入混凝池,每吨垃圾渗滤液加入 250g 硫酸亚铁(FeSO4),反应完全后进入初沉池,初沉池的沉淀(即污泥)经过泵和管道送入污泥池中,最后在污泥脱水装置中进行过滤分离;垃圾渗滤液的 COD 降低10~35% 后流入电解机。
上述硫酸亚铁为絮凝剂。絮凝剂可以是铝盐(硫酸铝、氯化铝)、铁盐(硫酸铁、硫酸亚铁、氯化铁)、聚铝(聚合氯化铝、聚合硫酸铝、聚合硅酸铝)、聚铁(聚合氯化铁、聚合硫酸铁、聚合硅酸铁)、有机高分子絮凝剂或微生物絮凝剂中的一种或任意二种以上组合。
步骤 c 、电解
垃圾渗滤液经过絮凝沉淀后流入电解机电解,电解后进入中间池,并投加还原剂,脱除电解产生的残余自由基;电解机工作电压为4V ,电流密度为150mA/cm2,相邻两极间的电压为2V。
步骤 d 、电容脱盐
步骤 c 电解处理后垃圾渗滤液的电导率> 5000 µs/cm ,先进行 电容脱盐处理,使其电导率降低为500~3000 µs/cm 后进入步骤 e 厌氧处理 。
步骤 e 、厌氧处理
电容脱盐处理后的垃圾渗滤液依次进入水解酸化池和缺氧池中,停留时间为 36 小时,在水解酸化池内垃圾渗滤液中的大分子有机物在产酸菌的作用下水解酸化成小分子有机物,再经过缺氧池中厌氧菌、兼氧菌的吸附、发酵、产甲烷共同作用下分解成甲烷和二氧化碳,提高 B/C 值,改善可生化性;同时通过缺氧池中反硝化细菌的反硝化作用进一步脱除垃圾渗滤液中的氨氮。
步骤 f 、好氧处理
厌氧处理后的垃圾渗滤液进入含有好氧菌、硝化细菌和亚硝化细菌等微生物的好氧池内,停留时间为 180 小时,利用好氧微生物进一步氧化分解垃圾渗滤液中的有机物,深度去除垃圾渗滤液中的 CODCr 和 BOD5 ,同时利用硝化细菌的硝化作用和亚硝化细菌的亚硝化作用使氨态氮转化为硝态氮或亚硝态氮;此外,好氧池的混合液以 2:1 的比例通过回流泵回流至缺氧池。
步骤 g 、二次电解
好氧处理后的垃圾渗滤液的 COD ≥ 400mg/L ,因此 流入电解机进行二次电解,使其中大分子有机物开环断链,提高可生化性,且电解时,电解机的相邻两电极间的电压为 5V ,电流密度为 190mA/cm2
步骤 h 、膜过滤
二次电解处理后的垃圾渗滤液流入二沉池,经过沉淀进一步去除垃圾渗滤液中的 COD 、 BOD 和 SS 后,依次经过 浸没式超滤和纳滤 过滤使出水达到再生水标准,二沉池底部的污泥一部分经泵回流至缺氧池中,另一部分通过管道流入污泥池中,再经污泥脱水装置过滤分离成滤液和泥饼,滤液经管道回流至调节池中,而泥饼则外运。
所述浸没式超滤的工作条件为:常温至45 ℃ ,工作压力为-1~ -50kPa ;所述纳滤的膜组件为卷式膜组件,膜材料为复合纳滤膜,进压为 6.0 ~ 45.0bar ,出压为 4.5 ~ 43.5 bar 。
上述超滤装置为浸没式超滤。超滤装置可以是浸没式超滤、柱式超滤、管式超滤、卷式超滤或板式超滤的一种。
步骤 i 、膜过滤浓缩液的处理
步骤 h 浸没式超滤和纳滤 过滤产生的浓缩液经过电容脱盐处理后,再经泵回流循环至缺氧池。
表 5 处理后的垃圾渗滤液的出水水质情况
序号 项目 单位 测定值 序号 项目 单位 测定值
1 CODCr mg/L 54 5 氨氮 mg/L ≤ 5
2 SS mg/L ≤ 5 6 色度 3
3 浊度 NTU ≤ 5 7 pH 值 - 7.2
4 BOD5 mg/L 17 8 电导率 µS/cm ≤ 1200
实施例 3
某垃圾卫生填埋场 1500 吨 / 日的渗滤液处理工程
所述的垃圾渗滤液原水经测定指标如表 6 所示。
表 6 垃圾渗滤液原水的水质情况。
序号 项目 单位 测定值 序号 项目 单位 测定值
1 CODCr mg/L 284300 5 氨氮 mg/L 4510
2 SS mg/L 1381 6 色度 4500
3 浊度 NTU 1200 7 pH 值 - 9.5
4 BOD5 mg/L 42800 8 电导率 µS/cm 11290
步骤 a 、脱氨氮
