WO2012055263A1 - 基于纳米催化电解技术和膜技术的制革废水处理回用装置及方法 - Google Patents

基于纳米催化电解技术和膜技术的制革废水处理回用装置及方法 Download PDF

Info

Publication number
WO2012055263A1
WO2012055263A1 PCT/CN2011/076746 CN2011076746W WO2012055263A1 WO 2012055263 A1 WO2012055263 A1 WO 2012055263A1 CN 2011076746 W CN2011076746 W CN 2011076746W WO 2012055263 A1 WO2012055263 A1 WO 2012055263A1
Authority
WO
WIPO (PCT)
Prior art keywords
wastewater
membrane
electrolysis
filter
nano catalytic
Prior art date
Application number
PCT/CN2011/076746
Other languages
English (en)
French (fr)
Inventor
张世文
Original Assignee
波鹰(厦门)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 波鹰(厦门)科技有限公司 filed Critical 波鹰(厦门)科技有限公司
Priority to US13/882,196 priority Critical patent/US20130206692A1/en
Publication of WO2012055263A1 publication Critical patent/WO2012055263A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/22Nature of the water, waste water, sewage or sludge to be treated from the processing of animals, e.g. poultry, fish, or parts thereof
    • C02F2103/24Nature of the water, waste water, sewage or sludge to be treated from the processing of animals, e.g. poultry, fish, or parts thereof from tanneries
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to a tannery wastewater treatment, in particular to a method for treating and recycling tannery wastewater based on nano catalytic electrolysis technology and membrane technology.
  • China's tannery industry discharges more than 100 million tons of wastewater per year to the environment, accounting for about 0.3% of China's total industrial wastewater discharge.
  • the leather industry's output value per 10,000 yuan is the third in the light industry.
  • the wastewater discharged from the tanning industry has problems such as high organic pollution concentration, large suspended matter, large amount of water, and complex wastewater components, including toxic substances such as sulfur and chromium.
  • the tanning industrial wastewater consists of seven parts: raw skin washing water and acid immersion water with high concentration of chloride, strong alkaline depilatory ash wastewater containing lime and sodium sulfide, and blue chrome tanning wastewater containing trivalent chromium. , brown-tanned vegetable waste water containing tannin and gallic acid, degreasing waste water containing fat and saponification, fat-staining wastewater and washing wastewater in each section. Among them, degreasing wastewater, hair removal ash wastewater, and chrome tanning wastewater are the most serious.
  • Degreasing wastewater China's pig skin production accounts for 80% of the leather production. In the degreasing wastewater produced by pig skin, the oil content is as high as 10000 (mg / L), CODCr20000 (mg / L). Grease wastewater accounts for 4% of total wastewater, but the oxygen consumption of oil wastewater accounts for 30% to 40% of the total load.
  • Hair removal ash wastewater is a source of sulfide pollution. Waste water CODCr20000 ⁇ 40000 (mg / L), BOD54000 (mg / L), sodium sulfide 1200 ⁇ 1500 (mg / L), pH of 12, hair removal ash wastewater accounted for 10% of total wastewater And the oxygen consumption load accounts for 40% of the total load.
  • chrome-tantalum wastewater is a source of trivalent chromium.
  • the adhesion rate of chromium salt is 60% to 70%, that is, 30% ⁇ 40% of the chromium salt enters the wastewater.
  • the traditional tannery wastewater treatment technology collects and mixes wastewater from various processes. It is included in the sewage treatment system together, but because the wastewater contains a large amount of sulfides and chromium ions, it is easy to inhibit microorganisms. Therefore, it is more reasonable at present that 'separate treatment of raw liquid and comprehensive treatment of integrated wastewater'
  • the process route [8] treats the degreasing wastewater, the liming depilatory wastewater, and the chrome tanning wastewater separately and recovers valuable resources, and then mixes them with other wastewaters.
  • tannery wastewater After the wastewater from various tanneries is concentrated, it is called tannery wastewater.
  • the content of organic matter and the content of sulfide and chromium are high, and the oxygen consumption is large.
  • the pollution of wastewater is very serious, mainly in the following aspect:
  • Chromaticity The color of leather wastewater is relatively large, mainly caused by vegetable tannins, dyeing, chrome tanning and ash alkali waste liquid;
  • the leather wastewater is generally alkaline, and the pH of the integrated wastewater is 8-12. Between.
  • the alkalinity is mainly derived from lime, caustic soda and sodium sulfide used in processes such as depilation;
  • Chromium ion The chromium ion in the tannery wastewater mainly exists in the form of Cr3+, and the content is generally 100mg/L ⁇ 3000mg/L. Usually, it is first neutralized and precipitated, filtered and then remitted into the integrated wastewater pool;
  • Organic pollutants The content of organic matter such as protein in tannery wastewater is high, and it contains a certain amount of reducing substances, so BOD5 and The CODCr is very high.
  • the wastewater quality discharged from various sections of the tanning process varies greatly.
  • the pH of the integrated wastewater after the wastewater discharged from each section is 8 to 12
  • the concentrations of chromaticity, CODCr, SS and BOD5 are very high, and the concentrations of toxic, harmful substances and salts are also high.
  • the comprehensive wastewater quality (test average) of the tanning industry is shown in Table 1.
  • the unit is mg/L except pH and chromaticity.
  • the methods used for the treatment of tannery wastewater mainly include: coagulation sedimentation method, adsorption method, advanced oxidation technology, direct circulation back usage, air floatation method, acid absorption method, catalytic oxidation method, biochemical method, etc., each method All have various advantages and disadvantages. Since a single treatment method is difficult to achieve, in practice, several methods are usually used in combination according to the actual conditions of the wastewater to be treated. Huang Zhenxiong introduced a tannery in Guangdong to use a flocculation sedimentation-activated sludge process-contact oxidation process to treat tannery wastewater. Since it was put into operation in December 2003, the treatment effect is stable.
  • the effluent COD When the influent COD is 2500 mg/L, the effluent COD is about 100 mg/L, which is far lower than the national standard secondary standard (COD ⁇ 300 mg/L).
  • the operating cost of the project is 0.8 yuan / ton.
  • the operation results show that the SBR process is used to treat the tannery wastewater, which has good adaptability to water quality changes and strong impact resistance. It is especially suitable for the relatively concentrated discharge of tannery wastewater and the change of water quality. Moreover, the SBR process investment is relatively low, and the operating cost is lower than that of the general activated sludge process.
  • Jia Qiuping used the vortex air flotation + two-stage contact oxidation process to transform the wastewater treatment facilities of a tannery in Shenyang, which not only enabled the treated wastewater to meet the discharge requirements, but also improved the treatment capacity and effect, and recovered 80. More than % of Cr 3+ makes the treated wastewater partially reused.
  • the influent COD was 3647 mg/L
  • the COD concentration of the effluent was 77 mg/L after the treatment, which was lower than the new expansion standard of Liaoning province DB21-60-89 (COD ⁇ 100 mg/L).
  • Yang Jianjun and Gao Zhongbai introduced the physicochemical + oxidation ditch process in the tannery camp of Xinji City.
  • the original jet aeration sewage treatment system was reformed and increased.
  • the amount of treated water increased to 4800 m3/d.
  • the wastewater with a COD of about 6100 mg/L is effectively treated.
  • the actual operation shows that the treatment efficiency of the transformation process is high, and the effluent water quality meets the national secondary standard of Integrated Wastewater Discharge Standard.
  • Tao Ruzhen introduced that a certain leather industry zone in Zhejiang uses coagulation sedimentation + hydrolysis acidification + CAST process to treat the comprehensive wastewater from preparation, tanning and other wet processing sections.
  • the maximum influent flow rate is designed to be 6000 m3/d.
  • the sulfur ions in the wastewater pass through pre-aeration, and FeSO 4 and coagulant PAC are added to the reaction tank to precipitate and remove.
  • the suspended matter removal rate is 70% to 80%, the chroma removal rate is over 85%, and the killing rate against Escherichia coli is over 99%.
  • this method has a large amount of anode consumption and high energy consumption.
  • the existing methods not only have large material consumption, large sludge discharge, but also fail to meet the water reuse standards in industrial wastewater after wastewater treatment, waste water discharge, large waste of water resources, high cost, and complicated operation. It is easy to bring about a series of problems such as secondary pollution and difficult application. Therefore, there is an urgent need for a new wastewater treatment that consumes less raw materials, has a small amount of sludge discharge, can be reused after treatment of wastewater, and has low cost and easy operation.
  • the method is beneficial to reduce the material consumption of the unit product in the leather production, save fresh water resources and protect the environment.
  • the object of the invention is that the existing tannery wastewater has a large consumption of chemical agents, a large amount of sludge discharge, a standard of reuse of industrial wastewater after wastewater treatment, a large amount of waste water discharge, a large waste of water resources, a high cost, and complicated operation. And easy to bring secondary pollution and other shortcomings, providing a A method and apparatus for treating tannery wastewater based on nano-catalytic electrolysis technology and membrane technology with high COD removal rate, low chemical consumption, less sludge generation, thorough treatment, and high water reuse rate.
  • the tannery wastewater according to the present invention refers to a mixed wastewater discharged from various sections, which is called comprehensive wastewater.
  • the tannery wastewater treatment and recycling device based on nano catalytic electrolysis technology and membrane technology is provided in the invention Coarse grid filter, conditioning tank, hydraulic screen, nano catalytic electrolysis machine, reaction tank, sedimentation tank, air flotation device, biochemical pool, secondary sedimentation tank, secondary nano catalytic electrolysis machine, filter and membrane system.
  • the wastewater inlet of the coarse grid filter is externally connected to the integrated wastewater source.
  • the filtered wastewater outlet of the coarse grid filter is connected to the inlet of the regulating tank, the inlet of the hydraulic screen is connected to the wastewater outlet of the regulating tank, and the inlet of the nano catalytic electrolyzer is connected to the outlet of the hydraulic screen.
  • the outlet of the nano catalytic electrolysis machine is connected to the inlet of the reaction tank, the outlet of the reaction tank is connected to the inlet of the sedimentation tank, and the sedimentation outlet of the sedimentation tank is pumped into the filter press to be separated into filtrate and sludge, and the waste water outlet of the sedimentation tank is connected to the gas.
  • the slag outlet at the upper part of the air flotation device is pumped into a filter press to be separated into filtrate and sludge, and the filtrate outlet of the filter flows into the biochemical pool through the pipeline, and the wastewater outlet at the lower part of the air flotation device is pumped to biochemical
  • the outlet of the biochemical pool is connected to the inlet of the secondary sedimentation tank.
  • the biochemical treatment waste water outlet in the upper part of the secondary sedimentation tank is connected to the inlet of the secondary nano catalytic electrolyzer, and the sediment outlet at the bottom of the secondary sedimentation tank is pumped into the filter press to be separated into Filtrate and sludge, the filtrate flows into the secondary settling tank through the pipeline, the waste water outlet of the secondary nano catalytic electrolysis machine is connected to the inlet of the filter, and the filtered waste water outlet of the filter is filtered.
  • Inlet membrane system the membrane system is provided with a dialysate (recycled water) outlet and a concentrate discharge ports.
  • the method for treating and recycling the tannery wastewater based on the nano catalytic electrolysis technology and the membrane technology of the present invention comprises the following steps:
  • the tanning integrated wastewater enters the coarse grid filter to filter, removes the large granular solids and then flows into the regulating tank to mix, and then pumps the wastewater of the regulating tank into the hydraulic sieve to filter the hair and other impurities, and then flows into the nano catalytic electrolysis machine for electrolysis;
  • the electrolysis working voltage of the nano catalytic electrolysis machine can be 2 to 500 V, the voltage between the two electrodes can be 2 to 8 V, and the electrolytic density can be 10 to 300 mA/cm 2 to keep the wastewater in the nano catalytic electrolysis.
  • the residence time in the machine can be 5 to 15 minutes, and the electricity consumption of the electrolysis of the wastewater can be controlled to be 0.8 to 1.2 degrees/m 3 .
  • step 1 The wastewater after electrolytic treatment of the nano catalytic electrolysis machine flows into the reaction tank, and the prepared flocculant, coagulant and air flotation agent are added to the reaction tank, and the flocculation reaction is carried out, and then enters into the sedimentation tank for separation, and the sedimentation in the lower part of the sedimentation tank is passed through the pipeline pump.
  • the filter is separated into filtrate and sludge by filtration, and the wastewater from the sedimentation tank flows into the air flotation device for air flotation separation.
  • the slag separated from the upper part of the air flotation device is pumped into the filter press to be separated into filtrate and sludge, and the filtrate flows through the pipeline.
  • the wastewater in the lower part of the air flotation device is pumped into the biochemical pool;