垃圾渗滤液经管道进入调节池调节水质,均衡水量,使得来自垃圾填埋场各处的不同性质的垃圾渗滤液的流量及参数得以充分调节,便于后续单元的处理。并在调节池中通过加药装置加入 石灰 调节 pH 值至 10~11 ,然后流入重力机中,通过空气吹脱使垃圾渗滤液中的高浓度氨氮转换成游离的氨而被吹出,以达到去除氨氮的目的,使其氨氮浓度≤ 200mg/L 后进入混凝池, 吹脱出的氨气则 用硫酸吸收生产硫酸铵副产品
步骤 b 、絮凝沉淀
垃圾渗滤液脱氨氮后流入混凝池,每吨垃圾渗滤液加入 1500g 硫酸亚铁(FeSO4),反应完全后进入初沉池,初沉池的沉淀(即污泥)经过泵和管道送入污泥池中,最后在污泥脱水装置中进行过滤分离;将垃圾渗滤液的 COD 降低 10 ~ 35% 后进入电解机。
上述硫酸亚铁为絮凝剂。絮凝剂可以是铝盐(硫酸铝、氯化铝)、铁盐(硫酸铁、硫酸亚铁、氯化铁)、聚铝(聚合氯化铝、聚合硫酸铝、聚合硅酸铝)、聚铁(聚合氯化铁、聚合硫酸铁、聚合硅酸铁)、有机高分子絮凝剂或微生物絮凝剂中的一种或任意二种以上组合。
步骤 c 、电解
将絮凝沉淀处理后的垃圾渗滤液泵入电解机电解,电解后进入中间池,并投加还原剂,脱除电解产生的残余自由基;电解机的电流密度为 320mA/cm2 ,两极间的电压为 12 V 。
步骤 d 、电容脱盐
经过步骤 c 电解处理后垃圾渗滤液的电导率≥ 5000 µs/cm ,因此先 经过电容脱盐处理,使其电导率降低为500~3000 µs/cm 后进入步骤 e 厌氧处理。
步骤 e 、厌氧处理
电容脱盐处理后的垃圾渗滤液依次进入水解酸化池和缺氧池中,停留时间为 72 小时,在水解酸化池内垃圾渗滤液中的大分子有机物在产酸菌的作用下水解酸化成小分子有机物,再经过缺氧池中厌氧菌、兼氧菌的吸附、发酵、产甲烷共同作用下分解成甲烷和二氧化碳,提高 B/C 值,改善可生化性;同时通过缺氧池中反硝化细菌的反硝化作用进一步脱除垃圾渗滤液中的氨氮。
步骤 f 、好氧处理
厌氧处理后的垃圾渗滤液进入含有好氧菌、硝化细菌和亚硝化细菌等微生物的好氧池内,停留时间为 280 小时,利用好氧微生物进一步氧化分解垃圾渗滤液中的有机物,深度去除垃圾渗滤液中的 CODCr 和 BOD5 ,同时利用硝化细菌的硝化作用和亚硝化细菌的亚硝化作用使氨态氮转化为硝态氮或亚硝态氮;此外,好氧池的混合液以 3:1 的比例通过回流泵回流至缺氧池。
步骤 g 、二次电解
好氧处理后的垃圾渗滤液的 COD ≥ 400mg/L ,因此 流入电解机进行二次电解,使其中大分子有机物开环断链,提高可生化性,且电解时,电解机的相邻两电极间的电压为16V ,电流密度为300mA/cm2
步骤 h 、膜过滤
二次电解处理后的垃圾渗滤液流入二沉池,经过沉淀进一步去除垃圾渗滤液中的 COD 、 BOD 和 SS 后,依次经过 柱式超滤和反渗透 过滤使出水达到再生水标准,二沉池底部的污泥一部分经泵回流至缺氧池中,另一部分通过管道流入污泥池中,再经污泥脱水装置过滤分离成滤液和泥饼,滤液经管道回流至调节池中,而泥饼则外运。
所述柱式超滤的工作条件为:常温~45 ℃ ,工作压力为3~300kPa ;所述反渗透的膜组件为卷式膜组件,膜材料为复合膜,进压可为6.0~45.0bar,出压可为4.5~35 bar 。
上述超滤装置为柱式超滤。超滤装置可以是浸没式超滤、柱式超滤、管式超滤、卷式超滤或板式超滤的一种。
步骤 i 、膜过滤浓缩液的处理
步骤 h 柱式超滤和反渗透 过滤产生的浓缩液经过电容脱盐处理后,再经泵回流循环至缺氧池。
表 7 处理后的垃圾渗滤液的出水水质情况
序号 项目 单位 测定值 序号 项目 单位 测定值
1 CODCr mg/L 46 5 氨氮 mg/L ≤ 5
2 SS mg/L ≤ 5 6 色度 5
3 浊度 NTU ≤ 5 7 pH 值 - 7.2
4 BOD5 mg/L 21 8 电导率 µS/cm ≤ 100
工业实用性
本发明的方法可在工业上实施,具备良好的工业实用性。
序列表自由内容

Claims (12)

  1. 一种垃圾渗滤液的处理方法,其特征在于它包括以下步骤:
    a 、脱氨氮
    垃圾渗滤液经管道进入调节池调节水质,均衡水量,并在调节池中通过加药装置加入 pH 调节剂,调节 pH 值后流入氨氮吹脱装置或者反应池中,在氨氮吹脱装置中通过蒸汽或空气吹脱使垃圾渗滤液中的高浓度氨氮转换成游离的氨而被吹出,或者在反应池中通过加药装置投加适量的 Mg (OH)2 和 H3PO4 ,与 NH4+ 反应生成 MgNH4PO4 • 6H2O 沉淀,以达到去除氨氮的目的,使其氨氮浓度≤ 200mg/L 后进入后续处理工序;
    b 、絮凝沉淀
    垃圾渗滤液脱氨氮后流入混凝池,在混凝池中通过加药装置加入适量絮凝剂,反应完全后进入初沉池,初沉池的沉淀物经过泵和管道送入污泥池中,最后在污泥脱水装置中进行过滤分离,将垃圾渗滤液的 COD 降低 10 ~ 35% ;
    c 、电解
    将絮凝沉淀处理后的垃圾渗滤液泵入电解机电解,电解后进入中间池,并投加还原剂,脱除电解产生的残余自由基;电解机的相邻两电极间的电压为2~12V ,电流密度为10~320mA/cm2
    d 、电容脱盐
    当经过步骤 c 电解处理后垃圾渗滤液的电导率≥ 5000µs/cm 时,先经过步骤 d 电容脱盐处理,使其电导率降低为500~3000µs/cm ,然后进入步骤 e 厌氧处理;当经过步骤 c 电解处理后垃圾渗滤液的电导率< 5000µs/cm 时,直接进入步骤 e 厌氧处理;
    e 、厌氧处理
    电解处理或电容脱盐处理后的垃圾渗滤液依次进入水解酸化池和缺氧池中,停留时间为 8 ~ 72 小时,在水解酸化池内垃圾渗滤液中的大分子有机物在产酸菌的作用下水解酸化成小分子有机物,再经过缺氧池中厌氧菌、兼氧菌的吸附、发酵、产甲烷共同作用下分解成甲烷和二氧化碳,提高 B/C 值,改善可生化性;同时通过缺氧池中反硝化细菌的反硝化作用进一步脱除垃圾渗滤液中的氨氮;
    f 、好氧处理
    厌氧处理后的垃圾渗滤液进入含有好氧菌、硝化细菌和亚硝化细菌的好氧池内,停留时间为 16 ~ 360 小时,利用好氧微生物进一步氧化分解垃圾渗滤液中的有机物,深度去除垃圾渗滤液中的 COD 和 BOD ,同时利用硝化细菌的硝化作用和亚硝化细菌的亚硝化作用使氨态氮转化为硝态氮或亚硝态氮;此外,好氧池的部分混合液通过回流泵回流至缺氧池;
    g 、二次电解
    当经过好氧处理后的垃圾渗滤液的 COD ≥ 400mg/L 时,将经过好氧处理后的垃圾渗滤液进行二次电解,使其中大分子有机物开环断链,提高可生化性,且电解时,电解机的相邻两电极间的电压为3~18V ,电流密度为20~320mA/cm2 ;当经过好氧处理后的垃圾渗滤液的 COD < 400mg/L 时,则直接进入步骤 h 膜过滤;
    h 、膜过滤
    好氧处理或二次电解处理后的垃圾渗滤液流入二沉池,经过沉淀进一步去除垃圾渗滤液中的 COD 、 BOD 和 SS 后,经过膜过滤使出水达到再生水标准,二沉池底部的污泥一部分经泵回流至缺氧池中,另一部分通过管道流入污泥池中,再经污泥脱水装置过滤分离成滤液和泥饼,滤液经管道回流至调节池中,而泥饼则外运;
    i 、膜过滤浓缩液的处理
    步骤 h 膜过滤产生的浓缩液经过电容脱盐处理后,再经泵回流循环至缺氧池。
  2. 如权利要求 1 所述的一种垃圾渗滤液的处理方法,其特征在于:步骤 a 中所述氨氮吹脱装置为吹脱塔、填料塔或重力机;所述吹脱出的氨气用盐酸吸收生成氯化铵回用于纯碱生产作母液,或用水吸收生产氨水或用硫酸吸收生产硫酸铵副产品。
  3. 如权利要求 1 所述的一种垃圾渗滤液的处理方法,其特征在于:步骤 a 中所述 MgNH4PO4 • 6H2O 沉淀物经造粒过程后,开发作为复合肥使用。
  4. 如权利要求 1 所述的一种垃圾渗滤液的处理方法,其特征在于:步骤 b 中所述絮凝剂为铝盐、铁盐、聚铝、聚铁、有机高分子絮凝剂或微生物絮凝剂中的一种或任意二种以上组合,所述铝盐为硫酸铝或氯化铝,所述铁盐为硫酸铁、硫酸亚铁或氯化铁,所述聚铝为聚合氯化铝、聚合硫酸铝或聚合硅酸铝,所述聚铁为聚合氯化铁、聚合硫酸铁或聚合硅酸铁;所述 pH 调节剂为硫酸、盐酸、氢氧化钠、碳酸钠、碳酸氢钠、石灰中的一种。
  5. 如权利要求 1 或 4 所述的一种垃圾渗滤液的处理方法,其特征在于:步骤 b 中所述最佳絮凝剂为聚合硫酸铁,其投加量为每吨垃圾渗滤液 200 ~ 2000g 。
  6. 如权利要求 1 或 4 所述的一种垃圾渗滤液的处理方法,其特征在于:步骤 b 中所述最佳絮凝剂为硫酸亚铁,其投加量为每吨垃圾渗滤液 230 ~ 1800g 。
  7. 如权利要求 1 所述的一种垃圾渗滤液的处理方法,其特征在于:步骤 c 中所述电解机设有电源和电解槽,电解槽内的电极材料为石墨、钛、铁、铝、锌、铜、铅、镍、钼、铬、金属的合金和纳米催化惰性电极中的一种;所述纳米催化惰性电极的表层涂覆有晶粒为 10 ~ 35nm 的金属氧化物惰性催化涂层;所述纳米催化惰性电极的基板为钛板或塑料板。
  8. 如权利要求 1 或 7 所述的一种垃圾渗滤液的处理方法,其特征在于:步骤 c 中所述最佳电解是纳米催化电解,电解的工作电压为 2 ~ 500V , 相邻两电极间的电压为2~8 V ,电流密度为10~300mA/cm2
  9. 如权利要求 1 所述的一种垃圾渗滤液的处理方法,其特征在于:步骤 f 中所述混合液的回流比为 3:1 或 2:1 。
  10. 如权利要求 1 所述的一种垃圾渗滤液的处理方法,其特征在于:步骤 h 中所述膜过滤为经过二沉池沉淀分离的垃圾渗滤液再经过膜生物反应器过滤;所述膜生物反应器膜组件选自聚偏氟乙烯中空纤维膜、聚丙烯中空纤维膜、聚砜中空纤维膜、聚醚砜、聚丙烯腈和聚氯乙烯中空纤维膜中的一种,膜孔径为0.10~0.2 μ m ,工作压力为 -1~-50kPa ,工作温度为 5 ~ 45 ℃。
  11. 如权利要求 1 所述的一种垃圾渗滤液的处理方法,其特征在于:步骤 h 中所述膜过滤为经过二沉池沉淀分离的垃圾渗滤液经过超滤过滤后,再经过纳滤过滤;所述超滤为浸没式超滤、柱式超滤、管式超滤、卷式超滤或板式超滤,截留分子量为1000~100000MWCO ,工作条件为:常温~ 45 ℃,浸没式超滤的工作压力为 -1~ -50kPa ,柱式超滤、管式超滤、卷式超滤和板式超滤的工作压力为3~300kPa ;所述纳滤的膜组件为卷式膜组件,纳滤膜的膜材料为有机膜中醋酸纤维膜或复合纳滤膜,纳滤膜的截留分子量为200~500MWCO ,进压为6.0 ~45.0bar ,出压为 4.5 ~ 43.5 bar 。
  12. 如权利要求 1 所述的一种垃圾渗滤液的处理方法,其特征在于:步骤 h 中所述膜过滤为经过二沉池沉淀分离的垃圾渗滤液先经过超滤过滤后,再经过反渗透( RO )过滤;所述反渗透的膜组件为卷式膜组件,膜材料为有机膜中醋酸纤维膜或复合膜,膜材料的截留分子量为 50 ~ 200MWCO ,进压为6.0~45.0bar ,出压为4.5~35 bar 。
PCT/CN2013/076203 2012-03-29 2013-05-24 垃圾渗滤液的处理方法 WO2013143506A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210086595.8 2012-03-29
CN2012100865958A CN102786183B (zh) 2012-03-29 2012-03-29 垃圾渗滤液的处理方法