  • the biochemical treatment wastewater flowing out from the upper part of the second settling tank is sent to the secondary nano catalytic electrolysis machine for electrolysis;
  • the electrolysis working voltage can be 2 to 400V, the optimal working voltage is 13 to 200V, the voltage between the two poles can be 2 to 8V, and the optimum voltage between the two electrodes is 3 to 5V, current
  • the density can be 10 ⁇ 300mA / cm 2 , the optimal current density is 150 ⁇ 230mA / cm 2 , the residence time of wastewater in the electrolysis machine can be 2 ⁇ 6min , the optimal residence time is 3 ⁇ 4min , the electrolysis degree can be 0.8 ⁇ 1.0 degrees / m 3 .
  • the wastewater obtained by electrolysis of the secondary catalytic electrolysis machine is filtered through a filter to remove solid impurities;
  • the filter may be a sand filter, a multi-media filter or a microfiltration membrane system; after filtering through a filter to remove solid impurities, the chromaticity of the wastewater is 1 to 10, and the COD is 30 ⁇ . 200mg/L, ammonia nitrogen is 0 ⁇ 5mg / L, SS is 0 ⁇ 10mg / L.
  • the wastewater filtered by the filter is filtered through a membrane system to obtain a dialysate (return water) and a concentrate, and the dialysate is reused, and the concentrate is discharged.
  • a dialysate return water
  • the membrane system may be a nanofiltration membrane system or a reverse osmosis membrane system, etc., wherein the membrane module in the nanofiltration membrane system is a wound membrane module, and the membrane material of the nanofiltration membrane is an acetate membrane in an organic membrane or Composite nanofiltration membrane, etc., its molecular weight cutoff can be 200 to 500 MWCO, the inlet pressure can be 6.0 to 45.0 bar, and the pressure can be 4.5 to 43.5 bar.
  • the yield of dialysate (recycled water) filtered through a nanofiltration membrane system 75% ⁇ 85%, colorless liquid, COD less than 30 mg / L, ammonia nitrogen less than 5 mg / L, SS is not detected, the removal rate of divalent ions is greater than 95%.
  • the membrane module of the reverse osmosis membrane system may be a wound membrane module, and the membrane material may be an acetate membrane or a composite membrane in an organic membrane, and the molecular weight cut off may be 50 ⁇ 200MWCO, the inlet pressure can be 6.0 ⁇ 45.0bar, the pressure can be 4.5 ⁇ 35 bar, the yield of dialysate (return water) filtered by reverse osmosis membrane system 60% ⁇ 75%, is a colorless liquid, COD is less than 5mg / L, ammonia nitrogen is less than 1mg / L, SS is not detected, the salt rejection rate is greater than 95%.
  • the invention is a design of a wastewater treatment and purification and reuse process which is completed after in-depth systematic comparative study on the composition, properties and existing treatment schemes of the existing tannery wastewater.
  • the present invention Compared with flocculation + biochemical methods, the present invention has the following outstanding advantages:
  • Waste water treated 60% to 85% It can be recycled, which not only reduces wastewater discharge, avoids environmental pollution of wastewater, but also reduces water waste, and can also produce certain economic benefits.
  • the present invention Compared with the flocculation + biochemical + membrane filtration method, the present invention has the following outstanding advantages:
  • the biochemical wastewater from the secondary sedimentation tank undergoes secondary nano-catalytic electrolysis to further reduce COD First, it can improve the recycling rate of wastewater, reduce wastewater discharge, avoid wastewater pollution to the environment, and reduce water waste; It can kill microorganisms such as bacteria in wastewater, eradicate bio-contamination of membranes, greatly reduce the number of membrane cleanings, reduce the cost of membrane cleaning and regeneration, increase the efficiency of membrane use, prolong the service life of membranes, and reduce membrane replacement costs;
  • Fig. 1 is a schematic view showing the composition of a tannery wastewater treatment and reuse device based on nano-catalytic electrolysis technology and membrane technology according to the present invention.
  • the embodiment of the tannery wastewater treatment and recycling device based on the nano catalytic electrolysis technology and the membrane technology of the present invention is provided with a coarse grid filter 1, a regulating tank 2, a hydraulic screen 3, a nano catalytic electrolysis machine 4, and a reaction.
  • the waste water inlet of the coarse grid filter 1 is externally connected to the integrated wastewater source, the filtered waste water outlet of the coarse grid filter 1 is connected to the inlet of the regulating tank 2, the inlet of the hydraulic screen 3 is connected to the wastewater outlet of the regulating tank 2, and the nano catalytic electrolyzer 4
  • the inlet is connected to the outlet of the water screen 3
  • the outlet of the nano catalytic electrolysis machine 4 is connected to the inlet of the reaction tank 5
  • the outlet of the reaction tank 5 is connected to the inlet of the sedimentation tank 6, and the sedimentation outlet of the sedimentation tank 6 is pumped into the filter press P to be separated by filtration.
  • the filtrate and the sludge are formed, and the waste water outlet of the sedimentation tank 6 is connected to the inlet of the air flotation device 7.
  • the slag outlet of the upper portion of the air flotation device 7 is pumped into the filter press P to be separated into filtrate and sludge, and the filtrate outlet of the filter is passed through.
  • the pipeline flows into the biochemical tank 8, and the waste water outlet at the lower part of the air flotation device 7 is pumped to the biochemical pool 8.
  • the outlet of the biochemical tank 8 is connected to the inlet of the second settling tank 9, and the biochemical treatment waste water outlet at the upper part of the second settling tank 9 is connected to the secondary nanometer.
  • the inlet of the catalytic electrolysis machine 10 the sedimentation outlet at the bottom of the secondary sedimentation tank 9 is pumped into the filter press P through the pipeline to be separated into filtrate and sludge, and the filtrate flows into the secondary sedimentation tank 9 through the pipeline, and the wastewater of the secondary nano catalytic electrolysis machine 10
  • the outlet is connected to the inlet of the filter 11,
  • the resulting filter 11 is connected to the waste water outlet 12 inlet membrane system, the membrane system 12 is provided with dialysis fluid (recycled water) and the concentrate discharge outlet port H M.
  • the tannery wastewater enters the coarse grid filter 1 After filtering and removing large particles of solid matter, it flows into the regulating tank 2 to mix, and then the wastewater of the regulating tank 2 is pumped into the hydraulic screen 3 to filter off impurities such as hair and then flow into the nano catalytic electrolysis machine.
  • Electrolysis, electrolysis The working voltage is 2 ⁇ 500V, the voltage between the two poles is 2 ⁇ 8 V, and the electrolytic density is 10 ⁇ 300mA / cm 2 catalytic electrolysis machine, keeping the residence time of the wastewater in the nano catalytic electrolysis machine is 5 ⁇ 15min, the wastewater The electricity consumption for electrolysis is controlled from 0.8 to 1.2 degrees/m 3 .
  • the wastewater after the electrolysis treatment in the step 1 nano catalytic electrolyzer 4 flows into the reaction cell 5 to the reaction cell 5
  • the prepared flocculant, coagulant and air flotation agent are added to the flocculation reaction and then enter the sedimentation tank 6 for separation.
  • Sedimentation tank 6 The lower sediment is pumped into the filter press by the pipeline and separated into filtrate and sludge; sedimentation tank 6
  • the upper wastewater flows into the air flotation device 7 to perform air flotation separation.
  • the slag separated from the upper part of the air flotation device 7 is pumped into the filter press to be separated into filtrate and sludge, and the filtrate flows into the biochemical pool 8 through the pipeline; the air flotation device 7
  • the lower part of the wastewater is pumped into the biochemical tank 8.
  • the wastewater from the lower part of the flocculation unit 7 flocculated in step 2 is pumped into the biochemical tank 8 through aerobic or anaerobic + A method of aerobic treatment, and then separated by sedimentation in the second settling tank 9 , the wastewater from the upper part of the secondary settling tank 9 is discharged, and the secondary settling tank 9
  • the sediment at the bottom is filtered by a pipe pump into a filter press to separate into filtrate and sludge, and the filtrate flows into the secondary settling tank 9 through the pipe.
  • the color of the biochemical treatment wastewater obtained from the sedimentation of the secondary sedimentation tank is 60-200.
  • the COD is 80 to 300 mg / L and the ammonia nitrogen is 0 to 30 mg / L.
  • the biochemical treatment wastewater flowing out from the upper part of the secondary settling tank 9 is sent to the secondary nano catalytic electrolysis machine for electrolysis.
  • the working voltage of the electrolysis is 2 to 400 V
  • the optimum working voltage is 13 to 200 V
  • the voltage between the two electrodes is 2 to 8 V.
  • the optimum voltage between the two poles is 3 ⁇ 5V
  • the current density is 10 ⁇ 300mA / cm 2
  • the optimal current density is 150 ⁇ 230mA / cm 2
  • the residence time of wastewater in the electrolysis machine is 2 ⁇ 6min
  • the optimal residence time For 3 to 4 minutes
  • the degree of electrolysis is 0.8 to 1.0 degrees / m 3 .
  • the wastewater obtained by electrolysis of the secondary catalytic electrolysis machine was filtered through a filter 11 to remove solid impurities.
  • the filter 11 is one of a sand filter, a multi-media filter or a microfiltration membrane system.
  • the wastewater obtained by the secondary catalytic electrolysis is passed through a filter 11 Filtration, the obtained wastewater has a chromaticity of 1 to 10, a COD of 30 to 200 mg / L, an ammonia nitrogen of 0 to 5 mg / L, and an SS of 0 to 10 mg / L. .
  • the filtered wastewater is filtered through the membrane system 12 After filtration, the dialysate (return water) and the concentrate are obtained, and the dialysate is reused, and the concentrate is discharged.
  • the membrane module is a wound membrane module
  • the membrane material of the nanofiltration membrane is a cellulose membrane and a composite nanofiltration membrane in an organic membrane
  • the molecular weight cut off is 200-500 MWCO
  • the pressure is 6.0 ⁇ . 45.0bar, pressure 4.5 ⁇ 43.5 bar.
  • the yield of the dialysate (return water) filtered through the nanofiltration membrane system 12 is 75% to 85%, which is a colorless liquid, and the COD is less than 30 mg / L, ammonia nitrogen less than 5 mg / L, SS was not detected, the removal rate of divalent ions was greater than 95%.
  • the membrane module is a roll membrane module
  • the membrane material is a cellulose membrane and a composite membrane in the organic membrane
  • the molecular weight cut off is 50-200 MWCO
  • the pressure is 6.0- 45.0 bar.
  • the pressure is 4.5 to 35 bar.
  • the yield of dialysate (recycled water) filtered through the reverse osmosis membrane system 12 is 60% to 75%, which is a colorless liquid with a COD of less than 5 mg / L.
  • the ammonia nitrogen is less than 1 mg / L, SS is not detected, and the salt rejection rate is greater than 95%.
  • Serial number project unit measured value Serial number project unit measured value 1 COD Cr Mg/L 3560 5 BOD5 Mg/L 1730 2 SS Mg/L 3110 6 S 2 Mg/L 82 3 NH 3 -N Mg/L 265 7 Chroma 3200 4 Cr Mg/L 120 8 pH 9.3
  • the wastewater enters the coarse grid filter at a flow rate of 15 m 3 /H.
  • the filter removes large particles of solids and then flows into the conditioning tank 2 to mix.
  • the wastewater from the conditioning tank 2 is pumped into the hydraulic screen at a flow rate of 15 m 3 /H. 3
  • the working voltage of the nano-catalytic electrolysis is 48V, the current intensity is 375A, and the voltage between the two electrodes is 4.2 V.
  • the nascent chlorine produced by the nano-catalytic micro-electrolysis [ Cl] kills microorganisms in wastewater, oxidizes and decomposes organic matter in wastewater, and causes suspended solids, colloids and charged particles in wastewater to form larger particles under the action of electric field.
  • the electrolyzed wastewater is subjected to the reaction tank 5, and lime, ferrous sulfate and polyacrylamide are added to carry out the coagulation reaction and then enter the sedimentation tank 6.
  • the lower sediment of the sedimentation tank 6 is pumped into the filter press to be separated into filtrate and sludge;
  • the upper wastewater of the sedimentation tank 6 flows into the air flotation device 7 for air flotation separation, and the slag separated from the upper part of the air flotation device 7 is pumped into the filter press to be separated into filtrate and sludge, and the filtrate flows into the biochemical pool 8 through the pipeline; the air flotation device 7
  • the lower part of the wastewater is pumped into the biochemical tank 8.
  • the upper part of the secondary sedimentation tank 9 flows out of the biochemical treatment wastewater, and the sediment at the bottom of the secondary sedimentation tank 9 is pumped into the filter press to be separated into filtrate and sewage.
  • the mud and the filtrate flow into the secondary settling tank 9 through the pipeline.
  • the biochemical treatment wastewater obtained from the sedimentation of the secondary sedimentation tank has a color of 65, a COD of 265 mg/L and an ammonia nitrogen of 3.7 mg/L.
  • the biochemical treatment wastewater from the upper part of the secondary sedimentation tank 9 is sent to the secondary nano catalytic electrolysis machine for electrolysis.
  • the working voltage of the electrolysis is 40V, the current is 375A, and the residence time of the wastewater in the electrolysis machine is 4min.
  • the wastewater obtained by electrolysis of the electrolysis machine 10 was filtered through a multi-media filter 11 to obtain a wastewater having an chromaticity of 6, a COD of 207 mg/L, an ammonia nitrogen of 2.5 mg/L, and an SS of 3 mg/L.
  • the multi-media filter 11 filters the obtained electrolyzed wastewater into the nanofiltration membrane system 12, and the nanofiltration membrane module is a wound membrane module.
  • the membrane material of the nanofiltration membrane is a cellulose acetate membrane with a molecular weight of 200 MWCO, and the pressure of the membrane is 6.5 bar. Press 4bar.