Publications (1)

Publication Number Publication Date
WO2013143506A1 true WO2013143506A1 (zh) 2013-10-03

Family

ID=47151796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076203 WO2013143506A1 (zh) 2012-03-29 2013-05-24 垃圾渗滤液的处理方法

Country Status (2)

Country Link
CN (1) CN102786183B (zh)
WO (1) WO2013143506A1 (zh)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105859042A (zh) * 2016-05-18 2016-08-17 哈尔滨工业大学深圳研究生院 一种污水处理方法以及系统
CN106587443A (zh) * 2017-01-23 2017-04-26 福建海西滤水龙头研究中心有限公司 一种垃圾中转站垃圾液过滤设备
CN106630300A (zh) * 2017-01-23 2017-05-10 福建海西滤水龙头研究中心有限公司 一种垃圾中转站垃圾渗滤液处理设备
CN106830505A (zh) * 2017-01-23 2017-06-13 同舟纵横(厦门)流体技术有限公司 一种vb12废水零排放处理系统及处理工艺
CN107721088A (zh) * 2017-11-23 2018-02-23 荣成市固废综合处理与应用产业园有限公司 一种处理垃圾渗滤液膜滤浓缩液装置
CN107963789A (zh) * 2017-12-29 2018-04-27 山东泰禾环保科技股份有限公司 电镀废水零排放处理工艺及其装置
CN108409045A (zh) * 2018-04-12 2018-08-17 广东雅迪环保设备有限公司 高效生化低量富集的垃圾渗滤液处理工艺及其处理系统
CN108675565A (zh) * 2018-06-20 2018-10-19 启迪桑德环境资源股份有限公司 一种深度处理垃圾渗滤液的系统及方法
CN108706815A (zh) * 2018-05-04 2018-10-26 广东中科环境工程技术有限公司 一种印染厂废水处理回用系统及处理回用方法
DE102017207286A1 (de) * 2017-04-28 2018-10-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und vorrichtung zur aufbereitung von abfallprodukten
CN109081510A (zh) * 2018-08-31 2018-12-25 武汉天源环保股份有限公司 一种乡镇垃圾转运站渗滤液一体化处理方法和装置
CN109179924A (zh) * 2018-11-29 2019-01-11 湖南军信环保股份有限公司 一种协同处理垃圾焚烧厂渗滤液和污泥压滤液的方法及系统
CN109809638A (zh) * 2019-02-28 2019-05-28 武汉天源环保股份有限公司 垃圾渗滤液无膜法处理方法及系统
CN109879495A (zh) * 2019-04-12 2019-06-14 武汉轻工大学 一种地表水的水处理系统及水处理方法
CN109879483A (zh) * 2019-04-12 2019-06-14 武汉轻工大学 一种微污染水源水的水处理系统及水处理方法
CN109879496A (zh) * 2019-04-12 2019-06-14 武汉轻工大学 一种去除饮用水中腐植酸的水处理系统及水处理方法
CN109987794A (zh) * 2019-04-25 2019-07-09 云南今业生态建设集团有限公司 一种化纤厂污水处理系统
CN110240342A (zh) * 2019-06-26 2019-09-17 山东百川集大环境工程有限公司 一种干旱寒冷地区垃圾渗滤液处理装置和方法
CN110255831A (zh) * 2019-07-16 2019-09-20 南京中船绿洲环保有限公司 一种新型船用生活污水处理装置
CN110304779A (zh) * 2019-07-19 2019-10-08 中节能工程技术研究院有限公司 一种垃圾渗滤液厌氧出水的物化脱氨方法和处理系统
CN110451644A (zh) * 2019-09-11 2019-11-15 山东北成环境工程有限公司 垃圾渗滤液厌氧氨氧化深度脱氮组合处理装置及工艺
CN110540342A (zh) * 2019-09-03 2019-12-06 江苏通用环保集团有限公司 餐厨废水处理装置及处理方法
CN111547939A (zh) * 2020-05-09 2020-08-18 四川省生态环境科学研究院 一种高浓度废水除磷工艺
CN111825220A (zh) * 2020-06-30 2020-10-27 深圳文科园林股份有限公司 厌氧消化液的处理方法与废水处理装置
CN111995173A (zh) * 2020-07-17 2020-11-27 武汉上善清源环保科技有限公司 一种集成式厨余垃圾渗滤液处理装置
CN112010496A (zh) * 2020-07-14 2020-12-01 武汉上善清源环保科技有限公司 一种高效垃圾渗滤液处理装置
CN112110601A (zh) * 2019-06-19 2020-12-22 祝来宏 一种垃圾渗滤液的处理方法及其装置
CN112299669A (zh) * 2020-11-26 2021-02-02 桂润环境科技股份有限公司 一种垃圾渗滤液处理系统、监测系统及处理方法
CN112479501A (zh) * 2020-12-01 2021-03-12 四川环科美能环保科技有限公司 一种泡菜浸渍水的处理方法
CN112591984A (zh) * 2020-11-24 2021-04-02 南京万德斯环保科技股份有限公司 一种垃圾渗滤液零排放处理方法及系统
CN112624337A (zh) * 2020-12-04 2021-04-09 安徽欣瑞环保科技有限公司 一种垃圾渗滤液处理装置
CN112645498A (zh) * 2020-12-31 2021-04-13 维尔利环保科技集团股份有限公司 一种高镁垃圾渗滤液反渗透浓缩液处理方法
CN112777853A (zh) * 2020-12-18 2021-05-11 天津大学 一种可移动式复合污染废水处理装置及其工艺
CN112875992A (zh) * 2021-01-25 2021-06-01 新地环保技术有限公司 一种垃圾渗滤液处置方法及系统
CN113003726A (zh) * 2021-03-04 2021-06-22 重庆理工大学 垃圾渗滤液反渗透膜滤浓缩液的处理方法
CN113045113A (zh) * 2021-03-12 2021-06-29 佛山市诚德新材料有限公司 废渣烘干处理系统
CN113443794A (zh) * 2021-08-11 2021-09-28 南通固润环保科技有限公司 一种垃圾渗滤液处理系统
CN113526805A (zh) * 2021-08-20 2021-10-22 南京澎源环保科技有限公司 一种解除难降解化工废水生物毒性的方法
CN114057347A (zh) * 2020-07-30 2022-02-18 北京国环莱茵环保科技股份有限公司 一种垃圾焚烧厂渗滤液的全流程处理系统及处理方法
CN114105395A (zh) * 2020-08-27 2022-03-01 苏州希图环保科技有限公司 垃圾渗滤液废水处理工艺
CN114275976A (zh) * 2021-12-31 2022-04-05 珠海力新环保有限公司 一种垃圾渗滤液全量化处理工艺
CN114315017A (zh) * 2021-12-17 2022-04-12 江南大学 一种垃圾中转站渗滤液处理工艺及装备
CN114644425A (zh) * 2020-12-21 2022-06-21 华岷环保科技(上海)有限公司 高盐含量、高cod值的纤维素醚工业废水的处理方法
CN114906993A (zh) * 2022-07-13 2022-08-16 天津高能时代水处理科技有限公司 一种高氨氮垃圾渗滤液的处理系统及方法
CN115072935A (zh) * 2022-07-13 2022-09-20 张家口城洁环保集团有限公司 垃圾渗滤液与dtro浓缩液的废水处理工艺及装置
CN115093054A (zh) * 2022-07-06 2022-09-23 山东理工大学 一种垃圾渗滤液无害化处理方法
CN115196814A (zh) * 2022-05-23 2022-10-18 陕西化工研究院有限公司 一种垃圾渗滤液的处理方法
CN115196822A (zh) * 2022-06-28 2022-10-18 福建坤净生环保科技有限公司 一种垃圾反渗透浓缩液新型处置方法
CN116022960A (zh) * 2022-12-30 2023-04-28 安徽蓝鼎环保能源科技有限公司 一种基于微孔曝气的垃圾渗滤液全量化零排放处理工艺
WO2023170328A1 (es) * 2022-03-11 2023-09-14 Química Técnica Ecológica, S.L.U. Proceso para el tratamiento de aguas y suspensiones acuosas con elevados contenidos de sales, amoníaco, ácido sulfhídrico y materia orgánica
CN117105492A (zh) * 2023-10-25 2023-11-24 常熟理工学院 一种利用超临界水发生器净化高浓缩垃圾渗滤液的方法及其产品
CN110240342B (zh) * 2019-06-26 2024-04-09 山东百川集大环境工程有限公司 一种干旱寒冷地区垃圾渗滤液处理装置和方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102786183B (zh) * 2012-03-29 2013-06-12 波鹰(厦门)科技有限公司 垃圾渗滤液的处理方法
CN103172217A (zh) * 2013-02-26 2013-06-26 吉林市环境保护科学研究院 规模化畜禽养殖污水处理方法及设备
CN103241912B (zh) * 2013-05-31 2014-04-02 波鹰(厦门)科技有限公司 一种烟草薄片生产废水的处理方法
CN103265151B (zh) * 2013-06-09 2014-12-03 广东新大禹环境工程有限公司 重金属废水的处理方法
CN103539319B (zh) * 2013-10-31 2014-10-08 华北电力大学 一种垃圾渗滤液处理装置
CN103626251A (zh) * 2013-12-04 2014-03-12 彭传义 三相共沸驱氨法
CN103951141B (zh) * 2014-05-08 2015-12-30 东莞市环境科学研究所 一种垃圾渗滤液处理工艺及处理装置
CN105271477A (zh) * 2014-06-06 2016-01-27 蒋寿悟 一种城市垃圾填埋场渗滤液的深度处理方法
CN104787867A (zh) * 2015-05-04 2015-07-22 李练红 一种用于河涌湖泊水体原生态修复的絮凝剂及应用
CN105018961B (zh) * 2015-07-02 2017-09-05 北京师范大学 一种以电催化还原垃圾渗滤液制备醇类的方法
CN106520527B (zh) * 2016-10-20 2018-09-04 山东科技大学 一种利用微生物诱导鸟粪石生成的装置及方法
CN106430863A (zh) * 2016-12-19 2017-02-22 宜兴市宜刚环保工程材料有限公司 垃圾渗沥液处理方法
CN108623085B (zh) * 2017-03-18 2022-05-31 深圳市深水生态环境技术有限公司 一种高氮有机废水膜滤浓缩液深度处理方法
CN109665651A (zh) * 2017-10-13 2019-04-23 中国石油化工股份有限公司 对硝基苯胺生产废水的处理方法
CN108675518A (zh) * 2018-05-17 2018-10-19 师海荣 一种生活垃圾填埋场垃圾渗滤液的预处理方法
CN109081522B (zh) * 2018-09-21 2023-09-19 桂润环境科技股份有限公司 一种生活垃圾填埋场垃圾渗滤液的处理装置和方法
CN110668633A (zh) * 2019-07-31 2020-01-10 南京万德斯环保科技股份有限公司 一种餐厨垃圾分选废水处理系统与工艺
CN111253013A (zh) * 2020-03-13 2020-06-09 桂润环境科技股份有限公司 一种处理垃圾渗滤液膜浓缩液的方法和装置
CN111777281A (zh) * 2020-07-20 2020-10-16 中苑国晟(厦门)科技有限公司 一种水体深度净化系统及方法
CN112108500B (zh) * 2020-09-14 2021-11-30 安徽清扬水处理设备科技有限公司 一种垃圾渗滤液高效处理工艺
CN111943412A (zh) * 2020-09-14 2020-11-17 安徽清扬水处理设备科技有限公司 垃圾渗滤液预处理方法
CN112266129A (zh) * 2020-09-29 2021-01-26 武汉大学 废水处理装置及废水处理方法
CN112694202A (zh) * 2021-01-12 2021-04-23 厦门水汇环境技术有限公司 一种垃圾渗滤液处理的mbr出水的净化系统及其净化方法
CN113371905B (zh) * 2021-05-27 2023-01-13 南京万德斯环保科技股份有限公司 一种高氨氮高盐分渗滤液的处理方法
CN113461261A (zh) * 2021-07-02 2021-10-01 北京津工海水科技有限公司 一种垃圾填埋场生化系统处理工艺优化方法
CN114044604A (zh) * 2021-09-30 2022-02-15 宋娜 一种基于电解脱氮与生物膜结合的垃圾渗滤液处理系统及处理方法
CN113860645A (zh) * 2021-10-14 2021-12-31 江苏京源环保股份有限公司 一种高浓度难降解有机废水处理方法
CN115159775B (zh) * 2022-07-04 2023-06-23 暨南大学 一种老龄垃圾渗滤液腐殖质的去除方法
CN115893777B (zh) * 2023-02-23 2023-06-27 纳琦绿能工程有限公司 一种垃圾渗滤液处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1478737A (zh) * 2003-07-14 2004-03-03 宜兴鹏鹞阳光环保有限公司 一种垃圾渗滤液处理工艺
US20050109694A1 (en) * 2003-11-21 2005-05-26 Industrial Technology Research Institute Method and system for treating wastewater containing organic compounds
KR20060058198A (ko) * 2004-11-24 2006-05-30 (주)첨단종합기술개발 생활오수와 유기성폐기물의 자원화 시스템
CN102040301A (zh) * 2009-10-19 2011-05-04 中国科学院生态环境研究中心 一种处理城市垃圾渗滤液膜浓缩液的方法
CN102276117A (zh) * 2011-07-21 2011-12-14 波鹰(厦门)科技有限公司 垃圾渗滤液的处理装置及其处理方法
CN102786183A (zh) * 2012-03-29 2012-11-21 波鹰(厦门)科技有限公司 垃圾渗滤液的处理方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891336B (zh) * 2010-06-25 2012-07-04 北京伊普国际水务有限公司 垃圾卫生填埋场渗滤液的处理系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1478737A (zh) * 2003-07-14 2004-03-03 宜兴鹏鹞阳光环保有限公司 一种垃圾渗滤液处理工艺
US20050109694A1 (en) * 2003-11-21 2005-05-26 Industrial Technology Research Institute Method and system for treating wastewater containing organic compounds
KR20060058198A (ko) * 2004-11-24 2006-05-30 (주)첨단종합기술개발 생활오수와 유기성폐기물의 자원화 시스템
CN102040301A (zh) * 2009-10-19 2011-05-04 中国科学院生态环境研究中心 一种处理城市垃圾渗滤液膜浓缩液的方法
CN102276117A (zh) * 2011-07-21 2011-12-14 波鹰(厦门)科技有限公司 垃圾渗滤液的处理装置及其处理方法
CN102786183A (zh) * 2012-03-29 2012-11-21 波鹰(厦门)科技有限公司 垃圾渗滤液的处理方法