  • the yield of dialysate (return water) filtered through the nanofiltration membrane system 12 was 80%, and the quality of the reuse water of the dialysate (return water) is shown in Table 2.
  • Serial number project unit measured value Serial number project unit measured value 1 COD Cr Mg/L 9 4 Chroma colorless 2 SS Mg/L 0 5 pH 7.7 3 Turbidity NTU 2 6 Conductivity ⁇ S/cm 1100
  • Serial number project unit measured value Serial number project unit measured value 1 COD Cr Mg/L 3900 5 BOD5 Mg/L 1950 2 SS Mg/L 4070 6 S 2 Mg/L 92 3 NH 3 -N Mg/L 283 7 Chroma 2900 4 Cr Mg/L 93 8 pH 9.3
  • the wastewater enters the coarse grid filter at a flow rate of 150 m 3 /H.
  • the filter removes large particles of solids and flows into the conditioning tank 2 to mix.
  • the wastewater from the conditioning tank 2 is pumped into the hydraulic screen at a flow rate of 150 m 3 /H. 3
  • the working voltage of the nano catalytic electrolysis is 380V, the current intensity is 3475A, the voltage between the two electrodes is 4.2 V, and the electrolytic density is 230 mA/cm 2 .
  • the nascent chlorine [Cl] produced by electrolysis kills microorganisms in the wastewater, oxidizes and decomposes organic matter in the wastewater, and causes suspended matter, colloids, and charged particles in the wastewater to form larger particles under the action of an electric field.
  • the electrolyzed wastewater is subjected to the reaction tank 5, and lime, ferrous sulfate and polyacrylamide are added to carry out the coagulation reaction and then enter the sedimentation tank 6.
  • the lower sediment of the sedimentation tank 6 is pumped into the filter press to be separated into filtrate and sludge;
  • the upper wastewater of the sedimentation tank 6 flows into the air flotation device 7 for air flotation separation, and the slag separated from the upper part of the air flotation device 7 is pumped into the filter press to be separated into filtrate and sludge, and the filtrate flows into the biochemical pool 8 through the pipeline; the air flotation device 7
  • the lower part of the wastewater is pumped into the biochemical tank 8. After anaerobic treatment in biochemical tank 8, after aerobic treatment, it enters secondary sedimentation tank 9 to separate and precipitate.
  • the upper part of secondary sedimentation tank 9 flows out of biochemical treatment wastewater.
  • the sediment at the bottom of secondary sedimentation tank 9 is pumped into the filter press through the pipeline.
  • the filtrate and the sludge are separated by filtration, and the filtrate flows into the secondary settling tank 9 through a pipe.
  • the biochemical treatment wastewater obtained from the sedimentation of the secondary sedimentation tank has a color of 85, a COD of 165 mg/L and an ammonia nitrogen of 1.5 mg / L.
  • the biochemical treatment wastewater from the upper part of the secondary sedimentation tank 9 is sent to the secondary nano catalytic electrolysis machine for electrolysis.
  • the electrolysis has a working voltage of 380 V, a current of 3670 A, and a residence time of the wastewater in the electrolysis machine of 3 min.
  • the wastewater obtained by electrolysis of the electrolyzer 10 was filtered through a multi-media filter 11 to obtain a wastewater having a chroma of 8 , a COD of 112 mg / L, an ammonia nitrogen of 0.9 mg / L and an SS of 1 mg / L.
  • the multi-media filter 11 filters the obtained electrolyzed wastewater into the reverse osmosis membrane system 12, as described above, the membrane system 12 is a reverse osmosis membrane system, the membrane module is a membrane module, and the membrane material is a composite membrane having a molecular weight cutoff of 50 MWCO.
  • the pressure is 15.0 bar and the pressure is 2.5 bar.
  • the yield of the dialysate (return water) filtered through the reverse osmosis membrane system 12 was 75%, and the mass of the dial water (return water) was shown in Table 4.
  • Serial number project unit measured value Serial number project unit measured value 1 COD Cr Mg/L 0 4 Chroma colorless 2 SS Mg/L 0 5 pH 6.5 3 Turbidity NTU 0.8 6 Conductivity ⁇ S/cm 50
  • Tannery wastewater nanocatalytic electrolytic synthesis strong oxidizing substance produced oxidative decomposition of organic matter in the wastewater; OH electrolytically produced - with a number of metal ions (e.g., Fe 3+) precipitation, these small particles precipitated from coagulant
  • the function is to promote the aggregation and sedimentation of the suspended matter in the solution; at the same time, the waste water is destabilized under the action of the electric field, and the colloidal flocculation and sedimentation dissolved in the water is reduced, and the dosage of the flocculating agent, the coagulant and the air flotation agent is reduced in the step 2 flocculation process. .
  • the nano-catalytic electrolysis is an electrode in which titanium is used as a substrate and an oxidized coating having a good catalytic effect on the surface of 15 to 22 is used as an anode, and titanium, stainless steel, aluminum, zinc, copper and graphite are used as a cathode.
  • the tannery waste water is filtered by a grid filter and dehydrated by a hydrofilament and then passed through a catalytic electrolysis machine with a working voltage of 2 to 500 V, a voltage between the two electrodes of 2 to 8 V, and an electrolytic density of 10 to 260 mA/cm 2 to maintain the wastewater.
  • the electrolysis time is 5 to 15 minutes, and the degree of electrolysis of the wastewater is controlled to be 0.8 to 1.2 degrees/m 3 .
  • nano catalytic electrolysis has the following effects:
  • OH produced during electrolysis - precipitation can settle some heavy metal ions (e.g., Fe 3+), these small particles can act as precipitation coagulant promote aggregation of suspended matter in the solution to settle.
  • the electric field can rapidly destroy the colloidal structure in the water body, causing it to destabilize and flocculate and sediment, greatly reducing the amount of flocculating agent, coagulant and air flotation agent added in the flocculation process;
  • the strong oxidizing free radicals produced by the electrolysis process can rapidly degrade the molecular structure of the leather dye in the wastewater and reduce the influence of the colored substances on the water color chromaticity;
  • nascent chlorine a large number of free radicals with strong oxidizing properties, such as nascent chlorine, can quickly kill microorganisms and viruses such as bacteria in the wastewater, and have strong sterilization and disinfection effects;
  • the hydrogen produced by the cathode can form a large number of tiny bubbles. As the gas rises, it will bring out a large amount of solid suspended matter and grease, and achieve the effect of solid-liquid separation through air flotation, thereby further reducing COD in the wastewater. , color, turbidity, etc.
  • the working voltage between the two poles during electrolysis is related to the distance between the two poles.
  • step 1 The catalytic electrolysis described in step 1 has the following advantages:
  • step 1 The flocculation agent, the coagulant and the air flotation agent are added to the comprehensive wastewater after the catalytic electrolysis treatment, and after flocculation reaction, the air floats to remove impurities.
  • the flocculation is to add a flocculating agent, a coagulant and an air flotation agent to the tanning integrated wastewater after the catalytic electrolysis treatment;
  • the alkali is a kind of lime and sodium hydroxide;
  • the flocculating agent is ferrous sulfate;
  • the coagulant is polyacrylamide.
  • the wastewater that has been subjected to the flocculation treatment in step 2 is subjected to aerobic or anaerobic treatment.
  • a method of aerobic treatment and then separated by sedimentation in a secondary settling tank to obtain a wastewater after biochemical treatment.
  • the biochemical treatment wastewater obtained by biochemical treatment and sedimentation by the secondary sedimentation tank has a chromaticity of 80 to 200.
  • the COD is 80 to 300 mg/L
  • the ammonia nitrogen is 0 to 30 mg/L.
  • Step 3 The treated wastewater obtained by biochemical treatment is subjected to secondary catalytic electrolysis to remove colored substances and oxidative decomposition of organic matter in the wastewater, thereby further reducing COD in the wastewater.
  • the secondary catalytic electrolysis as described above is that the wastewater obtained by the biochemical treatment in step 3 flows into the secondary settling tank, and after being precipitated, the catalytic electrolysis machine with a working voltage of 2 to 400 V and a voltage between the two poles of 2 to 8 V is subjected to catalytic electrolysis.
  • the density is 10 to 300 mA/cm 2
  • the electrolysis time of the wastewater is 2 to 6 minutes
  • the degree of electrolysis is 0.8 to 1.0 degrees/m 3 .
  • the optimum working voltage for electrolysis is 13 to 200V
  • the optimum voltage between the two electrodes is 3 to 5V
  • the optimum current density is 150 to 230mA/cm 2 .
  • the strong oxidizing substances generated by electrolysis oxidize and decompose organic matter in the wastewater to make the wastewater
  • the dye in the oxidative decomposition decolorizes and reduces COD, kills microorganisms such as bacteria in the wastewater, and at the same time, destabilizes the wastewater under the action of an electric field, and produces flocculation.
  • Step 5 Filtration Step 4 The wastewater obtained by secondary catalytic electrolysis is filtered to remove solid impurities.
  • step 5 The filtration is one of sand filtration, multi-media filtration or microfiltration.
  • the wastewater obtained by secondary catalytic electrolysis is subjected to sand filtration, multi-media filtration or microfiltration, and the obtained wastewater has a chromaticity of 1 to 10 and a COD of 30 to 200.
  • Mg/L, ammonia nitrogen is 0 ⁇ 5 mg / L, SS is 0 ⁇ 10 mg / L.
  • Step 6 Membrane Filtration Step 5
  • the wastewater obtained by multi-media filtration is filtered through a membrane to obtain a dialysate (return water) and a concentrate, and the dialysate is reused, and the concentrate is discharged.
  • a dialysate return water
  • step 6 The membrane filtration is nanofiltration, the membrane module is a wound membrane module, and the membrane material of the nanofiltration membrane is an acetate membrane and a composite nanofiltration membrane in an organic membrane, and the molecular weight cut off is 200-500 MWCO, and the pressure is 6.0 ⁇ . 45.0bar, pressure 4.5 ⁇ 43.5 bar;
  • the yield of the dialysate (return water) filtered through the nanofiltration membrane is 75 to 85%, which is a colorless liquid, and the COD is smaller than 30 mg/L, ammonia nitrogen less than 5 mg/L, SS was not detected, and the removal rate of divalent ions was greater than 95%.
  • step 6 The membrane filtration is reverse osmosis filtration, and the membrane module is a roll membrane module.
  • the membrane material is a cellulose membrane and a composite membrane in an organic membrane, and the molecular weight cut off is 50-200 MWCO, and the pressure is 6.0 to 45.0 bar. , the pressure is 4.5 ⁇ 35 bar ;
  • the yield of the dialysate (return water) filtered through the reverse osmosis membrane is 60 to 80%, which is a colorless liquid, COD. Less than 5 mg/L, ammonia nitrogen is less than 1 mg/L, SS is not detected, and the salt rejection rate is greater than 95%.
  • the present invention consists of the following three parts:
  • the first part includes the nanocatalytic electrolysis of step 1 and step 2
  • the pre-treatment part of the flocculation settling The part is filtered by coarse grid to remove large particles of impurities such as fur and residual meat in the waste water, and then mixed in the regulating tank.
  • the nano-catalyzed micro-electrolysis oxidative decomposition of organic matter, sedimentation of solid suspended matter and colloid is performed.
  • the solid impurities and grease floating on the surface are removed by air flotation, and then flocculating agent, coagulant and air flotation agent are added for flocculation reaction, and most of the organic matter and salts are separated by sedimentation.
  • the COD indicator is reduced from 3000 to 4000 mg/L to below 1500 mg/L to ensure long-term stable operation of the biochemical system (Part 2).
  • the second part includes step 3 biochemistry, step 4 secondary nano catalytic electrolysis, and removal of wastewater by biochemical and secondary nano catalytic electrolysis. COD, pigment, and ammonia nitrogen, so that the treated wastewater can meet the long-term stable operation of the membrane system (Part III).
  • Step 3 Biochemistry includes aerobic treatment alone or a combination of anaerobic and aerobic use, secondary sedimentation and the like.
  • the third part consists of step 5 filtration and membrane filtration of step 6.
  • the second part of the treated wastewater passes through step 5 Filtration, further removing solid suspended solids and other impurities into the step 6
  • the membrane filtration system is separated into dialysate and concentrate, and the dialysate is reused for reuse.
  • the concentrate is tested and meets the emission standards and is directly discharged. If the emission standard is not met, return to step 3 Perform biochemical treatment.
  • the invention greatly reduces the dosage of flocculating dosage, reduces the consumption of chemical agents per unit product and saves the cost of the medicament; greatly reduces the sludge discharge and reduces the sludge treatment cost; the wastewater is treated, 60% ⁇ 85% can be recycled, which not only reduces wastewater discharge, avoids environmental pollution of wastewater, but also reduces water waste, and can also produce certain economic benefits.
  • the invention greatly reduces the dosage of flocculation dosage, reduces the consumption of chemical agents per unit product and saves the cost of the medicament; greatly reduces the sludge discharge amount and reduces the sludge treatment cost; the biochemical wastewater of the secondary sedimentation tank passes through the secondary nanometer Catalytic electrolysis, further reducing COD, first, can improve the recycling rate of wastewater, reduce wastewater discharge, avoid wastewater pollution to the environment, and reduce water waste; It can kill microorganisms such as bacteria in wastewater, eradicate bio-contamination of membranes, greatly reduce the number of membrane cleanings, reduce the cost of membrane cleaning and regeneration, increase the efficiency of membrane use, prolong the service life of membranes, and reduce membrane replacement costs; Total emissions of wastewater COD. Therefore, the present invention has good industrial applicability.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