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105859042A (zh) * 2016-05-18 2016-08-17 哈尔滨工业大学深圳研究生院 一种污水处理方法以及系统
CN106587443A (zh) * 2017-01-23 2017-04-26 福建海西滤水龙头研究中心有限公司 一种垃圾中转站垃圾液过滤设备
CN106630300A (zh) * 2017-01-23 2017-05-10 福建海西滤水龙头研究中心有限公司 一种垃圾中转站垃圾渗滤液处理设备
CN106830505A (zh) * 2017-01-23 2017-06-13 同舟纵横(厦门)流体技术有限公司 一种vb12废水零排放处理系统及处理工艺
DE102017207286A1 (de) * 2017-04-28 2018-10-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und vorrichtung zur aufbereitung von abfallprodukten
CN107721088A (zh) * 2017-11-23 2018-02-23 荣成市固废综合处理与应用产业园有限公司 一种处理垃圾渗滤液膜滤浓缩液装置
CN107963789A (zh) * 2017-12-29 2018-04-27 山东泰禾环保科技股份有限公司 电镀废水零排放处理工艺及其装置
CN108409045A (zh) * 2018-04-12 2018-08-17 广东雅迪环保设备有限公司 高效生化低量富集的垃圾渗滤液处理工艺及其处理系统
CN108706815A (zh) * 2018-05-04 2018-10-26 广东中科环境工程技术有限公司 一种印染厂废水处理回用系统及处理回用方法
CN108675565A (zh) * 2018-06-20 2018-10-19 启迪桑德环境资源股份有限公司 一种深度处理垃圾渗滤液的系统及方法
CN109081510A (zh) * 2018-08-31 2018-12-25 武汉天源环保股份有限公司 一种乡镇垃圾转运站渗滤液一体化处理方法和装置
CN109179924A (zh) * 2018-11-29 2019-01-11 湖南军信环保股份有限公司 一种协同处理垃圾焚烧厂渗滤液和污泥压滤液的方法及系统
CN109179924B (zh) * 2018-11-29 2024-01-26 湖南军信环保股份有限公司 一种协同处理垃圾焚烧厂渗滤液和污泥压滤液的方法及系统
CN109809638A (zh) * 2019-02-28 2019-05-28 武汉天源环保股份有限公司 垃圾渗滤液无膜法处理方法及系统
CN109879495A (zh) * 2019-04-12 2019-06-14 武汉轻工大学 一种地表水的水处理系统及水处理方法
CN109879483A (zh) * 2019-04-12 2019-06-14 武汉轻工大学 一种微污染水源水的水处理系统及水处理方法
CN109879496A (zh) * 2019-04-12 2019-06-14 武汉轻工大学 一种去除饮用水中腐植酸的水处理系统及水处理方法
CN109987794A (zh) * 2019-04-25 2019-07-09 云南今业生态建设集团有限公司 一种化纤厂污水处理系统
CN112110601A (zh) * 2019-06-19 2020-12-22 祝来宏 一种垃圾渗滤液的处理方法及其装置
CN110240342B (zh) * 2019-06-26 2024-04-09 山东百川集大环境工程有限公司 一种干旱寒冷地区垃圾渗滤液处理装置和方法
CN110240342A (zh) * 2019-06-26 2019-09-17 山东百川集大环境工程有限公司 一种干旱寒冷地区垃圾渗滤液处理装置和方法
CN110255831A (zh) * 2019-07-16 2019-09-20 南京中船绿洲环保有限公司 一种新型船用生活污水处理装置
CN110304779A (zh) * 2019-07-19 2019-10-08 中节能工程技术研究院有限公司 一种垃圾渗滤液厌氧出水的物化脱氨方法和处理系统
CN110540342A (zh) * 2019-09-03 2019-12-06 江苏通用环保集团有限公司 餐厨废水处理装置及处理方法
CN110451644A (zh) * 2019-09-11 2019-11-15 山东北成环境工程有限公司 垃圾渗滤液厌氧氨氧化深度脱氮组合处理装置及工艺
CN111547939A (zh) * 2020-05-09 2020-08-18 四川省生态环境科学研究院 一种高浓度废水除磷工艺
CN111547939B (zh) * 2020-05-09 2022-03-22 四川省生态环境科学研究院 一种高浓度废水除磷工艺
CN111825220A (zh) * 2020-06-30 2020-10-27 深圳文科园林股份有限公司 厌氧消化液的处理方法与废水处理装置
CN112010496A (zh) * 2020-07-14 2020-12-01 武汉上善清源环保科技有限公司 一种高效垃圾渗滤液处理装置