[根据细则37.2由ISA制定的发明名称] 基于纳米催化电解技术和膜技术的制革废水处理回用装置及方法 技术领域
本发明涉及一种制革废水处理,尤其是涉及一种 基于纳米催化电解技术和膜技术的制革废水处理回用方法 。
背景技术
据统计,我国制革行业每年向环境排放废水达 10000 万 t 以上,约占我国工业废水排放总量的 0.3% ;皮革工业万元产值排污量在轻工行业居第 3 位,仅次于造纸和酿造行业,可见,制革工业不仅每年消耗大量的淡水资源,同时也排放了大量的废水,对人类健康和整个社会的可持续发展造成了严重威胁。因此应加大制革废水的治理力度,开展制革废水处理和中水回用无论是从节约淡水资源角度还是从环保角度而言都是十分必要的,具有重要的现实意义和战略意义。
制革工业排放的废水存在有机污染浓度高、悬浮物质多、水量大、废水成份复杂等问题,其中含有有毒物质硫与铬。按照生产工艺过程,制革工业废水由七部分组成:高浓度氯化物的原皮洗涤水和酸浸水、含石灰与硫化钠的强碱性脱毛浸灰废水、含三价铬的兰色铬鞣废水、含丹宁与没食子酸的茶褐色植鞣废水、含油脂及其皂化物的脱脂废水、加脂染色废水和各工段冲洗废水。其中,以脱脂废水,脱毛浸灰废水、铬鞣废水污染最为严重。
( 1 )脱脂废水:我国猪皮生产占制革生产的 80 %,在猪皮生产的脱脂废水中,油脂含量高达 10000(mg/L) , CODCr20000(mg/L) 。油脂废水占总废水 4% ,但油脂废水的耗氧负荷却占到总负荷的 30% ~ 40% 。
( 2 )脱水浸灰废水:脱毛浸灰废水是硫化物的污染源。废水 CODCr20000 ~ 40000(mg/L) , BOD54000(mg/L) ,硫化钠 1200 ~ 1500(mg/L) , pH 为 12 ,脱毛浸灰废水占总废水的 10% ,而耗氧负荷占总负荷 40% 。
( 3 )铬鞣废水:铬鞣废水是三价铬的污染源。铬鞣过程,铬盐的附着率 60% ~ 70% ,即有 30% ~ 40% 的铬盐进入废水。铬鞣度水 Cr3 + 3000-4000 ( mg/L ), CODCr10000 ( mg/L ), BOD52000mg/L 。
传统的制革废水处理技术是将各工序废水收集混合 , 一起纳入污水处理系统,但由于废水中含有大量的硫化物和铬离子,极易对微生物产生抑制作用。所以 目前比较合理的是 ' 原液单独处理、综合废水统 一处理 ' 的工艺路线 [8], 将脱脂废水、浸灰脱毛废水、 铬鞣废水分别进行处理并回收有价值的资源 , 然后 与其它废水混合统一处理。
制革厂的各路废水集中后,称为制革综合废水制革废水中有机物含量及硫化物、铬化物含量高,耗氧量大,其废水的污染情况十分严重,主要表现在以下几个方面:
( 1 )色度:皮革废水色度较大,主要由植鞣、染色、铬鞣和灰碱废液造成;
( 2 )碱性:皮革废水总体上呈碱性,综合废水 pH 值在 8 ~ 12 之间。其碱性主要来自于脱毛等工序用的石灰、烧碱和硫化钠;
( 3 )硫化物:制革废水中的硫化物主要来自于灰碱法脱毛废液,少部分来自于硫化物助软的浸水废液及蛋白质的分解产物。含硫废液遇酸易产生 H2S 气体,含硫污泥在厌氧条件下也会释放出 H2S 气体;
( 4 )铬离子:制革废水中的铬离子主要以 Cr3+ 形态存在,含量一般在 100mg/L ~ 3000mg/L 。通常是先经过中和沉淀,过滤后汇入综合废水池中;
( 5 )有机污染物:制革废水中蛋白质等有机物含量较高,又含有一定量的还原性物质,所以 BOD5 和 CODCr 很高。
制革过程中各个工段排放的废水水质相差很大,各工段排放的废水汇集后的综合废水 pH 在 8 ~ 12 之间,色度、 CODCr 、 SS 、 BOD5 浓度都很高,有毒、有害物质及盐类的浓度也很高,制革行业综合废水水质(测试平均值)参见表 1 。
表 1
pH 色度(倍) CODCr SS NH3-N S2- Cr BOD5
8~12 500~3500 3000~4000 2000~4000 250~300 50~100 100~3000 1500~2000
注:单位除 pH 、色度外其余均为 mg/L
目前,用于制革废水治理的方法主要有:混凝沉淀法、吸附法、高级氧化技术、直接循环回用法、气浮法、加酸吸收法、催化氧化法、生化法等,每种方法都具有各种的优缺点。由于单一的处理方法很难达到效果,在实际运用中,通常是根据要处理废水的实际情况,将几种方法结合使用。黄振雄介绍了广东某皮革厂采用絮凝沉淀 - 活性污泥法 - 接触氧化法组合工艺处理制革废水 , 自 2003 年 12 月投产至今处理效果稳定,进水 COD 为 3000 ~ 3500 mg/L 时,出水 COD 约 40 mg/L ,各项出水指标均 达到广东省地方标准 (DB44/26-2001) 一级标准。张杰等应用序批式活性污泥法 (SBR) 对河南某制革厂的废水进行处理。首先采用物化法除去废水中的大量有毒物质和部分有机物,再经过 SBR 法生化降解可溶性有机物。设计日处理量为 800 m3 , 当进水 COD 在 2500 mg/L 时,出水 COD 在 100 mg/ L 左右,远低于国标二级标准 (COD<300 mg/L) , 该工程的运行成本为 0.8 元 / 吨。运行结果表明,用 SBR 工艺处理制革废水,对水质变化的适应性好 , 耐负荷冲击能力强 , 尤其适合制革废水相对集中排放及水质多变的特点。而且, SBR 处理工艺投资较省,运行成本较一般活性污泥法低。贾秋平等采用涡凹气浮 + 二段接触氧化工艺,对沈阳市某制革厂的废水处理设施进行改造,不仅使处理后的废水达到排放要求,提高了处理能力和效果,而且回收了 80% 以上的 Cr3+ , 使处理后的废水部分回用。在进水 COD 3647 mg/ L 时 , 经本工艺处理后,出水 COD 浓度为 77 mg/L, 低于辽宁省《 DB21-60-89 》新扩改二级标准 (COD <100 mg/L) 。杨建军、高忠柏介绍了辛集市试炮营制革小区采用物化 + 氧化沟工艺,对原有射流曝气污水处理系统进行改造和增容,改造后的处理水量增至 4800 m3/d ,可对进水 COD 为 6100 mg/L 左右的废水进行有效处理。实际运行表明 , 该改造工艺的处理效率较高,出水水质达到国家《污水综合排放标准》二级标准。陶如钧介绍好浙江某制革工业区采用混凝沉淀 + 水解酸化 +CAST 工艺 , 对来自于准备、鞣制和其它湿加工工段的综合废水进行处理。设计最大进水流量 6000 m3/d ,废水中的硫离子通过预曝气,并在反应池加 FeSO4 和助凝剂 PAC ,从而沉淀去除, Cr3+ 通过在反应池中与 NaOH 发生沉淀反应而去除。生化处理采用兼氧和好氧相结合的工艺 , 兼氧采用接触式水解酸化工艺,可提高废水的可生化性,同时去除部分 COD 和 SS 。好氧采用 CAST 工艺为改良 的 SBR 工艺,具有有机物去除率高、抗冲击负荷能力强等特点。孙亚兵等人在中国专利 CN100371268C 公开了一种采用电解处理制革废水的方法,处理后的废水 COD 去除率达 60% ~ 80% 、氨氮去除率达 50% ~ 70% 、硫化物去除率达 95% 以上、悬浮物去除率达 70% ~ 80% 、色度去除率达 85% 以上,对大肠杆菌的灭杀率达 99% 以上,但是,这一方法存在阳极消耗量多,能耗高。
综上所述,现有的方法不仅存在材料消耗多、污泥排放量大,废水处理后都没有达到工业废水中水回用标准,废水排放多,水资源浪费大,成本高,而且操作复杂,容易带来二次污染、难以推广应用等一系列问题,故急需一种原材料消耗少、污泥排放量小、废水经过处理后能够进行中水回用且成本低、操作简易的新废水处理方法,以利于降低皮革生产中的单位产品物料消耗,节约淡水资源,保护环境。
技术问题
本发明的目的是针对现有的制革废水存在化学药剂消耗多、污泥排放量大、废水处理后达不到工业废水回用标准、废水排放多、水资源浪费大、成本高、操作复杂以及容易带来二次污染等缺点,提供一种 COD 去除率高、化学药剂消耗少、产生污泥少、处理比较彻底、水回用率高的 基于纳米催化电解技术和膜技术的制革废水处理回用方法及其装置。
技术解决方案
本发明所述制革废水是指汇集各工段排放的混合废水,称为综合废水。
本发明所述 基于纳米催化电解技术和膜技术的制革废水处理回用装置设有 粗格栅过滤机、调节池、水力筛、纳米催化电解机、反应池、沉淀池、气浮装置、生化池、二沉池、二次纳米催化电解机、过滤器和膜系统。粗格栅过滤机的废水入口外接综合废水源,粗格栅过滤机的过滤废水出口接调节池的入口,水力筛的入口接调节池的废水出口,纳米催化电解机的入口接水力筛的出口,纳米催化电解机的出口接反应池的入口,反应池的出口接沉淀池的入口,沉淀池的沉淀出口经管道泵入压滤机过滤分离成滤液和污泥,沉淀池的废水出口接气浮装置的入口,气浮装置上部的渣出口经管道泵入压滤机过滤分离成滤液和污泥,过滤机的滤液出口经管道流入生化池中,气浮装置下部的废水出口经泵接生化池,生化池的出口接二沉池的入口,二沉池上部的生化处理后废水出口接二次纳米催化电解机的入口,二沉池底部的沉淀出口经管道泵入压滤机过滤分离成滤液和污泥,滤液经管道流入二沉池中,二次纳米催化电解机的废水出口接过滤器的入口,过滤器的过滤所得废水出口接膜系统入口,膜系统设有透析液(回用水)出口和浓缩液排放口。
本发明所述 基于纳米催化电解技术和膜技术的制革废水处理回用方法 包括如下步骤:
1 )纳米催化电解
制革综合废水进入粗格栅过滤机过滤,除去大颗粒固体物后流入调节池混合,再将调节池的废水泵入水力筛过滤脱毛发等杂质后流入纳米催化电解机电解;
在步骤 1 )中,所述纳米催化电解机的电解工作电压可为 2 ~ 500V ,两极间的电压可为 2 ~ 8 V ,电解密度可为 10 ~ 300mA/cm2 ,保持废水在纳米催化电解机中的停留时间可为 5 ~ 15min ,废水的电解的用电量可控制为 0.8 ~ 1.2 度 /m3
2 )絮凝
经过步骤 1 )纳米催化电解机电解处理后的废水流入反应池,向反应池中加入已配制好的絮凝剂、助凝剂和气浮剂,进行絮凝反应后进入沉淀池进行分离,沉淀池下部沉淀经管道泵入压滤机过滤分离成滤液和污泥,沉淀池部废水流入气浮装置进行气浮分离,气浮装置上部分离的渣经管道泵入压滤机过滤分离成滤液和污泥,滤液经管道流入生化池中,气浮装置下部的废水泵入生化池中;
3 )生化处理
将经过步骤 2 )絮凝的气浮装置下部的废水泵入生化池中,经过好氧或厌氧 + 好氧的处理,再经二沉池沉淀分离,二沉池上部流出生化处理后废水,二沉池底部的沉淀经管道泵入压滤机过滤分离成滤液和污泥,滤液经管道流入二沉池中,经过生化处理,从二沉池沉淀分离得生化处理废水;
4 )二次催化电解
将二沉池上部流出的生化处理废水送入二次纳米催化电解机电解;
在步骤 4 )中,所述电解的工作电压可为 2 ~ 400V ,最佳工作电压为 13 ~ 200V ,两极间的电压可为 2 ~ 8 V ,两极间的最佳电压为 3 ~ 5V ,电流密度可为 10 ~ 300mA/cm2 ,最佳电流密度为 150 ~ 230mA/cm2 ,废水在电解机内的停留时间可为 2 ~ 6min ,最佳停留时间为 3 ~ 4min ,电解程度可为 0.8 ~ 1.0 度 /m3
5 )过滤
将二次催化电解机机电解所得废水经过滤器过滤,除去固体杂质;
在步骤 5 )中,所述过滤器可采用砂滤器、多介质过滤器或微滤膜系统等;经过过滤器过滤,除去固体杂质后所得废水的色度为 1 ~ 10 , COD 为 30 ~ 200mg/L ,氨氮为 0 ~ 5mg/L , SS 为 0 ~ 10mg/L 。
6 )膜过滤
将过滤器过滤所得废水经过膜系统过滤,得透析液(回用水)和浓缩液,透析液回用,浓缩液排放。
在步骤 6 )中,所述膜系统可为纳滤膜系统或反渗透膜系统等,所述纳滤膜系统中的膜组件为卷式膜组件,纳滤膜的膜材料为有机膜中醋酸纤维膜或复合纳滤膜等,其截留分子量可为 200 ~ 500MWCO ,进压可为 6.0 ~ 45.0bar ,出压可为 4.5 ~ 43.5 bar 。经过纳滤膜系统过滤的透析液(回用水)的得率为 75% ~ 85% ,为无色液体, COD 小于 30 ㎎ /L ,氨氮小于 5 ㎎ /L , SS 未检出,二价离子的脱除率大于 95% 。
所述反渗透膜系统的膜组件可为卷式膜组件,膜材料可为有机膜中醋酸纤维膜或复合膜等,其截留分子量可为 50 ~ 200MWCO ,进压可为 6.0 ~ 45.0bar ,出压可为 4.5 ~ 35 bar ,经过反渗透膜系统过滤的透析液(回用水)的得率为 60% ~ 75% ,为无色液体, COD 小于 5mg/L ,氨氮小于 1mg/L , SS 未检出,脱盐率大于 95% 。
本发明是在对现有制革废水的成份、性质和现有处理方案进行深入系统的对比研究之后完成的废水处理和净化回用工艺的设计。
有益效果
与絮凝 + 生化方法比较,本发明具有以下突出优点:
1 )大量减少絮凝剂量的用量,减少单位产品化学药剂的消耗和节约药剂成本;
2 )大量减少污泥的排放量,减少污泥处理成本;
3 )废水经过处理, 60% ~ 85% 可以再生利用,既减少废水排放,避免废水对环境污染,又减少水资源浪费,还可以产生一定的经济效益。
与絮凝 + 生化 + 膜过滤方法比较,本发明具有以下突出优点:
1 )大量减少絮凝剂量的用量,减少单位产品化学药剂的消耗和节约药剂成本;
2 )大量减少污泥的排放量,减少污泥处理成本;
3 )二沉池的生化废水经过二次纳米催化电解,进一步降低 COD ,一是可以使废水的回用率提高,既减少废水排放,避免废水对环境污染,又减少水资源浪费;二是 能杀灭废水中的细菌等微生物,根除膜的生物污染,大幅度减少膜的清洗次数,降低膜清洁再生成本,提高膜的使用效率,延长膜的使用寿命,减少膜更换成本;
4 )大幅度降低废水COD的总排放量。
附图说明
图 1 为本发明所述 基于纳米催化电解技术和膜技术的制革废水处理回用 装置的组成示意图。
本发明的最佳实施方式
以下实施例将结合附图对本发明作进一步的说明。
参见图1,本发明所述基于纳米催化电解技术和膜技术的制革废水处理回用装置实施例设有粗格栅过滤机1、调节池2、水力筛3、纳米催化电解机4、反应池5、沉淀池6、气浮装置7、生化池8、二沉池9、二次纳米催化电解机10、过滤器11和膜系统12。粗格栅过滤机1的废水入口外接综合废水源,粗格栅过滤机1的过滤废水出口接调节池2的入口,水力筛3的入口接调节池2的废水出口,纳米催化电解机4的入口接水力筛3的出口,纳米催化电解机4的出口接反应池5的入口,反应池5的出口接沉淀池6的入口,沉淀池6的沉淀出口经管道泵入压滤机P过滤分离成滤液和污泥,沉淀池6的废水出口接气浮装置7的入口,气浮装置7上部的渣出口经管道泵入压滤机P过滤分离成滤液和污泥,过滤机的滤液出口经管道流入生化池8中,气浮装置7下部的废水出口经泵接生化池8,生化池8的出口接二沉池9的入口,二沉池9上部的生化处理后废水出口接二次纳米催化电解机10的入口,二沉池9底部的沉淀出口经管道泵入压滤机P过滤分离成滤液和污泥,滤液经管道流入二沉池9中,二次纳米催化电解机10的废水出口接过滤器11的入口,过滤器11的过滤所得废水出口接膜系统12入口,膜系统12设有透析液(回用水)出口H和浓缩液排放口M。
本发明的实施方式
以下给出所述 基于纳米催化电解技术和膜技术的制革废水处理回用 方法的具体实施例。
实施例 1
步骤 1 纳米催化电解
制革废水进入粗格栅过滤机 1 过滤除去大颗粒固体物后流入调节池 2 混合,再将调节池 2 的废水泵入水力筛 3 过滤脱毛发等杂质后流入纳米催化电解机 4 电解,电解的工作电压为 2 ~ 500V ,两极间的电压为 2 ~ 8 V ,电解密度为 10 ~ 300mA/cm2 的催化电解机,保持废水在纳米催化电解机中的停留时间为 5 ~ 15min ,废水的电解的用电量控制为 0.8 ~ 1.2 度 / m 3
步骤 2 絮凝
经过步骤 1 纳米催化电解机 4 电解处理后的废水流入反应池 5 中,向反应池 5 中加入已配制好的絮凝剂、助凝剂和气浮剂,进行絮凝反应后进入沉淀池 6 进行分离。沉淀池 6 下部沉淀经管道泵入压滤机过滤分离成滤液和污泥;沉淀池 6 上部废水流入气浮装置 7 进行气浮分离,气浮装置 7 上部分离的渣经管道泵入压滤机过滤分离成滤液和污泥,滤液经管道流入生化池 8 中;气浮装置 7 下部的废水泵入生化池 8 中。
步骤 3 生化处理
将经过步骤 2 絮凝的气浮装置 7 下部的废水泵入生化池 8 中,经过好氧或厌氧 + 好氧的一种方法处理,再经二沉池 9 沉淀分离,二沉池 9 上部流出生化处理后废水,二沉池 9 底部的沉淀经管道泵入压滤机过滤分离成滤液和污泥,滤液经管道流入二沉池 9 中。经过生化处理,从二沉池沉淀分离所得生化处理废水的色度为 60 ~ 200 , COD 为 80 ~ 300 ㎎ /L ,氨氮为 0 ~ 30 ㎎ /L 。
步骤 4 二次催化电解
将二沉池 9 上部流出的生化处理废水送入二次纳米催化电解机 10 电解,电解的工作电压为 2 ~ 400V ,最佳工作电压为 13 ~ 200V ,两极间的电压为 2 ~ 8 V ,两极间的最佳电压为 3 ~ 5V ,电流密度为 10 ~ 300mA/cm2 ,最佳电流密度为 150 ~ 230mA/cm2 ,废水在电解机内的停留时间为 2 ~ 6min ,最佳停留时间为 3 ~ 4min ,电解程度为 0.8 ~ 1.0 度 / m 3
步骤 5 过滤
将二次催化电解机 10 机电解所得废水经过滤器 11 过滤,除去固体杂质。
所述过滤器 11 为砂滤器、多介质过滤器或微滤膜系统的一种。将二次催化电解所得废水经过过滤器 11 过滤,其所得废水的色度为 1 ~ 10 , COD 为 30 ~ 200 ㎎ /L ,氨氮为 0 ~ 5 ㎎ /L , SS 为 0 ~ 10 ㎎ /L 。
步骤 6 膜过滤
将过滤器 11 过滤所得废水经过膜系统 12 过滤,得透析液(回用水)和浓缩液,透析液回用,浓缩液排放。
如上所述膜系统 12 为纳滤膜系统,膜组件为卷式膜组件,纳滤膜的膜材料为有机膜中醋酸纤维膜和复合纳滤膜一种,其截留分子量为 200 ~ 500MWCO ,进压 6.0 ~ 45.0bar ,出压 4.5 ~ 43.5 bar 。经过纳滤膜系统 12 过滤的透析液(回用水)的得率为 75% ~ 85% ,为无色液体, COD 小于 30 ㎎ /L ,氨氮小于 5 ㎎ /L , SS 未检出,二价离子的脱除率大于 95% 。
如上所述膜系统 12 为反渗透膜系统,膜组件为卷式膜组件,膜材料为有机膜中醋酸纤维膜和复合膜一种,其截留分子量为 50 ~ 200MWCO ,进压 6.0 ~ 45.0bar ,出压 4.5 ~ 35 bar 。经过反渗透膜系统 12 过滤的透析液(回用水)的得率为 60% ~ 75% ,为无色液体, COD 小于 5 ㎎ /L ,氨氮小于 1 ㎎ /L , SS 未检出,脱盐率大于 95% 。
实施例 2
以下结合图 1 所示的 基于纳米催化电解技术和膜技术的制革废水处理回用 装置实施例,给出 基于纳米催化电解技术和膜技术的制革废水处理回用 方法的实例。
300 吨 / 日制革 废水处理及净化回用工程。
所述的制革废水(综合废水)经测定指标如表 1 所示。
表 1
序号 项目 单位 测定值 序号 项目 单位 测定值
1 CODCr mg/L 3560 5 BOD5 mg/L 1730
2 SS mg/L 3110 6 S2 mg/L 82
3 NH3-N mg/L 265 7 色度 3200
4 Cr mg/L 120 8 pH 9.3
废水经水按 15 m 3 /H 的流速进入粗格栅过滤机 1 过滤除去大颗粒固体物后流入调节池 2 混合,再将调节池 2 的废水按 15 m 3 /H 的流速泵入水力筛 3 过滤脱毛发等杂质后流入纳米催化电解机 4 电解,所述纳米催化电解的工作电压为 48V ,电流强度为 375A ,两极间的电压为了 4.2 V ,纳米催化微电解产生的初生态的氯 [Cl] 杀灭废水中微生物、氧化分解废水中的有机物,并使废水中的悬浮物、胶体、带电微粒在电场作用下形成较大颗粒。电解后的废水进行反应池 5 ,加入石灰、硫酸亚铁和聚丙烯酰胺,进行混凝反应后进入沉淀池 6 ,沉淀池 6 下部沉淀经管道泵入压滤机过滤分离成滤液和污泥;沉淀池 6 上部废水流入气浮装置 7 进行气浮分离,气浮装置 7 上部分离的渣经管道泵入压滤机过滤分离成滤液和污泥,滤液经管道流入生化池 8 中;气浮装置 7 下部的废水泵入生化池 8 中。在生化池 8 中经过好氧处理,再进入二沉池 9 沉淀分离,二沉池 9 上部流出生化处理后废水,二沉池 9 底部的沉淀经管道泵入压滤机过滤分离成滤液和污泥,滤液经管道流入二沉池 9 中。经过生化处理,从二沉池沉淀分离所得生化处理废水的色度为 65 , COD 为 265mg/L ,氨氮为 3.7mg/L 。二沉池 9 上部流出的生化处理废水送入二次纳米催化电解机 10 电解,电解的工作电压为 40V ,电流为 375A ,废水在电解机内的停留时间为 4min 。电解机 10 机电解所得废水经多介质过滤器 11 过滤,得电解后废水,其色度为 6 , COD 为 207mg/L ,氨氮为 2.5mg/L , SS 为 3mg/L 。多介质过滤器 11 过滤所得电解后废水进入纳滤膜系统 12 ,纳滤膜组件为卷式膜组件,纳滤膜的膜材料为留分子量为 200MWCO 醋酸纤维膜,膜的进压 6.5bar ,出压 4bar 。经过纳滤膜系统 12 过滤的透析液(回用水)的得率为 80% ,透析液(回用水)的回用水的质量如表 2 所示。
表 2
序号 项目 单位 测定值 序号 项目 单位 测定值
1 CODCr mg/L 9 4 色度 无色
2 SS mg/L 0 5 pH 7.7
3 浊度 NTU 2 6 电导率 µS/cm 1100
实施例 3
3000 吨 / 日制革 处理废水回用工程。