CN111995173A (zh) * 2020-07-17 2020-11-27 武汉上善清源环保科技有限公司 一种集成式厨余垃圾渗滤液处理装置
CN114057347A (zh) * 2020-07-30 2022-02-18 北京国环莱茵环保科技股份有限公司 一种垃圾焚烧厂渗滤液的全流程处理系统及处理方法
CN114105395A (zh) * 2020-08-27 2022-03-01 苏州希图环保科技有限公司 垃圾渗滤液废水处理工艺
CN112591984A (zh) * 2020-11-24 2021-04-02 南京万德斯环保科技股份有限公司 一种垃圾渗滤液零排放处理方法及系统
CN112299669A (zh) * 2020-11-26 2021-02-02 桂润环境科技股份有限公司 一种垃圾渗滤液处理系统、监测系统及处理方法
CN112479501A (zh) * 2020-12-01 2021-03-12 四川环科美能环保科技有限公司 一种泡菜浸渍水的处理方法
CN112624337A (zh) * 2020-12-04 2021-04-09 安徽欣瑞环保科技有限公司 一种垃圾渗滤液处理装置
CN112624337B (zh) * 2020-12-04 2022-11-01 安徽欣瑞环保科技有限公司 一种垃圾渗滤液处理装置
CN112777853A (zh) * 2020-12-18 2021-05-11 天津大学 一种可移动式复合污染废水处理装置及其工艺
CN114644425A (zh) * 2020-12-21 2022-06-21 华岷环保科技(上海)有限公司 高盐含量、高cod值的纤维素醚工业废水的处理方法
CN112645498A (zh) * 2020-12-31 2021-04-13 维尔利环保科技集团股份有限公司 一种高镁垃圾渗滤液反渗透浓缩液处理方法
CN112875992A (zh) * 2021-01-25 2021-06-01 新地环保技术有限公司 一种垃圾渗滤液处置方法及系统
CN113003726B (zh) * 2021-03-04 2022-07-01 重庆理工大学 垃圾渗滤液反渗透膜滤浓缩液的处理方法
CN113003726A (zh) * 2021-03-04 2021-06-22 重庆理工大学 垃圾渗滤液反渗透膜滤浓缩液的处理方法
CN113045113A (zh) * 2021-03-12 2021-06-29 佛山市诚德新材料有限公司 废渣烘干处理系统
CN113443794A (zh) * 2021-08-11 2021-09-28 南通固润环保科技有限公司 一种垃圾渗滤液处理系统
CN113526805A (zh) * 2021-08-20 2021-10-22 南京澎源环保科技有限公司 一种解除难降解化工废水生物毒性的方法
CN114315017A (zh) * 2021-12-17 2022-04-12 江南大学 一种垃圾中转站渗滤液处理工艺及装备
CN114275976A (zh) * 2021-12-31 2022-04-05 珠海力新环保有限公司 一种垃圾渗滤液全量化处理工艺
WO2023170328A1 (es) * 2022-03-11 2023-09-14 Química Técnica Ecológica, S.L.U. Proceso para el tratamiento de aguas y suspensiones acuosas con elevados contenidos de sales, amoníaco, ácido sulfhídrico y materia orgánica
CN115196814A (zh) * 2022-05-23 2022-10-18 陕西化工研究院有限公司 一种垃圾渗滤液的处理方法
CN115196822A (zh) * 2022-06-28 2022-10-18 福建坤净生环保科技有限公司 一种垃圾反渗透浓缩液新型处置方法
CN115093054A (zh) * 2022-07-06 2022-09-23 山东理工大学 一种垃圾渗滤液无害化处理方法
CN115072935A (zh) * 2022-07-13 2022-09-20 张家口城洁环保集团有限公司 垃圾渗滤液与dtro浓缩液的废水处理工艺及装置
CN114906993A (zh) * 2022-07-13 2022-08-16 天津高能时代水处理科技有限公司 一种高氨氮垃圾渗滤液的处理系统及方法
CN116022960A (zh) * 2022-12-30 2023-04-28 安徽蓝鼎环保能源科技有限公司 一种基于微孔曝气的垃圾渗滤液全量化零排放处理工艺
CN116022960B (zh) * 2022-12-30 2024-01-09 安徽蓝鼎环保能源科技有限公司 一种基于微孔曝气的垃圾渗滤液全量化零排放处理工艺
CN117105492A (zh) * 2023-10-25 2023-11-24 常熟理工学院 一种利用超临界水发生器净化高浓缩垃圾渗滤液的方法及其产品
CN117105492B (zh) * 2023-10-25 2024-02-23 常熟理工学院 一种利用超临界水发生器净化高浓缩垃圾渗滤液的方法及其产品