所述的制革废水(综合废水)经测定指标如表 3 所示。
表 3
序号 项目 单位 测定值 序号 项目 单位 测定值
1 CODCr mg/L 3900 5 BOD5 mg/L 1950
2 SS mg/L 4070 6 S2 mg/L 92
3 NH3-N mg/L 283 7 色度 2900
4 Cr mg/L 93 8 pH 9.3
废水经水按 150 m 3 /H 的流速进入粗格栅过滤机 1 过滤除去大颗粒固体物后流入调节池 2 混合,再将调节池 2 的废水按 150 m 3 /H 的流速泵入水力筛 3 过滤脱毛发等杂质后流入纳米催化电解机 4 电解,所述纳米催化电解的工作电压为 380V ,电流强度为 3475A ,两极间的电压为了 4.2 V ,电解密度为 230mA/cm2 ,纳米催化微电解产生的初生态的氯 [Cl] 杀灭废水中微生物、氧化分解废水中的有机物,并使废水中的悬浮物、胶体、带电微粒在电场作用下形成较大颗粒。电解后的废水进行反应池 5 ,加入石灰、硫酸亚铁和聚丙烯酰胺,进行混凝反应后进入沉淀池 6 ,沉淀池 6 下部沉淀经管道泵入压滤机过滤分离成滤液和污泥;沉淀池 6 上部废水流入气浮装置 7 进行气浮分离,气浮装置 7 上部分离的渣经管道泵入压滤机过滤分离成滤液和污泥,滤液经管道流入生化池 8 中;气浮装置 7 下部的废水泵入生化池 8 中。在生化池 8 中经过厌氧处理后,再经过好氧处理后进入二沉池 9 沉淀分离,二沉池 9 上部流出生化处理后废水,二沉池 9 底部的沉淀经管道泵入压滤机过滤分离成滤液和污泥,滤液经管道流入二沉池 9 中。经过生化处理,从二沉池沉淀分离所得生化处理废水的色度为 85 , COD 为 165mg/L ,氨氮为 1.5 ㎎ /L 。二沉池 9 上部流出的生化处理废水送入二次纳米催化电解机 10 电解,电解的工作电压为 380V ,电流为 3670A ,废水在电解机内的停留时间为 3min 。电解机 10 机电解所得废水经多介质过滤器 11 过滤,得电解后废水,其色度为 8 , COD 为 112 ㎎ /L ,氨氮为 0.9 ㎎ /L , SS 为 1 ㎎ /L 。多介质过滤器 11 过滤所得电解后废水进入反渗透滤膜系统 12 ,如上所述膜系统 12 为反渗透膜系统,膜组件为卷式膜组件,膜材料为复合膜,其截留分子量为 50MWCO ,进压 15.0bar ,出压 2.5bar 。经过反渗透膜系统 12 过滤的透析液(回用水)的得率为 75% ,透析液(回用水)的回用水的质量如表 4 所示。
表 4
序号 项目 单位 测定值 序号 项目 单位 测定值
1 CODCr mg/L 0 4 色度 无色
2 SS mg/L 0 5 pH 6.5
3 浊度 NTU 0.8 6 电导率 µS/cm 50
实施例 4
具体步骤如下:
1 ) 纳米催化电解
制革综合废水经纳米催化电解,产生的强氧化性物质将废水中有机物氧化分解;电解产生的 OH- 与一些金属离子作用(如 Fe3+ )产生沉淀,这些沉淀小颗粒起助凝剂的作用,促进溶液中的悬浮物质聚集沉降;同时, 在电场作用下使废水脱稳,使其溶解在水中的胶体絮凝沉降,降低步骤 2 絮凝过程投加絮凝剂、助凝剂和气浮剂的用量。
所述的纳米催化电解是以钛为基板并在表面涂有具有良好催化效果晶粒为15 ~ 22 的氧化化涂层的电极为阳极,钛、不锈钢、铝、锌、铜、石墨为阴极,将制革废水经过格栅过滤和水力筛脱毛并后的流过工作电压为2 ~ 500V ,两极间的电压为2 ~ 8 V ,电解密度为10 ~ 260mA/cm2 的催化电解机,保持废水的电解时间为5 ~ 15min ,废水的电解程度控制为0.8 ~ 1.2 度 / m 3 。电解过程中会产生大量具有强氧化性的自由基(在有氯化钠存在的情况下,产生的是初生态的氯和羟基),它能快速氧化分解废水中的有机物质,使废水中难于生化降解的大有机分子开环、断链、 大分子分解为小分子 ,为生化提供更好的条件;使废水中的染料分子 的发色基团、助色基团氧化或还原为无色基团,达到脱色的目的 ,降低 COD 和提高废水的可生化, 将废水的 BOD 提高15% ~ 40% 。
此外, 纳米催化电解还有以下作用:
1 絮凝作用
电解过程中产生的 OH- 可以与一些重金属离子作用(如、 Fe3+ )产生沉淀沉降下来,这些沉淀小颗粒可起助凝剂的作用,促进溶液中的悬浮物质聚集沉降。另外电解过程中,电场可以迅速破坏水体中的胶体结构,使其脱稳絮凝沉降,极大限度降低絮凝工序投加的絮凝剂、助凝剂和气浮剂的用量;
2 脱色作用
电解过程产生的具有强氧化性的自由基可以快速降解废水中制革染料的分子结构,减少有色物质对水质色度的影响;
3 杀菌消毒作用
电解过程中会产生大量具有强氧化性的自由基,如初生态的氯,它能快速杀灭废水中的细菌等微生物和病毒,具有强大的 杀菌消毒作用;
4 气浮效应
阴极产生的氢能形成大量的微小气泡,随着气体的上浮,会带出大量的固体悬浮物和油脂,经过气浮达到固液分离的效果,从而进一步降低废水中的COD 、色度、浊度等。
实践证明,废水的电解时间以5 ~ 15min 为宜,时间过短,电解不充分,絮凝效果和脱色效果均较差;时间过长,絮凝效果和脱色效果虽较好,但消耗的电量大,经济上不合理。
实践还证明,电解时间与废水的浓度有关,浓度越高,电解的时间要相应延长。
实践还证明,电解时两极间的工作电压大小与两极间的距离有关,距离越小,电压越小,通常两极间的电压为2 ~ 8 V ,最佳电压为3 ~ 5 V 。
步骤 1 所述的催化电解具有如下优点:
( 1 )使步骤 2 絮凝所需的絮凝剂、助凝剂的用量减少40%~70% ,不必加入脱色剂。这既可以大幅度减少化学药品消耗,又可以减少化学二次污染;
( 2 )污泥的排放量减少40% ~ 70% 。
步骤 2 絮凝
向经过步骤 1 催化电解处理后的综合废水中加入絮凝剂、助凝剂和气浮剂,进行絮凝反应后,气浮除去杂质。
如上所述,絮凝是向经过催化电解处理后的制革综合废水中加入絮凝剂、助凝剂和气浮剂;所述的碱为石灰和氢氧化钠的一种;絮凝剂为硫酸亚铁、硫酸铁、氯化铁、聚合硫酸铁中的一种;助凝剂为聚丙烯酰胺。
步骤 3 生化处理
将经过步骤 2 絮凝处理的废水经过好氧或厌氧 + 好氧的一种方法处理,再经二沉池沉淀分离,得生化处理后废水。
如上所述,经过生化处理,再经二沉池沉淀分离所得生化处理废水的色度为80 ~ 200 , COD为80 ~ 300 mg/L ,氨氮为0 ~ 30 mg/L 。
步骤 4 二次催化电解
将步骤 3 生化处理所得的处理废水进行二次催化电解,脱除废水中有色物质和氧化分解有机物,进一步降低废水中的 COD 。
如上所述二次催化电解是将步骤 3 生化处理所得的废水流入二沉池,经沉淀后流入工作电压为 2 ~ 400V ,两极间的电压为 2 ~ 8 V 的催化电解机进行催化电解,电流密度为 10 ~ 300mA/cm2 ,废水的电解时间为 2 ~ 6min ,电解程度为 0.8 ~ 1.0 度 / m 3 。电解的最佳工作电压为 13 ~ 200V ,两极间的最佳电压为3 ~ 5V ,最佳电流密度为 150 ~ 230mA/cm2 ,电解产生的强氧化性物质氧化分解废水中的有机物,使废水中的染料氧化分解脱色并降低 COD ,杀灭废水中的细菌等微生物,同时,在电场作用下,使废水脱稳,产生絮凝作用。
步骤 5 过滤 将步骤 4 二次催化电解所得废水经过滤,除去固体杂质。
如上所述,步骤 5 所述的过滤为砂滤、多介质过滤或微滤的一种。将二次催化电解所得废水经过砂滤、多介质过滤或微滤,其所得废水的色度为 1 ~ 10 , COD 为30 ~ 200 mg/L ,氨氮为 0 ~ 5 mg/L , SS 为 0 ~ 10 mg/L 。
步骤 6 膜过滤 将步骤 5 多介质过滤所得废水经过膜过滤,得透析液(回用水)和浓缩液,透析液回用,浓缩液排放。
如上所述,步骤 6 的膜过滤为纳滤,膜组件为卷式膜组件,纳滤膜的膜材料为有机膜中醋酸纤维膜和复合纳滤膜一种,其截留分子量为 200 ~ 500MWCO ,进压 6.0 ~ 45.0bar ,出压 4.5 ~ 43.5 bar ;
如上所述,经过纳滤膜过滤的透析液(回用水)的得率为 75 ~ 85% ,为无色液体, COD 小于 30 mg/L ,氨氮小于 5 mg/L , SS 未检出, 二价离子 的脱除率大于 95% 。
如上所述,步骤 6 的膜过滤为反渗透过滤,膜组件为卷式膜组件,膜材料为有机膜中醋酸纤维膜和复合膜一种,其截留分子量为 50 ~ 200MWCO ,进压 6.0 ~ 45.0bar ,出压 4.5 ~ 35 bar ;
如上所述,经过反渗透膜过滤的透析液(回用水)的得率为 60 ~ 80% ,为无色液体, COD 小于 5 mg/L ,氨氮小于 1 mg/L , SS 未检出,脱盐率大于 95% 。
如上所述,本发明由以下三大部分组成:
第一部分包括步骤 1 的纳米催化电解和步骤 2 的絮凝沉降的前处理部分。该部分采用粗格栅过滤除去废水中的皮毛、残肉等大颗粒杂质后于调节池混合,经水力筛过滤脱毛除去杂质后进行纳米催化微电解氧化分解有机物,沉降固体悬浮物和胶体物,再经气浮分离除去上浮于表面的固体杂质和油脂,然后加入絮凝剂、助凝剂和气浮剂进行絮凝反应,沉降分离大部分有机物和盐类,使 COD 指标由 3000 ~ 4000mg/L 降至 1500mg/L 以下,以确保生化系统(第二部分)能够长期稳定地运行。
第二部分包括步骤 3 生化、步骤 4 二次纳米催化电解,通过生化、二次纳米催化电解去除废水中 COD 、色素、氨氮,从而使处理的废水水质达满足膜系统(第三部分)能够长期稳定地运行。步骤 3 生化包括单独使用好氧处理或厌氧、好氧的组合使用、二次沉降等工序。
第三部分包括步骤 5 过滤和步骤 6 的膜过滤。经过第二部分处理的废水经过步骤 5 的过滤,进一步去除固体悬浮物等杂质后进入 步骤 6 的膜过滤系统分离成透析液和浓缩液,透析液为回用水,再次用于生产。浓缩液经过检测,符合排放标准,则直接排放,如果达不到排放标准,则回流至步骤 3 进行生化处理。
工业实用性
与絮凝 + 生化方法比较:本发明大量减少絮凝剂量的用量,减少单位产品化学药剂的消耗和节约药剂成本;大量减少污泥的排放量,减少污泥处理成本;废水经过处理, 60% ~ 85% 可以再生利用,既减少废水排放,避免废水对环境污染,又减少水资源浪费,还可以产生一定的经济效益。 与絮凝 + 生化 + 膜过滤方法比较:本发明大量减少絮凝剂量的用量,减少单位产品化学药剂的消耗和节约药剂成本;大量减少污泥的排放量,减少污泥处理成本;二沉池的生化废水经过二次纳米催化电解,进一步降低 COD ,一是可以使废水的回用率提高,既减少废水排放,避免废水对环境污染,又减少水资源浪费;二是 能杀灭废水中的细菌等微生物,根除膜的生物污染,大幅度减少膜的清洗次数,降低膜清洁再生成本,提高膜的使用效率,延长膜的使用寿命,减少膜更换成本;大幅度降低废水COD的总排放量。因此,本发明具有良好的工业实用性。
序列表自由内容

Claims (9)

  1. 基于纳米催化电解技术和膜技术的制革废水处理回用装置,其特征在于设有 粗格栅过滤机、调节池、水力筛、纳米催化电解机、反应池、沉淀池、气浮装置、生化池、二沉池、二次纳米催化电解机、过滤器和膜系统。粗格栅过滤机的废水入口外接综合废水源,粗格栅过滤机的过滤废水出口接调节池的入口,水力筛的入口接调节池的废水出口,纳米催化电解机的入口接水力筛的出口,纳米催化电解机的出口接反应池的入口,反应池的出口接沉淀池的入口,沉淀池的沉淀出口经管道泵入压滤机过滤分离成滤液和污泥,沉淀池的废水出口接气浮装置的入口,气浮装置上部的渣出口经管道泵入压滤机过滤分离成滤液和污泥,过滤机的滤液出口经管道流入生化池中,气浮装置下部的废水出口经泵接生化池,生化池的出口接二沉池的入口,二沉池上部的生化处理后废水出口接二次纳米催化电解机的入口,二沉池底部的沉淀出口经管道泵入压滤机过滤分离成滤液和污泥,滤液经管道流入二沉池中,二次纳米催化电解机的废水出口接过滤器的入口,过滤器的过滤所得废水出口接膜系统入口,膜系统设有透析液出口和浓缩液排放口。
  2. 基于纳米催化电解技术和膜技术的制革废水处理回用方法,其特征在于采用如权利要求 1 所述的基于纳米催化电解技术和膜技术的制革废水处理回用装置,所述方法 包括如下步骤:
    1 )纳米催化电解
    制革综合废水进入粗格栅过滤机过滤,除去大颗粒固体物后流入调节池混合,再将调节池的废水泵入水力筛过滤脱毛发等杂质后流入纳米催化电解机电解;
    2 )絮凝
    经过步骤 1 )纳米催化电解机电解处理后的废水流入反应池,向反应池中加入已配制好的絮凝剂、助凝剂和气浮剂,进行絮凝反应后进入沉淀池进行分离,沉淀池下部沉淀经管道泵入压滤机过滤分离成滤液和污泥,沉淀池部废水流入气浮装置进行气浮分离,气浮装置上部分离的渣经管道泵入压滤机过滤分离成滤液和污泥,滤液经管道流入生化池中,气浮装置下部的废水泵入生化池中;
    3 )生化处理
    将经过步骤 2 )絮凝的气浮装置下部的废水泵入生化池中,经过好氧或厌氧 + 好氧的处理,再经二沉池沉淀分离,二沉池上部流出生化处理后废水,二沉池底部的沉淀经管道泵入压滤机过滤分离成滤液和污泥,滤液经管道流入二沉池中,经过生化处理,从二沉池沉淀分离得生化处理废水;
    4 )二次催化电解
    将二沉池上部流出的生化处理废水送入二次纳米催化电解机电解;
    5 )过滤
    将二次催化电解机机电解所得废水经过滤器过滤,除去固体杂质;
    6 )膜过滤
    将过滤器过滤所得废水经过膜系统过滤,得透析液和浓缩液,透析液回用,浓缩液排放。
  3. 如权利要求 2 所述的 基于纳米催化电解技术和膜技术的制革废水处理回用方法,其特征在于 在步骤 1 )中,所述纳米催化电解机的电解工作电压为 2 ~ 500V ,两极间的电压为 2 ~ 8 V ,电解密度为 10 ~ 300mA/cm2 ,保持废水在纳米催化电解机中的停留时间为 5 ~ 15min ,废水的电解的用电量控制为 0.8 ~ 1.2 度 /m3
  4. 如权利要求 2 所述的 基于纳米催化电解技术和膜技术的制革废水处理回用方法,其特征在于 在步骤 4 )中,所述电解的工作电压为 2 ~ 400V ,两极间的电压为 2 ~ 8 V ,电流密度为 10 ~ 300mA/cm2 ,废水在电解机内的停留时间为 2 ~ 6min ,电解程度为 0.8 ~ 1.0 度 /m3
  5. 如权利要求 4 所述的 基于纳米催化电解技术和膜技术的制革废水处理回用方法,其特征在于 所述电解的工作电压为 13 ~ 200V ,两极间的电压为 3 ~ 5V ,电流密度为 150 ~ 230mA/cm2 ,废水在电解机内的停留时间为 3 ~ 4min 。
  6. 如权利要求 2 所述的 基于纳米催化电解技术和膜技术的制革废水处理回用方法,其特征在于 在步骤 5 )中,所述过滤器采用砂滤器、多介质过滤器或微滤膜系统。
  7. 如权利要求 2 所述的 基于纳米催化电解技术和膜技术的制革废水处理回用方法,其特征在于 在步骤 6 )中,所述膜系统为纳滤膜系统或反渗透膜系统。
  8. 如权利要求 7 所述的 基于纳米催化电解技术和膜技术的制革废水处理回用方法,其特征在于 所述纳滤膜系统中的膜组件为卷式膜组件,纳滤膜的膜材料为有机膜中醋酸纤维膜或复合纳滤膜,其截留分子量为 200 ~ 500MWCO ,进压为 6.0 ~ 45.0bar ,出压为 4.5 ~ 43.5 bar 。
  9. 如权利要求 7 所述的 基于纳米催化电解技术和膜技术的制革废水处理回用方法,其特征在于 所述反渗透膜系统的膜组件为卷式膜组件,膜材料为有机膜中醋酸纤维膜或复合膜,其截留分子量为 50 ~ 200MWCO ,进压为 6.0 ~ 45.0bar ,出压为 4.5 ~ 35 bar 。
PCT/CN2011/076746 2010-10-28 2011-07-01 基于纳米催化电解技术和膜技术的制革废水处理回用装置及方法 WO2012055263A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/882,196 US20130206692A1 (en) 2010-10-28 2011-07-01 Tanning wastewater treatment and recycling method based on nano-catalytic electrolysis technology and membrane technology