Also Published As

Publication number Publication date
CN102786183B (zh) 2013-06-12
CN102786183A (zh) 2012-11-21

Similar Documents

Publication Publication Date Title
WO2013143506A1 (zh) 垃圾渗滤液的处理方法
WO2013010388A1 (zh) 垃圾渗滤液的处理装置及其处理方法
WO2012083674A1 (zh) 一种制革废水处理循环利用装置及其方法
WO2012083673A1 (zh) 一种印染废水处理循环利用装置及其方法
WO2013163963A1 (zh) 一种污水处理及再生循环利用装置及其方法
CN102786182B (zh) 垃圾渗滤液的处理装置
WO2012088867A1 (zh) 一种纳米催化电解絮凝装置
CN103936225B (zh) 催化内电解耦合两级生物滤池深度处理焦化废水的方法
WO2012126316A2 (zh) 基于电解和mbr技术的污水循环利用装置及其方法
CN101423313B (zh) 荧光增白剂生产废水的处理工艺
WO2012155607A1 (zh) 一种基于电解和双膜技术的再生水制造装置及其方法
CN1724420A (zh) 化学氧化-曝气生物滤池联合水处理方法
WO2014036804A1 (zh) 一种丙烯腈及其聚合废水的处理方法
CN110894125A (zh) N-甲基吡咯烷酮回收的污水处理工艺
CN102329048B (zh) 一种化学合成维生素b6废水的处理方法
CN112794555A (zh) 一种新型强化混凝处理废水的方法
CN106854030B (zh) 一种化工污水的处理工艺
CN113185059A (zh) 一种印刷电路板废水深度处理方法
CN112759200A (zh) 一种垃圾渗滤液全量达标的处理方法
CN108892321B (zh) 一种生物-电化学耦合技术处理吡啶类农药废水的方法
KR19980043482A (ko) 폐기물 매립지 침출수 처리 공법
CN114044604A (zh) 一种基于电解脱氮与生物膜结合的垃圾渗滤液处理系统及处理方法
KR100971588B1 (ko) 폐수의 질소 및 퍼클로레이트 제거방법
KR100325722B1 (ko) 오존과 고농도 산소를 이용한 오폐수의 처리방법
CN113526778A (zh) 一种高浓度工业废水的处理工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769334

Country of ref document: EP

Kind code of ref document: A1