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010522958.9 2010-10-28
CN2010105229589A CN101979344B (zh) 2010-10-28 2010-10-28 基于纳米催化电解技术和膜技术的制革废水处理回用方法

Publications (1)

Publication Number Publication Date
WO2012055263A1 true WO2012055263A1 (zh) 2012-05-03

Family

ID=43599897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076746 WO2012055263A1 (zh) 2010-10-28 2011-07-01 基于纳米催化电解技术和膜技术的制革废水处理回用装置及方法

Country Status (3)

Country Link
US (1) US20130206692A1 (zh)
CN (1) CN101979344B (zh)
WO (1) WO2012055263A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2657197A1 (en) * 2010-12-24 2013-10-30 Boying Xiamen Science And Technology Co., Ltd. Tanning wastewater treatment and reuse apparatus and method therefor
WO2015103649A3 (en) * 2013-12-23 2016-03-17 Sanaqua Hca (Proprietary) Limited Water treatment
CN108862927A (zh) * 2018-07-26 2018-11-23 江苏开放大学(江苏城市职业学院) 一种印染废水处理装置及其应用
CN110156253A (zh) * 2019-03-19 2019-08-23 时代沃顿科技有限公司 一种电池隔膜涂布头清洗废水处理装置和处理方法
CN110981113A (zh) * 2019-12-26 2020-04-10 天津膜天膜科技股份有限公司 印染排放废水回收工艺
CN111233261A (zh) * 2020-01-20 2020-06-05 轻工业环境保护研究所 马铃薯淀粉生产废水的处理技术
CN111689643A (zh) * 2019-03-15 2020-09-22 中国石油化工股份有限公司 成品油库含油污水处理方法
CN114751583A (zh) * 2022-03-16 2022-07-15 黄山天马新材料科技有限公司 一种聚酯树脂生产废水处理方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101979344B (zh) * 2010-10-28 2012-07-25 波鹰(厦门)科技有限公司 基于纳米催化电解技术和膜技术的制革废水处理回用方法
CN102120678B (zh) * 2011-03-24 2014-03-12 波鹰(厦门)科技有限公司 基于电解和mbr技术的污水循环利用装置及其方法
CN103011501A (zh) * 2012-11-27 2013-04-03 常州大学 一种高效制革工业污水的处理方法
US9776887B2 (en) 2013-12-04 2017-10-03 Zhuangdou Zhang Tannery process with effluent recycling
US10260115B2 (en) 2014-03-20 2019-04-16 Zhuangdou Zhang Leather production using waste liquids
CN104150713B (zh) * 2014-08-12 2015-08-19 宁波市恒洁水务发展有限公司 芦丁生产过程中废水的处理方法
CN107055937A (zh) * 2016-12-20 2017-08-18 波鹰(厦门)科技有限公司 一种基于生化与电解技术的污水深度处理再生利用方法
CN106698852A (zh) * 2017-01-24 2017-05-24 临沂大学 一种芥菜腌制废水处理设备及方法
CN109422413A (zh) * 2017-08-16 2019-03-05 天津科技大学 一种水性涂料废水处理装置
CN108101287A (zh) * 2017-12-15 2018-06-01 安徽普朗膜技术有限公司 沼液废水处理系统及其处理方法
CN108773982B (zh) * 2018-07-02 2021-03-16 武汉科技大学 一种高浓度废水的处理方法
CN108892209B (zh) * 2018-07-10 2019-07-26 华东师范大学 一种掺杂铜尾砂的多孔污泥基粒子电极催化剂的制备方法与应用
US11884568B2 (en) * 2018-08-14 2024-01-30 Corn Products Development, Inc. Recycling of sodium sulfate in starch processing
CN108821484A (zh) * 2018-08-23 2018-11-16 南京科莱恩环境工程有限公司 一种兰炭废水的预处理组合装置及方法
CN108911432A (zh) * 2018-09-03 2018-11-30 江苏泰源环保科技股份有限公司 分散染料废水的处理装置和处理工艺
CN109550771B (zh) * 2018-12-11 2024-04-26 中化环境控股有限公司 工业废盐中有机污染物的去除方法和去除装置
JP6984085B2 (ja) 2019-01-22 2021-12-17 成都千砺金科技創新有限公司 自己結合によるナノ触媒型汚水処理剤の生産方法
CN110217947A (zh) * 2019-07-04 2019-09-10 浙江迈图环保科技有限公司 一种印染污水分类处理工艺
CN111533368A (zh) * 2020-04-17 2020-08-14 苏州庚泽新材料科技有限公司 污水的处理方法
CN111499098A (zh) * 2020-04-21 2020-08-07 四川内江汇鑫制药有限公司 一种维生素d生产废水处理系统
CN114057315A (zh) * 2020-07-29 2022-02-18 山东浪潮华光光电子股份有限公司 一种砷化镓研磨冷却水循环使用设备及其使用方法
CN112479484A (zh) * 2020-11-03 2021-03-12 河南省正大环境科技咨询工程有限公司 一种药物辅料生产废水处理工艺
CN113087203A (zh) * 2021-03-25 2021-07-09 中持水务股份有限公司 一种用于ptfe废水的处理工艺和污水处理设备
CN114890609B (zh) * 2021-12-23 2023-11-14 艾信智能环境科技(无锡)有限公司 一种可根据环境实时调节的医院生活污水净化装置
CN114368874A (zh) * 2021-12-29 2022-04-19 南京工大环境科技有限公司 沿江化工园区废水强化处理与回用集成工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031006A (en) * 1976-03-12 1977-06-21 Swift And Company Limited Vortex coagulation means and method for wastewater clarification
CN1061201A (zh) * 1991-08-23 1992-05-20 广东省环境工程装备总公司 一种制革综合废水处理的方法
CN1830841A (zh) * 2006-03-16 2006-09-13 南京大学 一种制革废水的处理方法
CN101665311A (zh) * 2009-09-24 2010-03-10 中南大学 高浓度难降解有机废水的催化微电解组合工艺
CN101979344A (zh) * 2010-10-28 2011-02-23 波鹰(厦门)科技有限公司 基于纳米催化电解技术和膜技术的制革废水处理回用方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPM498394A0 (en) * 1994-04-12 1994-05-05 Berrett Pty Ltd Electrolytic water treatment
US7309435B2 (en) * 2004-03-02 2007-12-18 Rozich Alan F Biological process for waste treatment and energy production
CN101787556B (zh) * 2009-01-23 2012-02-01 中国科学院海洋研究所 一种电解池
CN101704564A (zh) * 2009-12-10 2010-05-12 波鹰(厦门)科技有限公司 一种游泳池水净化消毒装置及净化消毒方法
CN201842735U (zh) * 2010-10-28 2011-05-25 波鹰(厦门)科技有限公司 基于纳米催化电解技术和膜技术的制革废水处理回用装置
US9174859B2 (en) * 2011-11-24 2015-11-03 Eco Watertech, Inc. Method for treating waste waters

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031006A (en) * 1976-03-12 1977-06-21 Swift And Company Limited Vortex coagulation means and method for wastewater clarification
CN1061201A (zh) * 1991-08-23 1992-05-20 广东省环境工程装备总公司 一种制革综合废水处理的方法
CN1830841A (zh) * 2006-03-16 2006-09-13 南京大学 一种制革废水的处理方法
CN101665311A (zh) * 2009-09-24 2010-03-10 中南大学 高浓度难降解有机废水的催化微电解组合工艺
CN101979344A (zh) * 2010-10-28 2011-02-23 波鹰(厦门)科技有限公司 基于纳米催化电解技术和膜技术的制革废水处理回用方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2657197A1 (en) * 2010-12-24 2013-10-30 Boying Xiamen Science And Technology Co., Ltd. Tanning wastewater treatment and reuse apparatus and method therefor
EP2657197A4 (en) * 2010-12-24 2015-02-25 Boying Xiamen Sci & Tech Co TREATMENT OF TREATMENT FROM TEMPERATURE AND RE-USE DEVICE AND METHOD THEREFOR
WO2015103649A3 (en) * 2013-12-23 2016-03-17 Sanaqua Hca (Proprietary) Limited Water treatment
CN108862927A (zh) * 2018-07-26 2018-11-23 江苏开放大学(江苏城市职业学院) 一种印染废水处理装置及其应用
CN111689643A (zh) * 2019-03-15 2020-09-22 中国石油化工股份有限公司 成品油库含油污水处理方法
CN111689643B (zh) * 2019-03-15 2022-07-05 中国石油化工股份有限公司 成品油库含油污水处理方法
CN110156253A (zh) * 2019-03-19 2019-08-23 时代沃顿科技有限公司 一种电池隔膜涂布头清洗废水处理装置和处理方法
CN110981113A (zh) * 2019-12-26 2020-04-10 天津膜天膜科技股份有限公司 印染排放废水回收工艺
CN111233261A (zh) * 2020-01-20 2020-06-05 轻工业环境保护研究所 马铃薯淀粉生产废水的处理技术
CN114751583A (zh) * 2022-03-16 2022-07-15 黄山天马新材料科技有限公司 一种聚酯树脂生产废水处理方法

Also Published As

Publication number Publication date
US20130206692A1 (en) 2013-08-15
CN101979344A (zh) 2011-02-23
CN101979344B (zh) 2012-07-25

Similar Documents

Publication Publication Date Title
WO2012055263A1 (zh) 基于纳米催化电解技术和膜技术的制革废水处理回用装置及方法
WO2012083674A1 (zh) 一种制革废水处理循环利用装置及其方法
WO2012083673A1 (zh) 一种印染废水处理循环利用装置及其方法
WO2011063769A1 (zh) 一种印染深度处理废水净化装置及净化方法
WO2013156002A1 (zh) 一种纳米催化电解絮凝气浮装置
WO2012088867A1 (zh) 一种纳米催化电解絮凝装置
WO2012089102A1 (zh) 基于电解和复膜技术的印染废水循环利用装置及其方法
WO2013010388A1 (zh) 垃圾渗滤液的处理装置及其处理方法
WO2014187296A1 (zh) 一种造纸深度处理废水的再生循环利用装置及方法
WO2013163963A1 (zh) 一种污水处理及再生循环利用装置及其方法
WO2012126316A2 (zh) 基于电解和mbr技术的污水循环利用装置及其方法
WO2012171365A1 (zh) 基于电化学和电渗析技术的造纸废水循环利用装置及方法
WO2014198179A1 (zh) 基于化学脱钙的造纸深度处理废水回用装置及方法
WO2012155607A1 (zh) 一种基于电解和双膜技术的再生水制造装置及其方法
CN103214153B (zh) 一种造纸深度处理废水的再生循环利用方法
WO2013156003A1 (zh) 一种新型纳米催化电解装置
CN114105412A (zh) 一种一体化处理焦化废水的方法
KR20090047641A (ko) 전기분해에 의한 폐수처리장치
KR101221565B1 (ko) 전기응집을 이용한 폐수처리장치
CN111170582A (zh) 电镀废水处理达标排放回收用处理工艺
CN107840495B (zh) 一种原油电脱盐废水的处理方法
CN102060417B (zh) Clt酸生产废水的处理工艺及装置
CN201915009U (zh) 基于催化电解和生化技术的制革废水处理循环利用装置
CN201842735U (zh) 基于纳米催化电解技术和膜技术的制革废水处理回用装置
CN115367969A (zh) 一种高浓度水性油墨废水处理方法及处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835537

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13882196

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11835537

Country of ref document: EP

Kind code of ref document: A1